CN108734723B - 一种基于自适应权重联合学习的相关滤波目标跟踪方法 - Google Patents

一种基于自适应权重联合学习的相关滤波目标跟踪方法 Download PDF

Info

Publication number
CN108734723B
CN108734723B CN201810466423.0A CN201810466423A CN108734723B CN 108734723 B CN108734723 B CN 108734723B CN 201810466423 A CN201810466423 A CN 201810466423A CN 108734723 B CN108734723 B CN 108734723B
Authority
CN
China
Prior art keywords
scale
target
response
model
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810466423.0A
Other languages
English (en)
Other versions
CN108734723A (zh
Inventor
孔军
王本璇
蒋敏
丁毅涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201810466423.0A priority Critical patent/CN108734723B/zh
Publication of CN108734723A publication Critical patent/CN108734723A/zh
Application granted granted Critical
Publication of CN108734723B publication Critical patent/CN108734723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/251Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

一种基于自适应权重联合学习的相关滤波目标跟踪方法,属于机器视觉领域。该方法将相关滤波模型与基于颜色直方图的颜色模型相结合,充分利用相关滤波模型的判别特性来有效区分目标和背景,同时通过颜色模型获取直方图分数来更好的应对遮挡、闭塞、变形和其他复杂的环境。为了充分利用这两个模型的优势,本发明提出置信度权重来自适应联合这两个模型。同时在训练相关滤波器时,充分利用背景信息构建空间正则化项,有效抑制背景信息的干扰,进一步提高了算法在跟踪过程中的鲁棒性。为使目标模型在跟踪过程中更好地应对目标尺度的不断变化,本发明构建了单独的快速尺度检测模型。

Description

一种基于自适应权重联合学习的相关滤波目标跟踪方法
技术领域
本发明属于机器视觉领域,特别涉及一种基于自适应权重联合学习的相关滤波目标跟踪方法。
背景技术
机器视觉是目前最具发展潜力的学科之一,试图建立从语音、图像、视频等多维数据中获取信息的人工智能系统。目标跟踪作为机器视觉的一个重要研究方向,它的主要任务是确定感兴趣的目标在连续视频序列中的位置,同时获取目标的运动参数,从而进行更深层次的处理和分析。在自动监控系统、智能交通系统、人机交互、精确军事侦察、机器人视觉导航、智能医学诊断等领域有着广泛的应用。近年来,国内外的研究学者提出了许多新颖的算法,在该领域也取得了很多的进步。但令人遗憾的是,目标跟踪的实现一直面临着诸多干扰。这些干扰主要在于视觉信息的各种内在变化和外在变化,通常包含尺度变化、部分遮挡、背景杂乱、光照变化、运动模糊等。除此之外,目标跟踪技术在准确率和处理速度上的矛盾也对其提出了极大挑战。
正是由于目标跟踪的广泛应用以及诸多挑战,目标跟踪技术吸引了众多国内外学者及研究机构对其进行研究,一些先进的思想和技术相继被提出。相关滤波器因其优秀的计算速度和定位性能,成为了近年来视觉跟踪领域的热门。但在光照变化、背景杂乱、目标形变等复杂情况下,传统的基于相关滤波的跟踪算法常常在跟踪过程中因为环境因素导致非目标像素的逐渐累积,最终跟踪结果发生漂移而失败。因而,本发明针对实际的复杂场景下,在相关滤波模型对目标进行建模时,引入空间正则化项来抑制背景信息的负面影响,同时结合对形变、遮挡等因素较为不敏感的颜色模型,利用自适应权重更好的联合相关滤波模型和颜色模型,提出一种基于自适应权重联合学习的相关滤波目标跟踪方法,实现鲁棒目标跟踪。
发明内容
本发明的主要目的是提出一种基于自适应权重联合学习的相关滤波目标跟踪方法,在目标形变、运动模糊、光照变化和局部遮挡等干扰影响下,准确定位目标区域。
本发明的技术方案:
一种基于自适应权重联合学习的相关滤波目标跟踪方法,步骤如下:
步骤一、读入第一帧图像Image1及跟踪目标初始矩形信息;
步骤二、训练位置相关滤波器
(2-1)针对位置滤波器,在相关滤波框架下,围绕第一帧图像目标的中心点位置,依据初始矩形尺度在候选区域内循环采样得到候选样本,并对每一个候选样本提取方向梯度直方图HOG(Histogram of Oriented Gradient)特征,得到训练样本集合X1,其中每个训练样本为
Figure BDA0001662175150000021
d为特征维度;
(2-2)对训练样本x(m,n)构建目标函数,并添加空间正则化项γ||c*f||2来提高位置滤波器区分背景与目标的能力,其中γ为惩罚系数,*表示卷积运算,c表示从背景区域提取的HOG特征向量;
(2-3)对目标函数进行最小化计算,训练得到初始化的位置相关滤波器f;
步骤三、训练尺度相关滤波器
(3-1)针对尺度滤波器,在相关滤波框架下,围绕第一帧图像目标的中心点位置,在候选区域内依据不同矩形尺度采样得到候选样本,并对每一个候选样本提取HOG特征,并统一候选样本大小,得到训练样本集合Xscale,其中每个训练样本
Figure BDA0001662175150000022
(3-2)对训练样本xscale(m,n)构建目标函数,训练得到初始的尺度相关滤波器fscale
步骤四、读入下一帧图像Imaget,t>1,获得相关滤波模型和颜色模型的置信度响应图
(4-1),在候选区域内提取HOG特征,添加一个余弦窗后,将HOG特征与上一帧图像得到的位置相关滤波器做卷积操作,确保得到平滑的响应图;将卷积操作转换到傅里叶域变成点乘操作,将点乘操作的结果做傅里叶反变换,获得相关滤波模型的置信度响应图Sf
(4-2)在候选区域内提取颜色直方图特征I,对颜色直方图特征做积分图运算,得到颜色模型的置信度响应图Sh
步骤五、将平均峰值能量APE(average-peak energy)作为置信度指标决定融合权重的配比,将步骤四得到的置信度响应图Sf和Sh联合,自适应地融合相关滤波模型和颜色模型,得到最终的位置响应图S(x),S(x)=ωfSfhSh,位置响应图S(x)的峰值点即为预测的目标中心位置;其中ωf和ωh分别为相关滤波模型和颜色模型的融合权重;
步骤六、在当前帧预测的中心位置处的候选区域内,依据不同尺度的矩形采样得到不同尺度样本并提取HOG特征,统一尺度样本大小;在傅里叶域,将每个尺度样本的HOG特征与上一帧得到的尺度相关滤波器fscale做点乘运算得到响应图,其中峰值最大的响应图所对应的尺度即为当前帧目标的最优尺度值;
步骤七、视频未结束时,则利用已经获得的当前帧目标信息重复步骤二和步骤三在线更新f和fscale,随后重复步骤四,读入下一帧图像;视频结束时则跟踪结束。
本发明的有益效果:
1.通过步骤二提出改进的相关滤波的目标函数,引入空间正则化项,能更加有效的利用背景信息,缓解跟踪过程中产生的非目标信息的累积状况,提高滤波器区分背景与目标的能力,增强算法的鲁棒性。
2.通过步骤五利用置信度指标自适应的联合相关滤波器和颜色模型,互补优势,当目标发生形变或遮挡时,置信度指标将显著减少并趋近于0,联合颜色模型来更好的应对闭塞、变形和其他复杂的环境。
3.通过步骤六的快速尺度检测机制,克服了大部分跟踪算法在目标发生改变时的不足。
附图说明
图1为基于自适应权重联合学习的相关滤波目标跟踪方法流程图。
图2为篮球视频序列进行算法效果的展示图。
图3为慢跑视频序列进行算法效果的展示图。
图4为散步视频序列进行算法效果的展示图。
图5为可乐视频序列进行算法效果的展示图。
图6为汽车视频序列进行算法效果的展示图。
具体实施方式
以下结合具体实施例对本发明的技术方案进行进一步说明。
一种基于自适应权重联合学习的相关滤波目标跟踪方法,其流程图如图1 所示,步骤如下:
步骤一、读入第一帧图像Image1及跟踪目标初始矩形信息;
步骤二、训练位置相关滤波器
(2-1)针对位置滤波器,在相关滤波框架下,围绕第一帧图像目标的中心点位置,依据初始矩形尺度在候选区域内循环采样得到候选样本,并对每一个候选样本提取方向梯度直方图HOG(Histogram of Oriented Gradient)特征,得到训练样本集合X1,其中每个训练样本为
Figure BDA0001662175150000041
d为特征维度;
(2-2)对训练样本x(m,n)构建目标函数,并添加空间正则化项γ||c*f||2来提高位置滤波器区分背景与目标的能力,其中γ为惩罚系数,*表示卷积运算,c表示从背景区域提取的HOG特征向量;
(2-3)对目标函数进行最小化计算,训练得到初始化的位置相关滤波器f;
步骤三、训练尺度相关滤波器
(3-1)针对尺度滤波器,在相关滤波框架下,围绕第一帧图像目标的中心点位置,在候选区域内依据不同尺度的矩形采样得到候选样本,并对每一个候选样本提取HOG特征,并统一候选样本大小,得到训练样本集合Xscale,其中每个训练样本
Figure BDA0001662175150000042
(3-2)对训练样本xscale(m,n)构建目标函数,训练得到初始的尺度相关滤波器fscale
步骤四、读入下一帧图像Imaget,t>1,获得相关滤波模型和颜色模型的置信度响应图
(4-1),在候选区域内提取HOG特征,添加一个余弦窗后,将HOG特征与上一帧图像得到的位置相关滤波器做卷积操作,确保得到平滑的响应图;将卷积操作转换到傅里叶域变成点乘操作,将点乘操作的结果做傅里叶反变换,获得相关滤波模型的置信度响应图Sf
(4-2)在候选区域内提取颜色直方图特征I,对颜色直方图特征做积分图运算,得到颜色模型的置信度响应图Sh
步骤五、将平均峰值能量APE(average-peak energy)作为置信度指标决定融合权重的配比,将步骤四得到的置信度响应图Sf和Sh联合,自适应地融合相关滤波模型和颜色模型,得到最终的位置响应图S(x),S(x)=ωfSfhSh,位置响应图S(x)的峰值点即为预测的目标中心位置;其中ωf和ωh分别为相关滤波模型和颜色模型的融合权重;
步骤六、在当前帧预测的中心位置处的候选区域内,依据不同矩形尺度采样得到不同尺度样本并提取HOG特征,统一尺度样本大小;在傅里叶域,将每个尺度样本的HOG特征与上一帧得到的尺度相关滤波器fscale做点乘运算得到响应图,其中峰值最大的响应图所对应的尺度即为当前帧目标的最优尺度值;
步骤七、视频未结束时,则利用已经获得的当前帧目标信息重复步骤二和步骤三在线更新f和fscale,随后重复步骤四,读入下一帧图像;视频结束时则跟踪结束。
上述方法中,步骤二提出改进的相关滤波的目标函数,引入空间正则化项:
传统的相关滤波目标跟踪算法使用的是脊回归模型训练滤波器,也就是采用平方损失。传统的目标函数为
Figure BDA0001662175150000051
其中,x是循环采样得到的样本,特征层l∈{1,…,d},y为期望值,λ为惩罚系数。在跟踪的过程中,理想情况下学习得到的滤波器f的高响应处应为目标,而其他信息块接近于零响应。但往往由于在学习阶段的初始化边界矩形框会使跟踪模型提取部分背景信息作为目标信息,导致不必要的边界效应。因此,我们通过添加背景信息正则化项来缓解边界效应。在每一帧,c包含从背景信息块中提取的特征,γ为惩罚系数,由此,改进的目标函数表示为:
Figure RE-GDA0001694717110000061
上述目标函数在运算时可以化简为下面的形式:minf||g*f-y′||2+λ||f||2,其中
Figure RE-GDA0001694717110000062
新得到的期望值y′={y;0;…;0}。对上式中的f求导,并令其导数为0,可以得到如下解: f=(gTg+λI)-1gTy′。由于接下来的计算需要转换到傅里叶域内,因而将上式转化成复数域的表达形式:f=(gHg+λI)-1gHy′,其中gH=(g*)T,g*表示g的复共轭矩阵,gH表示g的复共轭转置矩阵。利用循环矩阵能够使用离散傅里叶变换进行对角化的性质求解上式,得到
Figure RE-GDA0001694717110000063
由此,
Figure RE-GDA0001694717110000064
可以通过逆傅里叶变换方便的将求解结果返回到时域中得到解f。同时由于大部分数据都不是线性可分的,我们可以将其映射到非线性高维空间中,在高维空间中对其分类。对于解f可以通过映射后的样本的线性组合进行表示:f=∑iαixi,则求解结果为:
α=(ggT+λI)-1y′。对于测试样本z的滤波器响应值可以表示为:
Figure RE-GDA0001694717110000065
由此得到,步骤四中的相关滤波模型的置信度响应图
Figure RE-GDA0001694717110000066
上述方法中,步骤四中的基于颜色直方图的颜色模型:
基于相关滤波器的跟踪方法有一个固有问题是刚性模板无法适应跟踪过程中的目标形变,而基于颜色直方图的方法正是由于其应对形变的出色效果在以前的跟踪算法中广泛应用。理想情况下,为了区分出背景中与目标特征相似的像素,我们使用基于颜色直方图的贝叶斯分类器处理样本图像。Ω表示直方图计算分数时的一个有限区域,r表示图像像素,I为直方图特征,β表示直方图权向量,y为期望值,则基于颜色的损失函数模型可以表示为:
Figure BDA0001662175150000067
取样的有限区域Ω可以划分为包含目标的区域块O和不含目标的背景区域块B,则上式可以化简为:
Figure BDA0001662175150000068
对上式中的β求导,并令其导数为0,可以得到如下解:
Figure BDA0001662175150000069
其中
Figure BDA00016621751500000610
Figure BDA00016621751500000611
Figure BDA00016621751500000612
指区域
Figure BDA00016621751500000613
中非0特征像素的数量,
Figure BDA00016621751500000614
由此得到,步骤四中的颜色模型的置信度响应图
Figure BDA00016621751500000615
上述方法中,步骤五中我们提出了高置信度自适应权重的联合方法,结合滤波器的相关性分数Sf(x)和直方图的分数Sh(x):S(x)=ωfSf(x)+ωhSh(x)。其中,权重ωf=1-ωh,同时这取决于两个模型的置信度。一般来说,大部分的视觉跟踪算法都是通过搜索响应图获得最后得分来定位目标的。当检测到当前帧中的正确目标时,响应图一般只有一个波峰和基本平滑的边缘,波峰越尖锐,定位精度越好。因而,响应图可以在一定程度上代表跟踪结果的置信度。但是,如果对象是阻挡严重,甚至失踪,整个响应图都将剧烈的波动,导致响应图明显不同。所以,除了响应图的最大响应值映射外,我们提出一种新的置信度指标平均峰值能量(Average-peak Energy,APE):
Figure RE-GDA0001694717110000072
其中,Pmax、Pmean和Pr分别表示最大响应值、平均响应值和每个像素的响应值。APE可以体现出响应图的波动程度和最大响应值的置信度。当目标发生形变或遮挡,APE将显著减少并趋近于0,此时我们需要更多的依赖的颜色模型来调整最终的跟踪结果,将ωh设置为较高的值。
上述方法中,步骤六中快速尺度检测模型:设上一帧的目标大小为Q×R,在目标处提取大小为aeQ×aeR目标子样本,其中尺度因子
Figure RE-GDA0001694717110000073
U 为尺度滤波的大小。通过公式计算每个子样本的响应
Figure RE-GDA0001694717110000074
得到的最大响应值所对应的目标大小作为当前帧的目标尺度。上式中的v和w分别为尺度滤波器fscale的分子和分母,我们通过下面的公式对其进行更新,其中τ为学习率,下标t表示第t帧。
Figure RE-GDA0001694717110000075
Figure RE-GDA0001694717110000076
为验证本发明的准确性和鲁棒性,本发明在著名的OTB视频数据集上进行了实验。该数据集在2013年被提出,包含50个视频序列,随后在2015年,其包含的视频序列被扩充到了100个。为了直观的体现出本发明的跟踪效果,我们从OTB2015库中选取了五个具有各种干扰因素的视频序列进行算法效果的展示,这五个视频序列包含的干扰因素如表1所示。
表1:视频序列说明
视频序列 干扰因素
篮球 光照变化、遮挡、形变、旋转、背景混杂
慢跑 遮挡、形变、旋转
散步 尺度变化、遮挡、低分辨率
可乐 光照变化、遮挡、快速运动、旋转、背景混杂
汽车 尺度变化、遮挡、快速运动、旋转

Claims (1)

1.一种基于自适应权重联合学习的相关滤波目标跟踪方法,其特征在于,步骤如下:
步骤一、读入第一帧图像Image1及跟踪目标初始矩形信息;
步骤二、训练位置相关滤波器
(2-1)针对位置滤波器,在相关滤波框架下,围绕第一帧图像目标的中心点位置,依据初始矩形尺度在候选区域内循环采样得到候选样本,并对每一个候选样本提取方向梯度直方图HOG特征,得到训练样本集合X1,其中每个训练样本为
Figure FDA0003613695080000011
d为特征维度;
(2-2)对训练样本x(m,n)构建目标函数,并添加空间正则化项γ||c*f||2来提高位置滤波器区分背景与目标的能力,其中γ为惩罚系数,*表示卷积运算,c表示从背景区域提取的HOG特征向量;
(2-3)对目标函数进行最小化计算,训练得到初始化的位置相关滤波器f;
步骤三、训练尺度相关滤波器
(3-1)针对尺度滤波器,在相关滤波框架下,围绕第一帧图像目标的中心点位置,在候选区域内依据不同矩形尺度采样得到候选样本,并对每一个候选样本提取HOG特征,并统一候选样本大小,得到训练样本集合Xscale,其中每个训练样本
Figure FDA0003613695080000012
(3-2)对训练样本xscale(m,n)构建目标函数,训练得到初始的尺度相关滤波器fscale
步骤四、读入下一帧图像Imaget,t>1,获得相关滤波模型和颜色模型的置信度响应图
(4-1)在候选区域内提取HOG特征,添加一个余弦窗后,将HOG特征与上一帧图像得到的位置相关滤波器做卷积操作,确保得到平滑的响应图;将卷积操作转换到傅里叶域变成点乘操作,将点乘操作的结果做傅里叶反变换,获得相关滤波模型的置信度响应图Sf
(4-2)在候选区域内提取颜色直方图特征I,对颜色直方图特征做积分图运算,得到颜色模型的置信度响应图Sh
步骤五、将平均峰值能量APE作为置信度指标决定融合权重的配比,将步骤四得到的置信度响应图Sf和Sh联合,自适应地融合相关滤波模型和颜色模型,得到最终的位置响应图S(x),S(x)=ωfSfhSh,位置响应图S(x)的峰值点即为预测的目标中心位置,其中ωf和ωh分别为相关滤波模型和颜色模型的融合权重;
Figure FDA0003613695080000021
其中,Pmax、Pmean和Pr分别表示最大响应值、平均响应值和每个像素的响应值;
步骤六、在当前帧预测的中心位置处的候选区域内,依据不同尺度的矩形采样得到不同尺度样本并提取HOG特征,随后统一尺度样本大小;在傅里叶域,将每个尺度样本的HOG特征与上一帧得到的尺度相关滤波器fscale做点乘运算得到响应图,其中峰值最大的响应图所对应的尺度即为当前帧目标的最优尺度值;
步骤七、视频未结束时,则利用已经获得的当前帧目标信息重复步骤二和步骤三在线更新f和fscale,随后重复步骤四,读入下一帧图像;视频结束时则跟踪结束。
CN201810466423.0A 2018-05-11 2018-05-11 一种基于自适应权重联合学习的相关滤波目标跟踪方法 Active CN108734723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810466423.0A CN108734723B (zh) 2018-05-11 2018-05-11 一种基于自适应权重联合学习的相关滤波目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810466423.0A CN108734723B (zh) 2018-05-11 2018-05-11 一种基于自适应权重联合学习的相关滤波目标跟踪方法

Publications (2)

Publication Number Publication Date
CN108734723A CN108734723A (zh) 2018-11-02
CN108734723B true CN108734723B (zh) 2022-06-14

Family

ID=63938351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810466423.0A Active CN108734723B (zh) 2018-05-11 2018-05-11 一种基于自适应权重联合学习的相关滤波目标跟踪方法

Country Status (1)

Country Link
CN (1) CN108734723B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109584271B (zh) * 2018-11-15 2021-10-08 西北工业大学 基于高置信度更新策略的高速相关滤波跟踪方法
CN109741364B (zh) * 2018-11-19 2021-09-07 北京陌上花科技有限公司 目标跟踪方法及装置
CN109754424B (zh) * 2018-12-17 2022-11-04 西北工业大学 基于融合特征和自适应更新策略的相关滤波跟踪算法
CN109785366B (zh) * 2019-01-21 2020-12-25 中国科学技术大学 一种针对遮挡的相关滤波目标跟踪方法
CN110070563A (zh) * 2019-04-30 2019-07-30 山东大学 基于联合感知的相关性滤波器目标跟踪方法及系统
CN110197126A (zh) * 2019-05-06 2019-09-03 深圳岚锋创视网络科技有限公司 一种目标追踪方法、装置及便携式终端
CN110135500B (zh) * 2019-05-17 2023-03-24 南京大学 一种基于自适应深度特征滤波器的多场景下目标跟踪方法
CN110378932B (zh) * 2019-07-10 2023-05-12 上海交通大学 一种基于空间正则矫正的相关滤波视觉跟踪方法
CN110414439B (zh) * 2019-07-30 2022-03-15 武汉理工大学 基于多峰值检测的抗遮挡行人跟踪方法
CN110766723B (zh) * 2019-10-22 2020-11-24 湖南大学 一种基于颜色直方图相似性的无人机目标跟踪方法及系统
CN110929620B (zh) * 2019-11-15 2023-04-07 浙江大华技术股份有限公司 目标跟踪方法、装置及存储装置
CN111127518B (zh) * 2019-12-24 2023-04-14 深圳禾苗通信科技有限公司 基于无人机的目标跟踪方法及装置
CN111161323B (zh) * 2019-12-31 2023-11-28 北京理工大学重庆创新中心 一种基于相关滤波的复杂场景目标跟踪方法及系统
CN111724411B (zh) * 2020-05-26 2023-07-28 浙江工业大学 一种基于对冲算法的多特征融合跟踪方法
CN112465861B (zh) * 2020-11-19 2024-05-10 西北工业大学 一种基于自适应掩膜的相关滤波视觉目标跟踪方法
CN112329784A (zh) * 2020-11-23 2021-02-05 桂林电子科技大学 一种基于时空感知及多峰响应的相关滤波跟踪方法
CN113422966B (zh) * 2021-05-27 2024-05-24 绍兴市北大信息技术科创中心 一种多模型cnn环路滤波方法
CN116486259B (zh) * 2023-04-04 2024-06-04 自然资源部国土卫星遥感应用中心 遥感图像中的点目标的提取方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106651913A (zh) * 2016-11-29 2017-05-10 开易(北京)科技有限公司 基于相关滤波和颜色直方图统计的目标跟踪方法及adas系统
CN107016689A (zh) * 2017-02-04 2017-08-04 中国人民解放军理工大学 一种尺度自适应的相关滤波对冲目标跟踪方法
CN107481264B (zh) * 2017-08-11 2021-01-29 江南大学 一种自适应尺度的视频目标跟踪方法
CN107680119A (zh) * 2017-09-05 2018-02-09 燕山大学 一种基于时空上下文融合多特征及尺度滤波的跟踪算法
CN107578423B (zh) * 2017-09-15 2020-04-28 杭州电子科技大学 多特征分层融合的相关滤波鲁棒跟踪方法

Also Published As

Publication number Publication date
CN108734723A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN108734723B (zh) 一种基于自适应权重联合学习的相关滤波目标跟踪方法
CN108986140B (zh) 基于相关滤波和颜色检测的目标尺度自适应跟踪方法
CN108776975B (zh) 一种基于半监督特征和滤波器联合学习的视觉跟踪方法
CN107369166B (zh) 一种基于多分辨率神经网络的目标跟踪方法及系统
CN112364931B (zh) 一种基于元特征和权重调整的少样本目标检测方法及网络系统
CN111311647B (zh) 一种基于全局-局部及卡尔曼滤波的目标跟踪方法及装置
CN111126385A (zh) 一种可变形活体小目标的深度学习智能识别方法
CN109087337B (zh) 基于分层卷积特征的长时间目标跟踪方法及系统
CN111340842B (zh) 一种基于联合模型的相关滤波目标跟踪方法
CN112183675B (zh) 一种基于孪生网络的针对低分辨率目标的跟踪方法
CN114627447A (zh) 基于注意力机制和多目标跟踪的公路车辆跟踪方法及系统
CN110706253B (zh) 基于表观特征和深度特征的目标跟踪方法、系统、装置
CN110135435B (zh) 一种基于广度学习系统的显著性检测方法及装置
Li et al. Robust visual tracking with occlusion judgment and re-detection
CN109584267B (zh) 一种结合背景信息的尺度自适应相关滤波跟踪方法
CN113033356B (zh) 一种尺度自适应的长期相关性目标跟踪方法
CN117392187A (zh) 基于空间注意力模型的sar图像变化检测方法及设备
CN114708307B (zh) 基于相关滤波器的目标跟踪方法、系统、存储介质及设备
CN110689559A (zh) 一种基于密集卷积网络特征的视觉目标跟踪方法
CN111899284B (zh) 一种基于参数化esm网络的平面目标跟踪方法
CN110660079A (zh) 一种基于时空上下文的单目标跟踪方法
CN117237984B (zh) 基于标签一致性的mt腿部识别方法、系统、介质和设备
CN113378936B (zh) 一种基于Faster RCNN的少样本目标检测方法
Jiang et al. Kernelized Correlation Filter Tracking with Scale Adaptive Filter and Feature Integration
US11821986B1 (en) Target tracking method, system, device and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant