JP6170487B2 - Thermal energy recovery device - Google Patents

Thermal energy recovery device Download PDF

Info

Publication number
JP6170487B2
JP6170487B2 JP2014258616A JP2014258616A JP6170487B2 JP 6170487 B2 JP6170487 B2 JP 6170487B2 JP 2014258616 A JP2014258616 A JP 2014258616A JP 2014258616 A JP2014258616 A JP 2014258616A JP 6170487 B2 JP6170487 B2 JP 6170487B2
Authority
JP
Japan
Prior art keywords
preheater
heating medium
evaporator
degree
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014258616A
Other languages
Japanese (ja)
Other versions
JP2016118161A (en
Inventor
高橋 和雄
和雄 高橋
祐治 田中
祐治 田中
足立 成人
成人 足立
貴之 福田
貴之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014258616A priority Critical patent/JP6170487B2/en
Priority to CN201510751148.3A priority patent/CN105715320B/en
Priority to KR1020150180767A priority patent/KR101639535B1/en
Publication of JP2016118161A publication Critical patent/JP2016118161A/en
Application granted granted Critical
Publication of JP6170487B2 publication Critical patent/JP6170487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for

Description

本発明は、熱エネルギー回収装置に関するものである。   The present invention relates to a thermal energy recovery device.

従来、工場の各種設備から排出される排ガス等の蒸気(気相の加熱媒体)から動力を回収する熱エネルギー回収装置が知られている。例えば、特許文献1には、外部の熱源から供給される気相の加熱媒体により作動媒体を加熱する蒸発器と、蒸発器から流出した加熱媒体により蒸発器に流入する前の作動媒体を加熱する予熱器と、蒸発器から流出した作動媒体を膨張させるスクリュ膨張機と、スクリュ膨張機に接続された発電機と、スクリュ膨張機から流出した作動媒体を凝縮させる凝縮器と、凝縮器で凝縮された作動媒体を予熱器へ送るポンプと、を備える発電装置(熱エネルギー回収装置)が開示されている。予熱器及び蒸発器は、それぞれ、作動媒体が流れる作動媒体流路と、加熱媒体が流れる加熱媒体流路と、を有している。   2. Description of the Related Art Conventionally, a thermal energy recovery apparatus that recovers power from steam (gas phase heating medium) such as exhaust gas discharged from various facilities in a factory is known. For example, in Patent Document 1, an evaporator that heats a working medium by a gas phase heating medium supplied from an external heat source, and a working medium that has not yet flowed into the evaporator are heated by a heating medium that has flowed out of the evaporator. A preheater, a screw expander that expands the working medium flowing out of the evaporator, a generator connected to the screw expander, a condenser that condenses the working medium flowing out of the screw expander, and a condenser And a pump for feeding the working medium to the preheater, a power generation device (thermal energy recovery device) is disclosed. Each of the preheater and the evaporator has a working medium flow path through which the working medium flows and a heating medium flow path through which the heating medium flows.

特開2012−211591号公報JP 2012-211591 A

上記特許文献1に記載される熱エネルギー回収装置では、蒸発器から流出した加熱媒体は、気相、液相又は気液二相のいずれかの状態で予熱器に流入する。この場合、予熱器でいわゆるウォータハンマー現象が生じ得ることが知られている。このウォータハンマー現象は、主に以下の原理で生じていると推測される。   In the thermal energy recovery apparatus described in Patent Document 1, the heating medium flowing out from the evaporator flows into the preheater in any state of a gas phase, a liquid phase, or a gas-liquid two phase. In this case, it is known that a so-called water hammer phenomenon may occur in the preheater. This water hammer phenomenon is presumed to occur mainly by the following principle.

気相の加熱媒体(蒸気や高温ガス)が予熱器の加熱媒体流路に流入すると、この加熱媒体は、加熱媒体流路内の液体(ドレインもしくはミスト)に冷却されることにより凝縮することによって急激に体積が小さくなる。そうすると、加熱媒体流路内に相対的に圧力の低い領域が発生する。この結果、その相対的に圧力の低い領域へ向かって加熱媒体流路内の液体が移動することにより、当該液体が加熱媒体流路の内面に衝突する。   When a gas phase heating medium (steam or high-temperature gas) flows into the heating medium flow path of the preheater, the heating medium is condensed by being cooled to a liquid (drain or mist) in the heating medium flow path. The volume suddenly decreases. As a result, a relatively low pressure region is generated in the heating medium flow path. As a result, the liquid in the heating medium flow path moves toward the relatively low pressure region, so that the liquid collides with the inner surface of the heating medium flow path.

本発明の目的は、予熱器におけるウォータハンマー現象の発生を抑制可能な熱エネルギー回収装置を提供することである。   The objective of this invention is providing the thermal energy recovery apparatus which can suppress generation | occurrence | production of the water hammer phenomenon in a preheater.

前記課題を解決する手段として、本発明は、外部から供給される気相の加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器から流出した加熱媒体と前記蒸発器に流入する前の作動媒体とを熱交換させることによって作動媒体を加熱する予熱器と、前記蒸発器から流出した作動媒体の膨張エネルギーを回収するとともに当該作動媒体を前記予熱器に送るエネルギー回収部と、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない場合に当該加熱媒体の前記予熱器への流入を禁止し、かつ、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きい場合に当該加熱媒体を前記予熱器へ流入させる操作を行う制御部と、を備える、熱エネルギー回収装置を提供する。   As means for solving the above-mentioned problems, the present invention provides an evaporator that evaporates the working medium by exchanging heat between the gas-phase heating medium supplied from the outside and the working medium, and the heating medium that flows out of the evaporator And a preheater for heating the working medium by exchanging heat with the working medium before flowing into the evaporator, and recovering the expansion energy of the working medium flowing out from the evaporator and supplying the working medium to the preheater When the supercooling degree of the energy recovery unit to be sent and the heating medium flowing into the preheater is not larger than 0 degrees, the heating medium is prohibited from flowing into the preheater and the heating medium flows into the preheater There is provided a thermal energy recovery device comprising: a control unit that performs an operation of causing the heating medium to flow into the preheater when the degree of supercooling of the medium is greater than 0 degrees.

本熱エネルギー回収装置では、予熱器及び蒸発器で作動媒体が得た熱エネルギーをエネルギー回収部により回収しつつ、予熱器でのウォータハンマー現象の発生を抑制することができる。具体的に、予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない場合(気相の加熱媒体が存在し得る場合)に加熱媒体の予熱器への流入が禁止され、前記過冷却度が0度よりも大きい場合に予熱器に加熱媒体が流入する。つまり、予熱器には、液相の加熱媒体が流入する。よって、予熱器内でのウォータハンマー現象の発生が抑制される。より詳細には、気相の加熱媒体が予熱器に流入した後に当該予熱器内で凝縮することに起因して生じるウォータハンマー現象の発生が抑制される。   In the present thermal energy recovery apparatus, it is possible to suppress the occurrence of the water hammer phenomenon in the preheater while recovering the thermal energy obtained by the working medium in the preheater and the evaporator by the energy recovery unit. Specifically, when the degree of supercooling of the heating medium flowing into the preheater is not greater than 0 degrees (when a gas phase heating medium may exist), the heating medium is prohibited from flowing into the preheater, When the degree of cooling is greater than 0 degrees, the heating medium flows into the preheater. That is, the liquid phase heating medium flows into the preheater. Therefore, the occurrence of the water hammer phenomenon in the preheater is suppressed. More specifically, the occurrence of a water hammer phenomenon caused by condensation of the gas phase heating medium in the preheater after flowing into the preheater is suppressed.

この場合において、前記制御部は、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きく、かつ、前記蒸発器から流出した加熱媒体の過冷却度が特定の下限値以上である場合に加熱媒体を前記予熱器へ流入させる一方、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない、あるいは、当該過冷却度が0度よりも大きくても前記蒸発器から流出した加熱媒体の過冷却度が前記下限値未満である場合に加熱媒体の前記予熱器への流入を禁止する操作を行うことが好ましい。   In this case, the control unit has a degree of supercooling of the heating medium flowing into the preheater larger than 0 degree, and a degree of supercooling of the heating medium flowing out of the evaporator is a specific lower limit value or more. The heating medium is allowed to flow into the preheater while the supercooling degree of the heating medium flowing into the preheater is not greater than 0 degrees, or even if the supercooling degree is greater than 0 degrees, the evaporator When the degree of supercooling of the heating medium flowing out of the heating medium is less than the lower limit value, it is preferable to perform an operation of prohibiting the heating medium from entering the preheater.

