WO2020115847A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020115847A1
WO2020115847A1 PCT/JP2018/044774 JP2018044774W WO2020115847A1 WO 2020115847 A1 WO2020115847 A1 WO 2020115847A1 JP 2018044774 W JP2018044774 W JP 2018044774W WO 2020115847 A1 WO2020115847 A1 WO 2020115847A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
evaporator
refrigerant circuit
compressor
Prior art date
Application number
PCT/JP2018/044774
Other languages
French (fr)
Japanese (ja)
Inventor
昌彦 中川
山下 浩司
充 川島
千尋 江口
洋一 安西
大林 誠善
Original Assignee
三菱電機株式会社
三菱電機冷熱応用システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機冷熱応用システム株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/044774 priority Critical patent/WO2020115847A1/en
Publication of WO2020115847A1 publication Critical patent/WO2020115847A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Definitions

  • the present invention relates to a refrigeration cycle device.
  • a showcase having a storage room for storing food etc. has been used as a refrigeration cycle device.
  • the evaporator is located at.
  • the evaporator is arranged above the compressor, the condenser and the expansion valve.
  • the air cooled by exchanging heat with the refrigerant in the evaporator is supplied to the storage chamber through the flow path.
  • the refrigerant leak in the above showcase often occurs in the evaporator due to the refrigerant leak from the fin pipe due to the thinness of the fin pipe of the evaporator.
  • the refrigerant flows into the storage chamber through the flow path.
  • the refrigerant has a specific gravity that is heavier than that of air, the leaked refrigerant is much retained in the storage compartment. If this refrigerant is flammable, the refrigerant that has accumulated in the storage compartment may explode.
  • the present invention has been made in view of the above problems, and an object thereof is to propose a refrigeration cycle device capable of suppressing refrigerant from accumulating in the storage compartment.
  • the refrigeration cycle device of the present invention includes a housing and a refrigerant circuit.
  • the housing includes a storage chamber and a flow path communicating with the storage chamber.
  • the refrigerant circuit is housed in the housing and includes a compressor, a condenser, an expansion device, an evaporator, and a backflow prevention device.
  • the expansion device includes an on-off valve configured to open and close the refrigerant circuit.
  • the refrigerant circuit is configured such that a refrigerant having a specific gravity heavier than air flows in the order of the compressor, the condenser, the expansion device, and the evaporator.
  • the backflow prevention device is disposed on at least one of the upstream side and the downstream side of the compressor, and is configured to prevent the refrigerant from flowing back from the compressor to the evaporator.
  • the evaporator is housed in the flow path and is located above the compressor, the condenser, the expansion device and the backflow prevention device.
  • the refrigerant circuit prevents the refrigerant from flowing backward from the compressor to the evaporator by the backflow prevention device, and enables the pump down operation in which the compressor is operated with the refrigerant circuit closed by the opening/closing valve. It is configured.
  • the refrigerant circuit prevents the refrigerant from flowing backward from the compressor to the evaporator by the backflow prevention device, and the compressor is operated in a state where the refrigerant circuit is closed by the opening/closing valve. It is configured to be able to execute the pump down operation to be operated. Therefore, it is possible to confine the refrigerant in the refrigerant circuit from the backflow prevention device to the on-off valve via the condenser. Therefore, it is possible to prevent the refrigerant from leaking from the evaporator. As a result, it is possible to prevent the refrigerant having a specific gravity that is heavier than air from staying in the storage compartment.
  • FIG. 1 It is a schematic sectional drawing of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. It is a functional block diagram of a control device of a refrigerating cycle device concerning Embodiment 1 of the present invention. It is a schematic sectional drawing at the time of pump down operation of the refrigerating cycle device concerning Embodiment 1 of the present invention. 3 is a flowchart showing control for determining whether or not refrigerant leakage has occurred in the refrigeration cycle device according to Embodiment 1 of the present invention. It is a flowchart which shows the continuation of FIG. It is a schematic sectional drawing of the modification 1 of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • the configuration of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG.
  • the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is, for example, a showcase.
  • refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described in a state of being installed on the floor, the ground, or the like.
  • the white arrows in the figure indicate the flow of cooled air.
  • the refrigeration cycle apparatus 100 includes a housing 1, a condenser fan 7, an evaporator fan 8, a refrigerant circuit 10, and a control device 20. I have it.
  • the refrigerant circuit 10 is housed in the housing 1.
  • the refrigerant circuit 10 includes a compressor 2, a condenser 3, an expansion device 4, an evaporator 5, and a backflow prevention device 6.
  • a refrigerant circuit 10 is configured by connecting the compressor 2, the condenser 3, the expansion device 4, the evaporator 5, and the backflow prevention device 6 by piping.
  • the refrigerant circuit 10 is configured so that the refrigerant flows in the order of the compressor 2, the condenser 3, the expansion device 4, and the evaporator 5.
  • the refrigerant circuit 10 is configured to be able to circulate the refrigerant.
  • the refrigerant has a heavier specific gravity than air.
  • the refrigerant is, for example, an HC (hydrocarbon) refrigerant. More specifically, the refrigerant is propane (R290), for example, and has a specific gravity of about 1.52. Refrigerants such as propane are flammable.
  • the refrigerant is not limited to this, and may be any refrigerant having a specific gravity heavier than air.
  • the compressor 2 is configured to compress the sucked refrigerant and discharge it.
  • the compressor 2 has a variable capacity.
  • the compressor 2 is configured so that the capacity is changed by changing the frequency based on an instruction from the control device 20 and adjusting the rotation speed.
  • the condenser 3 is configured to condense the refrigerant compressed by the compressor 2.
  • the condenser 3 is connected to the compressor 2 and the expansion device 4.
  • the condenser 3 is, for example, a fin-and-tube heat exchanger having a plurality of fins and a circular tube or a flat tube heat transfer tube that penetrates the plurality of fins.
  • the expansion device 4 is configured to expand the refrigerant condensed by the condenser 3 to reduce the pressure.
  • the expansion device 4 is connected to the condenser 3 and the evaporator 5.
  • the expansion device 4 is, for example, an electric valve or the like that can adjust the flow rate of the refrigerant based on an instruction from the control device 20.
  • the expansion device 4 includes an on-off valve 4a.
  • the on-off valve 4a is configured to open and close the refrigerant circuit 10.
  • the on-off valve 4a is configured to be able to fully close the refrigerant circuit 10.
  • the on-off valve 4a is, for example, a solenoid valve.
  • the expansion device 4 and the on-off valve 4a may be integrally configured, or may be a motor-operated valve with a fully closing function.
  • the expansion device 4 is preferably provided in the machine room 13, but may be provided in the storage room 11.
  • the evaporator 5 is configured to evaporate the refrigerant decompressed by the expansion device 4.
  • the evaporator 5 is connected to the expansion device 4 and the compressor 2.
  • the evaporator 5 is, for example, a fin-and-tube heat exchanger having a plurality of fins and a circular tube or a flat tube heat transfer tube that penetrates the plurality of fins.
  • the backflow prevention device 6 is configured to prevent the backflow of the refrigerant from the compressor 2 toward the evaporator 5.
  • the backflow prevention device 6 is arranged on at least one of the upstream side and the downstream side of the compressor 2.
  • the backflow prevention device 6 is arranged in the refrigerant circuit 10 on the upstream side of the compressor 2. That is, the backflow prevention device 6 is arranged on the suction side of the compressor 2 in the refrigerant circuit 10. In this case, the backflow prevention device 6 is arranged in the refrigerant circuit 10 between the compressor 2 and the evaporator 5.
  • the backflow prevention device 6 may be arranged on the downstream side of the compressor 2 in the refrigerant circuit 10. That is, the backflow prevention device 6 may be arranged on the discharge side of the compressor 2 in the refrigerant circuit 10. In this case, the backflow prevention device 6 is arranged in the refrigerant circuit 10 between the compressor 2 and the condenser 3.
  • the check valve 6 is, for example, a check valve.
  • the check valve is configured to allow the refrigerant flow from the evaporator 5 toward the compressor 2 and block the refrigerant flow from the compressor 2 toward the evaporator 5.
  • the backflow prevention device 6 may be, for example, an on-off valve.
  • This on-off valve is configured to open the refrigerant circuit 10 so that the refrigerant flows from the evaporator 5 toward the compressor 2 and close the refrigerant circuit 10 so that the refrigerant does not flow from the compressor 2 toward the evaporator 5. Has been done.
  • the condenser fan 7 is attached to the condenser 3 and is configured to supply air as a heat exchange fluid to the condenser 3.
  • the condenser fan 7 adjusts the amount of air flowing around the condenser 3 by adjusting the number of revolutions of the condenser fan 7 based on an instruction from the control device 20, and thus the condenser fan 7 is operated between the air and the refrigerant. It is configured to adjust the amount of heat exchange.
  • the evaporator fan 8 is attached to the evaporator 5 and is configured to supply air as a heat exchange fluid to the evaporator 5.
  • the evaporator fan 8 adjusts the amount of air flowing around the evaporator 5 by adjusting the number of revolutions of the evaporator fan 8 based on an instruction from the control device 20, and thereby the amount of air flowing between the air and the refrigerant is adjusted. It is configured to adjust the amount of heat exchange.
  • the control device 20 is housed in the housing 1.
  • the control device 20 is configured to perform calculations, instructions, and the like to control each unit, device, and the like of the refrigeration cycle device 100.
  • the control device 20 is electrically connected to the compressor 2, the expansion device 4, the condenser fan 7, the evaporator fan 8 and the like, and is configured to control the operations of these.
  • the compressor 2, the condenser 3, the expansion device 4, the evaporator 5, the backflow prevention device 6, and the condensing device are provided in the same housing 1.
  • the container fan 7, the evaporator fan 8, and the control device 20 are housed. That is, the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a built-in showcase.
  • the housing 1 includes a ceiling part 1a, a bottom part 1b, a front part 1c, a back part 1d, and a side part (not shown).
  • the ceiling portion 1a faces the bottom portion 1b.
  • the direction in which the ceiling portion 1a and the bottom portion 1b face each other is the vertical direction.
  • the front part 1c faces the back part 1d.
  • the front-back direction is the direction in which the front surface portion 1c and the rear surface portion 1d face each other.
  • the front portion 1c includes a door 1c1 that can be opened and closed.
  • the housing 1 is provided with an opening OP on the front surface 1c.
  • the opening OP is provided so as to communicate with the storage chamber 11.
  • the door 1c1 is configured to open and close the opening OP.
  • the storage chamber 11 is opened by opening the door 1c1, and the storage chamber 11 is closed by closing the door 1c1. Products and the like are put into and taken out of the storage chamber 11 with the door 1c1 opened.
  • Refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a closed type showcase. More specifically, refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a reach-in showcase.
  • the housing 1 includes a storage chamber 11, a flow path 12, a machine room 13, and a partition wall 14.
  • the storage room 11 is for refrigerating or freezing a product or the like.
  • the temperature of the storage chamber 11 is, for example, about 0° C. or higher and 10° C. or lower in the case of refrigeration, and is ⁇ 20° C. or higher and ⁇ 10° C. or lower in the case of freezing.
  • a shelf (not shown) may be arranged in the storage chamber 11.
  • the region surrounded by the door 1c1 and the inner wall 11a of the storage chamber 11 is the storage chamber 11.
  • the storage chamber 11 and the flow path 12 are separated by the inner wall 11 a of the storage chamber 11.
  • the regions between the inner wall 11a of the storage chamber 11 and the ceiling portion 1a, between the inner wall 11a and the back surface portion 1d, and between the inner wall 11a and the partition wall 14 serve as the flow path 12.
  • the flow path 12 communicates with the storage room 11. Specifically, the flow path 12 communicates with the storage chamber 11 through the air outlet 11b and the suction port 11c provided on the inner wall 11a of the storage chamber 11.
  • the air outlet 11b is arranged at the upper end of the storage chamber 11
  • the suction port 11c is arranged at the lower end of the storage chamber 11.
  • the evaporator 5 and the evaporator fan 8 are housed in the flow path 12.
  • the evaporator 5 is located above the compressor 2, the condenser 3, the expansion device 4, and the backflow prevention device 6.
  • the expansion device 4 is housed in the flow path 12.
  • the expansion device 4 is located above the condenser 3.
  • the expansion device 4 is arranged above the condenser 3 in which the refrigerant is confined in the gravity direction.
  • the expansion device 4 is located below the center of the evaporator 5.
  • the expansion device 4 is arranged below the center of the evaporator 5 in the gravity direction.
  • the flow path 12 is separated from the machine room 13. Specifically, the flow path 12 is separated from the machine room 13 by a partition wall 14. That is, the flow path 12 and the machine room 13 are separated from each other by the partition wall 14.
  • the flow path 12 is arranged above the machine room 13.
  • a compressor 2, a condenser 3, a backflow prevention device 6, a condenser fan 7, and a control device 20 are housed in the machine room 13.
  • the refrigerant circuit 10 is configured to be able to execute a cooling operation in which the refrigerant flows in the order of the compressor 2, the condenser 3, the expansion device 4, and the evaporator 5. Further, the refrigerant circuit 10 is configured to be able to perform a defrost (defrost) operation for removing frost formation on the evaporator 5. Further, in the refrigerant circuit 10, the backflow prevention device 6 prevents the refrigerant from flowing back from the compressor 2 toward the evaporator 5, and the compressor 2 operates with the on-off valve 4a closing the refrigerant circuit 10. It is configured to be able to execute the pump down operation.
  • defrost defrost
  • the control device 20 includes a control unit 21, a compressor drive unit 22, an expansion device drive unit 23, a condenser fan drive unit 24, an evaporator fan drive unit 25, a timer 26, and a storage unit 27. ing.
  • the control unit 21 controls the compressor drive unit 22, the expansion device drive unit 23, and the condensing unit based on signals from the timer 26, the storage unit 27, the pressure measuring device (not shown), the temperature measuring device (not shown), and the like.
  • the controller fan drive unit 24 and the evaporator fan drive unit 25 are configured to be controlled.
  • the compressor drive unit 22 is configured to drive the compressor 2 based on an instruction from the control unit 21. Specifically, the compressor drive unit 22 is configured to control the rotation speed of the motor of the compressor 2 by controlling the frequency of the alternating current flowing through the motor (not shown) of the compressor 2. ..
  • the expansion device drive unit 23 is configured to drive the expansion device 4 based on an instruction from the control unit 21. Specifically, the expansion device drive unit 23 is configured to control the opening degree of the on-off valve 4a of the expansion device 4 by controlling a drive source such as a motor (not shown) attached to the expansion device 4. Has been done.
  • a drive source such as a motor (not shown) attached to the expansion device 4. Has been done.
  • the condenser fan drive unit 24 is configured to drive the condenser fan 7 based on an instruction from the control unit 21. Specifically, the rotation speed of the condenser fan 7 is controlled by controlling a drive source such as a motor (not shown) attached to the condenser fan 7.
  • the evaporator fan drive unit 25 is configured to drive the evaporator fan 8 based on an instruction from the control unit 21. Specifically, the rotation speed of the evaporator fan 8 is controlled by controlling a drive source such as a motor (not shown) attached to the evaporator fan 8.
  • the timer 26 is configured to measure time and send a signal based on the time to the control unit 21.
  • the storage unit 27 is configured to store signals from the timer 26, a pressure measuring device (not shown), a temperature measuring device (not shown), and the like.
  • a pressure measuring device (not shown) is attached to the refrigerant circuit 10, and is configured to measure the pressure of the refrigerant and send a signal based on the pressure to the control unit 21.
  • the temperature measuring device (not shown) is attached to the refrigerant circuit 10, and is configured to measure the temperatures of the refrigerant and the air and send a signal based on the temperature to the control unit 21.
  • the control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing through the refrigerant circuit 10, and the refrigerant leakage amount indicates the flammable region formation limit concentration of the refrigerant in the internal volume of the storage chamber 11.
  • the refrigerant circuit 10 is configured to execute the pump-down operation before the multiplied calculated value is exceeded.
  • the control device 20 calculates the refrigerant leakage amount from the difference between the initial refrigerant charging amount charged in the refrigerant circuit 10 and the refrigerant amount in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount is An alarm is output when the calculated value is equal to or more than the allowable value obtained by multiplying the allowable coefficient.
  • the control device 20 calculates the refrigerant leakage amount from the difference between the initial refrigerant charging amount charged in the refrigerant circuit 10 and the refrigerant amount in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount is It is configured to output an abnormality when the calculated value is equal to or more than the dangerous value obtained by multiplying the dangerous coefficient.
  • the refrigerant circulates in the order of the compressor 2, the condenser 3, the expansion device 4, the evaporator 5, and the backflow prevention device 6.
  • the expansion device 4 is opened by controlling a drive source such as a motor attached to the expansion device 4 based on an instruction from the control unit 21 of the control device 20.
  • the on-off valve 4a included in the expansion device 4 opens the refrigerant circuit 10.
  • the refrigerant is compressed by the compressor 2.
  • the refrigerant compressed by the compressor 2 becomes a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the condenser 3.
  • the high-temperature and high-pressure gas refrigerant flowing into the condenser 3 is condensed by heat exchange with the air blown by the condenser fan 7 in the condenser 3 to become a low-temperature and high-pressure liquid refrigerant.
  • the low-temperature high-pressure liquid refrigerant flows into the expansion device 4.
  • the low-temperature high-pressure liquid refrigerant that has flowed into the expansion device 4 is expanded in the expansion device 4 and is decompressed to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant flows into the evaporator 5.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 5 evaporates due to heat exchange with the air blown by the evaporator fan 8 in the evaporator 5 to become a low-temperature low-pressure gas refrigerant. ..
  • the air cooled by heat exchange with the gas-liquid two-phase refrigerant in the evaporator 5 is supplied from the air outlet 11b to the storage chamber 11 by the evaporator fan 8.
  • the cooled air chills or freezes the food or the like stored in the storage chamber 11.
  • the air supplied to the storage chamber 11 from the air outlet 11b is sent to the flow path 12 from the suction port 11c.
  • the low-temperature low-pressure gas refrigerant flows into the compressor 2 via the backflow prevention device 6.
  • the low-temperature low-pressure gas refrigerant flowing into the compressor 2 is compressed and discharged. In this way, the refrigerant circulates in the refrigerant circuit 10 while changing its phase.
  • the temperature of the air passing through the evaporator 5 may be below the dew point, so that the evaporator 5 may be frosted.
  • frost is formed on the evaporator 5
  • a defrost operation is performed to remove the frost.
  • the defrost operation in refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a so-called off-cycle operation. That is, the frost on the evaporator 5 is warmed by the air blown from the evaporator fan 8 while the drive of the compressor 2 is stopped. As a result, the frost on the evaporator 5 is melted and removed from the evaporator 5.
  • the pump down operation is for confining the refrigerant in the condenser 3 or the like in the refrigerant circuit 10.
  • the pipe in which the refrigerant is confined during the pump-down operation is shown in bold.
  • the expansion device 4 controls the drive source such as a motor attached to the expansion device 4 based on an instruction from the control unit 21 of the control device 20. To be closed. As a result, the refrigerant circuit 10 is closed by the opening/closing valve 4a included in the expansion device 4.
  • the refrigerant flows from the evaporator 5 into the compressor 2 and the condenser 3 via the backflow prevention device 6.
  • the backflow prevention device 6 prevents the refrigerant from backflowing from the compressor 2 to the evaporator 5.
  • the refrigerant circuit 10 is closed by the opening/closing valve 4a included in the expansion device 4, so that the refrigerant does not flow from the expansion device 4 into the evaporator 5. Therefore, the refrigerant is trapped in the refrigerant circuit 10 that reaches the expansion device 4 from the backflow prevention device 6 via the compressor 2 and the condenser 3.
  • the driving of the compressor 2 may be stopped after the pump down operation is completed.
  • the refrigerant circuit 10 may be closed by the opening/closing valve 4a included in the expansion device 4 even after the driving of the compressor 2 is stopped.
  • the refrigerant does not flow into the evaporator 5 from the expansion device 4 even after the driving of the compressor 2 is stopped.
  • the backflow prevention device 6 prevents the refrigerant from backflowing from the compressor 2 to the evaporator 5. Therefore, even after the driving of the compressor 2 is stopped, the refrigerant is confined in the refrigerant circuit 10 from the backflow prevention device 6 to the expansion device 4 via the compressor 2 and the condenser 3.
  • the condensation temperature CT(i) is measured every 5 seconds, and the data for the latest 3 minutes are stored (S3).
  • the condensation temperature CT(i) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown). The most recent 3 minutes are measured by the timer 26.
  • the data of the measured condensation temperature CT(i) is stored in the storage unit 27.
  • the temperature difference between the maximum value CT(i)MAX of the condensation temperature CT(i) and the minimum value CT(i)MIN of the condensation temperature CT(i) in the data of the condensation temperature CT(i) measured in the last 3 minutes is It is determined whether it is 0.5 Kelvin (K) or less (S4). This determination is made by the control unit 21 based on signals from the timer 26 and the storage unit 27. As a result, it is determined whether the high pressure is stable. When the temperature difference exceeds 0.5K, determination is performed again until the temperature difference becomes 0.5K or less (S4).
  • the output of the condenser fan 7 (condenser fan output with the opening/closing valve 4a and the frequency of the compressor 2 fixed (opening/closing valve opening/frequency fixed) ) Is reduced by 5% (S5).
  • the degree of superheat of the refrigerant at the outlet of the evaporator 5 (evaporator outlet SH) is 4.0 K or less (S6).
  • the superheat degree of the refrigerant at the outlet of the evaporator 5 is the superheat degree of the refrigerant at the outlet of the evaporator 5 measured by a temperature measuring device (not shown). This determination is performed by the controller 21 based on a signal from a temperature measuring device (not shown). When the degree of superheat exceeds 4.0K, it is determined again until the degree of superheat becomes 4.0K or less (S6).
  • the current condensation temperature (CT1) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown).
  • the current evaporator temperature (ET1) is the temperature of the refrigerant inside the evaporator 5 measured by a temperature measuring device (not shown).
  • CT0 is the high-pressure saturation temperature when stable under rated conditions.
  • s is the average high-pressure side wetness at CT0.
  • ET0 is the low pressure saturation temperature when stable under rated conditions.
  • ss is the low-pressure side average wetness at ET0.
  • the refrigerant amount W is calculated based on the following equations (1) to (3) (S9). This calculation is performed by the control unit 21 based on the signal from the storage unit 27.
  • the refrigerant amount W1 of the condenser 3 is calculated by the equation (1).
  • the refrigerant amount W2 in the liquid pipe is calculated by the equation (2).
  • the liquid pipe is a pipe that connects the condenser 3 and the evaporator 5 via the expansion device 4.
  • the liquid pipe internal volume in Expression (2) is stored in the storage unit 27 in advance.
  • the refrigerant amount W3 of the evaporator 5 is calculated by the equation (3).
  • ⁇ L is the saturated liquid density (kg/m 3 )
  • ⁇ G is the saturated gas density (kg/m 3 ).
  • the control unit 21 determines whether the refrigerant leakage amount is equal to or more than the allowable value (S10). This determination is performed by the control unit 21 based on the signal from the storage unit 27.
  • the amount of refrigerant in the condenser 3, the liquid pipe, and the evaporator 5 accounts for about 90% of the refrigerant distribution during operation.
  • the refrigerant leakage amount is calculated by W0-(W1+W2+W3).
  • the allowable value is obtained by multiplying the flammable region formation limit concentration (LFL) (kg/m 3 ), the internal volume, and the allowable coefficient 0.1.
  • the flammable zone formation limit concentration (LFL), the internal volume, and the tolerance coefficient 0.1 are stored in the storage unit 27 in advance.
  • the flammable region formation limit concentration (LFL) of propane (R290) as a refrigerant is 0.038 kg/m 3 .
  • the refrigerant leakage amount is less than the allowable value, determination is made until the refrigerant leakage amount becomes equal to or more than the allowable value (S10).
  • the refrigerant leakage alarm is output via the connector A (S11). In this case, the cooling operation is maintained.
  • the refrigerant leak alarm is output by an alarm device (not shown) such as a display device or a speaker.
  • the refrigerant leakage amount is equal to or more than the dangerous value (S12). This determination is performed by the control unit 21 based on the signal from the storage unit 27.
  • the dangerous value is obtained by multiplying the flammable zone formation limit concentration (LFL), the internal volume, and the risk factor 0.25.
  • the flammable zone formation limit concentration (LFL), the internal volume, and the risk factor 0.25 are stored in the storage unit 27 in advance.
  • the refrigerant leakage amount is less than the dangerous value, it is judged until the refrigerant leakage amount becomes the dangerous value or more (S12).
  • the refrigerant leakage abnormality is output (S13).
  • the cooling operation is stopped and the pump down operation is performed.
  • the refrigerant leakage abnormality is output by an alarm device (not shown) such as a display device or a speaker.
  • the refrigerant leakage abnormality is output, the determination as to whether or not refrigerant leakage has occurred is stopped (S14).
  • the pump down operation is continued until the refrigerant leakage detection state is released.
  • the condenser fan 7 may be continuously operated even after the pump down operation is completed.
  • the control may be performed such that when the housing is stopped, the pump down operation is performed to confine the refrigerant and then the compressor, the fan, and the like are stopped. This makes it possible to always keep the refrigerant in the refrigerant circuit other than the evaporator when the housing is stopped.
  • refrigerant circuit 10 can cause refrigerant to flow backward from compressor 2 to evaporator 5 by backflow prevention device 6.
  • a pump down operation is performed in which the compressor 2 is operated while being prevented and the refrigerant circuit 10 is closed by the opening/closing valve 4a.
  • the refrigerant can be confined in the refrigerant circuit 10 from the backflow prevention device 6 to the on-off valve 4a via the condenser 3. Therefore, it is possible to prevent the refrigerant from leaking from the evaporator 5.
  • the compressor 2 and the condenser 3 are located below the evaporator 5.
  • the refrigerant trapped in the condenser 3 is unlikely to flow into the storage chamber 11.
  • the refrigerant R having a specific gravity heavier than air can be prevented from staying in the storage chamber 11. The greater the specific gravity of the refrigerant, the greater the effect, and the greater the specific gravity, the more effective it is.
  • the expansion device 4 is located above the condenser 3. Therefore, the refrigerant trapped in the condenser 3 does not easily flow into the storage chamber 11 beyond the expansion device 4. Therefore, it is possible to prevent the leaked refrigerant R from staying in the storage chamber 11.
  • the expansion device 4 is located below the center of the evaporator 5. Therefore, the refrigerant trapped in the refrigerant circuit 10 is unlikely to flow from the expansion device 4 into the evaporator 5. Therefore, it is possible to prevent the leaked refrigerant R from staying in the storage chamber 11.
  • the flow path 12 is separated from the machine room 13 and arranged above the machine room 13. Therefore, the leaked refrigerant R can be suppressed from flowing into the machine chamber 13 from the flow path 12.
  • control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from refrigerant circuit 10 based on the refrigerant flowing in refrigerant circuit 10, and the refrigerant leakage amount is the storage chamber. It is configured to cause the refrigerant circuit 10 to execute the pump-down operation before the calculated value obtained by multiplying the internal volume of 11 by the flammable region formation limit concentration of the refrigerant is exceeded. Therefore, when the refrigerant leaks, the pump down operation can be executed without using the refrigerant leak detection device such as the gas sensor.
  • control device 20 sets the amount of the initial refrigerant filled in refrigerant circuit 10 and the amount of refrigerant in the refrigerant circuit calculated based on the refrigerant flowing in refrigerant circuit 10.
  • the refrigerant leakage amount is calculated from the difference, and an alarm is output when the refrigerant leakage amount reaches a concentration equal to or higher than an allowable value obtained by multiplying the calculated value by an allowable coefficient. Therefore, it can be notified by outputting an alarm that the refrigerant leakage amount has exceeded the allowable value.
  • the control device 20 controls the amount of the initial refrigerant filled in the refrigerant circuit 10 and the amount of refrigerant in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit 10.
  • the refrigerant leakage amount is calculated from the difference, and an abnormality is output when the refrigerant leakage amount reaches a concentration equal to or higher than the dangerous value obtained by multiplying the calculated value by the risk coefficient. For this reason, it is possible to notify that the refrigerant leakage amount has exceeded the dangerous value by outputting an abnormality.
  • the allowable value or the dangerous value may be obtained by multiplying the LFL (vol%), the internal volume, and the allowable coefficient or the dangerous coefficient.
  • the LFL of propane (R290) as a refrigerant is 2.1 vol%.
  • each modified example of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described.
  • Each modification of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention has the same configuration, operation, and effect as the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, unless otherwise specified. ..
  • the expansion device 4 includes an opening/closing valve 4a and a solenoid valve 4b.
  • the solenoid valve 4b is connected to the opening/closing valve 4a.
  • the solenoid valve 4b is configured to be able to fully close the refrigerant circuit 10.
  • the on-off valve 4a is housed in the flow path 12.
  • the solenoid valve 4b is housed in the machine room 13.
  • the expansion device 4 includes the electromagnetic valve 4b capable of fully closing the refrigerant circuit 10, so that the electromagnetic valve 4b serves to close the refrigerant circuit 10. Can be fully closed. Therefore, the solenoid valve 4b can prevent the refrigerant from flowing into the evaporator 5. Further, since the electromagnetic valve 4b is housed in the machine room 13, it is possible to prevent the refrigerant trapped in the refrigerant circuit 10 in the machine room 13 from flowing over the electromagnetic valve 4b into the flow path 12.
  • the configuration of Modification 2 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. 7.
  • the second modification of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention includes the refrigerant leakage detection device 9.
  • the refrigerant leakage detection device 9 is housed in the housing 1.
  • the refrigerant leak detection device 9 is configured to be able to detect the refrigerant leaked from the evaporator 5 in the housing 1.
  • the coolant leakage detection device 9 is, for example, a gas sensor.
  • the refrigerant circuit 10 is configured to execute the pump-down operation when the refrigerant leakage detection device 9 detects the refrigerant.
  • the second modification of the refrigeration cycle apparatus 100 includes the shelves 15 arranged in the storage chamber 11. Since the cool air is supplied to each of the shelves 15, a plurality of air passages are formed. The air flowing through the plurality of air passages joins at the suction port 11c.
  • the refrigerant leakage detection device 9 is arranged downstream of the suction port 11c in the flow of air and upstream of the expansion device 4 and the evaporator 5. Therefore, the flow of air is concentrated at the position where the refrigerant leakage detection device 9 is arranged. Therefore, when the evaporator fan 8 is in operation, the flow of air concentrated at the suction port 11c hits the refrigerant leakage detection device 9, so that the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant.
  • the refrigerant leakage detection device 9 is arranged at the bottom of the flow path 12. For this reason, the refrigerant having a specific gravity heavier than air is likely to accumulate at the position where the refrigerant leakage detection device 9 is arranged. Therefore, while the evaporator fan 8 is stopped, the refrigerant leakage detection device 9 can accurately detect the refrigerant leakage at a position where the refrigerant having a specific gravity heavier than air is likely to accumulate.
  • the refrigerant circuit 10 can execute the pump-down operation when the refrigerant leakage detection device 9 detects the refrigerant.
  • the refrigerant leakage detection device 9 is downstream of the suction port 11c in the flow of air and upstream of the expansion device 4 and the evaporator 5. It is located in. Therefore, when the evaporator fan 8 is operating, the flow of air concentrated at the suction port 11c hits the refrigerant leakage detection device 9, so that the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant.
  • the refrigerant leakage detection device 9 is arranged at the bottom of the flow path 12. Therefore, while the evaporator fan 8 is stopped, the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant at a position where the refrigerant having a specific gravity heavier than air is likely to accumulate.
  • the refrigerant leakage detection device 9 is located at the bottom of the storage chamber 11 and below the center of the evaporator 5. Therefore, the flow of air is likely to stagnant at the position where the refrigerant leakage detection device 9 is arranged, and the refrigerant having a specific gravity heavier than that of air is likely to accumulate. Therefore, during operation and stoppage of the evaporator fan 8, the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant at a position where the air flow is likely to stagnant and the refrigerant having a specific gravity heavier than the air is likely to accumulate. You can
  • Modification 4 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention differs from refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention in that housing 1 does not include a door. That is, the modification 4 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is an open type showcase. The modification 4 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is more specifically a pre-checkout showcase.
  • the housing 1 has an opening OP communicating with the storage chamber 11 on the front surface 1c. A part of the air leaks from the front portion 1c to the outside of the storage chamber 11 as indicated by the white and dotted broken arrow in FIG. However, since most of the air remains in the storage chamber 11, when the refrigerant leaks from the evaporator 5, the leaked refrigerant R is collected at the bottom of the storage chamber 11.
  • the refrigerant can be confined in the refrigerant circuit 10 from the backflow prevention device 6 to the on-off valve 4a via the condenser 3, so that the evaporation It is possible to prevent the refrigerant from leaking from the container 5.
  • the refrigerant R having a specific gravity heavier than air can be prevented from staying in the storage chamber 11.
  • Modification 5 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention has a point that housing 1 does not include a door and that housing 1 has an opening OP that communicates with storage chamber 11 in ceiling portion 1a.
  • the difference from the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention lies in that. That is, the modification 5 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is an open type showcase. More specifically, refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a flat showcase.
  • the refrigerant can be confined in the refrigerant circuit 10 from the backflow prevention device 6 through the condenser 3 to the on-off valve 4a, so that evaporation It is possible to prevent the refrigerant from leaking from the container 5.
  • the refrigerant R having a specific gravity heavier than air can be prevented from staying in the storage chamber 11.
  • the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention has the same configuration, operation, and effect as those of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention and the modifications thereof, unless otherwise specified. ing.
  • the configuration of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention will be described with reference to FIG. 11.
  • the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention differs from the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention in the configuration of the expansion device 4.
  • the expansion device 4 includes an opening/closing valve 4a and an expansion valve 4c.
  • the expansion valve 4c is, for example, a capillary tube.
  • the expansion valve 4c is housed in the flow path 12.
  • the on-off valve 4a is housed in the machine room 13.
  • the control device 20 is configured to stop the drive of the compressor 2 after causing the refrigerant circuit 10 to perform the pump-down operation.
  • the control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing through the refrigerant circuit 10, and the refrigerant leakage amount indicates the combustible zone formation limit concentration of the refrigerant in the internal volume of the storage chamber 11. It is configured to output an alarm when the calculated value obtained by multiplying is equal to or larger than the allowable value obtained by multiplying the allowable coefficient.
  • the control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing through the refrigerant circuit 10, and the refrigerant leakage amount indicates the combustible zone formation limit concentration of the refrigerant in the internal volume of the storage chamber 11. It is configured to output an abnormality when the calculated value obtained by multiplication is equal to or higher than the dangerous value obtained by multiplying the dangerous coefficient.
  • control device 20 in the second embodiment of the present invention is similar to the configuration of control device 20 in the first embodiment shown in FIG. First, the determination starts by starting the defrost operation (S21).
  • the temperature of the refrigerant at the inlet of the evaporator 5 is -20°C or lower (S24).
  • the temperature of the refrigerant at the inlet of the evaporator 5 is the temperature of the refrigerant at the inlet of the evaporator 5 measured by a temperature measuring device (not shown). This determination is performed by the controller 21 based on a signal from a temperature measuring device (not shown). When the evaporator inlet temperature exceeds ⁇ 20° C., the determination is repeated until the evaporator inlet temperature becomes ⁇ 20° C. or lower (S24).
  • the compressor 2 is stopped (S25). Subsequently, the condensation temperature CT(i) is measured every 5 seconds, and the data for the latest 3 minutes is stored (S26).
  • the condensation temperature CT(i) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown). The most recent 3 minutes are measured by the timer 26.
  • the data of the measured condensation temperature CT(i) is stored in the storage unit 27.
  • the temperature difference between the maximum value CT(i)MAX of the condensation temperature CT(i) and the minimum value CT(i)MIN of the condensation temperature CT(i) in the data of the condensation temperature CT(i) measured in the last 3 minutes is It is determined whether it is 0.5 Kelvin (K) or less (S27). This determination is made by the control unit 21 based on signals from the timer 26 and the storage unit 27. As a result, it is determined whether the high pressure is stable. If the temperature difference exceeds 0.5K, it is determined again until the temperature difference becomes 0.5K or less (S27).
  • the current condensation temperature (CT1) is measured (S28).
  • the current condensation temperature (CT1) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown).
  • the current condensing temperature (CT1) is the balanced condensing temperature when the high pressure is considered stable.
  • CT0 is a balanced high-pressure saturation temperature when pumping down with the refrigerant amount at the time of shipment.
  • s is the average high-pressure side wetness at CT0.
  • the refrigerant amount W is calculated based on the following equations (6) and (7) (S30). This calculation is performed by the control unit 21 based on the signal from the storage unit 27.
  • the high-pressure-side refrigerant amount W(CT0) is calculated by the equation (6).
  • the high-pressure side refrigerant amount W(CT0) is the high-pressure side refrigerant amount based on the balanced high-pressure saturation temperature when pumping down with the shipping refrigerant amount.
  • the high-pressure side refrigerant amount W(CT1) is calculated by the equation (7).
  • the high-pressure side refrigerant amount W (CT1) is the high-pressure side refrigerant amount based on the current condensation temperature (CT1).
  • ⁇ L is the saturated liquid density (kg/m 3 )
  • ⁇ G is the saturated gas density (kg/m 3 ).
  • the refrigerant leakage amount is equal to or more than the allowable value (S31). This determination is performed by the control unit 21 based on the signal from the storage unit 27.
  • the refrigerant leakage amount is calculated by subtracting W(CT1) from W(CT0).
  • the permissible value is obtained by multiplying the flammable zone formation limit concentration (LFL) (kg/m 3 ), the internal volume, and the permissible coefficient (for example, 0.1).
  • the flammable zone formation limit concentration (LFL), the internal volume, and the tolerance coefficient 0.1 are stored in the storage unit 27 in advance.
  • a value corresponding to an allowable value obtained by multiplying LFL (kg/m 3 ) by the internal volume and the allowable coefficient is stored in advance in the storage unit 27 as a constant.
  • the refrigerant leakage amount is less than the allowable value, determination is made until the refrigerant leakage amount becomes equal to or more than the allowable value (S31).
  • the refrigerant leakage alarm is output via the connector A (S32). In this case, the operation of the evaporator fan is maintained.
  • the refrigerant leak alarm is output by an alarm device (not shown) such as a display device or a speaker.
  • the control unit 21 determines whether or not the refrigerant leakage amount is equal to or more than the dangerous value (S33).
  • This determination is performed by the control unit 21 based on the signal from the storage unit 27.
  • the dangerous value is obtained by multiplying the flammable zone formation limit concentration (LFL), the internal volume and the risk factor (for example, 0.25).
  • the flammable zone formation limit concentration (LFL), the internal volume, and the risk factor 0.25 are stored in the storage unit 27 in advance.
  • a value corresponding to a dangerous value obtained by multiplying LFL (kg/m 3 ) by the internal volume and the dangerous coefficient is stored in advance in the storage unit 27 as a constant.
  • the refrigerant leakage amount is less than the dangerous value, determination is made until the refrigerant leakage amount becomes equal to or higher than the dangerous value (S33).
  • the refrigerant leakage abnormality is output (S33).
  • the pump down operation is performed.
  • Abnormal refrigerant leakage is output by an alarm device (not shown) such as a display device or a speaker. In this case, the drive of the evaporator fan 8 is maintained.
  • the refrigerant leakage abnormality is output, the determination as to whether or not refrigerant leakage has occurred is stopped (S35).
  • the expansion device 4 includes the on-off valve 4a and the expansion valve 4c, so that the on-off valve 4a closes the refrigerant circuit 10 to generate the refrigerant.
  • the refrigerant can be prevented from flowing into the evaporator 5, and the expansion valve 4c can expand the refrigerant.
  • the opening/closing valve 4a is housed in the machine chamber 13, it is possible to prevent the refrigerant trapped in the refrigerant circuit 10 in the machine chamber 13 from flowing over the opening/closing valve 4a into the flow path 12.
  • the control device 20 is configured to stop the drive of the compressor 2 after causing the refrigerant circuit 10 to execute the pump down operation. Therefore, it is possible to confine the refrigerant in the refrigerant circuit 10 from the backflow prevention device 6 to the on-off valve 4a via the condenser 3 while the drive of the compressor 2 is stopped after the pump down operation.
  • the control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount. Is configured to output an alarm when the value exceeds a permissible value obtained by multiplying a calculated value obtained by multiplying the internal volume of the storage chamber 11 by the flammable region formation limit concentration of the refrigerant by a permissible coefficient. Therefore, it can be notified by outputting an alarm that the refrigerant leakage amount has exceeded the allowable value.
  • the control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount. Is configured to output an abnormality when the calculated value obtained by multiplying the internal volume of the storage chamber 11 by the flammable region formation limit concentration of the refrigerant is multiplied by the risk factor. For this reason, it is possible to notify that the refrigerant leakage amount has exceeded the dangerous value by outputting an abnormality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigeration cycle device (100) comprises a housing (1) and a refrigerant circuit (10). The housing (1) includes a storage chamber (11) and a flow path (12). The refrigerant circuit (10) is housed in the housing (1) and includes a compressor (2), a condenser (3), an expansion device (4), an evaporator (5), and a backflow prevention device (6). The expansion device (4) includes an opening-closing valve (4a) that is configured so as to be capable of opening and closing the refrigerant circuit (10). The refrigerant circuit (10) is configured so as to be capable of executing a pump-down operation in which the compressor (2) is operated while the refrigerant is prevented from flowing backward from the compressor (2) to the evaporator (5) by the backflow prevention device (6) and the refrigerant circuit (10) is closed by the opening-closing valve (4a).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle device.
 従来、冷凍サイクル装置として、食品等を貯蔵するための貯蔵室を有するショーケースが用いられている。このショーケースにおいては、たとえば、国際公開第2014/178312号(特許文献1)に記載されているように、圧縮機、凝縮器および膨張弁が配置された機械室から隔壁で隔てられた流路に蒸発器が配置されている。蒸発器は、圧縮機、凝縮器および膨張弁よりも上方に配置されている。蒸発器において冷媒と熱交換を行うことにより冷却された空気が流路を通って貯蔵室に供給される。 Conventionally, a showcase having a storage room for storing food etc. has been used as a refrigeration cycle device. In this showcase, for example, as described in WO 2014/178312 (Patent Document 1), a flow path separated by a partition from a machine room in which a compressor, a condenser and an expansion valve are arranged. The evaporator is located at. The evaporator is arranged above the compressor, the condenser and the expansion valve. The air cooled by exchanging heat with the refrigerant in the evaporator is supplied to the storage chamber through the flow path.
国際公開第2014/178312号International Publication No. 2014/178312
 上記のショーケースにおける冷媒の漏洩は、蒸発器のフィンパイプの肉薄に起因してフィンパイプから冷媒が漏れることにより蒸発器で発生することが多い。蒸発器で冷媒の漏洩が発生すると、冷媒は流路を通って貯蔵室に流入する。冷媒が空気よりも重い比重を有する場合には、漏洩した冷媒は貯蔵室の庫内に多く滞留する。この冷媒が可燃性を有する場合には、貯蔵室の庫内に多く滞留した冷媒が爆発するおそれがある。 The refrigerant leak in the above showcase often occurs in the evaporator due to the refrigerant leak from the fin pipe due to the thinness of the fin pipe of the evaporator. When the refrigerant leaks in the evaporator, the refrigerant flows into the storage chamber through the flow path. When the refrigerant has a specific gravity that is heavier than that of air, the leaked refrigerant is much retained in the storage compartment. If this refrigerant is flammable, the refrigerant that has accumulated in the storage compartment may explode.
 本発明は上記課題に鑑みてなされたものであり、その目的は貯蔵室の庫内に冷媒が滞留することを抑制することができる冷凍サイクル装置を提案することである。 The present invention has been made in view of the above problems, and an object thereof is to propose a refrigeration cycle device capable of suppressing refrigerant from accumulating in the storage compartment.
 本発明の冷凍サイクル装置は、筐体と、冷媒回路とを備えている。筐体は、貯蔵室および貯蔵室に連通する流路を含んでいる。冷媒回路は、筐体に収容され、かつ圧縮機と、凝縮器と、膨張装置と、蒸発器と、逆流防止装置とを含んでいる。膨張装置は、冷媒回路を開閉可能に構成された開閉弁を含んでいる。冷媒回路は、圧縮機、凝縮器、膨張装置、蒸発器の順に空気よりも重い比重を有する冷媒が流れるように構成されている。逆流防止装置は、圧縮機の上流側および下流側の少なくもいずれかに配置され、かつ圧縮機から蒸発器に向けて冷媒が逆流することを防止するように構成されている。蒸発器は、流路に収容され、かつ圧縮機、凝縮器、膨張装置および逆流防止装置よりも上方に位置している。冷媒回路は、逆流防止装置により圧縮機から蒸発器に向けて冷媒が逆流することが防止され、かつ開閉弁により冷媒回路が閉止された状態で圧縮機が運転されるポンプダウン運転を実行可能に構成されている。 The refrigeration cycle device of the present invention includes a housing and a refrigerant circuit. The housing includes a storage chamber and a flow path communicating with the storage chamber. The refrigerant circuit is housed in the housing and includes a compressor, a condenser, an expansion device, an evaporator, and a backflow prevention device. The expansion device includes an on-off valve configured to open and close the refrigerant circuit. The refrigerant circuit is configured such that a refrigerant having a specific gravity heavier than air flows in the order of the compressor, the condenser, the expansion device, and the evaporator. The backflow prevention device is disposed on at least one of the upstream side and the downstream side of the compressor, and is configured to prevent the refrigerant from flowing back from the compressor to the evaporator. The evaporator is housed in the flow path and is located above the compressor, the condenser, the expansion device and the backflow prevention device. The refrigerant circuit prevents the refrigerant from flowing backward from the compressor to the evaporator by the backflow prevention device, and enables the pump down operation in which the compressor is operated with the refrigerant circuit closed by the opening/closing valve. It is configured.
 本発明の冷凍サイクル装置によれば、冷媒回路は、逆流防止装置により圧縮機から蒸発器に向けて冷媒が逆流することが防止され、かつ開閉弁により冷媒回路が閉止された状態で圧縮機が運転されるポンプダウン運転を実行可能に構成されている。このため、逆流防止装置から凝縮器を介して開閉弁に至る冷媒回路に冷媒を閉じ込めることができる。したがって、蒸発器から冷媒が漏洩することを抑制することができる。これにより、空気よりも重い比重を有する冷媒が貯蔵室の庫内に滞留することを抑制することができる。 According to the refrigeration cycle apparatus of the present invention, the refrigerant circuit prevents the refrigerant from flowing backward from the compressor to the evaporator by the backflow prevention device, and the compressor is operated in a state where the refrigerant circuit is closed by the opening/closing valve. It is configured to be able to execute the pump down operation to be operated. Therefore, it is possible to confine the refrigerant in the refrigerant circuit from the backflow prevention device to the on-off valve via the condenser. Therefore, it is possible to prevent the refrigerant from leaking from the evaporator. As a result, it is possible to prevent the refrigerant having a specific gravity that is heavier than air from staying in the storage compartment.
本発明の実施の形態1に係る冷凍サイクル装置の概略断面図である。It is a schematic sectional drawing of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の制御装置の機能ブロック図である。It is a functional block diagram of a control device of a refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置のポンプダウン運転時の概略断面図である。It is a schematic sectional drawing at the time of pump down operation of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置において冷媒の漏洩が発生したか否かを判断する制御を示すフローチャートである。3 is a flowchart showing control for determining whether or not refrigerant leakage has occurred in the refrigeration cycle device according to Embodiment 1 of the present invention. 図4の続きを示すフローチャートである。It is a flowchart which shows the continuation of FIG. 本発明の実施の形態1に係る冷凍サイクル装置の変形例1の概略断面図である。It is a schematic sectional drawing of the modification 1 of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の変形例2の概略断面図である。It is a schematic sectional drawing of the modification 2 of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の変形例3の概略断面図である。It is a schematic sectional drawing of the modification 3 of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の変形例4の概略断面図である。It is a schematic sectional drawing of the modification 4 of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の変形例5の概略断面図である。It is a schematic sectional drawing of the modification 5 of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の概略断面図である。It is a schematic sectional drawing of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置において冷媒の漏洩が発生したか否かを判断する制御を示すフローチャートである。5 is a flowchart showing control for determining whether or not refrigerant leakage has occurred in the refrigeration cycle device according to Embodiment 2 of the present invention. 図12の続きを示すフローチャートである。It is a flowchart which shows the continuation of FIG.
 以下、本発明の実施の形態について、図面を参照して説明する。なお、以下において、同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Embodiments of the present invention will be described below with reference to the drawings. In the following, the same or corresponding parts will be denoted by the same reference symbols and description thereof will not be repeated in principle.
 実施の形態1. Embodiment 1.
 図1を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の構成について説明する。本発明の実施の形態1に係る冷凍サイクル装置100は、たとえば、ショーケースである。以下では、本発明の実施の形態1に係る冷凍サイクル装置100は、床または地面等に設置された状態で説明される。また、図中白抜き矢印は冷却された空気の流れを示している。 The configuration of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. The refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is, for example, a showcase. Hereinafter, refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described in a state of being installed on the floor, the ground, or the like. The white arrows in the figure indicate the flow of cooled air.
 図1に示されるように、本発明の実施の形態1に係る冷凍サイクル装置100は、筐体1と、凝縮器ファン7と、蒸発器ファン8と、冷媒回路10と、制御装置20とを備えている。 As shown in FIG. 1, the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention includes a housing 1, a condenser fan 7, an evaporator fan 8, a refrigerant circuit 10, and a control device 20. I have it.
 冷媒回路10は、筐体1に収容されている。冷媒回路10は、圧縮機2と、凝縮器3と、膨張装置4と、蒸発器5と、逆流防止装置6とを含んでいる。圧縮機2と、凝縮器3と、膨張装置4と、蒸発器5と、逆流防止装置6とが配管で接続されることにより冷媒回路10が構成されている。冷媒回路10は、圧縮機2、凝縮器3、膨張装置4、蒸発器5の順に冷媒が流れるように構成されている。冷媒回路10は、冷媒を循環可能に構成されている。 The refrigerant circuit 10 is housed in the housing 1. The refrigerant circuit 10 includes a compressor 2, a condenser 3, an expansion device 4, an evaporator 5, and a backflow prevention device 6. A refrigerant circuit 10 is configured by connecting the compressor 2, the condenser 3, the expansion device 4, the evaporator 5, and the backflow prevention device 6 by piping. The refrigerant circuit 10 is configured so that the refrigerant flows in the order of the compressor 2, the condenser 3, the expansion device 4, and the evaporator 5. The refrigerant circuit 10 is configured to be able to circulate the refrigerant.
 冷媒は、空気よりも重い比重を有する。冷媒は、たとえば、HC(炭化水素)冷媒である。より具体的には、冷媒は、たとえば、プロパン(R290)であり、比重は約1.52である。プロパンなどの冷媒は、可燃性を有している。冷媒は、これに限るものではなく、空気よりも重い比重を有するものであればどんなものでもよい。 The refrigerant has a heavier specific gravity than air. The refrigerant is, for example, an HC (hydrocarbon) refrigerant. More specifically, the refrigerant is propane (R290), for example, and has a specific gravity of about 1.52. Refrigerants such as propane are flammable. The refrigerant is not limited to this, and may be any refrigerant having a specific gravity heavier than air.
 圧縮機2は、吸入した冷媒を圧縮して吐出するように構成されている。圧縮機2は、容量可変に構成されている。圧縮機2は、制御装置20からの指示に基づいて周波数が変更されることで回転数が調整されることにより容量が変化するように構成されている。 The compressor 2 is configured to compress the sucked refrigerant and discharge it. The compressor 2 has a variable capacity. The compressor 2 is configured so that the capacity is changed by changing the frequency based on an instruction from the control device 20 and adjusting the rotation speed.
 凝縮器3は、圧縮機2により圧縮された冷媒を凝縮するように構成されている。凝縮器3は、圧縮機2と、膨張装置4とに接続されている。凝縮器3は、たとえば、複数のフィンと、複数のフィンを貫通する円管または扁平管の伝熱管とを有するフィンアンドチューブ型熱交換器である。 The condenser 3 is configured to condense the refrigerant compressed by the compressor 2. The condenser 3 is connected to the compressor 2 and the expansion device 4. The condenser 3 is, for example, a fin-and-tube heat exchanger having a plurality of fins and a circular tube or a flat tube heat transfer tube that penetrates the plurality of fins.
 膨張装置4は、凝縮器3により凝縮された冷媒を膨張させることにより減圧するように構成されている。膨張装置4は、凝縮器3と、蒸発器5とに接続されている。膨張装置4は、たとえば、制御装置20からの指示に基づいて冷媒の流量を調整可能な電動弁などである。膨張装置4は、開閉弁4aを含んでいる。開閉弁4aは、冷媒回路10を開閉可能に構成されている。開閉弁4aは、冷媒回路10を全閉可能に構成されている。開閉弁4aは、たとえば電磁弁である。膨張装置4と開閉弁4aは一体に構成されていてもよく、全閉機能付き電動弁でもよい。また、膨張装置4は、機械室13に設けられることが望ましいが、貯蔵室11内に設けられていてもよい。 The expansion device 4 is configured to expand the refrigerant condensed by the condenser 3 to reduce the pressure. The expansion device 4 is connected to the condenser 3 and the evaporator 5. The expansion device 4 is, for example, an electric valve or the like that can adjust the flow rate of the refrigerant based on an instruction from the control device 20. The expansion device 4 includes an on-off valve 4a. The on-off valve 4a is configured to open and close the refrigerant circuit 10. The on-off valve 4a is configured to be able to fully close the refrigerant circuit 10. The on-off valve 4a is, for example, a solenoid valve. The expansion device 4 and the on-off valve 4a may be integrally configured, or may be a motor-operated valve with a fully closing function. The expansion device 4 is preferably provided in the machine room 13, but may be provided in the storage room 11.
 蒸発器5は、膨張装置4により減圧された冷媒を蒸発させるように構成されている。本実施の形態では、蒸発器5は、膨張装置4と、圧縮機2とに接続されている。蒸発器5は、たとえば、複数のフィンと、複数のフィンを貫通する円管または扁平管の伝熱管とを有するフィンアンドチューブ型熱交換器である。 The evaporator 5 is configured to evaporate the refrigerant decompressed by the expansion device 4. In the present embodiment, the evaporator 5 is connected to the expansion device 4 and the compressor 2. The evaporator 5 is, for example, a fin-and-tube heat exchanger having a plurality of fins and a circular tube or a flat tube heat transfer tube that penetrates the plurality of fins.
 逆流防止装置6は、圧縮機2から蒸発器5に向けて冷媒が逆流することを防止するように構成されている。逆流防止装置6は、圧縮機2の上流側および下流側の少なくもいずれかに配置されている。本発明の実施の形態1では、逆流防止装置6は、冷媒回路10において圧縮機2の上流側に配置されている。つまり、逆流防止装置6は、冷媒回路10において圧縮機2の吸入側に配置されている。この場合、逆流防止装置6は、冷媒回路10において、圧縮機2と、蒸発器5との間に配置されている。 The backflow prevention device 6 is configured to prevent the backflow of the refrigerant from the compressor 2 toward the evaporator 5. The backflow prevention device 6 is arranged on at least one of the upstream side and the downstream side of the compressor 2. In Embodiment 1 of the present invention, the backflow prevention device 6 is arranged in the refrigerant circuit 10 on the upstream side of the compressor 2. That is, the backflow prevention device 6 is arranged on the suction side of the compressor 2 in the refrigerant circuit 10. In this case, the backflow prevention device 6 is arranged in the refrigerant circuit 10 between the compressor 2 and the evaporator 5.
 なお、逆流防止装置6は、冷媒回路10において圧縮機2の下流側に配置されていてもよい。つまり、逆流防止装置6は、冷媒回路10において圧縮機2の吐出側に配置されていてもよい。この場合、逆流防止装置6は、冷媒回路10において、圧縮機2と、凝縮器3との間に配置されている。 The backflow prevention device 6 may be arranged on the downstream side of the compressor 2 in the refrigerant circuit 10. That is, the backflow prevention device 6 may be arranged on the discharge side of the compressor 2 in the refrigerant circuit 10. In this case, the backflow prevention device 6 is arranged in the refrigerant circuit 10 between the compressor 2 and the condenser 3.
 逆流防止装置6は、たとえば、逆止弁である。この逆止弁は、蒸発器5から圧縮機2に向かう冷媒の流れを許容するとともに圧縮機2から蒸発器5に向かう冷媒の流れを遮断するように構成されている。 The check valve 6 is, for example, a check valve. The check valve is configured to allow the refrigerant flow from the evaporator 5 toward the compressor 2 and block the refrigerant flow from the compressor 2 toward the evaporator 5.
 また、逆流防止装置6は、たとえば、開閉弁であってもよい。この開閉弁は、蒸発器5から圧縮機2に向けて冷媒が流れるように冷媒回路10を開き、圧縮機2から蒸発器5に向けて冷媒が流れないように冷媒回路10を閉じるように構成されている。 The backflow prevention device 6 may be, for example, an on-off valve. This on-off valve is configured to open the refrigerant circuit 10 so that the refrigerant flows from the evaporator 5 toward the compressor 2 and close the refrigerant circuit 10 so that the refrigerant does not flow from the compressor 2 toward the evaporator 5. Has been done.
 凝縮器ファン7は、凝縮器3に付設されており、凝縮器3に対して熱交換流体としての空気を供給するように構成されている。凝縮器ファン7は、制御装置20からの指示に基づいて凝縮器ファン7の回転数が調整されることにより凝縮器3の周囲を流れる空気の量を調整することで空気と冷媒との間の熱交換量を調整するように構成されている。 The condenser fan 7 is attached to the condenser 3 and is configured to supply air as a heat exchange fluid to the condenser 3. The condenser fan 7 adjusts the amount of air flowing around the condenser 3 by adjusting the number of revolutions of the condenser fan 7 based on an instruction from the control device 20, and thus the condenser fan 7 is operated between the air and the refrigerant. It is configured to adjust the amount of heat exchange.
 蒸発器ファン8は、蒸発器5に付設されており、蒸発器5に対して熱交換流体としての空気を供給するように構成されている。蒸発器ファン8は、制御装置20からの指示に基づいて蒸発器ファン8の回転数が調整されることにより蒸発器5の周囲を流れる空気の量を調整することで空気と冷媒との間の熱交換量を調整するように構成されている。 The evaporator fan 8 is attached to the evaporator 5 and is configured to supply air as a heat exchange fluid to the evaporator 5. The evaporator fan 8 adjusts the amount of air flowing around the evaporator 5 by adjusting the number of revolutions of the evaporator fan 8 based on an instruction from the control device 20, and thereby the amount of air flowing between the air and the refrigerant is adjusted. It is configured to adjust the amount of heat exchange.
 制御装置20は、筐体1に収容されている。制御装置20は、演算、指示等を行って冷凍サイクル装置100の各手段、機器等を制御するように構成されている。制御装置20は、圧縮機2、膨張装置4、凝縮器ファン7、蒸発器ファン8などに電気的に接続されており、これらの動作を制御するように構成されている。 The control device 20 is housed in the housing 1. The control device 20 is configured to perform calculations, instructions, and the like to control each unit, device, and the like of the refrigeration cycle device 100. The control device 20 is electrically connected to the compressor 2, the expansion device 4, the condenser fan 7, the evaporator fan 8 and the like, and is configured to control the operations of these.
 本発明の実施の形態1に係る冷凍サイクル装置100では、同一の筐体1内に、圧縮機2と、凝縮器3と、膨張装置4と、蒸発器5と、逆流防止装置6と、凝縮器ファン7と、蒸発器ファン8と、制御装置20とが収容されている。つまり、本発明の実施の形態1に係る冷凍サイクル装置100は、内蔵型ショーケースである。 In the refrigeration cycle device 100 according to Embodiment 1 of the present invention, the compressor 2, the condenser 3, the expansion device 4, the evaporator 5, the backflow prevention device 6, and the condensing device are provided in the same housing 1. The container fan 7, the evaporator fan 8, and the control device 20 are housed. That is, the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a built-in showcase.
 筐体1は、天井部1aと、底部1bと、正面部1cと、背面部1dと、図示しない側面部とを含んでいる。天井部1aは底部1bと向かい合っている。天井部1aと底部1bとが互いに向かい合う方向が上下方向である。正面部1cは、背面部1dと向かい合っている。正面部1cと背面部1dとが互いに向かい合う方向が前後方向である。 The housing 1 includes a ceiling part 1a, a bottom part 1b, a front part 1c, a back part 1d, and a side part (not shown). The ceiling portion 1a faces the bottom portion 1b. The direction in which the ceiling portion 1a and the bottom portion 1b face each other is the vertical direction. The front part 1c faces the back part 1d. The front-back direction is the direction in which the front surface portion 1c and the rear surface portion 1d face each other.
 本発明の実施の形態1では、正面部1cは、開閉可能な扉1c1を含んでいる。筐体1は、正面部1cに開口OPが設けられている。開口OPは、貯蔵室11に連通するように設けられている。扉1c1は、開口OPを開閉するように構成されている。扉1c1が開かれることにより貯蔵室11が開放され、扉1c1が閉じられることにより貯蔵室11が閉鎖される。扉1c1が開かれた状態で貯蔵室11に商品等が出し入れされる。本発明の実施の形態1に係る冷凍サイクル装置100は、クローズドタイプショーケースである。本発明の実施の形態1に係る冷凍サイクル装置100は、より具体的には、リーチインショーケースである。 In the first embodiment of the present invention, the front portion 1c includes a door 1c1 that can be opened and closed. The housing 1 is provided with an opening OP on the front surface 1c. The opening OP is provided so as to communicate with the storage chamber 11. The door 1c1 is configured to open and close the opening OP. The storage chamber 11 is opened by opening the door 1c1, and the storage chamber 11 is closed by closing the door 1c1. Products and the like are put into and taken out of the storage chamber 11 with the door 1c1 opened. Refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a closed type showcase. More specifically, refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a reach-in showcase.
 また、筐体1は、貯蔵室11と、流路12と、機械室13と、隔壁14とを含んでいる。貯蔵室11は、商品等を冷蔵または冷凍するためのものである。貯蔵室11の温度は、たとえば冷蔵の場合には約0℃以上10℃以下であり、冷凍の場合にはたとえば-20℃以上-10℃以下である。貯蔵室11には、図示しない棚が配置されていてもよい。本発明の実施の形態1では、扉1c1と貯蔵室11の内壁11aとに囲まれた領域が貯蔵室11となる。 Further, the housing 1 includes a storage chamber 11, a flow path 12, a machine room 13, and a partition wall 14. The storage room 11 is for refrigerating or freezing a product or the like. The temperature of the storage chamber 11 is, for example, about 0° C. or higher and 10° C. or lower in the case of refrigeration, and is −20° C. or higher and −10° C. or lower in the case of freezing. A shelf (not shown) may be arranged in the storage chamber 11. In the first embodiment of the present invention, the region surrounded by the door 1c1 and the inner wall 11a of the storage chamber 11 is the storage chamber 11.
 貯蔵室11の内壁11aにより、貯蔵室11と、流路12とは隔てられている。貯蔵室11の内壁11aと天井部1aとの間、内壁11aと背面部1dとの間、内壁11aと隔壁14との間の各領域が流路12となる。 The storage chamber 11 and the flow path 12 are separated by the inner wall 11 a of the storage chamber 11. The regions between the inner wall 11a of the storage chamber 11 and the ceiling portion 1a, between the inner wall 11a and the back surface portion 1d, and between the inner wall 11a and the partition wall 14 serve as the flow path 12.
 流路12は、貯蔵室11に連通している。具体的には、流路12は、貯蔵室11の内壁11aに設けられた吹出口11bおよび吸込口11cを通じて貯蔵室11に連通している。本発明の実施の形態1では、吹出口11bは、貯蔵室11の上端に配置されており、吸込口11cは、貯蔵室11の下端に配置されている。 The flow path 12 communicates with the storage room 11. Specifically, the flow path 12 communicates with the storage chamber 11 through the air outlet 11b and the suction port 11c provided on the inner wall 11a of the storage chamber 11. In Embodiment 1 of the present invention, the air outlet 11b is arranged at the upper end of the storage chamber 11, and the suction port 11c is arranged at the lower end of the storage chamber 11.
 流路12に、蒸発器5および蒸発器ファン8が収容されている。蒸発器5は、圧縮機2、凝縮器3、膨張装置4および逆流防止装置6よりも上方に位置している。本発明の実施の形態1では、流路12に、膨張装置4が収容されている。膨張装置4は、凝縮器3よりも上方に位置している。膨張装置4は、冷媒が閉じ込められた凝縮器3よりも重力方向で上方に配置されている。膨張装置4は、蒸発器5の中央よりも下方に位置している。膨張装置4は、蒸発器5の中心よりも重力方向で下側に配置されている。 The evaporator 5 and the evaporator fan 8 are housed in the flow path 12. The evaporator 5 is located above the compressor 2, the condenser 3, the expansion device 4, and the backflow prevention device 6. In the first embodiment of the present invention, the expansion device 4 is housed in the flow path 12. The expansion device 4 is located above the condenser 3. The expansion device 4 is arranged above the condenser 3 in which the refrigerant is confined in the gravity direction. The expansion device 4 is located below the center of the evaporator 5. The expansion device 4 is arranged below the center of the evaporator 5 in the gravity direction.
 流路12は、機械室13と隔てられている。具体的には、流路12は、隔壁14により機械室13と隔てられている。つまり、流路12と機械室13とは、隔壁14により互いに分離されている。流路12は、機械室13よりも上方に配置されている。機械室13に、圧縮機2、凝縮器3、逆流防止装置6、凝縮器ファン7および制御装置20が収容されている。 The flow path 12 is separated from the machine room 13. Specifically, the flow path 12 is separated from the machine room 13 by a partition wall 14. That is, the flow path 12 and the machine room 13 are separated from each other by the partition wall 14. The flow path 12 is arranged above the machine room 13. A compressor 2, a condenser 3, a backflow prevention device 6, a condenser fan 7, and a control device 20 are housed in the machine room 13.
 冷媒回路10は、圧縮機2、凝縮器3、膨張装置4、蒸発器5の順に冷媒が流れる冷却運転を実行可能に構成されている。また、冷媒回路10は、蒸発器5への着霜を除去するデフロスト(除霜)運転を実行可能に構成されている。さらに、冷媒回路10は、逆流防止装置6により圧縮機2から蒸発器5に向けて冷媒が逆流することが防止され、かつ開閉弁4aにより冷媒回路10が閉止された状態で圧縮機2が運転されるポンプダウン運転を実行可能に構成されている。 The refrigerant circuit 10 is configured to be able to execute a cooling operation in which the refrigerant flows in the order of the compressor 2, the condenser 3, the expansion device 4, and the evaporator 5. Further, the refrigerant circuit 10 is configured to be able to perform a defrost (defrost) operation for removing frost formation on the evaporator 5. Further, in the refrigerant circuit 10, the backflow prevention device 6 prevents the refrigerant from flowing back from the compressor 2 toward the evaporator 5, and the compressor 2 operates with the on-off valve 4a closing the refrigerant circuit 10. It is configured to be able to execute the pump down operation.
 図1および図2を参照して、本発明の実施の形態1における制御装置20について詳しく説明する。制御装置20は、制御部21と、圧縮機駆動部22と、膨張装置駆動部23と、凝縮器ファン駆動部24と、蒸発器ファン駆動部25と、タイマー26と、記憶部27とを備えている。 The control device 20 according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. The control device 20 includes a control unit 21, a compressor drive unit 22, an expansion device drive unit 23, a condenser fan drive unit 24, an evaporator fan drive unit 25, a timer 26, and a storage unit 27. ing.
 制御部21は、タイマー26、記憶部27、圧力測定装置(図示せず)および温度測定装置(図示せず)などからの信号に基づいて、圧縮機駆動部22、膨張装置駆動部23、凝縮器ファン駆動部24および蒸発器ファン駆動部25などを制御するように構成されている。 The control unit 21 controls the compressor drive unit 22, the expansion device drive unit 23, and the condensing unit based on signals from the timer 26, the storage unit 27, the pressure measuring device (not shown), the temperature measuring device (not shown), and the like. The controller fan drive unit 24 and the evaporator fan drive unit 25 are configured to be controlled.
 圧縮機駆動部22は、制御部21からの指示に基づいて圧縮機2を駆動させるように構成されている。具体的には、圧縮機駆動部22は、圧縮機2のモータ(図示せず)に流す交流電流の周波数を制御することにより圧縮機2のモータの回転数を制御するように構成されている。 The compressor drive unit 22 is configured to drive the compressor 2 based on an instruction from the control unit 21. Specifically, the compressor drive unit 22 is configured to control the rotation speed of the motor of the compressor 2 by controlling the frequency of the alternating current flowing through the motor (not shown) of the compressor 2. ..
 膨張装置駆動部23は、制御部21からの指示に基づいて膨張装置4を駆動させるように構成されている。具体的には、膨張装置駆動部23は、膨張装置4に取り付けられたモータ(図示せず)などの駆動源を制御することにより膨張装置4の開閉弁4aの開度を制御するように構成されている。 The expansion device drive unit 23 is configured to drive the expansion device 4 based on an instruction from the control unit 21. Specifically, the expansion device drive unit 23 is configured to control the opening degree of the on-off valve 4a of the expansion device 4 by controlling a drive source such as a motor (not shown) attached to the expansion device 4. Has been done.
 凝縮器ファン駆動部24は、制御部21からの指示に基づいて凝縮器ファン7を駆動させるように構成されている。具体的には、凝縮器ファン7に取り付けられたモータ(図示せず)などの駆動源を制御することにより凝縮器ファン7の回転数を制御するように構成されている。 The condenser fan drive unit 24 is configured to drive the condenser fan 7 based on an instruction from the control unit 21. Specifically, the rotation speed of the condenser fan 7 is controlled by controlling a drive source such as a motor (not shown) attached to the condenser fan 7.
 蒸発器ファン駆動部25は、制御部21からの指示に基づいて蒸発器ファン8を駆動させるように構成されている。具体的には、蒸発器ファン8に取り付けられたモータ(図示せず)などの駆動源を制御することにより蒸発器ファン8の回転数を制御するように構成されている。 The evaporator fan drive unit 25 is configured to drive the evaporator fan 8 based on an instruction from the control unit 21. Specifically, the rotation speed of the evaporator fan 8 is controlled by controlling a drive source such as a motor (not shown) attached to the evaporator fan 8.
 タイマー26は、時間を測定し、時間に基づく信号を制御部21に送信するように構成されている。記憶部27は、タイマー26、圧力測定装置(図示せず)および温度測定装置(図示せず)等からの信号を記憶するように構成されている。 The timer 26 is configured to measure time and send a signal based on the time to the control unit 21. The storage unit 27 is configured to store signals from the timer 26, a pressure measuring device (not shown), a temperature measuring device (not shown), and the like.
 圧力測定装置(図示せず)は、冷媒回路10に取り付けられており、冷媒の圧力を測定し圧力に基づく信号を制御部21に送信するように構成されている。温度測定装置(図示せず)は、冷媒回路10に取り付けられており、冷媒および空気の温度を測定し、温度に基づく信号を制御部21に送信するように構成されている。 A pressure measuring device (not shown) is attached to the refrigerant circuit 10, and is configured to measure the pressure of the refrigerant and send a signal based on the pressure to the control unit 21. The temperature measuring device (not shown) is attached to the refrigerant circuit 10, and is configured to measure the temperatures of the refrigerant and the air and send a signal based on the temperature to the control unit 21.
 制御装置20は、冷媒回路10を流れる冷媒に基づいて冷媒回路10から漏洩した冷媒の冷媒漏洩量を計算し、かつ冷媒漏洩量が貯蔵室11の庫内容積に冷媒の可燃域形成限界濃度を乗じた計算値を超える前に冷媒回路10にポンプダウン運転を実行させるように構成されている。 The control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing through the refrigerant circuit 10, and the refrigerant leakage amount indicates the flammable region formation limit concentration of the refrigerant in the internal volume of the storage chamber 11. The refrigerant circuit 10 is configured to execute the pump-down operation before the multiplied calculated value is exceeded.
 制御装置20は、冷媒回路10に封入された初期冷媒封入量と冷媒回路10を流れる冷媒に基づいて計算された冷媒回路内冷媒量との差から冷媒漏洩量を計算し、かつ冷媒漏洩量が計算値に許容係数を乗じた許容値以上になると警報を出力するように構成されている。 The control device 20 calculates the refrigerant leakage amount from the difference between the initial refrigerant charging amount charged in the refrigerant circuit 10 and the refrigerant amount in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount is An alarm is output when the calculated value is equal to or more than the allowable value obtained by multiplying the allowable coefficient.
 制御装置20は、冷媒回路10に封入された初期冷媒封入量と冷媒回路10を流れる冷媒に基づいて計算された冷媒回路内冷媒量との差から冷媒漏洩量を計算し、かつ冷媒漏洩量が計算値に危険係数を乗じた危険値以上になると異常を出力するように構成されている。 The control device 20 calculates the refrigerant leakage amount from the difference between the initial refrigerant charging amount charged in the refrigerant circuit 10 and the refrigerant amount in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount is It is configured to output an abnormality when the calculated value is equal to or more than the dangerous value obtained by multiplying the dangerous coefficient.
 次に、本発明の実施の形態1に係る冷凍サイクル装置100の運転について説明する。 Next, the operation of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described.
 まず、図1および図2を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の冷却運転について説明する。 First, the cooling operation of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2.
 図1に示される冷媒回路10では、冷却運転において、圧縮機2、凝縮器3、膨張装置4、蒸発器5、逆流防止装置6の順に冷媒が循環する。この冷却運転においては、膨張装置4は、制御装置20の制御部21からの指示に基づいて膨張装置4に取り付けられたモータなどの駆動源が制御されることにより開かれる。これにより、膨張装置4に含まれる開閉弁4aにより冷媒回路10が開かれる。 In the refrigerant circuit 10 shown in FIG. 1, in the cooling operation, the refrigerant circulates in the order of the compressor 2, the condenser 3, the expansion device 4, the evaporator 5, and the backflow prevention device 6. In this cooling operation, the expansion device 4 is opened by controlling a drive source such as a motor attached to the expansion device 4 based on an instruction from the control unit 21 of the control device 20. As a result, the on-off valve 4a included in the expansion device 4 opens the refrigerant circuit 10.
 冷媒は圧縮機2により圧縮される。圧縮機2により圧縮された冷媒は、高温高圧のガス冷媒となり圧縮機2から吐出される。圧縮機2から吐出された高温高圧のガス冷媒は、凝縮器3へ流入する。凝縮器3へ流入した高温高圧のガス冷媒は、凝縮器3において凝縮器ファン7によって送風された空気との間で熱交換が行われることにより凝縮して低温高圧の液冷媒となる。低温高圧の液冷媒は、膨張装置4に流入する。膨張装置4に流入した低温高圧の液冷媒は、膨張装置4において膨張されることにより減圧されて低温低圧の気液二相冷媒となる。 The refrigerant is compressed by the compressor 2. The refrigerant compressed by the compressor 2 becomes a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the condenser 3. The high-temperature and high-pressure gas refrigerant flowing into the condenser 3 is condensed by heat exchange with the air blown by the condenser fan 7 in the condenser 3 to become a low-temperature and high-pressure liquid refrigerant. The low-temperature high-pressure liquid refrigerant flows into the expansion device 4. The low-temperature high-pressure liquid refrigerant that has flowed into the expansion device 4 is expanded in the expansion device 4 and is decompressed to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
 低温低圧の気液二相冷媒は、蒸発器5へ流入する。蒸発器5へ流入した低温低圧の気液二相冷媒は、蒸発器5において蒸発器ファン8によって送風された空気との間で熱交換が行われることにより蒸発して低温低圧のガス冷媒となる。 The low-temperature low-pressure gas-liquid two-phase refrigerant flows into the evaporator 5. The low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 5 evaporates due to heat exchange with the air blown by the evaporator fan 8 in the evaporator 5 to become a low-temperature low-pressure gas refrigerant. ..
 蒸発器5において気液二相冷媒と熱交換されることにより冷却された空気は、蒸発器ファン8により空気の吹出口11bから貯蔵室11に供給される。この冷却された空気により貯蔵室11に貯蔵された食品等が冷蔵または冷凍される。吹出口11bから貯蔵室11に供給された空気は、吸込口11cから流路12に送られる。 The air cooled by heat exchange with the gas-liquid two-phase refrigerant in the evaporator 5 is supplied from the air outlet 11b to the storage chamber 11 by the evaporator fan 8. The cooled air chills or freezes the food or the like stored in the storage chamber 11. The air supplied to the storage chamber 11 from the air outlet 11b is sent to the flow path 12 from the suction port 11c.
 低温低圧のガス冷媒は、逆流防止装置6を経由して圧縮機2に流入する。圧縮機2に流入した低温低圧のガス冷媒は圧縮されて吐出される。このようにして、冷媒は相変化しながら冷媒回路10を循環する。 The low-temperature low-pressure gas refrigerant flows into the compressor 2 via the backflow prevention device 6. The low-temperature low-pressure gas refrigerant flowing into the compressor 2 is compressed and discharged. In this way, the refrigerant circulates in the refrigerant circuit 10 while changing its phase.
 続いて、図1および図2を参照して、本発明の実施の形態1に係る冷凍サイクル装置100のデフロスト(除霜)運転について説明する。 Subsequently, the defrosting operation of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2.
 蒸発器5においては、冷媒の温度が低いため、蒸発器5を通過する空気の温度が露点以下となることにより、蒸発器5に霜が着くことがある。この蒸発器5への着霜が発生すると、この着霜を除くためにデフロスト(除霜)運転が行われる。本発明の実施の形態1に係る冷凍サイクル装置100におけるデフロスト運転は、いわゆるオフサイクル運転である。つまり、圧縮機2の駆動が停止された状態で、蒸発器ファン8から送風された空気により蒸発器5に着いた霜が温められる。これにより、蒸発器5に着いた霜は融かされて蒸発器5から除去される。 In the evaporator 5, since the temperature of the refrigerant is low, the temperature of the air passing through the evaporator 5 may be below the dew point, so that the evaporator 5 may be frosted. When frost is formed on the evaporator 5, a defrost operation is performed to remove the frost. The defrost operation in refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a so-called off-cycle operation. That is, the frost on the evaporator 5 is warmed by the air blown from the evaporator fan 8 while the drive of the compressor 2 is stopped. As a result, the frost on the evaporator 5 is melted and removed from the evaporator 5.
 続いて、図2および図3を参照して、本発明の実施の形態1に係る冷凍サイクル装置100のポンプダウン運転について説明する。 Next, the pump down operation of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIGS. 2 and 3.
 ポンプダウン運転は、冷媒回路10において凝縮器3などに冷媒を閉じ込めるためのものである。図3では、ポンプダウン運転において冷媒が閉じ込められる配管が太字で示されている。図3に示される冷媒回路10では、ポンプダウン運転においては、膨張装置4は、制御装置20の制御部21からの指示に基づいて膨張装置4に取付けられたモータなどの駆動源が制御されることにより閉じられる。これにより、膨張装置4に含まれる開閉弁4aにより冷媒回路10が閉じられる。 The pump down operation is for confining the refrigerant in the condenser 3 or the like in the refrigerant circuit 10. In FIG. 3, the pipe in which the refrigerant is confined during the pump-down operation is shown in bold. In the refrigerant circuit 10 shown in FIG. 3, in the pump down operation, the expansion device 4 controls the drive source such as a motor attached to the expansion device 4 based on an instruction from the control unit 21 of the control device 20. To be closed. As a result, the refrigerant circuit 10 is closed by the opening/closing valve 4a included in the expansion device 4.
 この状態で、圧縮機2が駆動されることにより、蒸発器5から逆流防止装置6を経由して圧縮機2および凝縮器3に冷媒が流入する。このとき逆流防止装置6により圧縮機2から蒸発器5に冷媒が逆流しない。他方、膨張装置4に含まれる開閉弁4aにより冷媒回路10が閉じられることにより、膨張装置4から蒸発器5に冷媒は流入しない。したがって、逆流防止装置6から圧縮機2および凝縮器3を介して膨張装置4に至る冷媒回路10の間に冷媒が閉じ込められる。 In this state, when the compressor 2 is driven, the refrigerant flows from the evaporator 5 into the compressor 2 and the condenser 3 via the backflow prevention device 6. At this time, the backflow prevention device 6 prevents the refrigerant from backflowing from the compressor 2 to the evaporator 5. On the other hand, the refrigerant circuit 10 is closed by the opening/closing valve 4a included in the expansion device 4, so that the refrigerant does not flow from the expansion device 4 into the evaporator 5. Therefore, the refrigerant is trapped in the refrigerant circuit 10 that reaches the expansion device 4 from the backflow prevention device 6 via the compressor 2 and the condenser 3.
 また、ポンプダウン運転が終了した後に圧縮機2の駆動が停止されてもよい。この圧縮機2の駆動が停止された後も膨張装置4に含まれる開閉弁4aにより冷媒回路10が閉じられてもよい。これにより、圧縮機2の駆動が停止された後も膨張装置4から蒸発器5に冷媒が流入しない。さらに、逆流防止装置6により圧縮機2から蒸発器5に冷媒が逆流しない。したがって、圧縮機2の駆動が停止された後も逆流防止装置6から圧縮機2および凝縮器3を介して膨張装置4に至る冷媒回路10の間に冷媒が閉じ込められる。 Further, the driving of the compressor 2 may be stopped after the pump down operation is completed. The refrigerant circuit 10 may be closed by the opening/closing valve 4a included in the expansion device 4 even after the driving of the compressor 2 is stopped. As a result, the refrigerant does not flow into the evaporator 5 from the expansion device 4 even after the driving of the compressor 2 is stopped. Further, the backflow prevention device 6 prevents the refrigerant from backflowing from the compressor 2 to the evaporator 5. Therefore, even after the driving of the compressor 2 is stopped, the refrigerant is confined in the refrigerant circuit 10 from the backflow prevention device 6 to the expansion device 4 via the compressor 2 and the condenser 3.
 図1~図5を参照して、本発明の実施の形態1に係る冷凍サイクル装置100においては、次のように冷媒の漏洩が発生したか否かが判断される。まずは、デフロスト運転が終了した後などの外乱要素の無い状態で判断がスタートされる(S1)。 With reference to FIGS. 1 to 5, in refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, it is determined whether or not refrigerant leakage has occurred as follows. First, the determination is started in a state where there is no disturbance element such as after the defrost operation is completed (S1).
 凝縮器ファン7の出力が100%(凝縮器ファン出力=100%)とされ、蒸発器ファン8の出力が100%(蒸発器ファン出力=100%)とされ、圧縮機2の周波数が60Hz(周波数=60Hz)とされる(S2)。続いて、5秒おきに凝縮温度CT(i)が計測され、直近の3分間のデータが記憶される(S3)。凝縮温度CT(i)は、温度測定装置(図示せず)により計測された凝縮器3の内部での冷媒の温度である。直近の3分間は、タイマー26により計測される。計測された凝縮温度CT(i)のデータは、記憶部27に記憶される。 The output of the condenser fan 7 is 100% (condenser fan output=100%), the output of the evaporator fan 8 is 100% (evaporator fan output=100%), and the frequency of the compressor 2 is 60 Hz( Frequency=60 Hz) (S2). Subsequently, the condensation temperature CT(i) is measured every 5 seconds, and the data for the latest 3 minutes are stored (S3). The condensation temperature CT(i) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown). The most recent 3 minutes are measured by the timer 26. The data of the measured condensation temperature CT(i) is stored in the storage unit 27.
 直近3分間に計測された凝縮温度CT(i)のデータにおける凝縮温度CT(i)の最大値CT(i)MAXと凝縮温度CT(i)の最小値CT(i)MINとの温度差が0.5ケルビン(K)以下か否かが判定される(S4)。この判定は、タイマー26および記憶部27からの信号に基づいて制御部21により行われる。これにより、高圧が安定したか否かが判定される。上記温度差が0.5Kを超える場合には、再度、上記温度差が0.5K以下となるまで判定される(S4)。 The temperature difference between the maximum value CT(i)MAX of the condensation temperature CT(i) and the minimum value CT(i)MIN of the condensation temperature CT(i) in the data of the condensation temperature CT(i) measured in the last 3 minutes is It is determined whether it is 0.5 Kelvin (K) or less (S4). This determination is made by the control unit 21 based on signals from the timer 26 and the storage unit 27. As a result, it is determined whether the high pressure is stable. When the temperature difference exceeds 0.5K, determination is performed again until the temperature difference becomes 0.5K or less (S4).
 上記温度差が0.5K以下の場合には、開閉弁4aの開度および圧縮機2の周波数が固定(開閉弁開度・周波数固定)されたまま凝縮器ファン7の出力(凝縮器ファン出力)が5%下げられる(S5)。続いて、蒸発器5の出口での冷媒の過熱度(蒸発器出口SH)が4.0K以下か否かが判定される(S6)。蒸発器5の出口での冷媒の過熱度は、温度測定装置(図示せず)により計測された蒸発器5の出口での冷媒の過熱度である。この判定は、温度測定装置(図示せず)からの信号に基づいて制御部21により行われる。上記過熱度が4.0Kを超える場合には、再度、上記過熱度が4.0K以下となるまで判定される(S6)。 When the temperature difference is 0.5 K or less, the output of the condenser fan 7 (condenser fan output with the opening/closing valve 4a and the frequency of the compressor 2 fixed (opening/closing valve opening/frequency fixed) ) Is reduced by 5% (S5). Subsequently, it is determined whether or not the degree of superheat of the refrigerant at the outlet of the evaporator 5 (evaporator outlet SH) is 4.0 K or less (S6). The superheat degree of the refrigerant at the outlet of the evaporator 5 is the superheat degree of the refrigerant at the outlet of the evaporator 5 measured by a temperature measuring device (not shown). This determination is performed by the controller 21 based on a signal from a temperature measuring device (not shown). When the degree of superheat exceeds 4.0K, it is determined again until the degree of superheat becomes 4.0K or less (S6).
 上記過熱度が4.0K以下の場合には、現在の凝縮温度(CT1)および現在の蒸発温度(ET1)が計測される(S7)。現在の凝縮温度(CT1)は、温度測定装置(図示せず)により計測された凝縮器3の内部での冷媒の温度である。現在の蒸発器温度(ET1)は、温度測定装置(図示せず)により計測された蒸発器5の内部での冷媒の温度である。 When the degree of superheat is 4.0 K or less, the current condensation temperature (CT1) and current evaporation temperature (ET1) are measured (S7). The current condensation temperature (CT1) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown). The current evaporator temperature (ET1) is the temperature of the refrigerant inside the evaporator 5 measured by a temperature measuring device (not shown).
 続いて、記憶部27に事前に記憶されたCT0、s、k、ET0、ss、kkが読み出される(S8)。CT0は定格条件で安定したときの高圧飽和温度である。sはCT0時の高圧側平均湿り度である。kはCT0時の高圧側平均渇き度(=1-s)である。ET0は定格条件で安定したときの低圧飽和温度である。ssはET0時の低圧側平均湿り度である。kkはET0時の低圧側平均渇き度(=1-ss)である。 Subsequently, CT0, s, k, ET0, ss, kk stored in advance in the storage unit 27 are read (S8). CT0 is the high-pressure saturation temperature when stable under rated conditions. s is the average high-pressure side wetness at CT0. k is the high-pressure-side average dryness at CT0 (=1-s). ET0 is the low pressure saturation temperature when stable under rated conditions. ss is the low-pressure side average wetness at ET0. kk is the low-pressure side average dryness at ET0 (=1-ss).
 続いて、次の式(1)~(3)に基づいて、冷媒量Wが計算される(S9)。この計算は、記憶部27のからの信号に基づいて制御部21で行われる。凝縮器3の冷媒量W1は、式(1)で計算される。液管の冷媒量W2は、式(2)で計算される。液管は、膨張装置4を介して凝縮器3と蒸発器5とをつなぐ配管である。式(2)における液管内容積は記憶部27に事前に記憶されている。蒸発器5の冷媒量W3は、式(3)で計算される。以下において、ρLは飽和液密度(kg/m)であり、ρGは飽和ガス密度(kg/m)である。 Then, the refrigerant amount W is calculated based on the following equations (1) to (3) (S9). This calculation is performed by the control unit 21 based on the signal from the storage unit 27. The refrigerant amount W1 of the condenser 3 is calculated by the equation (1). The refrigerant amount W2 in the liquid pipe is calculated by the equation (2). The liquid pipe is a pipe that connects the condenser 3 and the evaporator 5 via the expansion device 4. The liquid pipe internal volume in Expression (2) is stored in the storage unit 27 in advance. The refrigerant amount W3 of the evaporator 5 is calculated by the equation (3). In the following, ρL is the saturated liquid density (kg/m 3 ) and ρG is the saturated gas density (kg/m 3 ).
 W1=ρL(CT1)×s+ρG(CT1)×k (1) W1=ρL(CT1)×s+ρG(CT1)×k (1)
 W2=ρL(CT1)×液管内容積 (2) W2 = ρL (CT1) x internal volume of liquid tube (2)
 W3=ρL(ET1)×ss+ρG(ET1)×kk (3) W3=ρL(ET1)×ss+ρG(ET1)×kk (3)
 次の式(4)に基づいて、冷媒漏洩量が許容値以上か否かが判定される(S10)。この判定は、記憶部27からの信号に基づいて制御部21により行われる。以下において、W0は初期封入冷媒量に冷媒分布係数を乗じたもの(W0=初期封入冷媒量×冷媒分布係数)である。冷媒分布係数は、定格条件で運転したときの凝縮器3、液管、蒸発器5内の冷媒量を全冷媒量で除したもの(冷媒分布数=定格条件で運転した時の凝縮器・液管・蒸発器内冷媒量/全冷媒量)である。なお、凝縮器3、液管、蒸発器5の冷媒量は、運転中の冷媒分布の約9割を占める。 Based on the following equation (4), it is determined whether the refrigerant leakage amount is equal to or more than the allowable value (S10). This determination is performed by the control unit 21 based on the signal from the storage unit 27. In the following, W0 is obtained by multiplying the amount of initially filled refrigerant by the refrigerant distribution coefficient (W0=amount of initially filled refrigerant×refrigerant distribution coefficient). The refrigerant distribution coefficient is obtained by dividing the amount of refrigerant in the condenser 3, liquid pipe, and evaporator 5 when operating under rated conditions by the total amount of refrigerant (number of refrigerant distribution = condenser/liquid when operating under rated conditions). The amount of refrigerant in the pipe/evaporator/total amount of refrigerant). The amount of refrigerant in the condenser 3, the liquid pipe, and the evaporator 5 accounts for about 90% of the refrigerant distribution during operation.
 冷媒漏洩量は、W0-(W1+W2+W3)で計算される。許容値は、可燃域形成限界濃度(LFL)(kg/m)と、庫内容積と、許容係数0.1とを乗じたものである。可燃域形成限界濃度(LFL)と、庫内容積と、許容係数0.1とは、事前に記憶部27に記憶されている。 The refrigerant leakage amount is calculated by W0-(W1+W2+W3). The allowable value is obtained by multiplying the flammable region formation limit concentration (LFL) (kg/m 3 ), the internal volume, and the allowable coefficient 0.1. The flammable zone formation limit concentration (LFL), the internal volume, and the tolerance coefficient 0.1 are stored in the storage unit 27 in advance.
 W0-(W1+W2+W3)≧0.1×LFL×庫内容積 (4) W0-(W1+W2+W3)≧0.1×LFL×internal volume (4)
 なお、冷媒としてのプロパン(R290)の可燃域形成限界濃度(LFL)は、0.038kg/mである。 The flammable region formation limit concentration (LFL) of propane (R290) as a refrigerant is 0.038 kg/m 3 .
 冷媒漏洩量が許容値未満の場合には、冷媒漏洩量が許容値以上となるまで判定される(S10)。冷媒漏洩量が許容値以上の場合には、結合子Aを介して、冷媒漏れ警報が出力される(S11)。この場合には冷却運転が維持される。冷媒漏れ警報は、表示装置またはスピーカーなどの警報装置(図示せず)により出力される。 If the refrigerant leakage amount is less than the allowable value, determination is made until the refrigerant leakage amount becomes equal to or more than the allowable value (S10). When the refrigerant leakage amount is equal to or more than the allowable value, the refrigerant leakage alarm is output via the connector A (S11). In this case, the cooling operation is maintained. The refrigerant leak alarm is output by an alarm device (not shown) such as a display device or a speaker.
 続いて、次の式(5)に基づいて、冷媒漏洩量が危険値以上か否かが判定される(S12)。この判定は、記憶部27からの信号に基づいて制御部21により行われる。危険値は、可燃域形成限界濃度(LFL)と、庫内容積と、危険係数0.25とを乗じたものである。可燃域形成限界濃度(LFL)と、庫内容積と、危険係数0.25とは、事前に記憶部27に記憶されている。 Subsequently, based on the following equation (5), it is determined whether the refrigerant leakage amount is equal to or more than the dangerous value (S12). This determination is performed by the control unit 21 based on the signal from the storage unit 27. The dangerous value is obtained by multiplying the flammable zone formation limit concentration (LFL), the internal volume, and the risk factor 0.25. The flammable zone formation limit concentration (LFL), the internal volume, and the risk factor 0.25 are stored in the storage unit 27 in advance.
 W0-(W1+W2+W3)≧0.25×LFL×庫内容積 (5) W0-(W1+W2+W3)≧0.25×LFL×internal volume (5)
 冷媒漏洩量が危険値未満の場合には、冷媒漏洩量が危険値以上となるまで判定される(S12)。冷媒漏洩量が危険値以上の場合には、冷媒漏れ異常が出力される(S13)。これにより、冷却運転が停止され、ポンプダウン運転が行われる。また、冷媒漏れ異常は、表示装置またはスピーカーなどの警報装置(図示せず)により出力される。冷媒漏れ異常が出力されると、冷媒の漏洩が発生したか否かの判断がストップされる(S14)。 If the refrigerant leakage amount is less than the dangerous value, it is judged until the refrigerant leakage amount becomes the dangerous value or more (S12). When the refrigerant leakage amount is equal to or more than the dangerous value, the refrigerant leakage abnormality is output (S13). As a result, the cooling operation is stopped and the pump down operation is performed. The refrigerant leakage abnormality is output by an alarm device (not shown) such as a display device or a speaker. When the refrigerant leakage abnormality is output, the determination as to whether or not refrigerant leakage has occurred is stopped (S14).
 なお、冷媒漏洩検知状態が解除されるまで、ポンプダウン運転は継続される。また、凝縮器ファン7は、ポンプダウン運転が終了した後も継続して運転されてもよい。また、冷媒漏洩検知の有無に関わらず、筐体停止時には、ポンプダウン運転を行い冷媒を閉じ込めた後に圧縮機やファンなどを停止させる制御としてもよい。これにより、筐体停止時には常に蒸発器以外の冷媒回路に冷媒を閉じ込めておくことが可能となる。 Note that the pump down operation is continued until the refrigerant leakage detection state is released. Further, the condenser fan 7 may be continuously operated even after the pump down operation is completed. Further, regardless of whether or not the refrigerant leakage is detected, the control may be performed such that when the housing is stopped, the pump down operation is performed to confine the refrigerant and then the compressor, the fan, and the like are stopped. This makes it possible to always keep the refrigerant in the refrigerant circuit other than the evaporator when the housing is stopped.
 次に、本実施の形態に係る冷凍サイクル装置100の作用効果について説明する。 Next, operation effects of the refrigeration cycle apparatus 100 according to the present embodiment will be described.
 図1および図3を参照して、本実施の形態に係る冷凍サイクル装置100によれば、冷媒回路10は、逆流防止装置6により圧縮機2から蒸発器5に向けて冷媒が逆流することが防止され、かつ開閉弁4aにより冷媒回路10が閉止された状態で圧縮機2が運転されるポンプダウン運転を実行可能に構成されている。このため、逆流防止装置6から凝縮器3を介して開閉弁4aに至る冷媒回路10に冷媒を閉じ込めることができる。したがって、蒸発器5から冷媒が漏洩することを抑制することができる。圧縮機2および凝縮器3は、蒸発器5よりも下方に位置している。このため、凝縮器3に閉じ込められた冷媒は、貯蔵室11の庫内に流入し難い。これにより、空気よりも重い比重を有する冷媒Rが貯蔵室11の庫内に滞留することを抑制することができる。冷媒の比重はなるべく大きい方が効果が大きく、比重が1.5以上であると更に効果がある。 With reference to FIG. 1 and FIG. 3, according to refrigeration cycle apparatus 100 in accordance with the present embodiment, refrigerant circuit 10 can cause refrigerant to flow backward from compressor 2 to evaporator 5 by backflow prevention device 6. A pump down operation is performed in which the compressor 2 is operated while being prevented and the refrigerant circuit 10 is closed by the opening/closing valve 4a. For this reason, the refrigerant can be confined in the refrigerant circuit 10 from the backflow prevention device 6 to the on-off valve 4a via the condenser 3. Therefore, it is possible to prevent the refrigerant from leaking from the evaporator 5. The compressor 2 and the condenser 3 are located below the evaporator 5. For this reason, the refrigerant trapped in the condenser 3 is unlikely to flow into the storage chamber 11. As a result, the refrigerant R having a specific gravity heavier than air can be prevented from staying in the storage chamber 11. The greater the specific gravity of the refrigerant, the greater the effect, and the greater the specific gravity, the more effective it is.
 本実施の形態に係る冷凍サイクル装置100によれば、膨張装置4は、凝縮器3よりも上方に位置している。このため、凝縮器3に閉じ込められた冷媒は、膨張装置4を超えて貯蔵室11の庫内に流入し難い。したがって、漏洩した冷媒Rが貯蔵室11の庫内に滞留することを抑制することができる。冷媒の比重はなるべく大きい方が効果が大きく、比重が1.5以上であると更に効果がある。 According to the refrigeration cycle device 100 according to the present embodiment, the expansion device 4 is located above the condenser 3. Therefore, the refrigerant trapped in the condenser 3 does not easily flow into the storage chamber 11 beyond the expansion device 4. Therefore, it is possible to prevent the leaked refrigerant R from staying in the storage chamber 11. The greater the specific gravity of the refrigerant, the greater the effect, and the greater the specific gravity, the more effective it is.
 本実施の形態に係る冷凍サイクル装置100によれば、膨張装置4は、蒸発器5の中央よりも下方に位置している。このため、冷媒回路10に閉じ込められた冷媒は、膨張装置4から蒸発器5に流入し難い。したがって、漏洩した冷媒Rが貯蔵室11の庫内に滞留することを抑制することができる。 According to the refrigeration cycle apparatus 100 according to the present embodiment, the expansion device 4 is located below the center of the evaporator 5. Therefore, the refrigerant trapped in the refrigerant circuit 10 is unlikely to flow from the expansion device 4 into the evaporator 5. Therefore, it is possible to prevent the leaked refrigerant R from staying in the storage chamber 11.
 本実施の形態に係る冷凍サイクル装置100によれば、流路12は、機械室13と隔てられ、機械室13よりも上方に配置されている。このため、漏洩した冷媒Rが流路12から機械室13に流入することを抑制することができる。 According to the refrigeration cycle apparatus 100 according to the present embodiment, the flow path 12 is separated from the machine room 13 and arranged above the machine room 13. Therefore, the leaked refrigerant R can be suppressed from flowing into the machine chamber 13 from the flow path 12.
 本実施の形態に係る冷凍サイクル装置100によれば、制御装置20は、冷媒回路10を流れる冷媒に基づいて冷媒回路10から漏洩した冷媒の冷媒漏洩量を計算し、かつ冷媒漏洩量が貯蔵室11の庫内容積に冷媒の可燃域形成限界濃度を乗じた計算値を超える前に冷媒回路10にポンプダウン運転を実行させるように構成されている。このため、冷媒が漏洩した場合に、ガスセンサなどの冷媒漏洩検知装置を用いずに、ポンプダウン運転を実行させることができる。 According to refrigeration cycle apparatus 100 according to the present embodiment, control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from refrigerant circuit 10 based on the refrigerant flowing in refrigerant circuit 10, and the refrigerant leakage amount is the storage chamber. It is configured to cause the refrigerant circuit 10 to execute the pump-down operation before the calculated value obtained by multiplying the internal volume of 11 by the flammable region formation limit concentration of the refrigerant is exceeded. Therefore, when the refrigerant leaks, the pump down operation can be executed without using the refrigerant leak detection device such as the gas sensor.
 本実施の形態に係る冷凍サイクル装置100によれば、制御装置20は、冷媒回路10に封入された初期冷媒封入量と冷媒回路10を流れる冷媒に基づいて計算された冷媒回路内冷媒量との差から冷媒漏洩量を計算し、かつ冷媒漏洩量が計算値に許容係数を乗じた許容値以上に相当する濃度になると警報を出力するように構成されている。このため、冷媒漏洩量が許容値以上になったことを警報を出力することにより知らせることができる。 According to refrigeration cycle apparatus 100 in accordance with the present embodiment, control device 20 sets the amount of the initial refrigerant filled in refrigerant circuit 10 and the amount of refrigerant in the refrigerant circuit calculated based on the refrigerant flowing in refrigerant circuit 10. The refrigerant leakage amount is calculated from the difference, and an alarm is output when the refrigerant leakage amount reaches a concentration equal to or higher than an allowable value obtained by multiplying the calculated value by an allowable coefficient. Therefore, it can be notified by outputting an alarm that the refrigerant leakage amount has exceeded the allowable value.
 本実施の形態に係る冷凍サイクル装置100によれば、制御装置20は、冷媒回路10に封入された初期冷媒封入量と冷媒回路10を流れる冷媒に基づいて計算された冷媒回路内冷媒量との差から冷媒漏洩量を計算し、かつ冷媒漏洩量が計算値に危険係数を乗じた危険値以上に相当する濃度になると異常を出力するように構成されている。このため、冷媒漏洩量が危険値以上になったことを異常を出力することにより知らせることができる。 According to the refrigeration cycle apparatus 100 according to the present embodiment, the control device 20 controls the amount of the initial refrigerant filled in the refrigerant circuit 10 and the amount of refrigerant in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit 10. The refrigerant leakage amount is calculated from the difference, and an abnormality is output when the refrigerant leakage amount reaches a concentration equal to or higher than the dangerous value obtained by multiplying the calculated value by the risk coefficient. For this reason, it is possible to notify that the refrigerant leakage amount has exceeded the dangerous value by outputting an abnormality.
 ここでは、許容値または危険値を、LFL(kg/m)と、庫内容積と、許容係数または危険係数とを乗じて求める方法について説明したが、これに限るものではない。許容値または危険値は、LFL(vol%)と、庫内容積と、許容係数または危険係数とを乗じて求めてもよい。なお、冷媒としてのプロパン(R290)のLFLは、2.1vol%である。 Here, the method of obtaining the allowable value or the dangerous value by multiplying the LFL (kg/m 3 ) by the internal volume and the allowable coefficient or the dangerous coefficient has been described, but the present invention is not limited to this. The allowable value or the dangerous value may be obtained by multiplying the LFL (vol%), the internal volume, and the allowable coefficient or the dangerous coefficient. The LFL of propane (R290) as a refrigerant is 2.1 vol%.
 次に、本発明の実施の形態1に係る冷凍サイクル装置100の各変形例について説明する。本発明の実施の形態1に係る冷凍サイクル装置100の各変形例は、特に説明しない限り、本発明の実施の形態1に係る冷凍サイクル装置100と同一の構成、運転および効果を有している。 Next, each modified example of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described. Each modification of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention has the same configuration, operation, and effect as the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, unless otherwise specified. ..
 図6を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の変形例1の構成について説明する。本発明の実施の形態1に係る冷凍サイクル装置100の変形例1では、膨張装置4は、開閉弁4aと、電磁弁4bとを含んでいる。電磁弁4bは、開閉弁4aに接続されている。電磁弁4bは、冷媒回路10を全閉可能に構成されている。開閉弁4aは、流路12に収容されている。電磁弁4bは、機械室13に収容されている。 The configuration of Modification 1 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. 6. In the first modification of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, the expansion device 4 includes an opening/closing valve 4a and a solenoid valve 4b. The solenoid valve 4b is connected to the opening/closing valve 4a. The solenoid valve 4b is configured to be able to fully close the refrigerant circuit 10. The on-off valve 4a is housed in the flow path 12. The solenoid valve 4b is housed in the machine room 13.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例1によれば、膨張装置4は冷媒回路10を全閉可能な電磁弁4bを含んでいるため、電磁弁4bによって冷媒回路10を全閉することができる。このため、電磁弁4bによって冷媒が蒸発器5に流入することを防止することができる。また、電磁弁4bは機械室13に収容されているため、機械室13において冷媒回路10に閉じ込められた冷媒が電磁弁4bを超えて流路12に流入することを防止することができる。 According to the first modification of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, the expansion device 4 includes the electromagnetic valve 4b capable of fully closing the refrigerant circuit 10, so that the electromagnetic valve 4b serves to close the refrigerant circuit 10. Can be fully closed. Therefore, the solenoid valve 4b can prevent the refrigerant from flowing into the evaporator 5. Further, since the electromagnetic valve 4b is housed in the machine room 13, it is possible to prevent the refrigerant trapped in the refrigerant circuit 10 in the machine room 13 from flowing over the electromagnetic valve 4b into the flow path 12.
 図7を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の変形例2の構成について説明する。本発明の実施の形態1に係る冷凍サイクル装置100の変形例2は、冷媒漏洩検知装置9を備えている。冷媒漏洩検知装置9は、筐体1に収容されている。冷媒漏洩検知装置9は、筐体1内において蒸発器5から漏洩した冷媒を検知可能に構成されている。冷媒漏洩検知装置9は、たとえば、ガスセンサである。冷媒回路10は、冷媒漏洩検知装置9が冷媒を検知することによりポンプダウン運転を実行するように構成されている。 The configuration of Modification 2 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. 7. The second modification of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention includes the refrigerant leakage detection device 9. The refrigerant leakage detection device 9 is housed in the housing 1. The refrigerant leak detection device 9 is configured to be able to detect the refrigerant leaked from the evaporator 5 in the housing 1. The coolant leakage detection device 9 is, for example, a gas sensor. The refrigerant circuit 10 is configured to execute the pump-down operation when the refrigerant leakage detection device 9 detects the refrigerant.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例2は、貯蔵室11内に配置された棚15を備えている。棚15毎に冷気が供給されているため、複数の風路が形成されている。複数の風路を流れた空気は吸込口11cで合流する。冷媒漏洩検知装置9は、空気の流れにおいて吸込口11cよりも下流であって、膨張装置4および蒸発器5よりも上流に配置されている。このため、冷媒漏洩検知装置9が配置された位置に空気の流れが集中する。したがって、蒸発器ファン8の運転中、吸込口11cで集中した空気の流れが冷媒漏洩検知装置9に当たることで、冷媒漏洩検知装置9は冷媒の漏洩を精度良く検出することができる。 The second modification of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention includes the shelves 15 arranged in the storage chamber 11. Since the cool air is supplied to each of the shelves 15, a plurality of air passages are formed. The air flowing through the plurality of air passages joins at the suction port 11c. The refrigerant leakage detection device 9 is arranged downstream of the suction port 11c in the flow of air and upstream of the expansion device 4 and the evaporator 5. Therefore, the flow of air is concentrated at the position where the refrigerant leakage detection device 9 is arranged. Therefore, when the evaporator fan 8 is in operation, the flow of air concentrated at the suction port 11c hits the refrigerant leakage detection device 9, so that the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例2では、冷媒漏洩検知装置9は、流路12の最下部に配置されている。このため、冷媒漏洩検知装置9が配置された位置に空気よりも重い比重を有する冷媒が溜まりやすい。したがって、蒸発器ファン8の停止中、空気よりも重い比重を有する冷媒が溜まりやすい位置で、冷媒漏洩検知装置9は冷媒の漏洩を精度良く検出することができる。 In the second modification of the refrigeration cycle device 100 according to the first embodiment of the present invention, the refrigerant leakage detection device 9 is arranged at the bottom of the flow path 12. For this reason, the refrigerant having a specific gravity heavier than air is likely to accumulate at the position where the refrigerant leakage detection device 9 is arranged. Therefore, while the evaporator fan 8 is stopped, the refrigerant leakage detection device 9 can accurately detect the refrigerant leakage at a position where the refrigerant having a specific gravity heavier than air is likely to accumulate.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例2によれば、冷媒回路10は、冷媒漏洩検知装置9が冷媒を検知することによりポンプダウン運転を実行することができる。 According to the second modification of the refrigeration cycle device 100 according to the first embodiment of the present invention, the refrigerant circuit 10 can execute the pump-down operation when the refrigerant leakage detection device 9 detects the refrigerant.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例2では、冷媒漏洩検知装置9は、空気の流れにおいて吸込口11cよりも下流であって、膨張装置4および蒸発器5よりも上流に配置されている。このため、蒸発器ファン8の運転中、吸込口11cで集中した空気の流れが冷媒漏洩検知装置9に当たることで、冷媒漏洩検知装置9は冷媒の漏洩を精度良く検出することができる。 In the second modification of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, the refrigerant leakage detection device 9 is downstream of the suction port 11c in the flow of air and upstream of the expansion device 4 and the evaporator 5. It is located in. Therefore, when the evaporator fan 8 is operating, the flow of air concentrated at the suction port 11c hits the refrigerant leakage detection device 9, so that the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例2では、冷媒漏洩検知装置9は、流路12の最下部に配置されている。このため、蒸発器ファン8の停止中、空気より重い比重を有する冷媒が溜まりやすい位置で、冷媒漏洩検知装置9は冷媒の漏洩を精度良く検出することができる。 In the second modification of the refrigeration cycle device 100 according to the first embodiment of the present invention, the refrigerant leakage detection device 9 is arranged at the bottom of the flow path 12. Therefore, while the evaporator fan 8 is stopped, the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant at a position where the refrigerant having a specific gravity heavier than air is likely to accumulate.
 図8を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の変形例3の構成について説明する。本発明の実施の形態1に係る冷凍サイクル装置100の変形例3は、冷媒漏洩検知装置9の位置が本実施の形態に係る冷凍サイクル装置100の変形例2と異なっている。 The configuration of Modification 3 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. 8. The third modification of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention is different from the second modification of the refrigeration cycle apparatus 100 according to the present embodiment in the position of the refrigerant leakage detection device 9.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例3では、冷媒漏洩検知装置9は貯蔵室11の最下部であり、かつ、蒸発器5の中央よりも下方に配置されている。このため、冷媒漏洩検知装置9が配置された位置に空気の流れが淀みやすく、かつ空気よりも重い比重を有する冷媒が溜まりやすい。したがって、蒸発器ファン8の運転中および停止中、空気の流れが淀みやすく、かつ空気よりも重い比重を有する冷媒が溜まりやすい位置で、冷媒漏洩検知装置9は冷媒の漏洩を精度良く検出することができる。 In the third modification of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention, the refrigerant leakage detection device 9 is located at the bottom of the storage chamber 11 and below the center of the evaporator 5. Therefore, the flow of air is likely to stagnant at the position where the refrigerant leakage detection device 9 is arranged, and the refrigerant having a specific gravity heavier than that of air is likely to accumulate. Therefore, during operation and stoppage of the evaporator fan 8, the refrigerant leakage detection device 9 can accurately detect the leakage of the refrigerant at a position where the air flow is likely to stagnant and the refrigerant having a specific gravity heavier than the air is likely to accumulate. You can
 図9を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の変形例4の構成について説明する。本発明実施の形態1に係る冷凍サイクル装置100の変形例4は、筐体1が扉を含んでいない点で、本発明の実施の形態1に係る冷凍サイクル装置100と異なっている。つまり、本発明の実施の形態1に係る冷凍サイクル装置100の変形例4は、オープンタイプショーケースである。本発明の実施の形態1に係る冷凍サイクル装置100の変形例4は、より具体的には、レジ前ショーケースである。 The configuration of Modification 4 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. 9. Modification 4 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention differs from refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention in that housing 1 does not include a door. That is, the modification 4 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is an open type showcase. The modification 4 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is more specifically a pre-checkout showcase.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例4では、筐体1は正面部1cに貯蔵室11に連通する開口OPを有している。図9中白抜き破線矢印で示されるように正面部1cから貯蔵室11の庫外に空気の一部が漏れる。しかしながら、空気の多くは貯蔵室11に残るため、蒸発器5から冷媒が漏洩した場合には、貯蔵室11の底に漏洩した冷媒Rが溜まる。 In the fourth modification of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention, the housing 1 has an opening OP communicating with the storage chamber 11 on the front surface 1c. A part of the air leaks from the front portion 1c to the outside of the storage chamber 11 as indicated by the white and dotted broken arrow in FIG. However, since most of the air remains in the storage chamber 11, when the refrigerant leaks from the evaporator 5, the leaked refrigerant R is collected at the bottom of the storage chamber 11.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例4によれば、逆流防止装置6から凝縮器3を介して開閉弁4aに至る冷媒回路10に冷媒を閉じ込めることができるため、蒸発器5から冷媒が漏洩することを抑制することができる。これにより、空気よりも重い比重を有する冷媒Rが貯蔵室11の庫内に滞留することを抑制することができる。 According to the modified example 4 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, the refrigerant can be confined in the refrigerant circuit 10 from the backflow prevention device 6 to the on-off valve 4a via the condenser 3, so that the evaporation It is possible to prevent the refrigerant from leaking from the container 5. As a result, the refrigerant R having a specific gravity heavier than air can be prevented from staying in the storage chamber 11.
 図10を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の変形例5の構成について説明する。本発明の実施の形態1に係る冷凍サイクル装置100の変形例5は、筐体1が扉を含んでいない点および筐体1が天井部1aに貯蔵室11に連通する開口OPを有している点で、本発明の実施の形態1に係る冷凍サイクル装置100と異なっている。つまり、本発明の実施の形態1に係る冷凍サイクル装置100の変形例5は、オープンタイプショーケースである。本発明の実施の形態1に係る冷凍サイクル装置100は、より具体的には、平形ショーケースである。 The configuration of Modification 5 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention will be described with reference to FIG. 10. Modification 5 of refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention has a point that housing 1 does not include a door and that housing 1 has an opening OP that communicates with storage chamber 11 in ceiling portion 1a. The difference from the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention lies in that. That is, the modification 5 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is an open type showcase. More specifically, refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention is a flat showcase.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例5では、図9中白抜き破線矢印で示されるように天井部1aから貯蔵室11の庫外に空気が漏れる。しかしながら、空気の多くは貯蔵室11に残るため、蒸発器5から冷媒が漏洩した場合には、貯蔵室11の底に漏洩した冷媒Rが溜まる。 In the fifth modified example of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention, air leaks from the ceiling portion 1a to the outside of the storage chamber 11 as indicated by the white dashed arrow in FIG. However, since most of the air remains in the storage chamber 11, when the refrigerant leaks from the evaporator 5, the leaked refrigerant R is collected at the bottom of the storage chamber 11.
 本発明の実施の形態1に係る冷凍サイクル装置100の変形例5によれば、逆流防止装置6から凝縮器3を介して開閉弁4aに至る冷媒回路10に冷媒を閉じ込めることができるため、蒸発器5から冷媒が漏洩することを抑制することができる。これにより、空気よりも重い比重を有する冷媒Rが貯蔵室11の庫内に滞留することを抑制することができる。 According to the modified example 5 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention, the refrigerant can be confined in the refrigerant circuit 10 from the backflow prevention device 6 through the condenser 3 to the on-off valve 4a, so that evaporation It is possible to prevent the refrigerant from leaking from the container 5. As a result, the refrigerant R having a specific gravity heavier than air can be prevented from staying in the storage chamber 11.
 実施の形態2. Embodiment 2.
 本発明の実施の形態2に係る冷凍サイクル装置100は、特に説明しない限り、上記の本発明の実施の形態1に係る冷凍サイクル装置100および各変形例と同一の構成、動作および効果を有している。 The refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention has the same configuration, operation, and effect as those of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention and the modifications thereof, unless otherwise specified. ing.
 図11を参照して、本発明の実施の形態2に係る冷凍サイクル装置100の構成について説明する。本発明の実施の形態2に係る冷凍サイクル装置100は、膨張装置4の構成が上記の本発明の実施の形態1に係る冷凍サイクル装置100と異なっている。 The configuration of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention will be described with reference to FIG. 11. The refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention differs from the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention in the configuration of the expansion device 4.
 本発明の実施の形態2に係る冷凍サイクル装置100では、膨張装置4は、開閉弁4aと、膨張弁4cとを含んでいる。膨張弁4cは、たとえばキャピラリーチューブである。膨張弁4cは、流路12に収容されている。開閉弁4aは、機械室13に収容されている。 In the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention, the expansion device 4 includes an opening/closing valve 4a and an expansion valve 4c. The expansion valve 4c is, for example, a capillary tube. The expansion valve 4c is housed in the flow path 12. The on-off valve 4a is housed in the machine room 13.
 制御装置20は、冷媒回路10にポンプダウン運転を実行させた後に、圧縮機2の駆動を停止させるように構成されている。 The control device 20 is configured to stop the drive of the compressor 2 after causing the refrigerant circuit 10 to perform the pump-down operation.
 制御装置20は、冷媒回路10を流れる冷媒に基づいて冷媒回路10から漏洩した冷媒の冷媒漏洩量を計算し、かつ冷媒漏洩量が貯蔵室11の庫内容積に冷媒の可燃域形成限界濃度を乗じた計算値に許容係数を乗じた許容値以上になると警報を出力するように構成されている。 The control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing through the refrigerant circuit 10, and the refrigerant leakage amount indicates the combustible zone formation limit concentration of the refrigerant in the internal volume of the storage chamber 11. It is configured to output an alarm when the calculated value obtained by multiplying is equal to or larger than the allowable value obtained by multiplying the allowable coefficient.
 制御装置20は、冷媒回路10を流れる冷媒に基づいて冷媒回路10から漏洩した冷媒の冷媒漏洩量を計算し、かつ冷媒漏洩量が貯蔵室11の庫内容積に冷媒の可燃域形成限界濃度を乗じた計算値に危険係数を乗じた危険値以上になると異常を出力するように構成されている。 The control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing through the refrigerant circuit 10, and the refrigerant leakage amount indicates the combustible zone formation limit concentration of the refrigerant in the internal volume of the storage chamber 11. It is configured to output an abnormality when the calculated value obtained by multiplication is equal to or higher than the dangerous value obtained by multiplying the dangerous coefficient.
 図11~図13を参照して、本発明の実施の形態2に係る冷凍サイクル装置100においては、次のように冷媒の漏洩が発生したか否かが判断される。なお、本発明の実施の形態2における制御装置20の構成は、図3に示される実施の形態1における制御装置20の構成と同様である。まずは、デフロスト運転を開始することから判断がスタートする(S21)。 With reference to FIGS. 11 to 13, in refrigeration cycle device 100 according to the second embodiment of the present invention, it is determined whether or not refrigerant leakage has occurred as follows. The configuration of control device 20 in the second embodiment of the present invention is similar to the configuration of control device 20 in the first embodiment shown in FIG. First, the determination starts by starting the defrost operation (S21).
 デフロスト運転を開始する条件(デフロスト開始条件)を満足するか否かが判定される(S22)。この判定は、デフロスト開始条件が事前に記憶された記憶部27からの信号に基づいて制御部21により行われる。デフロスト開始条件を満足しない場合には、デフロスト開始条件を満足するまで判定される(S22)。デフロスト開示条件を満足する場合には、開閉弁4aが閉じられる(開閉弁=OFF)(S23)。これにより、ポンプダウン運転が行われる。なお、このとき、オフサイクルでの霜取のため、蒸発器ファン8の駆動は維持される。 It is determined whether or not the condition for starting the defrost operation (defrost start condition) is satisfied (S22). This determination is performed by the control unit 21 based on a signal from the storage unit 27 in which the defrost start condition is stored in advance. If the defrost start condition is not satisfied, the determination is made until the defrost start condition is satisfied (S22). When the defrost disclosure condition is satisfied, the open/close valve 4a is closed (open/close valve=OFF) (S23). As a result, the pump down operation is performed. At this time, the drive of the evaporator fan 8 is maintained due to the defrosting in the off cycle.
 続いて、蒸発器5の入口での冷媒の温度(蒸発器入口温度)が-20℃以下か否かが判定される(S24)。蒸発器5の入口での冷媒の温度は、温度測定装置(図示せず)により計測された蒸発器5の入口での冷媒の温度である。この判定は、温度測定装置(図示せず)からの信号に基づいて制御部21により行われる。蒸発器入口温度が-20℃を超える場合には、再度、蒸発器入口温度が-20℃以下となるまで判定される(S24)。 Subsequently, it is determined whether the temperature of the refrigerant at the inlet of the evaporator 5 (evaporator inlet temperature) is -20°C or lower (S24). The temperature of the refrigerant at the inlet of the evaporator 5 is the temperature of the refrigerant at the inlet of the evaporator 5 measured by a temperature measuring device (not shown). This determination is performed by the controller 21 based on a signal from a temperature measuring device (not shown). When the evaporator inlet temperature exceeds −20° C., the determination is repeated until the evaporator inlet temperature becomes −20° C. or lower (S24).
 蒸発器入口温度が-20℃以下の場合には、圧縮機2が停止される(S25)。続いて、5秒おきに凝縮温度CT(i)が計測され、直近の3分間のデータが記憶される(S26)。凝縮温度CT(i)は、温度測定装置(図示せず)により計測された凝縮器3の内部での冷媒の温度である。直近の3分間は、タイマー26により計測される。計測された凝縮温度CT(i)のデータは、記憶部27に記憶される。 When the evaporator inlet temperature is -20°C or lower, the compressor 2 is stopped (S25). Subsequently, the condensation temperature CT(i) is measured every 5 seconds, and the data for the latest 3 minutes is stored (S26). The condensation temperature CT(i) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown). The most recent 3 minutes are measured by the timer 26. The data of the measured condensation temperature CT(i) is stored in the storage unit 27.
 直近3分間に計測された凝縮温度CT(i)のデータにおける凝縮温度CT(i)の最大値CT(i)MAXと凝縮温度CT(i)の最小値CT(i)MINとの温度差が0.5ケルビン(K)以下か否かが判定される(S27)。この判定は、タイマー26および記憶部27からの信号に基づいて制御部21により行われる。これにより、高圧が安定したか否かが判定される。上記温度差が0.5Kを超える場合には、再度、上記温度差が0.5K以下となるまで判定される(S27)。 The temperature difference between the maximum value CT(i)MAX of the condensation temperature CT(i) and the minimum value CT(i)MIN of the condensation temperature CT(i) in the data of the condensation temperature CT(i) measured in the last 3 minutes is It is determined whether it is 0.5 Kelvin (K) or less (S27). This determination is made by the control unit 21 based on signals from the timer 26 and the storage unit 27. As a result, it is determined whether the high pressure is stable. If the temperature difference exceeds 0.5K, it is determined again until the temperature difference becomes 0.5K or less (S27).
 上記温度差が0.5K以下の場合には、現在の凝縮温度(CT1)が計測される(S28)。現在の凝縮温度(CT1)は、温度測定装置(図示せず)により計測された凝縮器3の内部での冷媒の温度である。現在の凝縮温度(CT1)は、高圧が安定したとみなされたときのバランス凝縮温度である。 If the temperature difference is 0.5 K or less, the current condensation temperature (CT1) is measured (S28). The current condensation temperature (CT1) is the temperature of the refrigerant inside the condenser 3 measured by a temperature measuring device (not shown). The current condensing temperature (CT1) is the balanced condensing temperature when the high pressure is considered stable.
 続いて、記憶部27に事前に記憶されたCT0、s、kが読み出される(S29)。CT0は出荷時冷媒量でポンプダウンしたときのバランス高圧飽和温度である。sはCT0時の高圧側平均湿り度である。kはCT0時の高圧側平均渇き度(=1-s)である。 Subsequently, CT0, s, and k stored in advance in the storage unit 27 are read (S29). CT0 is a balanced high-pressure saturation temperature when pumping down with the refrigerant amount at the time of shipment. s is the average high-pressure side wetness at CT0. k is the high-pressure-side average dryness at CT0 (=1-s).
 続いて、次の式(6)、(7)に基づいて、冷媒量Wが計算される(S30)。この計算は、記憶部27のからの信号に基づいて制御部21で行われる。高圧側冷媒量W(CT0)は、式(6)で計算される。高圧側冷媒量W(CT0)は、出荷時冷媒量でポンプダウンしたときのバランス高圧飽和温度に基づく高圧側の冷媒量である。高圧側冷媒量W(CT1)は、式(7)で計算される。高圧側冷媒量W(CT1)は、現在の凝縮温度(CT1)に基づく高圧側の冷媒量である。上述のとおり、ρLは飽和液密度(kg/m)であり、ρGは飽和ガス密度(kg/m)である。 Subsequently, the refrigerant amount W is calculated based on the following equations (6) and (7) (S30). This calculation is performed by the control unit 21 based on the signal from the storage unit 27. The high-pressure-side refrigerant amount W(CT0) is calculated by the equation (6). The high-pressure side refrigerant amount W(CT0) is the high-pressure side refrigerant amount based on the balanced high-pressure saturation temperature when pumping down with the shipping refrigerant amount. The high-pressure side refrigerant amount W(CT1) is calculated by the equation (7). The high-pressure side refrigerant amount W (CT1) is the high-pressure side refrigerant amount based on the current condensation temperature (CT1). As described above, ρL is the saturated liquid density (kg/m 3 ) and ρG is the saturated gas density (kg/m 3 ).
 W(CT0)=ρL(CT0)×s+ρG(CT0)×k (6) W(CT0)=ρL(CT0)×s+ρG(CT0)×k (6)
 W(CT1)=ρL(CT1)×s+ρG(CT1)×k (7) W(CT1)=ρL(CT1)×s+ρG(CT1)×k (7)
 次の式(8)に基づいて、冷媒漏洩量が許容値以上か否かが判定される(S31)。この判定は、記憶部27からの信号に基づいて制御部21により行われる。冷媒漏洩量は、W(CT0)からW(CT1)を減じることにより計算される。許容値は、可燃域形成限界濃度(LFL)(kg/m)と、庫内容積と、許容係数(例えば0.1)とを乗じたものである。可燃域形成限界濃度(LFL)と、庫内容積と、許容係数0.1とは、事前に記憶部27に記憶されている。または、LFL(kg/m)と庫内容積と許容係数とを乗じて得られる許容値に相当する値が、定数として、事前に記憶部27に記憶されている。 Based on the following equation (8), it is determined whether the refrigerant leakage amount is equal to or more than the allowable value (S31). This determination is performed by the control unit 21 based on the signal from the storage unit 27. The refrigerant leakage amount is calculated by subtracting W(CT1) from W(CT0). The permissible value is obtained by multiplying the flammable zone formation limit concentration (LFL) (kg/m 3 ), the internal volume, and the permissible coefficient (for example, 0.1). The flammable zone formation limit concentration (LFL), the internal volume, and the tolerance coefficient 0.1 are stored in the storage unit 27 in advance. Alternatively, a value corresponding to an allowable value obtained by multiplying LFL (kg/m 3 ) by the internal volume and the allowable coefficient is stored in advance in the storage unit 27 as a constant.
 W(CT0)-W(CT1)≧0.1×LFL×庫内容積 (8) W (CT0)-W (CT1) ≧ 0.1 x LFL x internal volume (8)
 冷媒漏洩量が許容値未満の場合には、冷媒漏洩量が許容値以上となるまで判定される(S31)。冷媒漏洩量が許容値以上の場合には、結合子Aを介して、冷媒漏れ警報が出力される(S32)。この場合には蒸発器ファンの運転が維持される。冷媒漏れ警報は、表示装置またはスピーカーなどの警報装置(図示せず)により出力される。 If the refrigerant leakage amount is less than the allowable value, determination is made until the refrigerant leakage amount becomes equal to or more than the allowable value (S31). When the refrigerant leakage amount is equal to or more than the allowable value, the refrigerant leakage alarm is output via the connector A (S32). In this case, the operation of the evaporator fan is maintained. The refrigerant leak alarm is output by an alarm device (not shown) such as a display device or a speaker.
 続いて、次の式(9)に基づいて、冷媒漏洩量が危険値以上か否かが判定される(S33)。この判定は、記憶部27からの信号に基づいて制御部21により行われる。危険値は、可燃域形成限界濃度(LFL)と庫内容積と危険係数(例えば0.25)とを乗じたものである。可燃域形成限界濃度(LFL)と、庫内容積と、危険係数0.25とは事前に記憶部27に記憶されている。または、LFL(kg/m)と庫内容積と危険係数とを乗じて得られる危険値に相当する値が、定数として、事前に記憶部27に記憶されている。 Then, it is determined based on the following equation (9) whether or not the refrigerant leakage amount is equal to or more than the dangerous value (S33). This determination is performed by the control unit 21 based on the signal from the storage unit 27. The dangerous value is obtained by multiplying the flammable zone formation limit concentration (LFL), the internal volume and the risk factor (for example, 0.25). The flammable zone formation limit concentration (LFL), the internal volume, and the risk factor 0.25 are stored in the storage unit 27 in advance. Alternatively, a value corresponding to a dangerous value obtained by multiplying LFL (kg/m 3 ) by the internal volume and the dangerous coefficient is stored in advance in the storage unit 27 as a constant.
 W(CT0)-W(CT1)≧0.25×LFL×庫内容積 (9) W (CT0)-W (CT1) ≧0.25 × LFL × internal volume (9)
 冷媒漏洩量が危険値未満の場合には、冷媒漏洩量が危険値以上となるまで判定される(S33)。冷媒漏洩量が危険値以上の場合には、冷媒漏れ異常が出力される(S33)。そして、ポンプダウン運転が行われる。冷媒漏れ異常は、表示装置またはスピーカーなどの警報装置(図示せず)により出力される。この場合には、蒸発器ファン8の駆動は維持される。冷媒漏れ異常が出力されると、冷媒の漏洩が発生したか否かの判断がストップされる(S35)。 If the refrigerant leakage amount is less than the dangerous value, determination is made until the refrigerant leakage amount becomes equal to or higher than the dangerous value (S33). When the refrigerant leakage amount is equal to or more than the dangerous value, the refrigerant leakage abnormality is output (S33). Then, the pump down operation is performed. Abnormal refrigerant leakage is output by an alarm device (not shown) such as a display device or a speaker. In this case, the drive of the evaporator fan 8 is maintained. When the refrigerant leakage abnormality is output, the determination as to whether or not refrigerant leakage has occurred is stopped (S35).
 次の、本発明の実施の形態2に係る冷凍サイクル装置100の作用効果について説明する。 Next, the operation and effect of the refrigeration cycle apparatus 100 according to the second embodiment of the present invention will be described.
 本発明の実施の形態2に係る冷凍サイクル装置100によれば、膨張装置4は、開閉弁4aと、膨張弁4cとを含んでいるため、開閉弁4aが冷媒回路10を閉じることで冷媒が蒸発器5に流入することを防止することができるとともに、膨張弁4cによって冷媒を膨張させることができる。また、開閉弁4aは機械室13に収容されているため、機械室13において冷媒回路10に閉じ込められた冷媒が開閉弁4aを超えて流路12に流入することを防止することができる。 According to the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention, the expansion device 4 includes the on-off valve 4a and the expansion valve 4c, so that the on-off valve 4a closes the refrigerant circuit 10 to generate the refrigerant. The refrigerant can be prevented from flowing into the evaporator 5, and the expansion valve 4c can expand the refrigerant. Further, since the opening/closing valve 4a is housed in the machine chamber 13, it is possible to prevent the refrigerant trapped in the refrigerant circuit 10 in the machine chamber 13 from flowing over the opening/closing valve 4a into the flow path 12.
 本発明の実施の形態2に係る冷凍サイクル装置100によれば、制御装置20は、冷媒回路10にポンプダウン運転を実行させた後に、圧縮機2の駆動を停止させるように構成されている。このため、ポンプダウン運転後に圧縮機2の駆動が停止された状態で、逆流防止装置6から凝縮器3を介して開閉弁4aに至る冷媒回路10に冷媒を閉じ込めることができる。 According to the refrigeration cycle device 100 according to the second embodiment of the present invention, the control device 20 is configured to stop the drive of the compressor 2 after causing the refrigerant circuit 10 to execute the pump down operation. Therefore, it is possible to confine the refrigerant in the refrigerant circuit 10 from the backflow prevention device 6 to the on-off valve 4a via the condenser 3 while the drive of the compressor 2 is stopped after the pump down operation.
 本発明の実施の形態2に係る冷凍サイクル装置100によれば、制御装置20は、冷媒回路10を流れる冷媒に基づいて冷媒回路10から漏洩した冷媒の冷媒漏洩量を計算し、かつ冷媒漏洩量が貯蔵室11の庫内容積に冷媒の可燃域形成限界濃度を乗じた計算値に許容係数を乗じた許容値以上になると警報を出力するように構成されている。このため、冷媒漏洩量が許容値以上になったことを警報を出力することにより知らせることができる。 According to the refrigeration cycle device 100 according to Embodiment 2 of the present invention, the control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount. Is configured to output an alarm when the value exceeds a permissible value obtained by multiplying a calculated value obtained by multiplying the internal volume of the storage chamber 11 by the flammable region formation limit concentration of the refrigerant by a permissible coefficient. Therefore, it can be notified by outputting an alarm that the refrigerant leakage amount has exceeded the allowable value.
 本発明の実施の形態2に係る冷凍サイクル装置100によれば、制御装置20は、冷媒回路10を流れる冷媒に基づいて冷媒回路10から漏洩した冷媒の冷媒漏洩量を計算し、かつ冷媒漏洩量が貯蔵室11の庫内容積に冷媒の可燃域形成限界濃度を乗じた計算値に危険係数を乗じた危険値以上になると異常を出力するように構成されている。このため、冷媒漏洩量が危険値以上になったことを異常を出力することにより知らせることができる。 According to the refrigeration cycle device 100 according to Embodiment 2 of the present invention, the control device 20 calculates the refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit 10 based on the refrigerant flowing in the refrigerant circuit 10, and the refrigerant leakage amount. Is configured to output an abnormality when the calculated value obtained by multiplying the internal volume of the storage chamber 11 by the flammable region formation limit concentration of the refrigerant is multiplied by the risk factor. For this reason, it is possible to notify that the refrigerant leakage amount has exceeded the dangerous value by outputting an abnormality.
 上記の各実施の形態は適宜組み合わせることができる。 The above embodiments can be combined as appropriate.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 1 筐体、2 圧縮機、3 凝縮器、4 膨張装置、4a 開閉弁、4b 電磁弁、4c 膨張弁、5 蒸発器、6 逆流防止装置、7 凝縮器ファン、8 蒸発器ファン、9 冷媒漏洩検知装置、10 冷媒回路、11 貯蔵室、11a 内壁、11b 吹出口、11c 吸込口、12 流路、13 機械室、14 隔壁、15 棚、20 制御装置、21 制御部、100 冷凍サイクル装置。 1 case, 2 compressor, 3 condenser, 4 expansion device, 4a open/close valve, 4b solenoid valve, 4c expansion valve, 5 evaporator, 6 backflow prevention device, 7 condenser fan, 8 evaporator fan, 9 refrigerant leakage Detection device, 10 refrigerant circuit, 11 storage chamber, 11a inner wall, 11b outlet, 11c suction port, 12 flow path, 13 machine room, 14 partition wall, 15 shelves, 20 control device, 21 control unit, 100 refrigeration cycle device.

Claims (17)

  1.  貯蔵室および前記貯蔵室に連通する流路を含む筐体と、
     前記筐体に収容され、かつ圧縮機と、凝縮器と、膨張装置と、蒸発器と、逆流防止装置とを含む冷媒回路とを備え、
     前記膨張装置は、前記冷媒回路を開閉可能に構成された開閉弁を含み、
     前記冷媒回路は、前記圧縮機、前記凝縮器、前記膨張装置、前記蒸発器の順に空気よりも重い比重を有する冷媒が流れるように構成されており、
     前記逆流防止装置は、前記圧縮機の上流側および下流側の少なくもいずれかに配置され、かつ前記圧縮機から前記蒸発器に向けて前記冷媒が逆流することを防止するように構成されており、
     前記蒸発器は、前記流路に収容され、かつ前記圧縮機、前記凝縮器、前記膨張装置および前記逆流防止装置よりも上方に位置し、
     前記冷媒回路は、前記逆流防止装置により前記圧縮機から前記蒸発器に向けて前記冷媒が逆流することが防止され、かつ前記開閉弁により前記冷媒回路が閉止された状態で前記圧縮機が運転されるポンプダウン運転を実行可能に構成されている、冷凍サイクル装置。
    A housing including a storage chamber and a flow path communicating with the storage chamber;
    A refrigerant circuit that is housed in the housing and that includes a compressor, a condenser, an expansion device, an evaporator, and a backflow prevention device;
    The expansion device includes an on-off valve configured to open and close the refrigerant circuit,
    The refrigerant circuit is configured such that a refrigerant having a specific gravity heavier than air flows in the order of the compressor, the condenser, the expansion device, and the evaporator,
    The backflow prevention device is disposed on at least one of the upstream side and the downstream side of the compressor, and is configured to prevent the refrigerant from flowing back from the compressor toward the evaporator. ,
    The evaporator is housed in the flow path, and is located above the compressor, the condenser, the expansion device and the backflow prevention device,
    The refrigerant circuit prevents the refrigerant from flowing backward from the compressor toward the evaporator by the backflow prevention device, and the compressor is operated in a state in which the refrigerant circuit is closed by the opening/closing valve. A refrigeration cycle device configured to be capable of executing pump down operation.
  2.  前記膨張装置は、前記凝縮器よりも上方に位置している、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the expansion device is located above the condenser.
  3.  前記膨張装置は、前記蒸発器の中央よりも下方に位置している、請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the expansion device is located below the center of the evaporator.
  4.  前記筐体は、前記圧縮機および前記凝縮器が収容された機械室を含み、
     前記流路は、前記機械室と隔てられ、前記機械室よりも上方に配置されている、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
    The housing includes a machine room in which the compressor and the condenser are housed,
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the flow path is separated from the machine room and is arranged above the machine room.
  5.  前記膨張装置は、前記開閉弁に接続され、前記冷媒回路を全閉可能な電磁弁を含み、
     前記開閉弁は、前記流路に収容され、
     前記電磁弁は、前記機械室に収容されている、請求項4に記載の冷凍サイクル装置。
    The expansion device includes an electromagnetic valve that is connected to the on-off valve and is capable of fully closing the refrigerant circuit,
    The on-off valve is housed in the flow path,
    The refrigeration cycle apparatus according to claim 4, wherein the electromagnetic valve is housed in the machine room.
  6.  前記膨張装置は、前記開閉弁に接続された膨張弁を含み、
     前記膨張弁は、前記流路に収容され、
     前記開閉弁は、前記機械室に収容されている、請求項4に記載の冷凍サイクル装置。
    The expansion device includes an expansion valve connected to the on-off valve,
    The expansion valve is housed in the flow path,
    The refrigeration cycle apparatus according to claim 4, wherein the opening/closing valve is housed in the machine room.
  7.  前記筐体に収容され、かつ前記筐体内において前記蒸発器から漏洩した前記冷媒を検知可能に構成された冷媒漏洩検知装置と、
     前記冷媒回路は、前記冷媒漏洩検知装置が前記冷媒を検知することにより前記ポンプダウン運転を実行するように構成されている、請求項1~6のいずれか1項に記載の冷凍サイクル装置。
    A refrigerant leakage detection device housed in the housing and configured to be able to detect the refrigerant leaked from the evaporator in the housing,
    7. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant circuit is configured to perform the pump down operation when the refrigerant leakage detection device detects the refrigerant.
  8.  前記冷媒漏洩検知装置は、前記流路内であって、前記蒸発器よりも下方でありかつ前記蒸発器よりも上流側である位置に設置されている、請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein the refrigerant leakage detection device is installed in the flow path below the evaporator and upstream from the evaporator.
  9.  前記冷媒漏洩検知装置は、前記貯蔵室内であって、前記蒸発器の中央よりも下方である位置に設置されている、請求項7に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 7, wherein the refrigerant leakage detection device is installed in the storage chamber at a position lower than the center of the evaporator.
  10.  前記筐体に収容された制御装置をさらに備え、
     前記冷媒は、可燃性を有し、
     前記制御装置は、前記冷媒回路を流れる前記冷媒に基づいて前記冷媒回路から漏洩した前記冷媒の冷媒漏洩量を計算し、かつ前記冷媒漏洩量が前記貯蔵室の庫内容積に前記冷媒の可燃域形成限界濃度を乗じた計算値を超える前に前記冷媒回路に前記ポンプダウン運転を実行させるように構成されている、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
    Further comprising a control device housed in the housing,
    The refrigerant has flammability,
    The control device calculates a refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit based on the refrigerant flowing in the refrigerant circuit, and the refrigerant leakage amount is a combustible region of the refrigerant in a storage volume of the storage chamber. The refrigeration cycle apparatus according to any one of claims 1 to 9, which is configured to cause the refrigerant circuit to perform the pump-down operation before the calculated value obtained by multiplying the formation limit concentration is exceeded.
  11.  前記制御装置は、前記冷媒回路に封入された初期冷媒封入量と前記冷媒回路を流れる前記冷媒に基づいて計算された冷媒回路内冷媒量との差から前記冷媒漏洩量を計算し、かつ前記冷媒漏洩量が前記計算値に許容係数を乗じた許容値以上、または、予め記憶された許容値に相当する値以上になると警報を出力するように構成されている、請求項10に記載の冷凍サイクル装置。 The control device calculates the refrigerant leakage amount from the difference between the initial refrigerant charging amount charged in the refrigerant circuit and the refrigerant amount in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit, and the refrigerant. The refrigeration cycle according to claim 10, which is configured to output an alarm when the amount of leakage is equal to or larger than an allowable value obtained by multiplying the calculated value by an allowable coefficient or a value corresponding to a previously stored allowable value. apparatus.
  12.  前記制御装置は、前記冷媒回路に封入された初期冷媒封入量と前記冷媒回路を流れる前記冷媒に基づいて計算された冷媒回路内冷媒量との差から前記冷媒漏洩量を計算し、かつ前記冷媒漏洩量が前記計算値に危険係数を乗じた危険値以上、または、予め記憶された危険値に相当する値以上になると異常を出力するように構成されている、請求項10に記載の冷凍サイクル装置。 The control device calculates the refrigerant leakage amount from the difference between the initial refrigerant charging amount charged in the refrigerant circuit and the refrigerant amount in the refrigerant circuit calculated based on the refrigerant flowing in the refrigerant circuit, and the refrigerant. The refrigeration cycle according to claim 10, wherein an abnormality is output when the amount of leakage is equal to or greater than a dangerous value obtained by multiplying the calculated value by a dangerous coefficient or a value corresponding to a previously stored dangerous value. apparatus.
  13.  前記筐体に収容された制御装置をさらに備え、
     前記冷媒は、可燃性を有し、
     前記制御装置は、前記冷媒回路に前記ポンプダウン運転を実行させた後に、前記圧縮機の駆動を停止させるように構成されている、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
    Further comprising a control device housed in the housing,
    The refrigerant has flammability,
    The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the control device is configured to stop driving of the compressor after causing the refrigerant circuit to perform the pump down operation. ..
  14.  前記制御装置は、前記冷媒回路を流れる前記冷媒に基づいて前記冷媒回路から漏洩した前記冷媒の冷媒漏洩量を計算し、かつ前記冷媒漏洩量が前記貯蔵室の庫内容積に前記冷媒の可燃域形成限界濃度を乗じた計算値に許容係数を乗じた許容値以上、または、予め記憶された許容値に相当する値以上になると警報を出力するように構成されている、請求項13に記載の冷凍サイクル装置。 The control device calculates a refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit based on the refrigerant flowing in the refrigerant circuit, and the refrigerant leakage amount is a combustible region of the refrigerant in a storage volume of the storage chamber. 14. The alarm according to claim 13, which is configured to output an alarm when the calculated value obtained by multiplying the formation limit concentration is equal to or higher than an allowable value obtained by multiplying the allowable coefficient or a value corresponding to a previously stored allowable value or more. Refrigeration cycle device.
  15.  前記制御装置は、前記冷媒回路を流れる前記冷媒に基づいて前記冷媒回路から漏洩した前記冷媒の冷媒漏洩量を計算し、かつ前記冷媒漏洩量が前記貯蔵室の庫内容積に前記冷媒の可燃域形成限界濃度を乗じた計算値に危険係数を乗じた危険値以上、または、予め記憶された危険値に相当する値以上になると異常を出力するように構成されている、請求項13に記載の冷凍サイクル装置。 The control device calculates a refrigerant leakage amount of the refrigerant leaked from the refrigerant circuit based on the refrigerant flowing in the refrigerant circuit, and the refrigerant leakage amount is a combustible region of the refrigerant in a storage volume of the storage chamber. 14. The abnormality according to claim 13, which is configured to output an abnormality when the calculated value obtained by multiplying the formation limit concentration is equal to or higher than a dangerous value obtained by multiplying the dangerous coefficient or a value corresponding to a previously stored dangerous value or more. Refrigeration cycle device.
  16.  前記冷媒の比重は1.5以上である、請求項1~15のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle device according to any one of claims 1 to 15, wherein the specific gravity of the refrigerant is 1.5 or more.
  17.  前記筐体の停止時は、ポンプダウン運転を行った後に停止動作を行う請求項1~16のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 16, wherein when the casing is stopped, a stop operation is performed after a pump down operation.
PCT/JP2018/044774 2018-12-05 2018-12-05 Refrigeration cycle device WO2020115847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044774 WO2020115847A1 (en) 2018-12-05 2018-12-05 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044774 WO2020115847A1 (en) 2018-12-05 2018-12-05 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020115847A1 true WO2020115847A1 (en) 2020-06-11

Family

ID=70974138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044774 WO2020115847A1 (en) 2018-12-05 2018-12-05 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2020115847A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942817A (en) * 1995-07-26 1997-02-14 Hitachi Ltd Refrigerator and condenser
JP2001108341A (en) * 1999-10-01 2001-04-20 Matsushita Refrig Co Ltd Refrigerator
JP2003035475A (en) * 2002-06-10 2003-02-07 Toshiba Corp Freezing refrigerator
JP2016188724A (en) * 2015-03-30 2016-11-04 ダイキン工業株式会社 Air conditioning system
WO2017068686A1 (en) * 2015-10-22 2017-04-27 三菱電機株式会社 Refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942817A (en) * 1995-07-26 1997-02-14 Hitachi Ltd Refrigerator and condenser
JP2001108341A (en) * 1999-10-01 2001-04-20 Matsushita Refrig Co Ltd Refrigerator
JP2003035475A (en) * 2002-06-10 2003-02-07 Toshiba Corp Freezing refrigerator
JP2016188724A (en) * 2015-03-30 2016-11-04 ダイキン工業株式会社 Air conditioning system
WO2017068686A1 (en) * 2015-10-22 2017-04-27 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5169295B2 (en) Refrigeration equipment
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
EP2545331B1 (en) Defrost operations and apparatus for a transport refrigeration system
US20050086952A1 (en) Refrigerator-freezer controller of refrigenator-freezer, and method for determination of leakage of refrigerant
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
JP2008267787A5 (en)
US20110174005A1 (en) Refrigerating apparatus
JP2007139225A (en) Refrigerating device
JP6814974B2 (en) Refrigeration equipment
JP2004354017A (en) Cooling device
JP5062039B2 (en) Refrigeration equipment
JP2008138914A (en) Refrigerating device and method of returning refrigerating machine oil
JP2008138915A (en) Refrigerating device
JP2014029246A (en) Container refrigerating apparatus
JP3576040B2 (en) Cooling systems and refrigerators
JP2005214575A (en) Refrigerator
JP6149921B2 (en) Refrigeration equipment
WO2017056394A1 (en) Refrigeration device
JP2010054194A (en) Refrigerating device
WO2020115847A1 (en) Refrigeration cycle device
JP2018173195A (en) Refrigerator
JP4727523B2 (en) Refrigeration equipment
WO2016135904A1 (en) Refrigeration apparatus
JP6812885B2 (en) Refrigeration equipment and heat source equipment
JP2008164201A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP