WO2020115792A1 - Energy production system based on carbon dioxide and energy production method based on carbon dioxide - Google Patents

Energy production system based on carbon dioxide and energy production method based on carbon dioxide Download PDF

Info

Publication number
WO2020115792A1
WO2020115792A1 PCT/JP2018/044387 JP2018044387W WO2020115792A1 WO 2020115792 A1 WO2020115792 A1 WO 2020115792A1 JP 2018044387 W JP2018044387 W JP 2018044387W WO 2020115792 A1 WO2020115792 A1 WO 2020115792A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
power generation
heat exchange
power
liquefied
Prior art date
Application number
PCT/JP2018/044387
Other languages
French (fr)
Japanese (ja)
Inventor
康貴 白石
Original Assignee
株式会社ウスイテクノス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ウスイテクノス filed Critical 株式会社ウスイテクノス
Priority to PCT/JP2018/044387 priority Critical patent/WO2020115792A1/en
Publication of WO2020115792A1 publication Critical patent/WO2020115792A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the present invention relates to a carbon dioxide energy production system and a carbon dioxide energy production method capable of generating a plurality of electricity as needed.
  • a hydrogen source supply means for supplying a hydrogen source, carbon dioxide emitted from a fuel using device, and a hydrogen source
  • a carbon dioxide characterized by comprising at least fuel generating means for chemically reacting hydrogen with a photocatalyst irradiated with light to generate a fuel containing carbon, and fuel separating means for separating the fuel.
  • Carbon dioxide is recycled as a resource using a carbon recycling device.
  • Patent Document 2 in order to reduce the cost when recovering carbon dioxide and recover and utilize the carbon dioxide for suppressing the emission of carbon dioxide, the raw material is burned by a combustion means, and the exhaust gas generated by the combustion means is oxidized. Carbon is recovered, and the recovered carbon dioxide is reacted with an epoxide supplied from the outside to form a synthetic polymer, and the synthetic polymer is supplied as a raw material to the combustion means to recover carbon dioxide as a resource.
  • carbon dioxide was recovered as a fixed resource such as by recovering carbon dioxide and culturing algae, producing bio or alternative fuel, feed or fertilizer, and further utilization of carbon dioxide as a useful resource is desired.
  • the present invention is an energy production system using carbon dioxide and an energy produced by carbon dioxide, which is used as a medium capable of generating a plurality of power as needed by utilizing the recovered carbon dioxide, so that the carbon dioxide can be recycled as a useful resource.
  • the purpose is to provide a production method.
  • An energy production system using carbon dioxide is an energy production system using carbon dioxide that can generate a plurality of carbon dioxide as a resource, if necessary, by power or surplus power, a thermal power plant,
  • the liquefied carbon dioxide gas supplied from the storage section is sent from the carbon dioxide side heat exchange section, which converts the liquefied carbon dioxide gas into expanded and evaporated carbon dioxide by heat exchange with a low boiling point heat medium, and the carbon dioxide side heat exchange section.
  • a carbon dioxide turbine power generation unit that generates power from expanded and vaporized carbon dioxide
  • a buoyancy power generation unit that performs buoyancy power generation based on the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation unit
  • a heat source supplied from the outside to exchange heat By the heat source side heat exchange section for converting the low boiling point heat medium from the liquid to the low boiling point heat medium of the gas that has been expanded and evaporated, and the low boiling point heat medium of the expanded and vaporized gas sent from the heat source side heat exchange section to generate electricity.
  • a binary power generation unit for performing.
  • the recovered carbon dioxide can be converted into the liquefied carbon dioxide by the renewable energy, the thermal power, the electric power of the nuclear power generation, or the surplus power thereof, and the liquefied carbon dioxide can be simultaneously stored.
  • At least one or more heat sources selected from heat generated when compressed and liquefied into gas, mechanical heat dissipation of a compressor, or solar heat or industrial heat emitted from thermal power plants, nuclear power plants, steelworks, chemical plants, etc. are also used as resources. It is possible to provide an energy production system using carbon dioxide, which has a plurality of power generations that can be converted to electric power again when necessary.
  • the liquefied carbon dioxide gas is heat-exchanged with a low-boiling-point heat medium to generate heat by a carbon dioxide side heat exchange step of converting the liquefied carbon dioxide gas into expanded and vaporized carbon dioxide, and the expanded and vaporized carbon dioxide sent from the carbon dioxide side heat exchange step.
  • Carbon dioxide turbine power generation step for performing, buoyancy power generation step for performing buoyancy power generation by the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation step a heat source is supplied from the outside and the low boiling point heat medium is liquid by heat exchange. From the heat source side heat exchange step of converting the expanded vaporized gas into a low boiling point heat medium, and a binary power generation step of generating power by the expanded vaporized gas low boiling point heat medium sent from the heat source side heat exchange step. It is characterized by
  • the recovered carbon dioxide can be converted into the liquefied carbon dioxide by the renewable energy, the thermal power, the electric power of the nuclear power generation, or the surplus power thereof, and the liquefied carbon dioxide can be simultaneously stored.
  • At least one or more heat sources selected from heat generated when compressed and liquefied into gas, mechanical heat dissipation of a compressor, or solar heat or industrial heat emitted from thermal power plants, nuclear power plants, steelworks, chemical plants, etc. are also used as resources. It is possible to provide an energy production method using carbon dioxide, which has a plurality of power generations that can be converted to electric power again when necessary.
  • renewable carbon dioxide, thermal power, electric power of nuclear power generation, or surplus power thereof can convert recovered carbon dioxide into liquefied carbon dioxide and collect and store it. It is possible to provide an energy production system and an energy production method using carbon dioxide, which are provided with a plurality of power generations that can be converted into and utilized.
  • FIG. 1 is a schematic diagram showing a carbon dioxide energy production system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing steps of a carbon dioxide energy production method according to another embodiment of the present invention.
  • a carbon dioxide energy production system 100 includes a liquefied carbon dioxide conversion unit 10, a storage unit 20, a carbon dioxide side heat exchange unit 30, and a heat source side heat exchange. At least the unit 80, the binary power generation 60, the carbon dioxide turbine power generation unit 40, and the buoyancy power generation unit 50 are provided.
  • the liquefied carbon dioxide conversion unit 10 compresses and liquefies the recovered carbon dioxide into liquefied carbon dioxide by renewable energy, thermal power, electric power of nuclear power generation, or surplus power of these.
  • the liquefied carbon dioxide conversion unit 10 has only to be capable of compressing and liquefying the recovered carbon dioxide into liquefied carbon dioxide, and is not limited by its equipment and method. It suffices to collect the carbon dioxide, compress it, and turn it into a liquid.
  • the storage unit 20 stores the liquefied carbon dioxide gas.
  • the storage unit 20 may be, for example, a tank.
  • the carbon dioxide used may be recovered from any one or more of industrial emissions from the thermal power plant, steel mill, cement factory, chemical factory, etc., or the atmosphere, or may be recovered by other methods. Well, the method of recovery is not limited.
  • liquefied carbon dioxide means liquid and carbon dioxide means gas.
  • the electric power or the surplus electric power used in the carbon dioxide energy production system 100 according to the embodiment of the present invention is not limited by the type of the electric power.
  • the recovered carbon dioxide used in the carbon dioxide energy production system 100 according to the embodiment of the present invention is converted into liquefied carbon dioxide gas by renewable energy, thermal power, electric power of nuclear power generation, or surplus power thereof. Use the compressed liquid. Then, the liquefied carbon dioxide gas is stored in the storage unit 20.
  • electric power can be generated at any time by storing liquefied carbon dioxide gas serving as a medium for a plurality of power generations in the storage unit 20, as described later.
  • An energy production system 100 using carbon dioxide according to an embodiment of the present invention uses renewable energy, thermal power, electric power of nuclear power generation, or surplus electric power thereof.
  • the above power plants may stop the power generation device when electricity is surplus, but once the device is stopped, it takes a lot of time and effort to start the power generation, so that unnecessary power or limited resources is used. Is throwing away. Therefore, by using the energy production system 100 using carbon dioxide according to the embodiment of the present invention, electric power can be stored as liquefied carbon dioxide gas and generated at any time, and the electric power wasted a lot above or Limited resources, time and effort can be saved. Further explanation will be given below.
  • heat exchange is performed with the liquefied carbon dioxide gas supplied from the storage section 20 and the high-temperature low-boiling-point heat medium H65 which is a gas, and expansion and evaporation are performed. Convert to carbon dioxide.
  • the gas low boiling point heat medium H65 is heat-exchanged, it is converted into the liquid low boiling point heat medium L65 and sent to the heat source side heat exchanger 80 by the circulation pump. After that, the cycle is repeated while repeating this conversion.
  • the circulation pump and the heat exchanger used may be known ones, and are not limited depending on their types.
  • the carbon dioxide turbine power generation unit 40 rotates the turbine by the expanded and vaporized carbon dioxide that is heat-exchanged and sent out in the carbon dioxide side heat exchange unit 30 to generate electricity.
  • the turbine is rotated by the buoyancy obtained by the residual pressure of the carbon dioxide used in the carbon dioxide turbine power generation unit 40 to generate buoyancy power.
  • a known turbine may be used as the turbine used in the carbon dioxide turbine power generation unit 40 and the buoyancy power generation unit 50, and is not limited depending on the type.
  • the liquefied carbon dioxide gas that is a liquid is converted into gaseous carbon dioxide by the carbon dioxide side heat exchange unit 30, so that the volume expands and evaporates several hundred times.
  • the expanded and evaporated carbon dioxide is used to generate power by the carbon dioxide turbine power generation unit 40, and the carbon dioxide is recycled as electric power.
  • the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation unit 40 is reused and sent to the next buoyancy power generation unit 50 to generate power by buoyancy power generation, and further, carbon dioxide is recycled as a power source.
  • the low boiling point heat medium 65 is preferably a low boiling point solvent for rotating the turbine of the provided binary power generation unit 60.
  • the low boiling point solvent include organic solvents such as ammonia, alcohol, acetone and hexane, and mixed solvents thereof with water and the like.
  • the low-boiling heat medium 65 is a medium for rotating the turbine of the binary power generation unit 60, and heat generated when the recovered carbon dioxide is compressed and liquefied into liquefied carbon dioxide in the liquefied carbon dioxide conversion unit 10 is liquefied carbon dioxide.
  • At least one heat source selected from mechanical heat radiation of the gas conversion section 10 or industrial heat of a solar heat or a thermal power plant, a nuclear power plant, a steel mill, a chemical factory, etc. is supplied and heat exchange is performed, and the binary power generation unit is used.
  • a heat source side heat exchange unit 80 is provided for expanding and evaporating the liquid low boiling point heat medium L65 to the gas low boiling point medium H65 in order to rotate the turbine 60. Thereafter, this conversion is repeated to generate power in the binary power generation unit 60, and carbon dioxide is recycled as power.
  • a known turbine may be used as the turbine used in the heat exchanger and the binary power generation unit 60, and the turbine is not limited depending on its type.
  • heat generated when the recovered carbon dioxide is compressed and liquefied into liquefied carbon dioxide gas in the liquefied carbon dioxide converter 10, and a compressor of the liquefied carbon dioxide converter 10 It is preferable to further include a heat storage tank 70 for heat radiation, or a heat source for storing heat with at least one heat source selected from industrial heat of heat generated by a solar heat or thermal power plant, a nuclear power plant, a steel mill, a chemical factory, or the like.
  • the heat source heat storage tank 70 is not limited as long as it can store heat, and a known one is used.
  • the carbon dioxide energy production system 100 enables the stored carbon dioxide to be used for power storage and multiple power generations as needed.
  • the heat source side heat exchange section 80 by supplying the heat source to the heat source side heat exchange section 80, the expanded and evaporated high temperature low boiling point heat medium H65 necessary for the binary power generation section 60 is obtained, and power generation becomes possible.
  • the carbon dioxide side heat exchanger 30 exchanges heat with the liquefied carbon dioxide gas to convert it into expanded and evaporated carbon dioxide, and the carbon dioxide turbine power generation section of the portion shown in B. 40, and the buoyancy power generation unit 50 in the portion indicated by C below uses the residual pressure of carbon dioxide to generate power.
  • electric power can be stored by converting the recovered carbon dioxide to liquefied carbon dioxide with renewable energy, thermal power, electric power of nuclear power generation, or surplus power of these for storage. Further, since it can be reused as electric power in the binary power generation shown in A of FIG. 1, the carbon dioxide turbine power generation shown in B, and the buoyancy power generation shown in C, it is possible to more efficiently recover the carbon dioxide recovered as a resource. Therefore, multiple power generations will be possible if necessary.
  • the carbon dioxide used in the buoyancy generation unit 50 is used to further include an algae culture unit 90 for culturing algae, and chemical plant units 95 and 96 for producing bio or alternative fuels, feeds, fertilizers, or the like. Is preferred. This is to cultivate algae by further utilizing the carbon dioxide used in the buoyancy power generation unit 50 and by photosynthesizing carbon dioxide with sunlight as a nutrient source of algae.
  • carbon dioxide is used to produce biofuels and essential amino acids, use them as nutritional foods, and feeds such as livestock feeds and aquaculture feeds.
  • hydrogen is produced by the electric power generated by the power generation shown in A, B, and C, and carbon dioxide and the hydrogen are reacted as an alternative fuel, or carbon dioxide and amino acid are used as a medicine.
  • the algae culture unit 90 for cultivating algae and the chemical plant units 95, 96 for producing bio or alternative fuel, feed, fertilizer, or the like are provided. By installing them side by side, it will be possible to more efficiently recover carbon dioxide, use electricity, and make it a fixed resource.
  • liquefied carbon dioxide gas stored in the storage unit 20 is compressed using a dry ice compressor 97 by using renewable energy, thermal power, electric power of nuclear power generation, or surplus electric power thereof to obtain individual dry ice, It may be stored in the dry ice storage unit 98. Then, the dry ice storage unit 98 may perform commercial power generation as shown in FIG. 1 or power generation indicated by A, B, and C.
  • carbon dioxide recovered by renewable energy, thermal power, electric power of nuclear power generation, or surplus power thereof is converted into liquefied carbon dioxide gas.
  • electricity By storing the electricity as carbon dioxide, it is possible to recycle carbon dioxide for the purpose of electricity storage, and if necessary, it can be used again as electricity by multiple power generation.
  • An energy production system can be provided. Eventually, it is possible to prevent or reduce the increase in carbon dioxide concentration, and the system as a whole can use carbon dioxide as a resource, so that it is possible to provide clean energy.
  • the carbon dioxide-based energy production method is a method that enables reuse as electric power by multiple power generations as needed.
  • the energy production method by the carbon dioxide which concerns on one Embodiment of this invention has the liquefied carbon dioxide conversion process S10, the storage process S20, the carbon dioxide side heat exchange process S30, and the carbon dioxide turbine power generation process S40 at least. It is characterized by having a buoyancy power generation step S50, a heat source side heat exchange step S60, and a binary power generation step S70.
  • the liquefied carbon dioxide conversion step S10 carbon dioxide recovered from any one or more of industrial discharge of the thermal power plant, steel mill, cement factory, chemical factory or the atmosphere is compressed and liquefied into liquefied carbon dioxide by electric power or surplus power. To do.
  • the storage step S20 stores the liquefied carbon dioxide gas.
  • the carbon dioxide side heat exchange step S30 the liquefied carbon dioxide gas supplied from the storage step S20 and the low boiling point heat medium expanded and evaporated by heat exchange with the heat source externally supplied to the heat source side heat exchange step S60 are binary.
  • Power generation is performed in the power generation step S70, heat exchange is performed in the carbon dioxide side heat exchange step S30, the low boiling point heat medium is converted into a liquid low boiling point heat medium, and the circulation pump moves to the heat source side heat exchange step S60. Sent. After that, the cycle is repeated while repeating this conversion. On the other hand, the liquefied carbon dioxide gas that has undergone heat exchange in the carbon dioxide side heat exchange step S30 is converted into expanded and vaporized carbon dioxide.
  • the carbon dioxide turbine power generation step S40 power is generated by the expanded and vaporized carbon dioxide sent from the carbon dioxide conversion step S30.
  • buoyancy power generation step S50 buoyancy power generation is performed by the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation step S40.
  • the heat source side heat exchange step S60 performs heat exchange for expanding and evaporating the low boiling point heat medium of liquid in order to rotate the turbine of the binary power generation step S70, and the dioxide recovered in the liquefied carbon dioxide conversion step S10.
  • At least one heat source selected from heat generated when compressing and liquefying carbon or solar heat or industrial exhaust heat of a thermal power plant, a nuclear power plant, a steel mill, a chemical factory, etc. is supplied. Further, in order to effectively collect and store heat as a heat source as well, heat generated when the recovered carbon dioxide is compressed and liquefied into liquefied carbon dioxide in the liquefied carbon dioxide conversion step S10 or solar heat or a thermal power plant, a nuclear power plant, an ironmaking plant. It is preferable to further include a heat storage tank 70 for heat source, which stores heat by at least one heat source selected from industrial exhaust heat of plants and chemical factories.
  • the carbon dioxide used in the buoyancy generation step S50 is further used to further include an algae culturing step for cultivating algae and a chemical plant step for producing bio or alternative fuel, feed or fertilizer.
  • An energy production method using carbon dioxide is at least a liquefied carbon dioxide conversion step S10, a storage step S20, a carbon dioxide side heat exchange step S30, a carbon dioxide turbine power generation step S40, and buoyancy power generation.
  • a step S50, a heat source side heat exchange step S60, and a binary power generation step S70 are provided, and power storage is performed in the order of a liquefied carbon dioxide conversion step S10 and a storage step S20, and power generation is a storage step S20 and a carbon dioxide side. It is necessary to perform the heat exchange step S30, the carbon dioxide turbine power generation step S40, and the buoyancy power generation step S50 in this order.
  • the low boiling point heat medium in the binary power generation step S70 needs to be returned to the heat source side heat exchange step S60 through the heat source side heat exchange step S60, the binary power generation step S70, the carbon dioxide side heat exchange step S30, and the circulation pump to be circulated again. is there.
  • the recovered carbon dioxide is converted into liquefied carbon dioxide with renewable energy, thermal power, electric power of nuclear power generation, or surplus power thereof.
  • CO2 can be converted into a resource for the purpose of power storage, and can be reused as electric power by multiple power generation as needed.
  • a carbon dioxide-based energy production method using carbon dioxide. Can be provided.

