WO2020113870A1 - Procédé de drainage d'eau de séparation de toit et d'exploitation minière de gaz de formation houillère coopératifs - Google Patents

Procédé de drainage d'eau de séparation de toit et d'exploitation minière de gaz de formation houillère coopératifs Download PDF

Info

Publication number
WO2020113870A1
WO2020113870A1 PCT/CN2019/080733 CN2019080733W WO2020113870A1 WO 2020113870 A1 WO2020113870 A1 WO 2020113870A1 CN 2019080733 W CN2019080733 W CN 2019080733W WO 2020113870 A1 WO2020113870 A1 WO 2020113870A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
coal
well
section
horizontal well
Prior art date
Application number
PCT/CN2019/080733
Other languages
English (en)
Chinese (zh)
Inventor
吴财芳
房孝杰
刘宁宁
刘小磊
张和伟
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2019323218A priority Critical patent/AU2019323218A1/en
Priority to JP2020506900A priority patent/JP6868747B2/ja
Priority to KR1020207003125A priority patent/KR102369397B1/ko
Publication of WO2020113870A1 publication Critical patent/WO2020113870A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F16/00Drainage
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Definitions

  • the present invention relates to the technical field, and in particular to a method for cooperative drainage of roof delamination water and coal-based gas.
  • coal-based gas drainage and production methods are diverse, including straight wells, cluster wells, U-shaped wells, multi-branch horizontal wells, etc.
  • coal seams in China are generally characterized by low porosity and permeability, so their production is low. The economic benefits are poor.
  • Patent document CN10481131A the patent title is "A CBM Well Up and Down Stereo Combined Extraction Method" does not disclose the simultaneous stage of hydrophobic gas production and the stage of single-thin roof water separation, only a single drainage of coal bed methane, the patent Although it is possible to realize three-dimensional combined drainage of coalbed methane up and down the well, it cannot solve the problem that the casing of the horizontal well caused by coal mining is damaged by the surrounding rock and cannot continue to discharge coalbed methane, nor can it be compatible with mine safety. Other issues related to production.
  • the present invention provides a method for cooperative drainage of roof delaminated water and coal-based gas, which combines coal-based gas drainage, coal production, and mine delamination water hazard prevention to reduce coal
  • the gas content in the coal seam, working face, goaf and roadway during mining is to reduce the harm of gas to the safety production of coal mines. It can also promote the desorption output of methane under the influence of coal mining and increase the output of coal system gas. It can prevent and control the delamination water in the delamination space in the roof of the coal mine goaf, and prevent the occurrence of secondary roof delamination water hazard accidents, which has great economic and social benefits.
  • the technical scheme adopted by the present invention is: a method for cooperative drainage of roof separation water and coal-based gas.
  • the coal-rock layer profile structure includes a U-shaped well and a drainage device, a goaf, a coal bed, a curved subsidence zone, Working face, hard rock layer, weak rock layer, separation space and unmined area
  • the U-shaped well includes vertical well, horizontal well, horizontal section of horizontal well, vertical section of horizontal well and inclined section of horizontal well
  • the drainage and production device Including tube pump, tubing, sucker rod, conventional casing, glass fiber reinforced plastic casing, plastic butt pipe and sealing device
  • the drainage method includes the following steps: 1Single coal bed methane stage, before coal recovery
  • the horizontal section of the horizontal well is subjected to conventional casing directional perforation and segmented hydraulic fracturing.
  • the perforation direction is vertically downward.
  • the vertical well is mainly used for drainage operations.
  • the horizontal well is used for gas extraction, and the fracturing fractures affect the coal in the coal seam and the coal roof.
  • the system gas is used for extraction.
  • the extraction method is negative pressure extraction. According to the statistical results of U-type wells with a general gas recovery period of 8 to 10 years, in order to ensure gas recovery efficiency, the discharge time is set to 8 years;
  • 3Single alienation layer water stage continue to advance on the working face until the working face is close to the corresponding position of the vertical section of the horizontal well, close the sealing device, at this time, formed in the horizontal section of the horizontal well and the curved subsidence zone
  • the delamination water in the upper delamination space is led by the fissures to conduct water into the delamination space below it.
  • the vertical section of the vertical well, the horizontal section of the horizontal well and the water that has not been destroyed by the surrounding rock The horizontal section of the horizontal well is drained at the same time to prevent the occurrence of water inrush accidents from the layer, to ensure the safety of the underground working face.
  • the horizontal section of the horizontal well is set in the area between the rock system where the first layer that appears at the bottom end of the curved subsidence zone of the mined-out area is a hard rock layer above and a weak rock layer below, and the vertical well is close to the working face
  • the horizontal well is away from the working face, and the horizontal section of the horizontal well is connected to the vertical section of the horizontal well through the horizontal well deflection section.
  • the horizontal section of the horizontal well is set on the side of the return air lane close to the working face.
  • the delaminated space is directed The first sealing device on the side of the unmined area is opened to seal the horizontal section of the horizontal well into two parts.
  • the unmined area is still drained of coal system gas, and the goaf area is drained for the purpose of draining the delaminated water , And taking into account the extraction of coal system gas in the mined-out area, with the progress of the mining work, open the newly formed delamination space to the first sealing device immediately adjacent to the side of the unmined area, and close the opened delamination space to the
  • the sealing device of the vertical well makes the horizontal section of the horizontal well divided into two sections of hydrophobic and gas production, until the coal seam is recovered to the corresponding position of the vertical section of the horizontal well, and the last sealing device is closed.
  • the horizontal section of the damaged horizontal well is simultaneously drained.
  • the installation position of the sealing device is determined according to the length of each section of the caving coal mining design.
  • the number of installation of the sealing device is n-1 (n is the number of caving sections).
  • n is the number of caving sections.
  • m is the number of conventional casings
  • the beneficial effects of the present invention are: using this method of cooperative drainage of roof delaminated water and coal-based gas, it can combine coal-based gas drainage, coal production, and prevention of mine delamination water damage.
  • it can not only reduce the gas content in coal seam, working face, goaf and roadway during coal mining, reduce the harm of gas to coal mine safety production, but also promote the desorption output of methane and increase coal under the influence of coal mining
  • the gas production can also prevent the delamination water in the delamination space in the roof of the coal mine goaf and prevent the occurrence of secondary delamination water damage accidents.
  • FIG. 1 is a schematic diagram of a stage in which hydrophobic gas production is synchronized in a method for cooperating drainage of roof layer separation water and coal system gas;
  • Fig. 3 is a schematic diagram of the water stage of a single alienation layer in the present invention.
  • 1-straight well 2-horizontal well, 3-horizontal well horizontal section, 4-horizontal well vertical section, 5-horizontal well deviating section, 6-sealing device, 7-goaf area, 8-coal seam, 9 -Bending subsidence zone, 10-working face, 11-hard rock formation, 12-weak rock formation, 13-separation space, 14-uncut area, 15-tube pump, 16-oil pipe, 17-sucker rod, 18 -Conventional casing, 19-fiberglass casing, 20-plastic butt joint.
  • the hydrophobic gas production is divided into three stages, including: 1Single coal bed methane production stage, 2Synchronized hydrophobic gas production stage, 3Single roof separation layer water stage; 1If Figure 1:
  • the single-bed coal bed methane stage is the conventional casing 18 directional perforation and segmented hydraulic fracturing of the horizontal section 3 of the horizontal well of the U-shaped well before coal recovery.
  • the perforation direction is vertically downward, and the vertical well 1 is mainly Carry out drainage operations, gas production in horizontal well 2, fracturing fractures to extract coal system gas in coal seam 8 and coal seam roof, the extraction method is negative pressure extraction, and the general gas production period of U-type wells is 8 to 10 years In order to ensure the efficiency of gas production, the discharge time is set to 8 years.
  • the synchronized stage of hydrophobic gas production is that after 8 years of separate gas production, coal seam 8 begins to recover, and after the formation of goaf 7, the use of sealing device 6 in the horizontal section of horizontal well 3 corresponds to the position of working face 10
  • the casing 18 is sealed to divide the horizontal section 3 of the horizontal well into two sections, which are the drainage section of the mined area 7 and the gas production section of the unmined area 14 respectively.
  • the empty zone 7 bends the sinking zone 9 and the delamination water in the delamination space 13 is drained.
  • the coal seam 8 on the side of the unmined zone 14 close to the goaf 7 is affected by the mining of the working face 10, and further depressurization and desorption.
  • the single-separation layer water stage is to continue to move forward in the working face 10 until the working face 10 is close to the corresponding position of the vertical section 4 of the horizontal well, and the sealing device 6 is closed. At this time, in the horizontal section 3 of the horizontal well and its Multiple sets of delamination spaces 13 are formed within the upper curved subsidence zone 9, and the delamination water in the upper delamination space 13 is conducted by the fissure, and conducts water into the delamination space 13 underneath. 3.
  • the vertical section 4 of the horizontal well and the horizontal section 3 of the horizontal well that are not damaged by the surrounding rock are simultaneously drained to prevent the occurrence of water inrush from the layer, to ensure the safety of the underground working face 10, and to close the well after the recovery of the working face 10 is completed.
  • the design position of the extraction well is determined according to the plan layout drawing of the mining excavation project, a vertical well is constructed at the starting end of the mining area, a horizontal well 2 is constructed along the advancing direction of the working face 10, and the horizontal well is vertical at the end point of the mining Section 4, horizontal well Horizontal section 3 is located in the area between the first series of hard rock layers 11 and soft rock layers 12 at the bottom of the curved subsidence zone 9 from bottom to top.
  • the vertical well 1 is slightly deeper than Horizontal section 3 of horizontal wells, but not deep into the fracture zone, both horizontal well 2 and vertical well 1 adopt negative pressure extraction.
  • the horizontal section 3 of the horizontal well is preferentially arranged on the side of the return air lane 10 close to the recovery face. If the recovery coal seam is a coal seam with a higher gas content, the air intake lane near the recovery face 10 can be used.
  • a group of U-shaped wells with the same structure are arranged at the corresponding positions.
  • both the horizontal well 2 and the vertical well 1 are drilled with a large-diameter drilling tool, and a glass fiber reinforced plastic casing 19 is provided at the junction of the horizontal section 3 of the horizontal well and the vertical well 1, and the butt section of the vertical well 1 is mechanically expanded.
  • the diameter of the section is 0.5m, which is convenient for the docking of the horizontal section 3 of the horizontal well and the vertical well 1.
  • conventional casing 18 is used to cement the vertical section 4 of the horizontal well, the deflection section 5 of the horizontal well and the vertical well 1 except for the butting section.
  • the conventional casing 18 has an inner diameter of 200 mm and 3 sets of horizontal sections
  • the tube assembly is a conventional casing 18 connected with a plastic butt joint tube 20.
  • the plastic butt joint tube 20 can plastically expand and contract when the surrounding rock is deformed to ensure the horizontal connectivity of the horizontal section 3 of the horizontal well.
  • a tubular pump 15 is installed in the lower part of the butt joint section of the vertical well 1 and the horizontal section 3 of the horizontal well and the bottom of the vertical section 4 of the horizontal well.
  • the tubing pump 15 is connected to the tubing 16 above the tubing 16 and the inside of the tubing 16 is a sucker rod 17.
  • the number of installations of the sealing device 6 is n-1 (n is the number of caving sections).
  • n-1 is the number of caving sections.
  • the embodiment of the present invention discloses a preferred embodiment, but it is not limited to this. Those of ordinary skill in the art can easily understand the spirit of the present invention and make different extensions and changes based on the above embodiments. But as long as it does not deviate from the spirit of the present invention, it is within the protection scope of the present invention.

Abstract

L'invention concerne un procédé de drainage d'eau de séparation de toit et d'exploitation minière de gaz de formation houillère coopératifs. La structure de section d'une strate de houille comprend : un puits vertical (1), un puits horizontal (2), une section horizontale (3) du puits horizontal, une section verticale (4) du puits horizontal, une section inclinée (5) du puits horizontal, un dispositif d'étanchéité (6), un remblai (7), une couche de houille (8), une zone d'affaissement de courbe (9), une face de travail (10), une strate dure (11), une strate souple (12), un espace de séparation (13), et une zone non exploitée (14). Ledit procédé comprend les étapes suivantes : une étape qui comprend uniquement l'exploitation minière du gaz de formation houillère; une étape qui comprend le drainage d'eau et d'exploitation minière de gaz synchrones; et une étape qui comprend uniquement le drainage d'eau de séparation de toit. Ledit procédé combine l'exploitation minière de gaz de formation houillière, la production de houille et la prévention et le contrôle de catastrophe d'eau de séparation de mine, réduit la teneur en gaz de décomposition dans la couche de houille, la face de travail, le remblai et une chaussée durant l'abattage de houille de façon à réduire les problèmes causés par le gaz de décomposition sur la sécurité de la production minière, et favorise la désorption et la production de méthane sous l'effet de l'exploitation minière de houille, augmente le rendement du gaz de formation houillère, et contrôle également l'eau de séparation dans l'espace de séparation dans le toit du remblai, de façon à empêcher la survenue d'une catastrophe d'eau de séparation de toit secondaire.
PCT/CN2019/080733 2018-12-07 2019-04-01 Procédé de drainage d'eau de séparation de toit et d'exploitation minière de gaz de formation houillère coopératifs WO2020113870A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2019323218A AU2019323218A1 (en) 2018-12-07 2019-04-01 Method for collaborative drainage of roof bed-separation water and coal-measure gas
JP2020506900A JP6868747B2 (ja) 2018-12-07 2019-04-01 天盤層裂か水と炭層ガスとを一緒に放出する方法
KR1020207003125A KR102369397B1 (ko) 2018-12-07 2019-04-01 상판 층 분리수와 협탄층 가스 협업 배출 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811493867.X 2018-12-07
CN201811493867.XA CN109339746B (zh) 2018-12-07 2018-12-07 一种顶板离层水与煤系气协同疏排方法

Publications (1)

Publication Number Publication Date
WO2020113870A1 true WO2020113870A1 (fr) 2020-06-11

Family

ID=65303485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080733 WO2020113870A1 (fr) 2018-12-07 2019-04-01 Procédé de drainage d'eau de séparation de toit et d'exploitation minière de gaz de formation houillère coopératifs

Country Status (5)

Country Link
JP (1) JP6868747B2 (fr)
KR (1) KR102369397B1 (fr)
CN (1) CN109339746B (fr)
AU (1) AU2019323218A1 (fr)
WO (1) WO2020113870A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812295A (zh) * 2020-07-21 2020-10-23 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验装置
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112127939A (zh) * 2020-08-28 2020-12-25 晋城蓝焰煤业股份有限公司 一种采煤工作面初采期间瓦斯管控方法
CN112145131A (zh) * 2020-10-12 2020-12-29 山西晋城无烟煤矿业集团有限责任公司 倾斜煤层采空区煤层气井抽采方法
CN112390460A (zh) * 2020-10-21 2021-02-23 山东环能环保科技有限公司 一种煤矿及煤化工高盐废水井下有效空间封存工艺
CN113236359A (zh) * 2021-05-28 2021-08-10 中煤科工集团西安研究院有限公司 一种离层水的疏放方法、离层水疏放巷道系统及施工方法
CN114439428A (zh) * 2021-12-30 2022-05-06 中煤科工集团西安研究院有限公司 穿采空区群下组煤煤层气水平井强化抽采方法
CN115030719A (zh) * 2022-04-26 2022-09-09 重庆大学 水力压裂厚硬岩层与煤层卸压相结合的冲击矿压防治方法
CN117027934A (zh) * 2023-07-05 2023-11-10 中国矿业大学 一种针对煤矿顶板水害治理的含水层抽排孔布置方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339746B (zh) * 2018-12-07 2020-08-25 中国矿业大学 一种顶板离层水与煤系气协同疏排方法
CN111140279B (zh) * 2020-03-09 2021-04-13 西安科技大学 一种厚煤层上分层受小窑破坏复采条件下老空水防治方法
CN111764960B (zh) * 2020-08-17 2021-11-12 六盘水师范学院 一种煤炭开采离层水害防治方法
CN112796712B (zh) * 2021-03-26 2022-07-26 山西省煤炭地质勘查研究院 一种采空区与煤层压裂综合抽采方法
CN113107450A (zh) * 2021-05-17 2021-07-13 中煤科工集团西安研究院有限公司 软硬交互煤层水平井分段压裂瓦斯超前抽采方法
CN115263419B (zh) * 2022-05-05 2023-08-29 中国矿业大学(北京) 基于多目标的矿井超前疏放水方法及相关设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069867A (en) * 1976-12-17 1978-01-24 The United States Of America As Represented By The United States Department Of Energy Cyclic flow underground coal gasification process
RU2345216C2 (ru) * 2007-03-09 2009-01-27 Институт угля и углехимии Сибирского отделения Российской Академии Наук (ИУУ СО РАН) Способ подземной газификации свиты угольных пластов
CN102080518A (zh) * 2011-01-17 2011-06-01 河南理工大学 煤层顶板复杂分支井抽采瓦斯方法
CN104131831A (zh) * 2014-06-12 2014-11-05 中国矿业大学 一种煤层气井上下立体联合抽采方法
CN105927191A (zh) * 2016-06-21 2016-09-07 太原理工大学 一种刀柱式老空区及下煤层煤层气联合开采的方法
CN106089291A (zh) * 2016-06-21 2016-11-09 太原理工大学 一种协同抽采垮落式老空区及下煤层煤层气的方法
CN109339746A (zh) * 2018-12-07 2019-02-15 中国矿业大学 一种顶板离层水与煤系气协同疏排方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455381C2 (ru) * 2006-04-21 2012-07-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Высокопрочные сплавы
CN101915072B (zh) * 2010-08-04 2014-03-26 中煤科工集团重庆研究院 地面钻井抽采采动稳定区煤层气的方法
CN102352769A (zh) * 2011-10-21 2012-02-15 河南煤业化工集团研究院有限责任公司 高突矿井煤与瓦斯共采一体化开采方法
JP5923330B2 (ja) * 2012-02-20 2016-05-24 Ihiプラント建設株式会社 メタンハイドレート分解によるメタンの採取方法
CN102943690B (zh) * 2012-10-30 2015-03-04 神华集团有限责任公司 采煤工作面顶板离层水的防治方法
WO2016019427A1 (fr) * 2014-08-04 2016-02-11 Leap Energy Australia Pty Ltd Système de puits
CN104863629B (zh) * 2015-06-11 2017-03-01 中国矿业大学 一种利用复合钻孔抽覆岩下离层瓦斯及排水注浆的方法
CN105927192B (zh) * 2016-06-21 2018-05-04 太原理工大学 一种垮落式老空区及下煤层煤层气联合开采的方法
CN108506037B (zh) * 2018-03-19 2019-10-01 中煤科工集团西安研究院有限公司 采煤工作面顶板高位定向钻孔群卸压瓦斯抽采方法
CN108798516B (zh) * 2018-04-28 2020-08-04 中国矿业大学 一种构造煤原位煤层气水平井洞穴卸压开采方法
CN108825195A (zh) * 2018-04-28 2018-11-16 中国矿业大学 一种煤层气水平井塌孔造洞穴卸压开发系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069867A (en) * 1976-12-17 1978-01-24 The United States Of America As Represented By The United States Department Of Energy Cyclic flow underground coal gasification process
RU2345216C2 (ru) * 2007-03-09 2009-01-27 Институт угля и углехимии Сибирского отделения Российской Академии Наук (ИУУ СО РАН) Способ подземной газификации свиты угольных пластов
CN102080518A (zh) * 2011-01-17 2011-06-01 河南理工大学 煤层顶板复杂分支井抽采瓦斯方法
CN104131831A (zh) * 2014-06-12 2014-11-05 中国矿业大学 一种煤层气井上下立体联合抽采方法
CN105927191A (zh) * 2016-06-21 2016-09-07 太原理工大学 一种刀柱式老空区及下煤层煤层气联合开采的方法
CN106089291A (zh) * 2016-06-21 2016-11-09 太原理工大学 一种协同抽采垮落式老空区及下煤层煤层气的方法
CN109339746A (zh) * 2018-12-07 2019-02-15 中国矿业大学 一种顶板离层水与煤系气协同疏排方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812295A (zh) * 2020-07-21 2020-10-23 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验装置
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112127939A (zh) * 2020-08-28 2020-12-25 晋城蓝焰煤业股份有限公司 一种采煤工作面初采期间瓦斯管控方法
CN112127939B (zh) * 2020-08-28 2023-12-05 晋城蓝焰煤业股份有限公司 一种采煤工作面初采期间瓦斯管控方法
CN112145131A (zh) * 2020-10-12 2020-12-29 山西晋城无烟煤矿业集团有限责任公司 倾斜煤层采空区煤层气井抽采方法
CN112390460A (zh) * 2020-10-21 2021-02-23 山东环能环保科技有限公司 一种煤矿及煤化工高盐废水井下有效空间封存工艺
CN113236359A (zh) * 2021-05-28 2021-08-10 中煤科工集团西安研究院有限公司 一种离层水的疏放方法、离层水疏放巷道系统及施工方法
CN113236359B (zh) * 2021-05-28 2022-06-28 中煤科工集团西安研究院有限公司 一种离层水的疏放方法、离层水疏放巷道系统及施工方法
CN114439428A (zh) * 2021-12-30 2022-05-06 中煤科工集团西安研究院有限公司 穿采空区群下组煤煤层气水平井强化抽采方法
CN114439428B (zh) * 2021-12-30 2023-08-25 中煤科工集团西安研究院有限公司 穿采空区群下组煤煤层气水平井强化抽采方法
CN115030719A (zh) * 2022-04-26 2022-09-09 重庆大学 水力压裂厚硬岩层与煤层卸压相结合的冲击矿压防治方法
CN117027934A (zh) * 2023-07-05 2023-11-10 中国矿业大学 一种针对煤矿顶板水害治理的含水层抽排孔布置方法

Also Published As

Publication number Publication date
AU2019323218A1 (en) 2020-06-25
CN109339746A (zh) 2019-02-15
KR20200070214A (ko) 2020-06-17
JP2021510398A (ja) 2021-04-22
CN109339746B (zh) 2020-08-25
KR102369397B1 (ko) 2022-03-03
JP6868747B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2020113870A1 (fr) Procédé de drainage d'eau de séparation de toit et d'exploitation minière de gaz de formation houillère coopératifs
CN101275469B (zh) 松软煤岩层下向钻孔抽采卸压瓦斯施工方法
CN102080526B (zh) 地面煤层顶板顺层水平压裂井抽采瓦斯方法
CN102116167B (zh) 一种煤层气地面、井下立体化抽采系统
CN104131831A (zh) 一种煤层气井上下立体联合抽采方法
WO2015103861A1 (fr) Procédé d'extraction de gaz par forage d'un trou dans une galerie d'aérage de retour en position haute de ventilation de type y de rétention d'entrée du côté du remblai
CN104100292A (zh) 单一低透气性突出厚煤层区域性瓦斯强化抽采方法
CN111441817B (zh) 煤层钻孔喷射压裂与采动压力协同作用强化瓦斯抽采方法
CN111963109B (zh) 一种多分支水平井抽采煤矿采空区瓦斯工艺
CN102022104A (zh) 裸眼水平井裸眼封隔器和预置连通器压裂完井方法
CN105971662A (zh) 一种l型钻孔分段压裂弱化煤层顶板的抽采瓦斯方法
CN103016047A (zh) 综放工作面顶板走向长钻孔抽放采空区瓦斯方法
CN109209474A (zh) 一种双分支井抽取下煤层及上部多采空区瓦斯与积水的方法
CN108756884A (zh) 煤矿坚硬顶板全工作面地面提前消突方法
CN112228142B (zh) 缓倾斜煤层巷道设计及邻近层和采空区瓦斯抽采方法
CN110043309A (zh) 关闭煤矿井的瓦斯抽采井的布置方法及井身安装方法
CN114294046B (zh) 一种煤矿区全覆盖井上下立体抽采方法
CN102678166A (zh) 单一厚煤层区域增透提高瓦斯抽采率的方法
CN106014345B (zh) 一种下部垮落法开采形成的复合老空区煤层气的抽采方法
CN105971563B (zh) 一种下部刀柱法开采形成的复合老空区煤层气的抽采方法
CN114837555A (zh) 羽状多功能定向钻孔布置方法
CN102003201B (zh) 煤矿采空区瓦斯抽放方法
CN102182426A (zh) 远距离卸压煤层煤层气的抽采方法
CN112360397B (zh) 一种过采空区下伏煤与煤层气共采方法
CN114439428B (zh) 穿采空区群下组煤煤层气水平井强化抽采方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020506900

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019323218

Country of ref document: AU

Date of ref document: 20190401

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891720

Country of ref document: EP

Kind code of ref document: A1