WO2020111598A1 - Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore - Google Patents
Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore Download PDFInfo
- Publication number
- WO2020111598A1 WO2020111598A1 PCT/KR2019/015518 KR2019015518W WO2020111598A1 WO 2020111598 A1 WO2020111598 A1 WO 2020111598A1 KR 2019015518 W KR2019015518 W KR 2019015518W WO 2020111598 A1 WO2020111598 A1 WO 2020111598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- lithium sulfate
- lithium
- cyclone
- fine powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/06—Sulfates; Sulfites
Definitions
- the present invention relates to a method and apparatus for preparing a lithium sulfate solution from lithium-containing ores.
- Lithium is widely used in various industries such as secondary batteries, glass, ceramics, alloys, lubricants, and pharmaceuticals.
- lithium secondary batteries have recently attracted attention as a major power source for hybrid and electric vehicles, and are also used as small batteries for existing portable electronic equipment such as mobile phones and laptops, so that the market size is more than 100 times larger than today. It is predicted to grow and is receiving attention.
- Such lithium is generally capable of recovering lithium from a lithium-containing ore.
- Lithium in the lithium-containing ore mainly exists as a mineral phase of spodumene (LiAl(Si 2 O 6 )), which is a dense ⁇ phase. Exists.
- a rotary kiln type kiln is used for convenience of facilities and processes.
- the kiln In order to completely change the ⁇ -spodumene inside the kiln to ⁇ -spodumene, the kiln directly forms a flame inside the kiln to raise the temperature to 1100°C.
- a molten phase is generated on the particle surface to cause agglomeration of particles, resulting in clinker phase. causes the same form.
- the thermal efficiency of the rotary kiln is further reduced, but also the phase transition rate of the particles is lowered, thereby reducing the efficiency of the overall process.
- the present invention is to solve the conventional problems, it is possible to increase the phase transition rate of the ore through the effective temperature rise of the lithium-containing ore during the process of preparing a lithium sulfate solution from the lithium-containing ore, can effectively treat the generated ultrafine powder It is to provide a method and apparatus.
- the present invention is a crushing step of obtaining and collecting fine powder by crushing lithium-containing ore to an average particle size of 0.5 mm or less; An extremely fine powder collecting step of collecting scattered fine fine powder that is not collected in the crushing step among the fine powder; A sintering step of transferring the pulverized powder including the collected fine and ultrafine powders into a gas and phase-transfering them by firing; A roasting step of roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And a leaching step of leaching the solid lithium sulfate with water to obtain a lithium sulfate solution, wherein the gas provides a method for preparing a lithium sulfate solution flowing in a reverse direction to the flow of the unspectralized light.
- the present invention is a crushing furnace for obtaining a fine powder by crushing a lithium-containing ore; Bag filter for collecting the fine powder scattered in the crushing furnace (Bag filter); A gas-fired kiln for phase-shifting the pulverized gas as the gas flows in the opposite direction to the direction in which the pulverized powder including the fine powder and the ultra-fine powder is introduced; A gas supply source for supplying gas to the kisong kiln in the reverse direction; A roasting furnace for roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And a leaching tank for leaching the solid lithium sulfate with water to obtain a lithium sulfate solution.
- Bag filter for collecting the fine powder scattered in the crushing furnace (Bag filter)
- a gas-fired kiln for phase-shifting the pulverized gas as the gas flows in the opposite direction to the direction in which the pulverized powder including the fine powder and the ultra-fine powder is introduced
- the present invention can achieve a uniform temperature increase and thus a phase transition rate of a lithium-containing ore uniformly compared to a conventional rotary kiln method, and the process of manufacturing a lithium sulfate solution by effectively treating extremely fine powders generated during the process Stability as well as total lithium recovery can be improved.
- FIG. 1 is a view schematically showing a process for preparing a lithium sulfate solution from a lithium-containing ore using a conventional rotary kiln.
- FIG. 2 is a view schematically showing a process for preparing a lithium sulfate solution from a lithium-containing ore according to the present invention.
- FIG. 3 is a view schematically showing the flow of the drying and crushing furnace and the air-fired kiln in FIG. 2.
- cyclone refers to a “cyclone type classifier”
- cyclone and cyclone type classifier can be understood to have the same meaning.
- the present invention relates to a method for preparing a lithium sulfate solution from a lithium-containing ore, the method of the present invention crushing the lithium-containing ore to prepare a fine powder, calcining the fine powder, and then phase-transferring the fine-transferred fine powder into sulfuric acid.
- a method and apparatus for preparing a lithium sulfate solution that can be prepared by discharging and leaching with water.
- a leaching step of leaching the solid lithium sulfate with water to obtain a lithium sulfate solution wherein the gas provides a method for preparing a lithium sulfate solution flowing in a reverse direction to the flow of the unspectralized light.
- the present invention is a crushing furnace including a crushing device for obtaining a fine powder by crushing a lithium-containing ore; Bag filter for collecting the fine powder scattered in the crushing furnace (Bag filter); A gas-fired kiln for phase-shifting the pulverized gas as the gas flows in the opposite direction to the direction in which the pulverized powder including the fine powder and the ultra-fine powder is introduced; A gas supply source for supplying gas to the kisong kiln in the reverse direction; A roasting furnace for roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And a leaching tank for leaching the solid lithium sulfate with water to obtain a lithium sulfate solution.
- a crushing device for obtaining a fine powder by crushing a lithium-containing ore
- Bag filter for collecting the fine powder scattered in the crushing furnace (Bag filter)
- a gas-fired kiln for phase-shifting the pulverized gas as the gas flows in the opposite
- the fine powder having a particle size of more than 0.5 mm among the fine powder in the crushing step may include a step of being recycled back to the crushing step. It may include a re-crushing device for re-crushing the fine spectroscopy exceeding 0.5 mm particle size.
- the lithium-containing ore may be at least one form selected from the group consisting of spodumene, petalite and lepidolite, preferably in the form of spodumene, more preferably Is ⁇ -spodumene.
- the ore may be scattered while drying the ore using the gas discharged from the firing step.
- the lithium sulfate solution manufacturing apparatus may include a gas pipe capable of injecting gas discharged from the gas-fired kiln into the crushing furnace.
- the gas may dry the ore or fine powder when crushing a lithium-containing ore. Since the ore is crushed while drying, it is possible to further improve the crushing efficiency of the ore, and can effectively scatter and separate the fine powder.
- the method and apparatus for manufacturing the lithium sulfate solution are as shown in FIG. 2, and lithium-containing ore (fine powder) crushed to a certain size or less through a crushing furnace 70 for processing a lithium-containing ore to a certain particle size, and the It is possible to charge the blast furnace 80 with pulverized spectroscopy including extremely fine powder collected in the bag filter 75 by being scattered with gas among the fine powder.
- the fine spectroscopy injected into the air-fired firing furnace 80 is gradually heated while being heated with the gas supplied by the gas supply source 85, so that the ⁇ phase of the pulverization can be effectively phase-transferred to the ⁇ phase.
- the gas supplied by the gas supply source 85 may have a temperature of 1000 to 1300°C, preferably a temperature of 1000 to 1200°C, and most preferably a temperature of 1100°C.
- the temperature is low, so the phase transition speed of undifferentiated is delayed, so that effective phase transition may not occur between the air-transporting furnaces 80, and if the temperature exceeds 1300°C, the particles are due to high temperature. Due to the formation of the melt inside, agglomerates are formed between ore particles, so that the particles become large and the transport is not smooth, or the particles become large due to lumping, so there is a problem that effective phase transition cannot occur due to the inability to increase the temperature inside the larger particles.
- the crushing furnace 70 crushes lithium-containing ore having various particle size distributions supplied from the charging bin 1 with a crusher (for example, a hammer mill 71 is installed). Differentiation can be obtained.
- the lithium-containing ore may be crushed while being dried with a gas discharged from the gas-fired firing furnace 80 and injected into the crushing furnace 70.
- the fine powder is discharged from the gas-fired firing furnace 80 and scattered along with the gas injected into the crushing furnace 70 and supplied to the cyclone classifier 72. At this time, the fine particles exceeding the particle size of 0.5 mm in the supplied gas can be collected in the classifier 72 and recycled to the crusher 71 through the recirculation pipe 77, while the particle size not collected in the classifier is 0.5 mm.
- the following fine powder may be discharged to the outside of the classifier 72 to be supplied to and collected in a dusting classifier (Dedusting Cyclone 73).
- the fine particles having a particle size of more than 0.5 mm recirculated to the crusher 71 are again crushed in the crusher 71 and scattered with the gas to the classifier 72, the fine particles having a particle size of 0.5 mm or less are discharged from the classifier 72. It can be supplied to the dust extraction classifier 73 and collected.
- the fine powder having a particle size of 0.1 mm or less among the fine particles having a particle size of 0.5 mm or less supplied to the dedusting classifier 73 is not collected by the dedusting classifier 73, it is discharged together with the gas from the dedusting classifier 73. It is supplied as a filter (bag filter, 75), it can be collected in all. At this time, the gas of the crushing furnace 70 from which the ultrafine powder is removed from the bag filter 75 may be discharged to the outside.
- the pulverized powder including the fine powder collected by the dust-sorting classifier 73 and the ultra-fine powder collected by the bag filter 75 may be supplied to the air-fired firing furnace 80.
- the crushing furnace 70 can supply the dried pulverization of 0.5 mm or less to the air-fired firing furnace 80.
- the undivided spectral introduced into the air-fired firing furnace 80 is stored in a dry light bin 90 and discharged at a constant speed through a screw feeder 100 to the air-fired firing furnace 80. It can be charged with an inner cyclone.
- the discharged fine spectroscopy is charged into the cyclone in the gas-fired firing furnace 80 through the gas-transmitting gas supply pipe 89, and is uniformly heated while undergoing a multi-stage cyclone connected in series with the gas supply source 85 to undergo phase change.
- the firing step of the present invention may be performed through the multi-stage cyclone, and the firing step includes a first classification step to a third classification step, and in each classification step, the flow of pulverized gas and the flow of gas are reversed.
- a first classifying step performed by sending the unspectralized gas to the gas discharged in the second classifying step;
- a second classification step performed by sending the undiluted light recovered in the first classification step to the gas discharged in the third classification step; It may be carried out by including a third classification step is carried out by sending the pulverized recovered from the second classification step to the gas discharged from the gas source.
- the air-fired kiln 80 may include three cyclones, and the three cyclones may be connected in series.
- the undivided spectral inputted to the air-fired kiln 80 flows in the order of the first cyclone 81, the second cyclone 82, and the third cyclone 83, and is sequentially heated, while being generated from the gas source 85
- the gas is flowed from the gas source 85 in the order of the third cyclone 83, the second cyclone 82, and the first cyclone 81, as opposed to the pulverization, and the temperature is sequentially lowered.
- the undiluted dust recovered from the third cyclone 83 may be injected into the roasting furnace 30.
- the gas of the gas-fired kiln 80 is discharged to the crushing furnace 70 while passing through the third, second, and first cyclones, while the undivided spectral input to the gas-fired kiln 80 is the opposite of the gas.
- the temperature is raised while passing through the 1st, 2nd, and 3rd cyclones, and finally recovered from the 3rd cyclone 83.
- the undivided spectral discharged at a constant rate through the screw feeder 100 from the dry light bin 90 mixes some branched gas and air from the heat source 85 to a constant temperature. It can be charged as a multi-stage cyclone through the gas transport gas supply pipe 89 with the gas adjusted to a constant temperature by adjusting the air mixing ratio in a gas or a small gas burner controlled by.
- the pulverized charge charged through the transport gas supply pipe 89 is injected into the first cyclone 81 while transporting the gas discharged from the second cyclone 82.
- the fine spectroscopy injected into the first cyclone 81 together with the gas is recovered separately from the gas, and the recovered spectroscopy is injected into the second cyclone 82 together with the gas discharged from the third cyclone 83.
- the fine spectroscopy injected into the second cyclone 82 together with the gas is recovered separately from the gas, and the recovered fine spectroscopy is injected into the third cyclone 83 together with the gas discharged from the gas source 85.
- the fine spectroscopy injected with the gas into the third cyclone 83 is separated from the gas and recovered, and the recovered spectroscopy is stored in the calcined light bin 84.
- the undifferentiated charge charged in the firing light bin 84 may be gradually elevated while gradually increasing temperature. That is, unlike the conventional rotary kiln type kiln 10, the air-fired kiln 80 of the present invention uses only gas generated from the gas supply source 85 to transport undifferentiated particles having a certain particle size (0.5 mm) or less as gas. As it is gradually heated, the molten phase in the particles due to local overheating is formed by the flame of the burner installed for heating inside the rotary kiln, thereby inhibiting agglomeration between particles or generation of clinker phase.
- phase transition efficiency is increased, and the firing process is not only stable, but also the sulfuric acid roasting, leaching and impurity removal reaction (precipitation) is effectively performed after firing without separate crushing process. Recovery rates may increase.
- the phase shifted pulverization is injected into the rotary kiln 30 and sulfuric acid is injected into the rotary kiln 30 through a sulfuric acid injection tube 35 to roast the phase-shifted microscopic spectroscopy to form solid sulfuric acid. It is to obtain lithium (Li 2 SO 4 ).
- the solid lithium sulfate (Li 2 SO 4 ) is introduced into water by injecting the solid lithium sulfate into the leaching tank 40 and injecting water 45 into the leaching tank 40. It is to prepare a lithium sulfate solution by leaching.
- the reaction for obtaining the solid phase lithium sulfate from the phase shifted spectroscopy is as follows.
- the roasting process is preferably performed at a temperature of 200 to 250 °C.
- the prepared lithium sulfate solution may remove impurities contained in the solution through an impurity removal reaction.
- the impurity removal reaction injects the lithium sulfate solution into the precipitation furnace 50 and injects a precipitant 55 into the injected lithium sulfate solution to remove impurities such as Al, Si, Ca and Mg present in the lithium sulfate solution. It is to be removed by the precipitate (56).
- the present invention enables uniform temperature increase of lithium-containing ore compared to the conventional rotary kiln method, thereby achieving a high phase transition rate, and effectively treating scattering of extremely fine particles generated during the process. Compared to the manufacturing process of lithium sulfate, scattering loss of extremely fine powder can be suppressed, so that the total lithium recovery rate can be improved.
- Table 1 summarizes the composition and particle size distribution of the lithium-containing ore used in the Examples of the present invention.
- ingredient Composition Li 3.13 Ca 0.61 Mg 0.40 Mn 0.15 Al 13.04 Si 29.37 P 0.01 Fe 1.31 Na 0.38 K 0.84 Particle size (mm) -1.18 0.8 +1.18 29.4 +4.75 36.1 +9.5 33.8
- the lithium-containing ore used contains 3.13 wt% of Li and contains a large amount of gangue components such as Al and Si, and the main mineral phases are ⁇ -spodumene (LiAlSi 2 O 6 ), quartz (quartz, SiO 2 ), etc. were detected, and there were few fine powders with a particle size of 1.18 mm or less, and most of them had a particle size of 4.75 mm or more, indicating that they were relatively large spectroscopy.
- the result of using the lithium-containing ore having the composition shown in Table 1, using the existing rotary kiln (Rotary Kiln) calcination furnace and a crushing machine using a lithium sulfate solution manufacturing apparatus (the apparatus of FIG. 1) to produce a lithium sulfate solution was used as Comparative Example 1.
- Example 1 the result of preparing a lithium sulfate solution through the apparatus for producing a lithium sulfate solution of the present invention (the devices of FIGS. 2 and 3) was set to Example 1.
- Table 2 summarizes the results of analyzing the components of the lithium sulfate solution prepared using the existing lithium sulfate solution preparation device and the present invention lithium sulfate solution preparation device.
- Example 1 Phase transition rate (%) 77.1 100 Chemical analysis (g/L) Li 11.59 12.81 Ca 0.024 0.021 Mg 0.003 0.003 Mn ⁇ 0.003 ⁇ 0.003 Al ⁇ 0.003 ⁇ 0.003 Si 0.003 0.003 P 0.003 0.003 Fe ⁇ 0.003 ⁇ 0.003 Na 4.35 4.12 K 0.642 0.572 S 28.72 31.72 Total lithium recovery rate (%) 81.8 90.4
- Example 2 As shown in Table 2, compared to Comparative Example 1, the recovery amount of lithium in Example 1 was significantly increased from 11.59 g/L to 12.81 g/L, and accordingly, the total lithium recovery rate was also increased from 81.8% to 90.4%.
- the embodiments of the present invention have been described in detail above, the scope of rights of the present invention is not limited thereto, and various modifications and variations are within the scope of the technical spirit of the present invention as set forth in the claims. This will be apparent to those skilled in the art.
- firing light bin 85 heat source (Burner)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
The present invention relates to a method and an apparatus for manufacturing a lithium sulfate solution. Specifically, the present invention provides a method for manufacturing a lithium sulfate solution and an apparatus for manufacturing a lithium sulfate solution, the method comprising: a crushing step of crushing lithium bearing ore to an average particle size of 0.5 mm or less so as to obtain and collect fine powder; a ultrafine powder collecting step of collecting ultrafine powder, in the fine powder, scattered without being collected in the crushing step; a sintering step of changing the phase of fine powder ore comprising the collected fine powder and ultrafine powder by sintering while pneumatically conveying, by means of a gas, the fine powder ore; a calcination step of calcining the phase-changed fine powder ore with a sulfuric acid so as to obtain lithium sulfate; and a leaching step of leaching the solid lithium sulfate with water so as to obtain the lithium sulfate solution, wherein the gas flows in the direction opposite to the direction of the flow of the fine powder ore.
Description
본 발명은 리튬함유 광석으로부터 황산리튬용액을 제조하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for preparing a lithium sulfate solution from lithium-containing ores.
리튬은 이차전지, 유리, 세라믹, 합금, 윤활유, 제약 등 각종 산업 전반에 다양하게 사용되고 있다. 특히, 리튬 이차전지는 최근 하이브리드 및 전기 자동차의 주요 동력원으로 주목받고 있을 뿐만 아니라, 휴대폰, 노트북 등 기존의 포터블 전자장비의 소형 배터리로도 사용되어 그 시장 규모가 현재 대비 향후 100배 이상의 거대 시장으로 성장할 것으로 예측되며 주목 받고 있는 실정이다.Lithium is widely used in various industries such as secondary batteries, glass, ceramics, alloys, lubricants, and pharmaceuticals. In particular, lithium secondary batteries have recently attracted attention as a major power source for hybrid and electric vehicles, and are also used as small batteries for existing portable electronic equipment such as mobile phones and laptops, so that the market size is more than 100 times larger than today. It is predicted to grow and is receiving attention.
이러한 리튬은 일반적으로, 리튬함유 광석으로부터 리튬을 회수할 수 있는데, 리튬함유 광석 중의 리튬은 주로 스포듀민(Spodumene, LiAl(Si
2O
6))의 광물상으로 존재하며, 이는 치밀한 형태의 α상으로 존재하고 있다. Such lithium is generally capable of recovering lithium from a lithium-containing ore. Lithium in the lithium-containing ore mainly exists as a mineral phase of spodumene (LiAl(Si 2 O 6 )), which is a dense α phase. Exists.
상기 리튬함유 광석으로부터 리튬을 효과적으로 추출하기 위하여 황산을 이용한 침출공정을 사용하는데, 이러한 치밀한 형태의 α-스포듀민은 황산 침출이 효과적으로 되지 않아 리튬 회수율이 현저히 낮다. 그러나 α-스포듀민을 900 내지 1100℃까지 가열하여 γ상을 거쳐 β상으로까지 전환시키면 약 30%의 부피 팽창이 발생된다. 이로 인해 입자밀도가 3.15g/cm
3에서 2.40g/cm
3으로 저하되고, 광석 입자 내부 크랙(crack) 및 입자분화가 일어나 광석의 비표면적이 증가하여 황산에 효과적으로 침출될 수 있으므로, 리튬의 회수율을 증대시킬 수 있다.In order to effectively extract lithium from the lithium-containing ore, a leaching process using sulfuric acid is used. In this dense form of α-spodumene, the recovery of lithium is not effective and the lithium recovery rate is remarkably low. However, when the α-spodumene is heated to 900 to 1100° C. and converted to the β phase through the γ phase, a volume expansion of about 30% occurs. Due to this, the particle density decreases from 3.15 g/cm 3 to 2.40 g/cm 3 , cracks inside the ore particles and particle differentiation occur, and the specific surface area of the ore increases, so that it can be effectively leached into sulfuric acid. Can increase.
상기와 같은 리튬함유 광석으로부터 리튬을 회수하는 공정은 설비 및 공정의 편의성 등을 위하여 로터리 킬른 방식의 소성로를 사용한다. 상기 소성로는 소성로 내부의 α-스포듀민을 β-스포듀민으로 완전히 상전이시키기 위해 소성로 내부를 직접 화염을 형성시켜 온도를 1100℃까지 상승시킨다. 그러나, 로터리 킬른 자체의 낮은 열효율성이나 화염의 크기, 위치 등으로 인한 로터리 킬른의 국부적인 가열 및 극미분 등의 영향으로 입자 표면에 용융상이 생성되어 입자의 응집을 유발시켜 클린커(clinker)상과 같은 형태를 야기시킨다. 그로 인해, 로터리 킬른의 열효율성을 더욱 저하시킬 뿐만 아니라 입자의 상전이율도 저하되어 전체적인 공정의 효율성이 저하된다. In the process of recovering lithium from the lithium-containing ore as described above, a rotary kiln type kiln is used for convenience of facilities and processes. In order to completely change the α-spodumene inside the kiln to β-spodumene, the kiln directly forms a flame inside the kiln to raise the temperature to 1100°C. However, due to the low thermal efficiency of the rotary kiln itself or the influence of local heating and ultrafine dust of the rotary kiln due to the size and location of the flame, a molten phase is generated on the particle surface to cause agglomeration of particles, resulting in clinker phase. Causes the same form. As a result, not only the thermal efficiency of the rotary kiln is further reduced, but also the phase transition rate of the particles is lowered, thereby reducing the efficiency of the overall process.
나아가, 상기와 같은 클린커 상을 파쇄하기 위하여 소성로 후단에 파쇄기를 설치하였으나, 상기와 같은 로터리 킬른 방식의 소성로에서 배출된 극미분을 포집 및 재장입하는 공정도 효과적이지 못하여 실제 리튬 함유 광석 장입 대비 손실이 증가하게 되어 총 리튬회수율이 저하되고 있다.Furthermore, in order to crush the clinker phase as described above, a crushing machine was installed at the rear end of the kiln, but the process of collecting and reloading the fine powder discharged from the kiln of the rotary kiln method as described above is also not effective, so it is compared with the actual charging of lithium-containing ore. As the loss increases, the total lithium recovery rate decreases.
상기와 같이, 미국등록특허 제4588566호와 같이 리튬함유 물질로부터 리튬을 추출하는 방법이 연구되고 있으나, 총 리튬회수율을 높인 연구에 대해서는 미흡한 실정이다.As described above, a method of extracting lithium from a lithium-containing material, such as U.S. Patent No. 4588566, has been studied, but it is insufficient for a study to increase the total lithium recovery rate.
본 발명은 종래의 문제점을 해결하기 위한 것으로, 리튬함유 광석으로부터 황산리튬 용액을 제조하는 공정 중 효과적인 리튬함유 광석의 승온을 통해 상기 광석의 상전이율을 높이고, 발생되는 극미분을 효과적으로 처리할 수 있는 방법 및 장치를 제공하는 것이다.The present invention is to solve the conventional problems, it is possible to increase the phase transition rate of the ore through the effective temperature rise of the lithium-containing ore during the process of preparing a lithium sulfate solution from the lithium-containing ore, can effectively treat the generated ultrafine powder It is to provide a method and apparatus.
본 발명의 일 견지에 따르면, 본 발명은 리튬함유 광석을 평균 입도 0.5mm 이하로 파쇄하여 미분을 획득 및 포집하는 파쇄단계; 상기 미분 중 상기 파쇄단계에서 포집되지 않고 비산된 극미분을 포집하는 극미분 포집단계; 포집된 상기 미분 및 극미분을 포함하는 미분광을 가스로 기송(氣送)하면서 소성에 의해 상전이시키는 소성단계; 상전이된 상기 미분광을 황산으로 배소하여 고체상의 황산리튬을 획득하는 배소단계; 및 상기 고체상의 황산리튬을 물로 침출하여 황산리튬 용액을 획득하는 침출단계를 포함하며, 상기 가스는 상기 미분광의 흐름과 역방향으로 흐르는 황산리튬 용액을 제조하는 방법을 제공한다.According to one aspect of the present invention, the present invention is a crushing step of obtaining and collecting fine powder by crushing lithium-containing ore to an average particle size of 0.5 mm or less; An extremely fine powder collecting step of collecting scattered fine fine powder that is not collected in the crushing step among the fine powder; A sintering step of transferring the pulverized powder including the collected fine and ultrafine powders into a gas and phase-transfering them by firing; A roasting step of roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And a leaching step of leaching the solid lithium sulfate with water to obtain a lithium sulfate solution, wherein the gas provides a method for preparing a lithium sulfate solution flowing in a reverse direction to the flow of the unspectralized light.
본 발명의 다른 견지에 따르면, 본 발명은 리튬함유 광석을 파쇄하여 미분을 획득하기 위한 파쇄로; 파쇄로에서 비산된 극미분을 포집하는 백필터(Bag filter); 가스가 상기 미분 및 극미분을 포함하는 미분광이 투입되어 흐르는 방향에 반대로 흐르면서 상기 미분광을 상전이시키기 위한 기송(氣送)소성로; 상기 기송(氣送)소성로에 가스를 역방향으로 공급하는 가스 공급원; 상전이된 상기 미분광을 황산으로 배소하여 고체상의 황산리튬을 획득하기 위한 배소로; 및 상기 고체상의 황산리튬을 물로 침출하여 황산리튬 용액을 획득하기 위한 침출조를 포함하는 황산리튬 용액 제조 장치를 제공한다.According to another aspect of the present invention, the present invention is a crushing furnace for obtaining a fine powder by crushing a lithium-containing ore; Bag filter for collecting the fine powder scattered in the crushing furnace (Bag filter); A gas-fired kiln for phase-shifting the pulverized gas as the gas flows in the opposite direction to the direction in which the pulverized powder including the fine powder and the ultra-fine powder is introduced; A gas supply source for supplying gas to the kisong kiln in the reverse direction; A roasting furnace for roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And a leaching tank for leaching the solid lithium sulfate with water to obtain a lithium sulfate solution.
본 발명은 기존의 로터리 킬른(rotary kiln) 방식에 비해 균일한 리튬함유 광석의 승온 및 이에 따른 상전이율을 달성할 수 있으며, 과정 중 발생하는 극미분을 효과적으로 처리하여 황산리튬 용액을 제조하는 공정의 안정성은 물론 총 리튬 회수율을 향상시킬 수 있다.The present invention can achieve a uniform temperature increase and thus a phase transition rate of a lithium-containing ore uniformly compared to a conventional rotary kiln method, and the process of manufacturing a lithium sulfate solution by effectively treating extremely fine powders generated during the process Stability as well as total lithium recovery can be improved.
도 1은 종래의 로터리 킬른(Rotary kiln)을 이용하여 리튬함유 광석으로부터 황산리튬 용액을 제조하는 공정을 개략적으로 나타낸 도면이다.1 is a view schematically showing a process for preparing a lithium sulfate solution from a lithium-containing ore using a conventional rotary kiln.
도 2는 본 발명에 따른 리튬함유 광석으로부터 황산리튬용액을 제조하는 공정을 개략적으로 나타낸 도면이다. 2 is a view schematically showing a process for preparing a lithium sulfate solution from a lithium-containing ore according to the present invention.
도 3은 도 2 중 건조 및 파쇄로 및 기송소성로의 흐름을 개략적으로 나타낸 도면이다.3 is a view schematically showing the flow of the drying and crushing furnace and the air-fired kiln in FIG. 2.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and the same reference numerals are assigned to the same or similar elements throughout the specification.
또한 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 또한 명세서 전체에서 임의의 부분이 임의의 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to what is illustrated. In addition, when any part of the specification includes any component, this means that other components may be further included instead of excluding other components, unless otherwise stated.
나아가, 본 발명에서 "사이클론"은 "사이클론 형태의 분급기"를 지칭하는 것으로, "사이클론" 및 "사이클론 형태의 분급기"는 동일한 의미로 이해될 수 있다.Furthermore, in the present invention, "cyclone" refers to a "cyclone type classifier", and "cyclone" and "cyclone type classifier" can be understood to have the same meaning.
본 발명은 리튬함유 광석으로부터 황산리튬 용액을 제조하는 방법에 관한 것으로서, 본 발명의 방법은 리튬함유 광석을 파쇄하여 미분을 제조하고, 상기 미분을을 소성하여 상전이시킨 다음, 상전이된 미분을 황산으로 배소한 뒤 물로 침출하여 황산리튬 용액을 제조할 수 있는 황산리튬용액 제조 방법 및 장치를 제공한다.The present invention relates to a method for preparing a lithium sulfate solution from a lithium-containing ore, the method of the present invention crushing the lithium-containing ore to prepare a fine powder, calcining the fine powder, and then phase-transferring the fine-transferred fine powder into sulfuric acid. Provided is a method and apparatus for preparing a lithium sulfate solution that can be prepared by discharging and leaching with water.
구체적으로, 본 발명은 리튬함유 광석을 평균 입도 0.5mm 이하로 파쇄하여 미분을 획득 및 포집하는 파쇄단계; 상기 미분 중 상기 파쇄단계에서 포집되지 않고 비산된 극미분을 포집하는 극미분 포집단계; 포집된 상기 미분 및 극미분을 포함하는 미분광을 가스로 기송(氣送)하면서 소성에 의해 상전이시키는 소성단계; 상전이된 상기 미분광을 황산으로 배소하여 고체상의 황산리튬을 획득하는 배소단계; 및 상기 고체상의 황산리튬을 물로 침출하여 황산리튬 용액을 획득하는 침출단계를 포함하며, 상기 가스는 상기 미분광의 흐름과 역방향으로 흐르는 황산리튬 용액을 제조하는 방법을 제공한다.Specifically, the present invention crushing step of obtaining and collecting the fine powder by crushing the lithium-containing ore to an average particle size of 0.5mm or less; An extremely fine powder collecting step of collecting scattered fine fine powder that is not collected in the crushing step among the fine powder; A sintering step of transferring the pulverized powder including the collected fine and ultrafine powders into a gas and phase-transfering them by firing; A roasting step of roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And a leaching step of leaching the solid lithium sulfate with water to obtain a lithium sulfate solution, wherein the gas provides a method for preparing a lithium sulfate solution flowing in a reverse direction to the flow of the unspectralized light.
한편, 본 발명은 리튬함유 광석을 파쇄하여 미분을 획득하기 위한 파쇄장치를 포함하는 파쇄로; 파쇄로에서 비산된 극미분을 포집하는 백필터(Bag filter); 가스가 상기 미분 및 극미분을 포함하는 미분광이 투입되어 흐르는 방향에 반대로 흐르면서 상기 미분광을 상전이시키기 위한 기송(氣送)소성로; 상기 기송(氣送)소성로에 가스를 역방향으로 공급하는 가스 공급원; 상전이된 상기 미분광을 황산으로 배소하여 고체상의 황산리튬을 획득하기 위한 배소로; 및 상기 고체상의 황산리튬을 물로 침출하여 황산리튬 용액을 획득하기 위한 침출조를 포함하는 황산리튬 용액 제조 장치를 제공한다.On the other hand, the present invention is a crushing furnace including a crushing device for obtaining a fine powder by crushing a lithium-containing ore; Bag filter for collecting the fine powder scattered in the crushing furnace (Bag filter); A gas-fired kiln for phase-shifting the pulverized gas as the gas flows in the opposite direction to the direction in which the pulverized powder including the fine powder and the ultra-fine powder is introduced; A gas supply source for supplying gas to the kisong kiln in the reverse direction; A roasting furnace for roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And a leaching tank for leaching the solid lithium sulfate with water to obtain a lithium sulfate solution.
이 때, 상기 황산리튬용액을 제조하는 방법에서 상기 파쇄단계의 미분 중 입도 0.5mm를 초과하는 미분은 다시 파쇄단계로 재순환되는 단계를 포함할 수 있으며, 상기 황산리튬용액 제조 장치에서 상기 파쇄로는 입도 0.5mm를 초과하는 미분광을 다시 파쇄하기 위한 재파쇄장치을 포함할 수 있다.At this time, in the method for preparing the lithium sulfate solution, the fine powder having a particle size of more than 0.5 mm among the fine powder in the crushing step may include a step of being recycled back to the crushing step. It may include a re-crushing device for re-crushing the fine spectroscopy exceeding 0.5 mm particle size.
한편, 상기 리튬함유 광석은 스포듀민(spodumene), 페탈라이트(petalite) 및 레피돌라이트(lepidolite)로 이루어진 군으로부터 선택되는 적어도 하나의 형태일 수 있으며, 바람직하게는 스포듀민 형태로, 더욱 바람직하게는 α-스포듀민이다.On the other hand, the lithium-containing ore may be at least one form selected from the group consisting of spodumene, petalite and lepidolite, preferably in the form of spodumene, more preferably Is α-spodumene.
본 발명의 리튬함유 광석을 파쇄하는 단계는 소성단계에서 배출되는 가스를 사용하여 광석을 건조하면서 극미분을 비산시킬 수 있다. 이를 위해 상기 황산리튬용액 제조 장치는 상기 기송소성로에서 배출된 가스를 상기 파쇄로로 주입할 수 있는 가스관을 포함할 수 있다.In the step of crushing the lithium-containing ore of the present invention, the ore may be scattered while drying the ore using the gas discharged from the firing step. To this end, the lithium sulfate solution manufacturing apparatus may include a gas pipe capable of injecting gas discharged from the gas-fired kiln into the crushing furnace.
또한, 상기 가스는 리튬함유 광석을 파쇄할 때 상기 광석 또는 미분을 건조시킬 수 있다. 광석을 건조 시키면서 파쇄하기 때문에 광석의 파쇄 효율을 더욱 향상시킬 수 있으며, 효과적으로 극미분이 분리되어 비산될 수 있다. In addition, the gas may dry the ore or fine powder when crushing a lithium-containing ore. Since the ore is crushed while drying, it is possible to further improve the crushing efficiency of the ore, and can effectively scatter and separate the fine powder.
상세하게 상기 황산리튬 용액 제조 방법 및 장치는 도 2에 보여지는 바와 같이, 리튬함유 광석을 일정한 입도로 가공하기 위한 파쇄로(70)를 거쳐 일정 크기 이하로 파쇄된 리튬함유 광석(미분) 및 상기 미분 중 가스로 비산되어 백필터(Bag filter, 75)에 포집된 극미분을 포함하는 미분광을 기송소성로(80)에 장입할 수 있다. In detail, the method and apparatus for manufacturing the lithium sulfate solution are as shown in FIG. 2, and lithium-containing ore (fine powder) crushed to a certain size or less through a crushing furnace 70 for processing a lithium-containing ore to a certain particle size, and the It is possible to charge the blast furnace 80 with pulverized spectroscopy including extremely fine powder collected in the bag filter 75 by being scattered with gas among the fine powder.
상기 기송소성로(80)에 주입된 미분광은 가스 공급원(85)에 의해 공급된 가스로 가열되면서 점진적으로 승온되어, 상기 미분광의 α상을 β상으로 효과적으로 상전이 시킬 수 있다. The fine spectroscopy injected into the air-fired firing furnace 80 is gradually heated while being heated with the gas supplied by the gas supply source 85, so that the α phase of the pulverization can be effectively phase-transferred to the β phase.
나아가, 상기 가스 공급원(85)에 의해 공급된 가스는 1000 내지 1300℃ 온도일 수 있으며, 바람직하게는 1000 내지 1200℃ 온도, 가장 바람직하게는 1100℃ 온도이다. 이 때, 상기 가스가 1000℃ 온도 미만인 경우 온도가 낮아 미분광의 상전이 속도가 지연되어 기송소성로(80)를 통과하는 사이에 효과적인 상전이가 일어나지 않을 수 있으며, 1300℃ 온도를 초과하는 경우 고온으로 인하여 입자내 용융물의 형성으로 광석입자간 응집물이 형성되어 입자가 커져 기송이 원활히 되지 않거나 괴상화되어 입자가 커지므로, 커진 입자 내부까지 승온되지 못하여 효과적인 상전이가 일어나지 못하는 문제가 있다.Furthermore, the gas supplied by the gas supply source 85 may have a temperature of 1000 to 1300°C, preferably a temperature of 1000 to 1200°C, and most preferably a temperature of 1100°C. At this time, when the gas is less than 1000°C, the temperature is low, so the phase transition speed of undifferentiated is delayed, so that effective phase transition may not occur between the air-transporting furnaces 80, and if the temperature exceeds 1300°C, the particles are due to high temperature. Due to the formation of the melt inside, agglomerates are formed between ore particles, so that the particles become large and the transport is not smooth, or the particles become large due to lumping, so there is a problem that effective phase transition cannot occur due to the inability to increase the temperature inside the larger particles.
보다 상세하게, 도 3에 보여지는 바와 같이, 파쇄로(70)는 장입빈(1)에서 공급되는 다양한 입도분포를 가지는 리튬함유 광석을 파쇄기(예를 들어 Hammer Mill(71)이 장착)로 파쇄하여 미분을 획득할 수 있다. 이 때, 상기 리튬함유 광석은 기송소성로(80)에서 배출되어 파쇄로(70)로 주입되는 가스로 건조되면서 파쇄될 수 있다.More specifically, as shown in FIG. 3, the crushing furnace 70 crushes lithium-containing ore having various particle size distributions supplied from the charging bin 1 with a crusher (for example, a hammer mill 71 is installed). Differentiation can be obtained. At this time, the lithium-containing ore may be crushed while being dried with a gas discharged from the gas-fired firing furnace 80 and injected into the crushing furnace 70.
상기 미분은 기송소성로(80)에서 배출되어 파쇄로(70)로 주입되는 가스와 함께 비산되면서 사이클론(cyclone) 형태의 분급기(72)에 공급된다. 이 때, 공급된 가스 내 입도 0.5mm를 초과하는 미분은 분급기(72)에서 포집되어 재순환관(77)을 통하여 파쇄기(71)로 재순환될 수 있는 반면, 분급기에서 포집되지 않은 입도 0.5mm 이하의 미분은 분급기(72) 외부로 배출되어 탈진 분급기(Dedusting Cyclone, 73)로 공급되고 포집될 수 있다.The fine powder is discharged from the gas-fired firing furnace 80 and scattered along with the gas injected into the crushing furnace 70 and supplied to the cyclone classifier 72. At this time, the fine particles exceeding the particle size of 0.5 mm in the supplied gas can be collected in the classifier 72 and recycled to the crusher 71 through the recirculation pipe 77, while the particle size not collected in the classifier is 0.5 mm. The following fine powder may be discharged to the outside of the classifier 72 to be supplied to and collected in a dusting classifier (Dedusting Cyclone 73).
상기 파쇄기(71)로 재순환된 입도 0.5mm를 초과하는 미분은 파쇄기(71)에서 다시 파쇄되어 가스와 함께 분급기(72)로 비산되므로, 입도 0.5mm 이하의 미분만 분급기(72)에서 배출되어 탈진 분급기(73)으로 공급되고 포집될 수 있다. Since the fine particles having a particle size of more than 0.5 mm recirculated to the crusher 71 are again crushed in the crusher 71 and scattered with the gas to the classifier 72, the fine particles having a particle size of 0.5 mm or less are discharged from the classifier 72. It can be supplied to the dust extraction classifier 73 and collected.
한편, 탈진 분급기(73)로 공급된 입도 0.5mm 이하의 미분 중 입도 0.1mm이하의 극미분은 탈진 분급기(73)에서 포집되지 않으므로, 탈진 분급기(73)에서 가스와 함께 배출되어 백필터(bag filter, 75)로 공급되고, 전량 포집될 수 있다. 이 때, 백필터(75)에서 극미분이 제거된 파쇄로(70)의 가스는 외부로 배출될 수 있다.On the other hand, since the fine powder having a particle size of 0.1 mm or less among the fine particles having a particle size of 0.5 mm or less supplied to the dedusting classifier 73 is not collected by the dedusting classifier 73, it is discharged together with the gas from the dedusting classifier 73. It is supplied as a filter (bag filter, 75), it can be collected in all. At this time, the gas of the crushing furnace 70 from which the ultrafine powder is removed from the bag filter 75 may be discharged to the outside.
상기 탈진 분급기(73)에서 포집된 미분 및 백필터(75)에서 전량 포집된 극미분을 포함하는 미분광은 기송소성로(80)로 공급될 수 있다. 그 결과 파쇄로(70)는 건조된 0.5mm 이하의 미분광을 기송소성로(80)로 공급할 수 있다.The pulverized powder including the fine powder collected by the dust-sorting classifier 73 and the ultra-fine powder collected by the bag filter 75 may be supplied to the air-fired firing furnace 80. As a result, the crushing furnace 70 can supply the dried pulverization of 0.5 mm or less to the air-fired firing furnace 80.
나아가, 도 3에 보여지는 바와 같이, 상기 기송소성로(80)로 투입된 미분광은 건조광빈(90)에 저장되어 스크류 피더(screw feeder, 100)를 통하여 일정한 속도로 배출되어 기송소성로(80)로 내의 사이클론(cyclone)으로 장입될 수 있다. 배출된 미분광은 기송가스 공급관(89)를 통해 기송소성로(80) 내의 사이클론으로 장입되며, 가스 공급원(85)과 직렬로 연결된 다단의 사이클론을 거치면서 균일하게 승온되어 상전이될 수 있다.Furthermore, as shown in FIG. 3, the undivided spectral introduced into the air-fired firing furnace 80 is stored in a dry light bin 90 and discharged at a constant speed through a screw feeder 100 to the air-fired firing furnace 80. It can be charged with an inner cyclone. The discharged fine spectroscopy is charged into the cyclone in the gas-fired firing furnace 80 through the gas-transmitting gas supply pipe 89, and is uniformly heated while undergoing a multi-stage cyclone connected in series with the gas supply source 85 to undergo phase change.
상기 다단의 사이클론을 통해 본 발명의 소성단계를 수행할 수 있으며, 상기 소성단계는 제1 분급단계 내지 제3 분급단계를 포함하고, 각 분급단계에서 미분광의 흐름과 가스의 흐름은 역방향이며, 상기 미분광을 제2 분급단계에서 배출된 가스로 기송하여 수행되는 제1 분급단계; 상기 제1 분급단계에서 회수된 미분광을 제3 분급단계에서 배출된 가스로 기송하여 수행되는 제2 분급단계; 상기 제2 분급단계에서 회수된 미분광을 가스 공급원에서 배출된 가스로 기송하여 수행되는 제3 분급단계를 포함하여 수행될 수 있다.The firing step of the present invention may be performed through the multi-stage cyclone, and the firing step includes a first classification step to a third classification step, and in each classification step, the flow of pulverized gas and the flow of gas are reversed. A first classifying step performed by sending the unspectralized gas to the gas discharged in the second classifying step; A second classification step performed by sending the undiluted light recovered in the first classification step to the gas discharged in the third classification step; It may be carried out by including a third classification step is carried out by sending the pulverized recovered from the second classification step to the gas discharged from the gas source.
구체적으로 상기 기송소성로(80)는 3개의 사이클론을 포함할 수 있으며, 상기 3개의 사이클론은 직렬로 연결될 수 있다. Specifically, the air-fired kiln 80 may include three cyclones, and the three cyclones may be connected in series.
이 때, 상기 기송소성로(80)에 투입된 미분광은 제1 사이클론(81), 제2 사이클론(82) 및 제3 사이클론(83) 순으로 흐르며 순차적으로 승온되는 반면, 가스 공급원(85)에서 생성된 상기 가스는 가스 공급원(85)으로부터 제3 사이클론(83), 제2 사이클론(82) 및 제1 사이클론(81) 순으로, 상기 미분광과는 반대로 흐르며 순차적으로 온도가 저하된다. 나아가, 상기 제3 사이클론(83)에서 회수된 미분광은 상기 배소로(30)로 주입될 수 있다.At this time, the undivided spectral inputted to the air-fired kiln 80 flows in the order of the first cyclone 81, the second cyclone 82, and the third cyclone 83, and is sequentially heated, while being generated from the gas source 85 The gas is flowed from the gas source 85 in the order of the third cyclone 83, the second cyclone 82, and the first cyclone 81, as opposed to the pulverization, and the temperature is sequentially lowered. Furthermore, the undiluted dust recovered from the third cyclone 83 may be injected into the roasting furnace 30.
따라서, 상기 기송소성로(80)의 가스는 제3, 제2, 제1 사이클론을 거치면서 파쇄로(70)로 배출되는 반면, 기송소성로(80)로 투입되는 미분광은 상기 가스와는 반대로 제1, 제2, 제3 사이클론을 거치면서 승온되어 최종적으로는 제3 사이클론(83)에서 회수된다.Therefore, the gas of the gas-fired kiln 80 is discharged to the crushing furnace 70 while passing through the third, second, and first cyclones, while the undivided spectral input to the gas-fired kiln 80 is the opposite of the gas. The temperature is raised while passing through the 1st, 2nd, and 3rd cyclones, and finally recovered from the 3rd cyclone 83.
예를 들어, 도 3에 보여지는 바와 같이, 건조광빈(90)에서 스크류 피더(100)를 통하여 일정량의 속도로 배출된 미분광은 열원(85)에서 일부 분기한 가스와 공기를 혼합하여 일정온도로 조절된 가스 또는 소형 가스 버너에서 공기 혼합비를 조절하여 일정온도로 조절된 가스와 함께 기송가스 공급관(89)을 통하여 다단의 사이클론으로 장입할 수 있다. For example, as shown in FIG. 3, the undivided spectral discharged at a constant rate through the screw feeder 100 from the dry light bin 90 mixes some branched gas and air from the heat source 85 to a constant temperature. It can be charged as a multi-stage cyclone through the gas transport gas supply pipe 89 with the gas adjusted to a constant temperature by adjusting the air mixing ratio in a gas or a small gas burner controlled by.
상기 기송가스 공급관(89)을 통해 장입된 미분광은 제2 사이클론(82)에서 배출된 가스로 기송하면서 제1 사이클론(81)으로 주입된다. The pulverized charge charged through the transport gas supply pipe 89 is injected into the first cyclone 81 while transporting the gas discharged from the second cyclone 82.
가스와 함께 상기 제1 사이클론(81)에 주입된 미분광은 가스와 분리되어 회수되고, 회수된 미분광은 제3 사이클론(83)에서 배출된 가스와 함께 제2 사이클론(82)로 주입된다.The fine spectroscopy injected into the first cyclone 81 together with the gas is recovered separately from the gas, and the recovered spectroscopy is injected into the second cyclone 82 together with the gas discharged from the third cyclone 83.
가스와 함께 상기 제2 사이클론(82)에 주입된 미분광은 가스와 분리되어 회수되고, 회수된 미분광은 가스 공급원(85)에서 배출된 가스와 함께 제3 사이클론(83)로 주입된다.The fine spectroscopy injected into the second cyclone 82 together with the gas is recovered separately from the gas, and the recovered fine spectroscopy is injected into the third cyclone 83 together with the gas discharged from the gas source 85.
가스와 함께 상기 제3 사이클론(83)에 주입된 미분광은 가스와 분리되어 회수되고, 회수된 미분광은 소성광빈(84)에 저장된다. The fine spectroscopy injected with the gas into the third cyclone 83 is separated from the gas and recovered, and the recovered spectroscopy is stored in the calcined light bin 84.
상기와 같이 본 발명의 기송소성로(80)를 거치는 경우, 소성광빈(84)에 장입된 미분광은 점진적으로 승온되면서 상전이될 수 있다. 즉, 기존의 로터리 킬른 방식의 소성로(10)와 달리, 본 발명의 기송소성로(80)는 가스 공급원(85)에서 발생된 가스만을 사용하여 일정 입도(0.5mm) 이하의 미분광을 가스로 기송시키면서 점진적으로 승온시키므로, 로터리 킬른(roaty kiln) 내부의 승온을 위해 설치된 버너의 화염으로 국부적 과열에 의한 입자 내 용융상이 형성되어 입자간 응집(agglomeration)이나 이들의 클린커상의 발생 등이 억제된다. When passing through the kisong firing furnace 80 of the present invention as described above, the undifferentiated charge charged in the firing light bin 84 may be gradually elevated while gradually increasing temperature. That is, unlike the conventional rotary kiln type kiln 10, the air-fired kiln 80 of the present invention uses only gas generated from the gas supply source 85 to transport undifferentiated particles having a certain particle size (0.5 mm) or less as gas. As it is gradually heated, the molten phase in the particles due to local overheating is formed by the flame of the burner installed for heating inside the rotary kiln, thereby inhibiting agglomeration between particles or generation of clinker phase.
따라서, 균일한 입자의 승온 및 그에 따른 상전이가 완료되므로, 상전이 효율이 높아지고, 소성 공정이 안정될 뿐만 아니라 소성 이후에도 별도의 파쇄 공정 없이 황산배소, 침출 및 불순물 제거 반응(침전)도 효과적으로 수행되어 리튬회수율이 증가할 수 있다. Therefore, since the temperature rise and uniform phase transition of the uniform particles are completed, the phase transition efficiency is increased, and the firing process is not only stable, but also the sulfuric acid roasting, leaching and impurity removal reaction (precipitation) is effectively performed after firing without separate crushing process. Recovery rates may increase.
상기 배소단계 및 배소로는 상전이된 상기 미분광을 로터리 킬른(30)에 주입하고 상기 로터리 킬른(30)에 황산 주입관(35)을 통해 황산을 주입하여 상전이된 미분광을 배소시켜 고체상의 황산리튬(Li
2SO
4)을 획득하는 것이다.In the roasting step and roasting, the phase shifted pulverization is injected into the rotary kiln 30 and sulfuric acid is injected into the rotary kiln 30 through a sulfuric acid injection tube 35 to roast the phase-shifted microscopic spectroscopy to form solid sulfuric acid. It is to obtain lithium (Li 2 SO 4 ).
나아가, 상기 침출단계 및 침출조는 상기 고체상의 황산리튬을 침출조(40)에 주입하고, 상기 침출조(40)에 물(45)을 주입함으로써 상기 고체상의 황산리튬(Li
2SO
4)을 물로 침출하여 황산리튬 용액을 제조하는 것이다. 상기 상전이된 미분광으로부터 고체상의 황산리튬을 획득하는 반응은 다음과 같다.Furthermore, in the leaching step and the leaching tank, the solid lithium sulfate (Li 2 SO 4 ) is introduced into water by injecting the solid lithium sulfate into the leaching tank 40 and injecting water 45 into the leaching tank 40. It is to prepare a lithium sulfate solution by leaching. The reaction for obtaining the solid phase lithium sulfate from the phase shifted spectroscopy is as follows.
2LiAl(Si
2O
6)(s) + H
2SO
4(l) → 2HAlSi
2O
6(s)+
Li
2SO
4(s)2LiAl(Si 2 O 6 )(s) + H 2 SO 4 (l) → 2HAlSi 2 O 6 (s)+ Li 2 SO 4 (s)
이 때, 상기 배소공정은 200 내지 250℃ 온도에서 수행되는 것이 바람직하다.At this time, the roasting process is preferably performed at a temperature of 200 to 250 ℃.
나아가, 상기 제조된 황산리튬 용액은 불순물 제거 반응을 통해 용액에 포함된 불순물을 제거할 수 있다. 상기 불순물 제거 반응은 상기 황산리튬 용액을 침전로(50)에 주입하고, 주입된 황산리튬 용액에 침전제(55)를 주입하여 상기 황산리튬 용액에 존재하는 Al, Si, Ca 및 Mg등의 불순물을 침전물(56)로 제거하는 것이다.Furthermore, the prepared lithium sulfate solution may remove impurities contained in the solution through an impurity removal reaction. The impurity removal reaction injects the lithium sulfate solution into the precipitation furnace 50 and injects a precipitant 55 into the injected lithium sulfate solution to remove impurities such as Al, Si, Ca and Mg present in the lithium sulfate solution. It is to be removed by the precipitate (56).
그 결과, 본 발명은 기존의 로터리 킬른(rotary kiln) 방식에 비해 균일한 리튬함유 광석의 승온을 가능하게 하여 높은 상전이율을 달성할 수 있고, 과정 중 발생하는 극미분의 비산을 효과적으로 처리하여 기존의 황산리튬 제조 공정에 비해 극미분의 비산손실을 억제할 수 있으므로, 총 리튬 회수율을 향상시킬 수 있다.As a result, the present invention enables uniform temperature increase of lithium-containing ore compared to the conventional rotary kiln method, thereby achieving a high phase transition rate, and effectively treating scattering of extremely fine particles generated during the process. Compared to the manufacturing process of lithium sulfate, scattering loss of extremely fine powder can be suppressed, so that the total lithium recovery rate can be improved.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are only examples for helping the understanding of the present invention, and the scope of the present invention is not limited thereto.
실시예Example
본 발명의 실시예에 사용되는 리튬함유 광석의 성분 조성 및 입도 분포를 표 1에 정리하였다.Table 1 summarizes the composition and particle size distribution of the lithium-containing ore used in the Examples of the present invention.
성분ingredient | 조성(wt%)Composition (wt%) | |
LiLi | 3.133.13 | |
CaCa | 0.610.61 | |
MgMg | 0.400.40 | |
MnMn | 0.150.15 | |
AlAl | 13.0413.04 | |
SiSi | 29.3729.37 | |
PP | 0.010.01 | |
FeFe | 1.311.31 | |
NaNa | 0.380.38 | |
KK | 0.840.84 | |
입도(mm)Particle size (mm) | -1.18-1.18 | 0.80.8 |
+1.18+1.18 | 29.429.4 | |
+4.75+4.75 | 36.136.1 | |
+9.5+9.5 | 33.833.8 |
상기 표 1에 보이는 바와 같이, 사용된 리튬함유 광석은 Li을 3.13wt%를 함유하며 Al 및 Si 등 맥석 성분이 다량 함유하고, 주요 광물상으로는 α-spodumene(LiAlSi
2O
6), 석영(quartz, SiO
2)등이 검출되었으며, 입도가 1.18mm 이하인 미분은 거의 없으며, 대부분이 4.75 mm 이상의 입도를 가지므로 비교적 큰 분광임을 알 수 있다. 상기 표 1과 같은 조성을 가지는 리튬함유 광석을 사용하여, 기존의 로터리 킬른(Rotary Kiln)의 소성로 및 파쇄기를 포함하는 황산리튬용액 제조 장치(도 1의 장치)를 이용하여 황산리튬용액을 제조한 결과를 비교예1로 하였다. As shown in Table 1, the lithium-containing ore used contains 3.13 wt% of Li and contains a large amount of gangue components such as Al and Si, and the main mineral phases are α-spodumene (LiAlSi 2 O 6 ), quartz (quartz, SiO 2 ), etc. were detected, and there were few fine powders with a particle size of 1.18 mm or less, and most of them had a particle size of 4.75 mm or more, indicating that they were relatively large spectroscopy. The result of using the lithium-containing ore having the composition shown in Table 1, using the existing rotary kiln (Rotary Kiln) calcination furnace and a crushing machine using a lithium sulfate solution manufacturing apparatus (the apparatus of FIG. 1) to produce a lithium sulfate solution Was used as Comparative Example 1.
또한, 본 발명의 황산리튬용액 제조 장치(도 2 및 도 3의 장치)를 통해 황산리튬용액을 제조한 결과를 실시예1로 하였다. In addition, the result of preparing a lithium sulfate solution through the apparatus for producing a lithium sulfate solution of the present invention (the devices of FIGS. 2 and 3) was set to Example 1.
이때, 가스의 온도는 1070℃가 되도록 유지하였으며, 배소로의 온도는 250℃가 되도록 유지하였다. 상기 기존의 황산리튬용액 제조 장치 및 본 발명의 황산리튬용액 제조 장치를 이용하여 제조된 황산리튬용액의 성분을 분석한 결과를 표2에 정리하였다.At this time, the temperature of the gas was maintained at 1070°C, and the temperature of the roasting furnace was maintained at 250°C. Table 2 summarizes the results of analyzing the components of the lithium sulfate solution prepared using the existing lithium sulfate solution preparation device and the present invention lithium sulfate solution preparation device.
구분division | 비교예1Comparative Example 1 | 실시예1Example 1 | |
상전이율(%)Phase transition rate (%) | 77.177.1 | 100100 | |
화학분석(g/L)Chemical analysis (g/L) | LiLi | 11.5911.59 | 12.8112.81 |
CaCa | 0.0240.024 | 0.0210.021 | |
MgMg | 0.0030.003 | 0.0030.003 | |
MnMn | <0.003<0.003 | <0.003<0.003 | |
AlAl | <0.003<0.003 | <0.003<0.003 | |
SiSi | 0.0030.003 | 0.0030.003 | |
PP | 0.0030.003 | 0.0030.003 | |
FeFe | <0.003<0.003 | <0.003<0.003 | |
NaNa | 4.354.35 | 4.124.12 | |
KK | 0.6420.642 | 0.5720.572 | |
SS | 28.7228.72 | 31.7231.72 | |
총 리튬 회수율(%)Total lithium recovery rate (%) | 81.881.8 | 90.490.4 |
상기 표 2에 보여지는 바와 같이, 비교예1에 비해 실시예1에서 리튬의 회수량은 11.59g/L에서 12.81g/L로 크게 증가하였으며, 이에 따라 총 리튬 회수율도 81.8%에서 90.4%로 크게 향상됨을 알 수 있었다.이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.As shown in Table 2, compared to Comparative Example 1, the recovery amount of lithium in Example 1 was significantly increased from 11.59 g/L to 12.81 g/L, and accordingly, the total lithium recovery rate was also increased from 81.8% to 90.4%. Although the embodiments of the present invention have been described in detail above, the scope of rights of the present invention is not limited thereto, and various modifications and variations are within the scope of the technical spirit of the present invention as set forth in the claims. This will be apparent to those skilled in the art.
[부호의 설명][Description of codes]
1: 장입빈 10: 소성로1: Jang Jang Bin 10: Soseongro
20: 파쇄로 30: 배소로20: crushing furnace 30: roasting furnace
40: 침출로 50: 침전로40: leaching furnace 50: sedimentation furnace
70: 파쇄로 80: 기송소성로70: crushing furnace 80: Kisong firing furnace
71: 파쇄기 72 : 분급기71: shredder 72: classifier
73: 탈진 분급기 75: 백필터(Bag Filter)73: exhaustion classifier 75: Bag Filter
77: 재순환관 81, 82, 83 : 제 1, 2, 3 사이클론77: recirculation pipe 81, 82, 83: 1, 2, 3 cyclone
84: 소성광빈 85: 열원(Burner)84: firing light bin 85: heat source (Burner)
86, 87, 88: 제 1, 2, 3 사이클론 회수관 89: 기송가스 공급관86, 87, 88: 1st, 2nd, 3rd cyclone recovery pipe 89: Transport gas supply pipe
90: 건조광빈 100: 스크류 피더(screw feeder) 90: dry light bin 100: screw feeder
Claims (14)
- 리튬함유 광석을 평균 입도 0.5mm 이하로 파쇄하여 미분을 획득 및 포집하는 파쇄단계; A crushing step of obtaining and collecting fine powder by crushing the lithium-containing ore to an average particle size of 0.5 mm or less;상기 미분 중 상기 파쇄단계에서 포집되지 않고 비산된 극미분을 포집하는 극미분 포집단계;An extremely fine powder collecting step of collecting scattered fine fine powder that is not collected in the crushing step among the fine powder;포집된 상기 미분 및 극미분을 포함하는 미분광을 가스로 기송(氣送)하면서 소성에 의해 상전이시키는 소성단계; A sintering step of transferring the pulverized powder including the collected fine and ultrafine powders into a gas and phase-transfering them by firing;상전이된 상기 미분광을 황산으로 배소하여 고체상의 황산리튬을 획득하는 배소단계; 및A roasting step of roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And상기 고체상의 황산리튬을 물로 침출하여 황산리튬 용액을 획득하는 침출단계를 포함하며,A leaching step of leaching the solid lithium sulfate with water to obtain a lithium sulfate solution,상기 가스는 상기 미분광의 흐름과 역방향으로 흐르는, 황산리튬용액을 제조하는 방법.The gas is a method for producing a lithium sulfate solution, flowing in the reverse direction of the flow of the spectral.
- 제1항에 있어서, 상기 파쇄단계는 입도 0.5mm를 초과하는 미분을 재순환하여 파쇄하는, 황산리튬용액을 제조하는 방법.The method of claim 1, wherein the crushing step pulverizes by recycling the fine powder having a particle size of more than 0.5 mm.
- 제1항에 있어서, 상기 리튬함유 광석은 스포듀민(spodumene), 페탈라이트(petalite) 및 레피돌라이트(lepidolite)로 이루어진 군으로부터 선택되는 적어도 하나의 형태인, 황산리튬용액을 제조하는 방법.The method of claim 1, wherein the lithium-containing ore is at least one form selected from the group consisting of spodumene, petalite and lepidolite.
- 제1항에 있어서, 상기 소성단계에서 상기 미분광을 상전이시킨 가스는 상기 파쇄단계로 유입되는, 황산리튬용액을 제조하는 방법.The method of claim 1, wherein the gas that has undergone phase change of the pulverization in the firing step flows into the crushing step.
- 제1항에 있어서, 상기 가스는 1000 내지 1300℃의 온도인, 황산리튬용액을 제조하는 방법.The method of claim 1, wherein the gas is a temperature of 1000 to 1300°C.
- 제1항에 있어서, 상기 소성단계는 제1 분급단계 내지 제3 분급단계를 포함하고, 각 분급단계에서 미분광의 흐름과 가스의 흐름은 역방향이며, The method of claim 1, wherein the firing step includes a first classification step to a third classification step, and in each classifying step, the flow of pulverized gas and the flow of gas are reversed.상기 미분광을 제2 분급단계에서 배출된 가스로 기송하여 수행되는 제1 분급단계; 상기 제1 분급단계에서 회수된 미분광을 제3 분급단계에서 배출된 가스로 기송하여 수행되는 제2 분급단계; 상기 제2 분급단계에서 회수된 미분광을 가스 공급원에서 배출된 가스로 기송하여 수행되는 제3 분급단계를 포함하여 수행되는, 황산리튬용액을 제조하는 방법. A first classification step performed by sending the unspectralized light to the gas discharged in the second classification step; A second classification step performed by sending the undiluted light recovered in the first classification step to the gas discharged in the third classification step; A method for producing a lithium sulfate solution, which is carried out, including a third classification step performed by sending the undivided spectral collected in the second classification step to a gas discharged from a gas source.
- 제1항에 있어서, 상기 배소단계는 200 내지 250℃의 황산에 의해 수행되는, 황산리튬용액을 제조하는 방법. The method of claim 1, wherein the roasting step is performed by sulfuric acid at 200 to 250°C.
- 리튬함유 광석을 파쇄하여 미분을 획득하기 위한 파쇄장치를 포함하는 파쇄로; A crushing furnace including a crushing device for pulverizing lithium-containing ore to obtain fine powder;파쇄로에서 비산된 극미분을 포집하는 백필터(Bag filter); Bag filter for collecting the fine powder scattered in the crushing furnace (Bag filter);가스가 상기 미분 및 극미분을 포함하는 미분광이 투입되어 흐르는 방향에 반대로 흐르면서 상기 미분광을 상전이시키기 위한 기송(氣送)소성로; A gas-fired kiln for phase-shifting the pulverized gas as the gas flows in the opposite direction to the direction in which the pulverized powder including the fine powder and the ultra-fine powder is introduced;상기 기송(氣送)소성로에 가스를 공급하는 가스 공급원;A gas supply source supplying gas to the kisong kiln;상전이된 상기 미분광을 황산으로 배소하여 고체상의 황산리튬을 획득하기 위한 배소로; 및A roasting furnace for roasting the phase shifted spectroscopy with sulfuric acid to obtain solid lithium sulfate; And상기 고체상의 황산리튬을 물로 침출하여 황산리튬 용액을 획득하기 위한 침출조를 포함하는, 황산리튬용액 제조 장치.And a leaching tank for leaching the solid lithium sulfate with water to obtain a lithium sulfate solution.
- 제8항에 있어서, 상기 파쇄로는 입도 0.5mm를 초과하는 미분광을 다시 파쇄장치로 공급하는 재순환관을 포함하는, 황산리튬용액 제조 장치.The apparatus for manufacturing a lithium sulfate solution according to claim 8, wherein the crushing furnace includes a recirculation pipe for supplying fine particles having a particle size of more than 0.5 mm to the crushing device.
- 제8항에 있어서, 상기 리튬함유 광석은 스포듀민(spodumene), 페탈라이트(petalite) 및 레피돌라이트(lepidolite)로 이루어진 군으로부터 선택되는 적어도 하나의 형태인, 황산리튬용액 제조 장치.The apparatus for manufacturing a lithium sulfate solution according to claim 8, wherein the lithium-containing ore is at least one form selected from the group consisting of spodumene, petalite and lepidolite.
- 제8항에 있어서, 상기 기송소성로에서 배출된 가스를 상기 파쇄로로 주입하는 가스관을 포함하는, 황산리튬용액 제조 장치.The apparatus for manufacturing a lithium sulfate solution according to claim 8, comprising a gas pipe for injecting gas discharged from the gas-fired kiln into the crushing furnace.
- 제8항에 있어서, 상기 가스는 1000 내지 1300℃인, 황산리튬용액 제조 장치.The apparatus of claim 8, wherein the gas is 1000 to 1300°C.
- 제8항에 있어서, 상기 기송소성로는 3개의 분급기를 포함하고; 9. The method of claim 8, wherein the air-fired kiln comprises three classifiers;상기 3개의 분급기는 직렬로 연결되어 있으며, 상기 기송소성로에 투입된 상기 미분광은 제1 사이클론, 제2 사이클론 및 제3 사이클론 순으로 흐르고, 가스 공급원에서 생성된 상기 가스는 가스 공급원으로부터 제3 사이클론, 제2 사이클론 및 제1 사이클론 순으로 흐르며, 상기 제3 사이클론에서 회수된 미분광은 상기 배소로로 주입되는, 황산리튬용액 제조 장치. The three classifiers are connected in series, and the pulverized dust inputted to the air-fired kiln flows in order of a first cyclone, a second cyclone and a third cyclone, and the gas generated from the gas source is a third cyclone from the gas source, A device for producing a lithium sulfate solution, which flows in the order of the second cyclone and the first cyclone, and the pulverized dust recovered from the third cyclone is injected into the roasting furnace.
- 제12항에 있어서, 상기 기송소성로에 투입된 미분광은 제2 사이클론에서 배출된 가스로 기송하면서 상기 제1 사이클론에 주입되고, 제1 사이클론에서 분리되어 회수된 미분광은 상기 제3 사이클론에서 배출된 가스로 기송하면서 상기 제2 사이클론에 주입되고, 상기 제2 사이클론에서 분리되어 회수된 미분광은 가스 공급원에서 배출된 가스로 기송하면서 상기 제3 사이클론에 주입되는, 황산리튬용액 제조 장치.The method of claim 12, wherein the pulverized spectroscopy is injected into the first cyclone while being transported as a gas discharged from the second cyclone, and the pulverized separated and recovered from the first cyclone is discharged from the third cyclone. An apparatus for producing a lithium sulfate solution, which is injected into the second cyclone while being transported as gas, and is injected into the third cyclone while being transported as gas discharged from a gas source.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0149363 | 2018-11-28 | ||
KR1020180149363A KR102153185B1 (en) | 2018-11-28 | 2018-11-28 | Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020111598A1 true WO2020111598A1 (en) | 2020-06-04 |
Family
ID=70854097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/015518 WO2020111598A1 (en) | 2018-11-28 | 2019-11-14 | Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102153185B1 (en) |
WO (1) | WO2020111598A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102307918B1 (en) * | 2019-10-02 | 2021-09-30 | 주식회사 포스코 | Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore |
KR102441321B1 (en) * | 2020-12-18 | 2022-09-08 | 주식회사 포스코 | Briquette, method for manufacturing the same and method for extracting lithium compound using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2983576A (en) * | 1959-03-27 | 1961-05-09 | Basic Atomics Inc | Recovery of lithium from ore |
JP2002531705A (en) * | 1998-12-09 | 2002-09-24 | ポーハング アイアン アンド スティール シーオー.,エルティディ. | Fluidized bed type fine iron ore reduction apparatus and method therefor |
KR20130128213A (en) * | 2012-05-16 | 2013-11-26 | 주식회사 포스코 | Device for separating fine iron ores and method for separating the same |
KR20140019622A (en) * | 2012-08-06 | 2014-02-17 | 한국광물자원공사 | Method for manufacturing li2co3 from lepidolite |
KR101603259B1 (en) * | 2014-08-28 | 2016-03-15 | 한국전력공사 | Method and apparatus for extracting lithium from coal ashes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100321052B1 (en) * | 1998-12-09 | 2002-04-17 | 이구택 | Apparatus for classifying dust supplied to melter gasifier and method therefor |
-
2018
- 2018-11-28 KR KR1020180149363A patent/KR102153185B1/en active IP Right Grant
-
2019
- 2019-11-14 WO PCT/KR2019/015518 patent/WO2020111598A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2983576A (en) * | 1959-03-27 | 1961-05-09 | Basic Atomics Inc | Recovery of lithium from ore |
JP2002531705A (en) * | 1998-12-09 | 2002-09-24 | ポーハング アイアン アンド スティール シーオー.,エルティディ. | Fluidized bed type fine iron ore reduction apparatus and method therefor |
KR20130128213A (en) * | 2012-05-16 | 2013-11-26 | 주식회사 포스코 | Device for separating fine iron ores and method for separating the same |
KR20140019622A (en) * | 2012-08-06 | 2014-02-17 | 한국광물자원공사 | Method for manufacturing li2co3 from lepidolite |
KR101603259B1 (en) * | 2014-08-28 | 2016-03-15 | 한국전력공사 | Method and apparatus for extracting lithium from coal ashes |
Also Published As
Publication number | Publication date |
---|---|
KR20200063546A (en) | 2020-06-05 |
KR102153185B1 (en) | 2020-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104694760B (en) | It is a kind of to handle the method and system that red mud reclaims Iron concentrate | |
KR101782234B1 (en) | Processing method of electric and electronic parts scraps | |
CN102399993B (en) | Method for treating waste residue from wet method gold smelting | |
CN101122442A (en) | Iron mineral suspended magnetic baking oven system and baking process | |
CN111589563B (en) | Device and method for extracting iron from iron tailings by suspension roasting | |
CN203728902U (en) | Integrated solid waste gas ash and zinc-containing ferrovanadium slag recovery device | |
WO2020111598A1 (en) | Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore | |
CN103710551B (en) | Production method of rich-titanium material | |
CN109306407B (en) | Device and method for treating and utilizing metallurgical zinc-containing dust | |
CN110283996A (en) | A kind of smelting process of energy-saving and environment-friendly copper-contained sludge | |
KR100584732B1 (en) | Recycling method of waste material by using of coal based iron making process | |
CN113215334B (en) | Slag treatment system and method | |
CN212316202U (en) | Zinc-containing dust recovery system | |
CN113774215A (en) | Method for recovering valuable metals in high-zinc high-lead smelting slag | |
KR102176651B1 (en) | Manufacturing Methods of Sintered Ferrite Briquette for Iron Manufacture And Manufacturing Apparatus Therefor | |
KR102307918B1 (en) | Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore | |
CN107539995B (en) | A kind of method of lepidolite circulation roasting defluorinate | |
CN206607287U (en) | The system for handling paigeite | |
CN111604162B (en) | Refractory iron ore dry grinding and dry separation-suspension roasting-separation system and method | |
CN115072730A (en) | Energy-saving process for calcining coal series kaolin by double kilns | |
CN205907314U (en) | System for handle zinc leaching residue | |
CN107385204A (en) | A kind of system and method for electric arc furnaces processing red mud | |
CN114835132A (en) | High-efficiency energy-saving process for processing coal-series kaolin by dry-wet method | |
CN206607281U (en) | The system for preparing reduced iron | |
CN216063015U (en) | Powder making device for manganese dioxide reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19889495 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19889495 Country of ref document: EP Kind code of ref document: A1 |