Abstract

The purpose of the present invention is to provide an energy production system based on carbon dioxide, the energy production system using collected carbon dioxide, wherein the carbon dioxide is used, as needed, as a medium enabling multiple power generation. The energy production system is characterized by comprising: a liquefied carbon dioxide conversion unit that compresses and liquefies carbon dioxide collected from any one or more of industrial emissions of a thermal power plant, a steel plant, a cement plant, and a chemical plant or the atmosphere into liquefied carbon dioxide by means of electric power or surplus electric power; a storage unit that stores the liquefied carbon dioxide; a carbon dioxide-side heat exchange unit that converts the liquefied carbon dioxide supplied from the storage unit into expanded and evaporated carbon dioxide by heat exchange with a low-boiling heating medium; a carbon dioxide turbine power generation unit that performs power generation based on the expanded and evaporated carbon dioxide delivered from the carbon dioxide-side heat exchange unit; a buoyancy power generation unit that performs buoyancy power generation based on a residual pressure of the carbon dioxide used in the carbon dioxide turbine power generation unit; a heat source-side heat exchange unit that is supplied with a heat source from the outside and converts the low-boiling heating medium from a liquid into an expanded and evaporated gas of low-boiling heating medium by heat exchange; and a binary power generation unit that performs power generation based on the expanded and evaporated gas of low-boiling heating medium delivered from the heat source-side heat exchange unit.

Description

二酸化炭素によるエネルギー産出システム及び二酸化炭素によるエネルギー産出方法Carbon dioxide energy production system and carbon dioxide energy production method
 本発明は、必要に応じて複数発電が可能な二酸化炭素によるエネルギー産出システム及び二酸化炭素によるエネルギー産出方法に関する。 The present invention relates to a carbon dioxide energy production system and a carbon dioxide energy production method capable of generating a plurality of electricity as needed.
 近年では、二酸化炭素の排出削減に取り組む中で、火力発電所や製鉄所、セメント工場、化学工場等から排出する二酸化炭素を回収・貯留・利用できる設備の普及が大きな課題となっており、二酸化炭素を回収処理して資源化している。 In recent years, while working to reduce carbon dioxide emissions, the spread of equipment that can collect, store, and use carbon dioxide emitted from thermal power plants, steel plants, cement plants, chemical plants, etc. has become a major issue. Carbon is collected and processed into resources.
 例えば特許文献1に、排出源から排出される二酸化炭素の削減がより低コストで行うために、水素源を供給する水素源供給手段と、燃料使用装置より排出される二酸化炭素と、水素源の水素とを、光が照射された光触媒を用いて化学反応させ、炭素を含んで構成された燃料を生成する燃料生成手段と、燃料を分離する燃料分離手段とを少なくとも備えることを特徴とする二酸化炭素再資源化装置を用い、二酸化炭素を資源化している。 For example, in Patent Document 1, in order to reduce carbon dioxide emitted from an emission source at a lower cost, a hydrogen source supply means for supplying a hydrogen source, carbon dioxide emitted from a fuel using device, and a hydrogen source A carbon dioxide characterized by comprising at least fuel generating means for chemically reacting hydrogen with a photocatalyst irradiated with light to generate a fuel containing carbon, and fuel separating means for separating the fuel. Carbon dioxide is recycled as a resource using a carbon recycling device.
 また、特許文献2に、二酸化炭素を回収する際のコスト低減、二酸化炭素の排出を抑制する二酸化炭素の回収利用するために、原料を燃焼手段で燃焼し、該燃焼手段で生じた排ガスから二酸化炭素を回収し、回収した二酸化炭素と、外部から供給したエポキシドとを反応させて合成ポリマーにし、該合成ポリマーを原料として前記燃焼手段に供給し、二酸化炭素を資源化している。 Further, in Patent Document 2, in order to reduce the cost when recovering carbon dioxide and recover and utilize the carbon dioxide for suppressing the emission of carbon dioxide, the raw material is burned by a combustion means, and the exhaust gas generated by the combustion means is oxidized. Carbon is recovered, and the recovered carbon dioxide is reacted with an epoxide supplied from the outside to form a synthetic polymer, and the synthetic polymer is supplied as a raw material to the combustion means to recover carbon dioxide as a resource.
特開2012-219233号公報Japanese Patent Laid-Open No. 2012-219233 特開2011-056372号公報JP, 2011-056372, A
 しかしながら、従来では二酸化炭素を回収して藻類を培養する、バイオ又は代替燃料あるいは飼料又は肥料等を作り出す等の二酸化炭素の固定資源化に留まり、さらなる二酸化炭素の有益な資源化が望まれる。 However, in the past, carbon dioxide was recovered as a fixed resource such as by recovering carbon dioxide and culturing algae, producing bio or alternative fuel, feed or fertilizer, and further utilization of carbon dioxide as a useful resource is desired.
 そこで本発明は、さらなる二酸化炭素の有益な資源化ができるよう、回収された二酸化炭素を利用して必要に応じて複数発電が可能な媒体として利用した二酸化炭素によるエネルギー産出システム及び二酸化炭素によるエネルギー産出方法を提供することを目的とする。 Therefore, the present invention is an energy production system using carbon dioxide and an energy produced by carbon dioxide, which is used as a medium capable of generating a plurality of power as needed by utilizing the recovered carbon dioxide, so that the carbon dioxide can be recycled as a useful resource. The purpose is to provide a production method.
 本発明の一態様に係る二酸化炭素によるエネルギー産出システムは、必要に応じて複数発電が可能な二酸化炭素を資源とした二酸化炭素によるエネルギー産出システムであって、電力あるいは余剰電力によって、火力発電所、製鉄所、セメント工場、化学工場の産業排出又は大気中のいずれか1以上から回収された二酸化炭素を液化炭酸ガスに圧縮液化する液化炭酸ガス変換部と、前記液化炭酸ガスを貯蔵する貯蔵部と、前記貯蔵部から供給される前記液化炭酸ガスを、低沸点熱媒体との熱交換により、膨張蒸発した二酸化炭素に変換する二酸化炭素側熱交換部と、前記二酸化炭素側熱交換部から送出される膨張蒸発した二酸化炭素により発電を行う二酸化炭素タービン発電部と、前記二酸化炭素タービン発電部で使用された二酸化炭素の残圧により浮力発電を行う浮力発電部と、外部から熱源を供給され熱交換によって前記低沸点熱媒体を液体から膨張蒸発した気体の低沸点熱媒体に変換する熱源側熱交換部と、前記熱源側熱交換部から送出される膨張蒸発した気体の低沸点熱媒体により発電を行うバイナリー発電部と、を備えることを特徴とする。 An energy production system using carbon dioxide according to one aspect of the present invention is an energy production system using carbon dioxide that can generate a plurality of carbon dioxide as a resource, if necessary, by power or surplus power, a thermal power plant, A liquefied carbon dioxide conversion part for compressing and liquefying carbon dioxide recovered from any one or more of industrial discharge of a steel mill, a cement factory, a chemical factory or the atmosphere into a liquefied carbon dioxide gas, and a storage part for storing the liquefied carbon dioxide gas The liquefied carbon dioxide gas supplied from the storage section is sent from the carbon dioxide side heat exchange section, which converts the liquefied carbon dioxide gas into expanded and evaporated carbon dioxide by heat exchange with a low boiling point heat medium, and the carbon dioxide side heat exchange section. A carbon dioxide turbine power generation unit that generates power from expanded and vaporized carbon dioxide, a buoyancy power generation unit that performs buoyancy power generation based on the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation unit, and a heat source supplied from the outside to exchange heat. By the heat source side heat exchange section for converting the low boiling point heat medium from the liquid to the low boiling point heat medium of the gas that has been expanded and evaporated, and the low boiling point heat medium of the expanded and vaporized gas sent from the heat source side heat exchange section to generate electricity. And a binary power generation unit for performing.
 このようにすれば、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力により、回収された二酸化炭素を前記液化炭酸ガスに変換して回収貯蔵することができると同時に、前記液化炭酸ガスへ圧縮液化する際に発生する熱、圧縮機の機械放熱、あるいは太陽熱又は火力発電所、原子力発電所、製鉄所、化学工場等の産業排出熱から選ばれる少なくとも1以上の熱源も資源にすることができ、必要に応じて再び電力に変換利用することのできる複数発電を有する、二酸化炭素によるエネルギー産出システムを提供することができる。 By doing so, the recovered carbon dioxide can be converted into the liquefied carbon dioxide by the renewable energy, the thermal power, the electric power of the nuclear power generation, or the surplus power thereof, and the liquefied carbon dioxide can be simultaneously stored. At least one or more heat sources selected from heat generated when compressed and liquefied into gas, mechanical heat dissipation of a compressor, or solar heat or industrial heat emitted from thermal power plants, nuclear power plants, steelworks, chemical plants, etc. are also used as resources. It is possible to provide an energy production system using carbon dioxide, which has a plurality of power generations that can be converted to electric power again when necessary.
 前記浮力発電部に使用された二酸化炭素を利用して、藻類を培養する藻類培養部と、バイオ又は代替燃料あるいは飼料又は肥料が作製される化学プラント部とをさらに備えることが好ましい。 It is preferable to further include an algae culture part for cultivating algae using carbon dioxide used in the buoyancy power generation part, and a chemical plant part for producing bio or alternative fuel or feed or fertilizer.
 このようにすれば、浮力発電部に使用された二酸化炭素を使用して、藻類を培養、バイオ又は代替燃料あるいは飼料又は肥料を作り出すことが可能となり、回収された二酸化炭素を媒体とする電力貯蔵及び複数発電による電力利用による二酸化炭素資源化に加えてさらに効率良く二酸化炭素の固定資源化ができる。 By doing so, it becomes possible to cultivate algae, produce bio- or alternative fuels or feeds or fertilizers by using the carbon dioxide used in the buoyancy power generation unit, and store electricity using the recovered carbon dioxide as a medium. In addition to carbon dioxide resource utilization by using electric power from multiple power generation, carbon dioxide can be more effectively fixed resource.
 本発明の一態様では、必要に応じて複数発電が可能な二酸化炭素を媒体とした二酸化炭素によるエネルギー産出方法であって、電力あるいは余剰電力によって、火力発電所、製鉄所、セメント工場、化学工場の産業排出又は大気中のいずれか1以上から回収された二酸化炭素を液化炭酸ガスに圧縮液化する液化炭酸ガス変換工程と、前記液化炭酸ガスを貯蔵する貯蔵工程と、前記貯蔵工程から供給される前記液化炭酸ガスを、低沸点熱媒体との熱交換により、膨張蒸発する二酸化炭素に変換する二酸化炭素側熱交換工程と、前記二酸化炭素側熱交換工程から送出される膨張蒸発した二酸化炭素により発電を行う二酸化炭素タービン発電工程と、前記二酸化炭素タービン発電工程で使用された二酸化炭素の残圧により浮力発電を行う浮力発電工程と、外部から熱源が供給され熱交換によって前記低沸点熱媒体を液体から膨張蒸発した気体の低沸点熱媒体に変換する熱源側熱交換工程と、前記熱源側熱交換工程から送出される膨張蒸発した気体の低沸点熱媒体により発電を行うバイナリー発電工程と、を有することを特徴とする。 In one aspect of the present invention, a method for producing energy by carbon dioxide using carbon dioxide as a medium capable of generating a plurality of powers as needed, by a power source or surplus power, a thermal power plant, a steel plant, a cement plant, a chemical plant Liquefied carbon dioxide conversion step of compressing and liquefying carbon dioxide recovered from any one or more of industrial discharge or atmospheric air into liquefied carbon dioxide gas, a storage step of storing the liquefied carbon dioxide gas, and a supply step from the storage step The liquefied carbon dioxide gas is heat-exchanged with a low-boiling-point heat medium to generate heat by a carbon dioxide side heat exchange step of converting the liquefied carbon dioxide gas into expanded and vaporized carbon dioxide, and the expanded and vaporized carbon dioxide sent from the carbon dioxide side heat exchange step. Carbon dioxide turbine power generation step for performing, buoyancy power generation step for performing buoyancy power generation by the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation step, a heat source is supplied from the outside and the low boiling point heat medium is liquid by heat exchange. From the heat source side heat exchange step of converting the expanded vaporized gas into a low boiling point heat medium, and a binary power generation step of generating power by the expanded vaporized gas low boiling point heat medium sent from the heat source side heat exchange step. It is characterized by
 このようにすれば、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力により、回収された二酸化炭素を前記液化炭酸ガスに変換して回収貯蔵することができると同時に、前記液化炭酸ガスへ圧縮液化する際に発生する熱、圧縮機の機械放熱、あるいは太陽熱又は火力発電所、原子力発電所、製鉄所、化学工場等の産業排出熱から選ばれる少なくとも1以上の熱源も資源にすることができ、必要に応じて再び電力に変換利用することのできる複数発電を有する、二酸化炭素によるエネルギー産出方法を提供することができる。 By doing so, the recovered carbon dioxide can be converted into the liquefied carbon dioxide by the renewable energy, the thermal power, the electric power of the nuclear power generation, or the surplus power thereof, and the liquefied carbon dioxide can be simultaneously stored. At least one or more heat sources selected from heat generated when compressed and liquefied into gas, mechanical heat dissipation of a compressor, or solar heat or industrial heat emitted from thermal power plants, nuclear power plants, steelworks, chemical plants, etc. are also used as resources. It is possible to provide an energy production method using carbon dioxide, which has a plurality of power generations that can be converted to electric power again when necessary.
 本発明によれば、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力により、回収された二酸化炭素を液化炭酸ガスに変換して回収貯蔵することができ、必要に応じて再び電力に変換利用することのできる複数発電を備える、二酸化炭素によるエネルギー産出システム及びエネルギー産出方法を提供することができる。 According to the present invention, renewable carbon dioxide, thermal power, electric power of nuclear power generation, or surplus power thereof can convert recovered carbon dioxide into liquefied carbon dioxide and collect and store it. It is possible to provide an energy production system and an energy production method using carbon dioxide, which are provided with a plurality of power generations that can be converted into and utilized.
図1は、本発明の一実施形態に係る二酸化炭素によるエネルギー産出システムを示す概略図である。FIG. 1 is a schematic diagram showing a carbon dioxide energy production system according to an embodiment of the present invention. 図2は、本発明の他の実施形態に係る二酸化炭素によるエネルギー産出方法の工程を示す概略図である。FIG. 2 is a schematic view showing steps of a carbon dioxide energy production method according to another embodiment of the present invention.
 従来では二酸化炭素を回収して藻類を培養する、バイオ又は代替燃料あるいは飼料又は肥料等を作り出す等の二酸化炭素を固定資源化するに留まっていたが、本発明者は、さらなる二酸化炭素の回収資源化が期待されていたことに鑑み、鋭意研究を重ねた。この結果、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力により、二酸化炭素を液化炭酸ガスに圧縮貯蔵し、それを媒体として用い再び電力として利用することで上記問題を解決できるとの知見を得た。本発明は、これらの知見に基づき完成されたものである。以下、本発明の好適な実施の形態について説明する。 In the past, carbon dioxide was collected and cultivated in algae, biofuels, alternative fuels, feeds, fertilizers, and the like were made into fixed resources, but the present inventor further collected carbon dioxide resources. In light of what was expected to be realized, we conducted intensive research. As a result, it is possible to solve the above-mentioned problems by compressing and storing carbon dioxide in liquefied carbon dioxide gas using renewable energy, thermal power, electric power of nuclear power generation, or surplus power thereof and using it as a medium again as electric power. I got the knowledge of. The present invention has been completed based on these findings. Hereinafter, preferred embodiments of the present invention will be described.
 なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本発明の要旨を逸脱しない範囲で変更が可能である。また、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム及び二酸化炭素によるエネルギー産出方法について、下記の順に説明する。
 1.二酸化炭素によるエネルギー産出システム
 2.二酸化炭素によるエネルギー産出方法
The present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and can be modified without departing from the gist of the present invention. In addition, not all of the configurations described in the present embodiment are essential as solving means of the present invention. A carbon dioxide energy production system and a carbon dioxide energy production method according to an embodiment of the present invention will be described in the following order.
1. Carbon dioxide energy production system 2. Energy production method by carbon dioxide
<1.二酸化炭素によるエネルギー産出システム>
 本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100は、図1に示すように、液化炭酸ガス変換部10と、貯蔵部20と、二酸化炭素側熱交換部30と、熱源側熱交換部80と、バイナリー発電60と、二酸化炭素タービン発電部40と、浮力発電部50と、を少なくとも備える。
<1. Carbon dioxide energy production system>
As shown in FIG. 1, a carbon dioxide energy production system 100 according to an embodiment of the present invention includes a liquefied carbon dioxide conversion unit 10, a storage unit 20, a carbon dioxide side heat exchange unit 30, and a heat source side heat exchange. At least the unit 80, the binary power generation 60, the carbon dioxide turbine power generation unit 40, and the buoyancy power generation unit 50 are provided.
 液化炭酸ガス変換部10は、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力によって、回収された二酸化炭素を液化炭酸ガスに圧縮液化する。液化炭酸ガス変換部10は、回収された二酸化炭素を液化炭酸ガスに圧縮液化できればよく、その設備や方法によって限定はされない。二酸化炭素を回収し、圧縮し液体にすればよい。貯蔵部20は、上記液化炭酸ガスを貯蔵する。貯蔵部20は、例えば、タンクなどが挙げられる。 The liquefied carbon dioxide conversion unit 10 compresses and liquefies the recovered carbon dioxide into liquefied carbon dioxide by renewable energy, thermal power, electric power of nuclear power generation, or surplus power of these. The liquefied carbon dioxide conversion unit 10 has only to be capable of compressing and liquefying the recovered carbon dioxide into liquefied carbon dioxide, and is not limited by its equipment and method. It suffices to collect the carbon dioxide, compress it, and turn it into a liquid. The storage unit 20 stores the liquefied carbon dioxide gas. The storage unit 20 may be, for example, a tank.
 なお、上記使用する二酸化炭素は、火力発電所、製鉄所、セメント工場、化学工場等からの産業排出又は大気中のいずれか1以上から回収しても良いし、その他の方法で回収しても良く、その回収の方法に限定はされない。また、本明細書中では、液化炭酸ガスは液体を、二酸化炭素は気体を示すものとする。さらに本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100に用いられる電力あるいは余剰電力は、その電力の種類によって限定はされない。 The carbon dioxide used may be recovered from any one or more of industrial emissions from the thermal power plant, steel mill, cement factory, chemical factory, etc., or the atmosphere, or may be recovered by other methods. Well, the method of recovery is not limited. In addition, in the present specification, liquefied carbon dioxide means liquid and carbon dioxide means gas. Further, the electric power or the surplus electric power used in the carbon dioxide energy production system 100 according to the embodiment of the present invention is not limited by the type of the electric power.
 本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100に用いられる回収された二酸化炭素は、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力によって、二酸化炭素を液化炭酸ガスに圧縮液化したものを使用する。そして、上記液化炭酸ガスを貯蔵部20に貯蔵する。 The recovered carbon dioxide used in the carbon dioxide energy production system 100 according to the embodiment of the present invention is converted into liquefied carbon dioxide gas by renewable energy, thermal power, electric power of nuclear power generation, or surplus power thereof. Use the compressed liquid. Then, the liquefied carbon dioxide gas is stored in the storage unit 20.
 本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100において、複数発電の媒体となる液化炭酸ガスを貯蔵部20に貯蔵することで後述するように、いつでも電力を発電させることができる。 In the carbon dioxide energy production system 100 according to the embodiment of the present invention, electric power can be generated at any time by storing liquefied carbon dioxide gas serving as a medium for a plurality of power generations in the storage unit 20, as described later.
 ここで、例えば火力発電所や原子力発電所は度々余剰電力が発生する。本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100は再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力を利用したものである。また、上記の発電所は、電気が余剰する場合、発電装置を停止することもあるが、一旦装置を停止した場合、始動するのに多くの時間や手間がかかるため無駄に電力あるいは限りある資源を捨てている。そこで本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100を利用することで、液化炭酸ガスとして電力を貯蔵し、いつでも電力を発生させることができ、上記の多く無駄に捨ててきた電力あるいは限りある資源、時間や手間を省くことができる。以下さらに説明する。  Here, for example, thermal power plants and nuclear power plants often generate surplus electricity. An energy production system 100 using carbon dioxide according to an embodiment of the present invention uses renewable energy, thermal power, electric power of nuclear power generation, or surplus electric power thereof. In addition, the above power plants may stop the power generation device when electricity is surplus, but once the device is stopped, it takes a lot of time and effort to start the power generation, so that unnecessary power or limited resources is used. Is throwing away. Therefore, by using the energy production system 100 using carbon dioxide according to the embodiment of the present invention, electric power can be stored as liquefied carbon dioxide gas and generated at any time, and the electric power wasted a lot above or Limited resources, time and effort can be saved. Further explanation will be given below.
 図1に示すように、二酸化炭素側熱交換部30では、上記貯蔵部20から供給される上記液化炭酸ガスと、気体である高温の低沸点熱媒体H65により熱交換が行われ、膨張蒸発した二酸化炭素に変換する。逆に気体の低沸点熱媒体H65は熱交換が行われるため、液体の低沸点熱媒体L65に変換し循環ポンプにて、熱源側熱交換器80へ送られる。以下この変換を繰り返しながら循環される。使用される循環ポンプ及び熱交換器は、公知のものを用いればよく、その種類によっては限定されない。 As shown in FIG. 1, in the carbon dioxide side heat exchange section 30, heat exchange is performed with the liquefied carbon dioxide gas supplied from the storage section 20 and the high-temperature low-boiling-point heat medium H65 which is a gas, and expansion and evaporation are performed. Convert to carbon dioxide. On the contrary, since the gas low boiling point heat medium H65 is heat-exchanged, it is converted into the liquid low boiling point heat medium L65 and sent to the heat source side heat exchanger 80 by the circulation pump. After that, the cycle is repeated while repeating this conversion. The circulation pump and the heat exchanger used may be known ones, and are not limited depending on their types.
 二酸化炭素タービン発電部40は、上記二酸化炭素側熱交換部30で熱交換が行われ送出される膨張蒸発した二酸化炭素によりタービンを回して発電を行う。 The carbon dioxide turbine power generation unit 40 rotates the turbine by the expanded and vaporized carbon dioxide that is heat-exchanged and sent out in the carbon dioxide side heat exchange unit 30 to generate electricity.
 続いて浮力発電部50では、上記二酸化炭素タービン発電部40で使用された二酸化炭素の残圧により得られる浮力でタービンを回して浮力発電を行う。二酸化炭素タービン発電部40及び浮力発電部50で使用されるタービンは、公知のものを用いればよく、その種類によっては限定されない。 Subsequently, in the buoyancy power generation unit 50, the turbine is rotated by the buoyancy obtained by the residual pressure of the carbon dioxide used in the carbon dioxide turbine power generation unit 40 to generate buoyancy power. A known turbine may be used as the turbine used in the carbon dioxide turbine power generation unit 40 and the buoyancy power generation unit 50, and is not limited depending on the type.
 上記二酸化炭素側熱交換部30によって、液体である液化炭酸ガスが気体の二酸化炭素に変換するので、体積が数百倍に膨張蒸発する。その膨張蒸発した二酸化炭素を利用して、二酸化炭素タービン発電部40によって発電を行い、二酸化炭素を電力として資源化する。 The liquefied carbon dioxide gas that is a liquid is converted into gaseous carbon dioxide by the carbon dioxide side heat exchange unit 30, so that the volume expands and evaporates several hundred times. The expanded and evaporated carbon dioxide is used to generate power by the carbon dioxide turbine power generation unit 40, and the carbon dioxide is recycled as electric power.
 続いて二酸化炭素タービン発電部40で使用された二酸化炭素の残圧を再利用し、次の浮力発電部50に送られ、浮力発電によって発電を行い、さらに二酸化炭素を電力源として資源化する。 Next, the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation unit 40 is reused and sent to the next buoyancy power generation unit 50 to generate power by buoyancy power generation, and further, carbon dioxide is recycled as a power source.
 上記低沸点熱媒体65は、備えられたバイナリー発電部60のタービンを回すために低沸点溶媒であることが好ましい。低沸点溶媒は、例えば、アンモニア、アルコール、アセトン、ヘキサンなどの有機溶媒、あるいはそれらと水等の混合溶媒が挙げられる。 The low boiling point heat medium 65 is preferably a low boiling point solvent for rotating the turbine of the provided binary power generation unit 60. Examples of the low boiling point solvent include organic solvents such as ammonia, alcohol, acetone and hexane, and mixed solvents thereof with water and the like.
 上記低沸点熱媒体65は、バイナリー発電部60のタービンを回すための媒体であり、回収された二酸化炭素を液化炭酸ガス変換部10で液化炭酸ガスへ圧縮液化する際に発生する熱、液化炭酸ガス変換部10の機械放熱、あるいは太陽熱又は火力発電所、原子力発電所、製鉄所、化学工場等の産業排出熱から選ばれる少なくとも1以上の熱源が供給され熱交換が行われ、上記バイナリー発電部60のタービンを回すために液体の低沸点熱媒体L65から気体の低沸点媒体H65へ膨張蒸発させるための熱源側熱交換部80を設けている。以下この変換を繰り返され上記バイナリー発電部60で発電を行い、二酸化炭素を電力として資源化する。熱交換器及びバイナリー発電部60で使用されるタービンは、公知のものを用いればよく、その種類によっては限定されない。 The low-boiling heat medium 65 is a medium for rotating the turbine of the binary power generation unit 60, and heat generated when the recovered carbon dioxide is compressed and liquefied into liquefied carbon dioxide in the liquefied carbon dioxide conversion unit 10 is liquefied carbon dioxide. At least one heat source selected from mechanical heat radiation of the gas conversion section 10 or industrial heat of a solar heat or a thermal power plant, a nuclear power plant, a steel mill, a chemical factory, etc. is supplied and heat exchange is performed, and the binary power generation unit is used. A heat source side heat exchange unit 80 is provided for expanding and evaporating the liquid low boiling point heat medium L65 to the gas low boiling point medium H65 in order to rotate the turbine 60. Thereafter, this conversion is repeated to generate power in the binary power generation unit 60, and carbon dioxide is recycled as power. A known turbine may be used as the turbine used in the heat exchanger and the binary power generation unit 60, and the turbine is not limited depending on its type.
 また、熱源も有効に回収蓄熱するために、回収された二酸化炭素を上記液化炭酸ガス変換部10で液化炭酸ガスに圧縮液化する際に発生する熱、液化炭酸ガス変換部10の圧縮機の機械放熱、あるいは太陽熱又は火力発電所、原子力発電所、製鉄所、化学工場等の産業排出熱から選ばれる少なくとも1以上の熱源により蓄熱貯蔵される熱源用蓄熱槽70と、をさらに備えることが好ましい。なお、熱源用蓄熱槽70は蓄熱できれば限定されなく、公知のものが用いられる Further, in order to effectively collect and store heat as a heat source as well, heat generated when the recovered carbon dioxide is compressed and liquefied into liquefied carbon dioxide gas in the liquefied carbon dioxide converter 10, and a compressor of the liquefied carbon dioxide converter 10 It is preferable to further include a heat storage tank 70 for heat radiation, or a heat source for storing heat with at least one heat source selected from industrial heat of heat generated by a solar heat or thermal power plant, a nuclear power plant, a steel mill, a chemical factory, or the like. The heat source heat storage tank 70 is not limited as long as it can store heat, and a known one is used.
 このように、本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100によって、回収された二酸化炭素を利用して電力貯蔵と必要に応じて複数発電が可能となる。 As described above, the carbon dioxide energy production system 100 according to the embodiment of the present invention enables the stored carbon dioxide to be used for power storage and multiple power generations as needed.
 図1のAに示す部分では、熱源側熱交換部80へ熱源を供給することで、バイナリー発電部60に必要な膨張蒸発した高温の低沸点熱媒体H65が得られ、発電が可能となり、発電後の低沸点熱媒体H65を利用して、二酸化炭素側熱交換器30により、液化炭酸ガスと熱交換を行い、膨張蒸発した二酸化炭素に変換して、Bに示す部分の二酸化炭素タービン発電部40により発電し、さらに次のCに示す部分の浮力発電部50により二酸化炭素の残圧を利用して発電を行う。 In the portion shown in A of FIG. 1, by supplying the heat source to the heat source side heat exchange section 80, the expanded and evaporated high temperature low boiling point heat medium H65 necessary for the binary power generation section 60 is obtained, and power generation becomes possible. Using the latter low boiling point heat medium H65, the carbon dioxide side heat exchanger 30 exchanges heat with the liquefied carbon dioxide gas to convert it into expanded and evaporated carbon dioxide, and the carbon dioxide turbine power generation section of the portion shown in B. 40, and the buoyancy power generation unit 50 in the portion indicated by C below uses the residual pressure of carbon dioxide to generate power.
 このようにすれば、回収した二酸化炭素を再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力で液化炭酸ガスに変換して貯蔵をすることで電力貯蔵が可能となる。また図1のAに示すバイナリー発電、Bに示す二酸化炭素タービン発電、Cに示す浮力発電で再び電力として利用することが可能となるため、さらに効率良く回収した二酸化炭素を資源化することが可能となり、必要に応じて複数発電が可能となる。 In this way, electric power can be stored by converting the recovered carbon dioxide to liquefied carbon dioxide with renewable energy, thermal power, electric power of nuclear power generation, or surplus power of these for storage. Further, since it can be reused as electric power in the binary power generation shown in A of FIG. 1, the carbon dioxide turbine power generation shown in B, and the buoyancy power generation shown in C, it is possible to more efficiently recover the carbon dioxide recovered as a resource. Therefore, multiple power generations will be possible if necessary.
 上記浮力発電部50に使用された二酸化炭素を利用して、藻類を培養する藻類培養部90と、バイオ又は代替燃料あるいは飼料又は肥料等が作製される化学プラント部95、96とをさらに備えることが好ましい。これは浮力発電部50に使用された二酸化炭素をさらに利用して、二酸化炭素を藻類の栄養源として太陽光と光合成させて藻類を培養するものである。また、二酸化炭素を用いて、バイオ燃料、必須アミノ酸を製造したり、それを栄養食品にしたり、家畜飼料、養殖飼料などの飼料にするものである。さらに、上記A,B,Cに示す発電による電力で水素を製造し、二酸化炭素と上記水素を反応させて代替燃料にしたり、二酸化炭素とアミノ酸を用いて医薬品にしたりする。 The carbon dioxide used in the buoyancy generation unit 50 is used to further include an algae culture unit 90 for culturing algae, and chemical plant units 95 and 96 for producing bio or alternative fuels, feeds, fertilizers, or the like. Is preferred. This is to cultivate algae by further utilizing the carbon dioxide used in the buoyancy power generation unit 50 and by photosynthesizing carbon dioxide with sunlight as a nutrient source of algae. In addition, carbon dioxide is used to produce biofuels and essential amino acids, use them as nutritional foods, and feeds such as livestock feeds and aquaculture feeds. Further, hydrogen is produced by the electric power generated by the power generation shown in A, B, and C, and carbon dioxide and the hydrogen are reacted as an alternative fuel, or carbon dioxide and amino acid are used as a medicine.
 このようにすれば、浮力発電部50に使用された二酸化炭素を使用して、藻類を培養する藻類培養部90と、バイオ又は代替燃料あるいは飼料又は肥料等を作り出す化学プラント部95、96とを併設することで、さらに効率良く二酸化炭素の回収、電力利用、固定資源化が可能になる。 In this way, by using the carbon dioxide used in the buoyancy power generation unit 50, the algae culture unit 90 for cultivating algae and the chemical plant units 95, 96 for producing bio or alternative fuel, feed, fertilizer, or the like are provided. By installing them side by side, it will be possible to more efficiently recover carbon dioxide, use electricity, and make it a fixed resource.
 また、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力を用いて、貯蔵部20に貯蔵された液化炭酸ガスをドライアイス圧縮機97を用いて圧縮し、個体のドライアイスとし、ドライアイス貯蔵部98に貯蔵しても良い。そして、ドライアイス貯蔵部98から図1に示すような、商用あるいはA、B、Cに示す発電を行っても良い。 Further, liquefied carbon dioxide gas stored in the storage unit 20 is compressed using a dry ice compressor 97 by using renewable energy, thermal power, electric power of nuclear power generation, or surplus electric power thereof to obtain individual dry ice, It may be stored in the dry ice storage unit 98. Then, the dry ice storage unit 98 may perform commercial power generation as shown in FIG. 1 or power generation indicated by A, B, and C.
 以上より、本発明の一実施形態に係る二酸化炭素によるエネルギー産出システム100によれば、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力で回収した二酸化炭素を液化炭酸ガスに変換して貯蔵をすることで、電力貯蔵を目的として二酸化炭素を資源化することができ、さらに必要に応じて複数発電によって再び電力としての利用が可能となる二酸化炭素を利用した二酸化炭素による電力貯蔵とエネルギー産出システムを提供することができる。ひいては二酸化炭素濃度の増加を防止又は低減が可能となり、システム全体としては、二酸化炭素を資源化できるので、クリーンエネルギーの提供が可能となる。 As described above, according to the carbon dioxide energy production system 100 according to the embodiment of the present invention, carbon dioxide recovered by renewable energy, thermal power, electric power of nuclear power generation, or surplus power thereof is converted into liquefied carbon dioxide gas. By storing the electricity as carbon dioxide, it is possible to recycle carbon dioxide for the purpose of electricity storage, and if necessary, it can be used again as electricity by multiple power generation. An energy production system can be provided. Eventually, it is possible to prevent or reduce the increase in carbon dioxide concentration, and the system as a whole can use carbon dioxide as a resource, so that it is possible to provide clean energy.
<2.二酸化炭素によるエネルギー産出方法>
 次に本発明の一実施形態に係る二酸化炭素資源化方法について説明する。なお、上記二酸化炭素によるエネルギー産出システムで説明した内容と重複する内容はなるべく割愛する。
<2. Carbon dioxide energy production method>
Next, a carbon dioxide resource recovery method according to an embodiment of the present invention will be described. It should be noted that the contents that overlap with the contents explained in the energy production system using carbon dioxide are omitted as much as possible.
 本発明の一実施形態に係る二酸化炭素によるエネルギー産出方法は、必要に応じて複数発電により再び電力としての利用することを可能とする方法である。 The carbon dioxide-based energy production method according to an embodiment of the present invention is a method that enables reuse as electric power by multiple power generations as needed.
 そして、本発明の一実施形態に係る二酸化炭素によるエネルギー産出方法は、少なくとも、液化炭酸ガス変換工程S10と、貯蔵工程S20と、二酸化炭素側熱交換工程S30と、二酸化炭素タービン発電工程S40と、浮力発電工程S50と、熱源側熱交換工程S60と、バイナリー発電工程S70と、を有することを特徴とする。 And the energy production method by the carbon dioxide which concerns on one Embodiment of this invention has the liquefied carbon dioxide conversion process S10, the storage process S20, the carbon dioxide side heat exchange process S30, and the carbon dioxide turbine power generation process S40 at least. It is characterized by having a buoyancy power generation step S50, a heat source side heat exchange step S60, and a binary power generation step S70.
 液化炭酸ガス変換工程S10により、電力あるいは余剰電力よって、火力発電所、製鉄所、セメント工場、化学工場の産業排出又は大気中のいずれか1以上から回収された二酸化炭素を液化炭酸ガスに圧縮液化する。貯蔵工程S20により、上記液化炭酸ガスを貯蔵する。二酸化炭素側熱交換工程S30では、上記貯蔵工程S20から供給される上記液化炭酸ガスと、熱源側熱交換工程S60に外部から供給された熱源と熱交換を行い膨張蒸発した低沸点熱媒体がバイナリー発電工程S70で発電を行い、上記二酸化炭素側熱交換工程S30で熱交換を行い、当該低沸点熱媒体を液体の低沸点熱媒体に変換して循環ポンプにて上記熱源側熱交換工程S60へ送られる。以下この変換を繰り返しながら循環する。一方、上記二酸化炭素側熱交換工程S30で熱交換を行った上記液化炭酸ガスは膨張蒸発した二酸化炭素に変換する。 In the liquefied carbon dioxide conversion step S10, carbon dioxide recovered from any one or more of industrial discharge of the thermal power plant, steel mill, cement factory, chemical factory or the atmosphere is compressed and liquefied into liquefied carbon dioxide by electric power or surplus power. To do. The storage step S20 stores the liquefied carbon dioxide gas. In the carbon dioxide side heat exchange step S30, the liquefied carbon dioxide gas supplied from the storage step S20 and the low boiling point heat medium expanded and evaporated by heat exchange with the heat source externally supplied to the heat source side heat exchange step S60 are binary. Power generation is performed in the power generation step S70, heat exchange is performed in the carbon dioxide side heat exchange step S30, the low boiling point heat medium is converted into a liquid low boiling point heat medium, and the circulation pump moves to the heat source side heat exchange step S60. Sent. After that, the cycle is repeated while repeating this conversion. On the other hand, the liquefied carbon dioxide gas that has undergone heat exchange in the carbon dioxide side heat exchange step S30 is converted into expanded and vaporized carbon dioxide.
 二酸化炭素タービン発電工程S40により、上記二酸化炭素変換工程S30から送出された膨張蒸発した二酸化炭素により発電を行う。浮力発電工程S50により、上記二酸化炭素タービン発電工程S40で使用された二酸化炭素の残圧により浮力発電を行う。 In the carbon dioxide turbine power generation step S40, power is generated by the expanded and vaporized carbon dioxide sent from the carbon dioxide conversion step S30. In the buoyancy power generation step S50, buoyancy power generation is performed by the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation step S40.
 上記熱源側熱交換工程S60は、上記バイナリー発電工程S70のタービンを回すために、液体の低沸点熱媒体を膨張蒸発させるための熱交換を行い、上記液化炭酸ガス変換工程S10で回収された二酸化炭素を圧縮液化する際に発生する熱あるいは太陽熱又は火力発電所、原子力発電所、製鉄所、化学工場等の産業排出熱から選ばれる少なくとも1以上の熱源が供給される。また、熱源も有効に回収蓄熱するために、回収された二酸化炭素を上記液化炭酸ガス変換工程S10で液化炭酸ガスに圧縮液化する際に発生する熱あるいは太陽熱又は火力発電所、原子力発電所、製鉄所、化学工場等の産業排出熱から選ばれる少なくとも1以上の熱源により蓄熱貯蔵される熱源用蓄熱槽70をさらに備えることが好ましい。 The heat source side heat exchange step S60 performs heat exchange for expanding and evaporating the low boiling point heat medium of liquid in order to rotate the turbine of the binary power generation step S70, and the dioxide recovered in the liquefied carbon dioxide conversion step S10. At least one heat source selected from heat generated when compressing and liquefying carbon or solar heat or industrial exhaust heat of a thermal power plant, a nuclear power plant, a steel mill, a chemical factory, etc. is supplied. Further, in order to effectively collect and store heat as a heat source as well, heat generated when the recovered carbon dioxide is compressed and liquefied into liquefied carbon dioxide in the liquefied carbon dioxide conversion step S10 or solar heat or a thermal power plant, a nuclear power plant, an ironmaking plant. It is preferable to further include a heat storage tank 70 for heat source, which stores heat by at least one heat source selected from industrial exhaust heat of plants and chemical factories.
 上記浮力発電工程S50に使用された二酸化炭素を利用して、藻類を培養する藻類培養工程、バイオ又は代替燃料あるいは飼料又は肥料等を作り出す化学プラント工程をさらに有することが好ましい。 It is preferable that the carbon dioxide used in the buoyancy generation step S50 is further used to further include an algae culturing step for cultivating algae and a chemical plant step for producing bio or alternative fuel, feed or fertilizer.
 本発明の一実施形態に係る二酸化炭素によるエネルギー産出方法は、少なくとも、液化炭酸ガス変換工程S10と、貯蔵工程S20と、二酸化炭素側熱交換工程S30と、二酸化炭素タービン発電工程S40と、浮力発電工程S50と、熱源側熱交換工程S60と、バイナリー発電工程S70と、を備え、電力貯蔵は、液化炭酸ガス変換工程S10、貯蔵工程S20の順で行われ、発電は貯蔵工程S20、二酸化炭素側熱交換工程S30、二酸化炭素タービン発電工程S40、浮力発電工程S50の順で行う必要がある。一方、バイナリー発電工程S70の低沸点熱媒体は、熱源側熱交換工程S60、バイナリー発電工程S70、二酸化炭素側熱交換工程S30、循環ポンプを経て再び熱源側熱交換工程S60へ戻り循環する必要がある。 An energy production method using carbon dioxide according to an embodiment of the present invention is at least a liquefied carbon dioxide conversion step S10, a storage step S20, a carbon dioxide side heat exchange step S30, a carbon dioxide turbine power generation step S40, and buoyancy power generation. A step S50, a heat source side heat exchange step S60, and a binary power generation step S70 are provided, and power storage is performed in the order of a liquefied carbon dioxide conversion step S10 and a storage step S20, and power generation is a storage step S20 and a carbon dioxide side. It is necessary to perform the heat exchange step S30, the carbon dioxide turbine power generation step S40, and the buoyancy power generation step S50 in this order. On the other hand, the low boiling point heat medium in the binary power generation step S70 needs to be returned to the heat source side heat exchange step S60 through the heat source side heat exchange step S60, the binary power generation step S70, the carbon dioxide side heat exchange step S30, and the circulation pump to be circulated again. is there.
 以上より、本発明の一実施形態に係る二酸化炭素によるエネルギー産出方法によれば、再生可能エネルギーや火力、原子力発電の電力、あるいはそれらの余剰電力で、回収した二酸化炭素を液化炭酸ガスに変換して貯蔵をすることで、電力貯蔵を目的として二酸化炭素を資源化することができ、さらに必要に応じて複数発電によって再び電力としての利用が可能となる二酸化炭素を利用した二酸化炭素によるエネルギー産出方法を提供することができる。 As described above, according to the energy production method using carbon dioxide according to the embodiment of the present invention, the recovered carbon dioxide is converted into liquefied carbon dioxide with renewable energy, thermal power, electric power of nuclear power generation, or surplus power thereof. CO2 can be converted into a resource for the purpose of power storage, and can be reused as electric power by multiple power generation as needed. A carbon dioxide-based energy production method using carbon dioxide. Can be provided.
 なお、上記のように本発明の各実施形態および各実施例について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment and each example of the present invention have been described in detail as above, it is understood by those skilled in the art that many modifications are possible without materially departing from the novel matters and effects of the present invention. , It will be easy to understand. Therefore, such modifications are all included in the scope of the present invention.
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、二酸化炭素によるエネルギー産出システム及びエネルギー産出方法の構成、動作も本発明の各実施形態および各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once together with a different term having a broader meaning or a synonym in the specification or the drawings can be replaced with the different term in any part of the specification or the drawing. Further, the configurations and operations of the energy production system and the energy production method using carbon dioxide are not limited to those described in the embodiments and examples of the present invention, and various modifications can be made.
10 液化炭酸ガス変換部、20 貯蔵部、30 二酸化炭素側熱交換部、40 二酸化炭素タービン発電部、50 浮力発電部、60 バイナリー発電部、65 低沸点熱媒体、66 熱源用熱媒体、70 熱源用蓄熱槽、80 熱源側熱交換部、90 藻類培養部、95、96 化学プラント部、97 ドライアイス圧縮機、98 ドライアイス貯蔵部、
100 二酸化炭素によるエネルギー産出システム
H 高温、L 低温
S10 液化炭酸ガス変換工程、S20 貯蔵工程、S30 二酸化炭素側熱交換工程、S40 二酸化炭素タービン発電工程、S50 浮力発電工程、S60 熱源側熱交換工程、S70 バイナリー発電工程
10 Liquefied carbon dioxide conversion section, 20 Storage section, 30 Carbon dioxide side heat exchange section, 40 Carbon dioxide turbine power generation section, 50 Buoyancy power generation section, 60 Binary power generation section, 65 Low boiling point heat medium, 66 Heat source heat medium, 70 heat source Heat storage tank, 80 heat source side heat exchange section, 90 algae culture section, 95, 96 chemical plant section, 97 dry ice compressor, 98 dry ice storage section,
100 carbon dioxide energy production system H high temperature, L low temperature S10 liquefied carbon dioxide conversion process, S20 storage process, S30 carbon dioxide side heat exchange process, S40 carbon dioxide turbine power generation process, S50 buoyancy power generation process, S60 heat source side heat exchange process, S70 Binary power generation process

Claims (3)

  1.  必要に応じて複数発電が可能な二酸化炭素を資源とした二酸化炭素によるエネルギー産出システムであって、
     電力あるいは余剰電力によって、火力発電所、製鉄所、セメント工場、化学工場の産業排出又は大気中のいずれか1以上から回収された二酸化炭素を液化炭酸ガスに圧縮液化する液化炭酸ガス変換部と、
     前記液化炭酸ガスを貯蔵する貯蔵部と、
     前記貯蔵部から供給される前記液化炭酸ガスを、低沸点熱媒体との熱交換により、膨張蒸発した二酸化炭素に変換する二酸化炭素側熱交換部と、
     前記二酸化炭素側熱交換部から送出される膨張蒸発した二酸化炭素により発電を行う二酸化炭素タービン発電部と、
     前記二酸化炭素タービン発電部で使用された二酸化炭素の残圧により浮力発電を行う浮力発電部と、
     外部から熱源を供給され熱交換によって前記低沸点熱媒体を液体から膨張蒸発した気体の低沸点熱媒体に変換する熱源側熱交換部と、
     前記熱源側熱交換部から送出される膨張蒸発した気体の低沸点熱媒体により発電を行うバイナリー発電部と、
     を備えることを特徴とする二酸化炭素によるエネルギー産出システム。
    An energy production system using carbon dioxide that uses carbon dioxide as a resource that enables multiple power generations as needed,
    A liquefied carbon dioxide conversion part for compressing and liquefying carbon dioxide recovered from any one or more of industrial discharge of a thermal power plant, a steel plant, a cement factory, a chemical factory or the atmosphere by electric power or surplus power,
    A storage unit for storing the liquefied carbon dioxide gas,
    The liquefied carbon dioxide gas supplied from the storage unit, by heat exchange with a low boiling point heat medium, a carbon dioxide side heat exchange unit for converting into expanded and evaporated carbon dioxide,
    A carbon dioxide turbine power generation section for generating power by the expanded and vaporized carbon dioxide sent from the carbon dioxide side heat exchange section,
    A buoyancy power generation unit that performs buoyancy power generation by the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation unit,
    A heat source side heat exchange section for converting the low boiling point heat medium from a liquid to a low boiling point heat medium that has been expanded and vaporized by a heat source supplied from the outside by heat exchange,
    A binary power generation unit for generating power by the low boiling point heat medium of the expanded and evaporated gas sent from the heat source side heat exchange unit,
    An energy production system using carbon dioxide, which comprises:
  2.  前記浮力発電部に使用された二酸化炭素を利用して、藻類を培養する藻類培養部と、バイオ又は代替燃料あるいは飼料又は肥料が作製される化学プラント部とをさらに備えることを特徴とする請求項1に記載の二酸化炭素によるエネルギー産出システム。 The method further comprises an algae culturing section for culturing algae using carbon dioxide used in the buoyancy generation section, and a chemical plant section for producing bio or alternative fuel or feed or fertilizer. An energy production system using carbon dioxide according to 1.
  3.  必要に応じて複数発電が可能な二酸化炭素を媒体とした二酸化炭素によるエネルギー産出方法であって、
     電力あるいは余剰電力によって、火力発電所、製鉄所、セメント工場、化学工場の産業排出又は大気中のいずれか1以上から回収された二酸化炭素を液化炭酸ガスに圧縮液化する液化炭酸ガス変換工程と、
     前記液化炭酸ガスを貯蔵する貯蔵工程と、
     前記貯蔵工程から供給される前記液化炭酸ガスを、低沸点熱媒体との熱交換により、膨張蒸発する二酸化炭素に変換する二酸化炭素側熱交換工程と、
     前記二酸化炭素側熱交換工程から送出される膨張蒸発した二酸化炭素により発電を行う二酸化炭素タービン発電工程と、
     前記二酸化炭素タービン発電工程で使用された二酸化炭素の残圧により浮力発電を行う浮力発電工程と、
     外部から熱源が供給され熱交換によって前記低沸点熱媒体を液体から膨張蒸発した気体の低沸点熱媒体に変換する熱源側熱交換工程と、
     前記熱源側熱交換工程から送出される膨張蒸発した気体の低沸点熱媒体により発電を行うバイナリー発電工程と、
     を有することを特徴とする二酸化炭素によるエネルギー産出方法。
    A method for producing energy by carbon dioxide using carbon dioxide as a medium capable of generating multiple powers as needed,
    A liquefied carbon dioxide conversion step of compressing and liquefying carbon dioxide recovered from any one or more of industrial discharge of a thermal power plant, a steel plant, a cement factory, a chemical factory or the atmosphere by electric power or surplus power,
    A storage step of storing the liquefied carbon dioxide gas,
    The liquefied carbon dioxide gas supplied from the storage step, by heat exchange with a low boiling point heat medium, a carbon dioxide side heat exchange step of converting to carbon dioxide that expands and evaporates,
    A carbon dioxide turbine power generation step for generating power by the expanded and vaporized carbon dioxide sent from the carbon dioxide side heat exchange step,
    A buoyancy power generation step for performing buoyancy power generation by the residual pressure of carbon dioxide used in the carbon dioxide turbine power generation step,
    A heat source side heat exchange step of converting the low boiling point heat medium from a liquid to a low boiling point heat medium of a gas expanded and evaporated by a heat source supplied from the outside by heat exchange,
    A binary power generation step for generating power by the low boiling point heat medium of the expanded and vaporized gas sent out from the heat source side heat exchange step,
    A method for producing energy by carbon dioxide, which comprises:
PCT/JP2018/044387 2018-12-03 2018-12-03 Energy production system based on carbon dioxide and energy production method based on carbon dioxide WO2020115792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044387 WO2020115792A1 (en) 2018-12-03 2018-12-03 Energy production system based on carbon dioxide and energy production method based on carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044387 WO2020115792A1 (en) 2018-12-03 2018-12-03 Energy production system based on carbon dioxide and energy production method based on carbon dioxide

Publications (1)

Publication Number Publication Date
WO2020115792A1 true WO2020115792A1 (en) 2020-06-11

Family

ID=70974170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044387 WO2020115792A1 (en) 2018-12-03 2018-12-03 Energy production system based on carbon dioxide and energy production method based on carbon dioxide

Country Status (1)

Country Link
WO (1) WO2020115792A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179610A (en) * 2021-03-10 2021-07-27 华电电力科学研究院有限公司 Data center system built near pump station and integrating refrigeration and heat supply
CN113644864A (en) * 2021-08-11 2021-11-12 西安交通大学 Lunar base energy supply system and method based on compressed carbon dioxide energy storage
CN114877737A (en) * 2022-05-12 2022-08-09 西安交通大学 Liquid carbon dioxide energy storage system and method based on flash evaporation and ejector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299780A (en) * 1988-10-03 1990-04-11 Masayuki Kurasaku Turning moment generating device
JPH04112634A (en) * 1990-09-03 1992-04-14 Asahi Denki Kk Energy storage power generating system
JPH07250669A (en) * 1994-03-16 1995-10-03 Mitsubishi Heavy Ind Ltd Device for culturing fine alga and device for culturing fine alga
WO2005045241A1 (en) * 2003-11-10 2005-05-19 Takeuchi Mfg.Co.,Ltd. Power generating system utilizing buoyancy
WO2008108436A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Power generation system
JP2010519926A (en) * 2007-03-08 2010-06-10 シームバイオティック エルティディ. Method for growing photosynthetic organisms
CN204827564U (en) * 2015-06-08 2015-12-02 沈阳瑞鸿能源环保科技有限公司 Low temperature heat source power generation facility
CN105927299A (en) * 2016-04-22 2016-09-07 石家庄新华能源环保科技股份有限公司 Carbon dioxide energy storage and supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299780A (en) * 1988-10-03 1990-04-11 Masayuki Kurasaku Turning moment generating device
JPH04112634A (en) * 1990-09-03 1992-04-14 Asahi Denki Kk Energy storage power generating system
JPH07250669A (en) * 1994-03-16 1995-10-03 Mitsubishi Heavy Ind Ltd Device for culturing fine alga and device for culturing fine alga
WO2005045241A1 (en) * 2003-11-10 2005-05-19 Takeuchi Mfg.Co.,Ltd. Power generating system utilizing buoyancy
WO2008108436A1 (en) * 2007-03-06 2008-09-12 New Scientific R & D Institute Inc. Power generation system
JP2010519926A (en) * 2007-03-08 2010-06-10 シームバイオティック エルティディ. Method for growing photosynthetic organisms
CN204827564U (en) * 2015-06-08 2015-12-02 沈阳瑞鸿能源环保科技有限公司 Low temperature heat source power generation facility
CN105927299A (en) * 2016-04-22 2016-09-07 石家庄新华能源环保科技股份有限公司 Carbon dioxide energy storage and supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179610A (en) * 2021-03-10 2021-07-27 华电电力科学研究院有限公司 Data center system built near pump station and integrating refrigeration and heat supply
CN113644864A (en) * 2021-08-11 2021-11-12 西安交通大学 Lunar base energy supply system and method based on compressed carbon dioxide energy storage
CN114877737A (en) * 2022-05-12 2022-08-09 西安交通大学 Liquid carbon dioxide energy storage system and method based on flash evaporation and ejector
CN114877737B (en) * 2022-05-12 2023-01-10 西安交通大学 Liquid carbon dioxide energy storage system and method based on flash evaporation and ejector

Similar Documents

Publication Publication Date Title
WO2020115792A1 (en) Energy production system based on carbon dioxide and energy production method based on carbon dioxide
Kleij et al. CO2 catalysis
KR101802376B1 (en) Solar /wind power hybrid generator set and smart farm system including the same
WO2009104820A1 (en) Solar thermal energy storage method
US9242866B2 (en) Activated carbon manufacturing system
CN110700944A (en) Solar energy and wind energy and fuel gas complementary combined hydrogen production methane production circulating thermal power generation device
US11913434B2 (en) Energy storage with hydrogen
EP2914904B1 (en) Structural configuration and method for environmentally safe waste and biomass processing to increase the efficiency of energy and heat generation
WO2009104813A1 (en) Method of converting solar heat energy
KR102174013B1 (en) Power generation system of organic rankine cycle using unused low and middle temperature waste heat
CA2988069A1 (en) Turbine system and method
TW202248131A (en) Method and plant for producing ammonia
CN107792329A (en) Power and water joint supply method
US20130252324A1 (en) System for establishing synergism between renewable energy production and fossil energy production
Monnerie et al. Coupling of wind energy and biogas with a high temperature steam electrolyser for hydrogen and methane production
CN103437837A (en) Biomass solid fuel heat conversion system
US10787964B2 (en) Energy storage and release apparatus and method for energy storage and release
CN216986969U (en) Carbon capture and utilization and CO2Energy storage and power generation integrated system
US20110265479A1 (en) System for steam production for electric power generation
CN107725191A (en) Power and water joint supply device
US20230049544A1 (en) Solar hydrogen method
KR101597287B1 (en) Solid oxide cell system and method for manufacturing the same
Bertolucci et al. The BGU/CERN solar hydrothermal reactor
CN104100369A (en) Production method of working medium at high energy state
CZ2005589A3 (en) Method of generating electric power and usable thermal energy and apparatus for making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP