HUE027097T2 - Method of determining functionality of an ultrasound therapy head - Google Patents

Method of determining functionality of an ultrasound therapy head Download PDF

Info

Publication number
HUE027097T2
HUE027097T2 HUE10724164A HUE10724164A HUE027097T2 HU E027097 T2 HUE027097 T2 HU E027097T2 HU E10724164 A HUE10724164 A HU E10724164A HU E10724164 A HUE10724164 A HU E10724164A HU E027097 T2 HUE027097 T2 HU E027097T2
Authority
HU
Hungary
Prior art keywords
ahol ahol
expected
ultrasound
transducer
waveform
Prior art date
Application number
HUE10724164A
Other languages
Hungarian (hu)
Inventor
Blake Little
Original Assignee
Liposonix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liposonix Inc filed Critical Liposonix Inc
Publication of HUE027097T2 publication Critical patent/HUE027097T2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • A61B2017/00123Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation and automatic shutdown
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

A method and system for checking functionality of an ultrasound therapy head. The waveform profile for typical ultrasound reflections for a functional therapy head are stored, and before use of a therapy head, an ultrasound energy burst (700) is sent, and the actual waveform profile of the returned reflections (702) are compared to the stored waveform profiles (706). If the actual profiles are not sufficiently close to the stored profiles, then a first signal (712) may be generated, which may cause the ultrasound therapy device to shut down or may generate a warning. If the actual profiles are sufficiently close to the stored profiles, then operation may continue (714), or a second signal may be produced, permitting operation of the ultrasound therapy device.

Description

Description
BACKGROUND
[0001] Use of ultrasound to detect disturbances in a beam path is a well known application in medical devices. Various device manufacturers produce diagnostic ultrasound systems for imaging tissue, utilizing the basic principles of transmitting an ultrasound pulse into the body, then listening for the reflections. Reflections occur when the ultrasound beam crosses a barrier between different types of tissues, such as bone, muscle, fat or organs. Each boundary between a tissue type with different acoustic impedances produces a well known and well characterized type of reflection that allows diagnostic systems to identify objects in the beam path.
[0002] WO 01/82806 describes systems and methods for testing and calibrating a focussed ultrasound transducer array. An acoustic reflector, such as a planar air mirror, is used to test and calibrate the transducer array. Ultrasonic energy reflected off the acoustic reflector is sensed using a sensing element and a characteristic of the reflected ultrasonic energy, such as amplitude and phase, is measured by processing circuitry, for example by comparing the characteristic of the received ultrasonic energy to a corresponding characteristic of the transmitted ultrasonic energy to obtain an actual gain and phase shift for the received ultrasonic energy.
[0003] EP 0713192 describes a method and apparatus for testing the integrity of an ultrasonic transducer probe or the ultrasound system connected to the probe. The elements of the transducer are pulsed at a time when the probe is not in contact with the patient and the surface of the probe lens is exposed to open air. The channel electronics receives the echo signal returned from the lens-air interface and reverberations between this interface and the transducer. These signals are analyzed by a diagnostic processor for characteristics such as amplitude, time of echo reception, group delay and other characteristics to determine the possible existence of problems.
BRIEF SUMMARY
[0004] The present invention is set out in the appended claims.
[0005] The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented later.
[0006] In an embodiment, there is a high intensity focused ultrasound therapy system with a method for detecting a system fault. The method involves transmitting a burst of ultrasonic energy from a high intensity focused ultrasound transducer mounted in a therapy head, capturing a ring down waveform after the burst, comparing the ring down waveform to an expected ring down waveform profile and generating a fault signal if the ring down waveform does not substantially match the expected ring down waveform profile.
[0007] The method may further include storing one or more expected ring down waveform profile(s) on a persistent memory device. The method may also involve preventing a high intensity focused ultrasound therapy system from operating after the fault signal is generated.
[0008] In an embodiment, there is a high intensity focused ultrasound therapy system having a method for detecting a system fault. The method involves transmitting a burst of ultrasonic energy from a high intensity focused ultrasound transducer mounted in a therapy head, applying a clamp impedance across the transducer, comparing the residual electrical voltage (clamp waveform) against a stored clamp waveform profile and generating afault signal if the clamp waveform does not substantially match the stored clamp waveform profile.
[0009] In another embodiment, there is a method of determining functionality of an ultrasound therapy head. The method involves transmitting a burst of ultrasonic energy via a transducer that is mounted in a liquid filled therapy head, receiving one or more reflections from objects within the therapy head, the reflections comprising at least one waveform profile, comparing said waveform profile to an expected waveform profile for the therapy head, and generating a faultsignal if the waveform profile of the reflection does not meet the expected waveform profile.
[0010] In various aspects of the embodiments, the expected waveform profile may have an expected amplitude range at a particular range of delays from the burst. Alternatively the expected waveform profile may have an expected maximum amplitude during an expected range of time after the burst. The expected waveform profile may have a permitted deviation from a set of defined amplitudes, each defined amplitude being a different delay from the burst. The method may involve generating a second signal if the actual waveform profile of the reflection does meet the expected waveform profile.
[0011] In other aspects of the embodiments, two or more reflections may be arranged in sequence and compared to a corresponding sequence of expected waveform profiles, the arrangement of reflections and expected waveforms being a linear time sequence. These expected waveform profiles may be a permitted deviation from a group of defined amplitudes, each defined amplitude being a different delay from the burst. The expected waveform profile may have a group of expected amplitude ranges, each expected amplitude range at a different delay from the burst. The expected waveform profile may have a group of expected maximum amplitudes, each expected maximum amplitude at a different expected range of time after the burst.
[0012] In another embodiment, there is a medical ultrasound therapy system. The system including a therapy head, a high intensity ultrasound transducer mounted in the therapy head, a data store storing information about expected waveform profiles of reflections of the transducer, and a controller linked to the data store and the transducer and operative to compare actual waveform profiles to the stored expected waveform profiles and to generate a first signal if the profiles do not substantially match. The controller may also operate to generate a second signal if the profiles do substantially match. The second signal may enable a treatment operation by the transducer. The first signal may disable a treatment operation by the transducer.
[0013] For a fuller understanding of the nature and advantages of the present invention, reference should be made to the ensuing detailed description and accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014]
Figure 1 shows an embodiment of a medical ultrasound system into which embodiments may be incorporated.
Figure 2 shows a therapy head for the medical ultrasound system of Figure 1.
Figure 3 is a block diagram showing components of a controller for the medical ultrasound system of Figure 1 in accordance with an embodiment.
Figure 4 shows a diagrammatic representation of transmission and reflections of ultrasound generated and received by a transducer in accordance with an embodiment.
Figure 5A shows a linear sequence of possible expected waveforms following a pulse.
Figure 5B shows evaluation of a waveform with respect to an expected profile in accordance with an embodiment.
Figure 6 shows evaluation of a waveform with respect to an expected profile in accordance with another embodiment.
Figure 7 is a flow chart representing a method for comparing a waveform to an expected profile in accordance with an embodiment.
DETAILED DESCRIPTION
[0015] In the following paragraphs, various aspects and embodiments of the method and apparatus will be described. Specific details will be set forth in order to provide a thorough understanding of the described embodiments of the present invention. However, it will be apparent to those skilled in the art that the described embodiments may be practiced with only some or all of the described aspects, and with or without some of the specific details. In some instances, descriptions of well-known features may be omitted or simplified so as not to obscure the various aspects and embodiments of the present invention.
[0016] Parts of the description will be presented using terminology commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. The term system includes general purpose as well as special purpose arrangements of these components that are standalone, adjunct or embedded.
[0017] Various operations will be described as multiple discrete steps performed in turn in a manner that is most helpful in understanding the present invention. However, the order of description should not be construed as to imply that these operations are necessarily performed in the order they are presented, or even order dependent.
[0018] Reference throughout this specification to "one embodiment" or"an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment.
[0019] Described herein are various embodiments of a therapy head for use with a medical system. More particularly, therapy heads and related medical systems are provided that include an ultrasound transducer and a therapy processing module containing a processor, data store and controller that checks operation of the therapy head and generates a signal if the therapy head does not meet particular parameters. In an embodiment, as further described below, these parameters are based upon expected backscatterdata received by the ultrasound transducer or electrical ring down of the transducer after the applied electrical stimulus.
[0020] In an embodiment, a high intensity focused ultrasound (HIFU)transducer is excited togeneratea burst of ultrasound. As the ultrasound burst propagates from the transducer, various reflections are expected as the ultrasound wave encounters materials with different acoustic impedances in the beam path. These reflections are detected by the transducer and converted into an electrical signal in a reverse form of exciting the transducer. The measurement and analysis performed on these reflections vary by the signal processing algorithms of the various embodiments of the present invention. The reflections, echoes or other scattering of the acoustic wave following the pulse or burst transmission is collectively termed the "backscatter." Backscatter can be used to measure the strength of the reflection or echo, and the location ofthe object that caused the backscatter by using time of flight and the speed of sound in the medium to determine the distance from the transducer from the pulse.
[0021] The systems and methods of the various embodiments described herein may detect and compare the backscatter from one source, or multiple sources arranged in a variety of different formats, but generally the different reflections from a single ultrasound burst are measured in a linear time format. The systems and methods may analyze back scatter (reflections) from the ultrasound burst or "ring down" of the transducer after a burst. The electro-mechanical transient of the transducer after the application of an electrical drive burst or pulse is referred to herein as the transducer "ring down." By analogy, one might envision a bell. When the bell is struck, it issues forth sound. This is equivalent to the pulse or burst in the transducer. After being struck, a bell may still vibrate at a low level. This vibration is the mechanical energy bouncing around in the bell which eventually dissipates. The ring down of a transducer can be thought of as an analogy to the residual vibration in the bell. It is electro-mechanical energy after the pulse that dissipates over time and approaches zero. The time period required for the ring down to dissipate to a desired level is the ring down duration. The time interval during which the system looks at or measures the ring down signal is the ring down period. The ring down period may be arbitrarily defined and may be longer, shorter or the same time duration as the actual ring down duration.
[0022] In various embodiments of the systems and methods described herein, the burst or pulse of the transducer may be followed by an electrical clamp time. The clamp helps accelerate the dampening of the vibration of the transducer after a burst or pulse. The clamp provides an impedance across the transducer to increase the dissipation of any residual energy and hence reduce the ring down amplitude and duration of the transducer. Borrowing again from the bell analogy, the clamp down can be envisioned like a person placing their hand on the bell after it is struck to dampen the vibration. Certain types of defects in the transducer can cause the ring down duration and amplitude to increase. In this case the clamp time will not dissipate all the energy and the voltage after the clamp is removed will be much higher than normal. This excessive ring down voltage can be detected and used to indicate a defective transducer.
[0023] In addition to, or instead of, detecting and measuring the ring down of a transducer, the methods and systems of the various aspects of the invention may also monitor the clamp down time. During this time low waveform profile is expected due to the impedance placed across the transducer. If a different profile is observed then the clamp circuit may be damaged or the transducer characteristics may have changed dramatically.
[0024] In addition to, or instead of, detecting and measuring the ring down of a transducer, the methods and systems of the various aspects of the invention may also monitor for reflections within the treatment head (from objects in the coupling fluid or medium that are in the beam path, such as gas bubbles or particulate matter or large past reflections from the cap interface) and reflections from the cap of the treatment head (the boundary of the treatment head and patient). Reflections recorded for the latter reflections should generate an identifiable wave form for comparison. This waveform may be examined for both a minimum waveform pattern as well as a maximum waveform pattern. The minimum would check for the presence and location of the cap interface. The maximum pattern detection would check for proper coupling between the patient and the treatment head that would allow most of the energy to be coupled into the patient and not reflected back to the transducer. The former reflections should not produce significant waveforms during the interval where the ultrasound beam is in transit from the transducer to the cap. If a waveform is detected in this interval, the methods and systems of the various embodiments may produce a fault signal. Similarly, if the expected waveform of the cap reflection produces a waveform that is outside the acceptable waveform profiles, the systems and methods described herein may also generate a fault signal. A fault signal generated from any one of these monitored events will cause the system to cease operation. The detection of a fault event, and production of a fault signal, are intended as a safety feature for the HIFU system. The fault signal may be generated in response to any one of, or any combination of the detection events.
[0025] In another embodiment, a fault signal may be generated because there is no significant reflection from the cap, which may indicate the transducer or system itself failed to pulse. Such a failure mode may be detected by setting the expected reflection amplitude as a minimum threshold, below which a fault is generated.
[0026] In the various embodiments described herein, the safety of the patient and efficacy of the treatment are the primary concern. If the systems and methods as described herein operate without detecting the various faults, a patient may suffer skin burns during treatment, or the expected energy dose delivered to the patient may be reduced substantially. Further the device itself may generate sufficient reflected energy to the transducer, or internal cavitation may occur, such as to destroy or seriously damage the transducer and other components within the transducer chamber. The detection of any faults as described herein are referred to as system faults, whether they originate in the transducer, therapy head or other component that results in fault signal produced by the methods and/or systems described herein.
[0027] Discussion herein of the waveform profile generally refers to the various parameters that are capable of being measured by the system and methods described herein. These parameters may include any one or more of the following: the amplitude of the reflection, the frequency of the reflection signal, the duration of the reflection, the time delay of the reflection as measured from time after the initial burst, or the delay after any one of the other parameters described herein, the general shape of the reflection envelope (e.g. a square wave, a ramp wave, etc...). Similar parameters (amplitude, frequency, duration, time delay, and shape) may also apply to the ring down or clamp time.
[0028] Referring now to the drawings, in which like reference numerals represent like parts throughout the several views, FIG. 1 shows a medical ultrasound system 10 that may be used with embodiments of the invention. The medical ultrasound system 10 may include a base unit 12, an articulating arm 14 attached to the base unit, and a user interface device 16 attached to the articulating arm 14. At the distal end of the articulating arm 14 is an ultrasound therapy head 20.
[0029] The exterior of the ultrasound therapy head 20 may be a form factor that is easily handled by an operator. An example of one embodiment is shown in FIG. 2, but the ultrasound therapy head may take many otherforms. The ultrasound therapy head 20 may have cables extending from it and going to the base unit 12 through the articulating arm 14, or the cables may optionally be exposed.
[0030] As shown in FIG. 2, the ultrasound therapy head 20 includes an upper compartment 22, and a lower compartment 24, or ultrasound chamber. The ultrasound chamber has a cap. The upper compartment 22 may be dry and house wires, cables, a motor assembly, and/or otherfeaturesforatransducer23, which may be mounted in the lower compartment 24. The lower compartment 24 preferably contains a coupling fluid, such as water, or other medium, used to transfer ultrasound energy from the transducer 23 to and through a window 26 located near the bottom of the lower compartment. Other fluids, gels or solid materials may also be used as the coupling medium. Disposed within the upper compartment 22 is an actuation assembly 28. The actuation assembly 28 provides for control over the position/orientation of the transducer 23 located within the lower compartment 24. An example of an actuation assembly is described in U.S. patent application serial number 12/364,327, filed February 2, 2009, and entitled "Therapy Head for Use with an Ultrasound System." [0031] In operation, a technician rolls the medical ultrasound system 10 to adjacent a patient. The technician grasps and moves the ultrasound head 20, with the ultrasound head 20 remaining attached to the articulating arm 14. The ultrasound head 20 may be aligned so that the window 26 is in contact with the patient. The user interface device 16 may be operated to generate an appropriate treatment or diagnostic test. During use, the transducer mounted in the lower compartment 24 generates ultrasound energy, which may be used, for example, for the destruction of adipose tissue, as described in U.S. Published Application No. 2006/0122509. The actuation assembly 28 can be used to provideforsimplified treatment procedures. For example, the ultrasound head 20 can be held in stationary contact with the patient while the actuation assembly 28 varies the position/orientation of the ultrasound transducer so as to apply therapeutic treatment to a local region of the patient using a scan pattern that provides a desired coverage, duration, spacing, etc.
[0032] Fig. 3 shows a Therapy Processor Module 102 that may be used in the medical ultrasound system 10. The Therapy Processor includes a processor 101 and a controller 100. The processor 101 may be a standard control (i.e., a device or mechanism used to regulate or guide the operation of a machine, apparatus, or system), a microcomputer, or any other device that can execute computer-executable instructions, such as program modules. Generally, program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types.
[0033] The processor 101 sets up the operation of controller 100 using execution instruction stored in a persistent memory device in conjunction with any data input from an operator. Such data can, for example, be input through a user interface, such as the graphical user interface 16. Thus, processor 101 can include an execution area into which execution instructions are loaded from memory. These execution instructions will then cause processor 101 to send commands to controller 100, which provides the real time control for the operation of transducer 23 and/or other portions of the system 10.
[0034] The therapy processing module 102 may also include, or is otherwise associated with, a data store 104. The data store 104 stores information in the form of one or more data tables, with one table 106 illustrated. The profiles shown correspond to the events that should produce an expected echo or reflection. Addition profiles PROFILEn with desired time and amplitude ranges may be defined if desired, based on any additional reflections the system and/or methods may want to compare against established profile data.
[0035] Fig. 4 shows a diagrammatic representation of transmission of ultrasound by the transducer 23 in accordance with an embodiment. As stated above, the transducer 23 is mounted in the lower housing 24, which in an embodiment is filled with a coupling fluid, such as degassed water. The outer portion of the lower housing 24 is covered with the transmissible window 26, which may be, for example, Kapton. The window is substantially transparentto ultrasound energy. The transducer 23 may be mechanically focused or an array and have a depth variation 42 measured from the transducer center to the face or lip of the transducer edge. If the transducer is a flat array, the depth variation will be zero. The transducer has a nominal height 44 within the lower housing, and the transducer may be moved up or down with respect to the window 26. The nominal height 44 may vary by centimeters or fractions of a millimeter depending on the application the treatment head may be designed for. The cap height 46 is the difference in depth from the plane of the cap closest to the transducer, to the most extended position of the cap. The cap may be placed against a person’s skin during operation of the transducer. The cap may be flexible and capable of variable expansion, requiring adjustment in calculation depending on the cap height. The nominal height of the transducer 44 plus the cap height 46, plus any depth variation in the transducer, produces the cap depth 48. The treatment depth 49 is the distance from the outside edge of the cap to the focal zone of the transducer. Generally the data table contains all the required height adjustment information of the transducer center to face measurement 42, nominal transducer height measurement 44, cap height 46, cap depth 48 and overall treatment depth 49.
[0036] In general, the transducer 23 may be shaped for mechanical focusing, or include an array so that ultrasonic pulses may form a beam 110 that converges at a focal point P. In use, thefocal point Pis within a patient’s body. In traveling to the focal point P, the ultrasound beam 110 travels through medium in the transducer chamber in the lower compartment 24, through the transmissible window 26, through a interface with the patient’s body, which may be any suitable ultrasound coupling agent, such as water or very light solutions composed mainly of water. The beam then travels to the focal point P in the patient’s body.
[0037] Air pockets within the treatment head, or an improper coupling of the window 26 with a patient, and other irregularities may decrease the energy provided by the beam 110 to the focal point P. Gas bubbles or obstructions within the transducer chamber may obstruct or interfere with the beam path. Any reflections from gas bubbles or other obstructions in the beam path inside the transducer chamber will produce an unexpected return waveform as the ultrasound propagates through the region 48. If the window 26 is improperly coupled to the patient, the coupling detect 526 (Fig. 5A) may produce a larger than expected waveform, and also trigger a fault signal.
[0038] Such irregularities generally produce reflections of the ultrasound energy beam 110. Moreover, reflections occur in the lower compartment or at its juncture with the patient, for example at the window 26, which should be coupled to the patient. In accordance with an embodiment, the controller 100 compares such reflections to stored expected values for reflections maintained in the data store 104. If such reflections do not meet a value or range of values stored in the data store 104, then a fault signal may be generated, for example to provide a warning or to shut down the transducer 23. Alternatively, a detected wave from where none are expected may also produce a fault signal. The region 48 between the transducer to the near edge of the cap 48, is the region where little reflection is expected. A significant return in that interval could indicate an obstruction or lack of coupling and may generate a fault signal.
[0039] In an embodiment, the values stored in the data store 104 represent a profile of an expected reflection. The profile may be affected by the many parameters described herein. Some flexibility may be built in to the sys tem memory, data library or comparison algorithm, to compensate for nominal variations in performance, environment and/or user capabilities. The particular shape may be expected at a particular delay from transmission.
[0040] A comparison may be used for checking functionality of the ultrasound therapy head. In the comparison, the waveform profile for ultrasound reflections for a functional therapy head are stored, and before use of a therapy head, an ultrasound energy burst is sent, and the actual waveform profile of the returned reflections are compared to the stored waveform profiles. If the actual profiles are not sufficiently close to the stored profiles, then a first signal may be generated, which may cause the ultrasound therapy device to shut down, pause, or may generate a warning. If the actual profiles are sufficiently close to the stored profiles, then operation may continue, or a second signal may be produced, the second signal permitting operation of the ultrasound therapy device. The sample signal may be the same as the therapy signal, be broadcast at regular intervals and/or incorporated into the therapy pulses driven to the transducer. Alternatively the some embodiments may use the first pulse (or any identified pulse) in a series of pulses to perform the fault check. The pulse may be low power or normal therapy power and may be used for therapy or only for generating the sample signal, so long as the system algorithms, data library and/or processor compensate for the differences in the pulse used for detecting faults. Alternatively a delay time may be inserted in the pulses to allow reflections from previous bursts to dissipate to allow for a more sensitive measure of low level reflections on the next pulse. Note that the different algorithms that operate on the waveforms may operate at independent rates and sample the data retuned from different pulses.
[0041] Examples of some expected waveforms are provided in a time based linear sequence (Fig. 5A). The graph provides the wave amplitude on the Y axis and the time delay on the X axis. The initial pulse starts at coordinate 0,0 on the graph, or t^,. The initial pulse or burst is shown as 514. Following the initial pulse 514 is the clamp duration 510 (tj-y. When the clamp duration ends, the residual vibration in the transducer can be measured as the ring down. Due to the nature of the clamp, it has low amplitude, which may or may not be measured. The transducer ring down time interval 512 (t3-t4) is the period where a ring down check occurs. There is a calculated cap detection period 520 for running the cap detection algorithm. The cap detection period location is determined based on the transducer position relative to the cap. A coupling check period 522 is used for running the couple detect algorithm. The coupling detect time interval is shown between t2-t7. The cap check time 516 (referred to as the cap depth in Fig. 3, t5-tg) is used to look for the cap waveform profile to measure the cap location to verify the treatment head cap is operating properly and that the treatment depth will be at the correct location. The coupling detect period 522 (t2-t7) is used to determine if any obstructions are in the acoustic path and to verily that the treatment head cap is properly coupled to the patient. On the right end of the acoustic wave pattern is the focus backscatter 528, which is ignored for the purposes of the methods and systems of the various embodiments of the invention. Additional profiles (PROFILE,,) may be defined if desired, each having a time delay from burst (tx-tn) and amplitude (Ax-An). Within each period of detection, the system may have a built in amount of variability to prevent false positives from generating fault signals. Typically the system has a built in tolerance for both differences in the delay times from burst (or delay time from another measured parameter), amplitude, frequency and other parameters used to measure the wave forms to allow the system to operate without generating false fault signals. These tolerances are permitted deviations from the expected waveforms.
[0042] The shape of the waveform profile may have two ranges of boundaries, for example within a time range between t| and t2, and having a amplitude between A1 and A2. In this embodiment, a waveform 120 (Fig. 5B) between times t| and t2 includes a maximum amplitude between A1 and A2, then the waveform meets the criteria set by the therapy processing module 102. If the maximum amplitude of the waveform profile extends outside of the boundaries of the acceptable amplitude between A1 and A2, it does not meet the expected profile, and a fault signal may be generated. The waveform shown in Figure 5B is merely illustrative. The waveform profiles stored in memory may be any shape. Comparison ranges may be designated to match the many parameters described herein.
[0043] For the example in Fig. 5B, the controller module 100 may evaluate whether the start of a reflection begins between t1 and some other time, such as t3. Such a determination may involve an evaluation of whether the amplitudeforthe waveform meets a particularthresh-old at this level. Similarly, an evaluation may be made regarding the end of the waveform.
[0044] As an alternative, a more defined waveform may be stored in the data store 104, broken into a series of time segments having expected ranges of amplitudes and frequencies. Thus, as shown in Fig. 6, for each time segment, there is an expected amplitude range (including an "X" in each range shown in Fig. 6), represented an acceptable amplitude range at that time segment for certain frequencies of signals.
[0045] As another alternative, a defined waveform pattern may be stored in the data store, with lines defined for expected amplitudes at a given times, and variations by a defined amount (plus or minus 5 %, for example), may result in a signal.
[0046] As yet another alternative, the profile may be an integration of the expected amplitude over a time period, and the integration of a measured amplitude over a defined time interval may be compared to this expected profile.
[0047] As yet another alternative, the controller may use a correlation or cross correlation algorithm over a defined time interval of the profile and the measured signal.
[0048] A number of alternatives are available, but in general, the therapy processing module 102 evaluates the profile of the waveform verses an expected profile.
[0049] Fig. 7 is a flow chart representing a method for comparing a waveform to an expected profile in accordance with an embodiment. Beginning at step 700, a burst is transmitted from the transducer 23. At step 702, reflections from the burst are received, most likely at the transducer. The reflections are digitized at step 704. The signal may be filtered in the analog domain before the digitization step 704. The digitized reflections are the processed through the various algorithms in 705 to prepare the digitized received signals to be compared to the expected profiles.
[0050] At step 706, the expected profile for waveforms of the reflections are accessed. For example, as shown in Fig. 3, the table 106 may have stored therein a number of different expected profiles. In the embodiment shown in the drawings, these profiles represent cap depth (distance from window 26 to transducer 23), coupling detect (coupling with patient), and transducer ring down (excessive electrical ringing of the transducer after a transmit burst is complete), although other features may be detected.
[0051] At step 708, the waveforms are compared to the profiles. If a waveform does not meet a profile, then step 710 branches to step 712, where a fault signal is generated. This signal may be, for example, a warning, or a fault signal forcing pause or shut down of the transducer 23 or the system 10. If the waveforms do meet the profiles, the operation is continued at step 714. This step may include, for example, generating a second signal indicating operation is available, or allowing operation. It should be noted that the profile may also be defined so that if the profile is met it is considered a fault condition and can generate a fault.
[0052] Additional alternative embodiments of the present invention will be readily apparent to those skilled in the art upon review of the present disclosure. The lack of description or the embodiments described herein should not be considered as the sole or only method and apparatus of providing for use of real time backscatter data to determine the correct operation, placement and use of a HIFU device. The scope of the present invention should not be taken as limited by the present disclosure except as defined in the appended claims.
Claims 1. A method of determining functionality of a medical ultrasound therapy head, the method comprising: transmitting a burst of ultrasonic energy via a transducer that is mounted in the medical ultra sound therapy head, wherein a cap of said medical ultrasound therapy head is placed against the patient’s skin while transmitting the burst of ultrasonic energy via the transducer; receiving one or more reflections from objects within the medical ultrasound therapy head, the reflections comprising at least one waveform profile; comparing said at least one waveform profile to an expected waveform profile for the medical ultrasound therapy head; generating a first signal indicating a fault if the waveform profile of the reflection does not meet the expected waveform profile, wherein the first signal causes an ultrasound therapy system comprising said ultrasound therapy head to cease operation. 2. The method of claim 1, wherein the expected waveform profile comprises an expected amplitude range at a particular range of delays from the burst. 3. The method of claim 1, wherein the expected waveform profile comprises an expected maximum amplitude during an expected range of time after the burst. 4. The method of claim 1, wherein the expected waveform profile comprises an expected minimum amplitude during an expected range of time after the burst. 5. The method of claim 1, wherein the expected waveform profile comprises a permitted deviation from a plurality of defined amplitudes, each defined amplitude being a different delay from the burst. 6. The method of claim 1 .further comprising generating a second signal indicating operation is available if the actual waveform profile of the reflection does meet the expected waveform profile. 7. The method of claim 1, wherein a plurality of reflections are arranged in sequence and compared to a corresponding sequence of expected waveform profiles, the arrangement of reflections and expected waveforms being a linear time sequence. 8. The method of claim 7, wherein the expected waveform profile comprises a permitted deviation from a plurality of defined amplitudes, each defined amplitude being a different delay from the burst. 9. The method of claim 7, wherein the expected waveform profile comprises a plurality of expected amplitude ranges, each expected amplitude range at a different delay from the burst. 10. The method of claim 7, wherein the expected wave form profile comprises a plurality of expected maximum amplitudes, each expected maximum amplitude at a different expected range of time after the burst. 11. The method of claim 1, further comprising: applying an electrical clamp to provide an impedance across the transducer; comparing a clamp waveform comprising residual electrical voltage against a stored clamp waveform profile; and generating another first signal indicating a fault if the clamp waveform does not substantially match the stored clamp waveform profile. 12. The method of claim 11, further comprising: preventing the ultrasound therapy system from operating if the clamp waveform does not substantially match the stored clamp waveform profile. 13. The method of claim 11, wherein the electrical clamp is applied after the burst of ultrasonic energy is transmitted. 14. The method of claim 11, further comprising: measuring the clamp waveform when a duration for the application of the electrical clamp ends. 15. The method of claim 1, further comprising: capturing a ring down waveform after the burst; comparing the ring down waveform to an expected ring down waveform profile; and generating another first signal indicating a fault, if the ring down waveform does not substantially match the expected ring down waveform profile. 16. The method of claim 15, wherein one or more of said expected ring down waveform profiles are stored on a persistent memory device. 17. The method of claim 15, further comprising: preventing the ultrasound therapy system from operating if the ring down waveform does not substantially match the expected ring down waveform profile. 18. A medical ultrasound therapy system arranged for determining functionality of a medical ultrasound therapy head, the system comprising: the therapy head including a transducer and a cap, wherein the system is arranged for - transmitting a burst of ultrasonic energy via the transducer that is mounted in the medical ultrasound therapy head, when the cap of said medical ultrasound therapy head is placed against the patient’s skin while transmitting the burst of ultrasonic energy via the transducer; - receiving one or more reflections from objects within the medical ultrasound therapy head, the reflections comprising at least one waveform profile; - comparing said at least one waveform profile to an expected waveform profile for the medical ultrasound therapy head; and - generating a first signal indicating a fault if the waveform profile of the reflection does not meet the expected waveform profile, wherein the first signal causes the ultrasound therapy system comprising said ultrasound therapy head to cease operation. 19. The medical ultrasound therapy system of claim 18, wherein the system is arranged for - capturing a ring down waveform after the burst: - comparing the ring down waveform to an expected ring down waveform profile; and -generating anotherfirst signal indicating a fault, if the ring down waveform does not substantially match the expected ring down waveform profile. 20. The medical ultrasound therapy system of claim 19, wherein the ultrasound therapy system is prevented from operating, if the ring down waveform does not substantially match the expected ring down waveform profile.
Patentansprüche 1. Ein Verfahren zum Bestimmen der Funktionsfähigkeit eines medizinischen Ultraschall-Therapiekopfes, wobei das Verfahren umfasst: - Senden eines Ausstoßes von Ultraschallenergie über einen Wandler, der in dem medizinischen U Itraschall-Therapiekopf montiert ist, wobei eine Kappe des medizinischen Ultraschall-Therapiekopfes gegen die Haut des Patienten gelegt ist während des Sendens des Ausstoßes der Ultraschallenergie über den Wandler; - Empfangen einer oder mehrerer Reflektionen von Objekten innerhalb des medizinischen Ultraschall-Therapiekopfes, wobei die Reflektionen zumindest ein WellenformProfil aufweisen; - Vergleichen des mindestens einen Wellenform-Profils mit einem erwarteten Wellenform-Profil für den medizinischen Ultraschall-Therapiekopf; - Erzeugen eines ersten Signals, das einen Fehler anzeigt, wenn das Wellenform-Profil der Re-flektion nicht dem erwarteten Wellenform-Profil entspricht, wobei das erste Signal bewirkt, dass ein Ultraschall-Therapiesystem, das besagten Ultraschall-Therapiekopf aufweist, den Betrieb einstellt. 2. Das Verfahren nach Anspruch 1, wobei das erwartete Wellenform-Profil einen erwarteten Amplitudenbereich bei einem bestimmten Bereich von Verzögerungen ausgehend vom Ausstoß aufweist. 3. Das Verfahren nach Anspruch 1, wobei das erwartete Wellenform-Profil eine erwartete Maximalamplitude während eines erwarteten Zeitbereiches nach dem Ausstoß aufweist. 4. Das Verfahren nach Anspruch 1, wobei das erwartete Wellenform-Profil eine erwartete Minimalamplitude während eines erwarteten Zeitbereiches nach dem Ausstoß aufweist. 5. Das Verfahren nach Anspruch 1, wobei das erwartete Wellenform-Profil eine zulässige Abweichung von einer Vielzahl von definierten Amplituden aufweist, wobei jede definierte Amplitude nach dem Ausstoß unterschiedlich verzögert wird. 6. Das Verfahren nach Anspruch 1, ferner aufweisend das Generieren eines zweiten Signales, das anzeigt, dass der Betrieb zur Verfügung steht, wenn das tatsächliche Wellenform-Profil der Reflektion mit dem erwarteten Wellenform-Profil übereinstimmt. 7. Das Verfahren nach Anspruch 1, wobei eine Vielzahl von Reflektionen in Folge angeordnet ist und verglichen wird mit einer entsprechenden Folge von erwarteten Wellenform-Profilen, wobei die Anordnung von Reflektionen und erwarteten Wellenform-Profi-len eine lineare zeitliche Abfolge ist. 8. Das Verfahren nach Anspruch 7, wobei das erwartete Wellenform-Profil eine zulässige Abweichung von der Vielzahl von definierten Amplituden aufweist, wobei jede definierte Amplitude nach dem Ausstoß unterschiedlich verzögert wird. 9. Das Verfahren nach Anspruch 7, wobei das erwartete Wellenform-Profil eine Vielzahl von erwarteten Amplitudenbereichen aufweist, wobei jeder erwartete Amplitudenbereich bei einer anderen Verzögerung nach dem Ausstoß liegt. 10. Das Verfahren nach Anspruch 7, wobei das erwartete Wellenform-Profil eine Vielzahl von erwarteten Maximalamplituden aufweist, wobei jede erwartete Maximalamplitude bei einem anderen erwarteten Zeitbereich nach dem Ausstoß liegt. 11. Das Verfahren nach Anspruch 1, ferner aufweisend: - Anlegen einer elektrischen Klemme, um eine Impedanz überden Wandler zu liefern; - Vergleichen einer Klemmen-Wellenform aufweisend eine elektrische Restspannung mit einem gespeicherten Klemmen-Wellenform-Pro-fil; und - Erzeugen eines weiteren ersten Signales, das einen Fehler anzeigt, wenn die Klemmen-Wellenform nicht im Wesentlichen dem gespeicherten Klemmen-Wellenform-Profil entspricht. 12. Das Verfahren nach Anspruch 11, ferner umfassend: -Verhindern des Betriebes des Ultraschall-Therapiesystems, wenn die Klemmen-Wellenform nicht im Wesentlichen mit dem gespeicherten Klemmen-Wellenform-Profil übereinstimmt. 13. Das Verfahren nach Anspruch 11, wobei die elektrische Klemme angelegt wird, nachdem der Ausstoß von Ultraschallenergie gesendet ist. 14. Das Verfahren nach Anspruch 11, ferner umfassend: - Messen der Klemmen-Wellenform, wenn eine Zeitdauer für die Anwendung der elektrischen Klemme endet. 15. Das Verfahren nach Anspruch 1, ferner aufweisend : - Erfassen einer "ring down"-Wellenform nach dem Ausstoß; -Vergleichen der "ring down"-Wellenform mit einem erwarteten "ring down"-Wellenform-Profil; und - Erzeugen eines weiteren ersten Signals, das einen Fehler anzeigt, wenn die "ring down"-Wel-lenform nicht im Wesentlichen mit dem erwarteten "ring down"-Wellenform-Profil übereinstimmt. 16. Das Verfahren nach Anspruch 15, wobei eines oder mehrere der erwarteten "ring down"-Wellenform-Profile auf einer beständigen Speichereinrichtung gespeichert sind. 17. Das Verfahren nach Anspruch 15, ferner umfassend: -Verhindern des Betriebes des Ultraschall-Therapiesystems, wenn die "ring down"-Wellenform nicht im Wesentlichen mit den erwarteten "ring down"-Wellenform-Profilen übereinstimmt. 18. Ein medizinisches Ultraschall-Therapiesystem, eingerichtet zur Bestimmung der Funktionsfähigkeit von einem medizinischen Ultraschall-Therapiekopf, das System aufweisend: - den Therapiekopf mit einem Wandler und einer Kappe, wobei das System eingerichtet ist zum - Senden eines Ausstoßes von Ultraschallenergie über einen Wandler, der in dem medizinischen Ultraschall-Therapiekopf montiert ist, wobei eine Kappe des medizinischen Ultraschall-Therapiekopfes gegen die Haut des Patienten gelegt ist während des Sendens des Ausstoßes der Ultraschallenergie über den Wandler; - Empfangen einer oder mehrerer Reflektionen von Objekten innerhalb des medizinischen Ultraschall-Therapiekopfes, wobei die Reflektionen zumindest ein Wellenform-Profil aufweisen; - Vergleichen des mindestens einen Wellenform-Profils mit einem erwarteten Wellenform-Profil für den medizinischen Ultraschall-Therapiekopf; - Erzeugen eines ersten Signals, das einen Fehler anzeigt, wenn das Wellenform-Profil der Re-flektion nicht dem erwarteten Wellenform-Profil entspricht, wobei das erste Signal bewirkt, dass ein Ultraschall-Therapiesystem, das besagten Ultraschall-Therapiekopf aufweist, den Betrieb einstellt. 19. Das medizinische Ultraschall-Therapiesystem gemäß Anspruch 18, wobei das System eingerichtet ist zum - Erfassen einer "ring down"-Wellenform nach dem Ausstoß; -Vergleichen der "ring down"-Wellenform mit einem erwarteten "ring down"-Wellenform-Profil; und - Erzeugen eines weiteren ersten Signals, das einen Fehler anzeigt, wenn die "ring down"-Wel-lenform nicht im Wesentlichen mit dem erwarteten "ring down"-Wellenform-Profil übereinstimmt. 20. Das medizinische Ultraschall-Therapiesystem nach Anspruch 19, wobei das Ultraschall-Therapiesystem am Betrieb gehindert wird, wenn die "ring down"-Wellenform nicht im Wesentlichen mit dem erwarteten "ring down"-Wellenform-Profil übereinstimmt.
Revendications 1. Procédé de détermination de fonctionnalité d’une tête de traitement médical par ultrasons, le procédé comprenant : la transmission d’une salve d’énergie ultrasono-re par l’intermédiaire d’un transducteur qui est monté dans la tête de traitement médical par ultrasons, dans laquelle un capuchon de ladite tête de traitement médical par ultrasons est placé contre la peau du patient tout en transmettant la salve d’énergie ultrasonore par l’intermédiaire du transducteur ; la réception d’une ou plusieurs réflexions provenant d’objets à l’intérieur de la tête de traitement médical par ultrasons, les réflexions comprenant au moins un profil de forme d’onde ; la comparaison dudit au moins un profil de forme d’onde à un profil de forme d’onde prévu pour la tête de traitement médical par ultrasons ; la génération d’un premier signal indiquant un défaut si le profil de forme d’onde de la réflexion ne satisfait pas le profil de forme d’onde prévu, dans lequel le premier signal force un système de traitement par ultrasons comprenant ladite tête de traitement médical par ultrasons à interrompre le fonctionnement. 2. Procédé selon la revendication 1, dans lequel le profil de forme d’onde prévu comprend une plage d’amplitude prévue à une plage particulière de retards par rapport à la salve. 3. Procédé selon la revendication 1, dans lequel le profil de forme d’onde prévu comprend une amplitude maximale prévue durant une plage de temps prévue après la salve. 4. Procédé selon la revendication 1, dans lequel le profil de forme d’onde prévu comprend une amplitude minimale prévue durant une plage de temps prévue après la salve. 5. Procédé selon la revendication 1, dans lequel le profil de forme d’onde prévu comprend un écart admis par rapport à une pluralité d’amplitudes définies, chaque amplitude définie étant un retard différent par rapport à la salve. 6. Procédé selon la revendication 1, comprenant en outre la génération d’un deuxième signal indiquant que le fonctionnement est disponible si le profil de forme d’onde effectif de la réflexion satisfait le profil de forme d’onde prévu. 7. Procédé selon la revendication 1, dans lequel une pluralité de réflexions sont agencées en séquence et comparées à une séquence correspondante de profils de forme d’onde prévue, l’agencement de réflexions et de formes d’onde prévues étant une séquence temporelle linéaire. 8. Procédé selon la revendication 7, dans lequel le profil de forme d’onde prévu comprend un écart admis par rapport à une pluralité d’amplitudes définies, chaque amplitude définie étant un retard différent par rapport à la salve. 9. Procédé selon la revendication 7, dans lequel le profil de forme d’onde prévu comprend une pluralité de plages d’amplitude prévues, chaque plage d’amplitude prévue à un retard différent par rapport à la salve. 10. Procédé selon la revendication 7, dans lequel le profil de forme d’onde prévu comprend une pluralité d’amplitudes maximales prévues, chaque amplitude maximale prévue au niveau d’une plage de temps prévue différente après la salve. 11. Procédé selon la revendication 1, comprenant en outre : l’application d’une pince électrique pour fournir une impédance à travers le transducteur ; la comparaison d’une forme d’onde de pince comprenant une tension électrique résiduelle à un profil de forme d’onde de pince stocké ; et la génération d’un autre premiersignal indiquant un défaut si la forme d’onde de pince ne correspond pas sensiblement au profil de forme d’onde de pince stocké. 12. Procédé selon la revendication 11, comprenant en outre : le fait d’empêcher le système de traitement par ultrasons de fonctionner si la forme d’onde de pince ne correspond pas sensiblement au profil de forme d’onde de pince stocké. 13. Procédé selon la revendication 11, dans lequel la pince électrique est appliquée après que la salve d’énergie ultrasonore est transmise. 14. Procédé selon la revendication 11, comprenant en outre : la mesure de la forme d’onde de pince quand une durée pour l’application de la pince électrique expire. 15. Procédé selon la revendication 1, comprenant en outre : la capture d’une forme d’onde d’anneau après la salve ; la comparaison de la forme d’onde d’anneau à un profil de forme d’onde d’anneau prévu ; et la génération d’un autre premiersignal indiquant un défaut si la forme d’onde d’anneau ne correspond pas sensiblement au profil de forme d’onde d’anneau prévu. 16. Procédé selon la revendication 15, dans lequel un ou plusieurs desdits profils de forme d’onde d’anneau prévus sont stockés dans un dispositif de mémoire persistante. 17. Procédé selon la revendication 15, comprenant en outre : le fait d’empêcher le système de traitement par ultrasons de fonctionner si la forme d’onde d’anneau ne correspond pas sensiblement au profil de forme d’onde d’anneau prévu. 18. Système de traitement médical par ultrasons agencé pour déterminer une fonctionnalité d’une tête de traitement médical par ultrasons, le système comprenant : la tête de traitement comprenant un transducteur et un capuchon, dans lequel le système est agencé pour - transmettre une salve d’énergie ultraso-nore par l’intermédiaire du transducteur qui est monté dans la tête de traitement médical par ultrasons, lorsque le capuchon de ladite tête de traitement médical par ultrasons est placé contre la peau du patient tout en transmettant la salve d’énergie ultrasonore par l’intermédiaire du transducteur ; - recevoir une ou plusieurs réflexions pro-venantd’objetsà l’intérieurde la tête de traitement médical par ultrasons, les réflexions comprenant au moins un profil de forme d’onde ; - comparer ledit au moins un profil de forme d’onde à un profil de forme d’onde prévu pour la tête de traitement médical par ultrasons ; et -générer un premiersignal indiquant un défaut si le profil de forme d’onde de la réflexion ne satisfait pas le profil de forme d’onde prévu, dans lequel le premiersignal force un système de traitement par ultrasons comprenant ladite tête de traitement par ultrasons à interrompre le fonctionnement. 19. Système de traitement médical par ultrasons selon la revendication 18, dans lequel le système est agencé pour - capturer une forme d’onde d’anneau après la salve ; - comparer la forme d’onde d’anneau à un profil de forme d’onde d’anneau prévu ; et - générer un autre premier signal indiquant un défaut si la forme d’onde d’anneau ne correspond pas sensiblement au profil de forme d’onde d’anneau prévu. 20. Système de traitement médical par ultrasons selon la revendication 18, dans lequel le système de traitement par ultrasons est empêché de fonctionner si la forme d’onde d’anneau ne correspond pas sensiblement au profil de forme d’onde d’anneau prévu.

Claims (6)

EuáMs 'mi- mkhaMssMb Szaè&amp;étlmi igét&amp;pimteà :· !.. Bprás orvost oiírahang'terápiés fej működőképességének megíJMáraaisára, amely eljárás során egy az orvosi ultrahang- terápiás fejbe szerel; trsnszdocenel ;.dirahangimptbz«sí bocsátunk ki, ahoi az uít-ralíanginipolzsn: trsnszducemö történő kibocsátása körben az orvosi ultrahang-terápiás fej iliesztőegysé-gs a páciens bőrén helyezkedik el L orvos! ultrahangkerdpms fejbe® $&amp;# ofepktttmokrol érkező legalább egy viszaveródést rőgzitfetk, s visszaverődések legalább egy fediámalak-profíikd rendelkeznek: •a iégáfefebégy hujiásbsM-proE|: ggy m orvosi yîfeabsag4efhpiàs: fejRél várt liuilsrïialak-proiifei összehasonlítják; amennyiben a visszaverődés ímllámatak-profíija a várt lus Üám?siak-profiliai, aa egyezik ,: hibát jelző első ja Ízest geoerátek, ahol m -#4 jéfeés u «Ifeahanfáerápiás fejei tsttáhnazó összeállí tás működésének leáíiifeáj: 2. : -M j> igénypont szerinti epréé, öböl a az impulzustól szsmPákesjéifefesekegy »eg" j-iatározotí tartomÉiyában egy vári «pHíödÖWomáópyál^áelte'ikvEuMMs' mkhaMssMb Szaè & Echo Vocabulary &amp; pimteà: ·! .. Breast Medical Assistant Therapy Head Functionality, which involves mounting a medical ultrasound therapy head; trsnszdocenel; .dirahangimptbz «ski is released, where the release of uithalanginine polyn: trsnducem in the medical ultrasound therapy head illuminator is located on the patient's skin L physician! at least one rebound from the ultrasound scanner ($ &amp;# of #); if the reflection profile of the reflection is the expected lus us aa aa aa aa aa::::::::::: est est est est est est est est est ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ea ea ea ea ea ea ea ea ea 4 4 4 4 4 2. 2. 2. bay of the impulse according to the pulse 3. Az 1, Igébypsïhi säerifiti eljárás, ahol a várt bsíiáioaiak-poíil az unpuiznsmás egy adod sdötarionnlnyban , >irt'»exlmáíís mnpiitddoyaj tpntfelPkjk' 4 A? 1 igénypont szerinti eljárásiból a vári ihiátnalafeprotll az imptbzu» után egy adott idétarímoányban várt ipjibtn&amp;iisaiöpiiibdöeai rendelkezik,3. The 1, Igébypsïhi er iti if iti iti eljárás eljárás ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol ahol pu pu pu pu pu>>>>>>> nt nt. The method according to claim 1, wherein the iaryibtn &amp;amp; 5. Az I. igénypont szerinti eljárás, aboi a vár; hullámalak-profd a meghsferoxott: amplitúdóktól megengedett mértékben tár el mindegyik fneghíitározoíi íoíipbtádó impulzushoz viszonyított késleltetése különböző. 4 Az i. igénypont szerinti eptls, akti Ifeemkeszséget jelző második jelzést generálunk, amennyiben a vissza^ verd#s aktsslis byliátnaíak-ptoSp a várt hullapalsk-prohllai egyezik. ?. Az L igénypont szeriml eljárás, ahol több visszaverődés; sorba rendezünk és vári hoílámalak -proSiok megfelelő sorozatával hasonlítónk össze, a visszaverődések és várt Insllánmlakok elrendezése lineáris idősön képez. 8. A ?. Igénypont szerinti eljárás, ahol a várt huhámalak-pron! a megltstározort amplitúdóktól megengedett mértékben lér eí, mindegyik meghatározón: amplitúdó impozánshoz viszonyított késleltetése különböző. 4. Ä % Igénypont szerinti epfás, ahoi a yife bollantalafe-proil több várt asnuiitödotatlömányt iaAálmwg ssíná·-egyik várt ampiitádőt&amp;rtomány impözttshoz ylszosyltott késMletéso kaiőnbőm Ki A 7. igénypont szerinti eljárás, ahol a várt hnilátnáíak'profel több várt majómális ataplltúdfe tartalmai, misáspik várt maximális amplitúdó az implzus után Mtlösbözö jdőtaítömábyhas van. ):1 Az ) , Igénypont szerinti eijfcés, aî?*elyoél rorpensncidsak a ïmssÂcere» kereæ^B MteefKsxàsaboz ç^pmm .«sípp$s£*íic«nfc fel; remanens .dskromos IkAziMtségef magában íbgiaiő esipeszss Mtaâafe* ïémk -csi^sm ÍÉÉiésaJaSb proiîllâ! hasoniííunk össze; és hïbiàî jelző másik ehő jdaèst generálunk, atöe?tt?y?ben a esigeszes nnll&amp;malak g tárol? csipesses boikki?-áiák^proőilaklés'yegében nem egyezik.5. The method of claim 1, wherein the castle is a castle; waveform-pro-doped to the extent permitted by the amplitudes, each delay of each fneghitol is different from that of the pulse oscillator pulse. 4 The i. An eptls, act Ifemic sign indicating a second signal is generated according to claim 1, if the back-to-back syllabus-ptoSp is the same as the expected hoollapalsk-prohllai. . The method of claim L wherein multiple reflections are; we sort it out and compare it with the corresponding series of variola lanterns, the reflections and the arrangement of the anticipated lanterns form a linear age. 8. A?. The method according to claim, where the expected huhámalak-pron! the magnitude of the reservoir is allowed to be as high as possible from the amplitudes of each reservoir: the delay of the amplitude relative to the magnifier is different. 4. Ä% Epithet according to the claim, where the yife bollantalafe proil has several expected asynchronous protocols iaAmalmwg ssina · one of the expected amputates &amp; supercompleted out of the gate out of the method according to claim 7, wherein the expected hnilatná? The expected maximum amplitude of the mystery after the implant There is a mismatching leg. ): 1 Az), Eijfc ejfcus, aî? * Elorpél rorpensncidsak ïmssÂcere »kereæ ^ B MteefKsxàsaboz ç ^ pmm.« Whistle $ s £ * íic «nfc up; remanens .dskromos IkAziMarveef includes an especia of Mongolia, Mtaâafe * ïémk -csi ^ sm ÍÉÉiésaJaSb proiîllâ! we compare; and hïbiàî generating another ith jdastst, retrieving the nnll &amp; malak g? csipesses do not agree with their boika? 12,Λ I i. 5gÉiy?>md szeri«;::) eljái-ás,:ülői M :u|röhao:g4erápiás összeállítás mácbdesér gámljsÉ, amennyiben a c%es2»s hniíámaiak a tárol? cs^-$268 h»'üá{nalak.-profííláí £g»^£tav$era egyezik. 13:, Ali. igénypost: szerinti eljárás,, ahol az etékïfbrooâ ésipészr az n!traha?3gnn:gata?i$ ktboíísáiásás mmëm rakjak tei12, Λ I i. G y?> D d d i ői::::::::::::::::::::::::::::::::::::::::::::::::::::::: cs ^ - $ 268 h »'shi n ^ ^ ^ era era era era era $ era match. 13 :, Ali. claim post: the method where the etiquette is the ng traha? 3gnn: gata? i $ ktboi 14. Áll. ígénypeö? szerinti eljárás, amelynél :az elektromos csipesz alkalmazása: időtartam áiiak ydtekærà csipesze» hiplássálgkoí niegmárjiik,14. Standing. ígénypeö? the method according to which: the use of an electric tweezer: the duration of the twist of a male twist » 15.. Az k Igéíiypont s^mií eljárás, ahol azámpsdxnst kővetően1 leeséíigő hpllá?Pálakí>t vesxtmk tel; M lecsengő builánnöako? van lecsénge .iy|,toalsfe*pmfeW hssonlltpk összerós hibái jelző másik első jelzést geoéíőtak, ;aipe?myiben a lecsengd builánialak i vár? Másad«- prOíDki) lépegében nem: egyezik, 15. A 1S. Igénypöíit szerint! eljárás, ahol a vári lecsengő huliâmaiak-prorllok közül epe? vagyÄW maradan-db ntessódaepközben tároioiik le, M A 15, igénypont szerbit! eljárás, ahol az isitrahang-tsrápiás összeállítás mSkMcsét gáieíj??k, amennyiben a lee^agblüliáftraíak a vm lecseng? huilárssálak'pmfMM lényegében népi egyezik, 1®. Orvosi ulttnáímg-Serápjás összeállítás, amely orvosi ?5Í?rahang4e?%iás lej roiködőképességének trteghaíátp-zására alkalmasat? vart elrefidezve, axÁsszeáíMiás tartalmaz: trattszditcert és llfesztöegységeí tahaimazb terápiás fejes, alsói az összeáll has alkalm&amp;sas van kialakítva - az orvosi nÍtrahasig-ierápiás fejbe szereli transzdocerrd isllmhangimpoizns kibocsátására, ahol ultrahangimp«ízes transxdueetrel történő kibocsátása közben az orvost o:hr##gáeráplp lej íit-lesztőegysége a pádess bőrén helyezkedik el; - az <mm% Ä#aagr&amp;#p«&amp; ifejbe« lévé objekirsmokról legalább egy visszaverődés vételére, visszaverődések legalább egy- Inllámakk-pt'öll dal rendel keznek; * s lep» egy .hattaa^mftfe#: egy ®z orvos! ultrahangéért: fejnél várt hnllámalak-profílíai történő Ősszehasor? I iíásra; - améMyiben a visszaverődés bultoalak-profllia a. várt iíinMbtaiakrpfpitlsl sem egyezik, hibát jelző első jelzés: generálására. ahol m első jelzés az. aliï'aMrîg^terspiâs Ψφ$ íárSőoHtao Äabaog- terápiás összeiHMs mikonêsènek Ιε-áltásáí; m;ífcn£;oyezl. A !&amp;,. tgénypsos sxsíí'mtí -orvosi ulítnbs8gdefá|ííás PssasSflMs, ahol ^sí|i^&amp;Mlíás. alkalisasan vao kiaiak&amp;va -az .tapuizasttóvelfeR îmm^lmMmsitià - a lecsengő ItoHáoxiíakBaik várt lécseagiÉisííssaaíak-^roSS W t@rténö összakasöpäiiäaärai és -- hibát jelző másik első jefees generálására, amennyiben a lecsengd lm bántalak a vár; lecsengő Imllánt- aiak-probila! iényegéixm nem egyénik, W. A £&amp; igénypont sgermîl orvosi stlsmlmogHetspíás össssáíi&amp;ás, ahol sz aitrahaagderápis* össköálikás mükiy dése gsioiva vsnS::S!nennyli>e« afecssogS fentlámalak a vást taengô hÂorâlàfe^kolliiài lényegében nein egye* zik15 .. The point of interest is the process whereby the following is a downward hpll? M Do you have an overwhelming baby? have to clear .iy |, toalsfe * pmfeW hssonlltpk 's flawed failures indicate another first indication geo; No other "- prOíDki" in the step: match, 15. A 1S. According to your needs! a procedure where bile is a bile of dormant prokllins from the castle? or WW to stay in -drive in a ntessode space, M A 15, claim Serbian! a method wherein the mSkM is a gateway of the isitrahang-chromatic composition, if the l? huilárssálak'pmfMM is essentially a folk match, 1®. Medical Ultrasound-Sera-Cut Composition, which is suitable for the medical treatment of the abrasive ability of medical? 5? Conformed with: A trattscitcher and a tachypacious tachypical therapist, the lower is a tummy tummy, and is fitted with a medical nÍtrahasig-therapy head for transdocerrd isllmhangimpoizns, where the physician o. the juicing unit of lei is located on the skin of the pad; - the <mm% Ä # aagr &#p «&amp; to rejuvenate objects to receive at least one reflection; * s lep »a .hat ^ mftfe #: is a doctor! Ultrasound: Hemorrhoids on Headshot Horns? I diving; - in which the reflection bultoalak-profllia a. unexpected lynxMbtaiakrpfpitls does not match, generating a first indication of an error. where m is the first indication. aliï'aMrîg ^ terspiâs Ψφ $ araHaoHtao abaΙ ás ás ás ás ás ás ás ás ás ás ás ás ás ás ás m; ífcn £; oyezl. A! &Amp;,. tgénypsos sxsíí'mtí - medical ulítnbs8gdefá | psasSflMs, where ^ ski | i ^ &amp; Mlíás. isasmm ^ lmMmsitià - the expecting ItoHaoxiBiBiLiLiEsEnGeIsItIoNs - oFsOrSS W t @ rténö co-theactivities and other first jefees indicating a fault, if the lm is hurt by the castle; decaying lady-probila! I am not alone, W. £ &amp;amp; sgermîl medical stlsmlmogHeaccessorycapitalisation, wherebytheheactivativecapitalisationcontact, ornS :: S! nennyli> e?
HUE10724164A 2009-03-23 2010-03-23 Method of determining functionality of an ultrasound therapy head HUE027097T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16264109P 2009-03-23 2009-03-23

Publications (1)

Publication Number Publication Date
HUE027097T2 true HUE027097T2 (en) 2016-08-29

Family

ID=42342533

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE10724164A HUE027097T2 (en) 2009-03-23 2010-03-23 Method of determining functionality of an ultrasound therapy head

Country Status (13)

Country Link
US (1) US9816968B2 (en)
EP (2) EP2990079B1 (en)
JP (1) JP2012521272A (en)
KR (1) KR101288999B1 (en)
CN (1) CN102361667A (en)
AU (1) AU2010228947B2 (en)
CA (1) CA2755896A1 (en)
ES (1) ES2552387T3 (en)
HU (1) HUE027097T2 (en)
IL (1) IL215237A0 (en)
MX (1) MX2011010013A (en)
PL (1) PL2411095T3 (en)
WO (1) WO2010111233A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208346B2 (en) * 2009-03-23 2012-06-26 Liposonix, Inc. Selectable tuning transformer
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
KR20140047709A (en) 2011-07-11 2014-04-22 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for coupling an ultrasound source to tissue
US9581627B2 (en) * 2012-05-21 2017-02-28 General Electric Company Method and system for tomographic imaging
FR2991807B1 (en) * 2012-06-06 2014-08-29 Centre Nat Rech Scient DEVICE AND METHOD FOR FOCUSING PULSES
US10849677B2 (en) * 2017-01-27 2020-12-01 Medtronic, Inc. Methods of ensuring pulsed field ablation generator system electrical safety
US11197962B2 (en) * 2018-02-26 2021-12-14 Verily Life Sciences Llc Waveform reconstruction for ultrasound time of flight measurements
US11372093B2 (en) * 2018-09-14 2022-06-28 Fujifilm Sonosite, Inc. Automated fault detection and correction in an ultrasound imaging system
CN109580786B (en) * 2018-12-04 2020-07-24 广州三瑞医疗器械有限公司 Ultrasonic probe calibration method
EP3822660A1 (en) 2019-11-13 2021-05-19 ABB Schweiz AG Integrity detection system for an ultrasound transducer
WO2024043654A1 (en) * 2022-08-22 2024-02-29 엘지전자 주식회사 Device comprising at least one ultrasonic vibrator, and method for controlling same
CN116251305B (en) * 2023-05-10 2023-09-01 深圳半岛医疗有限公司 Ultrasonic transduction unit output power control method, apparatus and readable storage medium

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122725A (en) * 1976-06-16 1978-10-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Length mode piezoelectric ultrasonic transducer for inspection of solid objects
US4647913A (en) 1985-01-15 1987-03-03 American District Telegraph Company Self-diagnostic ultrasonic intrusion detection system
US4708127A (en) * 1985-10-24 1987-11-24 The Birtcher Corporation Ultrasonic generating system with feedback control
US4984449A (en) * 1989-07-03 1991-01-15 Caldwell System Corp. Ultrasonic liquid level monitoring system
JPH06277223A (en) 1993-03-24 1994-10-04 Toshiba Corp Impulse wave medical treatment device
US5517994A (en) 1994-11-16 1996-05-21 Advanced Technology Laboratories, Inc. Self diagnostic ultrasonic imaging systems
US6074790A (en) 1994-11-17 2000-06-13 Texas Instruments Incorporated Black and white defect correction for a digital micromirror printer
DE19625667A1 (en) * 1996-06-26 1998-01-02 Siemens Ag Method for self-testing a device for ultrasonic transit time measurement and device for performing the method
DE19714973C2 (en) * 1997-04-10 1999-02-11 Endress Hauser Gmbh Co Method and arrangement for determining an overfill when measuring the level of a liquid in a container according to the pulse transit time method
US6325769B1 (en) * 1998-12-29 2001-12-04 Collapeutics, Llc Method and apparatus for therapeutic treatment of skin
US6040765A (en) * 1998-01-23 2000-03-21 Armatron International, Inc. Obstacle detection system built-in test method and apparatus
US6042556A (en) * 1998-09-04 2000-03-28 University Of Washington Method for determining phase advancement of transducer elements in high intensity focused ultrasound
JP3103355B2 (en) 1999-09-06 2000-10-30 株式会社東芝 Ultrasound therapy equipment
US7520856B2 (en) * 1999-09-17 2009-04-21 University Of Washington Image guided high intensity focused ultrasound device for therapy in obstetrics and gynecology
JP4599740B2 (en) * 2000-04-21 2010-12-15 ソニー株式会社 Information processing apparatus and method, recording medium, program, and recording medium
US6543272B1 (en) * 2000-04-21 2003-04-08 Insightec-Txsonics Ltd. Systems and methods for testing and calibrating a focused ultrasound transducer array
DE10247971A1 (en) * 2002-10-15 2004-05-06 Valeo Schalter Und Sensoren Gmbh System for monitoring the close range of a motor vehicle with fault detection and method for determining the freedom from faults of such a system
JP4192672B2 (en) * 2003-05-16 2008-12-10 株式会社日本自動車部品総合研究所 Ultrasonic sensor
JP4266712B2 (en) 2003-06-02 2009-05-20 オリンパス株式会社 Ultrasonic transducer drive
AU2003242367A1 (en) * 2003-06-13 2005-01-04 Matsushita Electric Works, Ltd. Ultrasound applying skin care device
US6922346B2 (en) * 2003-07-23 2005-07-26 Texas Instruments Incorporated System and method to limit maximum duty cycle and/or provide a maximum volt-second clamp
US20050054926A1 (en) * 2003-09-08 2005-03-10 Robert Lincoln Biometric user identification system and method for ultrasound imaging systems
WO2006042163A2 (en) * 2004-10-06 2006-04-20 Guided Therapy Systems, L.L.C. Method and system for cosmetic enhancement
US20060111744A1 (en) * 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US20060122509A1 (en) 2004-11-24 2006-06-08 Liposonix, Inc. System and methods for destroying adipose tissue
US7675430B2 (en) * 2005-08-02 2010-03-09 Warner Thomas P Device control module and method for controlling devices
US8052604B2 (en) * 2007-07-31 2011-11-08 Mirabilis Medica Inc. Methods and apparatus for engagement and coupling of an intracavitory imaging and high intensity focused ultrasound probe
CA2714390A1 (en) * 2008-02-01 2009-08-06 Medicis Technologies Corporation Therapy head for use with an ultrasound system

Also Published As

Publication number Publication date
ES2552387T3 (en) 2015-11-27
WO2010111233A3 (en) 2010-11-18
JP2012521272A (en) 2012-09-13
US9816968B2 (en) 2017-11-14
US20100241034A1 (en) 2010-09-23
MX2011010013A (en) 2011-10-11
IL215237A0 (en) 2011-12-29
AU2010228947B2 (en) 2012-12-06
KR20110132606A (en) 2011-12-08
CN102361667A (en) 2012-02-22
AU2010228947A1 (en) 2011-10-20
EP2411095B1 (en) 2015-09-02
EP2990079B1 (en) 2017-05-03
EP2411095A2 (en) 2012-02-01
CA2755896A1 (en) 2010-09-30
WO2010111233A2 (en) 2010-09-30
EP2990079A1 (en) 2016-03-02
KR101288999B1 (en) 2013-07-23
PL2411095T3 (en) 2016-02-29

Similar Documents

Publication Publication Date Title
HUE027097T2 (en) Method of determining functionality of an ultrasound therapy head
US20070233185A1 (en) Systems and methods for sealing a vascular opening
US20120183190A1 (en) Image generating apparatus, image generating method, and program
US20120271169A1 (en) Ultrasound systems
AU2006325905B2 (en) Medical ultrasonic apparatus having irradiation position-confirming function
KR20200128084A (en) Hybrid elastography method, probe and apparatus for hybrid elastography
US20190129021A1 (en) Ultrasound apparatus and control method thereof
Debus et al. A new method of quantitative cavitation assessment in the field of a lithotripter
US20230030917A1 (en) Device for monitoring hifu treatments
KR20230100687A (en) Probe and method for preventing deterioration of transducer using the probe
US11246561B2 (en) Pulmonary edema monitoring apparatus
JP7295126B2 (en) Methods for measuring ultrasonic attenuation parameters induced by harmonic elastography, probes and devices for carrying out the methods
Bull et al. Cavitation detection using a fibre‐optic hydrophone: A pilot study
US20010050087A1 (en) Ultrasonic detection of restenosis in stents
JP4567649B2 (en) Ultrasonic fracture treatment device with transducer angle adjustment mechanism
CN113117266B (en) Temperature monitoring equipment
WO2006119243A2 (en) Tool to detect structural integrity of implant
KR101239525B1 (en) A diagnostic device by ultrasonic transmission monitoring and a method thereof
KR102627724B1 (en) Ultrasound apparatus and control method for the same
US8109876B1 (en) Noninvasive technique for identification of structural integrity of Bjork Shiley convexo-concave mechanical heart valves
Kline-Schoder et al. Bubble measuring instrument and method
Forsberg et al. Ultrasonic properties of silicone breast implants