WO2020111896A1 - 배터리셀 저항 측정 장치 및 방법 - Google Patents

배터리셀 저항 측정 장치 및 방법 Download PDF

Info

Publication number
WO2020111896A1
WO2020111896A1 PCT/KR2019/016797 KR2019016797W WO2020111896A1 WO 2020111896 A1 WO2020111896 A1 WO 2020111896A1 KR 2019016797 W KR2019016797 W KR 2019016797W WO 2020111896 A1 WO2020111896 A1 WO 2020111896A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
frequency
impedance
resistance
resistor
Prior art date
Application number
PCT/KR2019/016797
Other languages
English (en)
French (fr)
Inventor
방경섭
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19890181.1A priority Critical patent/EP3872508A4/en
Priority to CN201980076216.7A priority patent/CN113646649A/zh
Priority to JP2021525706A priority patent/JP2022507235A/ja
Priority to US17/292,747 priority patent/US20210396815A1/en
Publication of WO2020111896A1 publication Critical patent/WO2020111896A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line

Definitions

  • the present invention relates to an apparatus and method for measuring a battery cell resistance.
  • the resistance data of the battery is extracted during the operating cycle, and the calculated resistance is calculated by calculating the resistance ratio compared to the initial battery with resistance data extracted at a specific temperature and a specific state of charge (SOC) condition.
  • SOC state of charge
  • the battery resistance deterioration estimation method has a problem in that it is difficult to calculate an accurate battery resistance value according to external noise and external load conditions because the deterioration rate is applied only at a specific temperature and a specific SOC condition.
  • the present invention has been made to solve the above problems, and is provided with a battery cell resistance measuring device and method and a battery pack capable of accurately measuring the internal resistance of a battery cell, without being affected by external noise and external load changes. It has a purpose.
  • Battery cell resistance measurement apparatus for generating a carrier signal of a first frequency and a second frequency different from the first frequency;
  • a resistance unit including a first resistance and a second resistance having a different resistance value from the first resistance;
  • An impedance measuring unit configured to measure the impedance of both ends of the corresponding application target in a state in which the carrier signal is applied to any one of the first resistor, the second resistor, and the battery cell;
  • a switching unit selectively connecting any one of the first resistor, the second resistor, and the battery cell to an impedance measuring unit;
  • a control unit calculating an internal resistance of the battery cell based on the impedance value measured by the impedance measurement unit.
  • the controller generates an adjustment parameter based on the measured impedance value by applying a carrier signal of a first frequency and a carrier signal of a second frequency to each of the first resistor and the second resistor, and for the battery cell,
  • the internal resistance of the battery cell is calculated based on the measured impedance value and the adjustment parameter by applying the carrier signal of the first frequency and the carrier signal of the second frequency.
  • the carrier signal of the first frequency is a high impedance carrier signal at a frequency below the preset first reference frequency
  • the carrier signal at the second frequency is a high impedance carrier signal at a frequency above the preset second reference frequency
  • the 1 reference frequency is smaller than the second reference frequency
  • the first resistor is set to the expected minimum resistance value when the battery cell is in an open circuit voltage state
  • the second resistance is set to the expected maximum resistance value when the battery cell is in the open circuit voltage state
  • the impedance measurement unit generates a signal having an in-phase I signal and a 90 degree delayed Q signal for each measured impedance signal, and removes noise components from each measured impedance signal based on the generated I/Q signal.
  • a processing unit is further provided.
  • the control unit may calculate the DC component resistance and the AC component impedance of the internal resistance, respectively, using the carrier signals of the first and second frequencies.
  • the control unit may calculate the capacity of the battery cell using the calculated DC component resistance and AC component impedance.
  • control unit may predict the life of the battery cell using the calculated DC component resistance and AC component impedance.
  • a method for measuring a battery cell resistance includes a carrier having a first frequency and a second frequency different from the first frequency, respectively, to the second resistance having a resistance value different from the first resistance. Measuring an impedance value at both ends of a corresponding application target in a state of applying a signal; Generating an adjustment parameter based on the measured impedance value; Measuring impedance values at both ends of the battery cell in a state in which carrier signals of the first frequency and the second frequency are respectively applied to the battery cell; And calculating the internal resistance of the battery cell based on the impedance value and the adjustment parameter measured for the battery cell.
  • the step of generating an adjustment parameter includes applying a carrier signal of a first frequency to the first resistor and applying a carrier signal of a first frequency to the second resistor, and applying a carrier signal of the first frequency to the second resistor from the second resistor. Based on the measured second impedance value, a first adjustment parameter at a first frequency is generated, and a third impedance value measured from the first resistance is generated by applying a carrier signal of a second frequency to the first resistance, and the second A second adjustment parameter at a second frequency is generated based on the fourth impedance value measured from the second resistance by applying a carrier signal of a second frequency to the resistance.
  • the carrier signal of the first frequency is a high impedance carrier signal at a frequency below the preset first reference frequency
  • the carrier signal at the second frequency is a high impedance carrier signal at a frequency above the preset second reference frequency
  • the 1 reference frequency is smaller than the second reference frequency
  • the step of calculating the internal resistance of the battery cell is based on the fifth impedance value and the first adjustment parameter measured from the battery cell by applying a carrier signal of the first frequency to the battery cell, and the DC component resistance of the battery cell and Calculate the total internal resistance including the AC component impedance, and apply a carrier signal of a second frequency to the battery cell to determine the DC component resistance of the battery cell based on the sixth impedance value and the second adjustment parameter measured from the battery cell.
  • the AC component impedance is calculated, so that the DC component resistance and the AC component impedance of the internal resistance can be calculated, respectively.
  • the first resistor is set as the expected lowest resistance value when the battery cell is in the open-circuit voltage state
  • the second resistor is set as the expected maximum resistance value when the battery cell is in the open-circuit voltage state.
  • the step of measuring each impedance value generates an in-phase I signal and a 90-degree delayed Q signal for each measured impedance signal, and noise from each measured impedance signal based on the generated I/Q signal.
  • Signal processing to remove components can be performed.
  • the battery pack according to an embodiment of the present invention, at least one battery cell that can be charged and discharged; A battery management system that controls charging and discharging of the battery cells; And the battery cell resistance measuring device for measuring the internal resistance of the battery cell.
  • the present invention it is possible to accurately measure the internal resistance of the battery cell without being affected by external noise and changes in load.
  • the power of the battery cell and the life of the battery cell can be accurately predicted.
  • FIG. 1 is a block diagram showing the configuration of a battery pack including a battery cell resistance measurement device according to an embodiment of the present invention.
  • FIG. 2 is a view showing an equivalent circuit of the open-circuit voltage state of the battery cell.
  • FIG. 3 is a detailed circuit diagram of a battery cell resistance measurement device according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method for measuring battery cell resistance according to an embodiment of the present invention.
  • FIG. 5 is a first state diagram of a battery cell resistance measurement device according to an embodiment of the present invention.
  • FIG. 6 is a second state diagram of a battery cell resistance measurement device according to an embodiment of the present invention.
  • FIG. 7 is a third state diagram of a battery cell resistance measurement device according to an embodiment of the present invention.
  • FIG. 8 is a detailed circuit diagram of a battery cell resistance measurement device according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a battery pack 100 including a battery cell resistance measurement device according to an embodiment of the present invention.
  • the battery cell resistance measurement device As shown in Figure 1, the battery cell resistance measurement device according to an embodiment of the present invention, the carrier signal generation module 10, the resistance unit 20, the impedance measurement unit 30, the switching unit 40 and It includes a control unit 50.
  • the carrier signal generation module 10 is a module that generates carrier signals of the first frequency and the second frequency, and generates a current signal as a carrier signal having a high impedance for injecting into the battery cell 1.
  • the carrier signal generation module 10 has a high impedance that is not affected by the load impedance because the measured value may vary depending on the load impedance when the impedance is small, and is controlled by the frequency control signal of the controller 50.
  • the carrier signal of the first frequency is a high impedance carrier signal at a preset low frequency
  • the carrier signal of the second frequency is a high impedance carrier signal at a preset high frequency
  • the carrier signal of the first frequency is a high impedance carrier signal below the first reference frequency
  • the carrier signal of the second frequency is a high impedance carrier signal above the second reference frequency.
  • the first reference frequency is smaller than the second reference frequency.
  • the first reference frequency may be a low frequency of 1 to 2 Hz or less
  • the second reference frequency may be a high frequency of 10 kHz or more.
  • the resistor unit 20 may include a plurality of resistors, and at least a first resistor 21 and a second resistor 23.
  • the first resistor 21 is set to an expected lowest resistance value when the battery cell 1 is in an open voltage state. For example, as a minimum value for making a reference value based on the assumption that the battery impedance is shorted, the first resistor 21 may be set to 0 ohm.
  • the second resistor 23 is set to an expected maximum resistance value when the battery cell 1 is in an open voltage state. For example, as a maximum value with a margin in consideration of battery degradation and the like, the second resistor 23 may be set in a range of 0.05 ohm to 0.3 ohm.
  • Impedance measurement unit 30 the first resistor 21, the second resistor 23 and the battery cell 1 of the first or second frequency in the carrier signal is applied to the state, the target of the application
  • This is a configuration to measure the impedance at both ends.
  • the impedance measurement unit 30 measures the impedance of both ends of the first resistor 21 while the first frequency carrier signal is applied to the first resistor 21, or the first resistor 21
  • the impedances at both ends of the first resistor 21 may be measured.
  • the impedances of the second resistor 23 and the battery cell 1 can be measured.
  • the impedance measurement unit 30 generates an in-phase I signal and a 90-degree delayed Q signal for each measured impedance signal, and generates noise components from each impedance signal measured based on the generated I/Q signal.
  • a signal processing unit 35 to be removed may be further provided. Accordingly, the influence of external noise can be eliminated.
  • the impedance measurement unit 30 and the signal processing unit 35 may be implemented as one configuration, or may be implemented as separate configurations.
  • the switching unit 40 is configured to selectively connect any one of the first resistor 21, the second resistor 23, and the battery cell 1 to the impedance measuring unit 30.
  • the first resistor and/or the second resistor may be connected in parallel between both ends of the battery cell 1 through the switches of the switching unit 40. Accordingly, by ON/OFF control of each switch of the switching unit 40, only one of the first resistor 21, the second resistor 23 and the battery cell 1, the carrier signal generation module 10 and It can be connected to the impedance measurement unit 30.
  • the switching unit 40 may be controlled by a switching control signal of the control unit 50 or the impedance measurement unit 30.
  • control unit 50 is a processing unit that calculates the internal resistance of the battery cell 1 based on the impedance value measured by the impedance measurement unit 30.
  • the controller 50 applies a carrier signal of a first frequency and a carrier signal of a second frequency to each of the first resistor 21 and the second resistor 23, respectively, and based on the measured impedance value. You can create adjustment parameters.
  • a first impedance value measured by applying a carrier signal of a first frequency to the first resistor 21 and a second impedance value measured by applying a carrier signal of a first frequency to the second resistor 23 Based on this, a first adjustment parameter at a first frequency can be generated.
  • a second adjustment parameter at the second frequency can be generated.
  • the controller 50 calculates the internal resistance of the battery cell based on the impedance value and the adjustment parameter measured by applying the carrier signal of the first frequency and the carrier signal of the second frequency to the battery cell 1 can do.
  • the fifth impedance value measured by applying the carrier signal of the first frequency to the battery cell 1 is adjusted based on the first adjustment parameter at the first frequency
  • the battery cell 1 has a second impedance value.
  • the sixth impedance value measured by applying a carrier signal of frequency can be adjusted based on the second adjustment parameter at the second frequency.
  • control unit 50 may calculate the DC component resistance and the AC component impedance of the internal resistance, respectively, using carrier signals of the first and second frequencies.
  • FIG. 2 is a view showing an equivalent circuit of the open-circuit voltage state of the battery cell.
  • the battery cell 1 is composed of a circuit in which the resistor R 0 and the capacitor C 1 and the resistor R 1 of a parallel structure are connected in series in an open-circuit voltage state.
  • the resistor R 0 represents the DC component resistance
  • the resistor R 1 represents the AC component impedance.
  • the internal resistance of the battery cell 1 consists of a resistor R 0 and a resistor R 1 .
  • the controller 50 adjusts the fifth impedance value measured by applying the carrier signal of the first frequency to the battery cell 1 based on the first adjustment parameter, for example.
  • the total internal resistance including the DC component resistance and the AC component impedance of the cell 1 is calculated.
  • impedance values measured from the battery cell 1 are DC component resistance R 0 and AC component impedance R 1 ) is the total impedance value. This is because the low-frequency, high-impedance carrier signal is measured by passing the DC component resistance R 0 and the AC component impedance R 1 inside the battery cell 1.
  • the controller 50 adjusts the sixth impedance value measured by applying the carrier signal of the second frequency to the battery cell 1 based on the second adjustment parameter, thereby resisting the DC component of the battery cell 1.
  • the impedance value measured from the battery cell 1 is an impedance value of only the DC component resistance R 0 . This is because the high-frequency, high-impedance carrier signal is measured by passing through the DC component resistance (R 0 ) and the capacitor (C 1 ) inside the battery cell (1).
  • the controller 50 may calculate the AC component impedance by subtracting the DC component resistance calculated from the calculated total internal resistance, thereby calculating the DC component resistance and the AC component impedance of the internal resistance, respectively.
  • the controller 50 has been described as calculating the internal resistance based on the impedance value measured by the impedance measurement unit 30, but not only the measured impedance value, but the actual temperature of the battery cell 1 and In consideration of SOC, the internal resistance of the battery cell 1 may be calculated.
  • the controller 50 may calculate the capacity of the battery cell 1 using the calculated DC component resistance and AC component impedance.
  • the controller 50 may predict the life of the battery cell using the calculated DC component resistance and AC component impedance.
  • the present invention it is possible to accurately measure the internal resistance of the battery cell without being affected by external noise and changes in load.
  • the capacity of the battery cell and the life of the battery cell can be accurately predicted.
  • FIG. 3 is a detailed circuit diagram of a battery cell resistance measurement device according to an embodiment of the present invention.
  • the battery cell resistance measurement device according to an embodiment of the present invention, the carrier signal generation module 110, the first resistor 121, the second resistor 123, the impedance measurement unit 130, It has a switching unit, a signal processing unit 135 and a control unit 150.
  • the carrier signal generation module 110 receives a frequency control signal from the control unit 150 and generates a high impedance carrier signal of a preset low frequency (first frequency) or a preset high frequency (second frequency), and generates The applied high impedance carrier signal is applied to any one of the battery cell 1, the first resistor 121, and the second resistor 123.
  • the battery cell 1, the first resistor 121 and the second resistor 123 have a parallel structure.
  • the first resistor 121 is an expected minimum resistance value when the battery cell is in the open-circuit voltage state, and has a resistance value of 0 ohms
  • the second resistor 123 is an expected maximum resistance value when the battery cell is in the open-circuit voltage state. It has a resistance value of 0.05 ohms.
  • the impedance measuring unit 130 is connected to both ends of the battery cell 1, the first resistor 121, and the second resistor 123 forming a parallel structure, and the battery cell 1, the first resistor 121 Alternatively, an impedance value from an application target selected from the second resistors 123, that is, an impedance signal is measured.
  • the impedance measurement unit 130 may include amplification means for primarily amplifying the impedance signal.
  • the switching unit is a switching means for selectively applying a high impedance carrier signal to any one of the battery cell 1, the first resistor 121, or the second resistor 123, for example,
  • the first switch 141 connected to both ends of the 1 resistor 121 in series
  • the second switch 143 connected to both ends of the second resistor 123 in series
  • both ends of the battery cell 1 respectively.
  • a third switch 145 connected in series.
  • the first to third switches 141, 143, and 145 of the switching unit may operate by a switching control signal of the control unit 150, or by a switching control signal from the impedance measurement unit 130. It might work.
  • the signal processing unit 135 performs an orthogonal modulation signal processing as an example on the impedance signal received through the impedance measurement unit 130 to eliminate the influence of external noise, for example, impedance.
  • I circuit 135a for outputting an in-phase I signal for the impedance signal received through the measurement unit 130, and Q for outputting a Q signal delayed by 90 degrees with respect to the impedance signal received through the impedance measurement unit 130
  • the circuit 135b may include an ADC unit 135c that receives the output I and Q signals and performs analog-to-digital conversion to synthesize and remove noise components.
  • a low-pass filter and amplifier section for low-pass filtering and amplifying the corresponding output signal, respectively. (135d) is included.
  • the carrier signal is sin(wt+ ⁇ ) as a constant current waveform output from the carrier signal generation module 110 and the internal impedance of the battery cell 1 is A, it is measured by the impedance measurement unit 130.
  • the output impedance signal is Asin(wt+ ⁇ ).
  • the control unit 150 may calculate by receiving the internal impedance A of the battery cell 1 from which the noise component is removed. As described above, the influence of external noise or the like on the impedance signal received through the impedance measurement unit 130 may be removed by the signal processing unit 135.
  • the controller 150 calculates the internal resistance of the battery cell based on the impedance value measured by the impedance measuring unit 130, but for each of the first resistor 121 and the second resistor 123, a low frequency
  • the carrier signal and the high frequency carrier signal are applied to generate an adjustment parameter based on the measured impedance value, and to the battery cell, the impedance value measured by applying a low frequency carrier signal and a high frequency carrier signal is applied to the adjustment parameter.
  • the internal resistance of the battery cell is calculated.
  • DC component resistance and AC component impedance are respectively calculated as the internal resistance of the battery cell.
  • the control unit 150 controls the first switch 141 to be ON, and controls the second and third switches 143 and 145 to be OFF, and the carrier signal generation module 110 is turned on.
  • the first impedance value at the first resistor 121 is measured, the second switch 143 is turned on, and the first and third switches 141 and 145 are turned off.
  • the carrier signal generating module 110 is controlled to output a low-frequency high-impedance carrier signal, the second impedance value at the second resistor 123 is measured to generate a first adjustment parameter at a low frequency.
  • control unit 150 controls the first switch 141 to be ON, the second and third switches 143 and 145 are OFF, and the carrier signal generation module 110 is controlled to output a high frequency high impedance carrier signal.
  • the control unit 150 controls the first switch 141 to be ON, the second and third switches 143 and 145 are OFF, and the carrier signal generation module 110 is controlled to output a high frequency high impedance carrier signal.
  • the carrier signal generation module 110 Is controlled to output a high-impedance high-impedance carrier signal
  • a fourth impedance value at the second resistor 123 is measured to generate a second adjustment parameter at a high frequency.
  • the order of measuring the first to fourth impedance values is not particularly limited, and may be variously changed.
  • the controller 150 turns on the third switch 145 and turns on the first and second switches 141 and 143. ) Is controlled by OFF, and the carrier signal generation module 110 is controlled to output a low-frequency high-impedance carrier signal, so that the fifth impedance value measured from the battery cell 1 is adjusted based on the first adjustment parameter.
  • the impedance value measured from the battery cell 1 becomes the total impedance value of the DC component resistance and the AC component impedance.
  • control unit 150 controls the third switch 145 to be ON, the first and second switches 141 and 143 are OFF, and the carrier signal generation module 110 is controlled to output a high-frequency high-impedance carrier signal. Then, the impedance value in the battery cell 1 is measured, and the measured impedance value is adjusted based on the adjustment parameter at high frequency. At this time, when a high-frequency, high-impedance carrier signal is applied to the battery cell 1, the impedance value measured from the battery cell 1 becomes an impedance value only for the DC component resistance. In addition, the control unit 150 obtains the AC component impedance value by subtracting the impedance value of only the DC component resistance from the total impedance value.
  • the controller 150 can accurately calculate the DC component resistance and the AC component impedance, respectively, which are internal resistances of the battery cell.
  • the present invention calculates DC component resistance and AC component impedance, which are internal resistances of a battery cell, using a high-frequency, low-frequency, high-frequency, high-impedance carrier signal, respectively, so the influence of the external load on the battery cell is affected. Without receiving it, it is possible to accurately calculate the internal resistance of the battery cell.
  • the controller 150 may calculate the capacity of the battery cell 1 or predict the life of the battery cell 1 using the calculated DC component resistance and AC component impedance. For example, after the initial battery cell is installed, a reference change table prepared by comparing and analyzing actual measured values for a predetermined period of internal resistance components R 0 and R 1 of the battery may be prepared to calculate capacity and predict life. As described above, since it is a known technique to calculate the capacity of the battery cell 1 and predict the life, a detailed description thereof will be omitted.
  • 4 is a flowchart illustrating a method for measuring a battery cell resistance according to an embodiment of the present invention
  • FIG. 5 is a first state diagram of a battery cell resistance measuring device according to an embodiment of the present invention
  • FIG. 6 is an embodiment of the present invention 2 is a second state diagram of a battery cell resistance measurement device according to an embodiment
  • FIG. 7 is a third state diagram of a battery cell resistance measurement device according to an embodiment of the present invention.
  • a carrier signal of a first frequency and a second frequency is applied to each of the first resistance and the second resistance
  • the impedance value of both ends of the corresponding target is measured (S10).
  • the switching unit is controlled to be in a state in which carrier signals of the first frequency and the second frequency are applied to the first resistor and the second resistor, respectively.
  • the switching unit is controlled to be in a state in which carrier signals of the first frequency and the second frequency are applied to the first resistor and the second resistor, respectively.
  • the high impedance carrier signal from the carrier signal generation module 110 is removed. 1 can be selectively applied to the resistor 121, and also, as shown in FIG. 6, by turning on the second switch 143, and turning off the first and third switches 141, 145, carrier signal generation
  • the high impedance carrier signal from the module 110 can be selectively applied to the second resistor 123.
  • a carrier signal of a first frequency is applied to the first resistor 121 to measure a first impedance value from the first resistor 121
  • the second resistor 123 has a first frequency.
  • the second impedance value is measured from the second resistor 123 by applying a carrier signal.
  • a carrier signal of a second frequency is applied to the first resistor 121 to measure a third impedance value from the first resistor 121
  • a carrier signal of a second frequency is applied to the second resistor 123 to remove the carrier signal.
  • the fourth impedance value can be measured from the resistor 123.
  • the order of measuring the first to fourth impedance values is not particularly limited, and may be measured in various orders according to a measurement environment and a setting order.
  • an adjustment parameter is generated based on the measured impedance value (S20).
  • the control unit 150 generates a first adjustment parameter at a first frequency based on the first impedance value and the second impedance value. Further, based on the third impedance value and the fourth impedance value, a second adjustment parameter at the second frequency is generated.
  • the order of generating the first and second adjustment parameters is not particularly limited.
  • the switching unit is controlled to be in a state in which carrier signals of the first frequency and the second frequency are applied to the battery cell.
  • the high impedance carrier signal from the carrier signal generation module 110 is a battery. It can be selectively applied to the cell (1).
  • a carrier signal of a first frequency is applied to the battery cell 1 to measure a fifth impedance value from the battery cell
  • a carrier signal of a second frequency is applied to the battery cell 1 to apply the battery.
  • the sixth impedance value is measured from the cell.
  • the order of measuring the fifth and sixth impedance values is not particularly limited.
  • the internal resistance of the battery cell is calculated based on the impedance value and the adjustment parameter measured for the battery cell (S40).
  • the DC component resistance and the AC component impedance of the internal resistance may be respectively calculated.
  • the step of calculating the internal resistance of the battery cell (S40) by adjusting the fifth impedance value based on the first adjustment parameter, the total internal resistance including the DC component resistance and the AC component impedance of the battery cell is calculated.
  • the DC component resistance of the battery cell is calculated, and the calculated DC component resistance is subtracted from the calculated total internal resistance to calculate the AC component impedance.
  • DC component resistance and AC component impedance of the internal resistance can be calculated, respectively.
  • each of the measured impedance signals generates an in-phase I signal and a 90-degree delayed Q signal, and the generated I/Q signal
  • signal processing to remove noise components from the measured impedance signals may be performed. Accordingly, the influence of external noise can be eliminated.
  • the battery cell resistance measurement method using the calculated DC component resistance and AC component impedance, calculating the capacity of the battery cell 1, and calculated
  • the DC component resistance and the AC component impedance may be used to further include at least one of the steps of predicting the life of the battery cell.
  • the resistor unit 20 is provided with a plurality of resistors 21 and 23.
  • one variable resistor may be used.
  • FIG. 8 is a detailed circuit diagram of a battery cell resistance measurement device according to another embodiment of the present invention.
  • the battery cell resistance measurement device according to another embodiment of the present invention, the carrier signal generation module 210, the variable resistance 220, the impedance measurement unit 230, the switching unit (241, 245), A signal processing unit 235 and a control unit 250 are provided.
  • the resistance value of the variable resistor 220 may be changed by the impedance measurement unit 230 or the control unit 250.
  • the battery cell 1 is adjusted to have a resistance value of 0 ohm as an expected minimum resistance value when the voltage is open, or as an expected maximum resistance value when the battery cell 1 is in the open voltage state, 0.05 It can be adjusted to have ohm resistance.
  • the first switch 241 controls ON
  • the second switch 245 controls OFF
  • the low-frequency carrier signal and the high-frequency carrier signal from the carrier signal generation module 210 are variable resistor 220.
  • the switching unit is connected in series to both ends of each of the battery cell 1, the first and second resistors 121 and 123 (or the variable resistor 220), but the battery cell 1,
  • the first and second resistors 121 and 123 (or the variable resistor 220) may be connected in series to only one of both ends. That is, the high-impedance carrier signals of the carrier signal generation modules 110 and 210 are selectively applied to any one of the battery cell 1, the first and second resistors 121 and 123 (or the variable resistor 220). You can do it.
  • the present invention may be implemented with a battery pack.
  • the battery pack according to an embodiment of the present invention, at least one battery cell that can be charged and discharged; A battery management system that controls charging and discharging of the battery cells; And the battery cell resistance measurement device for measuring the internal resistance of the battery cell.
  • the present invention it is possible to accurately measure the internal resistance of the battery cell without being affected by changes in external noise and external load, and also, by using the measured internal resistance of the battery cell, the battery cell Can accurately predict power and battery cell life.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Fuel Cell (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명은 배터리셀 저항 측정 장치 및 방법에 관한 것으로, 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치는, 제1 주파수 및 상기 제1 주파수와 다른 제2 주파수의 캐리어 신호를 생성하는 캐리어 신호 생성 모듈; 제1 저항 및 제1 저항과 다른 저항값을 가지는 제2 저항을 포함하는 저항부; 제1 저항, 제2 저항 및 배터리셀 중 어느 하나에 상기 캐리어 신호가 인가되는 상태에서, 해당 인가 대상의 양단의 임피던스를 측정하는 임피던스 측정부; 제1 저항, 제2 저항 및 배터리셀 중 어느 하나를 임피던스 측정부에 선택적으로 연결하는 스위칭부; 및 임피던스 측정부에 의하여 측정된 임피던스 값에 기초하여, 배터리셀의 내부 저항을 계산하는 제어부를 포함한다.

Description

배터리셀 저항 측정 장치 및 방법
관련출원과의 상호인용
본 출원은 2018년 11월 30일 자 한국 특허 출원 제10-2018-0152645호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 배터리셀 저항 측정 장치 및 방법에 관한 것이다.
종래에는 배터리 저항 퇴화를 추정하기 위해서, 오퍼레이팅 사이클 동안 배터리의 저항 데이터를 추출하고, 특정 온도 및 특정 SOC(state of charge) 조건에서 추출된 저항 데이터로 배터리 초기 대비 저항 비율을 계산하여, 계산된 저항 비율을 배터리의 실시간 SOC 추정, 용량 추정 및 배터리 수명 추정 등에 이용하였다.
그러나, 이와 같은 배터리 저항 퇴화 추정 방식은, 특정 온도, 특정 SOC 조건에서만의 퇴화율을 적용하고 있기 때문에, 외부 노이즈 및 외부 부하의 상황에 따라 정확한 배터리의 저항값을 계산하기 어려운 문제점이 있었다.
본 발명은 상기 문제점을 해결하기 위해 이루어진 것으로, 외부 노이즈 및 외부 부하의 변화에 영향을 받지 않고, 배터리셀의 내부 저항을 정확히 측정할 수 있는 배터리셀 저항 측정 장치 및 방법 그리고 배터리 팩을 제공하는 데 그 목적이 있다.
본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치는, 제1 주파수 및 제1 주파수와 다른 제2 주파수의 캐리어 신호를 생성하는 캐리어 신호 생성 모듈; 제1 저항 및 제1 저항과 다른 저항값을 가지는 제2 저항을 포함하는 저항부; 제1 저항, 제2 저항 및 배터리셀 중 어느 하나에 상기 캐리어 신호가 인가되는 상태에서, 해당 인가 대상의 양단의 임피던스를 측정하는 임피던스 측정부; 제1 저항, 제2 저항 및 배터리셀 중 어느 하나를 임피던스 측정부에 선택적으로 연결하는 스위칭부; 및 임피던스 측정부에 의하여 측정된 임피던스 값에 기초하여, 배터리셀의 내부 저항을 계산하는 제어부를 포함한다.
제어부는, 제1 저항 및 상기 제2 저항 각각에 대하여, 제1 주파수의 캐리어 신호 및 제2 주파수의 캐리어 신호를 각각 인가하여 측정된 임피던스 값에 기초하여 조정 파라미터를 생성하고, 배터리셀에 대하여, 제1 주파수의 캐리어 신호 및 제2 주파수의 캐리어 신호를 인가하여 측정된 임피던스 값 및 조정 파라미터에 기초하여 배터리셀의 내부 저항을 산출한다.
여기서, 제1 주파수의 캐리어 신호는 미리 설정된 제1 기준 주파수 이하의 주파수에서의 하이 임피던스 캐리어 신호이며, 제2 주파수의 캐리어 신호는 미리 설정된 제2 기준 주파수 이상의 주파수에서의 하이 임피던스 캐리어 신호이며, 제1 기준 주파수는 제2 기준 주파수보다 작다.
제1 저항은 배터리셀이 개로 전압(open circuit voltage) 상태일 때의 예상 최저 저항값으로 설정되고, 제2 저항은 배터리셀이 개로 전압 상태일 때의 예상 최대 저항값으로 설정된다.
일례로, 임피던스 측정부는, 측정된 각 임피던스 신호에 대해서 동상의 I 신호와 90도 지연된 Q 신호를 생성하고, 생성된 I/Q 신호에 기초하여 측정된 각 임피던스 신호로부터의 노이즈 성분을 제거하는 신호 처리부를 더 구비한다.
제어부는, 제1 및 제2 주파수의 캐리어 신호를 이용하여, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출할 수 있다.
제어부는, 산출된 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 배터리셀의 용량을 계산할 수 있다.
또한, 제어부는, 산출된 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 배터리셀의 수명을 예측할 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리셀 저항 측정 방법은, 제1 저항 및 제1 저항과 다른 저항값을 가지는 제2 저항 각각에, 제1 주파수 및 제1 주파수와 다른 제2 주파수의 캐리어 신호를 인가하는 상태에서, 해당 인가 대상의 양단의 임피던스 값을 측정하는 단계; 측정된 임피던스 값에 기초하여 조정 파라미터를 생성하는 단계; 배터리셀에, 제1 주파수 및 제2 주파수의 캐리어 신호를 각각 인가하는 상태에서, 배터리셀의 양단의 임피던스 값을 측정하는 단계; 및 배터리셀에 대하여 측정된 임피던스 값 및 조정 파라미터에 기초하여 배터리셀의 내부 저항을 산출하는 단계를 포함한다.
조정 파라미터를 생성하는 단계는, 제1 저항에 제1 주파수의 캐리어 신호를 인가하여 제1 저항으로부터 측정된 제1 임피던스 값과, 제2 저항에 제1 주파수의 캐리어 신호를 인가하여 제2 저항으로부터 측정된 제2 임피던스 값에 기초하여, 제1 주파수에서의 제1 조정 파라미터를 생성하고, 제1 저항에 제2 주파수의 캐리어 신호를 인가하여 제1 저항으로부터 측정된 제3 임피던스 값과, 제2 저항에 제2 주파수의 캐리어 신호를 인가하여 제2 저항으로부터 측정된 제4 임피던스 값에 기초하여, 제2 주파수에서의 제2 조정 파라미터를 생성한다.
여기서, 제1 주파수의 캐리어 신호는 미리 설정된 제1 기준 주파수 이하의 주파수에서의 하이 임피던스 캐리어 신호이며, 제2 주파수의 캐리어 신호는 미리 설정된 제2 기준 주파수 이상의 주파수에서의 하이 임피던스 캐리어 신호이며, 제1 기준 주파수는 제2 기준 주파수보다 작다.
또한, 배터리셀의 내부 저항을 산출하는 단계는, 배터리셀에 제1 주파수의 캐리어 신호를 인가하여 배터리셀로부터 측정된 제5 임피던스 값 및 제1 조정 파라미터에 기초하여, 배터리셀의 직류 성분 저항과 교류 성분 임피던스를 포함하는 전체 내부 저항을 산출하고, 배터리셀에 제2 주파수의 캐리어 신호를 인가하여 배터리셀로부터 측정된 제6 임피던스 값 및 제2 조정 파라미터에 기초하여, 배터리셀의 직류 성분 저항을 산출하며, 산출된 전체 내부 저항에서 산출된 직류 성분 저항을 빼서 교류 성분 임피던스를 산출함으로써, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출할 수 있다.
제1 저항은 배터리셀이 개로 전압 상태일 때의 예상 최저 저항값으로 설정되고, 제2 저항은 배터리셀이 개로 전압 상태일 때의 예상 최대 저항값으로 설정된다.
또한, 각 임피던스 값을 측정하는 단계는, 측정된 각 임피던스 신호에 대해서 동상의 I 신호와 90도 지연된 Q 신호를 생성하고, 생성된 I/Q 신호에 기초하여 상기 측정된 각 임피던스 신호로부터의 노이즈 성분을 제거하는 신호 처리를 수행할 수 있다.
한편, 본 발명의 일 실시예에 따른 배터리 팩은, 충방전 가능한 적어도 하나의 배터리셀; 배터리셀의 충방전을 제어하는 배터리 관리 시스템; 및 배터리셀의 내부 저항을 측정하는 상기의 배터리셀 저항 측정 장치;를 포함한다.
본 발명에 의하면, 외부 노이즈 및 부하의 변화에 영향을 받지 않고 배터리셀의 내부 저항을 정확히 측정할 수 있다.
또한, 측정된 배터리셀의 내부 저항을 이용하여, 배터리셀의 전력 및 배터리 셀의 수명을 정확히 예측할 수 있다.
본 발명에 의한 다른 효과는, 이후 실시예에 따라 추가적으로 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치를 포함하는 배터리팩의 구성을 나타내는 블록도이다.
도 2는 배터리셀의 개로 전압 상태의 등가 회로를 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 구체적인 회로도이다.
도 4는 본 발명의 일 실시예에 따른 배터리셀 저항 측정 방법을 나타내는 순서도이다.
도 5는 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 제1 상태도이다.
도 6은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 제2 상태도이다.
도 7은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 제3 상태도이다.
도 8은 본 발명의 다른 실시예에 따른 배터리셀 저항 측정 장치의 구체적인 회로도이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략하기로 한다.
먼저, 도 1을 이용하여, 본 발명에 따른 배터리셀 저항 측정 장치에 대해서 설명하기로 한다. 도 1은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치를 포함하는 배터리팩(100)의 구성을 나타내는 블록도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치는, 캐리어 신호 생성 모듈(10), 저항부(20), 임피던스 측정부(30), 스위칭부(40) 및 제어부(50)를 포함한다.
먼저, 캐리어 신호 생성 모듈(10)은, 제1 주파수 및 제2 주파수의 캐리어 신호를 생성하는 모듈로서, 배터리셀(1)에 주입하기 위해 하이 임피던스를 가진 캐리어 신호로서 전류 신호를 생성한다. 여기서, 캐리어 신호 생성 모듈(10)은 임피던스가 작으면 부하(load) 임피던스에 따라 측정값이 달라질 수 있으므로, 부하 임피던스에 영향을 받지 않는 하이 임피던스를 가지며, 제어부(50)의 주파수 제어 신호에 의해, 일정한 전류 파형으로서 제1 주파수 또는 제2 주파수의 캐리어 신호를 생성하여 출력한다.
예로써, 제1 주파수의 캐리어 신호는 미리 설정된 저주파수에서의 하이 임피던스 캐리어 신호이고, 또한, 제2 주파수의 캐리어 신호는 미리 설정된 고주파수에서의 하이 임피던스 캐리어 신호이다. 다시 말해, 제1 주파수의 캐리어 신호는 제1 기준 주파수 이하의 하이 임피던스 캐리어 신호이며, 제2 주파수의 캐리어 신호는 제2 기준 주파수 이상의 하이 임피던스 캐리어 신호이다. 여기서, 제1 기준 주파수는 제2 기준 주파수보다 작다. 예를 들어, 제1 기준 주파수는 1~2Hz이하의 저주파수일 수 있으며, 제2 기준 주파수는 10kHz 이상의 고주파수일 수 있다.
저항부(20)는 복수의 저항을 포함할 수 있으며, 적어도 제1 저항(21) 및 제2 저항(23)을 포함한다. 일례로, 제1 저항(21)은 배터리셀(1)이 개로 전압 상태일 때의 예상 최저 저항값으로 설정된다. 예로써, 배터리 임피던스가 쇼트된 것을 가정한 값으로 기준값을 만들기 위한 최소값으로서, 제1 저항(21)은 0옴으로 설정될 수 있다. 또한, 제2 저항(23)은 배터리셀(1)이 개로 전압 상태일 때의 예상 최대 저항값으로 설정된다. 예로써, 배터리의 퇴화 등을 고려하여 마진을 둔 최대값으로서, 제2 저항(23)은 0.05옴 내지 0.3옴의 범위에서 설정될 수 있다.
임피던스 측정부(30)는, 제1 저항(21), 제2 저항(23) 및 배터리셀(1) 중 어느 하나에 제1 또는 제2 주파수의 캐리어 신호가 인가되는 상태에서, 해당 인가 대상의 양단의 임피던스를 측정하는 구성이다. 예를 들면, 임피던스 측정부(30)는, 제1 저항(21)에 제1 주파수 캐리어 신호가 인가되는 상태에서, 제1 저항(21)의 양단의 임피던스를 측정하거나, 제1 저항(21)에 제2 주파수 캐리어 신호가 인가되는 상태에서, 제1 저항(21)의 양단의 임피던스를 측정할 수 있다. 마찬가지의 방식으로, 제2 저항(23) 및 배터리셀(1)에 대해서도 각각의 임피던스를 측정할 수 있다.
또한, 임피던스 측정부(30)는, 측정된 각 임피던스 신호에 대해서 동상의 I 신호와 90도 지연된 Q 신호를 생성하고, 생성된 I/Q 신호에 기초하여 측정된 각 임피던스 신호로부터의 노이즈 성분을 제거하는 신호 처리부(35)를 더 구비할 수 있다. 이에 따라, 외부 노이즈에 의한 영향을 제거할 수 있다.
일례로, 임피던스 측정부(30)와 신호 처리부(35)는 하나의 구성으로서 구현될 수도 있고, 별개의 구성으로 구현될 수도 있다.
스위칭부(40)는, 제1 저항(21), 제2 저항(23) 및 배터리셀(1) 중 어느 하나를 임피던스 측정부(30)에 선택적으로 연결시키는 구성이다. 예를 들면, 스위칭부(40)의 스위치들을 통해서 배터리셀(1) 양단 사이에서 제1 저항 및/또는 제2 저항이 병렬 연결이 되도록 구성할 수 있다. 이에 따라, 스위칭부(40)의 각 스위치를 ON/OFF 제어하는 것에 의해, 제1 저항(21), 제2 저항(23) 및 배터리셀(1) 중 어느 하나만 캐리어 신호 생성 모듈(10) 및 임피던스 측정부(30)와 연결되도록 할 수 있다. 스위칭부(40)는 제어부(50) 또는 임피던스 측정부(30)의 스위칭 제어 신호에 의해 제어될 수 있다.
또한, 제어부(50)는, 임피던스 측정부(30)에 의하여 측정된 임피던스 값에 기초하여, 배터리셀(1)의 내부 저항을 계산하는 처리부이다.
구체적으로, 제어부(50)는, 제1 저항(21) 및 제2 저항(23) 각각에 대하여, 제1 주파수의 캐리어 신호 및 제2 주파수의 캐리어 신호를 각각 인가하여 측정된 임피던스 값에 기초하여 조정 파라미터를 생성할 수 있다.
예를 들면, 제1 저항(21)에 제1 주파수의 캐리어 신호를 인가하여 측정된 제1 임피던스 값과, 제2 저항(23)에 제1 주파수의 캐리어 신호를 인가하여 측정된 제2 임피던스 값에 기초하여, 제1 주파수에서의 제1 조정 파라미터를 생성할 수 있다. 또한, 제1 저항(21)에 제2 주파수의 캐리어 신호를 인가하여 측정된 제3 임피던스 값과, 제2 저항(23)에 제2 주파수의 캐리어 신호를 인가하여 측정된 제4 임피던스 값에 기초하여, 제2 주파수에서의 제2 조정 파라미터를 생성할 수 있다.
또한, 제어부(50)는, 배터리셀(1)에 대하여, 제1 주파수의 캐리어 신호 및 제2 주파수의 캐리어 신호를 인가하여 측정된 임피던스 값 및 조정 파라미터에 기초하여, 배터리셀의 내부 저항을 산출할 수 있다. 예를 들어, 배터리셀(1)에 제1 주파수의 캐리어 신호를 인가하여 측정된 제5 임피던스 값을, 제1 주파수에서의 제1 조정 파라미터에 기초하여 조정하고, 배터리셀(1)에 제2 주파수의 캐리어 신호를 인가하여 측정된 제6 임피던스 값을, 제2 주파수에서의 제2 조정 파라미터에 기초하여 조정할 수 있다.
또한, 제어부(50)는, 배터리셀의 내부 저항을 산출할 때에, 제1 및 제2 주파수의 캐리어 신호를 이용하여, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출할 수 있다.
여기서, 도 2를 이용하여, 배터리셀의 내부 저항 성분을 설명한다. 도 2는 배터리셀의 개로 전압 상태의 등가 회로를 나타내는 도면이다.
도 2에 도시된 바와 같이, 배터리셀(1)은, 개로 전압 상태에서, 저항 R0와, 병렬 구조의 커패시터 C1 및 저항 R1이 직렬로 연결된 회로로 이루어진다. 저항 R0는 직류 성분 저항을 나타내고, 저항 R1은 교류 성분 임피던스를 나타낸다. 다시 말해, 배터리셀(1)의 내부 저항은 저항 R0와 저항 R1으로 이루어진다. 이러한 저항 R0 및 저항 R1을 측정함으로써 SOC 추정, 용량 추정, 수명 추정 등에 이용할 수 있다.
다시 도 1로 돌아와서, 제어부(50)는, 예를 들면, 배터리셀(1)에 제1 주파수의 캐리어 신호를 인가하여 측정된 제5 임피던스 값을, 제1 조정 파라미터에 기초하여 조정함으로써, 배터리셀(1)의 직류 성분 저항과 교류 성분 임피던스를 포함하는 전체 내부 저항을 산출한다. 다시 말해, 배터리셀(1)에 제1 주파수 즉, 저주파수의 하이 임피던스 캐리어 신호가 인가되는 경우에는, 배터리셀(1)로부터 측정되는 임피던스 값은 직류 성분 저항(R0) 및 교류 성분 임피던스(R1)가 합산된 전체 임피던스 값이 된다. 이것은, 저주파수의 하이 임피던스 캐리어 신호가 배터리셀(1) 내부의 직류 성분 저항(R0) 및 교류 성분 임피던스(R1)를 통과하여 측정되는 것이기 때문이다.
또한, 제어부(50)는, 배터리셀(1)에 제2 주파수의 캐리어 신호를 인가하여 측정된 제6 임피던스 값을, 제2 조정 파라미터에 기초하여 조정함으로써, 배터리셀(1)의 직류 성분 저항을 산출한다. 다시 말해, 배터리셀(1)에 제2 주파수 즉, 고주파수의 하이 임피던스 캐리어 신호가 인가되는 경우에는, 배터리셀(1)로부터 측정되는 임피던스 값은 직류 성분 저항(R0)만의 임피던스 값이 된다. 이것은, 고주파수의 하이 임피던스 캐리어 신호가 배터리셀(1) 내부의 직류 성분 저항(R0) 및 캐패시터(C1)를 통과하여 측정되는 것이기 때문이다.
이에 따라, 제어부(50)는, 산출된 전체 내부 저항에서 산출된 직류 성분 저항을 빼서 교류 성분 임피던스를 산출함으로써, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출할 수 있다.
상술한 설명에서는, 제어부(50)가 임피던스 측정부(30)에 의해 측정된 임피던스 값에 기초하여 내부 저항을 계산하는 것으로 설명하였으나, 측정된 임피던스 값만이 아니라, 배터리셀(1)의 실제 온도 및 SOC를 더 고려하여, 배터리셀(1)의 내부 저항을 계산할 수도 있다.
이에 따라, 제어부(50)는, 산출된 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 배터리셀(1)의 용량을 계산할 수 있다.
또는, 제어부(50)는, 산출된 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 배터리셀의 수명을 예측할 수도 있다.
이와 같은, 본 발명에 의하면, 외부 노이즈 및 부하의 변화에 영향을 받지 않고 배터리셀의 내부 저항을 정확히 측정할 수 있다. 또한, 측정된 배터리셀의 내부 저항을 이용하여, 배터리셀의 용량 및 배터리 셀의 수명을 정확히 예측할 수 있다.
일 실시예로서, 도 3을 이용하여 배터리셀 저항 측정 장치를 설명하기로 한다. 도 3은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 구체적인 회로도이다.
도 3에서와 같이, 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치는, 캐리어 신호 생성 모듈(110), 제1 저항(121), 제2 저항(123), 임피던스 측정부(130), 스위칭부, 신호처리부(135) 및 제어부(150)를 구비한다.
먼저, 캐리어 신호 생성 모듈(110)은, 제어부(150)로부터 주파수 제어 신호를 입력받아, 미리 설정된 저주파수(제1 주파수) 또는 미리 설정된 고주파수(제2 주파수)의 하이 임피던스 캐리어 신호를 생성하고, 생성된 하이 임피던스 캐리어 신호를 배터리셀(1), 제1 저항(121) 및 제2 저항(123) 중 어느 하나에 인가한다. 배터리셀(1), 제1 저항(121) 및 제2 저항(123)은 병렬 구조를 이루고 있다.
제1 저항(121)은 배터리셀이 개로 전압 상태일 때의 예상 최저 저항값으로서 0옴의 저항값을 가지며, 제2 저항(123)은 배터리셀이 개로 전압 상태일 때의 예상 최대 저항값으로서 0.05옴의 저항값을 가진다.
임피던스 측정부(130)는 병렬 구조를 이루고 있는 배터리셀(1), 제1 저항(121) 및 제2 저항(123)의 공통된 양단에 연결되고, 배터리셀(1), 제1 저항(121) 또는 제2 저항(123) 중 선택된 인가 대상으로부터의 임피던스 값, 즉 임피던스 신호를 측정한다. 도시하지는 않았으나 임피던스 측정부(130)는 임피던스 신호를 1차적으로 증폭하기 위한 증폭 수단을 구비할 수 있다.
이어서, 스위칭부는, 하이 임피던스 캐리어 신호가 배터리셀(1), 제1 저항(121) 또는 제2 저항(123) 중 어느 하나에 선택적으로 인가될 수 있도록 하기 위한 스위칭 수단으로서, 예를 들면, 제1 저항(121)의 양단에 각각 직렬로 연결되는 제1 스위치(141), 제2 저항(123)의 양단에 각각 직렬로 연결되는 제2 스위치(143) 및 배터리셀(1)의 양단에 각각 직렬로 연결되는 제3 스위치(145)를 포함한다. 일례로, 스위칭부의 제1 내지 제3 스위치(141, 143, 145)는, 제어부(150)의 스위칭 제어신호에 의해서 동작할 수 있고, 또는, 임피던스 측정부(130)로부터의 스위칭 제어신호에 의해서 동작할 수도 있다.
이어서, 신호처리부(135)는, 임피던스 측정부(130)를 통해 수신되는 임피던스 신호에 대해서 예로써 직교 변조 방식의 신호 처리를 수행하여 외부 노이즈 등에 의한 영향을 없애기 위한 구성으로서, 예를 들면, 임피던스 측정부(130)를 통해 수신되는 임피던스 신호에 대해서 동상의 I 신호를 출력하는 I 회로(135a)와, 임피던스 측정부(130)를 통해 수신되는 임피던스 신호에 대해서 90도 지연된 Q 신호를 출력하는 Q 회로(135b)와, 출력된 I 신호와 Q 신호를 수신하여 아날로그-디지털 변환하여 합성하여 노이즈 성분을 제거하는 ADC부(135c)를 포함할 수 있다. 또한, I회로(135a)와 ADC부(135c)의 사이, 및 Q회로(135b)와 ADC부(135c)의 사이에는, 각각, 해당 출력 신호를 로우 패스 필터링 및 증폭하는 로우 패스 필터 및 증폭기부(135d)가 포함된다.
예를 들어, 캐리어 신호 생성 모듈(110)로부터 출력되는 일정한 전류 파형으로서 캐리어 신호가 sin(wt+θ)이고, 배터리셀(1)의 내부 임피던스가 A일 때, 임피던스 측정부(130)에 측정되어 출력되는 임피던스 신호는 Asin(wt+θ)가 된다. I 회로(135a)는 임피던스 측정부(130)로부터 Asin(wt+θ)를 입력받고, 제어부(150)로부터 Asin(wt+θ1)의 동기 주파수 제어 신호를 입력받아, Asin(wt+θ)*Asin(wt+θ1)=A/2cos(θ-θ1)-A/2cos(2wt+θ+θ1)을 출력한다. 이때, 로우 패스 필터 및 증폭기부(135d)에 의해 I 회로(135a)로부터 출력되는 신호 성분 중 -A/2cos(2wt+θ+θ1)의 신호 성분은 제거되어, ADC부(135c)에는 A/2cos(θ-θ1)=I(x)가 입력된다. 한편, Q 회로(135b)는 임피던스 측정부(130)로부터 Asin(wt+θ)를 입력받고, 제어부(150)로부터 Asin(wt+θ1+90°)의 90도 지연된 주파수 제어 신호를 입력받아, Asin(wt+θ)*Asin(wt+θ1+90°)=A/2cos(θ-θ1-90°)-A/2cos(2wt+θ+θ1+90°)를 출력한다. 이때, 로우 패스 필터 및 증폭기부(135d)에 의해 Q 회로(135b)로부터 출력되는 신호 성분 중 -A/2cos(2wt+θ+θ1+90°)의 신호 성분은 제거되어, ADC부(135c)에는 A/2cos(θ-θ1-90°)=Q(y)가 입력된다. 이어서, ADC부(135c)는 입력된 신호들을 아날로그-디지털 변환하고
Figure PCTKR2019016797-appb-I000001
에 의해 합성하여, 합성된 신호를 출력한다. 이를 통해, 제어부(150)는 노이즈 성분이 제거된 배터리셀(1)의 내부 임피던스 A를 수신하여 산출할 수 있다. 이와 같이, 신호처리부(135)에 의해서, 임피던스 측정부(130)를 통해 수신되는 임피던스 신호에 대해서 외부 노이즈 등에 의한 영향을 제거할 수 있다.
이어서, 제어부(150)는 임피던스 측정부(130)에 의하여 측정된 임피던스 값에 기초하여, 배터리셀의 내부 저항을 계산하되, 제1 저항(121) 및 제2 저항(123) 각각에 대하여, 저주파수의 캐리어 신호 및 고주파수의 캐리어 신호를 인가하여 측정된 임피던스 값에 기초하여 조정 파라미터를 생성하고, 배터리셀에 대하여, 저주파수의 캐리어 신호 및 고주파수의 캐리어 신호를 인가하여 측정된 임피던스 값을, 조정 파라미터에 기초하여 조정하여 배터리셀의 내부 저항을 산출한다. 이때, 배터리셀의 내부 저항으로서 직류 성분 저항 및 교류 성분 임피던스를 각각 산출한다.
예를 들어, 조정 파라미터를 생성하기 위해서, 제어부(150)는, 제1 스위치(141)를 ON, 제2 및 제3 스위치(143, 145)를 OFF 제어하고, 캐리어 신호 생성 모듈(110)을 저주파수의 하이 임피던스 캐리어 신호를 출력하도록 제어하여, 제1 저항(121)에서의 제1 임피던스 값을 측정하고, 제2 스위치(143)를 ON, 제1 및 제3 스위치(141, 145)를 OFF 제어하고, 캐리어 신호 생성 모듈(110)을 저주파수의 하이 임피던스 캐리어 신호를 출력하도록 제어하여, 제2 저항(123)에서의 제2 임피던스 값을 측정하여, 저주파수에서의 제1 조정 파라미터를 생성한다. 또한, 제어부(150)는 제1 스위치(141)를 ON, 제2 및 제3 스위치(143, 145)를 OFF 제어하고, 캐리어 신호 생성 모듈(110)을 고주파수의 하이 임피던스 캐리어 신호를 출력하도록 제어하여, 제1 저항(121)에서의 제3 임피던스 값을 측정하고, 제2 스위치(143)를 ON, 제1 및 제3 스위치(141, 145)를 OFF 제어하고, 캐리어 신호 생성 모듈(110)을 고주파수의 하이 임피던스 캐리어 신호를 출력하도록 제어하여, 제2 저항(123)에서의 제4 임피던스 값을 측정하여, 고주파수에서의 제2 조정 파라미터를 생성한다. 여기서, 제1 내지 제4 임피던스 값을 측정하는 순서는 특별히 한정되는 것이 아니라, 다양하게 변경될 수 있다.
또한, 배터리셀의 내부 저항인 직류 성분 저항 및 교류 성분 임피던스를 각각 산출하기 위해서, 예를 들면, 제어부(150)는, 제3 스위치(145)를 ON, 제1 및 제2 스위치(141, 143)를 OFF 제어하고, 캐리어 신호 생성 모듈(110)을 저주파수의 하이 임피던스 캐리어 신호를 출력하도록 제어하여, 배터리셀(1)로부터 측정된 제5 임피던스 값을 제1 조정 파라미터에 기초하여 조정한다. 이때, 배터리셀(1)에 저주파수의 하이 임피던스 캐리어 신호가 인가되는 경우에는, 배터리셀(1)로부터 측정되는 임피던스 값은 직류 성분 저항 및 교류 성분 임피던스가 합산된 전체 임피던스 값이 된다. 또한, 제어부(150)는 제3 스위치(145)를 ON, 제1 및 제2 스위치(141, 143)를 OFF 제어하고, 캐리어 신호 생성 모듈(110)을 고주파수의 하이 임피던스 캐리어 신호를 출력하도록 제어하여, 배터리셀(1)에서의 임피던스 값을 측정하고, 측정된 임피던스 값을 고주파수에서의 조정 파라미터에 기초하여 조정한다. 이때, 배터리셀(1)에 고주파수의 하이 임피던스 캐리어 신호가 인가되는 경우에는, 배터리셀(1)로부터 측정되는 임피던스 값은 직류 성분 저항만의 임피던스 값이 된다. 또한, 제어부(150)는 전체 임피던스 값에서 직류 성분 저항만의 임피던스 값을 빼는 것에 의해 교류 성분 임피던스 값을 구한다.
이에 따라, 제어부(150)는 배터리셀의 내부 저항인 직류 성분 저항 및 교류 성분 임피던스를 각각 정확하게 산출할 수 있다.
이와 같이, 본 발명은 저주파수 및 고주파수, 즉, 멀티 주파수의 하이 임피던스 캐리어 신호를 이용하여, 배터리셀의 내부 저항인 직류 성분 저항 및 교류 성분 임피던스를 각각 산출하기 때문에, 배터리셀 외부 부하에 의한 영향을 받지 않고 배터리셀의 내부 저항을 정확히 산출할 수 있게 된다.
또한, 제어부(150)는 산출된 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 배터리셀(1)의 용량을 계산하거나, 배터리셀(1)의 수명을 예측할 수 있다. 예를 들면, 초기 배터리셀의 장착후 배터리의 내부 저항 성분 R0, R1의 일정 기간에 대한 실제 측정값을 비교 분석하여 작성된 기준 변화표를 마련하여, 용량을 계산하고, 수명을 예측할 수 있다. 이와 같이, 배터리셀(1)의 용량을 계산하고, 수명을 예측하는 것은 공지된 기술이므로, 구체적인 설명을 생략하기로 한다.
이어서, 도 4 내지 도 7을 이용하여, 본 발명에 따른 배터리셀 저항 측정 방법을 설명하기로 한다. 도 4는 본 발명의 일 실시예에 따른 배터리셀 저항 측정 방법을 나타내는 순서도이이고, 도 5는 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 제1 상태도이며, 도 6은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 제2 상태도이고, 도 7은 본 발명의 일 실시예에 따른 배터리셀 저항 측정 장치의 제3 상태도이다.
먼저, 도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 배터리셀 저항 측정 방법은, 먼저, 제1 저항 및 제2 저항 각각에, 제1 주파수 및 제2 주파수의 캐리어 신호를 인가하는 상태에서, 해당 인가 대상의 양단의 임피던스 값을 측정한다(S10).
여기서, 제1 저항 및 제2 저항 각각에, 제1 주파수 및 제2 주파수의 캐리어 신호를 인가하는 상태가 되도록 하기 위해 스위칭부를 제어한다. 예를 들면, 도 5에서와 같이, 제1 스위치(141)를 ON시키고, 제2 및 제3 스위치(143, 145)를 OFF시킴으로써, 캐리어 신호 생성 모듈(110)로부터의 하이 임피던스 캐리어 신호가 제1 저항(121)에 선택적으로 인가되게 할 수 있고, 또한, 도 6에서와 같이, 제2 스위치(143)를 ON시키고, 제1 및 제3 스위치(141, 145)를 OFF시킴으로써, 캐리어 신호 생성 모듈(110)로부터의 하이 임피던스 캐리어 신호가 제2 저항(123)에 선택적으로 인가되게 할 수 있다. 이것에 의해, 예를 들면, 제1 저항(121)에 제1 주파수의 캐리어 신호를 인가하여 제1 저항(121)으로부터 제1 임피던스 값을 측정하고, 제2 저항(123)에 제1 주파수의 캐리어 신호를 인가하여 제2 저항(123)으로부터 제2 임피던스 값을 측정한다. 또한, 제1 저항(121)에 제2 주파수의 캐리어 신호를 인가하여 제1 저항(121)으로부터 제3 임피던스 값을 측정하고, 제2 저항(123)에 제2 주파수의 캐리어 신호를 인가하여 제2 저항(123)으로부터 제4 임피던스 값을 측정할 수 있다. 여기서, 제1 내지 제4 임피던스 값을 측정하는 순서는 특별히 한정되지 않으며, 측정 환경 및 설정 순서 등에 따라 다양한 순서로 측정될 수 있다.
이어서, 측정된 임피던스 값에 기초하여 조정 파라미터를 생성한다(S20). 예를 들면, 제어부(150)는 제1 임피던스 값과 제2 임피던스 값에 기초하여, 제1 주파수에서의 제1 조정 파라미터를 생성한다. 또한, 제3 임피던스 값과 제4 임피던스 값에 기초하여, 제2 주파수에서의 제2 조정 파라미터를 생성한다. 여기서, 제1 및 제2 조정 파라미터를 생성하는 순서는 특별히 한정되지 않는다.
이어서, 배터리셀에, 제1 주파수 및 제2 주파수의 캐리어 신호를 각각 인가하는 상태에서, 배터리셀의 양단의 임피던스 값을 측정한다(S30).
여기서, 배터리셀에, 제1 주파수 및 제2 주파수의 캐리어 신호를 인가하는 상태가 되도록 하기 위해 스위칭부를 제어한다. 예를 들면, 도 7에서와 같이, 제3 스위치(145)를 ON시키고, 제1 및 제2 스위치(141, 143)를 OFF시킴으로써, 캐리어 신호 생성 모듈(110)로부터의 하이 임피던스 캐리어 신호가 배터리셀(1)에 선택적으로 인가되게 할 수 있다. 이것에 의해, 예를 들면, 배터리셀(1)에 제1 주파수의 캐리어 신호를 인가하여 배터리셀로부터 제5 임피던스 값을 측정하고, 배티리셀(1)에 제2 주파수의 캐리어 신호를 인가하여 배터리셀로부터 제6 임피던스 값을 측정한다. 여기서, 제5 및 제6 임피던스 값을 측정하는 순서는 특별히 한정되지 않는다.
이어서, 배터리셀에 대하여 측정된 임피던스 값 및 조정 파라미터에 기초하여, 배터리셀의 내부 저항을 산출한다(S40).
예를 들어, 배터리셀의 내부 저항을 산출하는 단계(S40)는, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출할 수 있다. 구체적으로, 배터리셀의 내부 저항을 산출하는 단계(S40)는, 제5 임피던스 값을, 제1 조정 파라미터에 기초하여 조정함으로써, 배터리셀의 직류 성분 저항과 교류 성분 임피던스를 포함하는 전체 내부 저항을 산출하고, 또한, 제6 임피던스 값을, 제2 조정 파라미터에 기초하여 조정함으로써, 배터리셀의 직류 성분 저항을 산출하며, 산출된 전체 내부 저항에서 산출된 직류 성분 저항을 빼서 교류 성분 임피던스를 산출함으로써, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출할 수 있다.
일례로, 제1 내지 제6 임피던스 값을 측정하는 단계(S10, S30)는, 각각, 측정된 각 임피던스 신호에 대해서 동상의 I 신호와 90도 지연된 Q 신호를 생성하고, 생성된 I/Q 신호에 기초하여 상기 측정된 각 임피던스 신호로부터의 노이즈 성분을 제거하는 신호 처리를 수행할 수 있다. 이에 따라, 외부 노이즈에 의한 영향을 제거할 수 있다.
추가로, 도시하지는 않았으나, 본 발명의 일 실시예에 따른 배터리셀 저항 측정 방법은, 산출된 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 배터리셀(1)의 용량을 계산하는 단계, 및 산출된 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 배터리셀의 수명을 예측하는 단계 중 적어도 하나를 더 포함할 수 있다.
다른 실시예로서, 앞선 실시예에서는 저항부(20)가 복수의 저항(21, 23)을 구비하는 것으로 하였으나, 예를 들면, 하나의 가변 저항을 이용할 수도 있다.
도 8은 본 발명의 다른 실시예에 따른 배터리셀 저항 측정 장치의 구체적인 회로도이다.
도 8에서와 같이, 본 발명의 다른 실시예에 따른 배터리셀 저항 측정 장치는, 캐리어 신호 생성 모듈(210), 가변 저항(220), 임피던스 측정부(230), 스위칭부(241, 245), 신호처리부(235) 및 제어부(250)를 구비한다.
여기서, 가변 저항(220)은 임피던스 측정부(230) 혹은 제어부(250)에 의하여, 저항값이 변경될 수 있다. 예를 들면, 배터리셀(1)이 개로 전압 상태일 때의 예상 최저 저항값으로서 0옴의 저항값을 가지도록 조절되거나, 배터리셀(1)이 개로 전압 상태일 때의 예상 최대 저항값으로서 0.05옴의 저항값을 가지도록 조절될 수 있다. 이때, 예를 들면, 제1 스위치(241)는 ON, 제2 스위치(245)는 OFF 제어하고, 캐리어 신호 생성 모듈(210)로부터의 저주파수의 캐리어 신호 및 고주파수의 캐리어 신호를 가변 저항(220)에 인가하여, 가변 저항(220)의 각 저항값에서의 임피던스 값을 측정함으로써, 조정 파라미터를 생성할 수 있다.
그 밖의 캐리어 신호 생성 모듈(210), 임피던스 측정부(230), 스위칭부(241, 245), 신호처리부(235) 및 제어부(250)의 자세한 설명은, 도 3에서의 캐리어 신호 생성 모듈(110), 임피던스 측정부(130), 스위칭부, 신호처리부(135) 및 제어부(150)의 설명과 동일하므로, 자세한 설명은 생략하기로 한다.
또한, 앞선 실시예에서는 스위칭부가 배터리셀(1), 제1 및 제2 저항(121, 123)(또는 가변 저항(220)) 각각의 양단에 직렬로 연결되는 것으로 하였으나, 배터리셀(1), 제1 및 제2 저항(121, 123)(또는 가변 저항(220)) 각각의 양단 중 어느 한 단에만 직렬로 연결되는 것으로 해도 된다. 즉, 캐리어 신호 생성 모듈(110, 210)의 하이 임피던스 캐리어 신호가 배터리셀(1), 제1 및 제2 저항(121, 123)(또는 가변 저항(220)) 중 어느 하나에 선택적으로 인가될 수 있도록 하면 된다.
한편, 본 발명은 배터리팩으로 구현될 수도 있다. 예를 들면, 본 발명의 일 실시예에 따른 배터리 팩은, 충방전 가능한 적어도 하나의 배터리셀; 배터리셀의 충방전을 제어하는 배터리 관리 시스템; 및 배터리셀의 내부 저항을 측정하는 상기의 배터리셀 저항 측정 장치;를 포함할 수 있다.
이상에서 설명한 바와 같이, 본 발명에 의하면, 외부 노이즈 및 외부 부하의 변화에 영향을 받지 않고 배터리셀의 내부 저항을 정확히 측정할 수 있으며, 또한, 측정된 배터리셀의 내부 저항을 이용하여, 배터리셀의 전력 및 배터리 셀의 수명을 정확히 예측할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 실시가 가능함은 물론이다.

Claims (16)

  1. 제1 주파수 및 상기 제1 주파수와 다른 제2 주파수의 캐리어 신호를 생성하는 캐리어 신호 생성 모듈;
    제1 저항 및 상기 제1 저항과 다른 저항값을 가지는 제2 저항을 포함하는 저항부;
    상기 제1 저항, 상기 제2 저항 및 배터리셀 중 어느 하나에 상기 캐리어 신호가 인가되는 상태에서, 해당 인가 대상의 양단의 임피던스를 측정하는 임피던스 측정부;
    상기 제1 저항, 상기 제2 저항 및 상기 배터리셀 중 어느 하나를 상기 임피던스 측정부에 선택적으로 연결하는 스위칭부; 및
    상기 임피던스 측정부에 의하여 측정된 임피던스 값에 기초하여, 상기 배터리셀의 내부 저항을 계산하는 제어부를 포함하는 배터리셀 저항 측정 장치.
  2. 청구항 1에 있어서,
    상기 제어부는,
    상기 제1 저항 및 상기 제2 저항 각각에 대하여, 상기 제1 주파수의 캐리어 신호 및 제2 주파수의 캐리어 신호를 각각 인가하여 측정된 임피던스 값에 기초하여 조정 파라미터를 생성하고,
    상기 배터리셀에 대하여, 상기 제1 주파수의 캐리어 신호 및 제2 주파수의 캐리어 신호를 인가하여 측정된 임피던스 값 및 상기 조정 파라미터에 기초하여 상기 배터리셀의 내부 저항을 산출하는 배터리셀 저항 측정 장치.
  3. 청구항 1에 있어서,
    상기 제1 주파수의 캐리어 신호는 미리 설정된 제1 기준 주파수 이하의 주파수에서의 하이 임피던스 캐리어 신호이며,
    상기 제2 주파수의 캐리어 신호는 미리 설정된 제2 기준 주파수 이상의 주파수에서의 하이 임피던스 캐리어 신호이며,
    상기 제1 기준 주파수는 상기 제2 기준 주파수보다 작은 배터리셀 저항 측정 장치.
  4. 청구항 1에 있어서,
    상기 제1 저항은 상기 배터리셀이 개로 전압 상태일 때의 예상 최저 저항값으로 설정되고,
    상기 제2 저항은 상기 배터리셀이 개로 전압 상태일 때의 예상 최대 저항값으로 설정되는 배터리셀 저항 측정 장치.
  5. 청구항 1에 있어서,
    상기 임피던스 측정부는, 측정된 각 임피던스 신호에 대해서 동상의 I 신호와 90도 지연된 Q 신호를 생성하고, 생성된 I/Q 신호에 기초하여 상기 측정된 각 임피던스 신호로부터의 노이즈 성분을 제거하는 신호 처리부를 더 구비하는 것인 배터리셀 저항 측정 장치.
  6. 청구항 1에 있어서,
    상기 제어부는, 상기 제1 및 제2 주파수의 캐리어 신호를 이용하여, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출하는 배터리셀 저항 측정 장치.
  7. 청구항 6에 있어서,
    상기 제어부는, 산출된 상기 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 상기 배터리셀의 용량을 계산하는 배터리셀 저항 측정 장치.
  8. 청구항 6에 있어서,
    상기 제어부는, 산출된 상기 직류 성분 저항 및 교류 성분 임피던스를 이용하여, 상기 배터리셀의 수명을 예측하는 배터리셀 저항 측정 장치.
  9. 제1 저항 및 상기 제1 저항과 다른 저항값을 가지는 제2 저항 각각에, 제1 주파수 및 상기 제1 주파수와 다른 제2 주파수의 캐리어 신호를 인가하는 상태에서, 해당 인가 대상의 양단의 임피던스 값을 측정하는 단계;
    측정된 임피던스 값에 기초하여 조정 파라미터를 생성하는 단계;
    배터리셀에, 상기 제1 주파수 및 상기 제2 주파수의 캐리어 신호를 각각 인가하는 상태에서, 상기 배터리셀의 양단의 임피던스 값을 측정하는 단계; 및
    상기 배터리셀에 대하여 측정된 임피던스 값 및 상기 조정 파라미터에 기초하여 상기 배터리셀의 내부 저항을 산출하는 단계를 포함하는 배터리셀 저항 측정 방법.
  10. 청구항 9에 있어서,
    상기 조정 파라미터를 생성하는 단계는,
    상기 제1 저항에 제1 주파수의 캐리어 신호를 인가하여 상기 제1 저항으로부터 측정된 제1 임피던스 값과, 상기 제2 저항에 제1 주파수의 캐리어 신호를 인가하여 상기 제2 저항으로부터 측정된 제2 임피던스 값에 기초하여, 제1 주파수에서의 제1 조정 파라미터를 생성하고,
    상기 제1 저항에 제2 주파수의 캐리어 신호를 인가하여 상기 제1 저항으로부터 측정된 제3 임피던스 값과, 상기 제2 저항에 제2 주파수의 캐리어 신호를 인가하여 상기 제2 저항으로부터 측정된 제4 임피던스 값에 기초하여, 제2 주파수에서의 제2 조정 파라미터를 생성하는 배터리셀 저항 측정 방법.
  11. 청구항 10에 있어서,
    상기 제1 주파수의 캐리어 신호는 미리 설정된 제1 기준 주파수 이하의 주파수에서의 하이 임피던스 캐리어 신호이며,
    상기 제2 주파수의 캐리어 신호는 미리 설정된 제2 기준 주파수 이상의 주파수에서의 하이 임피던스 캐리어 신호이며,
    상기 제1 기준 주파수는 상기 제2 기준 주파수보다 작은 배터리셀 저항 측정 방법.
  12. 청구항 11에 있어서,
    상기 배터리셀의 내부 저항을 산출하는 단계는,
    상기 배터리셀에 상기 제1 주파수의 캐리어 신호를 인가하여 상기 배터리셀로부터 측정된 제5 임피던스 값 및 상기 제1 조정 파라미터에 기초하여, 상기 배터리셀의 직류 성분 저항과 교류 성분 임피던스를 포함하는 전체 내부 저항을 산출하고,
    상기 배터리셀에 상기 제2 주파수의 캐리어 신호를 인가하여 상기 배터리셀로부터 측정된 제6 임피던스 값 및 상기 제2 조정 파라미터에 기초하여, 상기 배터리셀의 상기 직류 성분 저항을 산출하며,
    산출된 전체 내부 저항에서 산출된 직류 성분 저항을 빼서 교류 성분 임피던스를 산출함으로써, 내부 저항의 직류 성분 저항 및 교류 성분 임피던스를 각각 산출하는 배터리셀 저항 측정 방법.
  13. 청구항 9에 있어서,
    상기 제1 저항은 상기 배터리셀이 개로 전압 상태일 때의 예상 최저 저항값으로 설정되고,
    상기 제2 저항은 상기 배터리셀이 개로 전압 상태일 때의 예상 최대 저항값으로 설정되는 배터리셀 저항 측정 방법.
  14. 청구항 9에 있어서,
    상기 인가 대상의 양단의 임피던스 값을 측정하는 단계는, 측정된 각 임피던스 신호에 대해서 동상의 I 신호와 90도 지연된 Q 신호를 생성하고, 생성된 I/Q 신호에 기초하여 상기 측정된 각 임피던스 신호로부터의 노이즈 성분을 제거하는 신호 처리를 수행하는 배터리셀 저항 측정 방법.
  15. 청구항 9에 있어서,
    상기 배터리셀의 양단의 임피던스 값을 측정하는 단계는, 측정된 각 임피던스 신호에 대해서 동상의 I 신호와 90도 지연된 Q 신호를 생성하고, 생성된 I/Q 신호에 기초하여 상기 측정된 각 임피던스 신호로부터의 노이즈 성분을 제거하는 신호 처리를 수행하는 배터리셀 저항 측정 방법.
  16. 충방전 가능한 적어도 하나의 배터리셀;
    상기 배터리셀의 충방전을 제어하는 배터리 관리 시스템; 및
    상기 배터리셀의 내부 저항을 측정하는 청구항 1에 따른 배터리셀 저항 측정 장치;를 포함하는 배터리 팩.
PCT/KR2019/016797 2018-11-30 2019-11-29 배터리셀 저항 측정 장치 및 방법 WO2020111896A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19890181.1A EP3872508A4 (en) 2019-11-29 Device and method for measuring battery cell resistance
CN201980076216.7A CN113646649A (zh) 2018-11-30 2019-11-29 用于测量电池单元电阻的装置及方法
JP2021525706A JP2022507235A (ja) 2018-11-30 2019-11-29 バッテリーセル抵抗測定装置及び方法
US17/292,747 US20210396815A1 (en) 2018-11-30 2019-11-29 Battery Cell Resistance Measurement Device and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0152645 2018-11-30
KR1020180152645A KR102442474B1 (ko) 2018-11-30 2018-11-30 배터리셀 저항 측정 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2020111896A1 true WO2020111896A1 (ko) 2020-06-04

Family

ID=70853096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016797 WO2020111896A1 (ko) 2018-11-30 2019-11-29 배터리셀 저항 측정 장치 및 방법

Country Status (5)

Country Link
US (1) US20210396815A1 (ko)
JP (1) JP2022507235A (ko)
KR (1) KR102442474B1 (ko)
CN (1) CN113646649A (ko)
WO (1) WO2020111896A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604229B2 (en) 2020-12-28 2023-03-14 Analog Devices International Unlimited Company Techniques for determining energy storage device state of health

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090514A (ko) * 2019-01-21 2020-07-29 주식회사 엘지화학 BMS(Battery Manager System), ECU(Electronic Control Unit), 그리고 BMS와 ECU 간의 통신 방법
KR102562103B1 (ko) * 2020-11-27 2023-08-02 (주)엘탑 재사용 배터리 진단 장치 및 방법
DE102021207106A1 (de) 2021-07-06 2023-01-12 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum Überwachen eines elektrischen Speichers
KR20240034048A (ko) * 2022-09-06 2024-03-13 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016275A (ja) * 2006-07-05 2008-01-24 Hioki Ee Corp 電池の内部抵抗測定装置
KR20090056847A (ko) * 2007-11-29 2009-06-03 주식회사 파워트론 축전지 등가회로의 요소별 내부 저항 또는 등가 캐패시터값 연산 방법, 및 이의 구현회로
JP2010223968A (ja) * 2003-06-27 2010-10-07 Furukawa Electric Co Ltd:The 蓄電池の劣化判定方法および劣化判定装置
KR101160545B1 (ko) * 2011-01-31 2012-06-27 주식회사티움리서치 이차전지 건강상태 진단장치
KR20180062814A (ko) * 2016-12-01 2018-06-11 주식회사 맥사이언스 메타데이터를 이용한 2차 전지 시험 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061289A (zh) * 1990-11-03 1992-05-20 上海新宇电源厂 电池内阻单脉冲测定法
JP3833565B2 (ja) * 2002-04-24 2006-10-11 日本放送協会 インピーダンス測定装置
JP4153745B2 (ja) * 2002-07-30 2008-09-24 株式会社エヌエフ回路設計ブロック インピーダンスパラメータの推定装置
JP2005180927A (ja) * 2003-12-16 2005-07-07 Horiba Ltd インピーダンス測定装置
US9851414B2 (en) * 2004-12-21 2017-12-26 Battelle Energy Alliance, Llc Energy storage cell impedance measuring apparatus, methods and related systems
CN1967270B (zh) * 2005-11-18 2010-06-09 北华大学 一种电池阻抗谱测试方法与系统
JP2008175687A (ja) * 2007-01-18 2008-07-31 Furukawa Battery Co Ltd:The 蓄電池の内部インピーダンス測定装置および蓄電池の内部インピーダンス測定方法
WO2017003917A1 (en) * 2015-07-01 2017-01-05 Battelle Energy Alliance, Llc Energy storage cell impedance measuring apparatus, methods and related systems
JP4640661B2 (ja) * 2009-01-13 2011-03-02 トヨタ自動車株式会社 燃料電池システム
CN102053226B (zh) * 2009-10-29 2013-04-10 比亚迪股份有限公司 一种测试电池内阻的装置及方法
CN102175921A (zh) * 2011-03-16 2011-09-07 中国民航大学 一种基于fpga的便携式阻抗测量仪表
US8648602B2 (en) * 2011-06-01 2014-02-11 Nxp B.V. Battery impedance detection system, apparatus and method
US9322884B2 (en) * 2012-01-06 2016-04-26 Industrial Technology Research Institute Impedance analyzing device
JP6253137B2 (ja) * 2012-12-18 2017-12-27 株式会社東芝 二次電池の電池状態推定装置
KR101445940B1 (ko) * 2012-12-27 2014-09-29 주식회사 포스코아이씨티 배터리의 충방전 제어 장치 및 방법
KR20150029204A (ko) * 2013-09-09 2015-03-18 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 장치, 및 배터리 팩의 관리 방법
JP2015055516A (ja) * 2013-09-11 2015-03-23 日置電機株式会社 基板検査装置、及び標準器
EP3186651B1 (en) * 2014-07-25 2021-10-13 Lithium Balance A/S Electrochemical impedance spectroscopy in battery management systems
CN104502723B (zh) * 2015-01-07 2018-02-06 四川锦江电子科技有限公司 高频治疗设备电阻检测电路
JP6593769B2 (ja) * 2015-03-09 2019-10-23 中国電力株式会社 蓄電池残寿命推定方法、蓄電池点検日決定方法、蓄電池残寿命推定装置、及び蓄電池残寿命推定システム
JP6578815B2 (ja) * 2015-08-21 2019-09-25 株式会社Gsユアサ 二次電池の性能推定装置および二次電池の性能推定方法
CN106526321B (zh) * 2015-09-15 2020-03-13 日置电机株式会社 阻抗测定装置及阻抗测定方法
ITUB20159266A1 (it) * 2015-12-18 2017-06-18 Magneti Marelli Spa Dispositivo elettronico, sistema e metodo per misure di resistenza di isolamento, con funzioni di auto-diagnosi 5 e di diagnosi di perdita di isolamento di un apparato elettrico energizzato rispetto a massa.
CN105738826B (zh) * 2016-03-07 2019-04-19 深圳市东宸智造科技有限公司 蓄电池检测系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223968A (ja) * 2003-06-27 2010-10-07 Furukawa Electric Co Ltd:The 蓄電池の劣化判定方法および劣化判定装置
JP2008016275A (ja) * 2006-07-05 2008-01-24 Hioki Ee Corp 電池の内部抵抗測定装置
KR20090056847A (ko) * 2007-11-29 2009-06-03 주식회사 파워트론 축전지 등가회로의 요소별 내부 저항 또는 등가 캐패시터값 연산 방법, 및 이의 구현회로
KR101160545B1 (ko) * 2011-01-31 2012-06-27 주식회사티움리서치 이차전지 건강상태 진단장치
KR20180062814A (ko) * 2016-12-01 2018-06-11 주식회사 맥사이언스 메타데이터를 이용한 2차 전지 시험 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604229B2 (en) 2020-12-28 2023-03-14 Analog Devices International Unlimited Company Techniques for determining energy storage device state of health

Also Published As

Publication number Publication date
KR20200065807A (ko) 2020-06-09
JP2022507235A (ja) 2022-01-18
US20210396815A1 (en) 2021-12-23
CN113646649A (zh) 2021-11-12
EP3872508A1 (en) 2021-09-01
KR102442474B1 (ko) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2020111896A1 (ko) 배터리셀 저항 측정 장치 및 방법
WO2017086687A1 (ko) 절연 저항 측정 시스템 및 장치
WO2010110589A2 (ko) 배터리 전압의 영향을 받지 않는 절연저항 측정회로
WO2020141768A1 (ko) 절연저항 측정 장치 및 방법
WO2018074807A1 (ko) 듀티 제어를 통한 효과적인 배터리 셀 밸런싱 방법 및 시스템
WO2012036498A2 (en) Insulation resistance measurement circuit having self-test function without generating leakage current
WO2014163318A1 (ko) 다중 부스바용 간섭 보정식 일점감지 전류센서
WO2015072653A1 (ko) 연료전지용 전력변환장치 및 그 제어방법
WO2021015501A1 (ko) 배터리 저항 진단 장치 및 방법
WO2015046702A1 (ko) 충방전기의 충전 전류 정밀도 검출 장치
WO2021101059A1 (ko) 절연저항 측정 장치 및 그 장치를 적용하는 배터리 시스템
WO2019117487A1 (ko) 전압 측정 장치 및 방법
WO2018164330A1 (ko) 보호계전기 시험장비 운용 장치 및 방법
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량
WO2022035131A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2020022527A1 (ko) 배터리 진단 장치 및 방법
WO2017155260A1 (ko) 충방전 전류 추정 장치
CN117054895A (zh) 电池监测设备及方法
WO2020106043A1 (ko) 배터리 모니터링 시스템
WO2023080466A1 (ko) 배터리 관리 방법 및 이를 적용한 배터리 시스템
WO2024101639A1 (ko) 배터리의 진단 장치 및 방법
WO2023229267A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2019117608A1 (ko) 전류 측정 장치 및 방법
WO2023101136A1 (ko) 셀 전압 추정 방법 및 그 방법을 제공하는 배터리 시스템
WO2022149769A1 (ko) 최대 방전 전류 예측 방법 및 이를 이용한 배터리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525706

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 19890181.1

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890181

Country of ref document: EP

Effective date: 20210527