このようにすれば、予熱器でのウォータハンマー現象の発生が抑制されることに加え、蒸発器でのウォータハンマー現象の発生も抑制される。具体的に、蒸発器から流出した加熱媒体の過冷却度が下限値未満の場合、加熱媒体が例えば気液二相の状態の場合もある。この場合において加熱媒体が予熱器に流入する際、予熱器で圧力損失が生じるため、加熱媒体が予熱器を通過しにくくなる。このため、予熱器での熱交換効率が低下し、さらに、前記圧力損失が原因(抵抗)となり、蒸発器内から液相の加熱媒体(ドレイン)が流出しにくくなる。この状態で蒸発器に気相の加熱媒体が流入すると、当該気相の加熱媒体が前記ドレインに冷却されることによって急激にその体積を減少させるので、蒸発器においてウォータハンマー現象が生じる懸念がある。これに対し、本エネルギー回収装置では、蒸発器から流出した加熱媒体の過冷却度が下限値未満の場合に加熱媒体の予熱器への流入を禁止することにより、予熱器での熱交換効率の低下が抑制され、さらに、前記圧力損失に起因して蒸発器内から液相の加熱媒体(ドレイン)が流出しにくくなる状態が回避される(液相の加熱媒体の流出が促進される)ので、蒸発器でのウォータハンマー現象の発生が抑制される。   In this way, in addition to suppressing the occurrence of the water hammer phenomenon in the preheater, the occurrence of the water hammer phenomenon in the evaporator is also suppressed. Specifically, when the degree of supercooling of the heating medium flowing out of the evaporator is less than the lower limit value, the heating medium may be in a gas-liquid two-phase state, for example. In this case, when the heating medium flows into the preheater, pressure loss occurs in the preheater, so that the heating medium is difficult to pass through the preheater. For this reason, the heat exchange efficiency in the preheater is reduced, and further, the pressure loss is a cause (resistance), and the liquid heating medium (drain) is less likely to flow out of the evaporator. When a vapor phase heating medium flows into the evaporator in this state, the vapor phase heating medium is rapidly cooled by the drain, so that its volume is suddenly reduced. . On the other hand, in this energy recovery device, when the degree of supercooling of the heating medium flowing out from the evaporator is less than the lower limit value, the heating medium is prohibited from flowing into the preheater, thereby improving the heat exchange efficiency in the preheater. As a result, a state in which the liquid phase heating medium (drain) is less likely to flow out of the evaporator due to the pressure loss is avoided (outflow of the liquid phase heating medium is promoted). The occurrence of the water hammer phenomenon in the evaporator is suppressed.

また、本発明において、前記制御部は、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きく、かつ、前記蒸発器から流出した加熱媒体の過冷却度が特定の上限値以下である場合に加熱媒体を前記予熱器へ流入させる一方、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない、あるいは、当該過冷却度が0度よりも大きくても前記蒸発器から流出した加熱媒体の過冷却度が前記上限値よりも大きい場合に加熱媒体を前記予熱器へ流入させることなく外部に排出させる操作を行うことが好ましい。   Further, in the present invention, the control unit has a degree of supercooling of the heating medium flowing into the preheater greater than 0 degrees, and a degree of supercooling of the heating medium flowing out of the evaporator is a specific upper limit value or less. In the case where the heating medium is allowed to flow into the preheater, the supercooling degree of the heating medium flowing into the preheater is not greater than 0 degree, or even if the supercooling degree is greater than 0 degree. When the degree of supercooling of the heating medium flowing out from the evaporator is larger than the upper limit value, it is preferable to perform an operation of discharging the heating medium to the outside without flowing into the preheater.

このようにすれば、予熱器でのウォータハンマー現象の発生が抑制されることに加え、蒸発器からの液相の加熱媒体(ドレイン)の流出が促進されるので、蒸発器でのウォータハンマー現象の発生が抑制される。具体的に、蒸発器から流出した加熱媒体の過冷却度が上限値よりも大きい(高過ぎる)場合は、蒸発器における加熱媒体が流れる流路の流出口付近に相当程度の液相の加熱媒体(ドレイン)が溜まった状態になっている。この状態で蒸発器に気相の加熱媒体が流入すると、当該気相の加熱媒体が前記ドレインに冷却されることによって急激にその体積を減少させるので、蒸発器においてウォータハンマー現象が生じる懸念がある。一方、その状態において液相の加熱媒体が予熱器に流入する場合、当該液相の加熱媒体が予熱器を通過するのに時間を要するため、蒸発器内から液相の加熱媒体(ドレイン)が流出しにくくなる。これに対し、本エネルギー回収装置では、蒸発器から流出した加熱媒体の過冷却度が前記上限値よりも大きい場合(蒸発器において作動媒体により加熱媒体の潜熱のみならず顕熱も十分に回収されている場合)に加熱媒体を予熱器へ流入させることなく外部に排出させることにより、液相の加熱媒体が蒸発器から外部に排出されるまでに要する時間が短縮されるため、蒸発器からのドレインの流出が促進される。よって、蒸発器でのウォータハンマー現象の発生が抑制される。   In this way, in addition to suppressing the occurrence of the water hammer phenomenon in the preheater, the outflow of the liquid phase heating medium (drain) from the evaporator is promoted, so the water hammer phenomenon in the evaporator Is suppressed. Specifically, when the degree of supercooling of the heating medium flowing out of the evaporator is larger (too high) than the upper limit value, a liquid-phase heating medium corresponding to a considerable amount in the vicinity of the outlet of the flow path through which the heating medium flows in the evaporator (Drain) is accumulated. When a vapor phase heating medium flows into the evaporator in this state, the vapor phase heating medium is rapidly cooled by the drain, so that its volume is suddenly reduced. . On the other hand, when the liquid-phase heating medium flows into the preheater in that state, it takes time for the liquid-phase heating medium to pass through the preheater. It becomes difficult to leak. On the other hand, in this energy recovery apparatus, when the degree of supercooling of the heating medium flowing out from the evaporator is larger than the upper limit value (not only the latent heat of the heating medium but also the sensible heat is sufficiently recovered by the working medium in the evaporator). When the heating medium is discharged to the outside without flowing into the preheater, the time required for the liquid phase heating medium to be discharged from the evaporator is shortened. The drain outflow is promoted. Therefore, the occurrence of the water hammer phenomenon in the evaporator is suppressed.

また、本発明において、前記制御部は、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きく、かつ、前記蒸発器に流入する作動媒体の過冷却度が0度よりも大きい場合に加熱媒体を前記予熱器へ流入させる一方、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない、あるいは、当該過冷却度が0度よりも大きくても前記蒸発器に流入する作動媒体の過冷却度が0度よりも大きくない場合に加熱媒体の前記予熱器への流入を禁止する操作を行うことが好ましい。   In the present invention, the control unit has a degree of supercooling of the heating medium flowing into the preheater larger than 0 degree and a degree of supercooling of the working medium flowing into the evaporator is larger than 0 degree. The heating medium is allowed to flow into the preheater while the supercooling degree of the heating medium flowing into the preheater is not greater than 0 degrees, or even if the supercooling degree is greater than 0 degrees, the evaporator It is preferable to perform an operation of prohibiting the heating medium from flowing into the preheater when the degree of supercooling of the working medium flowing into the heating medium is not greater than 0 degrees.

このようにすれば、予熱器でのウォータハンマー現象の発生が抑制されることに加え、蒸発器内での作動媒体の偏流が抑制されるので、蒸発器での熱交換効率、すなわち、エネルギー回収部のエネルギー回収効率が向上する。例えば、気液二相の作動媒体が蒸発器に流入した場合、気相の作動媒体の比重と液相の作動媒体の比重とは互いに異なることから、蒸発器内には、気相の作動媒体の通過する領域と液相の作動媒体が通過する領域とが形成される。このため、蒸発器において作動媒体と加熱媒体との均一な熱交換が行われないこと(熱交換効率の低下)が懸念される。これに対し、本エネルギー回収装置では、蒸発器に流入する作動媒体の過冷却度が0度よりも大きくない場合(気相の作動媒体が存在し得る場合)に、加熱媒体の予熱器への流入を禁止するので、つまり、予熱器での加熱媒体による作動媒体の加熱を停止するので、予熱器から流出する作動媒体に気相の作動媒体が含まれることが抑制される。よって、蒸発器での作動媒体の偏流が抑制される。   In this way, in addition to suppressing the occurrence of the water hammer phenomenon in the preheater, the drift of the working medium in the evaporator is suppressed, so the heat exchange efficiency in the evaporator, that is, energy recovery. The energy recovery efficiency of the part is improved. For example, when a gas-liquid two-phase working medium flows into the evaporator, the specific gravity of the gas-phase working medium and the specific gravity of the liquid-phase working medium are different from each other. And a region through which the liquid-phase working medium passes are formed. For this reason, there is a concern that uniform heat exchange between the working medium and the heating medium is not performed in the evaporator (decrease in heat exchange efficiency). On the other hand, in this energy recovery device, when the degree of supercooling of the working medium flowing into the evaporator is not greater than 0 degrees (when a gaseous working medium may exist), the heating medium is supplied to the preheater. Since the inflow is prohibited, that is, the heating of the working medium by the heating medium in the preheater is stopped, it is suppressed that the working medium flowing out from the preheater contains a gas phase working medium. Therefore, the drift of the working medium in the evaporator is suppressed.

また、本発明において、前記制御部は、予め定められた停止条件が成立したときに、加熱媒体を前記予熱器へ流入させることなく外部に排出させる操作を行うことが好ましい。   In the present invention, it is preferable that the control unit performs an operation of discharging the heating medium to the outside without causing the heating medium to flow into the preheater when a predetermined stop condition is satisfied.

このようにすれば、停止時において蒸発器からの液相の加熱媒体(ドレイン)の流出が促進されるので、熱エネルギー回収装置の起動時における蒸発器でのウォータハンマー現象の発生が抑制される。具体的に、停止条件が成立したとき(本装置の停止時)に、加熱媒体を予熱器へ流入させることなく外部に排出させることにより、予熱器での圧力損失が生じないため、蒸発器からのドレインの流出が促進される。よって、本装置の起動時における蒸発器でのウォータハンマー現象の発生が抑制される。   By doing so, the outflow of the liquid phase heating medium (drain) from the evaporator is promoted at the time of stopping, so that the occurrence of the water hammer phenomenon in the evaporator at the start of the thermal energy recovery device is suppressed. . Specifically, when the stop condition is satisfied (when the apparatus is stopped), the heating medium is discharged outside without flowing into the preheater, so that no pressure loss occurs in the preheater. The drain of the drain is promoted. Therefore, the occurrence of the water hammer phenomenon in the evaporator at the start-up of the apparatus is suppressed.

また、本発明において、前記予熱器と前記蒸発器とを接続する接続流路をさらに備え、前記接続流路は、一直線上に延びる形状を有することが好ましい。   Moreover, in this invention, it is preferable to further provide the connection flow path which connects the said preheater and the said evaporator, and it is preferable that the said connection flow path has a shape extended on a straight line.

このようにすれば、接続流路で生じる圧力損失が低減されるので、作動媒体に油が含まれる場合にその油の接続流路への滞留が抑制される。これにより、適切な量の油がエネルギー回収部に流入する。   In this way, the pressure loss generated in the connection flow path is reduced, so that when the working medium contains oil, the oil is prevented from staying in the connection flow path. As a result, an appropriate amount of oil flows into the energy recovery unit.

以上のように、本発明によれば、予熱器におけるウォータハンマー現象の発生を抑制可能な熱エネルギー回収装置を提供することができる。   As described above, according to the present invention, it is possible to provide a thermal energy recovery device capable of suppressing the occurrence of the water hammer phenomenon in the preheater.

本発明の一実施形態の熱エネルギー回収装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the thermal energy recovery apparatus of one Embodiment of this invention. 起動時及び定常運転時における制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the control part at the time of starting and a steady operation. 停止時における制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the control part at the time of a stop.

本発明の一実施形態の熱エネルギー回収装置について、図1〜図3を参照しながら説明する。   A thermal energy recovery apparatus according to an embodiment of the present invention will be described with reference to FIGS.

図1に示されるように、熱エネルギー回収装置は、蒸発器10と、予熱器12と、エネルギー回収部20と、加熱媒体供給流路30と、制御部40と、を備えている。   As shown in FIG. 1, the thermal energy recovery apparatus includes an evaporator 10, a preheater 12, an energy recovery unit 20, a heating medium supply channel 30, and a control unit 40.

蒸発器10は、外部から供給される気相の加熱媒体(工場の排ガス等)と作動媒体(HFC245fa等)とを熱交換させることによって作動媒体を蒸発させる。蒸発器10は、作動媒体が流れる作動媒体流路10aと、加熱媒体が流れる加熱媒体流路10bと、を有している。本実施形態では、蒸発器10として、プレート式の熱交換器が用いられている。ただし、蒸発器10として、いわゆるシェル&チューブ式の熱交換器が用いられてもよい。   The evaporator 10 evaporates the working medium by exchanging heat between a gas-phase heating medium (such as factory exhaust gas) supplied from the outside and the working medium (HFC245fa and the like). The evaporator 10 has a working medium flow path 10a through which the working medium flows and a heating medium flow path 10b through which the heating medium flows. In the present embodiment, a plate-type heat exchanger is used as the evaporator 10. However, as the evaporator 10, a so-called shell and tube heat exchanger may be used.

予熱器12は、蒸発器10から流出した加熱媒体と蒸発器10に流入する前の作動媒体とを熱交換させることによって作動媒体を加熱する。予熱器12は、作動媒体が流れる作動媒体流路12aと、加熱媒体が流れる加熱媒体流路12bと、を有している。本実施形態では、予熱器12としても、プレート式の熱交換器が用いられている。ただし、予熱器12として、いわゆるシェル&チューブ式の熱交換器が用いられてもよいことは、蒸発器10の場合と同様である。予熱器12の加熱媒体流路12bの上流側の端部の高さ位置は、蒸発器10の加熱媒体流路10bの下流側の端部の高さ位置と同じかそれよりも低くなるように設定されている。予熱器12の作動媒体流路12aの下流側の端部の高さ位置は、蒸発器10の作動媒体流路10aの上流側の端部の高さ位置と同じになるように設定されている。また、予熱器12の作動媒体流路12aの下流側の端部と蒸発器10の作動媒体流路10aの上流側の端部とは、接続流路29により接続されている。本実施形態では、接続流路29は、屈曲する部位を有することなく一直線上に延びる形状を有している。   The preheater 12 heats the working medium by exchanging heat between the heating medium flowing out of the evaporator 10 and the working medium before flowing into the evaporator 10. The preheater 12 has a working medium flow path 12a through which the working medium flows and a heating medium flow path 12b through which the heating medium flows. In the present embodiment, a plate-type heat exchanger is also used as the preheater 12. However, as in the case of the evaporator 10, a so-called shell and tube heat exchanger may be used as the preheater 12. The height position of the upstream end of the heating medium flow path 12b of the preheater 12 is the same as or lower than the height position of the downstream end of the heating medium flow path 10b of the evaporator 10. Is set. The height position of the downstream end of the working medium flow path 12a of the preheater 12 is set to be the same as the height position of the upstream end of the working medium flow path 10a of the evaporator 10. . The downstream end of the working medium flow path 12 a of the preheater 12 and the upstream end of the working medium flow path 10 a of the evaporator 10 are connected by a connection flow path 29. In the present embodiment, the connection channel 29 has a shape that extends in a straight line without having a bent portion.

エネルギー回収部20は、膨張機22と、動力回収機23と、凝縮器24と、ポンプ26と、回収流路28と、を備えている。   The energy recovery unit 20 includes an expander 22, a power recovery machine 23, a condenser 24, a pump 26, and a recovery flow path 28.

回収流路28は、蒸発器10と膨張機22との間、膨張機22と凝縮器24との間、凝縮器24とポンプ26との間、及び、ポンプ26と予熱器12との間を接続している。つまり、回収流路28及び接続流路29により、閉回路(作動媒体が、蒸発器10、膨張機22、凝縮器24、ポンプ26及び予熱器12をこの順に通過するように循環する循環回路)が形成される。本実施形態では、作動媒体とともに油が前記閉回路を循環する。   The recovery flow path 28 is between the evaporator 10 and the expander 22, between the expander 22 and the condenser 24, between the condenser 24 and the pump 26, and between the pump 26 and the preheater 12. Connected. That is, a closed circuit (circulation circuit in which the working medium circulates so as to pass through the evaporator 10, the expander 22, the condenser 24, the pump 26, and the preheater 12 in this order) by the recovery flow path 28 and the connection flow path 29. Is formed. In this embodiment, oil circulates in the closed circuit together with the working medium.

膨張機22は、回収流路28における蒸発器10の下流側の部位に設けられている。膨張機22は、蒸発器10から流出した気相の作動媒体を膨張させる。本実施形態では、膨張機22として、蒸発器10から流出した気相の作動媒体の膨張エネルギーにより回転駆動されるロータを有する容積式のスクリュー膨張機が用いられている。具体的に、膨張機22は、雌雄一対のスクリュロータを有している。   The expander 22 is provided at a site downstream of the evaporator 10 in the recovery flow path 28. The expander 22 expands the gas phase working medium that has flowed out of the evaporator 10. In the present embodiment, a positive displacement screw expander having a rotor that is rotationally driven by the expansion energy of the vapor-phase working medium that has flowed out of the evaporator 10 is used as the expander 22. Specifically, the expander 22 has a pair of male and female screw rotors.

動力回収機23は、膨張機22に接続されている。本実施形態では、動力回収機23として発電機が用いられている。この動力回収機23は、膨張機22の一対のスクリュロータのうちの一方に接続された回転軸を有している。動力回収機23は、前記回転軸が前記スクリュロータの回転に伴って回転することにより電力を発生させる。なお、動力回収機23として、発電機の他、圧縮機等が用いられてもよい。   The power recovery machine 23 is connected to the expander 22. In the present embodiment, a power generator is used as the power recovery machine 23. The power recovery machine 23 has a rotating shaft connected to one of the pair of screw rotors of the expander 22. The power recovery machine 23 generates electric power when the rotating shaft rotates with the rotation of the screw rotor. In addition, as the power recovery machine 23, a compressor or the like may be used in addition to the generator.

凝縮器24は、回収流路28における膨張機22の下流側の部位に設けられている。凝縮器24は、膨張機22から流出した作動媒体を外部から供給される冷却媒体(冷却水等)で冷却することにより凝縮(液化)させる。   The condenser 24 is provided at a site on the downstream side of the expander 22 in the recovery flow path 28. The condenser 24 condenses (liquefies) the working medium flowing out from the expander 22 by cooling with a cooling medium (cooling water or the like) supplied from the outside.

ポンプ26は、回収流路28における凝縮器24の下流側の部位に設けられている。ポンプ26は、液相の作動媒体を所定の圧力まで加圧して予熱器12へ送り出す。ポンプ26としては、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ、スクリュポンプ、トロコイドポンプ等が用いられる。   The pump 26 is provided at a site on the downstream side of the condenser 24 in the recovery flow path 28. The pump 26 pressurizes the liquid-phase working medium to a predetermined pressure and sends it to the preheater 12. As the pump 26, a centrifugal pump having an impeller as a rotor, a gear pump having a rotor composed of a pair of gears, a screw pump, a trochoid pump, or the like is used.

加熱媒体供給流路30は、気相の加熱媒体を生成する外部の熱源から蒸発器10及び予熱器12にこの順に加熱媒体を供給するための流路である。加熱媒体供給流路30は、蒸発器10の加熱媒体流路10bに接続可能に構成されており、予熱器12の加熱媒体流路12bに接続可能に構成されている。   The heating medium supply flow path 30 is a flow path for supplying the heating medium in this order from the external heat source that generates the gas phase heating medium to the evaporator 10 and the preheater 12. The heating medium supply channel 30 is configured to be connectable to the heating medium channel 10 b of the evaporator 10, and is configured to be connectable to the heating medium channel 12 b of the preheater 12.

本実施形態では、加熱媒体供給流路30のうち蒸発器10と予熱器12との間の部位にドレインタンク32及びスチームトラップ34が設けられている。ドレインタンク32は、蒸発器10から流出した加熱媒体のうち液相の加熱媒体を貯留する。スチームトラップ34は、ドレインタンク32から流出した加熱媒体のうち気相の加熱媒体の通過を禁止するとともに液相の加熱媒体の通過を許容する。   In the present embodiment, a drain tank 32 and a steam trap 34 are provided in a portion of the heating medium supply flow path 30 between the evaporator 10 and the preheater 12. The drain tank 32 stores a liquid phase heating medium out of the heating medium flowing out of the evaporator 10. The steam trap 34 prohibits passage of the gas phase heating medium out of the heating medium flowing out from the drain tank 32 and allows passage of the liquid phase heating medium.

加熱媒体供給流路30には、予熱器12をバイパスするバイパス流路36が接続されている。具体的に、バイパス流路36の上流側の端部は、加熱媒体供給流路30のうちスチームトラップ34と予熱器12との間の部位に接続されており、バイパス流路36の下流側の端部は、加熱媒体供給流路30のうち予熱器12よりも下流側の部位に接続されている。   A bypass flow path 36 that bypasses the preheater 12 is connected to the heating medium supply flow path 30. Specifically, the upstream end of the bypass flow path 36 is connected to a portion of the heating medium supply flow path 30 between the steam trap 34 and the preheater 12, and is located downstream of the bypass flow path 36. The end is connected to a part of the heating medium supply flow path 30 that is downstream of the preheater 12.

加熱媒体供給流路30には、第1排出流路38及び第2排出流路39が接続されている。第1排出流路38は、ドレインタンク32から流出した加熱媒体を外部に排出するための流路であり、加熱媒体供給流路30のうちドレインタンク32とスチームトラップ34との間の部位に接続されている。第2排出流路39は、蒸発器10に流入する前の加熱媒体を外部に排出するための流路であり、加熱媒体供給流路30のうち蒸発器10の上流側の部位に接続されている。   A first discharge channel 38 and a second discharge channel 39 are connected to the heating medium supply channel 30. The first discharge channel 38 is a channel for discharging the heating medium flowing out from the drain tank 32 to the outside, and is connected to a portion of the heating medium supply channel 30 between the drain tank 32 and the steam trap 34. Has been. The second discharge channel 39 is a channel for discharging the heating medium before flowing into the evaporator 10 to the outside, and is connected to a portion of the heating medium supply channel 30 upstream of the evaporator 10. Yes.

バイパス流路36には、第1開閉弁V1が設けられている。加熱媒体供給流路30のうち当該加熱媒体供給流路30とバイパス流路36の上流側の端部との接続部よりも下流側でかつ予熱器12よりも上流側の部位には、第2開閉弁V2が設けられている。加熱媒体供給流路30のうち予熱器12よりも下流側でかつ当該加熱媒体供給流路30とバイパス流路36の下流側の端部との接続部よりも上流側の部位には、第3開閉弁V3が設けられている。第1排出流路38には、第4開閉弁V4が設けられている。第2排出流路39には、第5開閉弁V5が設けられている。加熱媒体供給流路30のうち当該加熱媒体供給流路30と第2排出流路39との接続部よりも上流側の部位には、第6開閉弁V6が設けられている。本実施形態では、各開閉弁V1〜V6として、開状態と閉状態とを切り替え可能な電磁弁が用いられている。   The bypass channel 36 is provided with a first on-off valve V1. Of the heating medium supply flow path 30, a second downstream of the connection portion between the heating medium supply flow path 30 and the upstream end of the bypass flow path 36 and upstream of the preheater 12 is provided in the second position. An on-off valve V2 is provided. A third portion of the heating medium supply flow path 30 is located downstream of the preheater 12 and upstream of the connection portion between the heating medium supply flow path 30 and the downstream end of the bypass flow path 36. An on-off valve V3 is provided. The first discharge channel 38 is provided with a fourth on-off valve V4. The second discharge channel 39 is provided with a fifth on-off valve V5. A sixth on-off valve V6 is provided in a portion of the heating medium supply channel 30 upstream of the connection portion between the heating medium supply channel 30 and the second discharge channel 39. In the present embodiment, electromagnetic valves capable of switching between an open state and a closed state are used as the on-off valves V1 to V6.

制御部40は、予め定められた条件に応じて各開閉弁V1〜V6の開閉を切り替える切替操作を行う。前記条件は、予熱器12に流入する加熱媒体の過冷却度α1が0度よりも大きいか否か、蒸発器10から流出する加熱媒体の過冷却度α2が一定の範囲内に収まっているか否か、予熱器12から流出する作動媒体の過冷却度βが0度よりも大きいか否か、そして、蒸発器10に流入する気相の加熱媒体の圧力Pが所定値P0未満か否か、である。前記過冷却度α1は、加熱媒体供給流路30のうち予熱器12の上流側の部位(予熱器12と第2開閉弁V2との間の部位)に設けられた温度センサ41及び圧力センサ42の各検出値に基づいて導出される。前記過冷却度α2は、加熱媒体供給流路30のうち蒸発器10の下流側の部位(蒸発器10とドレインタンク32との間の部位)に設けられた温度センサ43及び圧力センサ44の各検出値から導出される。前記過冷却度βは、接続流路29に設けられた温度センサ45及び圧力センサ46の各検出値から導出される。ここで、過冷却度とは、飽和温度(凝縮温度)からの温度低下のことをいう。具体的には、「過冷却度=飽和温度(凝縮温度)−加熱媒体または作動媒体の温度」で計算される。つまり、「過冷却度が0度」ということは、加熱媒体または作動媒体の温度が、飽和温度(凝縮温度)と等しいことを意味する。前記圧力Pは、加熱媒体供給流路30のうち蒸発器10の上流側の部位(蒸発器10と第2排出流路39の上流側の端部との間の部位)に設けられた圧力センサ47により検知される。なお、制御部40は、蒸発器10から流出する作動媒体の過熱度が所定の範囲内に収まるようにポンプ26の回転数を調整する操作を行いながら、前記切替操作を行う。   The control unit 40 performs a switching operation for switching opening / closing of the on-off valves V1 to V6 according to a predetermined condition. The condition is that the degree of supercooling α1 of the heating medium flowing into the preheater 12 is greater than 0 degree or not, and whether the degree of supercooling α2 of the heating medium flowing out of the evaporator 10 is within a certain range. Or whether the supercooling degree β of the working medium flowing out of the preheater 12 is greater than 0 degree, and whether the pressure P of the gas phase heating medium flowing into the evaporator 10 is less than a predetermined value P0, It is. The degree of supercooling α1 is a temperature sensor 41 and a pressure sensor 42 provided in a portion upstream of the preheater 12 in the heating medium supply flow path 30 (a portion between the preheater 12 and the second on-off valve V2). It derives based on each detected value. The degree of supercooling α2 is determined by each of the temperature sensor 43 and the pressure sensor 44 provided in a part downstream of the evaporator 10 (part between the evaporator 10 and the drain tank 32) in the heating medium supply channel 30. Derived from the detected value. The degree of supercooling β is derived from the detected values of the temperature sensor 45 and the pressure sensor 46 provided in the connection flow path 29. Here, the degree of supercooling refers to a temperature drop from the saturation temperature (condensation temperature). Specifically, it is calculated by “degree of supercooling = saturation temperature (condensation temperature) −temperature of heating medium or working medium”. That is, “the degree of supercooling is 0 degree” means that the temperature of the heating medium or the working medium is equal to the saturation temperature (condensation temperature). The pressure P is a pressure sensor provided in a portion of the heating medium supply channel 30 upstream of the evaporator 10 (a portion between the evaporator 10 and the upstream end of the second discharge channel 39). 47. The control unit 40 performs the switching operation while performing an operation of adjusting the rotational speed of the pump 26 so that the degree of superheat of the working medium flowing out of the evaporator 10 falls within a predetermined range.

次に、図2を参照しながら、起動時及び通常運転時における制御部40の具体的な制御内容を説明する。エネルギー回収装置の運転開始前(起動前)は、第1開閉弁V1は開状態であり、第2開閉弁V2及び第3開閉弁V3は閉状態であり、第4開閉弁V4及び第5開閉弁V5は開状態であり、第6開閉弁V6は閉状態である。   Next, specific control contents of the control unit 40 at the time of startup and normal operation will be described with reference to FIG. Before the start of operation of the energy recovery device (before starting), the first on-off valve V1 is in an open state, the second on-off valve V2 and the third on-off valve V3 are in a closed state, and the fourth on-off valve V4 and the fifth on-off valve are open. The valve V5 is in an open state, and the sixth open / close valve V6 is in a closed state.

本装置の運転が開始されると(ステップS10)、制御部40は、第1開閉弁V1を開状態、第2開閉弁V2及び第3開閉弁V3を閉状態、第4開閉弁V4及び第5開閉弁V5を閉状態、第6開閉弁V6を開状態とする(ステップS11)。これにより、加熱媒体は、蒸発器10を通過した後に予熱器12に流入することなくバイパス流路36を介して外部に排出される。また、運転の開始により、冷却媒体の凝縮器24への供給及びポンプ26の駆動も開始される。これにより、作動媒体は前記閉回路を循環するので、動力回収機23により動力(本実施形態では電力)が回収される。   When the operation of the apparatus is started (step S10), the control unit 40 opens the first on-off valve V1, closes the second on-off valve V2 and the third on-off valve V3, and sets the fourth on-off valve V4 and the second on-off valve V4. The 5 on-off valve V5 is closed and the sixth on-off valve V6 is opened (step S11). As a result, the heating medium passes through the evaporator 10 and is discharged outside through the bypass channel 36 without flowing into the preheater 12. Moreover, supply of the cooling medium to the condenser 24 and driving of the pump 26 are also started by the start of operation. As a result, the working medium circulates in the closed circuit, so that power (in this embodiment, power) is recovered by the power recovery machine 23.

次に、制御部40は、蒸発器10から流出した加熱媒体の過冷却度α2が特定の下限値a以上かつ特定の上限値b以下であるか否かを判定する(ステップS12)。この結果、過冷却度α2が下限値a未満、または、上限値bよりも大きい場合(ステップS12でNO)、制御部40は、ステップS12に戻る、すなわち、蒸発器10から流出した加熱媒体がバイパス流路36を介して外部に排出する状態(以下、「バイパス状態」という)を維持する。   Next, the control unit 40 determines whether or not the degree of supercooling α2 of the heating medium flowing out of the evaporator 10 is not less than a specific lower limit value a and not more than a specific upper limit value b (step S12). As a result, when the degree of supercooling α2 is less than the lower limit value a or greater than the upper limit value b (NO in step S12), the control unit 40 returns to step S12, that is, the heating medium flowing out of the evaporator 10 A state of discharging to the outside via the bypass channel 36 (hereinafter referred to as “bypass state”) is maintained.

過冷却度α2が上限値bよりも大きい(高過ぎる)場合に前記バイパス状態を維持する理由は、蒸発器10でのウォータハンマー現象の発生を抑制することにある。具体的に、本装置の起動時は、蒸発器10の温度が定常運転時のそれに比べて低いため、当該蒸発器10に流入した加熱媒体が凝縮しやすく、よって加熱媒体流路10b内に液相の加熱媒体(ドレイン)が溜まりやすい状態にある。加熱媒体流路10b内にドレインが溜まると、当該加熱媒体流路10bから流出した過冷却度α2が高くなる。換言すれば、前記過冷却度α2が高い場合(上限値bよりも大きい場合)、加熱媒体流路10b内にドレインが相当程度溜まった状態にあると考えられる。この状態で蒸発器10に気相の加熱媒体が流入すると、当該気相の加熱媒体が前記ドレインに冷却されることによって急激にその体積を減少させるので、蒸発器10においてウォータハンマー現象が生じる懸念がある。一方、その状態において液相の加熱媒体が予熱器12に流入する場合、当該液相の加熱媒体が予熱器12の加熱媒体流路12bを通過するのに時間を要するため、蒸発器10内から液相の加熱媒体(ドレイン)が流出しにくくなる。よって、過冷却度α2が上限値bよりも大きい場合に前記バイパス状態を維持することにより、液相の加熱媒体が蒸発器10から外部に排出されるまでに要する時間が短縮されるため、蒸発器10からのドレインの流出が促進される。よって、蒸発器10でのウォータハンマー現象の発生が抑制される。   The reason for maintaining the bypass state when the degree of supercooling α2 is larger (too high) than the upper limit value b is to suppress the occurrence of the water hammer phenomenon in the evaporator 10. Specifically, when the apparatus is started, the temperature of the evaporator 10 is lower than that during steady operation, so that the heating medium flowing into the evaporator 10 is likely to condense, and thus the liquid in the heating medium flow path 10b. The phase heating medium (drain) is in a state where it tends to accumulate. When the drain accumulates in the heating medium flow path 10b, the degree of supercooling α2 flowing out from the heating medium flow path 10b increases. In other words, when the degree of supercooling α2 is high (when it is larger than the upper limit value b), it is considered that a considerable amount of drain is accumulated in the heating medium flow path 10b. If a vapor phase heating medium flows into the evaporator 10 in this state, the vapor phase heating medium is rapidly cooled by the drain, so that its volume is rapidly reduced. There is. On the other hand, when the liquid phase heating medium flows into the preheater 12 in this state, it takes time for the liquid phase heating medium to pass through the heating medium flow path 12b of the preheater 12, and therefore, from the inside of the evaporator 10. The liquid phase heating medium (drain) is less likely to flow out. Therefore, by maintaining the bypass state when the degree of supercooling α2 is larger than the upper limit b, the time required for the liquid-phase heating medium to be discharged from the evaporator 10 is shortened. The drain outflow from the vessel 10 is facilitated. Therefore, the occurrence of the water hammer phenomenon in the evaporator 10 is suppressed.

逆に、過冷却度α2が下限値a未満の場合に前記バイパス状態を維持する理由は、主として、予熱器12での熱交換効率の低下を抑制すること、及び、蒸発器10でのウォータハンマー現象の発生を抑制することにある。具体的に、過冷却度α2が下限値a未満の場合、加熱媒体が例えば気液二相の状態の場合もある。この場合において加熱媒体が予熱器12に流入する際、予熱器12で圧力損失が生じるため、加熱媒体が予熱器12を通過しにくくなる。このため、予熱器12での熱交換効率が低下する。さらに、前記圧力損失が原因(抵抗)となり、蒸発器10内から液相の加熱媒体(ドレイン)が流出しにくくなる。よって、過冷却度α2が下限値a未満の場合に前記バイパス状態を維持することにより、すなわち、加熱媒体の予熱器12への流入を禁止することにより、予熱器12での熱交換効率の低下が抑制され、さらに、前記圧力損失に起因して蒸発器10内から液相の加熱媒体(ドレイン)が流出しにくくなる状態が回避される(液相の加熱媒体の流出が促進される)ので、蒸発器10でのウォータハンマー現象の発生が抑制される。   Conversely, the reason for maintaining the bypass state when the degree of supercooling α2 is less than the lower limit value a is mainly to suppress a decrease in heat exchange efficiency in the preheater 12 and a water hammer in the evaporator 10. It is to suppress the occurrence of the phenomenon. Specifically, when the degree of supercooling α2 is less than the lower limit value a, the heating medium may be in a gas-liquid two-phase state, for example. In this case, when the heating medium flows into the preheater 12, pressure loss occurs in the preheater 12, so that the heating medium is difficult to pass through the preheater 12. For this reason, the heat exchange efficiency in the preheater 12 falls. Furthermore, the pressure loss is the cause (resistance), and the liquid heating medium (drain) is less likely to flow out of the evaporator 10. Therefore, the heat exchange efficiency in the preheater 12 is reduced by maintaining the bypass state when the degree of supercooling α2 is less than the lower limit value a, that is, prohibiting the flow of the heating medium into the preheater 12. Further, a state in which the liquid phase heating medium (drain) hardly flows out from the evaporator 10 due to the pressure loss is avoided (the outflow of the liquid phase heating medium is promoted). The occurrence of the water hammer phenomenon in the evaporator 10 is suppressed.

またこのとき、予熱器12での作動媒体による熱回収が行われなくなるので、予熱器12に加熱媒体が流入する場合に比べて低温の作動媒体が予熱器12から流出して蒸発器10に流入する。これにより、蒸発器10で作動媒体により加熱媒体が十分に冷却される。そして、蒸発器10から流出する加熱媒体の過冷却度α2が下限値a以上となるまでの間加熱媒体の予熱器12への流入が禁止されるので、蒸発器10での熱交換効率が低くなる状態が回避される。   At this time, since heat recovery by the working medium in the preheater 12 is not performed, the working medium having a lower temperature flows out of the preheater 12 and flows into the evaporator 10 as compared with the case where the heating medium flows into the preheater 12. To do. Thereby, the heating medium is sufficiently cooled by the working medium in the evaporator 10. And since the inflow of the heating medium to the preheater 12 is prohibited until the degree of supercooling α2 of the heating medium flowing out of the evaporator 10 becomes the lower limit value a or more, the heat exchange efficiency in the evaporator 10 is low. This situation is avoided.

そして、過冷却度α2が下限値a以上かつ上限値b以下である場合(ステップS12でYES)、制御部40は、蒸発器10に流入する作動媒体の過冷却度βが0度よりも大きいか否かを判定する(ステップS13)。この結果、過冷却度βが0度よりも大きくない場合(ステップS13でNO)、制御部40は、再びステップS12に戻る、すなわち、バイパス状態を維持する。   When the degree of supercooling α2 is not less than the lower limit value a and not more than the upper limit value b (YES in step S12), the control unit 40 has the degree of supercooling β of the working medium flowing into the evaporator 10 greater than 0 degrees. Whether or not (step S13). As a result, when the degree of supercooling β is not greater than 0 degrees (NO in step S13), the control unit 40 returns to step S12 again, that is, maintains the bypass state.

過冷却度βが0度よりも大きくない場合にバイパス状態を維持する理由は、蒸発器10での熱交換効率、すなわち、エネルギー回収部20のエネルギー回収効率を向上させることにある。例えば、気液二相の作動媒体が蒸発器10に流入した場合、気相の作動媒体の比重と液相の作動媒体の比重とは互いに異なることから、蒸発器10の作動媒体流路10a内には、気相の作動媒体の通過する領域と液相の作動媒体が通過する領域とが形成される。このため、蒸発器10において作動媒体と加熱媒体との均一な熱交換が行われないこと(熱交換効率の低下)が懸念される。よって、過冷却度βが0度よりも大きくない場合(気相の作動媒体が存在し得る場合)、バイパス状態を維持する、すなわち、加熱媒体の予熱器12への流入を禁止する。これにより、予熱器12での加熱媒体による作動媒体の加熱が停止されるので、予熱器12から流出する作動媒体に気相の作動媒体が含まれることが抑制される。よって、蒸発器10での作動媒体の偏流が抑制され、蒸発器10での熱交換効率が向上する。   The reason for maintaining the bypass state when the degree of supercooling β is not greater than 0 degrees is to improve the heat exchange efficiency in the evaporator 10, that is, the energy recovery efficiency of the energy recovery unit 20. For example, when a gas-liquid two-phase working medium flows into the evaporator 10, the specific gravity of the gas-phase working medium and the specific gravity of the liquid-phase working medium are different from each other. A region where a gas phase working medium passes and a region where a liquid phase working medium passes are formed. For this reason, there is a concern that the evaporator 10 may not perform uniform heat exchange between the working medium and the heating medium (decrease in heat exchange efficiency). Therefore, when the degree of supercooling β is not greater than 0 degrees (when a gas phase working medium may be present), the bypass state is maintained, that is, the flow of the heating medium into the preheater 12 is prohibited. Thereby, since heating of the working medium by the heating medium in the preheater 12 is stopped, the working medium flowing out from the preheater 12 is suppressed from being included in the gas phase working medium. Therefore, the drift of the working medium in the evaporator 10 is suppressed, and the heat exchange efficiency in the evaporator 10 is improved.

そして、過冷却度βが0度よりも大きい場合(ステップS13でYES)、制御部40は、第1開閉弁V1を閉状態、第2開閉弁V2及び第3開閉弁V3を開状態、第4開閉弁V4及び第5開閉弁V5を閉状態、第6開閉弁V6を開状態とする(ステップS14)。これにより、加熱媒体は、蒸発器10を通過した後に予熱器12を通過してから外部に排出される。つまり、本熱エネルギー回収装置は、通常運転状態となる。   When the degree of supercooling β is greater than 0 degrees (YES in step S13), the control unit 40 closes the first on-off valve V1, opens the second on-off valve V2, and the third on-off valve V3, The fourth on-off valve V4 and the fifth on-off valve V5 are closed, and the sixth on-off valve V6 is opened (step S14). As a result, the heating medium passes through the evaporator 10 and then passes through the preheater 12 before being discharged to the outside. That is, this thermal energy recovery device is in a normal operation state.

続いて、制御部40は、予熱器12に流入する加熱媒体の過冷却度α1が0度よりも大きいか否かを判定する(ステップS15)。この結果、過冷却度α1が0度よりも大きくない場合(ステップS15でNO)、制御部40は、ステップS11に戻り、前記バイパス状態に戻す。   Subsequently, the control unit 40 determines whether or not the degree of supercooling α1 of the heating medium flowing into the preheater 12 is greater than 0 degrees (step S15). As a result, when the degree of supercooling α1 is not greater than 0 degrees (NO in step S15), the control unit 40 returns to step S11 and returns to the bypass state.

過冷却度α1が0度よりも大きくない場合にバイパス状態とする理由は、予熱器12でのウォータハンマー現象の発生を抑制することにある。具体的に、過冷却度α1が0度よりも大きくない場合(気相の加熱媒体が存在し得る場合)に加熱媒体が予熱器12へ流入すると、気相の加熱媒体が予熱器12に流入した後に当該予熱器12内で凝縮することに起因してウォータハンマー現象が生じるおそれがある。よって、過冷却度α1が0度よりも大きくない場合、バイパス状態を維持する、すなわち、加熱媒体の予熱器12への流入を禁止する。これにより、予熱器12内でのウォータハンマー現象の発生が抑制される。   The reason for setting the bypass state when the degree of supercooling α1 is not greater than 0 degrees is to suppress the occurrence of the water hammer phenomenon in the preheater 12. Specifically, when the degree of supercooling α1 is not greater than 0 degrees (when a gas phase heating medium may exist), when the heating medium flows into the preheater 12, the gas phase heating medium flows into the preheater 12. After that, the water hammer phenomenon may occur due to condensation in the preheater 12. Therefore, when the degree of supercooling α1 is not greater than 0 degrees, the bypass state is maintained, that is, the flow of the heating medium into the preheater 12 is prohibited. Thereby, generation | occurrence | production of the water hammer phenomenon in the preheater 12 is suppressed.

一方、過冷却度α1が0度よりも大きい場合(ステップS15でYES)、制御部40は、過冷却度α2が下限値a以上かつ上限値b以下であるか否かを判定する(ステップS16)。この結果、過冷却度α2が下限値a未満、または、上限値bよりも大きい場合(ステップS16でNO)、制御部40は、ステップS11に戻り、前記バイパス状態に戻す。この理由は、上記のとおりである。また、過冷却度α2が下限値a未満の場合に前記バイパス状態に戻すことにより、蒸発器10での熱交換効率が低くなる状態が回避されることに加え、予熱器12でのウォータハンマー現状の発生も抑制される。   On the other hand, when the degree of supercooling α1 is greater than 0 degrees (YES in step S15), the control unit 40 determines whether or not the degree of supercooling α2 is greater than or equal to the lower limit value a and less than or equal to the upper limit value b (step S16). ). As a result, when the degree of supercooling α2 is less than the lower limit value a or larger than the upper limit value b (NO in step S16), the control unit 40 returns to step S11 and returns to the bypass state. The reason for this is as described above. Further, when the degree of supercooling α2 is less than the lower limit value a, returning to the bypass state avoids a state in which the heat exchange efficiency in the evaporator 10 becomes low, and in addition, the current state of the water hammer in the preheater 12 Is also suppressed.

そして、過冷却度α2が下限値a以上かつ上限値b以下である場合(ステップS16でYES)、制御部40は、蒸発器10に流入する作動媒体の過冷却度βが0度よりも大きいか否かを判定する(ステップS17)。この結果、過冷却度βが0度よりも大きくない場合(ステップS17でNO)、制御部40は、ステップS11に戻り、前記バイパス状態に戻す。この理由は、上記のとおりである。   When the degree of supercooling α2 is not less than the lower limit value a and not more than the upper limit value b (YES in step S16), the control unit 40 has a degree of supercooling β of the working medium flowing into the evaporator 10 greater than 0 degrees. Whether or not (step S17). As a result, when the degree of supercooling β is not greater than 0 degrees (NO in step S17), the control unit 40 returns to step S11 and returns to the bypass state. The reason for this is as described above.

一方、過冷却度βが0度よりも大きい場合(ステップS17でYES)、制御部40は、ステップS15に戻る、すなわち、前記通常運転状態を継続する。   On the other hand, when the degree of supercooling β is greater than 0 degrees (YES in step S17), the control unit 40 returns to step S15, that is, continues the normal operation state.

次に、図3を参照しながら、停止時における制御部40の具体的な制御内容を説明する。   Next, specific control contents of the control unit 40 at the time of stop will be described with reference to FIG.

制御部40は、停止信号を受信すると(ステップS20)、加熱媒体の蒸発器10及び予熱器12への供給を停止するとともに前記バイパス状態とするために、第1開閉弁V1を開状態、第2開閉弁V2及び第3開閉弁V3を閉状態、第4開閉弁V4及び第5開閉弁V5を閉状態、第6開閉弁V6を閉状態とする(ステップS21)。   When receiving the stop signal (step S20), the control unit 40 stops the supply of the heating medium to the evaporator 10 and the preheater 12 and sets the first on-off valve V1 in the open state in order to make the bypass state. The second on-off valve V2 and the third on-off valve V3 are closed, the fourth on-off valve V4 and the fifth on-off valve V5 are closed, and the sixth on-off valve V6 is closed (step S21).

その後、制御部40は、ポンプ26を停止する(ステップS22)。なお、ポンプ26の停止と同時、あるいはそれに前後して、凝縮器24への冷却媒体の供給も停止される。   Thereafter, the control unit 40 stops the pump 26 (step S22). Note that the supply of the cooling medium to the condenser 24 is also stopped simultaneously with or before or after the pump 26 is stopped.

続いて、制御部40は、蒸発器10に流入する気相の加熱媒体の圧力Pが所定値P0未満か否かを判定する(ステップS23)。本実施形態では、この条件を「停止条件」という。   Subsequently, the control unit 40 determines whether or not the pressure P of the gas phase heating medium flowing into the evaporator 10 is less than a predetermined value P0 (step S23). In the present embodiment, this condition is referred to as a “stop condition”.

そして、前記圧力Pが所定値P0以上であれば(ステップS23でNO)、すなわち、停止条件が成立していなければ、制御部40は、ステップS23に戻る。   If the pressure P is equal to or higher than the predetermined value P0 (NO in step S23), that is, if the stop condition is not satisfied, the control unit 40 returns to step S23.

一方、前記圧力Pが所定値P0未満であれば(ステップS23でYES)、制御部40は、第1開閉弁V1を開状態、第2開閉弁V2及び第3開閉弁V3を閉状態、第4開閉弁V4及び第5開閉弁V5を開状態、第6開閉弁V6を閉状態とする(ステップS24)。この理由は、蒸発器10の加熱媒体流路10b内の加熱媒体の外部への排出を促進するためである。具体的に、第4開閉弁V4及び第5開閉弁V5を開状態とすることにより、加熱媒体供給流路30内が外部に開放されるので、蒸発器10の加熱媒体流路10b内の加熱媒体が重力により外部へ排出される。   On the other hand, if the pressure P is less than the predetermined value P0 (YES in step S23), the control unit 40 opens the first on-off valve V1, closes the second on-off valve V2, and the third on-off valve V3, The fourth on-off valve V4 and the fifth on-off valve V5 are opened, and the sixth on-off valve V6 is closed (step S24). The reason for this is to promote the discharge of the heating medium in the heating medium flow path 10b of the evaporator 10 to the outside. Specifically, since the inside of the heating medium supply channel 30 is opened to the outside by opening the fourth on-off valve V4 and the fifth on-off valve V5, the heating in the heating medium channel 10b of the evaporator 10 is heated. The medium is discharged to the outside by gravity.

以上に説明したように、本熱エネルギー回収装置では、蒸発器10及び予熱器12で作動媒体が得た熱エネルギーをエネルギー回収部20により回収しつつ、予熱器12でのウォータハンマー現象の発生を抑制することができる。具体的に、予熱器12に流入する加熱媒体の過冷却度α1が0度よりも大きくない場合(気相の加熱媒体が存在し得る場合)に加熱媒体の予熱器12への流入が禁止され、過冷却度α1が0度よりも大きい場合に予熱器12への加熱媒体の流入が許容される。つまり、予熱器12には、液相の加熱媒体が流入する。よって、予熱器12内でのウォータハンマー現象の発生が抑制される。より詳細には、気相の加熱媒体が予熱器12に流入した後に当該予熱器12内で凝縮することに起因して生じるウォータハンマー現象の発生が抑制される。   As described above, in the present thermal energy recovery device, the heat energy obtained by the working medium in the evaporator 10 and the preheater 12 is recovered by the energy recovery unit 20 while the water hammer phenomenon occurs in the preheater 12. Can be suppressed. Specifically, when the degree of supercooling α1 of the heating medium flowing into the preheater 12 is not greater than 0 degrees (when a gas phase heating medium may exist), the heating medium is prohibited from flowing into the preheater 12. When the degree of supercooling α1 is greater than 0 degrees, the heating medium is allowed to flow into the preheater 12. That is, a liquid phase heating medium flows into the preheater 12. Therefore, the occurrence of the water hammer phenomenon in the preheater 12 is suppressed. More specifically, the occurrence of a water hammer phenomenon caused by condensation of the gas phase heating medium in the preheater 12 after flowing into the preheater 12 is suppressed.

また、本実施形態では、蒸発器10において作動媒体により加熱媒体の潜熱がすべて回収されるので、蒸発器10での熱交換効率、すなわち、エネルギー回収部20のエネルギー回収効率が向上する。具体的に、本エネルギー回収装置では、蒸発器10から流出した加熱媒体の過冷却度α2が下限値a未満の場合に加熱媒体の予熱器12への流入を禁止する。これにより、予熱器12での作動媒体による熱回収が行われなくなるので、予熱器12に加熱媒体が流入する場合に比べて低温の作動媒体が予熱器12から流出して蒸発器10に流入する。このため、蒸発器10で作動媒体により加熱媒体が十分に冷却される。そして、蒸発器10から流出する加熱媒体の過冷却度α2が下限値a以上となるまでの間加熱媒体の予熱器12への流入が禁止されるので、予熱器12でのウォータハンマー現象の発生の抑制と蒸発器10での熱交換効率が低くなる状態との双方が回避される。さらに、加熱媒体が予熱器12を通過する際の圧力損失に起因して蒸発器10内から液相の加熱媒体(ドレイン)が流出しにくくなる状態が回避されるので、蒸発器10でのウォータハンマー現象の発生も抑制される。   Moreover, in this embodiment, since all the latent heat of a heating medium is collect | recovered by the working medium in the evaporator 10, the heat exchange efficiency in the evaporator 10, ie, the energy recovery efficiency of the energy recovery part 20, improves. Specifically, in this energy recovery apparatus, when the degree of supercooling α2 of the heating medium flowing out from the evaporator 10 is less than the lower limit value a, the heating medium is prohibited from flowing into the preheater 12. As a result, heat recovery by the working medium in the preheater 12 is not performed, so that a lower temperature working medium flows out of the preheater 12 and flows into the evaporator 10 as compared with the case where the heating medium flows into the preheater 12. . For this reason, the heating medium is sufficiently cooled by the working medium in the evaporator 10. Then, since the inflow of the heating medium into the preheater 12 is prohibited until the degree of supercooling α2 of the heating medium flowing out from the evaporator 10 becomes the lower limit value a or more, the occurrence of the water hammer phenomenon in the preheater 12 occurs. Both the suppression of the temperature and the state where the heat exchange efficiency in the evaporator 10 is reduced are avoided. Furthermore, a state in which the liquid phase heating medium (drain) does not easily flow out of the evaporator 10 due to pressure loss when the heating medium passes through the preheater 12 is avoided. The occurrence of the hammer phenomenon is also suppressed.

加えて、本実施形態では、本熱エネルギー回収装置の起動時及び通常運転時において蒸発器10からの液相の加熱媒体(ドレイン)の流出が促進されるので、蒸発器10でのウォータハンマー現象の発生がさらに抑制される。具体的に、本エネルギー回収装置では、蒸発器10から流出した加熱媒体の過冷却度α2が上限値bよりも大きい場合(蒸発器10において作動媒体により加熱媒体の潜熱のみならず顕熱も十分に回収されている場合)に加熱媒体を予熱器12へ流入させることなく外部に排出させる。これにより、液相の加熱媒体が蒸発器10から外部に排出されるまでに要する時間が短縮されるため、蒸発器10からのドレインの流出が促進される。よって、起動時及び通常運転時における蒸発器10でのウォータハンマー現象の発生が抑制される。   In addition, in this embodiment, since the outflow of the liquid phase heating medium (drain) from the evaporator 10 is promoted at the time of starting and normal operation of the thermal energy recovery device, the water hammer phenomenon in the evaporator 10 is promoted. Is further suppressed. Specifically, in the present energy recovery apparatus, when the degree of supercooling α2 of the heating medium flowing out from the evaporator 10 is larger than the upper limit b (not only the latent heat of the heating medium but also the sensible heat by the working medium in the evaporator 10) The heating medium is discharged outside without flowing into the preheater 12. As a result, the time required for the liquid-phase heating medium to be discharged from the evaporator 10 to the outside is shortened, so that the drain outflow from the evaporator 10 is promoted. Therefore, the occurrence of the water hammer phenomenon in the evaporator 10 during startup and normal operation is suppressed.

さらに、本実施形態では、本熱エネルギー回収装置の停止時において蒸発器10からの液相の加熱媒体の流出を促進される操作(加熱媒体を予熱器12へ流入させることなく外部に排出させる操作)が行われるので、本装置の起動時における蒸発器10でのウォータハンマー現象の発生が一層抑制される。   Furthermore, in the present embodiment, an operation that promotes the outflow of the liquid heating medium from the evaporator 10 when the thermal energy recovery apparatus is stopped (an operation that discharges the heating medium to the outside without flowing into the preheater 12). ) Is performed, the occurrence of the water hammer phenomenon in the evaporator 10 at the start-up of the apparatus is further suppressed.

また、本実施形態では、蒸発器10内での作動媒体の偏流が抑制されるので、蒸発器10での熱交換効率が一層向上する。具体的に、本エネルギー回収装置では、蒸発器10に流入する作動媒体の過冷却度βが0度よりも大きくない場合(気相の作動媒体が存在し得る場合)に、加熱媒体の予熱器12への流入が禁止されるので、つまり、予熱器12での加熱媒体による作動媒体の加熱が停止されるので、予熱器12から流出する作動媒体に気相の作動媒体が含まれることが抑制される。よって、蒸発器10での作動媒体の偏流が抑制され、蒸発器10での熱交換効率が向上する。   Moreover, in this embodiment, since the drift of the working medium in the evaporator 10 is suppressed, the heat exchange efficiency in the evaporator 10 is further improved. Specifically, in the present energy recovery apparatus, when the degree of supercooling β of the working medium flowing into the evaporator 10 is not larger than 0 degree (when there can be a gaseous working medium), the heating medium preheater 12 is prohibited, that is, heating of the working medium by the heating medium in the preheater 12 is stopped, so that the working medium flowing out of the preheater 12 is prevented from containing a gas phase working medium. Is done. Therefore, the drift of the working medium in the evaporator 10 is suppressed, and the heat exchange efficiency in the evaporator 10 is improved.

また、接続流路29は、一直線上に延びる形状を有するので、当該接続流路29で生じる圧力損失が低減される。このため、作動媒体に含まれる油の接続流路29への滞留が抑制される。よって、適切な量の油がエネルギー回収部20の膨張機22に流入する。   Moreover, since the connection flow path 29 has a shape extending in a straight line, the pressure loss generated in the connection flow path 29 is reduced. For this reason, the retention in the connection flow path 29 of the oil contained in the working medium is suppressed. Accordingly, an appropriate amount of oil flows into the expander 22 of the energy recovery unit 20.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、蒸発器10から流出した加熱媒体の過冷却度α2が上限値bよりも大きい場合、制御部40は、第4開閉弁V4を開いてもよい。このようにすれば、液相の加熱媒体がスチームトラップ34を通過した後にバイパス流路36を介して外部に排出される場合に比べて、当該液相の加熱媒体が第1排出流路38を通じてより円滑に外部に排出される。よって、蒸発器10の加熱媒体流路10bからの液相の加熱媒体(ドレイン)の排出が促進されるので、蒸発器10でのウォータハンマー現象の発生が一層抑制される。   For example, when the degree of supercooling α2 of the heating medium flowing out of the evaporator 10 is larger than the upper limit value b, the control unit 40 may open the fourth on-off valve V4. In this case, the liquid-phase heating medium passes through the first discharge flow path 38 as compared with the case where the liquid-phase heating medium passes through the steam trap 34 and is discharged to the outside via the bypass flow path 36. More smoothly discharged to the outside. Accordingly, since the discharge of the liquid heating medium (drain) from the heating medium flow path 10b of the evaporator 10 is promoted, the occurrence of the water hammer phenomenon in the evaporator 10 is further suppressed.

10 蒸発器
12 予熱器
20 エネルギー回収部
29 接続流路
30 加熱媒体供給流路
32 ドレインタンク
34 スチームトラップ
36 バイパス流路
38 第1排出流路
39 第2排出流路
40 制御部
V1 第1開閉弁
V2 第2開閉弁
V3 第3開閉弁
V4 第4開閉弁
V5 第5開閉弁
V6 第6開閉弁
DESCRIPTION OF SYMBOLS 10 Evaporator 12 Preheater 20 Energy recovery part 29 Connection flow path 30 Heating medium supply flow path 32 Drain tank 34 Steam trap 36 Bypass flow path 38 1st discharge flow path 39 2nd discharge flow path 40 Control part V1 1st on-off valve V2 2nd on-off valve V3 3rd on-off valve V4 4th on-off valve V5 5th on-off valve V6 6th on-off valve

Claims (6)

外部から供給される気相の加熱媒体と作動媒体とを熱交換させることによって前記作動媒体を蒸発させる蒸発器と、
前記蒸発器から流出した加熱媒体と前記蒸発器に流入する前の作動媒体とを熱交換させることによって作動媒体を加熱する予熱器と、
前記蒸発器から流出した作動媒体の膨張エネルギーを回収するとともに当該作動媒体を前記予熱器に送るエネルギー回収部と、
前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない場合に当該加熱媒体の前記予熱器への流入を禁止し、かつ、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きい場合に当該加熱媒体を前記予熱器へ流入させる操作を行う制御部と、を備える、熱エネルギー回収装置。
An evaporator for evaporating the working medium by exchanging heat between the heating medium and the working medium in a gas phase supplied from the outside;
A preheater that heats the working medium by exchanging heat between the heating medium flowing out of the evaporator and the working medium before flowing into the evaporator;
An energy recovery unit that recovers expansion energy of the working medium flowing out of the evaporator and sends the working medium to the preheater;
When the degree of supercooling of the heating medium flowing into the preheater is not greater than 0 degrees, the heating medium is prohibited from flowing into the preheater, and the degree of supercooling of the heating medium flowing into the preheater is A heat energy recovery apparatus comprising: a control unit that performs an operation of causing the heating medium to flow into the preheater when the temperature is greater than 0 degrees.
請求項1に記載の熱エネルギー回収装置において、
前記制御部は、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きく、かつ、前記蒸発器から流出した加熱媒体の過冷却度が特定の下限値以上である場合に加熱媒体を前記予熱器へ流入させる一方、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない、あるいは、当該過冷却度が0度よりも大きくても前記蒸発器から流出した加熱媒体の過冷却度が前記下限値未満である場合に加熱媒体の前記予熱器への流入を禁止する操作を行う、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The control unit is configured such that when the degree of supercooling of the heating medium flowing into the preheater is greater than 0 degrees and the degree of supercooling of the heating medium flowing out of the evaporator is equal to or greater than a specific lower limit value, To the preheater, while the degree of supercooling of the heating medium flowing into the preheater is not greater than 0 degrees, or the heat that has flowed out of the evaporator even if the degree of supercooling is greater than 0 degrees. A thermal energy recovery apparatus that performs an operation of prohibiting the flow of a heating medium into the preheater when the degree of supercooling of the medium is less than the lower limit.
請求項1又は2に記載の熱エネルギー回収装置において、
前記制御部は、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きく、かつ、前記蒸発器から流出した加熱媒体の過冷却度が特定の上限値以下である場合に加熱媒体を前記予熱器へ流入させる一方、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない、あるいは、当該過冷却度が0度よりも大きくても前記蒸発器から流出した加熱媒体の過冷却度が前記上限値よりも大きい場合に加熱媒体を前記予熱器へ流入させることなく外部に排出させる操作を行う、熱エネルギー回収装置。
In the thermal energy recovery device according to claim 1 or 2,
When the degree of supercooling of the heating medium flowing into the preheater is greater than 0 degrees and the degree of supercooling of the heating medium flowing out of the evaporator is equal to or less than a specific upper limit value, the control unit To the preheater, while the degree of supercooling of the heating medium flowing into the preheater is not greater than 0 degrees, or even if the degree of supercooling is greater than 0 degrees, the heating that has flowed out of the evaporator A thermal energy recovery device that performs an operation of discharging the heating medium to the outside without flowing into the preheater when the degree of supercooling of the medium is larger than the upper limit value.
請求項1ないし3のいずれかに記載の熱エネルギー回収装置において、
前記制御部は、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きく、かつ、前記蒸発器に流入する作動媒体の過冷却度が0度よりも大きい場合に加熱媒体を前記予熱器へ流入させる一方、前記予熱器に流入する加熱媒体の過冷却度が0度よりも大きくない、あるいは、当該過冷却度が0度よりも大きくても前記蒸発器に流入する作動媒体の過冷却度が0度よりも大きくない場合に加熱媒体の前記予熱器への流入を禁止する操作を行う、熱エネルギー回収装置。
In the thermal energy recovery device according to any one of claims 1 to 3,
The controller controls the heating medium when the degree of supercooling of the heating medium flowing into the preheater is greater than 0 degrees and the degree of supercooling of the working medium flowing into the evaporator is greater than 0 degrees. While flowing into the preheater, the degree of supercooling of the heating medium flowing into the preheater is not greater than 0 degrees, or even if the degree of supercooling is greater than 0 degrees, the working medium flowing into the evaporator A thermal energy recovery apparatus that performs an operation of prohibiting the flow of a heating medium into the preheater when the degree of supercooling is not greater than 0 degrees.
請求項1ないし4のいずれかに記載の熱エネルギー回収装置において、
前記制御部は、予め定められた停止条件が成立したときに、加熱媒体を前記予熱器へ流入させることなく外部に排出させる操作を行う、熱エネルギー回収装置。
In the thermal energy recovery device according to any one of claims 1 to 4,
The said control part is a thermal energy recovery apparatus which performs operation which discharges | emits a heating medium outside, without flowing in into the said preheater, when predetermined stop conditions are satisfied.
請求項1ないし5のいずれかに記載の熱エネルギー回収装置において、
前記予熱器と前記蒸発器とを接続する接続流路をさらに備え、
前記接続流路は、一直線上に延びる形状を有する、熱エネルギー回収装置。
In the thermal energy recovery device according to any one of claims 1 to 5,
It further comprises a connection flow path connecting the preheater and the evaporator,
The said connection flow path is a thermal energy recovery apparatus which has a shape extended on a straight line.
JP2014258616A 2014-12-22 2014-12-22 Thermal energy recovery device Expired - Fee Related JP6170487B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014258616A JP6170487B2 (en) 2014-12-22 2014-12-22 Thermal energy recovery device
CN201510751148.3A CN105715320B (en) 2014-12-22 2015-11-06 Heat-energy recovering apparatus
KR1020150180767A KR101639535B1 (en) 2014-12-22 2015-12-17 Thermal energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258616A JP6170487B2 (en) 2014-12-22 2014-12-22 Thermal energy recovery device

Publications (2)

Publication Number Publication Date
JP2016118161A JP2016118161A (en) 2016-06-30
JP6170487B2 true JP6170487B2 (en) 2017-07-26

Family

ID=56144972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258616A Expired - Fee Related JP6170487B2 (en) 2014-12-22 2014-12-22 Thermal energy recovery device

Country Status (3)

Country Link
JP (1) JP6170487B2 (en)
KR (1) KR101639535B1 (en)
CN (1) CN105715320B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592418B2 (en) * 2016-10-24 2019-10-16 株式会社神戸製鋼所 Thermal energy recovery device and operation method thereof
JP2018127948A (en) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 Energy recovery device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813112A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Waste-heat recovery power plant
JPH01159504A (en) * 1987-05-25 1989-06-22 Hisaka Works Ltd Evaporator with preheater
JPH0758121B2 (en) * 1990-02-19 1995-06-21 石川島播磨重工業株式会社 Recycling controller for economizer
JP5123148B2 (en) * 2008-12-04 2013-01-16 川崎重工業株式会社 Waste heat recovery turbine equipment
JP5421717B2 (en) * 2009-10-05 2014-02-19 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater
KR101199525B1 (en) * 2009-12-31 2012-11-09 한국에너지기술연구원 Organic Rankine Cycle System
JP5430717B2 (en) * 2012-07-03 2014-03-05 株式会社神戸製鋼所 Power generator
JP2014047676A (en) * 2012-08-30 2014-03-17 Mitsubishi Heavy Ind Ltd Steam turbine and binary generator with the same
JP6173235B2 (en) * 2013-02-26 2017-08-02 株式会社神戸製鋼所 Binary power generator operation method
JP5957410B2 (en) * 2013-04-16 2016-07-27 株式会社神戸製鋼所 Waste heat recovery device
CN103244213B (en) * 2013-05-24 2015-12-09 成都昊特新能源技术股份有限公司 For ORC power generation system and the electricity-generating method thereof of offshore platform

Also Published As

Publication number Publication date
CN105715320A (en) 2016-06-29
KR101639535B1 (en) 2016-07-13
KR20160076453A (en) 2016-06-30
JP2016118161A (en) 2016-06-30
CN105715320B (en) 2017-09-22

Similar Documents

Publication Publication Date Title
JP6315814B2 (en) Energy recovery device, compression device, and energy recovery method
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
JP6179736B2 (en) Rankine cycle equipment
JP6423614B2 (en) Thermal energy recovery device
US20150322821A1 (en) Thermal energy recovery device and start-up method of thermal energy recovery device
JP6223886B2 (en) Power generator
JP6173235B2 (en) Binary power generator operation method
JP6277148B2 (en) Power generator
JP6170487B2 (en) Thermal energy recovery device
JP6433749B2 (en) Thermal energy recovery device
JP6406583B2 (en) Rankine cycle equipment
KR101707744B1 (en) Compressing device
JP6163145B2 (en) Thermal energy recovery device
US10060298B2 (en) Thermal energy recovery device and start-up method thereof
JP6595395B2 (en) Thermal energy recovery device and operation method thereof
JP6647922B2 (en) Thermal energy recovery apparatus and start-up method thereof
KR102179759B1 (en) Heat energy recovery device and operation method thereof
JP2019094843A (en) Thermal energy recovery system
JP2018127970A (en) Thermal energy recovery system
JP2020204283A (en) Rankine cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170630

R150 Certificate of patent or registration of utility model

Ref document number: 6170487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees