WO2020113787A1 - 一种超声探头校准方法 - Google Patents

一种超声探头校准方法 Download PDF

Info

Publication number
WO2020113787A1
WO2020113787A1 PCT/CN2019/072105 CN2019072105W WO2020113787A1 WO 2020113787 A1 WO2020113787 A1 WO 2020113787A1 CN 2019072105 W CN2019072105 W CN 2019072105W WO 2020113787 A1 WO2020113787 A1 WO 2020113787A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
color difference
dimensional
arc
imaging
Prior art date
Application number
PCT/CN2019/072105
Other languages
English (en)
French (fr)
Inventor
周文宗
郑一峰
罗虎
林伙旺
梁戈
Original Assignee
广州三瑞医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州三瑞医疗器械有限公司 filed Critical 广州三瑞医疗器械有限公司
Publication of WO2020113787A1 publication Critical patent/WO2020113787A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects

Definitions

  • the invention relates to the technical field of ultrasound, in particular to a method for calibrating an ultrasound probe.
  • ultrasound diagnosis is an image diagnosis technology that uses ultrasound to detect human tissue. It has the advantages of high resolution, good real-time performance, safety and non-invasiveness. It is widely used in clinical image diagnosis.
  • Ultrasound image diagnosis technology has been continuously developed and innovative. In recent years, three-dimensional Ultrasound imaging has gradually become an important medical diagnostic technology. The ultrasound data of human tissues and organs are acquired through the probe, and these data are processed to obtain a more realistic three-dimensional ultrasound image of the tissues and organs. The three-dimensional ultrasound has intuitive display and multi-angle observation The new functions such as are superior to the traditional two-dimensional ultrasound and have important application value.
  • Three-dimensional ultrasound imaging is obtained by three-dimensional reconstruction of multiple sets of two-dimensional plane information.
  • the sequence of two-dimensional image data is obtained through spatial scanning, and the spatial positional relationship between them is measured and recorded.
  • a certain amount of The interpolation algorithm restores the three-dimensional spatial data.
  • the positioning of the scanning position of the probe is a key factor to successfully realize the three-dimensional reconstruction.
  • Embodiments of the present invention provide an ultrasonic probe calibration method to solve the technical problem of large calibration error of existing ultrasonic probes.
  • the method can effectively reduce measurement errors, thereby helping to improve three-dimensional positioning accuracy.
  • an embodiment of the present invention provides an ultrasound probe calibration method, including the following steps:
  • S17 Convert the two-dimensional coordinates of the tip of the free sensor in the second imaging map to the three-dimensional coordinates to be measured under the three-dimensional magnetic field, and obtain the actual three-dimensional coordinates of the free sensor under the three-dimensional magnetic field ;
  • step S17 the two-dimensional coordinates of the tip of the free sensor in the second imaging map are converted into three-dimensional coordinates to be measured under the three-dimensional magnetic field, specifically:
  • the correction amount of the center point of the starting arc of the second imaging map under the three-dimensional magnetic field is (x yz), and the two-dimensional coordinates of the tip of the free sensor in the second imaging map Is (m)n, the two-dimensional coordinates of the point of the maximum longitudinal value in the starting arc in the second imaging map is (pq), and the size of the second imaging map is (L)W ,
  • the preset detection depth is h, and a positioning sensor with six degrees of freedom is set in the three-dimensional magnetic field;
  • the positioning three-dimensional coordinates calculate the three-dimensional coordinates (x 0 y 0 z 0 ) of the tip of the free sensor under the three-dimensional magnetic field calculated by the three-dimensional coordinate transformation formula;
  • x 0 , y 0 and z 0 of the three-dimensional coordinate to be measured are:
  • x 0 (x+(mp)*h/(Wq))*(cos(e 1 )*cos(a 1 ))+(y+(nq)*h/(Wq))*(-cos(r 1 ) *sin(a 1 )+sin(r 1 )*sin(e 1 )*cos(a 1 ))+z*(sin(r 1 )*sin(a 1 )+cos(r 1 )*sin(e 1 )*cos(a 1 ))+x 1
  • y 0 (x+(mp)*h/(Wq))*(cos(e 1 )*sin(a 1 ))+(y+(nq)*h/(Wq))*(cos(r 1 )* cos(a 1 )+sin(r 1 )*sin(e 1 )*sin(a 1 ))+z*(-sin(r 1 )*cos(a 1 )+cos(r 1 )*sin(e 1 )*sin(a 1 ))+y 1
  • obtaining the actual three-dimensional coordinates of the free sensor under the three-dimensional magnetic field in step S17 is specifically:
  • x′ x 2 +L*cos(e 2 *pi/180)*cos(a 2 *pi/180)
  • L is the distance between the center and the top of the free sensor.
  • the ternary equation system is established according to the three-dimensional coordinates to be measured and the actual three-dimensional coordinates, and the correction value of the ultrasonic probe under the three-dimensional magnetic field is calculated, specifically:
  • the three-dimensional coordinates to be measured (x 0 y 0 z 0 ) of the top of the free sensor under the three-dimensional magnetic field correspond to the actual three-dimensional coordinates (x'y'z') of the free sensor in the three-dimensional magnetic field To establish a system of equations about (xyz);
  • the free sensor in step S12 is a sensor coated with a coupling agent with a uniform appearance.
  • any two arcs in the second imaging diagram are selected as the starting arc and the concentric arc in step S13, and the starting arc and the concentric arc are calculated respectively
  • the coordinates of the center of the circle, the radius and the coordinates of the pixels on the arc are:
  • the radius of the starting arc is smaller than the radius of the concentric arc.
  • the method further includes:
  • a step is performed: a first curve is drawn according to the coordinate of the pixel point on the starting arc according to the first color difference ratio, and is preset for judging the color difference Adjustment threshold of the first curve to obtain the area where the color difference exists on the first curve, and select the first area with the longest continuous color difference therefrom, calculate the median coordinate of the first area, and correspond to the second color difference ratio according to Draw a second curve on the coordinates of the pixel points on the concentric arc, according to the adjustment threshold, obtain the area where the color difference exists on the second curve, and select the second area with the longest continuous color difference from it, and calculate the middle of the second area Value coordinates.
  • the second color difference ratio determining whether there is a color difference between the first imaging map and the second imaging map, specifically:
  • the tip of the free sensor is perpendicular to the surface of the acoustic lens of the ultrasonic probe .
  • the method further includes:
  • the average value of the plurality of correction values is calculated.
  • the present invention has the beneficial effect that the present invention obtains the first imaging image by scanning the air with the ultrasound probe and touching the free sensor coated with the coupling agent to the ultrasound probe And the second imaging map, and calculate the color difference ratio of the pixels corresponding to the starting arc and the concentric arc on the second imaging map, and select the longest area with continuous color difference on the two arcs , So as to obtain the median coordinates of the two regions, and then inversely combine the ultrasonic blind zone to obtain the coordinates of the top of the free sensor in the second imaging map, and further calculate the three-dimensional coordinates to be measured, according to the to-be-measured
  • the corresponding equal relationship between the three-dimensional coordinates and the actual three-dimensional coordinates establishes a system of related ternary equations, and finally calculates the correction value.
  • FIG. 1 is a flowchart of steps of an ultrasound probe calibration method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of an ultrasound probe scanning air according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of the ultrasound probe of Embodiment 1 of the present invention touching the top of a free sensor coated with a coupling agent;
  • FIG. 4 shows the first imaging diagram obtained in FIG. 2
  • FIG. 5 shows the second imaging diagram obtained in FIG. 3
  • FIG. 6 is a principle diagram of an ultrasound probe calibration method according to Embodiment 1 of the present invention.
  • Figure 7 shows an imaging diagram of a tissue-like phantom
  • Embodiment 8 is an imaging diagram of an ultrasound probe and a free sensor touching in Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of an ultrasonic probe calibration method according to Embodiment 2 of the present invention.
  • a preferred embodiment of the present invention provides an ultrasound probe calibration method, including the following steps:
  • S17 Convert the two-dimensional coordinates of the tip of the free sensor in the second imaging map to the three-dimensional coordinates to be measured under the three-dimensional magnetic field, and obtain the actual three-dimensional coordinates of the free sensor under the three-dimensional magnetic field ;
  • the method further includes: changing the touch position of the free sensor and the acoustic lens of the ultrasonic probe multiple times, and obtaining a plurality of correction values; calculating an average of the plurality of correction values value.
  • the tip of the free sensor is vertical The surface layer of the acoustic lens of the ultrasound probe.
  • the first imaging map and the second imaging map are respectively obtained by scanning the air with the ultrasonic probe and touching the free sensor coated with the coupling agent to the ultrasonic probe, and calculating The color difference ratio of the pixels corresponding to the starting arc and the concentric arc on the second imaging map, and the longest area with continuous color difference on the two arcs is selected to obtain the median coordinate of the two areas , Combined with the ultrasonic blind zone backstepping to obtain the coordinates of the top of the free sensor in the second imaging map, and further calculate the three-dimensional coordinates to be measured, according to the correspondence between the three-dimensional coordinates to be measured and the actual three-dimensional coordinates The equivalence relationship establishes a system of related ternary equations, and finally the correction value is calculated.
  • the first imaging image obtained when the ultrasound probe scans the air is obtained, and as shown in FIGS. 3 and 5, the acoustic lens of the ultrasound probe is coated with The second imaging map obtained when the tip of the free sensor of the coupling agent is touched; wherein, the RGB values of the first imaging map and the second imaging map are read by specific image software, and the three-color values of the two imaging maps are extracted Any one of the same color value, so that the first imaging image and the second imaging image have the same color value;
  • the radius of the starting arc is smaller than the radius of the concentric arc
  • the starting arc is the arc above the second imaging image and the background color is exactly different, and may be the first circle above
  • the arc can also be an arc in the middle.
  • step S15 is executed: a first curve is drawn according to the coordinates of the pixel points on the starting arc according to the first color difference ratio, preset for judgment An adjustment threshold for color difference, obtaining an area where color difference exists on the first curve, and selecting a first area with the longest continuous color difference therefrom, calculating an intermediate value coordinate of the first area, and corresponding to the second color difference ratio
  • Draw a second curve on the coordinates of the pixel points on the concentric arc, according to the adjustment threshold obtain the area with color difference on the second curve, and select the second area with the longest continuous color difference from it to calculate the
  • the median coordinate, the median coordinate of the first area, and the median coordinate of the second area are shown in FIG. 6.
  • the blind zone is the The distance between the intersection point of the free sensor and the starting arc and the tip of the free sensor, therefore combining the median coordinate of the first area, the median coordinate of the second area, and the blind zone, the Calculate the two-dimensional coordinates of the tip of the free sensor in the second imaging map.
  • the six degrees of freedom of the three-dimensional magnetic field are received by the positioning sensor, so according to the six degrees of freedom of the positioning sensor relative to the three-dimensional magnetic field x 2 , y 2 , z 2 , a 2 , e 2 , r 2 , calculate the actual three-dimensional coordinates (x'y'z') of the tip of the free sensor under the three-dimensional magnetic field, the coordinates of the actual three-dimensional coordinates (x'y'z')x',y'andz'are:
  • x′ x 2 +L*cos(e 2 *pi/180)*cos(a 2 *pi/180)
  • L is the distance between the center and the top of the free sensor.
  • the positioning three-dimensional coordinates calculate the three-dimensional coordinates (x 0 y 0 z 0 ) of the tip of the free sensor under the three-dimensional magnetic field calculated by the three-dimensional coordinate transformation formula;
  • x 0 , y 0 and z 0 of the three-dimensional coordinate to be measured are:
  • x 0 (x+(mp)*h/(Wq))*(cos(e 1 )*cos(a 1 ))+(y+(nq)*h/(Wq))*(-cos(r 1 ) *sin(a 1 )+sin(r 1 )*sin(e 1 )*cos(a 1 ))+z*(sin(r 1 )*sin(a 1 )+cos(r 1 )*sin(e 1 )*cos(a 1 ))+x 1
  • y 0 (x+(mp)*h/(Wq))*(cos(e 1 )*sin(a 1 ))+(y+(nq)*h/(Wq))*(cos(r 1 )* cos(a 1 )+sin(r 1 )*sin(e 1 )*sin(a 1 ))+z*(-sin(r 1 )*cos(a 1 )+cos(r 1 )*sin(e 1 )*sin(a 1 ))+y 1
  • the KS107BD-type ultrasound phantom may be used for analysis.
  • the main frequency of ultrasound It is 3MHz, and the detection depth is 150mm; by scanning the blind spot target group with the ultrasonic probe, and positioning the desired target point in the lateral center of the imaging map of the tissue phantom, as shown in FIG. 7.
  • the point A marked as the upper edge is a blind spot target 10 mm away from the acoustic window
  • the point B marked as the lower edge is a lateral target point 10 mm away from the upper edge point (refer to KS107BD (The product specification of the tissue-like ultrasound phantom is available).
  • the distance of AB in the image of the simulated tissue phantom is 0.5485mm larger than the actual distance, and the relative error is relatively small.
  • the starting arc in addition to the concentric arc, there may be a third arc, because the starting arc, the concentric arc,
  • the circle corresponding to the third arc is a concentric circle, 3 points are randomly selected on the starting arc (recommended to have a larger distance between 3), an equation system is established, and the coordinates of the center of the starting arc are calculated ,
  • the radius and the coordinates of the point of the starting arc in the image, randomly selecting a point on the concentric arc, the distance from this point to the starting arc is the radius of the concentric arc, and thus the radius,
  • the coordinates of the points of the concentric arc in the imaging diagram can be obtained.
  • the radius of the third arc and the coordinates of the point of the third arc in the rendering diagram are calculated.
  • the coordinate of the intersection of the concentric arc and the center of the free sensor is (65126)
  • the blind zone of the ultrasonic probe is 4.4304mm, that is, the vertex of the free sensor is 4.4304mm from the center of the free sensor at the starting arc (the free sensor is perpendicular to the probe acoustic lens), combined with the concentric circle
  • the radius difference between the arc and the starting arc can be calculated according to the distance corresponding to the pixel point of the imaging map according to the coordinates of the vertex of the free sensor in the second imaging map (588.0952 20.2814).
  • the accuracy of the median coordinate of the starting circle will directly affect the conversion of the three-dimensional magnetic field coordinates. Receive six degrees of freedom of the magnetic field through the sensor (x 2 y 2 z 2 a 2 e 2 r 2 ), calculate the coordinates of the sensor vertex in the magnetic field coordinate system (x′ y′ z′), and take this actual three-dimensional coordinate Is the true value.
  • the coordinates of the tip of the free sensor in the second imaging map under the positioning sensor coordinate system are (x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z).
  • the six degrees of freedom of the positioning sensor receiving the three-dimensional magnetic field are (x 2 y 2 z 2 a 2 e 2 r 2 ), and the coordinates of the tip of the free sensor under the positioning sensor coordinate system are coordinate transformed After that, the coordinate to be measured (x 0 y 0 z 0 ) of the tip of the free sensor under the three-dimensional magnetic field is obtained.
  • x 0 (x+(mp)*h/(Wq))*(cos(e 1 )*cos(a 1 ))+(y+(nq)*h/(Wq))*(-cos(r 1 ) *sin(a 1 )+sin(r 1 )*sin(e 1 )*cos(a 1 ))+z*(sin(r 1 )*sin(a 1 )+cos(r 1 )*sin(e 1 )*cos(a 1 ))+x 1
  • y 0 (x+(mp)*h/(Wq))*(cos(e 1 )*sin(a 1 ))+(y+(nq)*h/(Wq))*(cos(r 1 )* cos(a 1 )+sin(r 1 )*sin(e 1 )*sin(a 1 ))+z*(-sin(r 1 )*cos(a 1 )+cos(r 1 )*sin(e 1 )*sin(a 1 ))+y 1
  • the correction value calculated to the center of the starting arc is (89.9185 5.3324 19.3941).
  • the three-dimensional coordinates to be measured can be obtained, and the difference between the three-dimensional coordinates to be measured and the real coordinates can be compared.
  • Table 2 The results are shown in Table 2 below:
  • dif_x represents the distance difference in the x-axis direction
  • dif_y indicates the distance difference in the y-axis direction
  • dif_z indicates the distance difference in the z-axis direction
  • distance represents the difference between the three-dimensional coordinates to be measured and the real coordinates
  • the average deviation of the measured three-dimensional coordinates and the true coordinates in the xyz axis direction is: (0.93779 0.70464 0.38675), which indicates that the error between the measured coordinate value and its true coordinate value is less than 2mm, so the stability of the result Higher.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声探头校准方法,包括得到超声探头在预设的探测深度下的盲区(S11);将超声探头置于三维磁场下并获得超声探头在扫描空气时得到的第一成像图、超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图(S12);根据色差比值分别选取对应圆弧上最长连续色差的第一区域、第二区域,计算第一区域、第二区域的中间值坐标(S15);根据第一区域、第二区域的中间值坐标以及盲区,计算自由传感器的顶端在第二成像图中的二维坐标并转换成待测三维坐标,根据待测三维坐标和自由传感器接收磁场的实际三维坐标建立三元方程组,计算得到超声探头在三维磁场下的修正值。该方法能够有效地降低测量误差,并提高三维定位精度。

Description

一种超声探头校准方法 技术领域
本发明涉及超声技术领域,尤其是涉及一种超声探头校准方法。
背景技术
目前,超声诊断是利用超声波探测人体组织的图像诊断技术,具有分辨率高,实时性好,安全无创等优点,在临床图像诊断中得到广泛应用,超声图像诊断技术不断发展创新,近年来,三维超声成像逐渐成为一种重要的医疗诊断技术,通过探头获取人体组织器官的超声数据,对这些数据进行处理,得到更具真实感的组织器官的三维超声图像,三维超声具有直观显示、多角度观察等新功能,优于传统的二维超声,有着重要的应用价值。
三维超声成像是由多组二维平面信息经过三维重建得来,通过空间扫描获取序列二维图像数据,测量并记录它们之间的空间位置关系,利用这些已知的空间位置关系,运用一定的插值算法恢复三维的空间数据,其中,探头扫査位置的定位是成功实现三维重建的关键因素。
现有技术中,结合当前的医疗科技出现了电磁跟踪定位技术,其主要采用一种称作自由手的探头(freehand),将传感器固定在普通超声探头上,并配套精确的接收定位机构,辅助计算探头的坐标,但是这种定位技术需要操作人员在每次使用超声探头时都需要进行人工探头校准,不仅繁琐、耗费时间,而且计算得到的特征点坐标值与其真实坐标值的误差较大,难以满足测量需求。
发明内容
本发明实施例提供了一种超声探头校准方法,以解决现有的超声探头校准误差较大的技术问题,该方法能有效地降低测量误差,从而有利于提高三维定位精度。
为了解决上述技术问题,本发明实施例提供了一种超声探头校准方法,包括以下步骤:
S11、通过仿组织超声体模分析得到所述超声探头在预设的探测深度下的盲区;
S12、将所述超声探头置于三维磁场下,并获得所述超声探头在扫描空气时得到的第一成像图、所述超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图;其中,所述第一成像图和所述第二成像图的色值相同;
S13、选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧,并各自计算所述起始圆弧和所述同心圆弧的圆心坐标、半径和圆弧上的像素点坐标;
S14、获得所述起始圆弧与所述第一成像图中的一对应圆弧的像素点色值的第一色差比值,及所述同心圆弧与所述第一成像图中的一对应圆弧的像素点色值的第二色差比值;
S15、根据所述第一色差比值对应所述起始圆弧上像素点坐标绘制第一曲线,预设用于判断色差的调节阈值,获得所述第一曲线上存在色差的区域,并从中选取连续色差最长的第一区域,计算所述第一区域的中间值坐标,及根据所述第二色差比值对应所述同心圆弧上像素点坐标绘制第二曲线,按照所述调节阈值,获取所述第二曲线上存在色差的区域,并从中选取连续色差最长的第二区域,计算所述第二区域的中间值坐标;
S16、根据所述第一区域的中间值坐标、所述第二区域的中间值坐标以及所述盲区,计算所述自由传感器的顶端在所述第二成像图中的二维坐标;
S17、将所述自由传感器的顶端在所述第二成像图中的二维坐标转换为所述三维磁场下的待测三维坐标,并获得所述自由传感器在所述三维磁场下的实际三维坐标;
S18、根据所述待测三维坐标和所述实际三维坐标建立三元方程组,计算得到所述超声探头在所述三维磁场下的修正值。
作为优选方案,所述步骤S17中的将所述自由传感器的顶端在所述第二成像图中的二维坐标转换为所述三维磁场下的待测三维坐标,具体为:
设定所述第二成像图的起始圆弧的中心点在所述三维磁场下的修正量为(x  y z),所述自由传感器的顶端在所述第二成像图中的二维坐标为(m n),所述起始圆弧中的最大纵向值的点在所述第二成像图中的二维坐标为(p q),所述第二成像图的大小为(L W),所述预设的探测深度为h,并在所述三维磁场中设定一个具有六自由度的定位传感器;
计算所述自由传感器的顶端在所述定位传感器的坐标系中的定位三维坐标(x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z);
根据所述定位传感器相对所述三维磁场的六个自由度x 1、y 1、z 1、a 1、e 1、r 1,将所述定位三维坐标(x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z)通过三维坐标变换公式计算得到所述自由传感器的顶端在所述三维磁场下的待测三维坐标(x 0 y 0 z 0);
其中,所述待测三维坐标(x 0 y 0 z 0)的x 0、y 0、z 0分别为:
x 0=(x+(m-p)*h/(W-q))*(cos(e 1)*cos(a 1))+(y+(n-q)*h/(W-q))*(-cos(r 1)*sin(a 1)+sin(r 1)*sin(e 1)*cos(a 1))+z*(sin(r 1)*sin(a 1)+cos(r 1)*sin(e 1)*cos(a 1))+x 1
y 0=(x+(m-p)*h/(W-q))*(cos(e 1)*sin(a 1))+(y+(n-q)*h/(W-q))*(cos(r 1)*cos(a 1)+sin(r 1)*sin(e 1)*sin(a 1))+z*(-sin(r 1)*cos(a 1)+cos(r 1)*sin(e 1)*sin(a 1))+y 1
z 0=(x+(m-p)*h/(W-q))*(-sin(e 1))+(y+(n-q)*h/(W-q))*(sin(r 1)*cos(e 1))+z*(cos(r 1)*cos(e 1))+z 1
作为优选方案,所述步骤S17中的获得所述自由传感器在所述三维磁场下的实际三维坐标,具体为:
根据所述定位传感器相对所述三维磁场的六个自由度x 2、y 2、z 2、a 2、e 2、r 2,计算所述自由传感器的顶端在所述三维磁场下的实际三维坐标(x' y' z'),所述实际三维坐标(x' y' z')的坐标x'、y'、z'分别为:
x′=x 2+L*cos(e 2*pi/180)*cos(a 2*pi/180)
y′=y 2+L*cos(e 2*pi/180)*sin(a 2*pi/180)
z′=z 2-L*sin(e 2*pi/180)
其中,L为所述自由传感器的中心与顶端之间的距离。
作为优选方案,所述根据所述待测三维坐标和所述实际三维坐标建立三元方程组,计算得到所述超声探头在所述三维磁场下的修正值,具体为:
根据所述自由传感器的顶端在所述三维磁场下的待测三维坐标(x 0 y 0 z 0) 与所述自由传感器在所述三维磁场的实际三维坐标(x' y' z')对应相等的关系,建立关于(x y z)的方程组;
计算所述方程组,得到所述超声探头在所述三维磁场下的修正值。
作为优选方案,所述步骤S12中的自由传感器为外表均匀的涂有耦合剂的传感器。
作为优选方案,所述步骤S13中的选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧,并各自计算所述起始圆弧和所述同心圆弧的圆心坐标、半径和圆弧上的像素点坐标,具体为:
选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧;
在所述起始圆弧上选取任意三个点,建立圆弧方程组并计算所述起始圆弧的圆心坐标、半径和圆弧上的像素点坐标;
在所述同心圆弧上选取任意三个点,建立圆弧方程组并计算所述起始圆弧的圆心坐标、半径和圆弧上的像素点坐标;
其中,所述起始圆弧的半径小于所述同心圆弧的半径。
作为优选方案,所述方法还包括:
根据所述第一色差比值、所述第二色差比值和所述调节阈值,判断所述第一成像图和所述第二成像图是否存在色差;
当所述第一成像图和所述第二成像图存在色差时,执行步骤:根据所述第一色差比值对应所述起始圆弧上像素点坐标绘制第一曲线,预设用于判断色差的调节阈值,获得所述第一曲线上存在色差的区域,并从中选取连续色差最长的第一区域,计算所述第一区域的中间值坐标,及根据所述第二色差比值对应所述同心圆弧上像素点坐标绘制第二曲线,按照所述调节阈值,获取所述第二曲线上存在色差的区域,并从中选取连续色差最长的第二区域,计算所述第二区域的中间值坐标。
作为优选方案,所述根据所述第一色差比值、所述第二色差比值和所述调节阈值,判断所述第一成像图和所述第二成像图是否存在色差,具体为:
将所述调节阈值设为c;其中,0<c<1;
判断所述第一色差比值、所述第二色差比值是否满足大于c且小于2-c;
若是,则判定所述第一成像图和所述第二成像图不存在色差;
若否,则判定所述第一成像图和所述第二成像图存在色差。
作为优选方案,在获得所述超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图之前,将所述自由传感器的顶端垂直所述超声探头的声透镜表层。
作为优选方案,所述方法还包括:
多次改变所述自由传感器与所述超声探头的声透镜的触碰位置,并得到多个修正值;
计算得到所述多个修正值的平均值。
相比于现有技术,本发明的有益效果在于,本发明通过所述超声探头在扫描空气和将涂有耦合剂的所述自由传感器触碰所述超声探头,分别得到所述第一成像图和所述第二成像图,并计算所述第二成像图上所述起始圆弧、所述同心圆弧对应像素点的色差比值,选取这两个圆弧上存在连续色差的最长区域,从而获得两个区域的中间值坐标,再结合超声盲区反推得到所述自由传感器顶端在所述第二成像图中的坐标,进而进一步计算得到所述待测三维坐标,根据所述待测三维坐标和所述实际三维坐标的对应相等关系建立有关三元方程组,最终计算得到修正值。这样,不仅简化了校准过程,而且能够有效地降低测量误差,有利于提高三维定位精度;且所述超声探头在测试得到的修正值偏差较小,稳定性较好,操作人员在每次成像图的定位计算中,加入所述修正值计算得到的结果更为准确。
附图说明
图1是本发明实施例一的超声探头校准方法的步骤流程图;
图2是本发明实施例一的超声探头扫描空气的示意图;
图3是本发明实施例一的超声探头与涂有耦合剂的自由传感器的顶端触碰的示意图;
图4展现的是图2得到的第一成像图;
图5展现的是图3得到的第二成像图;
图6是本发明实施例一的超声探头校准方法的原理图;
图7展现的是仿组织体模的成像图;
图8是本发明实施例二的超声探头与自由传感器触碰的成像图;
图9是本发明实施例二的超声探头校准方法的原理图;
图10是本发明实施例二的同心圆弧、第三圆弧对应色差比较值的曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1至图6,本发明优选实施例提供了一种超声探头校准方法,包括以下步骤:
S11、通过仿组织超声体模分析得到所述超声探头在预设的探测深度下的盲区;
S12、将所述超声探头置于三维磁场下,并获得所述超声探头在扫描空气时得到的第一成像图、所述超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图;其中,所述第一成像图和所述第二成像图的色值相同;
S13、选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧,并各自计算所述起始圆弧和所述同心圆弧的圆心坐标、半径和圆弧上的像素点坐标;
S14、获得所述起始圆弧与所述第一成像图中的一对应圆弧的像素点色值的第一色差比值,及所述同心圆弧与所述第一成像图中的一对应圆弧的像素点色值的第二色差比值;
S15、根据所述第一色差比值对应所述起始圆弧上像素点坐标绘制第一曲线,预设用于判断色差的调节阈值,获得所述第一曲线上存在色差的区域,并从中选取连续色差最长的第一区域,计算所述第一区域的中间值坐标,及根据所述第二色差比值对应所述同心圆弧上像素点坐标绘制第二曲线,按照所述调节阈值,获 取所述第二曲线上存在色差的区域,并从中选取连续色差最长的第二区域,计算所述第二区域的中间值坐标;
S16、根据所述第一区域的中间值坐标、所述第二区域的中间值坐标以及所述盲区,计算所述自由传感器的顶端在所述第二成像图中的二维坐标;
S17、将所述自由传感器的顶端在所述第二成像图中的二维坐标转换为所述三维磁场下的待测三维坐标,并获得所述自由传感器在所述三维磁场下的实际三维坐标;
S18、根据所述待测三维坐标和所述实际三维坐标建立三元方程组,计算得到所述超声探头在所述三维磁场下的修正值。
在本发明实施例中,所述方法还包括:多次改变所述自由传感器与所述超声探头的声透镜的触碰位置,并得到多个修正值;计算得到所述多个修正值的平均值。
在本发明实施例中,应当说明的是,在获得所述超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图之前,将所述自由传感器的顶端垂直所述超声探头的声透镜表层。
在本实施例中,通过所述超声探头在扫描空气和将涂有耦合剂的所述自由传感器触碰所述超声探头,分别得到所述第一成像图和所述第二成像图,并计算所述第二成像图上所述起始圆弧、所述同心圆弧对应像素点的色差比值,选取这两个圆弧上存在连续色差的最长区域,从而获得两个区域的中间值坐标,再结合超声盲区反推得到所述自由传感器顶端在所述第二成像图中的坐标,进而进一步计算得到所述待测三维坐标,根据所述待测三维坐标和所述实际三维坐标的对应相等关系建立有关三元方程组,最终计算得到修正值。这样,不仅简化了校准过程,而且能够有效地降低测量误差,有利于提高三维定位精度;且所述超声探头在测试得到的修正值偏差较小,稳定性较好,操作人员在每次成像图的定位计算中,加入所述修正值计算得到的结果更为准确。
具体的,本发明实施例的实施步骤如下:
(1)固定所述超声探头的探测深度,作为所述预设的探测深度,通过仿组 织超声体模分析得到所述超声探头在预设的探测深度下的盲区。
(2)将所述超声探头置于三维磁场下,同时把一个具有六自由度的传感器固定在所述超声探头的夹具上,将所述超声探头上的传感器作为所述定位传感器。
(3)如图2和图4所示,获得所述超声探头在扫描空气时得到的第一成像图,以及如图3和图5所示,获得所述超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图;其中,通过特定的图像软件读取所述第一成像图和所述第二成像图的RGB值,抽取两张成像图三色值中任意一项同种色值,使所述第一成像图和所述第二成像图的色值相同;
(4)如图6所示,随机选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧,并各自计算所述起始圆弧和所述同心圆弧的圆心坐标、半径和圆弧上的像素点坐标,具体如下:
选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧;
在所述起始圆弧上选取任意三个点,建立圆弧方程组并计算所述起始圆弧的圆心坐标、半径和圆弧上的像素点坐标;
同理,在所述同心圆弧上选取任意三个点,建立圆弧方程组并计算所述起始圆弧的圆心坐标、半径和圆弧上的像素点坐标;
其中,所述起始圆弧的半径小于所述同心圆弧的半径,所述起始圆弧为所述第二成像图上方与背景色正好不同的圆弧,可以是上方的第一道圆弧,也可以是中间的圆弧。
(5)选定一个可调节的阈值作为所述调节阈值c(0<c<1),在所述第一成像图、所述第二成像图的相同位置处,判断所述第一色差比值、所述第二色差比值是否满足大于c且小于2-c;
若是,则判定所述第一成像图和所述第二成像图不存在色差;
若否,则判定所述第一成像图和所述第二成像图存在色差。
根据所述第一色差比值、所述第二色差比值和所述调节阈值,判断所述第一成像图和所述第二成像图是否存在色差;
当所述第一成像图和所述第二成像图存在色差时,执行步骤S15:根据所述第一色差比值对应所述起始圆弧上像素点坐标绘制第一曲线,预设用于判断色差的调节阈值,获得所述第一曲线上存在色差的区域,并从中选取连续色差最长的第一区域,计算所述第一区域的中间值坐标,及根据所述第二色差比值对应所述同心圆弧上像素点坐标绘制第二曲线,按照所述调节阈值,获取所述第二曲线上存在色差的区域,并从中选取连续色差最长的第二区域,计算所述第二区域的中间值坐标,所述第一区域的中间值坐标、所述第二区域的中间值坐标如图6所示。
(6)由于所述第一区域的中间值坐标、所述第二区域的中间值坐标事故所述自由传感器与所述起始圆弧、所述同心圆弧交点的坐标,所述盲区是所述自由传感器与所述起始圆弧的交点到所述自由传感器顶端之间的距离,因此结合所述第一区域的中间值坐标、所述第二区域的中间值坐标以及所述盲区,能计算所述自由传感器的顶端在所述第二成像图中的二维坐标。
(7)如图6所示,通过所述定位传感器接收所述三维磁场的六个自由度,因此根据所述定位传感器相对所述三维磁场的六个自由度x 2、y 2、z 2、a 2、e 2、r 2,计算所述自由传感器的顶端在所述三维磁场下的实际三维坐标(x' y' z'),所述实际三维坐标(x' y' z')的坐标x'、y'、z'分别为:
x′=x 2+L*cos(e 2*pi/180)*cos(a 2*pi/180)
y′=y 2+L*cos(e 2*pi/180)*sin(a 2*pi/180)
z′=z 2-L*sin(e 2*pi/180)
其中,L为所述自由传感器的中心与顶端之间的距离。
(8)设定所述第二成像图的起始圆弧的中心点在所述三维磁场下的修正量为(x y z),所述自由传感器的顶端在所述第二成像图中的二维坐标为(m n),所述起始圆弧中的最大纵向值的点在所述第二成像图中的二维坐标为(p q),所述第二成像图的大小为(L W),所述预设的探测深度为h,并在所述三维磁场中设定一个具有六自由度的定位传感器;
计算所述自由传感器的顶端在所述定位传感器的坐标系中的定位三维坐标(x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z);
根据所述定位传感器相对所述三维磁场的六个自由度x 1、y 1、z 1、a 1、e 1、r 1,将 所述定位三维坐标(x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z)通过三维坐标变换公式计算得到所述自由传感器的顶端在所述三维磁场下的待测三维坐标(x 0 y 0 z 0);
其中,所述待测三维坐标(x 0 y 0 z 0)的x 0、y 0、z 0分别为:
x 0=(x+(m-p)*h/(W-q))*(cos(e 1)*cos(a 1))+(y+(n-q)*h/(W-q))*(-cos(r 1)*sin(a 1)+sin(r 1)*sin(e 1)*cos(a 1))+z*(sin(r 1)*sin(a 1)+cos(r 1)*sin(e 1)*cos(a 1))+x 1
y 0=(x+(m-p)*h/(W-q))*(cos(e 1)*sin(a 1))+(y+(n-q)*h/(W-q))*(cos(r 1)*cos(a 1)+sin(r 1)*sin(e 1)*sin(a 1))+z*(-sin(r 1)*cos(a 1)+cos(r 1)*sin(e 1)*sin(a 1))+y 1
z 0=(x+(m-p)*h/(W-q))*(-sin(e 1))+(y+(n-q)*h/(W-q))*(sin(r 1)*cos(e 1))+z*(cos(r 1)*cos(e 1))+z 1
(9)根据所述自由传感器的顶端在所述三维磁场下的待测三维坐标(x 0 y 0 z 0)与所述自由传感器在所述三维磁场的实际三维坐标(x' y' z')对应相等的关系,建立关于(x y z)的方程组;
计算所述方程组,得到所述超声探头在所述三维磁场下的修正值。
(10)在多次重复操作后,所述修正量的偏差较小,稳定性较好,从而在每次成像图的定位计算中,加入所述修正值,计算到的成像图中标识点在磁场下的三维坐标与真实值的偏差小于3mm。
在本发明实施例中,作为示例性的,在通过仿组织超声体模分析得到所述超声探头在预设的探测深度下的盲区时,可采用KS107BD型超声体模进行分析,超声的主频为3MHz,探测深度为150mm;通过用所述超声探头扫描盲区靶群,并使所需靶点位于仿组织体模的成像图的横向中心,如图7所示。
在仿组织体模的成像图中,标记为上缘的点A是距离声窗为10mm的盲区靶点,标记为下缘的点B是距离上缘点为10mm的横向靶点(参考KS107BD型仿组织超声体模的产品说明书可得)。
因将探测深度为150mm,可计算d AB=150/(754-43)*(122-72)=10.5485mm,仿组织体模的成像图中AB的距离比实际距离大0.5485mm,相对误差较小。仿组织体模的成像图中点A到声窗的距离为d A=150/(754-43)*(72-43)=6.1181mm;
因点A到声窗的实际距离为10mm,再加上AB测量距离与实际距离的0.5485mm偏差,所以成像图的盲区为10-6.1181+0.5485=4.4304mm。
在本实施例中,可以理解的是,为了提高所述超声探头校准的准确性,除了所述同心圆弧还可以有第三圆弧,由于所述起始圆弧、所述同心圆弧、所述第三圆弧对应的圆为同心圆,在所述起始圆弧上随机选取3个点(建议3个的间距大些),建立方程组,计算所述起始圆弧圆心的坐标、半径和所述起始圆弧在成像图中点的坐标,随机选取同心圆弧上一个点,此点到所述起始圆弧的距离为所述同心圆弧的半径,由此半径,可获得所述同心圆弧在成像图中点的坐标。同理,计算所述第三圆弧的半径和所述第三圆弧的在呈现图中点的坐标。所述同心圆弧和所述第三圆弧成像图轨迹上点的色差比值曲线,如图10所示,为了便于观察,所述同心圆弧在成像图上点的B值比值加上了0.1,所以最大值为1.1,最小值为0.1。
根据图10,可得到所述同心圆弧中连续0值最大的区域为[75 102],所以自由传感器经过所述同心圆弧时的中心位置对应图5中的横坐标为75-1+(102-75+1)/2=88;所述第三圆弧中连续0值最大的区域为[74 112],所以自由传感器经过所述第三圆弧时的中心位置对应图5中的横坐标为74-1+(112-74+1)/2=92.5,取整为92。
在图3中,所述同心圆弧与自由传感器中心交点的横坐标为563+88=651,所述同心圆弧与所述自由传感器中心交点的坐标为(651 26);所述第三圆弧与所述自由传感器中心交点的横坐标为563+92=655,则所述同心圆弧与所述自由传感器中心交点的坐标为(655 70)。引用上述的示例结果,所述超声探头的盲区为4.4304mm,即所述自由传感器顶点距所述起始圆弧处自由传感器中心4.4304mm(自由传感器与探头声透镜垂直),结合所述同心圆弧与所述起始圆弧的半径差,根据成像图像素点对应的距离,能计算所述自由传感器顶点在所述第二成像图的坐标(588.0952 20.2814)。
所述起始圆的中间值坐标的准确将直接影响所述三维磁场坐标的换算。通过传感器接收磁场的六个自由度(x 2 y 2 z 2 a 2 e 2 r 2),计算传感器顶点在磁场坐标系下的坐标(x′ y′ z′),并将这一实际三维坐标为真实值。
假设成像图起始圆弧中心点该体系下的修正量为(x y z),计算所述自由 传感器在所述第二成像图中的坐标(m n),所述起始圆弧在所述第二成像图的坐标为(p q),超声成像图的大小为(L W),超声探测深度为h;
则所述第二成像图中所述自由传感器的顶端在所述定位传感器坐标系下的坐标为(x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z)。
所述定位传感器接收所述三维磁场的六个自由度为(x 2 y 2 z 2 a 2 e 2 r 2),将所述自由传感器的顶端在所述定位传感器坐标系下的坐标经坐标变换后,得到所述自由传感器的顶端在所述三维磁场下的待测坐标(x 0 y 0 z 0)。
由于(x′ y′ z′)与(x 0 y 0 z 0)应对应相等,则可建立关于xyz的方程组,求解方程组,得到xyz值,其中:
x 0=(x+(m-p)*h/(W-q))*(cos(e 1)*cos(a 1))+(y+(n-q)*h/(W-q))*(-cos(r 1)*sin(a 1)+sin(r 1)*sin(e 1)*cos(a 1))+z*(sin(r 1)*sin(a 1)+cos(r 1)*sin(e 1)*cos(a 1))+x 1
y 0=(x+(m-p)*h/(W-q))*(cos(e 1)*sin(a 1))+(y+(n-q)*h/(W-q))*(cos(r 1)*cos(a 1)+sin(r 1)*sin(e 1)*sin(a 1))+z*(-sin(r 1)*cos(a 1)+cos(r 1)*sin(e 1)*sin(a 1))+y 1
z 0=(x+(m-p)*h/(W-q))*(-sin(e 1))+(y+(n-q)*h/(W-q))*(sin(r 1)*cos(e 1))+z*(cos(r 1)*cos(e 1))+z 1
计算到起始圆弧中心的修正值为(89.9185 5.3324 19.3941)。
此外,为了使得所述修正量的偏差较小,稳定性较好,还需在多次重复操作后,发明人进行10次校正,校正得到的数据如表1所示。
表1多次校正数据
Figure PCTCN2019072105-appb-000001
Figure PCTCN2019072105-appb-000002
从表1可计算得到所述修正值的平均值为:
(89.97495 5.31302 19.55709),其中,表中的修正值与平均值在xyz三个方向上的偏差小于±3mm。
依据本发明实施例的实施步骤(8),结合上述修正值的平均值,可求得待测三维坐标,比较待测三维坐标和真实坐标的差值,结果如下表2所示:
表2多次距离误差分析
Figure PCTCN2019072105-appb-000003
表2中,dif_x:表示x轴方向上的距离差;
dif_y:表示y轴方向上的距离差;
dif_z:表示z轴方向上的距离差;
distance表示待测三维坐标和真实坐标的差值;
从表2可计算得到待测三维坐标和真实坐标在xyz轴方向上的平均偏差为:(0.93779 0.70464 0.38675),这表明测算到的坐标值与其真实坐标值的误差小于2mm,因此结果的稳定性较高。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种超声探头校准方法,其特征在于,包括以下步骤:
    S11、通过仿组织超声体模分析得到所述超声探头在预设的探测深度下的盲区;
    S12、将所述超声探头置于三维磁场下,并获得所述超声探头在扫描空气时得到的第一成像图、所述超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图;其中,所述第一成像图和所述第二成像图的色值相同;
    S13、选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧,并各自计算所述起始圆弧和所述同心圆弧的圆心坐标、半径和圆弧上的像素点坐标;
    S14、获得所述起始圆弧与所述第一成像图中的一对应圆弧的像素点色值的第一色差比值,及所述同心圆弧与所述第一成像图中的一对应圆弧的像素点色值的第二色差比值;
    S15、根据所述第一色差比值对应所述起始圆弧上像素点坐标绘制第一曲线,预设用于判断色差的调节阈值,获得所述第一曲线上存在色差的区域,并从中选取连续色差最长的第一区域,计算所述第一区域的中间值坐标,及根据所述第二色差比值对应所述同心圆弧上像素点坐标绘制第二曲线,按照所述调节阈值,获取所述第二曲线上存在色差的区域,并从中选取连续色差最长的第二区域,计算所述第二区域的中间值坐标;
    S16、根据所述第一区域的中间值坐标、所述第二区域的中间值坐标以及所述盲区,计算所述自由传感器的顶端在所述第二成像图中的二维坐标;
    S17、将所述自由传感器的顶端在所述第二成像图中的二维坐标转换为所述三维磁场下的待测三维坐标,并获得所述自由传感器在所述三维磁场下的实际三维坐标;
    S18、根据所述待测三维坐标和所述实际三维坐标建立三元方程组,计算得到所述超声探头在所述三维磁场下的修正值。
  2. 如权利要求1所述的超声探头校准方法,其特征在于,所述步骤S17中的将所述自由传感器的顶端在所述第二成像图中的二维坐标转换为所述三维磁场下的待测三维坐标,具体为:
    设定所述第二成像图的起始圆弧的中心点在所述三维磁场下的修正量为(x y z),所述自由传感器的顶端在所述第二成像图中的二维坐标为(m n),所述起始圆弧中的最大纵向值的点在所述第二成像图中的二维坐标为(p q),所述第二成像图的大小为(L W),所述预设的探测深度为h,并在所述三维磁场中设定一个具有六自由度的定位传感器;
    计算所述自由传感器的顶端在所述定位传感器的坐标系中的定位三维坐标(x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z);
    根据所述定位传感器相对所述三维磁场的六个自由度x 1、y 1、z 1、a 1、e 1、r 1,将所述定位三维坐标(x+(m-p)*h/(W-q)y+(n-q)*h/(W-q)z)通过三维坐标变换公式计算得到所述自由传感器的顶端在所述三维磁场下的待测三维坐标(x 0 y 0 z 0);
    其中,所述待测三维坐标(x 0 y 0 z 0)的x 0、y 0、z 0分别为:
    x 0=(x+(m-p)*h/(W-q))*(cos(e 1)*cos(a 1))+(y+(n-q)*h/(W-q))*(-cos(r 1)*sin(a 1)+sin(r 1)*sin(e 1)*cos(a 1))+z*(sin(r 1)*sin(a 1)+cos(r 1)*sin(e 1)*cos(a 1))+x 1
    y 0=(x+(m-p)*h/(W-q))*(cos(e 1)*sin(a 1))+(y+(n-q)*h/(W-q))*(cos(r 1)*cos(a 1)+sin(r 1)*sin(e 1)*sin(a 1))+z*(-sin(r 1)*cos(a 1)+cos(r 1)*sin(e 1)*sin(a 1))+y 1
    z 0=(x+(m-p)*h/(W-q))*(-sin(e 1))+(y+(n-q)*h/(W-q))*(sin(r 1)*cos(e 1))+z*(cos(r 1)*cos(e 1))+z 1
  3. 如权利要求2所述的超声探头校准方法,其特征在于,所述步骤S17中的获得所述自由传感器在所述三维磁场下的实际三维坐标,具体为:
    根据所述定位传感器相对所述三维磁场的六个自由度x 2、y 2、z 2、a 2、e 2、r 2,计算所述自由传感器的顶端在所述三维磁场下的实际三维坐标(x' y' z'),所述实际三维坐标(x' y' z')的坐标x'、y'、z'分别为:
    x′=x 2+L*cos(e 2*pi/180)*cos(a 2*pi/180)
    y′=y 2+L*cos(e 2*pi/180)*sin(a 2*pi/180)
    z′=z 2-L*sin(e 2*pi/180)
    其中,L为所述自由传感器的中心与顶端之间的距离。
  4. 如权利要求3所述的超声探头校准方法,其特征在于,所述根据所述待测三维坐标和所述实际三维坐标建立三元方程组,计算得到所述超声探头在所述三维磁场下的修正值,具体为:
    根据所述自由传感器的顶端在所述三维磁场下的待测三维坐标(x 0 y 0 z 0)与所述自由传感器在所述三维磁场的实际三维坐标(x' y' z')对应相等的关系,建立关于(x y z)的方程组;
    计算所述方程组,得到所述超声探头在所述三维磁场下的修正值。
  5. 如权利要求1所述的超声探头校准方法,其特征在于,所述步骤S12中的自由传感器为外表均匀的涂有耦合剂的传感器。
  6. 如权利要求1所述的超声探头校准方法,其特征在于,所述步骤S13中的选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧,并各自计算所述起始圆弧和所述同心圆弧的圆心坐标、半径和圆弧上的像素点坐标,具体为:
    选取所述第二成像图中的任意两个圆弧分别作为起始圆弧、同心圆弧;
    在所述起始圆弧上选取任意三个点,建立圆弧方程组并计算所述起始圆弧的圆心坐标、半径和圆弧上的像素点坐标;
    在所述同心圆弧上选取任意三个点,建立圆弧方程组并计算所述起始圆弧的圆心坐标、半径和圆弧上的像素点坐标;
    其中,所述起始圆弧的半径小于所述同心圆弧的半径。
  7. 如权利要求1所述的超声探头校准方法,其特征在于,所述方法还包括:
    根据所述第一色差比值、所述第二色差比值和所述调节阈值,判断所述第一成像图和所述第二成像图是否存在色差;
    当所述第一成像图和所述第二成像图存在色差时,执行步骤:根据所述第一色差比值对应所述起始圆弧上像素点坐标绘制第一曲线,预设用于判断色差的调节阈值,获得所述第一曲线上存在色差的区域,并从中选取连续色差最长的第一区域,计算所述第一区域的中间值坐标,及根据所述第二色差比值对应所述同心圆弧上像素点坐标绘制第二曲线,按照所述调节阈值,获取所述第二曲线上存在色差的区域,并从中选取连续色差最长的第二区域,计算所述第二区域的中间值坐标。
  8. 如权利要求7所述的超声探头校准方法,其特征在于,所述根据所述第一色差比值、所述第二色差比值和所述调节阈值,判断所述第一成像图和所述第二成像图是否存在色差,具体为:
    将所述调节阈值设为c;其中,0<c<1;
    判断所述第一色差比值、所述第二色差比值是否满足大于c且小于2-c;
    若是,则判定所述第一成像图和所述第二成像图不存在色差;
    若否,则判定所述第一成像图和所述第二成像图存在色差。
  9. 如权利要求1所述的超声探头校准方法,其特征在于,在获得所述超声探头的声透镜在与涂有耦合剂的自由传感器顶端触碰时得到的第二成像图之前,将所述自由传感器的顶端垂直所述超声探头的声透镜表层。
  10. 如权利要求1~9任一项所述的超声探头校准方法,其特征在于,所述方法还包括:
    多次改变所述自由传感器与所述超声探头的声透镜的触碰位置,并得到多个修正值;
    计算得到所述多个修正值的平均值。
PCT/CN2019/072105 2018-12-04 2019-01-17 一种超声探头校准方法 WO2020113787A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811472207.3 2018-12-04
CN201811472207.3A CN109580786B (zh) 2018-12-04 2018-12-04 一种超声探头校准方法

Publications (1)

Publication Number Publication Date
WO2020113787A1 true WO2020113787A1 (zh) 2020-06-11

Family

ID=65927031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072105 WO2020113787A1 (zh) 2018-12-04 2019-01-17 一种超声探头校准方法

Country Status (2)

Country Link
CN (1) CN109580786B (zh)
WO (1) WO2020113787A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161130B (zh) * 2019-05-08 2023-08-22 武汉工程大学 一种用于超声扫描显微镜的定位系统和方法
CN113180608A (zh) * 2021-05-08 2021-07-30 上海科技大学 基于电磁场空间定位的光声成像系统
CN114176628A (zh) * 2021-11-15 2022-03-15 上海深至信息科技有限公司 一种超声扫查设备的耦合剂涂抹方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110184684A1 (en) * 2009-07-21 2011-07-28 Eigen, Inc. 3-d self-correcting freehand ultrasound tracking system
CN102846378A (zh) * 2012-07-31 2013-01-02 安徽皖仪科技股份有限公司 一种三维成像超声诊断探头的定位装置及方法
CN103230283A (zh) * 2013-04-16 2013-08-07 清华大学 一种超声探头成像平面空间位置标定的优化方法
CN103961140A (zh) * 2014-04-28 2014-08-06 广州三瑞医疗器械有限公司 一种超声探头定位传感器固定装置及其方法
CN104620128A (zh) * 2012-08-10 2015-05-13 毛伊图像公司 多孔径超声探头的校准
CN105193445A (zh) * 2015-09-01 2015-12-30 中国科学院深圳先进技术研究院 一种超声探头标定体模、超声探头标定系统及其标定方法
CN106725595A (zh) * 2016-12-05 2017-05-31 华南理工大学 一种电磁定位与b超一体化探头标定装置及其标定方法
CN107928705A (zh) * 2017-12-14 2018-04-20 暨南大学 一种基于电磁定位技术的超声探头标定方法与标定装置
CN107966694A (zh) * 2017-10-24 2018-04-27 苏州佳世达电通有限公司 一种超声波探头的校正方法和系统
WO2018116114A1 (en) * 2016-12-21 2018-06-28 Koninklijke Philips N.V. System and method for fast and automated ultrasound probe calibration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868959B2 (ja) * 2006-06-29 2012-02-01 オリンパスメディカルシステムズ株式会社 体腔内プローブ装置
US20080167581A1 (en) * 2007-01-10 2008-07-10 Yoav Paltieli Determining parameters associated with a female pelvis and cervix
HUE027097T2 (en) * 2009-03-23 2016-08-29 Liposonix Inc Method for Determining the Functionality of an Ultrasound Therapy Head
US8887551B2 (en) * 2011-09-06 2014-11-18 Trig Medical Ltd. Calibration of instrument relative to ultrasonic probe
CN102590814B (zh) * 2012-03-02 2014-04-02 华南理工大学 一种超声波探头空间位置和三维姿态的检测装置及方法
JP2014124319A (ja) * 2012-12-26 2014-07-07 Tokyo Univ Of Agriculture & Technology 超音波キャリブレーションシステム及び超音波キャリブレーション方法
JP2015139576A (ja) * 2014-01-29 2015-08-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びプログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110184684A1 (en) * 2009-07-21 2011-07-28 Eigen, Inc. 3-d self-correcting freehand ultrasound tracking system
CN102846378A (zh) * 2012-07-31 2013-01-02 安徽皖仪科技股份有限公司 一种三维成像超声诊断探头的定位装置及方法
CN104620128A (zh) * 2012-08-10 2015-05-13 毛伊图像公司 多孔径超声探头的校准
CN103230283A (zh) * 2013-04-16 2013-08-07 清华大学 一种超声探头成像平面空间位置标定的优化方法
CN103961140A (zh) * 2014-04-28 2014-08-06 广州三瑞医疗器械有限公司 一种超声探头定位传感器固定装置及其方法
CN105193445A (zh) * 2015-09-01 2015-12-30 中国科学院深圳先进技术研究院 一种超声探头标定体模、超声探头标定系统及其标定方法
CN106725595A (zh) * 2016-12-05 2017-05-31 华南理工大学 一种电磁定位与b超一体化探头标定装置及其标定方法
WO2018116114A1 (en) * 2016-12-21 2018-06-28 Koninklijke Philips N.V. System and method for fast and automated ultrasound probe calibration
CN107966694A (zh) * 2017-10-24 2018-04-27 苏州佳世达电通有限公司 一种超声波探头的校正方法和系统
CN107928705A (zh) * 2017-12-14 2018-04-20 暨南大学 一种基于电磁定位技术的超声探头标定方法与标定装置

Also Published As

Publication number Publication date
CN109580786B (zh) 2020-07-24
CN109580786A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020113787A1 (zh) 一种超声探头校准方法
JP6009185B2 (ja) 音源位置の推定方法
US7862509B2 (en) Measuring transducer movement methods and systems for multi-dimensional ultrasound imaging
JP4831281B2 (ja) 超音波撮像における自動血管追尾のための方法及び装置
US11793483B2 (en) Target probe placement for lung ultrasound
CN107481228A (zh) 基于计算机视觉的人体背部脊柱侧弯角度测量方法
JP5015580B2 (ja) 超音波診断装置及びレポート画像作成方法
CN101209210B (zh) 超声波图像取得装置
TW201347737A (zh) 乳房超音波影像掃描及診斷輔助系統
WO2018195946A1 (zh) 一种超声图像显示方法、设备及存储介质
CN113240726B (zh) 一种内窥镜下光学目标尺寸实时测量方法
WO2020133510A1 (zh) 一种超声成像方法及设备
CN105261061B (zh) 一种识别冗余数据的方法及装置
JP2014124319A (ja) 超音波キャリブレーションシステム及び超音波キャリブレーション方法
CN106725595B (zh) 一种电磁定位与b超一体化探头标定装置及其标定方法
JP3378446B2 (ja) 超音波画像の処理方法及びその装置
JPH08131436A (ja) 超音波診断装置
CN107928707B (zh) 一种适用于便携式超声设备的面积快速测量方法及系统
Yao et al. A three-dimensional quasi-static ultrasound strain imaging system using a 6-dof robotic arm
JP2000201930A (ja) 3次元超音波診断装置
JPH06245933A (ja) 超音波カラードプラ診断装置
JP2012055774A (ja) 超音波診断装置及びレポート画像作成方法
Hsu et al. Accurate fiducial location for freehand 3D ultrasound calibration
US20230217003A1 (en) Stereo camera calibration using screen based target projections
CN110916725A (zh) 一种基于陀螺仪的超声容积测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893421

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2021)