WO2020113354A1 - 交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质 - Google Patents

交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质 Download PDF

Info

Publication number
WO2020113354A1
WO2020113354A1 PCT/CN2018/118845 CN2018118845W WO2020113354A1 WO 2020113354 A1 WO2020113354 A1 WO 2020113354A1 CN 2018118845 W CN2018118845 W CN 2018118845W WO 2020113354 A1 WO2020113354 A1 WO 2020113354A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuzzy
model
probability
target
function
Prior art date
Application number
PCT/CN2018/118845
Other languages
English (en)
French (fr)
Inventor
李良群
谢维信
刘宗香
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/118845 priority Critical patent/WO2020113354A1/zh
Publication of WO2020113354A1 publication Critical patent/WO2020113354A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]

Definitions

  • the present invention relates to the field of target tracking technology, and in particular, to an interactive T-S fuzzy semantic model estimation method, system, and computer-readable storage medium.
  • Takagi and Sugeno proposed the T-S fuzzy model in 1985.
  • the then part of the model is expressed in the form of a linear function.
  • the filtering method mentioned in the background art can only complete the system filtering of weakly nonlinear and noise-approximate Gaussian models.
  • the filtering algorithm is difficult to meet the system performance requirements, thereby reducing the research results. Robustness and accuracy.
  • a first aspect of the present invention provides an interactive TS fuzzy semantic model estimation method, including: defining different semantic fuzzy sets in a TS fuzzy model according to different language values adopted by target features; setting each semantic fuzzy according to the different semantic fuzzy sets Probability conversion method between sets; fuzzy interaction is performed on the target's initial state according to the probability conversion method to obtain the target's mixed initial state estimate and mixed initial state covariance; the mixed initial state estimate and the mixed initial state Covariance is processed by non-linear filtering to obtain the updated state and updated state covariance of the target state; based on the calculated fuzzy membership of the TS fuzzy model, the antecedent parameters of the TS fuzzy model are calculated and updated to obtain the updated antecedent parameters; Calculate the standardized model probability according to the predecessor parameters; obtain the state estimate and covariance estimate of the target according to the standardized model probability, update state and update state covariance; estimate the target's motion state based on the state estimate and covariance estimate.
  • a second aspect of the present invention provides an interactive TS fuzzy semantic model estimation system, including: a definition fuzzy set module for defining different semantic fuzzy sets in a TS fuzzy model according to different language values adopted by target features; a probability conversion module for To set a probability conversion method between each semantic fuzzy set in the defined fuzzy set module according to the different semantic fuzzy sets; a fuzzy interaction module is used to perform fuzzy interaction on the initial state of the target according to the probability conversion method, Obtain the target mixed initial state estimate and the mixed initial state covariance; the filter module is used to perform nonlinear filtering on the mixed initial state estimate and the mixed initial state covariance to obtain the updated state and updated state covariance of the target state Variance; the antecedent parameter update module, used to calculate and update the antecedent parameters of the TS fuzzy model according to the calculated fuzzy membership of the TS fuzzy model, to obtain updated antecedent parameters; the standardized model probability module, used to calculate the antecedent Parameter calculation of standardized model probability; estimation output module, based on the standardized model probability, the updated state and the
  • a third aspect of the present invention provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, characterized in that the processor executes the computer program When any of the above methods are implemented.
  • a fourth aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, any one of the methods described above is implemented.
  • FIG. 2 is a schematic block diagram of a structure of an electronic device according to an embodiment of the present invention.
  • the calculation and update of the antecedent parameters of the TS fuzzy model include: calculating the mean of the fuzzy function according to the fuzzy membership; calculating the variance of the fuzzy function according to the mean of the fuzzy function; based on the variance of the fuzzy function and the The mean value of the fuzzy function calculates the fuzzy weight of the fuzzy function.
  • a fourth aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, any one of the methods described above is implemented.
  • FIG. 1 for an interactive TS fuzzy semantic model estimation method, including: S1, defining different semantic fuzzy sets in the TS fuzzy model according to different language values adopted by the target features; S2, setting each according to different semantic fuzzy sets Probabilistic conversion method between semantic fuzzy sets; S3, fuzzy interaction on the initial state of the target according to the probabilistic conversion method to obtain the mixed initial state estimate and mixed initial state covariance of the target; S4, mixed initial state estimation and mixed initial state Covariance is nonlinearly filtered to obtain the updated state and updated state covariance of the target state; S5. Calculate and update the antecedent parameters of the TS fuzzy model according to the calculated fuzzy membership of the TS fuzzy model to obtain the updated antecedent Parameters; S6.
  • Equation 6 Representing that x k belongs to the fuzzy membership of the i-th fuzzy linear model, which can be calculated by Equation 6, which is expressed as follows:
  • Equation 10 linguistic numbers s j j-th fuzzy model m variables, H i language value number i th fuzzy model m variables, then the probability transition matrix ⁇ can be formulated at 10, Equation 10 represents as follows:
  • the definition method of fuzzy set intersection degree includes: calculating the union of two fuzzy sets; converting the intersection of two fuzzy sets into two triangle membership functions respectively; calculating the intersection degree of two triangle membership functions.
  • Equation 11 the intersection degree ⁇ (l i , h j ) of the two fuzzy sets is expressed by Equation 11, which is expressed as follows:
  • Equation 17 which is expressed as follows:
  • Equation 22 Probability mixed initial state covariance is expressed as Equation 22, which is expressed as follows:
  • the target speed v and time interval are introduced as the forgetting factor ⁇ ; under normal circumstances, the more accurate the current observation information, or the historical data contains When there is less information, the forgetting factor ⁇ is smaller, and conversely, the forgetting factor is larger. Therefore, it can be known that the smaller the forgetting factor ⁇ is, the larger the forgetting factor is.
  • the modified extended forgetting factor least squares estimator is shown in Equation 23 to Equation 26:
  • Equation 23 is expressed as follows:
  • Equation 24 is expressed as follows:
  • Equation 25 is expressed as follows:
  • Equation 26 is expressed as follows:
  • the calculation and update of the antecedent parameters of the T-S fuzzy model include: calculating the fuzzy function mean according to the fuzzy membership; calculating the fuzzy function variance based on the fuzzy function mean; calculating the fuzzy weight of the fuzzy function based on the fuzzy function variance and the fuzzy function mean.
  • the TS fuzzy model represents the center of the fuzzy set of antecedent parameters And width It can be calculated and updated according to Equation 27 to Equation 29:
  • Equation 28 is expressed as follows:
  • Equation 29 is expressed as follows:
  • Equation 30 the model probability of the T-S fuzzy model
  • Equation 31 The standardized model probability can be calculated by Equation 31, which is expressed as follows:
  • the posterior probability density function of the target state can be set as follows:
  • Equation 32 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the covariance P k is the target output covariance estimate, as shown in Equation 33, which is expressed as follows:
  • This application also provides an interactive TS fuzzy semantic model estimation system, including: a definition fuzzy set module, which is used to define different semantic fuzzy sets in the TS fuzzy model according to different language values adopted by the target feature; a probability conversion module, which is used to The different semantic fuzzy sets set a probability conversion method between each semantic fuzzy set in the defined fuzzy set module; a fuzzy interaction module is used to perform fuzzy interaction on the initial state of the target according to the probability conversion method to obtain the target The mixed initial state estimation and the mixed initial state covariance; the filter module is used to perform nonlinear filtering on the mixed initial state estimation and the mixed initial state covariance to obtain the updated state and the updated state covariance of the target state; The antecedent parameter updating module is used to calculate and update the antecedent parameters of the TS fuzzy model according to the calculated fuzzy membership of the TS fuzzy model to obtain the updated antecedent parameters; the standardized model probability module is used to calculate based on the antecedent parameters Normalized model probability; estimated output module, based on the normalized model probability, the updated state and the updated
  • An embodiment of the present application provides an electronic device. Please refer to 2.
  • the electronic device includes a memory 601, a processor 602, and a computer program stored on the memory 601 and executable on the processor 602.
  • the processor 602 executes the computer program At this time, the interactive TS fuzzy semantic model estimation method described in the foregoing embodiments is implemented.
  • the electronic device further includes: at least one input device 603 and at least one output device 604.
  • the aforementioned memory 601, processor 602, input device 603, and output device 604 are connected via a bus 605.
  • the input device 603 may specifically be a camera, a touch panel, physical buttons, a mouse, or the like.
  • the output device 604 may specifically be a display screen.
  • the memory 601 may be a high-speed random access memory (RAM, Random Access Memory) memory, or may be a non-volatile memory (non-volatile memory), such as a disk memory.
  • RAM Random Access Memory
  • non-volatile memory non-volatile memory
  • the memory 601 is used to store a set of executable program codes, and the processor 602 is coupled to the memory 601.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium may be provided in the electronic device in each of the foregoing embodiments, and the computer-readable storage medium may be as shown in FIG. 2 described above.
  • the memory 601 in the embodiment is shown.
  • a computer program is stored on the computer-readable storage medium, and when the program is executed by the processor 602, the interactive T-S fuzzy semantic model estimation method described in the foregoing method embodiments is implemented.
  • the computer storable medium may also be various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory 601 (ROM, Read-Only Memory), RAM, a magnetic disk, or an optical disk.
  • program codes such as a U disk, a mobile hard disk, a read-only memory 601 (ROM, Read-Only Memory), RAM, a magnetic disk, or an optical disk.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software function modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Fuzzy Systems (AREA)
  • Automation & Control Theory (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Image Analysis (AREA)

Abstract

一种交互式T-S模糊语义模型估计方法、系统和计算机可读存储介质,用于目标跟踪,解决了现有的滤波算法难以满足系统性能的要求而降低了研究成果的鲁棒性和准确性的问题,包括:采用的不同语言值定义T-S模糊模型中的不同语义模糊集;设定各个语义模糊集之间的概率转换方法;对目标的初始状态模糊交互,得到目混合初始状态估计及混合初始状态协方差;对混合初始状态估计及混合初始状态协方差非线性滤波处理,得到更新状态及更新状态协方差;对T-S模糊模型的前件参数计算和更新,得到更新前件参数;计算标准化模型概率;得出目标的状态估计及协方差估计;估计目标的运动状态,从而增加了研究成果的鲁棒性和准确性。

Description

交互式T-S模糊语义模型估计方法、系统和计算机可读存储介质 技术领域
本发明涉及目标跟踪技术领域,尤其涉及一种交互式T-S模糊语义模型估计方法、系统和计算机可读存储介质。
背景技术
Takagi和Sugeno在1985年提出了T-S模糊模型,该模型的then部分使用线性函数的形式来表示。
非线性、非高斯随机系统的状态估计在现代信号处理、图像处理、计算机视觉及自动控制等领域有着广泛的应用;扩展卡尔曼滤波、无迹卡尔曼滤波、容积卡尔曼滤波以及许多卡尔曼类改进滤波等方法。
技术问题
背景技术中提到的滤波方法只能完成弱非线性、噪声近似高斯模型的系统滤波,当系统为强非线性、非高斯噪声时,滤波算法难以满足系统性能的要求,从而降低了研究成果的鲁棒性和准确性。
技术解决方案
本发明第一方面提供一种交互式T-S模糊语义模型估计方法,包括:根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义模糊集;根据所述不同语义模糊集设定各个语义模糊集之间的概率转换方法;根据所述概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;根据前件参数计算标准化模型概率;根据所述标准化模型概率、 更新状态及更新状态协方差得出目标的状态估计及协方差估计;根据所述状态估计及协方差估计估计目标的运动状态。
本发明第二方面提供一种交互式T-S模糊语义模型估计系统,包括:定义模糊集模块,用于根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义模糊集;概率转换模块,用于根据所述不同语义模糊集设定所述定义模糊集模块内的各个语义模糊集之间的概率转换方法;模糊交互模块,用于根据所述概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;滤波模块,用于对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;前件参数更新模块,用于根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;标准化模型概率模块,用于根据前件参数计算标准化模型概率;估计输出模块,根据所述标准化模型概率、所述更新状态及所述更新状态协方差得出目标的状态估计及协方差估计;运动状态估计模块,用于根据所述估计输出模块估计目标的运动状态。
本发明第三方面提供一种电子装置,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现上述中的任意一项所述方法。
本发明第四方面提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现上述中的任意一项所述方法。
有益效果
通过使用目标特征的不同语义模糊集作为输入数据,并对目标进 行模糊计算,使得估计方法能够自动适应目标的运动状态,并且基于T-S模糊模型能够逼近任意形状的非线性系统的情况下,使得估计方法不仅能够适应弱非线性、噪声近似高斯模型的系统,而且能够适应强非线性、非高斯噪声的系统,从而在估计方法适应性增强的情况下,增加了研究成果的鲁棒性和准确性。
附图说明
图1为本发明实施例交互式T-S模糊语义模型估计方法的流程示意框图;
图2为本发明实施例电子装置的结构示意框图。
本发明的最佳实施方式
本发明第一方面提供一种交互式T-S模糊语义模型估计方法,包括:根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义模糊集;根据所述不同语义模糊集设定各个语义模糊集之间的概率转换方法;根据所述概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;根据前件参数计算标准化模型概率;根据所述标准化模型概率、更新状态及更新状态协方差得出目标的状态估计及协方差估计;根据所述状态估计及协方差估计估计目标的运动状态。
进一步地,所述根据所述不同语义模糊集设定各个语义模糊集之间的概率转换方法包括:根据相近语义具有相似性的特点,使用已得出的模糊集交叉度定义,设定转移概率函数;在设定每个模糊模型的特征数量及语言值数量后,根据T-S模糊模型对非线性函数的表示函 数,得到转移概率;根据转移概率得到概率转移矩阵表示函数。
进一步地,所述模糊集交叉度定义的得出方法包括:计算两个模糊集的并集;将两个模糊集的交集近似分别转化为两个三角形隶属函数;计算两个所述三角形隶属函数的交叉度。
进一步地,所述根据所述概率转换方法对目标的初始状态进行模糊交互包括:根据所述概率转换方法设定模型概率预测函数;根据所述概率转换方法及概率预测函数设定概率混合函数;根据所述概率混合函数及前一时刻的目标状态和协方差计算概率混合初始状态估计函数及概率混合初始状态协方差。
进一步地,所述对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理包括:在最小二乘估计器中引入目标速度与时间间隔作为遗忘因子;根据所述混合初始状态协方差、状态转移矩阵及观测矩阵计算滤波增益;根据所述滤波增益及所述混合初始状态估计得到更新状态;根据所述滤波增益及混合初始状态协方差得到更新状态协方差。
进一步地,所述T-S模糊模型隶属度的计算方法包括:设定核最大熵模糊C回归模型聚类的目标函数;根据香农信息熵的定义,在所述目标函数中引入信息熵,得到新目标函数;对模糊隶属度求一阶偏导并使模糊隶属度的一阶偏导等于零,得到偏导函数;根据所述偏导函数及所述目标函数得到偏导目标函数;根据所述偏导目标函数及所述偏导函数得到实际观测与模型输出之间的模糊隶属度。
进一步地,所述对T-S模糊模型的前件参数进行计算和更新包括:根据所述模糊隶属度计算模糊函数均值;根据所述模糊函数均值计算模糊函数方差;根据所述模糊函数方差及所述模糊函数均值计算模糊 函数的模糊权值。
本发明第二方面提供一种交互式T-S模糊语义模型估计系统,包括:定义模糊集模块,用于根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义模糊集;概率转换模块,用于根据所述不同语义模糊集设定所述定义模糊集模块内的各个语义模糊集之间的概率转换方法;模糊交互模块,用于根据所述概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;滤波模块,用于对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;前件参数更新模块,用于根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;标准化模型概率模块,用于根据前件参数计算标准化模型概率;估计输出模块,根据所述标准化模型概率、所述更新状态及所述更新状态协方差得出目标的状态估计及协方差估计;运动状态估计模块,用于根据所述估计输出模块估计目标的运动状态。
本发明第三方面提供一种电子装置,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现上述中的任意一项所述方法。
本发明第四方面提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现上述中的任意一项所述方法。
本发明的实施方式
请参阅图1,为一种交互式T-S模糊语义模型估计方法,包括:S1、根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义 模糊集;S2、根据不同语义模糊集设定各个语义模糊集之间的概率转换方法;S3、根据概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;S4、对混合初始状态估计及混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;S5、根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;S6、根据前件参数计算标准化模型概率;S7、根据标准化模型概率、更新状态及更新状态协方差得出目标的状态估计及协方差估计;S8、根据状态估计及协方差估计估计目标的运动状态。
具体地,设定公式1及公式2为离散非线性动态系统的表达式,公式1表示如下:
x k=f(x k-1)+e k-1
公式2表示如下:
z k=h(x k)+v k
在公式1及公式2找那个,x k∈R n表示k时刻n维状态矢量,z k∈R m表示m维观测矢量,f(x k-1)和h(x k)表示合适的非线性函数。e k-1表示均值为0协方差为
Figure PCTCN2018118845-appb-000001
的过程噪声,v k表示均值为0协方差为
Figure PCTCN2018118845-appb-000002
的观测噪声。
在本领域的公知技术中,一般的,T-S模糊模型认为任何非线性系统可以用如公式3的M个模糊线性模型表,公式3表示如下:
模型i:
Figure PCTCN2018118845-appb-000003
其中,ψ k表示规则的前件变量,
Figure PCTCN2018118845-appb-000004
表示前件变量对应的模糊隶属函,
Figure PCTCN2018118845-appb-000005
Figure PCTCN2018118845-appb-000006
分别表示状态转移矩阵和观测矩阵;从公式3可以看 出,M模糊模型都是线性时不变模型。于是,全局模糊模型可以用公式4及公式5表示,公式4表示如下:
Figure PCTCN2018118845-appb-000007
公式5表示如下:
Figure PCTCN2018118845-appb-000008
在公式4及公式5中,
Figure PCTCN2018118845-appb-000009
表示x k属于第i个模糊线性模型的模糊隶属度,可以通过公式6计算,公式6表示如下:
Figure PCTCN2018118845-appb-000010
在公式6中,ψ k=[ψ k,1ψ k,2,…,ψ k,l],
Figure PCTCN2018118845-appb-000011
表示变量ψ k属于模型集
Figure PCTCN2018118845-appb-000012
的隶属度。
设定模糊隶属度
Figure PCTCN2018118845-appb-000013
采用如公式7的高斯型隶属函数表示,公式7如下所示:
Figure PCTCN2018118845-appb-000014
在公式7中,
Figure PCTCN2018118845-appb-000015
Figure PCTCN2018118845-appb-000016
分别表示第i个模型第j个隶属度函数的均值和标准差。
根据不同语义模糊集设定各个语义模糊集之间的概率转换方法包括:根据相近语义具有相似性的特点,使用已得出的模糊集交叉度定义,设定转移概率函数;在设定每个模糊模型的特征数量及语言值数量后,根据T-S模糊模型对非线性函数的表示函数,得到转移概率;根据转移概率得到概率转移矩阵表示函数。
具体地,考虑目标特征m,每个特征采用n m个语言值描述,n m个语言值对应的模糊集为
Figure PCTCN2018118845-appb-000017
每个模糊集的模糊隶属度函数分别为
Figure PCTCN2018118845-appb-000018
因此,元素ο隶属于模糊集A k的隶属度表示为μ k(ο);不同时 刻目标位置间的距离对用的模糊隶属度设定为
Figure PCTCN2018118845-appb-000019
在实际应用中,隶属函数个数n m由实验者确定,在本实施例中,模糊隶属函数采用高斯型的模糊隶属函数。
设定c k,m为k时刻的离散变量,c k,m∈{1,...,n m},表示特征m语言模糊集的编号。将c k看作一个马尔科夫过程,根据相近语义具有相似性的特点,利用模糊集的交叉度定义,在c k-1,m和Z条件下,转移概率P(c k,m=l|c k-1,m=h,Z)定义为公式8,公式8表示如下:
Figure PCTCN2018118845-appb-000020
在公式8中,Δ(l,h)表示模糊集A l和之间A h的交叉度,Z表示所有可能的模糊事件;根据公式3,可设定每个模糊模型有l特征,即前件变量,则语言值数量可以表示为{n m} m=1:l;因此概率转移矩阵Π可以通过公式9计算,公式9表示如下:
Figure PCTCN2018118845-appb-000021
在公式9中,s j第j个模糊模型第m个变量的语言值编号,h i第i个模糊模型第m个变量的语言值编号,于是概率转移矩阵Π可用公式10表示,公式10表示如下:
Π=[π i,j] M×M
模糊集交叉度定义的得出方法包括:计算两个模糊集的并集;将两个模糊集的交集近似分别转化为两个三角形隶属函数;计算两个三角形隶属函数的交叉度。
具体地,两个模糊集的交叉度Δ(l i,h j)如公式11表示,公式11表示如下:
Figure PCTCN2018118845-appb-000022
在公式11中,
Figure PCTCN2018118845-appb-000023
Figure PCTCN2018118845-appb-000024
分别表示模糊集
Figure PCTCN2018118845-appb-000025
Figure PCTCN2018118845-appb-000026
间的交集和并集,
Figure PCTCN2018118845-appb-000027
Figure PCTCN2018118845-appb-000028
分别表示
Figure PCTCN2018118845-appb-000029
Figure PCTCN2018118845-appb-000030
的尺寸,并且
Figure PCTCN2018118845-appb-000031
因此,为了计算Δ(l i,h j),需要先估计两个高斯函数的交际和并集大小,对于模糊集
Figure PCTCN2018118845-appb-000032
Figure PCTCN2018118845-appb-000033
Figure PCTCN2018118845-appb-000034
可以计算如下:
Figure PCTCN2018118845-appb-000035
在计算
Figure PCTCN2018118845-appb-000036
的过程中,将均值为m、方差为σ 2的高斯函数近似成中心为m、宽度为
Figure PCTCN2018118845-appb-000037
的三角形隶属函数,近似如下:
Figure PCTCN2018118845-appb-000038
因此计算
Figure PCTCN2018118845-appb-000039
就转换成计算两个简单三角形隶属函数的交叉度,计算两个三角形隶属函数的交叉度,即获得
Figure PCTCN2018118845-appb-000040
因此根据
Figure PCTCN2018118845-appb-000041
Figure PCTCN2018118845-appb-000042
计算交叉度Δ(l i,h j)。
T-S模糊模型隶属度的计算方法包括:设定核最大熵模糊C回归模型聚类的目标函数;根据香农信息熵的定义,在目标函数中引入信息熵,得到新目标函数;对模糊隶属度求一阶偏导并使模糊隶属度的一阶偏导等于零,得到偏导函数;根据偏导函数及目标函数得到偏导目标函数;根据偏导目标函数及偏导函数得到实际观测与模型输出之间的模糊隶属度。
核最大熵模糊C回归模型聚类能够将模糊距离用于T-S模糊模型的参数辨识,设定k时刻目标状态为x k,接收到观测z k,同时假设模型有M个输出数据
Figure PCTCN2018118845-appb-000043
则目标函数如公式12所示,公式12如下所示:
Figure PCTCN2018118845-appb-000044
在公式12中,μ i表示实际观测
Figure PCTCN2018118845-appb-000045
和模型i输出
Figure PCTCN2018118845-appb-000046
之间的模糊隶属度,
Figure PCTCN2018118845-appb-000047
表示观测
Figure PCTCN2018118845-appb-000048
和模型i输出
Figure PCTCN2018118845-appb-000049
之间的核空间欧式距离,选用高斯Merer核,则
Figure PCTCN2018118845-appb-000050
设定为公式13,公式13表示如下:
Figure PCTCN2018118845-appb-000051
在公式13中,φ表示原始特征空间到高维核空间的任意非线性映射,K(·)表示高斯Mercer核。根据香农信息熵的定义,在公式12的目标函数中引入信息熵,得到新目标函数如公式14,公式14表示如下:
Figure PCTCN2018118845-appb-000052
在公式14中,α和λ为拉格朗日乘子,利用上式对隶属度μ i求一阶偏导并令其等于0得到公式15,公式15表示如下:
Figure PCTCN2018118845-appb-000053
化简公式15得到公式16,公式16表示如下:
Figure PCTCN2018118845-appb-000054
将公式16代入公式12,得到公式17,公式17表示如下:
Figure PCTCN2018118845-appb-000055
将公式17代入公式16,得到隶属度μ i的计算公式18,根据公式18计算隶属度μ i,公式18表示如下:
Figure PCTCN2018118845-appb-000056
根据概率转换方法对目标的初始状态进行模糊交互包括:根据概率转换方法设定模型概率预测函数;根据概率转换方法及概率预测函数设定概率混合函数;根据概率混合函数及前一时刻的目标状态和协方差计算概率混合初始状态估计函数及概率混合初始状态协方差。
在使用概率转换方法的得到概率转移矩阵后,在概率转移矩阵的基础上,设定T-S模型的概率预测函数、概率混合函数、模型j的概率混合初始状态估计函数及目标相应的概率混合初始状态协方差;
概率预测函数如公式19,公式19表示如下:
Figure PCTCN2018118845-appb-000057
概率混合函数如公式20,公式20表示如下:
Figure PCTCN2018118845-appb-000058
模型j的概率混合初始状态估计函数如公式21,公式21表示如下:
Figure PCTCN2018118845-appb-000059
概率混合初始状态协方差表示如公式22,公式22表示如下:
Figure PCTCN2018118845-appb-000060
对混合初始状态估计及混合初始状态协方差进行非线性滤波处理包括:在最小二乘估计器中引入目标速度与时间间隔作为遗忘因子;根据混合初始状态协方差、状态转移矩阵及观测矩阵计算滤波增益;根据滤波增益及混合初始状态估计得到更新状态;根据滤波增益及混 合初始状态协方差得到更新状态协方差。
为了提高表示T-S模糊模型的后件参数的准确性,在最小二乘估计器上,引入目标的速度v与时间间隔作为遗忘因子λ;在通常情况下,当前观测信息越精确,或历史数据包含的信息越少时,遗忘因子λ越小,反之遗忘因子越大,因此可以得知,在速度v越大或时间间隔越大的情况下,遗忘因子λ越小,反之遗忘因子越大,因此得到修正的扩展遗忘因子最小二乘估计器如公式23至公式26所示:
公式23表示如下:
Figure PCTCN2018118845-appb-000061
公式24表示如下:
Figure PCTCN2018118845-appb-000062
公式25表示如下:
Figure PCTCN2018118845-appb-000063
公式26表示如下:
Figure PCTCN2018118845-appb-000064
根据公式23至公式26求得
Figure PCTCN2018118845-appb-000065
Figure PCTCN2018118845-appb-000066
其中,
Figure PCTCN2018118845-appb-000067
表示k时刻模型i的状态估计值,
Figure PCTCN2018118845-appb-000068
表示k时刻模型i的状态协方差。
对T-S模糊模型的前件参数进行计算和更新包括:根据模糊隶属度计算模糊函数均值;根据模糊函数均值计算模糊函数方差;根据模糊函数方差及模糊函数均值计算模糊函数的模糊权值。
具体地,在获得模糊隶属度后,T-S模糊模型中表示前件参数模糊集的中心
Figure PCTCN2018118845-appb-000069
和宽度
Figure PCTCN2018118845-appb-000070
就可以根据公式27至公式29进行计算和更新:
公式27表示如下:
Figure PCTCN2018118845-appb-000071
公式28表示如下:
Figure PCTCN2018118845-appb-000072
公式29表示如下:
Figure PCTCN2018118845-appb-000073
在公式27至公式29中,
Figure PCTCN2018118845-appb-000074
表示模糊集
Figure PCTCN2018118845-appb-000075
的隶属度函数,ψ k,n表示T-S模糊模型的输入变量(前件变量),μ i表示观测z k与模型i之间的模糊隶属度,可以通过公式18计算。
因此,T-S模糊模型的模型概率能够通过公式30计算,公式30表示如下:
Figure PCTCN2018118845-appb-000076
标准化模型概率能够通过公式31计算,公式31表示如下:
Figure PCTCN2018118845-appb-000077
因此,根据上述计算,目标状态后验概率密度函数可以设定如下:
Figure PCTCN2018118845-appb-000078
其均值
Figure PCTCN2018118845-appb-000079
和协方差P k定义如下:
均值
Figure PCTCN2018118845-appb-000080
即为目标的输出状态估计,如公式32所示,公式32表示如下:
Figure PCTCN2018118845-appb-000081
协方差P k即为目标的输出协方差估计,如公式33所示,公式33表示如下:
Figure PCTCN2018118845-appb-000082
因此,根据
Figure PCTCN2018118845-appb-000083
及P k估计目标的运动状态。
本申请还提供一种交互式T-S模糊语义模型估计系统,包括:定义模糊集模块,用于根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义模糊集;概率转换模块,用于根据所述不同语义模糊集设定所述定义模糊集模块内的各个语义模糊集之间的概率转换方法;模糊交互模块,用于根据所述概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;滤波模块,用于对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;前件参数更新模块,用于根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;标准化模型概率模块,用于根据前件参数计算标准化模型概率;估计输出模块,根据所述标准化模型概率、所述更新状态及所述更新状态协方差得出目标的状态估计及协方差估计;运动状态估计模块,用于根据所述估计输出模块估计目标的运动状态。
本申请实施例提供一种电子装置,请参阅2,该电子装置包括:存储器601、处理器602及存储在存储器601上并可在处理器602上运行的计算机程序,处理器602执行该计算机程序时,实现前述的实施例中描述的交互式T-S模糊语义模型估计方法。
进一步的,该电子装置还包括:至少一个输入设备603以及至少一个输出设备604。
上述存储器601、处理器602、输入设备603以及输出设备604,通过总线605连接。
其中,输入设备603具体可为摄像头、触控面板、物理按键或者 鼠标等等。输出设备604具体可为显示屏。
存储器601可以是高速随机存取记忆体(RAM,Random Access Memory)存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。存储器601用于存储一组可执行程序代码,处理器602与存储器601耦合。
进一步的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的电子装置中,该计算机可读存储介质可以是前述图2所示实施例中的存储器601。该计算机可读存储介质上存储有计算机程序,该程序被处理器602执行时实现前述方法实施例中描述的交互式T-S模糊语义模型估计方法。
进一步的,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器601(ROM,Read-Only Memory)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的 需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的一种交互式T-S模糊语义模型估计方法、系统和计算机可读存储介质的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。
工业实用性
解决了现有技术中滤波算法难以满足系统性能的要求,从而降低了研究成果的鲁棒性和准确性的技术问题。

Claims (10)

  1. 一种交互式T-S模糊语义模型估计方法,其特征在于,包括:
    根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义模糊集;
    根据所述不同语义模糊集设定各个语义模糊集之间的概率转换方法;
    根据所述概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;
    对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;
    根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;
    根据前件参数计算标准化模型概率;
    根据所述标准化模型概率、更新状态及更新状态协方差得出目标的状态估计及协方差估计;
    根据所述状态估计及协方差估计估计目标的运动状态。
  2. 根据权利要求1所述的交互式T-S模糊语义模型估计方法,其特征在于,所述根据所述不同语义模糊集设定各个语义模糊集之间的概率转换方法包括:
    根据相近语义具有相似性的特点,使用已得出的模糊集交叉度定义,设定转移概率函数;
    在设定每个模糊模型的特征数量及语言值数量后,根据T-S模糊模型对非线性函数的表示函数,得到转移概率;
    根据转移概率得到概率转移矩阵表示函数。
  3. 根据权利要求2所述的交互式T-S模糊语义模型估计方法, 其特征在于,所述模糊集交叉度定义的得出方法包括:
    计算两个模糊集的并集;
    将两个模糊集的交集近似分别转化为两个三角形隶属函数;
    计算两个所述三角形隶属函数的交叉度。
  4. 根据权利要求1所述的交互式T-S模糊语义模型估计方法,其特征在于,所述根据所述概率转换方法对目标的初始状态进行模糊交互包括:
    根据所述概率转换方法设定模型概率预测函数;
    根据所述概率转换方法及概率预测函数设定概率混合函数;
    根据所述概率混合函数及前一时刻的目标状态和协方差计算概率混合初始状态估计函数及概率混合初始状态协方差。
  5. 根据权利要求1所述的交互式T-S模糊语义模型估计方法,其特征在于,所述对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理包括:
    在最小二乘估计器中引入目标速度与时间间隔作为遗忘因子;
    根据所述混合初始状态协方差、状态转移矩阵及观测矩阵计算滤波增益;
    根据所述滤波增益及所述混合初始状态估计得到更新状态;
    根据所述滤波增益及混合初始状态协方差得到更新状态协方差。
  6. 根据权利要求1述的交互式T-S模糊语义模型估计方法,其特征在于,
    所述T-S模糊模型隶属度的计算方法包括:
    设定核最大熵模糊C回归模型聚类的目标函数;
    根据香农信息熵的定义,在所述目标函数中引入信息熵,得到新目标函数;
    对模糊隶属度求一阶偏导并使模糊隶属度的一阶偏导等于零,得到偏导函数;
    根据所述偏导函数及所述目标函数得到偏导目标函数;
    根据所述偏导目标函数及所述偏导函数得到实际观测与模型输出之间的模糊隶属度。
  7. 根据权利要求1所述的交互式T-S模糊语义模型估计方法,其特征在于,所述对T-S模糊模型的前件参数进行计算和更新包括:
    根据所述模糊隶属度计算模糊函数均值;
    根据所述模糊函数均值计算模糊函数方差;
    根据所述模糊函数方差及所述模糊函数均值计算模糊函数的模糊权值。
  8. 一种交互式T-S模糊语义模型估计系统,其特征在于,包括:
    定义模糊集模块,用于根据目标特征采用的不同语言值定义T-S模糊模型中的不同语义模糊集;
    概率转换模块,用于根据所述不同语义模糊集设定所述定义模糊集模块内的各个语义模糊集之间的概率转换方法;
    模糊交互模块,用于根据所述概率转换方法对目标的初始状态进行模糊交互,得到目标的混合初始状态估计及混合初始状态协方差;
    滤波模块,用于对所述混合初始状态估计及所述混合初始状态协方差进行非线性滤波处理,得到目标状态的更新状态及更新状态协方差;
    前件参数更新模块,用于根据已计算的T-S模糊模型的模糊隶属度对T-S模糊模型的前件参数进行计算和更新,得到更新前件参数;
    标准化模型概率模块,用于根据前件参数计算标准化模型概率;
    估计输出模块,根据所述标准化模型概率、所述更新状态及所述 更新状态协方差得出目标的状态估计及协方差估计;
    运动状态估计模块,用于根据所述估计输出模块估计目标的运动状态。
  9. 一种电子装置,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现权利要求1至7中的任意一项所述方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现权利要求1至7中的任意一项所述方法。
PCT/CN2018/118845 2018-12-03 2018-12-03 交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质 WO2020113354A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118845 WO2020113354A1 (zh) 2018-12-03 2018-12-03 交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118845 WO2020113354A1 (zh) 2018-12-03 2018-12-03 交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020113354A1 true WO2020113354A1 (zh) 2020-06-11

Family

ID=70973427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118845 WO2020113354A1 (zh) 2018-12-03 2018-12-03 交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2020113354A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477623A (zh) * 2009-01-16 2009-07-08 西安电子科技大学 基于模糊推理的交互式多模型方法
CN103955600A (zh) * 2014-04-03 2014-07-30 深圳大学 一种目标跟踪方法及截断积分卡尔曼滤波方法、装置
CN108061887A (zh) * 2016-11-09 2018-05-22 北京电子工程总体研究所(航天科工防御技术研究开发中心) 一种基于模糊交互式多模型算法的临近空间目标跟踪方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477623A (zh) * 2009-01-16 2009-07-08 西安电子科技大学 基于模糊推理的交互式多模型方法
CN103955600A (zh) * 2014-04-03 2014-07-30 深圳大学 一种目标跟踪方法及截断积分卡尔曼滤波方法、装置
CN108061887A (zh) * 2016-11-09 2018-05-22 北京电子工程总体研究所(航天科工防御技术研究开发中心) 一种基于模糊交互式多模型算法的临近空间目标跟踪方法

Similar Documents

Publication Publication Date Title
CN109558594B (zh) 交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质
CN108734723B (zh) 一种基于自适应权重联合学习的相关滤波目标跟踪方法
CN110347971B (zh) 基于tsk模糊模型的粒子滤波方法、装置及存储介质
CN109325128B (zh) 一种机动目标的跟踪方法及系统
WO2021089013A1 (zh) 空间图卷积网络的训练方法、电子设备及存储介质
EP4163831A1 (en) Neural network distillation method and device
CN112990312A (zh) 模型训练方法、图像识别方法、装置、设备及存储介质
CN110111367B (zh) 用于目标跟踪的模型粒子滤波方法、装置、设备及存储介质
CN109510610B (zh) 一种基于软投影加权核递归最小二乘的核自适应滤波方法
WO2019081782A1 (en) AUTOMATIC LEARNING SYSTEMS WITH PARAMETER-BASED PARAMETER ADAPTATION FOR RAPID OR LOWER LEARNING
WO2018107492A1 (zh) 基于直觉模糊随机森林的目标跟踪方法及装置
CN109740757A (zh) 一种基于序贯蒙特卡罗方法的贝叶斯优化方法
WO2020168448A1 (zh) 睡眠预测方法、装置、存储介质及电子设备
CN114445449A (zh) 基于变结构t-s模糊语义模型的目标跟踪方法及相关装置
WO2020113354A1 (zh) 交互式t-s模糊语义模型估计方法、系统和计算机可读存储介质
CN113452349A (zh) 一种基于贝叶斯序贯重要性积分的卡尔曼滤波方法
CN115795355B (zh) 一种分类模型训练方法、装置及设备
WO2020113353A1 (zh) 一种机动目标的跟踪方法及系统
CN116176531A (zh) 开度调节的性能指标的确定方法、装置和存储介质
Shi et al. Hierarchical search strategy in particle filter framework to track infrared target
WO2020223889A1 (zh) 模糊模型粒子滤波方法、装置、设备及存储介质
JP5970579B2 (ja) 混合モデル決定用の装置、方法、およびプログラム
Peng et al. Convergence analysis of a deterministic discrete time system of Feng's MCA learning algorithm
CN110675424A (zh) 一种图像中目标物的跟踪方法、系统及相关装置
Zhao et al. Estimation and variable selection of quantile partially linear additive models for correlated data

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942093

Country of ref document: EP

Kind code of ref document: A1