WO2020113391A1 - 航向的确定方法、设备、存储介质和可移动平台 - Google Patents

航向的确定方法、设备、存储介质和可移动平台 Download PDF

Info

Publication number
WO2020113391A1
WO2020113391A1 PCT/CN2018/119013 CN2018119013W WO2020113391A1 WO 2020113391 A1 WO2020113391 A1 WO 2020113391A1 CN 2018119013 W CN2018119013 W CN 2018119013W WO 2020113391 A1 WO2020113391 A1 WO 2020113391A1
Authority
WO
WIPO (PCT)
Prior art keywords
heading
baseline
current measured
course
rtk antenna
Prior art date
Application number
PCT/CN2018/119013
Other languages
English (en)
French (fr)
Inventor
龚云
潘国秀
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/119013 priority Critical patent/WO2020113391A1/zh
Priority to CN201880065652.XA priority patent/CN111295567A/zh
Publication of WO2020113391A1 publication Critical patent/WO2020113391A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • G01S19/54Determining attitude using carrier phase measurements; using long or short baseline interferometry

Definitions

  • Embodiments of the present invention relate to the technical field of control, and in particular, to a heading determination method, a heading determination device, a computer-readable storage medium, and a movable platform.
  • the mainstream directional attitude measurement technology is based on the carrier information phase difference technology, which is also known as RTK (Real Time Kininematic) technology. It is based on the real-time processing of the carrier information phase of two stations. It can provide the three-dimensional coordinates of the observation point in real time, and achieve high precision of centimeter level.
  • RTK Real Time Kininematic
  • the reference station transmits its carrier information observation and station coordinate information to the user station in real time through the data link.
  • the user station receives the carrier information phase of the GPS satellite and the carrier information phase from the reference station, and composes the phase difference observations (static, fast static, dynamic, etc.) for real-time processing, and can give centimeter-level positioning results in real time.
  • the measurement course output from the positioning board developed based on RTK technology (hereinafter referred to as RTK board) is fed back to the flight platform's flight controller.
  • the flight controller adjusts the flight trajectory in real time according to the measurement course. Therefore, the measurement course
  • the accuracy of the mobile platform determines the accuracy of the flight trajectory of the mobile platform.
  • Embodiments of the present invention aim to provide a course determination method, course determination device, movable platform, and computer-readable storage medium to determine whether the measured course is a trusted course while outputting the measured course, thereby improving Measure the accuracy of course and flight trajectory.
  • the technical solution of the first aspect of the present invention improves a heading determination method, including: acquiring the current measurement length and current measurement heading of the baseline of the dual RTK antenna assembly; The current measured length of the baseline determines whether the current measured course is a credible course; if so, the current measured course is output.
  • the technical solution of the second aspect of the present invention provides a heading determination device, the heading determination device includes a processor, and the processor is configured to: acquire a current measurement length of a baseline of a dual RTK antenna assembly and a current measurement heading; According to the current measured length of the baseline of the dual RTK antenna assembly, determine whether the current measured course is a trusted course; if so, output the current measured course.
  • the technical solution of the third aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, which is characterized in that, when the computer program is executed, it realizes the course as provided in the first aspect of the embodiment of the present invention. Determine the steps of the method.
  • the technical solution of the fourth aspect of the present invention provides a movable platform, including: a power device configured to realize the movement of the movable platform; the course defined by the technical solution of the second aspect of the present invention
  • the determination device of the heading is configured to determine the credibility of the measured heading.
  • the credibility of the current measured heading is determined by the current measured length of the baseline, especially in the current measured heading When it is not credible, it can promptly trigger the measurement of the current course again until the output measurement course is the credible course.
  • the current measurement course can be provided to the flight controller in time for flight control The aircraft adjusts and monitors the flight trajectory in real time, thereby improving the accuracy and reliability of the movable platform when performing flight operations, and reducing the possibility of loss of the movable platform.
  • FIG. 1 shows a schematic diagram of a movable platform system according to an embodiment of the present invention
  • FIG. 2 shows a schematic diagram of a dual RTK antenna assembly of a mobile platform according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a heading determination scheme according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of a method for determining a course of another embodiment of the present invention.
  • FIG. 5 shows a schematic diagram of a computer-readable storage medium according to another embodiment of the present invention.
  • a component when a component is said to be “fixed” to another component, it can be directly on another component or it can also exist in a centered component. When a component is considered to be “connected” to another component, it can be directly connected to another component or there can be centered components at the same time.
  • the method of determining the heading includes the determination using RTK, for example, the orientation through the dual antennas of the mobile platform, the single antenna of the mobile platform, and the base station.
  • the movable platform may be an aircraft, a handheld surveying and mapping device, a car, a ship, or the like.
  • the method can be used in scenarios such as factory inspection of the movable platform, trajectory correction of the movable platform, and operation of the movable platform.
  • the current measured length and the current measured course of the baseline of the dual RTK antenna assembly are obtained; according to the current measured length of the baseline of the dual RTK antenna assembly, it is determined whether the current measured course is a trusted course, and the final output Reliable current measurement heading.
  • the current measurement length of the baseline of the dual RTK antenna assembly and the current measurement course are obtained; according to the current measurement length of the baseline of the dual RTK antenna assembly, it is determined whether the current measurement course is a credible course, when the current When the measurement course is not reliable, it can send out prompt information, such as alarm information.
  • the current measurement length and current heading of the baseline of the dual RTK antenna assembly are obtained; based on the current measurement length of the baseline of the dual RTK antenna assembly, the current measurement heading and the attitude of the movable platform are finally output.
  • the mobile platform system 10 may include a control terminal 110 and a mobile platform 120.
  • the movable platform 120 may be a single-rotor or multi-rotor movable platform. In some cases, the movable platform 120 may be a fixed-wing movable platform.
  • the movable platform 120 may include a power system 102, a flight control system 104 (with a heading determination system built-in), and a fuselage.
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the movable platform may further include a tripod, wherein the tripod is connected to the fuselage for supporting the landing of the movable platform.
  • the power system 102 may include one or more power components 1022.
  • the power components 1022 are used to provide flying power to the movable platform 120, which enables the movable platform 120 to realize one or more degrees of freedom of movement.
  • the course determination system may include a processor 502, a memory 1044, and a sensing system 1046.
  • the sensing system 1046 includes one or more types of sensors, wherein the sensing system 1046 can output and transmit sensing data to measure the status data of the movable platform 120.
  • the sensing system 1046 may include, for example, at least one of barometer, gyroscope, ultrasonic sensor, electronic compass, inertial measurement unit, visual sensor (monocular sensor or binocular sensor), global navigation satellite system, barometer, etc. Species.
  • the global navigation satellite system may be a global positioning system (Global Positioning System, GPS).
  • the processor 502 is used to control various operations of the movable platform.
  • the processor 502 can control the movement of the movable platform, and for another example, the processor 502 can control the sensing system 1046 of the movable platform to collect data.
  • the sensing system 1046 may include an image acquisition device 1064.
  • the image acquisition device 1064 may be a device such as a camera or a video camera for capturing images.
  • the image acquisition device 1064 may communicate with the processor 502, and the processor Shooting under the determination of the course of 502.
  • the movable platform 120 further includes a gimbal 106.
  • the gimbal 106 may include a motor 1062.
  • the gimbal 106 is used to carry the image acquisition device 1064.
  • the processor 502 may determine the motion of the gimbal 106 through the heading of the motor. It should be understood that the gimbal 106 may be independent of the movable platform 120 or may be a part of the movable platform 120.
  • the image acquisition device 1064 may be fixedly connected to the body of the movable platform 120.
  • the mobile platform 120 further includes a transmission device 112.
  • the transmission device 112 can send the data collected by the sensing system 1046 and/or the image acquisition device 1064 to the control terminal 110 under the determination of the course of the processor 502.
  • the control terminal 110 may include a transmission device (not shown), the transmission device of the course determination terminal may establish a wireless communication connection with the transmission device 112 of the movable platform 120, and the transmission device of the course determination terminal may receive the data sent by the transmission device 112
  • the control terminal 110 may also send a heading determination instruction to the movable platform 120 through the transmission device configured by itself.
  • the control terminal 110 may include a controller 1102 and a display device 1104.
  • the controller 1102 may perform various operations of the terminal to determine the course of the course.
  • the controller 1102 may determine the heading transmission device to receive data sent by the mobile platform 120 through the transmission device 112, and for example, the display device 1104 may heading the determination display device 1104 to display the transmitted data, where the data may include an image acquisition device 1064 The captured environment image, posture information, position information, power information, etc.
  • the mobile platform 120 further includes a battery system 108.
  • the battery system 108 may include a battery 1082 and a BMS (Battery Management System) 1084.
  • BMS Battery Management System
  • the battery 1082 is used to supply power to the mobile platform 120, for example, for power components 1022, transmission equipment 112, PTZ 106, image acquisition equipment 1064 and other hardware electronic devices to provide power.
  • the mobile platform 120 is provided with a dual RTK antenna assembly 114, which specifically includes a master RTK antenna and a slave RTK antenna.
  • the measured length of the baseline is calculated according to the carrier information sent by the positioning satellite, and according to The length continues to get the measured heading.
  • any one of the above course determiners may include one or more processors, where the one or more processors may work individually or cooperatively.
  • the method for determining a heading specifically includes:
  • Step S302 Obtain the current measured length and current measured course of the baseline of the dual RTK antenna assembly.
  • the carrier information sent by the positioning satellite to the dual RTK antenna assembly needs a certain time, that is, the transmission delay, from the positioning satellite to the dual RTK antenna assembly.
  • the transmission delay of carrier information is proportional to the transmission distance.
  • the phase that is, the phase difference, is further combined with the full-period ambiguity and the phase difference to calculate the current measurement length of the baseline and the current measurement course.
  • Step S304 Determine whether the current measured course is a trusted course based on the current measured length of the baseline of the dual RTK antenna assembly.
  • step S302 needs to be re-executed until the current measurement length of the baseline is within the range allowed by the error.
  • the current measured length of the baseline can also be fused with other data to obtain a credible current measured length.
  • Step S306 if yes, output the current measured course.
  • the current measured course is output for the flight control system to feedback adjust the flight trajectory of the movable platform.
  • the dual-RTK antenna assembly when the dual-RTK antenna assembly receives the carrier information of the positioning satellite, the dual-RTK may usually be due to poor satellite search conditions, or the presence of multipath interference, or when the mobile platform is indoors
  • the current measurement length of the baseline calculated by the antenna assembly has a large error, which leads to a greater error in the current measurement heading.
  • the current measurement length of the baseline can be used to verify whether the current measurement heading is credible, which can improve the double The reliability and accuracy of the RTK antenna assembly for directional attitude measurement of the movable platform.
  • the acquiring the current measurement length and current heading of the baseline of the dual RTK antenna assembly includes receiving carrier information sent by a positioning satellite, the carrier information being used to determine the current measurement of the baseline of the dual RTK antenna assembly Length and current measured course.
  • the carrier information sent by the positioning satellite is received, and the carrier information is used to determine the current measurement length and current heading of the baseline of the dual RTK antenna assembly, that is, the current measurement length and current heading of the baseline are obtained based on the phase difference solution .
  • the dual RTK antenna assembly is used to receive carrier information sent by a positioning satellite.
  • the dual RTK antenna assembly includes a master RTK antenna and a slave RTK antenna
  • the acquiring the current measurement length and current heading of the baseline of the dual RTK antenna assembly includes: determining the carrier information phase and the phase of the master RTK antenna The carrier information phase of the slave RTK antenna; calculate the difference between the carrier information phase of the master RTK antenna and the carrier information phase of the slave RTK antenna, and record as the single difference observation value; according to the single difference observation The value generates the current measured length and current measured course of the baseline of the dual RTK antenna assembly.
  • the current measurement length and the current measurement course of the baseline of the dual RTK antenna assembly are generated according to the single difference observation value, which can improve the positioning accuracy of the dual RTK antenna assembly to the centimeter level .
  • the calculation process of single-difference observations also includes clock deviation, ambiguity of the whole cycle, delay error of the transmission system, ephemeris error of the positioning satellite, etc., to further improve the current measurement length of the resolution baseline and the current measurement course. Reliability.
  • determining whether the current measured heading is a trusted heading based on the current measured length of the baseline of the dual RTK antenna assembly specifically includes: according to whether the current measured length of the baseline meets a preset error range, It is determined whether the current measured course is a trusted course.
  • the positioning scheme of the dual RTK antenna assembly satisfies the preset error. Therefore, when it is determined that the current measurement length of the baseline meets the preset error range, Then it can be determined that the current measured course calculated based on the current measured length of the baseline is also credible.
  • the method before obtaining the current measured length of the baseline of the dual RTK antenna assembly, the method further includes: determining the preset error range according to the baseline size of the dual RTK antenna assembly; according to the error range and the baseline The size determines the preset baseline length and stores it.
  • determining the preset error range according to the baseline size of the dual RTK antenna assembly can improve the reliability and accuracy of the error range Performance, and by determining the preset baseline length according to the error range and the baseline size and storing it, the current measurement length of the baseline can be further improved whether it is credible, and thus the judgment of whether the current measurement course can be further improved The reliability and accuracy of Xinxiang's program.
  • the larger the actual baseline size the larger the error range, that is, the larger the confidence interval of the current measured course
  • the smaller the actual baseline size the smaller the error range, that is, the current measured course The smaller the confidence interval of.
  • the method before acquiring the current measured length of the baseline of the dual RTK antenna assembly, the method further includes: acquiring a record of whether the historical measured course is a trusted course, determining the preset baseline length, and storing it.
  • the preset baseline length is determined and stored, and the historical measured course is also calculated based on the baseline length, and the historical measured course is more in line with the actual flight environment of the mobile platform Therefore, combined with a large number of historical measured headings, it is possible to provide a preset baseline length that is more in line with the actual flight environment, and can more accurately determine whether the current measured heading is a credible heading based on the preset baseline length and the current measured length of the baseline .
  • the error range is less than or equal to 20 centimeters.
  • the error range is less than or equal to 20 cm.
  • the method further includes: acquiring corresponding state identification information according to a star search situation.
  • the corresponding state identification information is obtained through the star search situation, and the state identification information assists in determining whether the current measurement length of the baseline is credible, and then determines whether the current measurement course is a credible course.
  • the status identification information output by the dual RTK antenna assembly is as follows in Table 1:
  • FIXEDPOS Position is determined by FIX POSITION command 2 FIXEDHEIGHT Not currently supported 8 DOPPLEER_VELOCITY Speed is derived from instant Doppler information 16 SINGLE Single point positioning 17 PSRDIFF Pseudorange difference decomposition 18 WAAS SBAS positioning 32 L1_FLOAT Main RTK antenna floating point solution 33 IONOFREE_FLOAT Ionospheric floating-point solution 34 NARROW_FLOAT Narrow lane floating point solution 48 L1_INT Main RTK antenna fixed solution
  • determining whether the current measurement heading is a credible heading according to the current measurement length of the baseline of the dual RTK antenna assembly specifically includes: according to the current measurement length and the baseline of the dual RTK antenna assembly The status identification information determines whether the current measured course is a trusted course.
  • the current measured course is judged by comparing the current measured length of the baseline with the preset baseline length Whether it is credible, thereby reducing the situation that the mobile platform uses the wrong heading information due to the misjudgment of the dual RTK antenna assembly, thereby improving the accuracy and reliability of the mobile platform's flight trajectory.
  • the satellite search condition includes at least one of the following: the number of satellites found, signal-to-noise ratio, elevation angle, lock time, and positioning information.
  • the signal propagation process is interfered, resulting in signal fading and phase shift, resulting in inaccurate signals received by the dual RTK antenna assembly.
  • ionospheric activity is relatively active, which can cause satellite signal-to-noise ratio fluctuations, frequent signal loss of lock, and large resolution errors.
  • the poor design of the dual RTK antenna assembly itself results in relatively low and unstable signal-to-noise of the received satellite signal, poor filtering clutter, and easy signal loss.
  • the search speed is too fast, it is easy to cause drift, that is, the positioning is inaccurate, and the positioning is deviated.
  • the acquiring the corresponding state identification information according to the star search includes: acquiring the narrow lane fixed solution or other pre-stored identification information in the state identification information according to the star search.
  • the narrow lane fixed solution involves the sum of the phase observations of the carrier information of the main RTK antenna and the slave RTK antenna.
  • the effective wavelength of the carrier information corresponding to the narrow lane fixed solution is 10.7 cm.
  • the narrow lane fixed solution eliminates the ionosphere's current measurement course. Is very effective.
  • determining whether the current measured course is a trusted course based on the current measurement length of the baseline of the dual RTK antenna assembly and the state identification information specifically includes: when the state identification information is detected as When the narrow lane is fixed, compare whether the current measurement length of the baseline meets a preset error range.
  • the current measured heading includes a yaw angle and/or a pitch angle; wherein, the yaw angle is an angle determined according to a head direction of the movable platform and a preset heading, the The pitch angle is an angle determined according to the direction of the fuselage of the movable platform and the horizontal direction.
  • generating the current measured length of the baseline and the current measured course based on the single difference observations specifically includes: in the first coordinate system, based on the single difference observations and the corresponding whole week Obtain the measurement results of the baseline by calculating the ambiguity; convert the measurement results of the baseline from the first coordinate system to the second coordinate system according to a preset coordinate rotation matrix to determine the longitude and latitude coordinates corresponding to the main RTK antenna; The current measurement course is determined according to the longitude coordinate and the latitude coordinate.
  • the baseline measurement result is calculated according to the single-difference observation value and the corresponding whole-period ambiguity, and then the baseline measurement result is converted from the first coordinate according to a preset coordinate rotation matrix
  • the system is converted to the second coordinate system to determine the longitude coordinates and latitude coordinates corresponding to the main RTK antenna, and finally, the current measurement course is determined according to the longitude coordinates and the latitude coordinates, so that the accuracy of the current measurement course is improved to Centimeter level.
  • the first coordinate system includes a geocentric coordinate system.
  • the second coordinate system includes a north-east coordinate system.
  • outputting the current measurement course includes sending the current measurement course to the terminal device.
  • the terminal device can be a mobile platform, that is, a carrier of dual RTK antenna components, or a remote control terminal, mobile phone APP.
  • the current measured course is output, the user can learn the current measured course information.
  • outputting the current measured course further includes controlling the alarm device to issue an alarm message.
  • the alarm device When the carrier of the dual RTK antenna assembly is closer to the obstacle, or there is a risk of hitting the obstacle according to the current measurement heading, the alarm device will be controlled and an alarm message will be issued.
  • the alarm device can be a mobile platform, that is, a carrier of dual RTK antenna components, or a remote control terminal, mobile phone APP.
  • the alarm information can be issued by the alarm light illuminating, the speaker sounding the alarm sound, or the vibrator generating vibration.
  • the method for determining the heading of the movable platform includes: step S402, acquiring the current measured length and current heading of the baseline of the dual RTK antenna assembly; step S404, acquiring corresponding state identification information according to the star search situation; S406. Determine whether the state identification information is a narrow lane fixed solution. If yes, perform step S408; if not, perform step S402; step S408, compare whether the current measurement length of the baseline meets a preset error range, if yes, execute Step S410, if not, step S402 is executed; step S410, the current measurement course is output.
  • the heading determination device 500 corresponding to the above heading determination method specifically includes hardware devices and implementation schemes as follows:
  • the heading determination device includes a processor 502, and further includes a dual RTK antenna assembly 504.
  • the processor 502 is used to:
  • the carrier information sent by the positioning satellite to the dual RTK antenna assembly 504 needs a certain time, that is, the transmission delay, from the positioning satellite to the dual RTK antenna assembly 504.
  • the transmission delay of carrier information is proportional to the transmission distance.
  • the phase that is, the phase difference, is further combined with the full-period ambiguity and the phase difference to calculate the current measurement length of the baseline and the current measurement course.
  • the processor 502 determines whether the current measured course is a trusted course based on the current measured length of the baseline of the dual RTK antenna assembly 504; if not, repeats the above steps.
  • the baseline of the dual RTK antenna assembly 504 since the baseline of the dual RTK antenna assembly 504 has an actual baseline size, there is an error between the calculated current measurement length of the baseline and the actual baseline size, and based on this, it can be determined whether the calculated current measurement length of the baseline is reliable If the current measurement length of the baseline is not credible, it needs to be re-executed, and the current measurement length to the baseline is within the range allowed by the error.
  • the processor 502 is further configured to: if it is determined whether the current measured course is a trusted course, output the current measured course.
  • the current measured course is output for the flight control system to feedback adjust the flight trajectory of the movable platform.
  • the dual RTK antenna assembly 504 when the dual RTK antenna assembly 504 receives the carrier information of the positioning satellite, it may be due to poor satellite search conditions, or the presence of multipath interference, or when the mobile platform is indoors.
  • the current measurement length of the baseline calculated by the RTK antenna assembly 504 has a large error, which in turn leads to a greater error in the current measurement heading, and the current measurement length of the baseline is used to verify whether the current measurement heading is reliable and can Improve the reliability and accuracy of dual RTK antenna assembly 504 for directional attitude measurement of a movable platform.
  • the processor 502 acquiring the current measured length and current heading of the baseline of the dual RTK antenna assembly 504 includes receiving carrier information sent by a positioning satellite, and the carrier information is used to determine the dual RTK antenna The current measured length and current measured course of the baseline of component 504.
  • the carrier information sent by the positioning satellite is received, and the carrier information is used to determine the current measurement length and current heading of the baseline of the dual RTK antenna assembly 504, that is, the current measurement length and current measurement of the baseline are obtained based on the phase difference solution course.
  • the dual RTK antenna assembly 504 is used to receive carrier information sent by a positioning satellite.
  • the carrier information is used to determine the current measured length and current measured course of the baseline of the dual RTK antenna assembly.
  • the dual RTK antenna assembly 504 includes a master RTK antenna and a slave RTK antenna
  • the processor 502 acquiring the current measurement length and current heading of the baseline of the dual RTK antenna assembly 504 includes: determining the master The carrier information phase of the RTK antenna and the carrier information phase of the slave RTK antenna; the difference between the carrier information phase of the master RTK antenna and the carrier information phase of the slave RTK antenna is calculated and recorded as the single difference observation value Generating the current measured length and current heading of the baseline of the dual RTK antenna assembly 504 according to the single-difference observations;
  • the calculation process of single-difference observations also includes clock deviation, ambiguity of the whole cycle, delay error of the transmission system, ephemeris error of the positioning satellite, etc., to further improve the current measurement length of the resolution baseline and the current measurement course. Reliability.
  • the processor 502 determines whether the current measured heading is a trusted heading according to the current measured length of the baseline of the dual RTK antenna assembly 504, specifically including: comparing whether the current measured length of the baseline is Satisfy the preset error range; if not, repeat the above steps; if yes, determine that the current measurement course is credible and output the current measurement course.
  • the positioning scheme of the dual RTK antenna assembly 504 satisfies the preset error. Therefore, when it is determined that the current measurement length of the baseline meets the preset error range , It can be determined that the current measured course calculated based on the current measured length of the baseline is also credible.
  • the processor 502 before obtaining the current measured length of the baseline of the dual RTK antenna assembly 504, the processor 502 is further used to: determine the preset error range according to the baseline size of the dual RTK antenna assembly 504; The error range and the baseline size determine the preset baseline length and store it.
  • determining the preset error range according to the baseline size of the dual RTK antenna assembly 504 can improve the reliability of the error range And accuracy, and by determining the preset baseline length based on the error range and the baseline size and storing it, the current measurement length of the baseline can be further improved whether it is credible, which can further improve the determination of whether the current measurement heading is The reliability and accuracy of the scheme for credible heading.
  • the larger the actual baseline size the larger the error range, that is, the larger the confidence interval of the current measured course
  • the smaller the actual baseline size the smaller the error range, that is, the current measured course The smaller the confidence interval of.
  • the processor 502 before obtaining the current measured length of the baseline of the dual RTK antenna assembly 504, the processor 502 is further used to: obtain a record of whether the historical measured course is a trusted course, and determine the preset baseline length, And store.
  • the preset baseline length is determined and stored, and the historical measured course is also calculated based on the baseline length, and the historical measured course is more in line with the actual flight environment of the mobile platform Therefore, combined with a large number of historical measured headings, it is possible to provide a preset baseline length that is more in line with the actual flight environment, and can more accurately determine whether the current measured heading is a credible heading based on the preset baseline length and the current measured length of the baseline .
  • the error range is less than or equal to 20 centimeters.
  • the error range is less than or equal to 20 cm.
  • the processor 502 is further configured to: obtain corresponding state identification information according to a star search situation.
  • the corresponding state identification information is obtained through the star search situation, and the state identification information assists in determining whether the current measurement length of the baseline is credible, and then determines whether the current measurement course is a credible course.
  • the state identification information output by the dual RTK antenna assembly 504 is specifically shown in Table 1.
  • the processor 502 determines whether the current measured course is a trusted course according to the current measured length of the baseline of the dual RTK antenna assembly 504, which specifically includes: The current measured length of the baseline and the state identification information determine whether the current measured course is a trusted course.
  • the current measured length of the baseline of the dual RTK antenna assembly 504 is compared with the preset baseline length, thereby judging the current measurement Whether the heading is credible, thereby reducing the situation that the mobile platform adopts the wrong heading information due to the misjudgment of the dual RTK antenna assembly 504, thereby improving the accuracy and reliability of the mobile platform's flight trajectory.
  • the satellite search condition includes at least one of the following: the number of satellites found, signal-to-noise ratio, elevation angle, lock time, and positioning information.
  • the processor 502 acquiring the corresponding state identification information according to the star search situation includes: acquiring the narrow lane fixed solution or other pre-stored identification information in the state identification information according to the star search situation.
  • the narrow lane fixed solution involves the sum of the phase observations of the carrier information of the main RTK antenna and the slave RTK antenna.
  • the effective wavelength of the carrier information corresponding to the narrow lane fixed solution is 10.7 cm.
  • the narrow lane fixed solution eliminates the ionosphere's current measurement course. Is very effective.
  • the processor 502 determines whether the current measured course is a trusted course based on the current measured length of the baseline of the dual RTK antenna assembly 504 and the state identification information, which specifically includes: When the state identification information is the narrow lane fixed solution, compare whether the current measurement length of the baseline meets a preset error range.
  • the state identification information is the narrow lane fixed solution
  • compare whether the current measured length of the baseline meets a preset error range that is, verify the narrow lane fixed according to the current measured length of the baseline Whether the solution is credible. If the current measurement length of the baseline meets a preset error range, it is determined that the current measurement course is credible, and the current measurement course is output; if not, the above steps are repeated.
  • the current measured heading includes a yaw angle and/or a pitch angle; wherein, the yaw angle is an angle determined according to a head direction of the movable platform and a preset heading, the The pitch angle is an angle determined according to the direction of the fuselage of the movable platform and the horizontal direction.
  • the processor 502 generates the current measurement length of the baseline and the current measurement heading according to the single difference observation value, which specifically includes: in a first coordinate system, based on the single difference observation value And the corresponding whole-period ambiguity calculation to obtain the baseline measurement result; according to the preset coordinate rotation matrix, convert the baseline measurement result from the first coordinate system to the second coordinate system to determine the longitude corresponding to the main RTK antenna Coordinates and latitude coordinates; determine the current measured course based on the longitude coordinates and the latitude coordinates.
  • the single difference observation value specifically includes: in a first coordinate system, based on the single difference observation value And the corresponding whole-period ambiguity calculation to obtain the baseline measurement result; according to the preset coordinate rotation matrix, convert the baseline measurement result from the first coordinate system to the second coordinate system to determine the longitude corresponding to the main RTK antenna Coordinates and latitude coordinates; determine the current measured course based on the longitude coordinates and the latitude coordinates.
  • the baseline measurement result is calculated according to the single-difference observation value and the corresponding whole-period ambiguity, and then the baseline measurement result is converted from the first coordinate according to a preset coordinate rotation matrix
  • the system is converted to the second coordinate system to determine the longitude coordinates and latitude coordinates corresponding to the main RTK antenna, and finally, the current measurement course is determined according to the longitude coordinates and the latitude coordinates, so that the accuracy of the current measurement course is improved to Centimeter level.
  • the first coordinate system includes a geocentric coordinate system.
  • the second coordinate system includes a north-east coordinate system.
  • an embodiment of the present invention provides a computer-readable storage medium 600.
  • a heading determination device 500 is provided with a processor 502 and a memory 1044, and a computer-readable storage medium 600 on which a computer program is stored 602.
  • the steps of the method for determining the heading as defined in any of the above embodiments are implemented.
  • the processor 502 may be a central processing unit (Central Processing Unit, CPU), and the processor 502 may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), application specific integrated circuits (Application Specific Integrated Circuits, ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 1044 is used to store program codes and record status data.
  • the processor 502 executes the computer program 602 to implement the heading determination method, and specifically performs the following steps:
  • the carrier information sent by the positioning satellite to the dual RTK antenna assembly 504 needs a certain time, that is, the transmission delay, from the positioning satellite to the dual RTK antenna assembly 504.
  • the transmission delay of carrier information is proportional to the transmission distance.
  • the phase that is, the phase difference, is further combined with the full-period ambiguity and the phase difference to calculate the current measurement length of the baseline and the current measurement course.
  • the current measured length of the baseline of the dual RTK antenna assembly 504 determine whether the current measured course is a trusted course, and if not, repeat the above steps.
  • the baseline of the dual RTK antenna assembly 504 since the baseline of the dual RTK antenna assembly 504 has an actual baseline size, there is an error between the calculated current measurement length of the baseline and the actual baseline size, and based on this, it can be determined whether the calculated current measurement length of the baseline is reliable If the current measurement length of the baseline is not credible, it needs to be re-executed, and the current measurement length to the baseline is within the range allowed by the error.
  • the current measured course is output for the flight control system to feedback adjust the flight trajectory of the movable platform.
  • the dual RTK antenna assembly 504 when the dual RTK antenna assembly 504 receives the carrier information of the positioning satellite, it may be due to poor satellite search conditions, or the presence of multipath interference, or when the mobile platform is indoors.
  • the current measurement length of the baseline calculated by the RTK antenna assembly 504 has a large error, which in turn leads to a greater error in the current measurement heading, and the current measurement length of the baseline is used to verify whether the current measurement heading is reliable and can Improve the reliability and accuracy of dual RTK antenna assembly 504 for directional attitude measurement of a movable platform.
  • the acquiring the current measured length and current heading of the baseline of the dual RTK antenna assembly 504 includes receiving carrier information sent by a positioning satellite, and the carrier information is used to determine the baseline of the dual RTK antenna assembly 504 Current measurement length and current measurement course.
  • the carrier information sent by the positioning satellite is received, and the carrier information is used to determine the current measurement length and current heading of the baseline of the dual RTK antenna assembly 504, that is, the current measurement length and current measurement of the baseline are obtained based on the phase difference solution course.
  • the dual RTK antenna assembly 504 is used to receive carrier information sent by a positioning satellite.
  • the dual RTK antenna assembly 504 includes a master RTK antenna and a slave RTK antenna
  • the acquiring the current measurement length and current heading of the baseline of the dual RTK antenna assembly 504 includes: determining carrier information of the master RTK antenna The phase and the carrier information phase of the slave RTK antenna; calculate the difference between the carrier information phase of the master RTK antenna and the carrier information phase of the slave RTK antenna, and record as the single difference observation value; according to the single The difference observation value generates the current measured length of the baseline of the dual RTK antenna assembly 504 and the current measured heading.
  • the current measurement length and the current measurement course of the baseline of the dual RTK antenna assembly 504 are generated according to the single difference observation value, which can improve the positioning accuracy of the dual RTK antenna assembly 504 to Cm level.
  • the calculation process of single-difference observations also includes clock deviation, ambiguity of the whole cycle, delay error of the transmission system, ephemeris error of the positioning satellite, etc., to further improve the current measurement length of the resolution baseline and the current measurement course. Reliability.
  • determining whether the current measured heading is a trusted heading based on the current measured length of the baseline of the dual RTK antenna assembly 504 specifically includes: comparing whether the current measured length of the baseline meets a preset error range ; If not, repeat the above steps; if yes, determine that the current measurement course is reliable, and output the current measurement course.
  • the positioning scheme of the dual RTK antenna assembly 504 satisfies the preset error. Therefore, when it is determined that the current measurement length of the baseline meets the preset error range , It can be determined that the current measured course calculated based on the current measured length of the baseline is also credible.
  • the method before acquiring the current measured length of the baseline of the dual RTK antenna assembly 504, the method further includes: determining the preset error range according to the baseline size of the dual RTK antenna assembly 504; The baseline size determines the preset baseline length and stores it.
  • determining the preset error range according to the baseline size of the dual RTK antenna assembly 504 can improve the reliability of the error range And accuracy, and by determining the preset baseline length based on the error range and the baseline size and storing it, the current measurement length of the baseline can be further improved whether it is credible, which can further improve the determination of whether the current measurement heading is The reliability and accuracy of the scheme for credible heading.
  • the larger the actual baseline size the larger the error range, that is, the larger the confidence interval of the current measured course
  • the smaller the actual baseline size the smaller the error range, that is, the current measured course The smaller the confidence interval of.
  • the method before acquiring the current measured length of the baseline of the dual RTK antenna assembly 504, the method further includes: acquiring a record of whether the historical measured heading is a trusted heading, determining the preset baseline length, and storing.
  • the preset baseline length is determined and stored, and the historical measured course is also calculated based on the baseline length, and the historical measured course is more in line with the actual flight environment of the mobile platform Therefore, combined with a large number of historical measured headings, it is possible to provide a preset baseline length that is more in line with the actual flight environment, and can more accurately determine whether the current measured heading is a credible heading based on the preset baseline length and the current measured length of the baseline .
  • the error range is less than or equal to 20 centimeters.
  • the error range is less than or equal to 20 cm.
  • the method further includes: acquiring corresponding state identification information according to a star search situation.
  • the corresponding state identification information is obtained through the star search situation, and the state identification information assists in determining whether the current measurement length of the baseline is credible, and then determines whether the current measurement course is a credible course.
  • the state identification information output by the dual RTK antenna assembly 504 is specifically shown in Table 1 above.
  • determining whether the current measured heading is a trusted heading according to the current measured length of the baseline of the dual RTK antenna assembly 504 specifically includes: based on the current measured length of the baseline of the dual RTK antenna assembly 504 And the state identification information, determine whether the current measured course is a trusted course.
  • the current measurement length of the baseline of the dual RTK antenna assembly 504 is compared with the preset baseline length, thereby judging the current measurement Whether the heading is credible, thereby reducing the situation that the mobile platform adopts the wrong heading information due to the misjudgment of the dual RTK antenna assembly 504, thereby improving the accuracy and reliability of the mobile platform's flight trajectory.
  • the satellite search condition includes at least one of the following: the number of satellites found, signal-to-noise ratio, elevation angle, lock time, and positioning information.
  • the acquiring the corresponding state identification information according to the star search situation includes: acquiring the narrow lane fixed solution or other pre-stored identification information in the state identification information according to the star search situation.
  • the narrow lane fixed solution involves the sum of the phase observations of the carrier information of the main RTK antenna and the slave RTK antenna.
  • the effective wavelength of the carrier information corresponding to the narrow lane fixed solution is 10.7 cm.
  • the narrow lane fixed solution eliminates the ionosphere's current measurement course. Is very effective.
  • determining whether the current measured course is a trusted course based on the current measured length of the baseline of the dual RTK antenna assembly 504 and the state identification information specifically includes: detecting the state identification information For the fixed solution of the narrow lane, compare whether the current measured length of the baseline meets a preset error range.
  • the state identification information is the narrow lane fixed solution
  • compare whether the current measured length of the baseline meets a preset error range that is, verify the narrow lane fixed according to the current measured length of the baseline Whether the solution is credible. If the current measurement length of the baseline meets a preset error range, it is determined that the current measurement course is credible, and the current measurement course is output; if not, the above steps are repeated.
  • the current measured heading includes a yaw angle and/or a pitch angle; wherein, the yaw angle is an angle determined according to a head direction of the movable platform and a preset heading, the The pitch angle is an angle determined according to the direction of the fuselage of the movable platform and the horizontal direction.
  • generating the current measured length of the baseline and the current measured course based on the single difference observations specifically includes: in the first coordinate system, based on the single difference observations and the corresponding whole week Obtain the measurement results of the baseline by calculating the ambiguity; convert the measurement results of the baseline from the first coordinate system to the second coordinate system according to a preset coordinate rotation matrix to determine the longitude and latitude coordinates corresponding to the main RTK antenna; The current measurement course is determined according to the longitude coordinate and the latitude coordinate.
  • the baseline measurement result is calculated according to the single-difference observation value and the corresponding whole-period ambiguity, and then the baseline measurement result is converted from the first coordinate according to a preset coordinate rotation matrix
  • the system is converted to the second coordinate system to determine the longitude coordinates and latitude coordinates corresponding to the main RTK antenna, and finally, the current measurement course is determined according to the longitude coordinates and the latitude coordinates, so that the accuracy of the current measurement course is improved to Centimeter level.
  • the first coordinate system includes a geocentric coordinate system.
  • the second coordinate system includes a north-east coordinate system.
  • any process or method description in the flowchart or otherwise described herein can be understood as representing executable instructions including one or more steps for implementing a specific logical function or process Modules, fragments, or parts of the code, and the scope of the preferred embodiment of the present invention includes additional implementations, which may not be in the order shown or discussed, including in a substantially simultaneous manner or in the reverse order according to the functions involved The order to perform the functions should be understood by those skilled in the art to which the embodiments of the present invention belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wires, portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable means if necessary Process to obtain the program electronically and then store it in computer memory.
  • each part of the present invention may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented with software or firmware stored in memory and executed by a suitable instruction execution system.
  • a logic gate circuit for implementing a logic function on a data signal
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the method in the above embodiments can be completed by instructing relevant hardware through a program.
  • the program can be stored in a computer-readable storage medium, and when the program is executed , Including one of the steps of the method embodiment or a combination thereof.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种航向的确定方法、设备、存储介质和可移动平台。其中,航向的确定方法包括:获取双RTK天线组件的基线的当前测量长度以及当前测量航向(S302);根据双RTK天线组件的基线的当前测量长度,确定当前测量航向是否为可信航向(S304);若否,重复上述步骤;若是,则输出当前测量航向(S306)。根据该方法,进一步地提高了判断测量航向的可信度的准确性,进而提升了可移动平台根据测量航向执行飞行作业的准确性和可靠性。

Description

航向的确定方法、设备、存储介质和可移动平台 技术领域
本发明实施例涉及控制技术领域,尤其涉及一种航向的确定方法、一种航向的确定设备、一种计算机可读存储介质和一种可移动平台。
背景技术
从上个世纪年代以来,国内外就己经在卫星定位和定向测姿等领域进行了广泛的研究,与其他定向测姿系统相比,它具有成本低、体积小、精度高而稳定等优点,主流的定向测姿技术是基于载波信息相位差分技术实现,载波信息相位差分技术又称为RTK(Real Time Kinematic)技术,是建立在实时处理两个测站的载波信息相位基础上的,它能实时提供观测点的三维坐标,并达到厘米级的高精度。
与伪距差分原理相同,由基准站通过数据链实时将其载波信息观测量及站坐标信息一同传送给用户站。用户站接收GPS卫星的载波信息相位与来自基准站的载波信息相位,并组成相位差分观测值(静态、快速静态和动态等)进行实时处理,能实时给出厘米级的定位结果。
相关技术中,将基于RTK技术开发的定位板卡(后文简称RTK板卡)输出的测量航向反馈至可移动平台的飞行控制器,飞行控制器根据测量航向实时调整飞行轨迹,因此,测量航向的准确度决定了可移动平台的飞行轨迹的准确度,但是,RTK板卡输出的测量航向是否可信却无从判断,这就可能导致可移动平台偏离预设的飞行轨迹,甚至丢失,造成严重的经济损失。
发明内容
本发明的实施例旨在提供了一种航向的确定方法、航向的确定设备、可移动平台和计算机可读存储介质,以在输出测量航向的同时,确定测量航向是否为可信航向,进而提高测量航向和飞行轨迹的准确性。
为了实现上述目的,本发明的第一方面的技术方案,提高了一种航向的确定方法,包括:获取双RTK天线组件的基线的当前测量长度以及当前测量航向;根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向;若是,则输出所述当前测量航向。
本发明的第二方面的技术方案提供了一种航向的确定设备,所述航向 的确定设备包括处理器,所述处理器用于:获取双RTK天线组件的基线的当前测量长度以及当前测量航向;根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向;若是,则输出所述当前测量航向。
本发明的第三方面的技术方案,提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,计算机程序被执行时实现如本发明的实施例第一方面提供的航向的确定方法的步骤。
本发明的第四方面的技术方案,提供了一种可移动平台,包括:动力设装置,其被配置为实现所述可移动平台的移动;根据本发明的第二方面的技术方案限定的航向的确定设备,所述航向的确定设备被配置为确定测量航向的可信度。
基于本发明实施例提供的航向的确定方法、航向的确定设备、可移动平台和计算机可读存储介质,通过基线的当前测量长度来确定当前测量航向的可信度,尤其是,在当前测量航向不可信时,能够及时再次触发进行当前航向的测量,至输出的测量航向为可信航向为止,另外,在当前测量航向可信时,及时将当前测量航向提供至飞行控制器,以供飞行控制器实时调整和监控飞行轨迹,进而提升了可移动平台在执行飞行作业时的准确度和可靠性,降低了可移动平台遗失的可能性。
附图说明
为了更清楚地说明本发明的实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明的一个实施例的可移动平台系统的示意图;
图2示出了本发明的一个实施例的可移动平台的双RTK天线组件的示意图;
图3示出了本发明的一个实施例的航向的确定方案的示意图;
图4示出了本发明的另一个实施例的航向的确定方法的示意图;
图5示出了本发明的另一个实施例的计算机可读存储介质的示意图。
具体实施方式
下面将结合本发明的实施例中的附图,对本发明的实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出 创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
航向的确定方法,包括利用RTK进行确定,例如,通过可移动平台的双天线、可移动平台的单天线以及基站进行定向。该可移动平台可以是飞行器、手持测绘装置、汽车、船舶等。该方法可以用于可移动平台出厂检测、可移动平台轨迹校正、可移动平台作业等场景。
在一些实施例中,获取双RTK天线组件的基线的当前测量长度以及当前测量航向;根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,最终输出可信的当前测量航向。
在一些实施例中,获取双RTK天线组件的基线的当前测量长度以及当前测量航向;根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,当当前测量航向不可信时,能够发出提示信息,例如报警信息。
在一些实施例中,获取双RTK天线组件的基线的当前测量长度以及当前测量航向;根据所述双RTK天线组件的基线的当前测量长度,最终输出当前测量航向以及可移动平台的姿态。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1所示,可移动平台系统10可以包括控制终端110和可移动平台120。其中,可移动平台120可以单旋翼或者多旋翼可移动平台,在某些情况中,可移动平台120可以为固定翼可移动平台。
可移动平台120可以包括动力系统102、飞行控制系统104(内置有航向的确定系统)和机身。其中,当可移动平台120具体为多旋翼可移动平台时,机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。可移动平台还可以包括脚架,其中,脚架与机身连接,用于在可移动平台着陆时起支撑作用。
动力系统102可以包括一个或多个动力部件1022,动力部件1022用于为可移动平台120提供飞行动力,该动力使得可移动平台120能够实现一个或多个自由度的运动。
航向的确定系统可以包括处理器502、存储器1044和传感系统1046。传感系统1046包括一种或者多种类型的传感器,其中,所述传感系统1046可以输出传输传感数据以测量可移动平台120的状态数据。其中,传感系统1046例如可以包括气压计、陀螺仪、超声传感器、电子罗盘、惯性测量单元、视觉传感器(单目传感器或者双目传感器)、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。
处理器502用于控制可移动平台的各种操作。例如,处理器502可以控制可移动平台的移动,再例如,处理器502可以控制可移动平台的传感系统1046采集数据。
在诸多实施例中,传感系统1046可以包括图像采集设备1064,图像采集设备1064例如可以是照相机或摄像机等用于捕获图像的设备,图像采集设备1064可以与处理器502通信,并在处理器502的航向的确定下进行拍摄。
在一些实施例中,可移动平台120还包括云台106,云台106可以包括电机1062,云台106用于携带图像采集设备1064,处理器502可以通过电机航向的确定云台106的运动。应理解,云台106可以独立于可移动平台120,也可以为可移动平台120的一部分。在一些实施例中,图像采集设备1064可以固定连接在可移动平台120的机身上。
可移动平台120还包括传输设备112,在处理器502的航向的确定下,传输设备112可以将传感系统1046和/或图像采集设备1064采集的数据发送到控制终端110。控制终端110可以包括传输设备(未示出),航向的确定终端的传输设备可以与可移动平台120的传输设备112建立无线通信连接,航向的确定终端的传输设备可以接收传输设备112发送的数据,另外,控制终端110还可以通过自身配置的传输设备向可移动平台120发送航向的确定指令。
控制终端110可以包括控制器1102和显示设备1104。控制器1102可以航向的确定航向的确定终端的各种操作。例如,控制器1102可以航向的确定传输设备接收可移动平台120通过传输设备112发送的数据,再例如,显示设备1104可以航向的确定显示设备1104显示发送的数据,其中,数据可以包括图像采集设备1064捕捉的环境的图像、姿态信息、位置信息和电量信息等等。
可移动平台120还包括电池系统108,电池系统108可以包括电池1082和BMS(Battery Management System,电池管理系统)1084,默认采用电池1082对可移动平台120供电,譬如,对动力部件1022、传输设 备112、云台106、图像采集设备1064等硬件电子器件进行供电。
另外,结合图1和图2可知,可移动平台120上设有双RTK天线组件114,具体包括主RTK天线和从RTK天线,根据定位卫星发送的载波信息解算基线的测量长度,并根据测量长度继续得到测量航向。
可以理解的是,上述任一航向的确定器可以包括一个或多个处理器,其中,一个或多个处理器可以单独地或者协同地工作。
应理解,上述对于可移动平台120的各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
结合图1、图2、图3和图4所示,根据本发明实施例提供的航向的确定方法,具体包括:
步骤S302,获取双RTK天线组件的基线的当前测量长度以及当前测量航向。
具体地,定位卫星发送至双RTK天线组件的载波信息,由定位卫星传播到双RTK天线组件需要一定时间,即传输时延。众所周知,载波信息的传输时延与传输的距离成正比,主RTK天线和从RTK天线到定位卫星的距离不同时,主RTK天线和从RTK天线接收的连续载波信息在同一时刻将具有不相同的相位,即相位差,进一步地结合整周模糊度和相位差,来计算基线的当前测量长度以及当前测量航向。
步骤S304,根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向。
具体地,由于双RTK天线组件的基线存在实际基线尺寸,因此,计算得到的基线的当前测量长度与实际基线尺寸之间存在误差,基于此可以确定解算的基线的当前测量长度是否可信。如果基线的当前测量长度不可信,则需要重新执行步骤S302,至基线的当前测量长度处于误差允许的范围。在一个实施例中,如果基线的当前测量长度不可信,还可将基线的当前测量长度与其他数据进行融合,从而得到可信的当前测量长度。
步骤S306,若是,则输出所述当前测量航向。
具体地,通过在确定当前测量航向为可信航向时,输出当前测量航向,以供飞行控制系统来反馈调节可移动平台的飞行轨迹。
基于本发明实施例提供的航向的确定方法,双RTK天线组件在接收到定位卫星的载波信息时,可能由于搜星情况差,或存在多径干扰,或可移动平台处于室内时,通常双RTK天线组件解算得到的基线的当前测量长度是存在较大误差的,进而导致了当前测量航向存在更大的误差,而通过基线的当前测量长度来校验当前测量航向是否可信,能够提高双RTK天线组件对可移动平台进行定向测姿的可靠性和准确性。
在一些实施例中,所述获取双RTK天线组件的基线的当前测量长度以及当前测量航向,包括:接收定位卫星发送的载波信息,所述载波信息用于确定双RTK天线组件的基线的当前测量长度和当前测量航向。
具体地,接收定位卫星发送的载波信息,所述载波信息用于确定双RTK天线组件的基线的当前测量长度和当前测量航向,也即基于相位差解算获得基线的当前测量长度和当前测量航向。
在一些实施例中,所述双RTK天线组件用于接收定位卫星发送的载波信息。
在一些实施例中,双RTK天线组件包括主RTK天线以及从RTK天线,所述获取双RTK天线组件的基线的当前测量长度以及当前测量航向,包括:确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位;计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值;根据所述单差观测值生成所述双RTK天线组件的基线的当前测量长度以及当前测量航向。
具体地,通过确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位,并计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值,最后,根据所述单差观测值生成所述双RTK天线组件的基线的当前测量长度以及当前测量航向,能够将双RTK天线组件的定位精度提高到厘米级别。
其中,单差观测值的计算过程还加入时钟偏差、整周模糊度、传输系统的延迟误差、定位卫星的星历误差等,以进一步地提高解算基线的当前测量长度以及当前测量航向的可信度。
在一些实施例中,根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:根据所述基线的当前测量长度是否满足预设误差范围,确定所述当前测量航向是否为可信航向。
具体地,通过比较所述基线的当前测量长度是否满足预设误差范围,可以判断双RTK天线组件的定位方案是否满足预设误差,因此,在判定基线的当前测量长度满足预设误差范围时,则可以确定根据基线的当前测量长度计算得到的当前测量航向也是可信的。
在一些实施例中,在获取双RTK天线组件的基线的当前测量长度前,还包括:根据所述双RTK天线组件的基线尺寸确定所述预设误差范围;根据所述误差范围和所述基线尺寸确定所述预设基线长度,并存储。
具体地,由于双RTK天线组件的基线尺寸直接关系于所述预设误差范围,因此,根据所述双RTK天线组件的基线尺寸确定所述预设误差范围,能够提高误差范围的可靠性和准确性,进而通过根据所述误差范围和 所述基线尺寸确定所述预设基线长度,并存储,能够进一步地提高基线的当前测量长度是否可信,进而能够进一步地提高判断当前测量航向是否为可信航向的方案可靠性和准确性。
在一些实施例中,所述基线尺寸与所述误差范围之间为正相关。
具体地,也即如果实际的基线尺寸越大,则误差范围越大,也即当前测量航向的置信区间越大,同时,实际的基线尺寸越小,则误差范围越小,也即当前测量航向的置信区间越小。
在一些实施例中,在获取双RTK天线组件的基线的当前测量长度前,还包括:获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储。
具体地,通过获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储,历史测量航向也是基于基线长度解算的,历史测量航向更加符合可移动平台的实际飞行环境,因此,结合大量的历史测量航向,可以提供一个更符合实际飞行环境的预设基线长度,进而能够更加准确地根据预设基线长度和基线的当前测量长度,判断当前测量航向是否为可信航向。
在一些实施例中,所述误差范围小于或等于20厘米。
具体地,基于大量实验数据可以确定,误差范围小于或等于20厘米。
在一些实施例中,还包括:根据搜星情况获取对应的状态标识信息。
具体地,通过搜星情况获取对应的状态标识信息,状态标识信息辅助判断基线的当前测量长度是否可信,进而确定所述当前测量航向是否为可信航向。
其中,双RTK天线组件输出的状态标识信息具体如下表1:
表1
二进制 ASCII 状态标识信息描述
0 NONE 无解
1 FIXEDPOS 位置由FIX POSITION命令确定
2 FIXEDHEIGHT 暂不支持
8 DOPPLEER_VELOCITY 速度由即时多普勒信息导出
16 SINGLE 单点定位
17 PSRDIFF 伪距差分解
18 WAAS SBAS定位
32 L1_FLOAT 主RTK天线浮点解
33 IONOFREE_FLOAT 消电离层浮点解
34 NARROW_FLOAT 窄巷浮点解
48 L1_INT 主RTK天线固定解
49 WIDE_INT 宽巷固定解
50 NARROW_INT 窄巷固定解
在一些实施例中,根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:根据所述双RTK天线组件的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向。
具体地,根据双RTK天线组件的基线的当前测量长度,如表1所示,在状态标识信息为50的情况下,通过比较基线的当前测量长度与预设基线长度,从而判读出当前测量航向是否可信,从而减少了由于双RTK天线组件的误判导致可移动平台采用了错误的航向信息的情况,进而提升了可移动平台的飞行轨迹的准确性和可靠性。
在一些实施例中,所述搜星情况包括以下至少一项:搜到的卫星的数目、信噪比、仰角、锁定时间、定位信息。
例如,可移动平台在市区飞行时,由于高楼大厦较多,信号的传播过程受到干扰,导致了信号的衰落和相移,导致双RTK天线组件接收的信号不准确等问题。
例如,在低纬度地区,电离层活动较为活跃,会导致卫星的观测信噪比波动、信号频繁失锁、解算误差大等问题。
又例如,双RTK天线组件自身的设计不好,导致收到的卫星信号的信噪比较低和不稳定,过滤杂波能力差,信号容易丢失等问题。
再例如,搜星速度过快,容易引起漂移,即定位不准确,定位跑偏的现象。
在一些实施例中,所述根据搜星情况获取对应的状态标识信息,包括:根据搜星情况获取窄巷固定解或所述状态标识信息中的其他预存标识信息。
具体地,窄巷固定解涉及主RTK天线和从RTK天线的载波信息相位观测之和,窄巷固定解对应的载波信息的有效波长为10.7厘米,窄巷固定解在消除电离层对当前测量航向的影响非常有效,其他预存标识信息可以参考表1所示,但不限于此。
在一些实施例中,根据所述双RTK天线组件的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向,具体包括:在检测到所述状态标识信息为所述窄巷固定解时,比较所述基线的当前测量长度是否满足预设误差范围。
具体地,通过在检测到所述状态标识信息为所述窄巷固定解时,比较所述基线的当前测量长度是否满足预设误差范围,也即根据基线的当前测量长度来校验窄巷固定解是否可信。若是,则判定所述当前测量航向可信, 并输出所述当前测量航向。若否,则重复上述步骤。在一些实施例中,所述当前测量航向包括偏航角和/或俯仰角;其中,所述偏航角为根据所述可移动平台的机头方向与预设航向确定的夹角,所述俯仰角为根据所述可移动平台的机身方向与水平方向确定的夹角。
在一些实施例中,根据所述单差观测值生成所述基线的当前测量长度和所述当前测量航向,具体包括:在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果;根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标;根据所述经度坐标和所述纬度坐标确定所述当前测量航向。
具体地,在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果,进而根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标,最后,根据所述经度坐标和所述纬度坐标确定所述当前测量航向,使得当前测量航向的精度提高至厘米级。
在一些实施例中,所述第一坐标系包括地心坐标系。
在一些实施例中,所述第二坐标系包括北天东坐标系。
在一些实施例中,输出所述当前测量航向,包括将当前测量航向发送给终端设备。终端设备可以是可移动平台,即双RTK天线组件的载体,还可以是遥控端,手机APP。当输出所述当前测量航向时,用户能够得知该当前测量航向信息。
在一些实施例中,输出所述当前测量航向,还包括控制报警装置发出警报信息。当双RTK天线组件的载体距离障碍物较近,或者依据当前测量航向前进有撞到障碍物的风险时,这时报警装置将被控制,并发出警报信息。报警装置可以是可移动平台,即双RTK天线组件的载体,还可以是遥控端,手机APP。警报信息可以通过报警灯发光、扬声器发出警报声音,或者振动器产生振动而发出。
下面根据图4对上述一些实施例的具体步骤进行说明:
如图4所示,可移动平台的航向的确定方法包括:步骤S402,获取双RTK天线组件的基线的当前测量长度以及当前测量航向;步骤S404,根据搜星情况获取对应的状态标识信息;步骤S406,判断状态标识信息是否为窄巷固定解,若是,则执行步骤S408,若否,则执行步骤S402;步骤S408,比较所述基线的当前测量长度是否满足预设误差范围,若是,则执行步骤S410,若否,则执行步骤S402;步骤S410,输出所述当前测量航向。
如图5所示,与上述航向的确定方法相对于的航向的确定设备500,具体包括的硬件装置和实现方案如下:
所述航向的确定设备包括处理器502,还包括双RTK天线组件504。
在一些实施例中,所述处理器502用于:
获取双RTK天线组件504的基线的当前测量长度以及当前测量航向。
具体地,定位卫星发送至双RTK天线组件504的载波信息,由定位卫星传播到双RTK天线组件504需要一定时间,即传输时延。众所周知,载波信息的传输时延与传输的距离成正比,主RTK天线和从RTK天线到定位卫星的距离不同时,主RTK天线和从RTK天线接收的连续载波信息在同一时刻将具有不相同的相位,即相位差,进一步地结合整周模糊度和相位差,来计算基线的当前测量长度以及当前测量航向。
所述处理器502根据所述双RTK天线组件504的基线的当前测量长度,确定所述当前测量航向是否为可信航向;若否,重复上述步骤。
具体地,由于双RTK天线组件504的基线存在实际基线尺寸,因此,计算得到的基线的当前测量长度与实际基线尺寸之间存在误差,基于此可以确定解算的基线的当前测量长度是否可信,如果基线的当前测量长度不可信,则需要重新执行,至基线的当前测量长度处于误差允许的范围。
所述处理器502还用于:若确定所述当前测量航向是否为可信航向,则输出所述当前测量航向。
具体地,通过在确定当前测量航向为可信航向时,输出当前测量航向,以供飞行控制系统来反馈调节可移动平台的飞行轨迹。
基于本发明实施例提供的航向的确定方法,双RTK天线组件504在接收到定位卫星的载波信息时,可能由于搜星情况差,或存在多径干扰,或可移动平台处于室内时,通常双RTK天线组件504解算得到的基线的当前测量长度是存在较大误差的,进而导致了当前测量航向存在更大的误差,而通过基线的当前测量长度来校验当前测量航向是否可信,能够提高双RTK天线组件504对可移动平台进行定向测姿的可靠性和准确性。
在一些实施例中,所述处理器502所述获取双RTK天线组件504的基线的当前测量长度以及当前测量航向,包括:接收定位卫星发送的载波信息,所述载波信息用于确定双RTK天线组件504的基线的当前测量长度和当前测量航向。
具体地,接收定位卫星发送的载波信息,所述载波信息用于确定双RTK天线组件504的基线的当前测量长度和当前测量航向,也即基于相位差解算获得基线的当前测量长度和当前测量航向。
在一些实施例中,所述双RTK天线组件504用于接收定位卫星发送 的载波信息。所述载波信息用于确定双RTK天线组件的基线的当前测量长度和当前测量航向。
在一些实施例中,双RTK天线组件504包括主RTK天线以及从RTK天线,所述处理器502所述获取双RTK天线组件504的基线的当前测量长度以及当前测量航向,包括:确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位;计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值;根据所述单差观测值生成所述双RTK天线组件504的基线的当前测量长度以及当前测量航向。
具体地,通过确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位,并计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值,最后,根据所述单差观测值生成所述双RTK天线组件504的基线的当前测量长度以及当前测量航向,能够将双RTK天线组件504的定位精度提高到厘米级别。
其中,单差观测值的计算过程还加入时钟偏差、整周模糊度、传输系统的延迟误差、定位卫星的星历误差等,以进一步地提高解算基线的当前测量长度以及当前测量航向的可信度。
在一些实施例中,所述处理器502根据所述双RTK天线组件504的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:比较所述基线的当前测量长度是否满足预设误差范围;若否,则重复上述步骤;若是,则判定所述当前测量航向可信,并输出所述当前测量航向。
具体地,通过比较所述基线的当前测量长度是否满足预设误差范围,可以判断双RTK天线组件504的定位方案是否满足预设误差,因此,在判定基线的当前测量长度满足预设误差范围时,则可以确定根据基线的当前测量长度计算得到的当前测量航向也是可信的。
在一些实施例中,所述处理器502在获取双RTK天线组件504的基线的当前测量长度前,还用于:根据所述双RTK天线组件504的基线尺寸确定所述预设误差范围;根据所述误差范围和所述基线尺寸确定所述预设基线长度,并存储。
具体地,由于双RTK天线组件504的基线尺寸直接关系于所述预设误差范围,因此,根据所述双RTK天线组件504的基线尺寸确定所述预设误差范围,能够提高误差范围的可靠性和准确性,进而通过根据所述误差范围和所述基线尺寸确定所述预设基线长度,并存储,能够进一步地提高基线的当前测量长度是否可信,进而能够进一步地提高判断当前测量航 向是否为可信航向的方案可靠性和准确性。
在一些实施例中,所述基线尺寸与所述误差范围之间为正相关。
具体地,也即如果实际的基线尺寸越大,则误差范围越大,也即当前测量航向的置信区间越大,同时,实际的基线尺寸越小,则误差范围越小,也即当前测量航向的置信区间越小。
在一些实施例中,所述处理器502在获取双RTK天线组件504的基线的当前测量长度前,还用于:获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储。
具体地,通过获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储,历史测量航向也是基于基线长度解算的,历史测量航向更加符合可移动平台的实际飞行环境,因此,结合大量的历史测量航向,可以提供一个更符合实际飞行环境的预设基线长度,进而能够更加准确地根据预设基线长度和基线的当前测量长度,判断当前测量航向是否为可信航向。
在一些实施例中,所述误差范围小于或等于20厘米。
具体地,基于大量实验数据可以确定,误差范围小于或等于20厘米。
在一些实施例中,所述处理器502还用于:根据搜星情况获取对应的状态标识信息。
具体地,通过搜星情况获取对应的状态标识信息,状态标识信息辅助判断基线的当前测量长度是否可信,进而确定所述当前测量航向是否为可信航向。
其中,双RTK天线组件504输出的状态标识信息具体如表1所示。
在一些实施例中,所述处理器502根据所述双RTK天线组件504的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:根据所述双RTK天线组件504的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向。
具体地,根据双RTK天线组件504的基线的当前测量长度,如表1所示,在状态标识信息为50的情况下,通过比较基线的当前测量长度与预设基线长度,从而判读出当前测量航向是否可信,从而减少了由于双RTK天线组件504的误判导致可移动平台采用了错误的航向信息的情况,进而提升了可移动平台的飞行轨迹的准确性和可靠性。
在一些实施例中,所述搜星情况包括以下至少一项:搜到的卫星的数目、信噪比、仰角、锁定时间、定位信息。
在一些实施例中,所述处理器502所述根据搜星情况获取对应的状态标识信息,包括:根据搜星情况获取窄巷固定解或所述状态标识信息中的 其他预存标识信息。
具体地,窄巷固定解涉及主RTK天线和从RTK天线的载波信息相位观测之和,窄巷固定解对应的载波信息的有效波长为10.7厘米,窄巷固定解在消除电离层对当前测量航向的影响非常有效,其他预存标识信息可以参考表1所示,但不限于此。
在一些实施例中,所述处理器502根据所述双RTK天线组件504的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向,具体包括:在检测到所述状态标识信息为所述窄巷固定解时,比较所述基线的当前测量长度是否满足预设误差范围。
具体地,通过在检测到所述状态标识信息为所述窄巷固定解时,比较所述基线的当前测量长度是否满足预设误差范围,也即根据基线的当前测量长度来校验窄巷固定解是否可信。若所述基线的当前测量长度满足预设误差范围,则判定所述当前测量航向可信,并输出所述当前测量航向;若否,则重复上述步骤。
在一些实施例中,所述当前测量航向包括偏航角和/或俯仰角;其中,所述偏航角为根据所述可移动平台的机头方向与预设航向确定的夹角,所述俯仰角为根据所述可移动平台的机身方向与水平方向确定的夹角。
在一些实施例中,所述处理器502根据所述单差观测值生成所述基线的当前测量长度和所述当前测量航向,具体包括:在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果;根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标;根据所述经度坐标和所述纬度坐标确定所述当前测量航向。
具体地,在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果,进而根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标,最后,根据所述经度坐标和所述纬度坐标确定所述当前测量航向,使得当前测量航向的精度提高至厘米级。
在一些实施例中,所述第一坐标系包括地心坐标系。
在一些实施例中,所述第二坐标系包括北天东坐标系。
如图5所示,本发明的实施例提供了一种计算机可读存储介质600,航向的确定设备500上设有处理器502和存储器1044,计算机可读存储介质600,其上存储有计算机程序602,计算机程序602被处理器502执行时实现如上任一实施例限定的航向的确定方法的步骤。
上述处理器502可以是中央处理单元(Central Processing Unit, CPU),该处理器502还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
其中,存储器1044用于存储程序代码和记录状态数据。
在一些实施例中,处理器502执行计算机程序602,以实现航向的确定方法,具体执行以下步骤:
获取双RTK天线组件504的基线的当前测量长度以及当前测量航向。
具体地,定位卫星发送至双RTK天线组件504的载波信息,由定位卫星传播到双RTK天线组件504需要一定时间,即传输时延。众所周知,载波信息的传输时延与传输的距离成正比,主RTK天线和从RTK天线到定位卫星的距离不同时,主RTK天线和从RTK天线接收的连续载波信息在同一时刻将具有不相同的相位,即相位差,进一步地结合整周模糊度和相位差,来计算基线的当前测量长度以及当前测量航向。
根据所述双RTK天线组件504的基线的当前测量长度,确定所述当前测量航向是否为可信航向,若否,重复上述步骤。
具体地,由于双RTK天线组件504的基线存在实际基线尺寸,因此,计算得到的基线的当前测量长度与实际基线尺寸之间存在误差,基于此可以确定解算的基线的当前测量长度是否可信,如果基线的当前测量长度不可信,则需要重新执行,至基线的当前测量长度处于误差允许的范围。
若是,则输出所述当前测量航向。
具体地,通过在确定当前测量航向为可信航向时,输出当前测量航向,以供飞行控制系统来反馈调节可移动平台的飞行轨迹。
基于本发明实施例提供的航向的确定方法,双RTK天线组件504在接收到定位卫星的载波信息时,可能由于搜星情况差,或存在多径干扰,或可移动平台处于室内时,通常双RTK天线组件504解算得到的基线的当前测量长度是存在较大误差的,进而导致了当前测量航向存在更大的误差,而通过基线的当前测量长度来校验当前测量航向是否可信,能够提高双RTK天线组件504对可移动平台进行定向测姿的可靠性和准确性。
在一些实施例中,所述获取双RTK天线组件504的基线的当前测量长度以及当前测量航向,包括:接收定位卫星发送的载波信息,所述载波信息用于确定双RTK天线组件504的基线的当前测量长度和当前测量航向。
具体地,接收定位卫星发送的载波信息,所述载波信息用于确定双RTK天线组件504的基线的当前测量长度和当前测量航向,也即基于相位差解算获得基线的当前测量长度和当前测量航向。
在一些实施例中,所述双RTK天线组件504用于接收定位卫星发送的载波信息。
在一些实施例中,双RTK天线组件504包括主RTK天线以及从RTK天线,所述获取双RTK天线组件504的基线的当前测量长度以及当前测量航向,包括:确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位;计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值;根据所述单差观测值生成所述双RTK天线组件504的基线的当前测量长度以及当前测量航向。
具体地,通过确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位,并计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值,最后,根据所述单差观测值生成所述双RTK天线组件504的基线的当前测量长度以及当前测量航向,能够将双RTK天线组件504的定位精度提高到厘米级别。
其中,单差观测值的计算过程还加入时钟偏差、整周模糊度、传输系统的延迟误差、定位卫星的星历误差等,以进一步地提高解算基线的当前测量长度以及当前测量航向的可信度。
在一些实施例中,根据所述双RTK天线组件504的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:比较所述基线的当前测量长度是否满足预设误差范围;若否,则重复上述步骤;若是,则判定所述当前测量航向可信,并输出所述当前测量航向。
具体地,通过比较所述基线的当前测量长度是否满足预设误差范围,可以判断双RTK天线组件504的定位方案是否满足预设误差,因此,在判定基线的当前测量长度满足预设误差范围时,则可以确定根据基线的当前测量长度计算得到的当前测量航向也是可信的。
在一些实施例中,在获取双RTK天线组件504的基线的当前测量长度前,还包括:根据所述双RTK天线组件504的基线尺寸确定所述预设误差范围;根据所述误差范围和所述基线尺寸确定所述预设基线长度,并存储。
具体地,由于双RTK天线组件504的基线尺寸直接关系于所述预设误差范围,因此,根据所述双RTK天线组件504的基线尺寸确定所述预设误差范围,能够提高误差范围的可靠性和准确性,进而通过根据所述误 差范围和所述基线尺寸确定所述预设基线长度,并存储,能够进一步地提高基线的当前测量长度是否可信,进而能够进一步地提高判断当前测量航向是否为可信航向的方案可靠性和准确性。
在一些实施例中,所述基线尺寸与所述误差范围之间为正相关。
具体地,也即如果实际的基线尺寸越大,则误差范围越大,也即当前测量航向的置信区间越大,同时,实际的基线尺寸越小,则误差范围越小,也即当前测量航向的置信区间越小。
在一些实施例中,在获取双RTK天线组件504的基线的当前测量长度前,还包括:获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储。
具体地,通过获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储,历史测量航向也是基于基线长度解算的,历史测量航向更加符合可移动平台的实际飞行环境,因此,结合大量的历史测量航向,可以提供一个更符合实际飞行环境的预设基线长度,进而能够更加准确地根据预设基线长度和基线的当前测量长度,判断当前测量航向是否为可信航向。
在一些实施例中,所述误差范围小于或等于20厘米。
具体地,基于大量实验数据可以确定,误差范围小于或等于20厘米。
在一些实施例中,还包括:根据搜星情况获取对应的状态标识信息。
具体地,通过搜星情况获取对应的状态标识信息,状态标识信息辅助判断基线的当前测量长度是否可信,进而确定所述当前测量航向是否为可信航向。
其中,双RTK天线组件504输出的状态标识信息具体如上表1所示。
在一些实施例中,根据所述双RTK天线组件504的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:根据所述双RTK天线组件504的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向。
具体地,根据双RTK天线组件504的基线的当前测量长度,如表1所示,在状态标识信息为50的情况下,通过比较基线的当前测量长度与预设基线长度,从而判读出当前测量航向是否可信,从而减少了由于双RTK天线组件504的误判导致可移动平台采用了错误的航向信息的情况,进而提升了可移动平台的飞行轨迹的准确性和可靠性。
在一些实施例中,所述搜星情况包括以下至少一项:搜到的卫星的数目、信噪比、仰角、锁定时间、定位信息。
在一些实施例中,所述根据搜星情况获取对应的状态标识信息,包括: 根据搜星情况获取窄巷固定解或所述状态标识信息中的其他预存标识信息。
具体地,窄巷固定解涉及主RTK天线和从RTK天线的载波信息相位观测之和,窄巷固定解对应的载波信息的有效波长为10.7厘米,窄巷固定解在消除电离层对当前测量航向的影响非常有效,其他预存标识信息可以参考表1所示,但不限于此。
在一些实施例中,根据所述双RTK天线组件504的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向,具体包括:在检测到所述状态标识信息为所述窄巷固定解时,比较所述基线的当前测量长度是否满足预设误差范围。
具体地,通过在检测到所述状态标识信息为所述窄巷固定解时,比较所述基线的当前测量长度是否满足预设误差范围,也即根据基线的当前测量长度来校验窄巷固定解是否可信。若所述基线的当前测量长度满足预设误差范围,则判定所述当前测量航向可信,并输出所述当前测量航向;若否,则重复上述步骤。
在一些实施例中,所述当前测量航向包括偏航角和/或俯仰角;其中,所述偏航角为根据所述可移动平台的机头方向与预设航向确定的夹角,所述俯仰角为根据所述可移动平台的机身方向与水平方向确定的夹角。
在一些实施例中,根据所述单差观测值生成所述基线的当前测量长度和所述当前测量航向,具体包括:在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果;根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标;根据所述经度坐标和所述纬度坐标确定所述当前测量航向。
具体地,在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果,进而根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标,最后,根据所述经度坐标和所述纬度坐标确定所述当前测量航向,使得当前测量航向的精度提高至厘米级。
在一些实施例中,所述第一坐标系包括地心坐标系。
在一些实施例中,所述第二坐标系包括北天东坐标系。
进一步地,可以理解的是,流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能, 这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和 原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (39)

  1. 一种航向的确定方法,适用于可移动平台,其特征在于,所述航向的确定方法包括:
    获取双RTK天线组件的基线的当前测量长度以及当前测量航向;
    根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向;
    若是,则输出所述当前测量航向。
  2. 根据权利要求1所述的航向的确定方法,其特征在于,所述获取双RTK天线组件的基线的当前测量长度以及当前测量航向,包括:
    接收定位卫星发送的载波信息,所述载波信息用于确定双RTK天线组件的基线的当前测量长度和当前测量航向。
  3. 根据权利要求2所述的航向的确定方法,其特征在于,所述双RTK天线组件用于接收定位卫星发送的载波信息。
  4. 根据权利要求1或2所述的航向的确定方法,其特征在于,双RTK天线组件包括主RTK天线以及从RTK天线,所述获取双RTK天线组件的基线的当前测量长度以及当前测量航向,包括:
    确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位;
    计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值;
    根据所述单差观测值生成所述双RTK天线组件的基线的当前测量长度以及当前测量航向。
  5. 根据权利要求1所述的航向的确定方法,其特征在于,根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:
    比较所述基线的当前测量长度是否满足预设误差范围。
  6. 根据权利要求5所述的航向的确定方法,其特征在于,在获取双RTK天线组件的基线的当前测量长度前,还包括:
    根据所述双RTK天线组件的基线尺寸确定所述预设误差范围;
    根据所述误差范围和所述基线尺寸确定所述预设基线长度,并存储。
  7. 根据权利要求6所述的航向的确定方法,其特征在于,
    所述基线尺寸与所述误差范围之间为正相关。
  8. 根据权利要求5所述的航向的确定方法,其特征在于,在获取双 RTK天线组件的基线的当前测量长度前,还包括:
    获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储。
  9. 根据权利要求5所述的航向的确定方法,其特征在于,
    所述误差范围小于或等于20厘米。
  10. 根据权利要求1所述的航向的确定方法,其特征在于,在根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向之前,还包括:
    根据RTK定位装置的状态标识信息,确定是否根据所述双RTK天线组件的基线的当前测量长度确定所述当前测量航向。
  11. 根据权利要求10所述的航向的确定方法,其特征在于,所述状态标示信息由搜星情况确定,其中,所述搜星情况包括以下至少一项:搜到的卫星的数目、信噪比、仰角、锁定时间、定位信息。
  12. 根据权利要求10所述的航向的确定方法,其特征在于,根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:
    根据所述双RTK天线组件的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向。
  13. 根据权利要求11所述的航向的确定方法,其特征在于,包括:
    根据搜星情况获取窄巷固定解或所述状态标识信息中的其他预存标识信息。
  14. 根据权利要求13所述的航向的确定方法,其特征在于,根据所述双RTK天线组件的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向,具体包括:
    在检测到所述状态标识信息为所述窄巷固定解时,确定所述当前测量航向是否为可信航向。
  15. 根据权利要求1所述的航向的确定方法,其特征在于,
    所述当前测量航向包括偏航角和/或俯仰角;
    其中,所述偏航角为根据所述可移动平台的机头方向与预设航向确定的夹角,所述俯仰角为根据所述可移动平台的机身方向与水平方向确定的夹角。
  16. 根据权利要求4所述的航向的确定方法,其特征在于,根据所述单差观测值生成所述基线的当前测量长度和所述当前测量航向,具体包括:
    在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果;
    根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标;
    根据所述经度坐标和所述纬度坐标确定所述当前测量航向。
  17. 根据权利要求16所述的航向的确定方法,其特征在于,
    所述第一坐标系包括地心坐标系;和/或,
    所述第二坐标系包括北天东坐标系。
  18. 根据权利要求1所述的航向的确定方法,其特征在于,所述输出所述当前测量航向,包括:
    将所述当前测量航向发送给终端设备,和/或,控制报警装置发出警报信息。
  19. 一种航向的确定设备,适用于可移动平台,其特征在于,所述航向的确定设备包括处理器,所述处理器用于:
    获取双RTK天线组件的基线的当前测量长度以及当前测量航向;
    根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向;
    若是,则输出所述当前测量航向。
  20. 根据权利要求19所述的航向的确定设备,其特征在于,所述航向的确定设备还包括双RTK天线组件所述双RTK天线组件用于接收定位卫星发送的载波信息。
  21. 根据权利要求20所述的航向的确定设备,其特征在于,所述载波信息用于确定双RTK天线组件的基线的当前测量长度和当前测量航向。
  22. 根据权利要求19或20所述的航向的确定设备,其特征在于,所述双RTK天线组件包括主RTK天线以及从RTK天线,所述获取双RTK天线组件的基线的当前测量长度以及当前测量航向,具体包括:
    确定所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位;
    计算所述主RTK天线的载波信息相位和所述从RTK天线的载波信息相位之间的差值,并记作单差观测值;
    根据所述单差观测值生成所述双RTK天线组件的基线的当前测量长度以及当前测量航向。
  23. 根据权利要求19所述的航向的确定设备,其特征在于,所述处理器根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:
    比较所述基线的当前测量长度是否满足预设误差范围。
  24. 根据权利要求23所述的航向的确定设备,其特征在于,所述处 理器在获取双RTK天线组件的基线的当前测量长度前,还用于:
    根据所述双RTK天线组件的基线尺寸确定所述预设误差范围;
    根据所述误差范围和所述基线尺寸确定所述预设基线长度,并存储。
  25. 根据权利要求24所述的航向的确定设备,其特征在于,
    所述基线尺寸与所述误差范围之间为正相关。
  26. 根据权利要求23所述的航向的确定设备,其特征在于,所述处理器在获取双RTK天线组件的基线的当前测量长度前,还用于:
    获取历史测量航向是否为可信航向的记录,确定所述预设基线长度,并存储。
  27. 根据权利要求23所述的航向的确定设备,其特征在于,
    所述误差范围小于或等于20厘米。
  28. 根据权利要求19所述的航向的确定设备,其特征在于,所述处理器还用于:
    根据RTK定位装置的状态标识信息,确定是否根据所述双RTK天线组件的基线的当前测量长度确定所述当前测量航向。
  29. 根据权利要求28所述的航向的确定设备,其特征在于,所述处理器根据所述双RTK天线组件的基线的当前测量长度,确定所述当前测量航向是否为可信航向,具体包括:
    根据所述双RTK天线组件的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向。
  30. 根据权利要求28所述的航向的确定设备,其特征在于,所述状态标示信息由搜星情况确定,其中,所述搜星情况包括以下至少一项:搜到的卫星的数目、信噪比、仰角、锁定时间、定位信息。
  31. 根据权利要求28所述的航向的确定设备,其特征在于,包括:
    根据搜星情况获取窄巷固定解或所述状态标识信息中的其他预存标识信息。
  32. 根据权利要求29所述的航向的确定设备,其特征在于,所述处理器根据所述双RTK天线组件的基线的当前测量长度和所述状态标识信息,确定所述当前测量航向是否为可信航向,具体包括:
    在检测到所述状态标识信息为所述窄巷固定解时,确定所述当前测量航向是否为可信航向。
  33. 根据权利要求19所述的航向的确定设备,其特征在于,
    所述当前测量航向包括偏航角和/或俯仰角;
    其中,所述偏航角为根据所述可移动平台的机头方向与预设航向确定的夹角,所述俯仰角为根据所述可移动平台的机身方向与水平方向确定的 夹角。
  34. 根据权利要求22所述的航向的确定设备,其特征在于,所述处理器根据所述单差观测值生成所述基线的当前测量长度和所述当前测量航向,具体包括:
    在第一坐标系中,根据所述单差观测值和对应的整周模糊度计算获得基线的测量结果;
    根据预设的坐标旋转矩阵将所述基线的测量结果由第一坐标系转换至第二坐标系,以确定所述主RTK天线对应的经度坐标和纬度坐标;
    根据所述经度坐标和所述纬度坐标确定所述当前测量航向。
  35. 根据权利要求34所述的航向的确定设备,其特征在于,
    所述第一坐标系包括地心坐标系;和/或,
    所述第二坐标系包括北天东坐标系。
  36. 根据权利要求19所述的航向的确定设备,其特征在于,所述输出所述当前测量航向,包括:
    将所述当前测量航向发送给终端设备,和/或,控制报警装置发出警报信息。
  37. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被执行时,实现如权利要求1至18中任一项所述的航向的确定方法的步骤。
  38. 一种可移动平台,其特征在于,包括:
    动力装置,其被配置为实现所述可移动平台的移动;
    根据权利要求19至36中任一项所述的航向的确定设备,所述航向的确定设备被配置为确定测量航向的可信度。
  39. 根据权利要求38所述的可移动平台,其特征在于,
    所述可移动平台为无人机或可飞行图像采集设备。
PCT/CN2018/119013 2018-12-03 2018-12-03 航向的确定方法、设备、存储介质和可移动平台 WO2020113391A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/119013 WO2020113391A1 (zh) 2018-12-03 2018-12-03 航向的确定方法、设备、存储介质和可移动平台
CN201880065652.XA CN111295567A (zh) 2018-12-03 2018-12-03 航向的确定方法、设备、存储介质和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119013 WO2020113391A1 (zh) 2018-12-03 2018-12-03 航向的确定方法、设备、存储介质和可移动平台

Publications (1)

Publication Number Publication Date
WO2020113391A1 true WO2020113391A1 (zh) 2020-06-11

Family

ID=70974112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119013 WO2020113391A1 (zh) 2018-12-03 2018-12-03 航向的确定方法、设备、存储介质和可移动平台

Country Status (2)

Country Link
CN (1) CN111295567A (zh)
WO (1) WO2020113391A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111708069B (zh) * 2020-07-01 2021-09-21 清华大学 载体姿态测量方法及装置
CN113286742A (zh) * 2020-09-22 2021-08-20 深圳市大疆创新科技有限公司 可移动平台的数据管理方法、装置、可移动平台及介质
CN112799102A (zh) * 2020-12-18 2021-05-14 易瓦特科技股份公司 基于双天线的方向角校正方法、装置、设备和存储介质
CN113532253B (zh) * 2021-07-27 2023-02-03 上海亥伯智能科技有限公司 重型吊车吊臂旁拉侧弯的检测方法及检测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298443A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp マルチパス検出装置、測位装置、姿勢方位標定装置、マルチパス検出方法およびマルチパス検出プログラム
CN101825717A (zh) * 2010-04-16 2010-09-08 北京航空航天大学 一种基于载波平滑码伪距技术的动态定姿方法
CN102565834A (zh) * 2011-11-30 2012-07-11 重庆九洲星熠导航设备有限公司 一种单频gps测向系统及其测向定位方法
CN104297772A (zh) * 2013-07-16 2015-01-21 成都国星通信有限公司 基于载波相位差分的双天线一体式定位定向系统及方法
EP3124999A1 (en) * 2015-07-30 2017-02-01 Rohde & Schwarz GmbH & Co. KG A method and apparatus for determining an object heading
CN107272039A (zh) * 2017-06-07 2017-10-20 重庆重邮汇测通信技术有限公司 一种基于双天线gps的定位测姿方法
CN107339991A (zh) * 2017-07-25 2017-11-10 上海俏动智能化科技有限公司 一种飞行器航向角的检测方法及装置
CN107783163A (zh) * 2016-08-31 2018-03-09 地壳(北京)机器人科技有限公司 一种智能轮式机器人行进航向角融合方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228230B2 (en) * 2004-11-12 2007-06-05 Mitsubishi Denki Kabushiki Kaisha System for autonomous vehicle navigation with carrier phase DGPS and laser-scanner augmentation
US20110267225A1 (en) * 2010-04-28 2011-11-03 Liwen Dai System and method for determining the heading angle of a vehicle
US20120086598A1 (en) * 2010-10-08 2012-04-12 Canadian Space Agency Apparatus and methods for driftless attitude determination and reliable localization of vehicles
WO2017066915A1 (zh) * 2015-10-20 2017-04-27 深圳市大疆创新科技有限公司 一种卫星导航测姿方法和装置及无人机
CN105403904B (zh) * 2015-11-26 2018-06-26 中国航天时代电子公司 一种基于天线阵列的卫星导航单频测姿方法
CN108802788A (zh) * 2018-04-10 2018-11-13 拓攻(南京)机器人有限公司 一种航向偏差的确定方法、装置、设备以及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298443A (ja) * 2007-05-29 2008-12-11 Mitsubishi Electric Corp マルチパス検出装置、測位装置、姿勢方位標定装置、マルチパス検出方法およびマルチパス検出プログラム
CN101825717A (zh) * 2010-04-16 2010-09-08 北京航空航天大学 一种基于载波平滑码伪距技术的动态定姿方法
CN102565834A (zh) * 2011-11-30 2012-07-11 重庆九洲星熠导航设备有限公司 一种单频gps测向系统及其测向定位方法
CN104297772A (zh) * 2013-07-16 2015-01-21 成都国星通信有限公司 基于载波相位差分的双天线一体式定位定向系统及方法
EP3124999A1 (en) * 2015-07-30 2017-02-01 Rohde & Schwarz GmbH & Co. KG A method and apparatus for determining an object heading
CN107783163A (zh) * 2016-08-31 2018-03-09 地壳(北京)机器人科技有限公司 一种智能轮式机器人行进航向角融合方法
CN107272039A (zh) * 2017-06-07 2017-10-20 重庆重邮汇测通信技术有限公司 一种基于双天线gps的定位测姿方法
CN107339991A (zh) * 2017-07-25 2017-11-10 上海俏动智能化科技有限公司 一种飞行器航向角的检测方法及装置

Also Published As

Publication number Publication date
CN111295567A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2020113391A1 (zh) 航向的确定方法、设备、存储介质和可移动平台
US11506512B2 (en) Method and system using tightly coupled radar positioning to improve map performance
US10371530B2 (en) Systems and methods for using a global positioning system velocity in visual-inertial odometry
US20200158862A1 (en) Method and system for positioning using radar and motion sensors
WO2017020641A1 (zh) 基于光电扫描的室内移动机器人位姿测量系统及测量方法
US8717233B2 (en) Satellite signal multipath mitigation in GNSS devices
US20100250020A1 (en) Space sensor apparatus, mobile carrier, and control method thereof
US10228252B2 (en) Method and apparatus for using multiple filters for enhanced portable navigation
US11428822B2 (en) Methods and systems for location determination
WO2015035501A1 (en) System and method for enhanced integrated navigation with wireless angle of arrival
CN102590842A (zh) 一种gnss/imu一体化天线
KR101763911B1 (ko) 자기장 외란이 심한 환경에서 수중체의 선수각 추정 장치 및 그 방법
CN103293511A (zh) 无人机点对点定位的方法与系统
JP2021143861A (ja) 情報処理装置、情報処理方法及び情報処理システム
KR101779929B1 (ko) Gnss 기반의 측량 방법
US20220026583A1 (en) Enhancing Sensitivity to Reflected GNSS Signals
CN102890283A (zh) 无人机点对点定位与gps卫星定位的综合定位方法与系统
KR101839342B1 (ko) Gnss 기반의 측량 시스템
CN104635247A (zh) 基于加速度传感器的gnss自动测量系统及方法
KR102036080B1 (ko) 휴대형 위치 결정 장치 및 휴대형 위치 결정 장치 동작 방법
US10830906B2 (en) Method of adaptive weighting adjustment positioning
CN115585807B (zh) 基于机器学习的gnss/ins组合导航方法
US20220182853A1 (en) Automatic handling of network communication failure in two-dimensional and three-dimensional coordinate measurement devices
US10469982B2 (en) System and method for enhanced integrated navigation with wireless angle of arrival
KR102221420B1 (ko) 위치 정보를 이용한 3차원 매핑 및 위치 추적 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942469

Country of ref document: EP

Kind code of ref document: A1