WO2020111455A1 - 압력 센서 기반 심박 모니터링 장치 및 방법 - Google Patents

압력 센서 기반 심박 모니터링 장치 및 방법 Download PDF

Info

Publication number
WO2020111455A1
WO2020111455A1 PCT/KR2019/010885 KR2019010885W WO2020111455A1 WO 2020111455 A1 WO2020111455 A1 WO 2020111455A1 KR 2019010885 W KR2019010885 W KR 2019010885W WO 2020111455 A1 WO2020111455 A1 WO 2020111455A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart rate
monitoring device
pressure sensor
rate monitoring
signal
Prior art date
Application number
PCT/KR2019/010885
Other languages
English (en)
French (fr)
Inventor
장영종
이정철
황태호
김동순
박준식
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2020111455A1 publication Critical patent/WO2020111455A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • the present invention relates to a health care-related technology, and more particularly, to an apparatus and method for performing heart rate monitoring based on a Force Sensing Resistor (FSR) sensor.
  • FSR Force Sensing Resistor
  • the existing heart rate monitoring device measures a heart rate by measuring a reflected signal after generating a pulse signal in a wrist vessel using a pulse sensor.
  • the heart rate measurement method using a pulse sensor has an advantage of not requiring an additional amplification device or a filter device, but there is a problem in that a sensor signal cannot be measured by illumination or sunlight.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide an FSR sensor-based heart rate monitoring device and method as a method for monitoring heart rate robust to lighting and sunlight.
  • the heart rate monitoring device a pressure sensor for measuring a heart rate signal generated in blood vessels; And a monitoring device that monitors the heart rate signal measured by the pressure sensor.
  • the pressure sensor may be a Wheatstone Bridge circuit type sensor.
  • the pressure sensor may be a Force Sensing Resistor (FSR) sensor.
  • FSR Force Sensing Resistor
  • the heart rate monitoring apparatus may further include amplifying apparatus for amplifying the heart rate signal measured by the pressure sensor.
  • the heart rate monitoring apparatus may further include a low-pass filter device that passes only a low-frequency band with respect to the heartbeat signal amplified by the amplifying apparatus.
  • the heart rate monitoring apparatus may further include a high-pass filter device that removes a DC component from the heartbeat signal filtered by the low-pass filter device.
  • the monitoring device may convert and monitor the analog heart rate signal from which the DC component is removed by the high-pass filter device into a digital signal.
  • the heart rate monitoring method measuring the heart rate signal generated in the blood vessel; And monitoring the heart rate signal measured by the pressure sensor.
  • the heart rate monitoring that is robust to lighting and sunlight is possible by the heart rate monitoring based on the FSR sensor, and the measurement signal problem of the fine intensity by the FSR sensor can be solved by amplification and filtering. Can be.
  • FIG. 1 is a block diagram of a heart rate monitoring apparatus according to an embodiment of the present invention
  • FIG. 2 is a detailed circuit diagram of the FSR sensor and the amplifying device shown in FIG. 1,
  • FIG. 3 is a detailed circuit diagram of the low-pass filter device shown in FIG. 1,
  • FIG. 4 is a detailed circuit diagram of the high-pass filter device shown in FIG. 1,
  • FIG. 5 is a heart rate monitoring result by the monitoring analog / digital conversion device shown in Figure 1, and
  • FIG. 6 is a flowchart provided to explain a heart rate monitoring method according to another embodiment of the present invention.
  • FIG. 1 is a block diagram of a heart rate monitoring apparatus according to an embodiment of the present invention.
  • the heart rate monitoring apparatus according to an embodiment of the present invention performs heart rate monitoring using a Force Sensing Resistor (FSR) sensor.
  • FSR Force Sensing Resistor
  • the heart rate monitoring apparatus receives and amplifies a fine pulse signal generated from a blood vessel of a human wrist through an FSR sensor, and a frequency band signal corresponding to a human heart rate by low-pass filtering and high-pass filtering
  • the bay is extracted to monitor the heart rate (ECG, electrocardiogram).
  • Heart rate monitoring device according to an embodiment of the present invention, which performs such a function, as shown in Figure 1, FSR sensor 110, amplifying device 120, low-pass filter device 130, high-pass filter device ( 140) and a monitoring analog/digital conversion device 150.
  • the FSR sensor 110 is a type of pressure sensor attached to a user's wrist, measuring a minute pulse signal generated from blood vessels in the wrist, and outputting the measurement signal to the amplifying device 120.
  • the amplifying device 120 amplifies the measurement signal output from the FSR sensor 110 and transmits it to the low-pass filter device 130.
  • FIG. 2. 2 is a detailed circuit diagram of the FSR sensor 110 and the amplifying device 120 shown in FIG. 1.
  • the FSR sensor 110 is implemented in a Wheatstone Bridge circuit type to measure heart rate with a fine signal strength in units of several mV.
  • the reference voltage of the measured signal is set to an intermediate value of the applied voltage through an offset voltage adjustment resistor Rref.
  • the FSR sensor signal with the adjusted offset voltage is amplified and output through the instrumentation amplifier.
  • the amplification degree of the sensor signal is set to amplify 1000 to 2000 times through gain resistance (Rgain).
  • the low pass filter device 130 is a filter for passing only the low frequency band to the FSR sensor signal amplified by the amplifying device 120.
  • FIG. 3 is a detailed circuit diagram of the low-pass filter device 130 shown in FIG. 1. As shown in FIG. 3, in order to extract only the human heartbeat signal, a low-pass filter device 130 of a Sallen-Key method having a 150 Hz frequency cut-off characteristic is implemented.
  • the high pass filter device 140 is a filter for passing only the high frequency band to the heartbeat signal filtered by the low pass filter device 130. The purpose is to remove the direct current component contained in the heart rate signal.
  • FIG. 4 is a detailed circuit diagram of the high-pass filter device 140 shown in FIG. 1. As illustrated in FIG. 4, a high-pass filter device 140 of a Sallen-Key method having a 0.25 Hz frequency cut-off characteristic is implemented to remove a DC component from a heartbeat signal.
  • the monitoring analog/digital conversion device 150 converts the analog heart rate signal from which the DC component is removed from the high-pass filter device 140 into a digital signal, and monitors the converted digital signal.
  • FIG. 5 shows a heart rate monitoring result by the monitoring analog/digital conversion device 150 shown in FIG. 1.
  • the heart rate signal passes through the amplifying device 120, the heart rate signal is amplified to a size recognizable by the monitoring analog/digital conversion device 150, and the low-pass filter device 130 and the high-pass filter device 140 Only a signal of 0.25 to 150 Hz was detected while passing through.
  • FIG. 6 is a flowchart provided to explain a heart rate monitoring method according to another embodiment of the present invention.
  • the amplifying device 120 receives the signal measured in step S210. Amplify (S220).
  • the low-pass filter device 130 passes only the low-frequency band to the heartbeat signal amplified in step S220 (S230), and the high-pass filter device 140 removes the DC component from the heartbeat signal filtered in step S230 (S240). .
  • the monitoring analog/digital converter 150 converts the analog heart rate signal from which the DC component is removed into a digital signal in step S240 (S250), and monitors the converted digital signal (S260).
  • the heart rate monitoring device is an FSR sensor-based heart rate monitoring device that is not affected by lighting and sunlight, and adds an amplification device and a low/high-pass filter device for processing a fine FSR sensor signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

FSR 센서 기반 심박 모니터링 장치 및 방법이 제공된다. 본 발명의 실시예에 따른 심박 모니터링 장치는, FSR 센서 기반 심박 모니터링에 의해 조명과 태양광에 강인한 심박 모니터링이 가능해지며, FSR 센서에 의한 미세한 세기의 측정 신호 문제는 증폭과 필터링에 의해 해결할 수 있다.

Description

압력 센서 기반 심박 모니터링 장치 및 방법
본 발명은 헬스케어 관련 기술에 관한 것으로, 더욱 상세하게는 FSR(Force Sensing Resistor) 센서 기반으로 심박 모니터링을 수행하는 장치 및 방법에 관한 것이다.
기존 심박 모니터링 장치는 펄스 센서를 사용하여 손목 혈관에 펄스 신호 발생 후 반사 신호를 측정하여 심박을 측정한다.
펄스 센서를 이용한 심박 측정 방식은 추가적인 증폭 장치나 필터 장치가 없어도 되는 이점이 있으나, 조명이나 태양광에 의하여 센서 신호가 측정되지 못하는 문제점이 있다.
이에 따라, 조명이나 태양광에 영향을 받지 않고, 정확하게 심박을 측정하기 위한 방안의 모색이 요청된다. 나아가, 새로운 방안에 대한 다른 문제점이 있다 하면, 그 역시 해결하여야 한다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 조명과 태양광에 강인한 심박 모니터링을 위한 방안으로, FSR 센서 기반 심박 모니터링 장치 및 방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 심박 모니터링 장치는, 혈관에서 발생하는 심박 신호를 측정하는 압력 센서; 및 압력 센서에서 측정된 심박 신호를 모니터링하는 모니터링 장치;를 포함한다.
압력 센서는, 휘트스톤 브리지(Wheatstone Bridge) 회로 타입의 센서일 수 있다.
압력 센서는, FSR(Force Sensing Resistor) 센서일 수 있다.
본 발명의 실시예에 따른 심박 모니터링 장치는, 압력 센서에서 측정된 심박 신호를 증폭하는 증폭 장치;를 더 포함할 수 있다.
본 발명의 실시예에 따른 심박 모니터링 장치는, 증폭 장치에서 증폭된 심박 신호에 대해 저주파 대역만을 통과시키는 저역 필터 장치;를 더 포함할 수 있다.
본 발명의 실시예에 따른 심박 모니터링 장치는, 저역 필터 장치에서 필터링된 심박 신호에서 직류 성분을 제거하는 고역 필터 장치;를 더 포함할 수 있다.
본 발명의 실시예에 따른 심박 모니터링 장치는,
모니터링 장치는, 고역 필터 장치에 의해 직류 성분이 제거된 아날로그 심박 신호를 디지털 신호로 변환하고 모니터링할 수 있다.
한편, 본 발명의 다른 실시예에 따른, 심박 모니터링 방법은, 혈관에서 발생하는 심박 신호를 측정하는 단계; 및 압력 센서에서 측정된 심박 신호를 모니터링하는 단계;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, FSR 센서 기반 심박 모니터링에 의해 조명과 태양광에 강인한 심박 모니터링이 가능해지며, FSR 센서에 의한 미세한 세기의 측정 신호 문제는 증폭과 필터링에 의해 해결할 수 있다.
도 1은 본 발명의 일 실시예에 따른 심박 모니터링 장치의 블럭도,
도 2는, 도 1에 도시된 FSR 센서와 증폭 장치의 상세 회로도,
도 3은, 도 1에 도시된 저역 필터 장치의 상세 회로도,
도 4는, 도 1에 도시된 고역 필터 장치의 상세 회로도,
도 5는, 도 1에 도시된 모니터링 아날로그/디지털 변환 장치에 의한 심박 모니터링 결과, 그리고,
도 6은 본 발명의 다른 실시예에 따른 심박 모니터링 방법의 설명에 제공되는 흐름도이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 심박 모니터링 장치의 블럭도이다. 본 발명의 실시예에 따른 심박 모니터링 장치는, FSR(Force Sensing Resistor) 센서를 이용하여 심박 모니터링을 수행한다.
구체적으로, 본 발명의 실시예에 따른 심박 모니터링 장치는, 사람 손목의 혈관에서 발생하는 미세한 맥박 신호를 FSR 센서를 통해 입력받아 증폭시키고, 저역 필터링과 고역 필터링으로 사람의 심박에 해당하는 주파수 대역 신호만을 추출하여 심박(ECG, electrocardiogram)을 모니터링 한다.
이와 같은 기능을 수행하는, 본 발명의 실시예에 따른 심박 모니터링 장치는, 도 1에 도시된 바와 같이, FSR 센서(110), 증폭 장치(120), 저역 필터 장치(130), 고역 필터 장치(140) 및 모니터링 아날로그/디지털 변환 장치(150)를 포함하여 구성된다.
FSR 센서(110)는 사용자의 손목에 부착되어, 손목 내의 혈관에서 발생하는 미세한 맥박 신호를 측정하고, 측정 신호를 증폭 장치(120)에 출력하는 압력 센서의 일종이다.
증폭 장치(120)는 FSR 센서(110)에서 출력되는 측정 신호를 증폭하여, 저역 필터 장치(130)로 전달한다.
FSR 센서(110)와 증폭 장치(120)의 상세 구조를 도 2에 도시하였다. 도 2는, 도 1에 도시된 FSR 센서(110)와 증폭 장치(120)의 상세 회로도이다.
도 2에 도시된 바와 같이, FSR 센서(110)는 휘트스톤 브리지(Wheatstone Bridge) 회로 타입으로 구현되어, 수 mV 단위의 미세한 신호 세기로 심박을 측정한다.
측정된 신호의 기준 전압은 오프셋(Offset) 전압 조정 저항(Rref)을 통해 인가 전압의 중간 값으로 설정된다.
오프셋 전압이 조정된 FSR 센서 신호는 계측용 증폭기(Instrumentation Amplifier)를 통해 센서 신호가 증폭되어 출력된다. 센서 신호의 증폭 정도는 게인 저항(Rgain)을 통해 1000 ~ 2000배 증폭하도록 설정한다.
저역 필터 장치(130)는 증폭 장치(120)에서 증폭된 FSR 센서 신호에 대해 저주파 대역만을 통과시키기 위한 필터이다.
도 3은, 도 1에 도시된 저역 필터 장치(130)의 상세 회로도이다. 도 3에 도시된 바와 같이, 사람의 심박 신호만 추출하기 위하여 150Hz 주파수 컷오프(cut-off) 특성을 가지는 샐런-키(Sallen-Key) 방식의 저역 필터 장치(130)를 구현하였다.
고역 필터 장치(140)는 저역 필터 장치(130)에서 필터링된 심박 신호에 대해 고주파 대역만을 통과시키기 위한 필터이다. 심박 신호에 포함된 직류 성분을 제거하는 것이 목적이다.
도 4는, 도 1에 도시된 고역 필터 장치(140)의 상세 회로도이다. 도 4에 도시된 바와 같이, 심박 신호에서 직류 성분 제거를 위하여 0.25Hz 주파수 컷오프(cut-off) 특성을 가지는 샐런-키(Sallen-Key) 방식의 고역 필터 장치(140)를 구현하였다.
모니터링 아날로그/디지털 변환 장치(150)는 고역 필터 장치(140)에서 직류 성분이 제거된 아날로그 심박 신호를 디지털 신호로 변환하고, 변환된 디지털 신호를 모니터링한다.
도 5는, 도 1에 도시된 모니터링 아날로그/디지털 변환 장치(150)에 의한 심박 모니터링 결과를 보여준다. 미세한 FSR 센서 심박 신호가 증폭 장치(120)를 통과하면서, 심박 신호는 모니터링 아날로그/디지털 변환 장치(150)에서 인지할 수 있는 크기로 증폭되었으며, 저역 필터 장치(130) 및 고역 필터 장치(140)를 통과하면서 0.25 ~ 150Hz의 신호만이 감지되었다.
도 6은 본 발명의 다른 실시예에 따른 심박 모니터링 방법의 설명에 제공되는 흐름도이다.
도 6에 도시된 바와 같이, 심박 모니터링을 위해, 먼저 FSR 센서(110)가 사용자 손목 내의 혈관에서 발생하는 미세한 맥박 신호를 측정하면(S210), 증폭 장치(120)가 S210단계에서 측정된 신호를 증폭한다(S220).
그러면, 저역 필터 장치(130)가 S220단계에서 증폭된 심박 신호에 대해 저주파 대역만을 통과시키고(S230), 고역 필터 장치(140)는 S230단계에서 필터링된 심박 신호에서 직류 성분을 제거한다(S240).
이후, 모니터링 아날로그/디지털 변환 장치(150)가 S240단계에서 직류 성분이 제거된 아날로그 심박 신호를 디지털 신호로 변환하고(S250), 변환된 디지털 신호를 모니터링한다(S260).
지금까지, FSR 센서 기반 심박 모니터링 장치 및 방법에 대해, 바람직한 실시예들을 들어 상세히 설명하였다.
본 발명의 실시예에 따른 심박 모니터링 장치는, 조명과 태양광에 영향을 받지 않는 FSR 센서 기반의 심박 모니터링 장치로, 미세한 FSR 센서 신호 처리를 위한 증폭 장치와 저역/고역 필터 장치를 추가하였다.
이에 의해, 조명과 태양광에 영향을 받지 않는 심박 모니터링이 가능하고, 미세 신호 문제를 해결할 수 있게 된다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (8)

  1. 혈관에서 발생하는 심박 신호를 측정하는 압력 센서; 및
    압력 센서에서 측정된 심박 신호를 모니터링하는 모니터링 장치;를 포함하는 것을 특징으로 하는 심박 모니터링 장치.
  2. 청구항 1에 있어서,
    압력 센서는,
    휘트스톤 브리지(Wheatstone Bridge) 회로 타입의 센서인 것을 특징으로 하는 심박 모니터링 장치.
  3. 청구항 2에 있어서,
    압력 센서는,
    FSR(Force Sensing Resistor) 센서인 것을 특징으로 하는 심박 모니터링 장치.
  4. 청구항 1에 있어서,
    압력 센서에서 측정된 심박 신호를 증폭하는 증폭 장치;를 더 포함하는 것을 특징으로 하는 심박 모니터링 장치.
  5. 청구항 4에 있어서,
    증폭 장치에서 증폭된 심박 신호에 대해 저주파 대역만을 통과시키는 저역 필터 장치;를 더 포함하는 것을 특징으로 하는 심박 모니터링 장치.
  6. 청구항 1에 있어서,
    저역 필터 장치에서 필터링된 심박 신호에서 직류 성분을 제거하는 고역 필터 장치;를 더 포함하는 것을 특징으로 하는 심박 모니터링 장치.
  7. 청구항 6에 있어서,
    모니터링 장치는,
    고역 필터 장치에 의해 직류 성분이 제거된 아날로그 심박 신호를 디지털 신호로 변환하고 모니터링하는 것을 특징으로 하는 심박 모니터링 장치.
  8. 혈관에서 발생하는 심박 신호를 측정하는 단계; 및
    압력 센서에서 측정된 심박 신호를 모니터링하는 단계;를 포함하는 것을 특징으로 하는 심박 모니터링 방법.
PCT/KR2019/010885 2018-11-30 2019-08-27 압력 센서 기반 심박 모니터링 장치 및 방법 WO2020111455A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0152245 2018-11-30
KR1020180152245A KR20200065612A (ko) 2018-11-30 2018-11-30 Fsr 센서 기반 심박 모니터링 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2020111455A1 true WO2020111455A1 (ko) 2020-06-04

Family

ID=70852261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010885 WO2020111455A1 (ko) 2018-11-30 2019-08-27 압력 센서 기반 심박 모니터링 장치 및 방법

Country Status (2)

Country Link
KR (1) KR20200065612A (ko)
WO (1) WO2020111455A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560927B2 (ko) * 1985-04-01 1993-09-03 Nellcor Inc
KR20130137327A (ko) * 2012-06-07 2013-12-17 주식회사 라이프사이언스테크놀로지 의자를 이용한 생체정보 획득장치
KR20150066514A (ko) * 2012-07-20 2015-06-16 엔도피스 홀딩스, 엘엘시 트랜스듀서 인터페이스 시스템 및 방법
JP2017510412A (ja) * 2014-04-04 2017-04-13 セント.ジュード メディカル システムズ アーベーSt.Jude Medical Systems Ab 血管内圧力及び流量データ診断のシステム、装置、及び方法
JP2018515302A (ja) * 2015-04-15 2018-06-14 ユニヴァーシティ・オヴ・ニューカッスル・アポン・タイン 改良された血圧測定システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560927B2 (ko) * 1985-04-01 1993-09-03 Nellcor Inc
KR20130137327A (ko) * 2012-06-07 2013-12-17 주식회사 라이프사이언스테크놀로지 의자를 이용한 생체정보 획득장치
KR20150066514A (ko) * 2012-07-20 2015-06-16 엔도피스 홀딩스, 엘엘시 트랜스듀서 인터페이스 시스템 및 방법
JP2017510412A (ja) * 2014-04-04 2017-04-13 セント.ジュード メディカル システムズ アーベーSt.Jude Medical Systems Ab 血管内圧力及び流量データ診断のシステム、装置、及び方法
JP2018515302A (ja) * 2015-04-15 2018-06-14 ユニヴァーシティ・オヴ・ニューカッスル・アポン・タイン 改良された血圧測定システム

Also Published As

Publication number Publication date
KR20200065612A (ko) 2020-06-09

Similar Documents

Publication Publication Date Title
EP2921107B1 (en) Parallel signal processor with amplifiers and with converters and a method for its operation
TWI481196B (zh) 生物電信號感測儀器與其基線漂移移除裝置
US5782758A (en) Method and apparatus for identifying the presence of noise in a time division multiplexed oximeter
CA2260928C (en) Direct to digital oximeter
CN103596492A (zh) 耳戴式生命体征监视器
JP2009537099A (ja) ソフトウェア制御されたac応答を有する単一多重化増幅器チャネルを使用して複数の信号を増幅する方法及び装置
CN103099615A (zh) 一种消除运动心电信号干扰的方法和装置
CN110840454B (zh) 一种脑电信号采集装置和方法
CN110772232B (zh) 一种电极脱落检测电路及检测方法
WO2015000312A1 (zh) 自动体外除颤仪及其前端测量系统和测量方法
WO2020111455A1 (ko) 압력 센서 기반 심박 모니터링 장치 및 방법
CN105496421A (zh) 基于脉搏血氧饱和度检测的去除环境光噪声的光电接受电路
WO2013172569A1 (ko) 동잡음 측정 및 제거 기능을 포함하는 심장 제세동기
CN204744156U (zh) 基于无线生物医学传感的监护装置
JP4964202B2 (ja) ペースメーカパルス検出のための方法及びシステム
WO2012057406A1 (ko) 장음 분석을 통한 비침습적인 장 운동성 측정 장치 및 방법
CN103977503B (zh) 一种低成本的pace波检测装置及方法
WO2018070615A1 (ko) 생체신호 보정장치 및 방법
CN109567781B (zh) 心肺复苏过程中自动检测脉搏的装置及其检测方法
US20200093391A1 (en) Pulse discrimination device and electrocardiogram analyzer
CN201500129U (zh) 带有肌电检测功能的心理测试仪
KR101211065B1 (ko) 브레인 컴퓨터 인터페이스를 이용한 무선 제어시스템
KR101066926B1 (ko) 단일 증폭기 모듈을 이용한 산소포화도 측정 장치
KR20020078327A (ko) 생체신호 무선전달장치
CN109303555A (zh) 一种基于脉搏信号的电子血压测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890913

Country of ref document: EP

Kind code of ref document: A1