WO2020111324A1 - 차량간 통신 기반 장애물 검증 시스템 및 방법 - Google Patents

차량간 통신 기반 장애물 검증 시스템 및 방법 Download PDF

Info

Publication number
WO2020111324A1
WO2020111324A1 PCT/KR2018/014935 KR2018014935W WO2020111324A1 WO 2020111324 A1 WO2020111324 A1 WO 2020111324A1 KR 2018014935 W KR2018014935 W KR 2018014935W WO 2020111324 A1 WO2020111324 A1 WO 2020111324A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
information
module
obstacle information
Prior art date
Application number
PCT/KR2018/014935
Other languages
English (en)
French (fr)
Inventor
이명경
Original Assignee
주식회사 알티스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알티스트 filed Critical 주식회사 알티스트
Publication of WO2020111324A1 publication Critical patent/WO2020111324A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0809Driver authorisation; Driver identical check
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0057Frequency analysis, spectral techniques or transforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles

Definitions

  • the present invention is in accordance with the results of the development of a highly reliable and adaptive battlefield SW platform technology for intelligent vehicle service in the information and communication research and development business of the Ministry of Science and ICT, and relates to an obstacle verification system and method based on communication between vehicles. More specifically, the present invention relates to a vehicle-based communication system-based obstacle verification system and method capable of ensuring reliability of obstacle information by cross-validating obstacle information collected based on vehicle-to-vehicle communication.
  • ADAS Advanced Driver Assistance System
  • a vehicle is often equipped with a camera and various sensors for distance measurement.
  • it is possible to prevent collisions between vehicles by sharing each other's locations through vehicle-to-vehicle communication, or to compensate for blind spots by sharing obstacle information detected by vehicles.
  • the present invention is to provide a vehicle-to-vehicle communication-based obstacle verification system and method capable of ensuring reliability of obstacle information by cross-verifying obstacle information collected based on vehicle-to-vehicle communication.
  • An obstacle verification system based on inter-vehicle communication includes a sensor module for collecting information around a vehicle; An obstacle detection module that detects a first obstacle from information around the vehicle collected by the sensor module; A communication module that generates first obstacle information related to the first obstacle and transmits it to the surrounding vehicle, and receives second obstacle information related to the second obstacle detected by the surrounding vehicle; A security module for verifying sender information included in the second obstacle information based on a public key; A cross-validation module that performs cross-verification of obstacles based on the first obstacle information and the second obstacle information; And a vehicle control module that controls the vehicle based on obstacle information verified by the cross-validation module.
  • the sender information may include a vehicle unique ID and authentication information generated by a secret key previously generated and registered in the central server.
  • the security module requests authentication to the central server for verification of the sender information of the second obstacle information; If authentication is successful from the central server, the authentication information is cached for a set period; After the set period has elapsed, re-authentication of the sender information may be requested to the central server.
  • the vehicle control module controls the vehicle by reflecting the second obstacle information with a first reliability when authentication of the sender information is successful by the security module; When the authentication of the sender information fails by the security module, the vehicle is reflected by the second obstacle information with a second reliability lower than the first reliability only when the second obstacle is located in the blind spot of the vehicle. Can be controlled.
  • the cross-verification module may transmit the second obstacle information to the second obstacle by the vehicle.
  • the second obstacle information may be verified by comparing with the first obstacle information detected with respect to.
  • the cross-validation module replaces the second obstacle information with third obstacle information received from other surrounding vehicles.
  • the second obstacle information can be verified by comparison.
  • the cross-validation module may include: a peripheral vehicle obstacle detection unit selecting an obstacle corresponding to the surrounding vehicle from among the first obstacle information; An obstacle information converting unit converting location information of the second obstacle based on the surrounding vehicle into location information based on the vehicle using the location information of the surrounding vehicle based on the vehicle; An obstacle comparison unit comparing the first obstacle detected from the first obstacle information and the second obstacle detected from the second obstacle information; A blind spot determining unit determining whether the second obstacle is located in a blind spot of the vehicle; And an obstacle information verification unit determining reliability of the second obstacle information according to a comparison result of the first obstacle and the second obstacle.
  • the obstacle information verification unit if it is determined that the second obstacle is located in an area other than the blind spot of the vehicle, controls the obstacle detection module to detect the second obstacle;
  • the vehicle control module may control the vehicle according to obstacle information detected by the obstacle detection module.
  • the cross-validation module may determine whether the vehicle and the surrounding vehicle detect the same obstacle by comparing the first obstacle information and the second obstacle information. When it is determined that the vehicle and the surrounding vehicle have detected the same obstacle, the vehicle control module may control the vehicle in consideration of the detected obstacle.
  • collecting information related to the obstacle around the vehicle from the sensor module Detecting an obstacle from information collected from the sensor module by an obstacle detection module; Generating, by the communication module, first obstacle information related to the first obstacle to transmit to the surrounding vehicle; Receiving, by the communication module, second obstacle information regarding a second obstacle detected by a surrounding vehicle; Verifying, by a security module, sender information included in the second obstacle information based on a public key; Cross-verifying the obstacle based on the first obstacle information and the second obstacle information by a cross-validation module; And controlling the vehicle based on the cross-verified obstacle information by a vehicle control module.
  • the verifying may include: the security module requesting authentication from the central server for verification of the sender information; If the security module successfully authenticates from the central server, caching the authentication information for a set period; And requesting re-authentication of the sender information to the central server after the setting period has elapsed.
  • the controlling of the vehicle may include controlling the vehicle by reflecting the second obstacle information with a first reliability when authentication of the sender information is successful by the security module; And if authentication of the sender information fails by the security module, the second obstacle information is reflected to a second reliability lower than the first reliability only when the second obstacle is located in a blind spot of the vehicle. And controlling the vehicle.
  • the cross-verifying step when the authentication of the sender information fails by the security module and the second obstacle is located in an area other than the blind spot of the vehicle, the second obstacle information is transmitted by the vehicle to the second obstacle. Verifying the second obstacle information by comparing the first obstacle information detected with respect to 2 obstacles; And when the authentication of the sender information is failed by the security module and the second obstacle is located in a blind spot of the vehicle, the second obstacle information is compared with the third obstacle information received from other surrounding vehicles. 2 may include verifying the obstacle.
  • the cross-verifying may include selecting an obstacle corresponding to the surrounding vehicle from among the first obstacle information; Converting location information of the second obstacle based on the surrounding vehicle into location information based on the vehicle using the location information of the surrounding vehicle based on the vehicle; Comparing the first obstacle detected from the first obstacle information and the second obstacle detected from the second obstacle information; Determining whether the second obstacle is located in a blind spot of the vehicle; And when the second obstacle is not located in the blind spot, controlling to detect the second obstacle.
  • a computer-readable recording medium in which a program for executing the inter-vehicle communication-based obstacle verification method is recorded.
  • an inter-vehicle communication-based obstacle verification system and method are provided that can guarantee reliability of obstacle information by cross-verifying obstacle information collected based on inter-vehicle communication.
  • FIG. 1 is a configuration diagram of an obstacle verification system based on inter-vehicle communication according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for verifying an obstacle based on inter-vehicle communication according to an embodiment of the present invention.
  • FIG. 3 is a detailed flowchart of step S40 shown in FIG. 2.
  • FIG. 4 is a configuration diagram of a cross-validation module configuring an inter-vehicle communication-based obstacle verification system according to an embodiment of the present invention.
  • step S50 shown in FIG. 4.
  • 6 to 7 are views for explaining steps S51 and S52 shown in FIG. 5.
  • FIG. 8 is a view for explaining an operation of a method for verifying an obstacle based on communication between vehicles according to another embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a process of verifying obstacle information according to an obstacle detection method based on inter-vehicle communication according to an embodiment of the present invention.
  • FIG. 10 is an exemplary view for explaining steps S74 and S75 shown in FIG. 9.
  • FIG. 11 is an exemplary view for explaining steps S76 and S77 shown in FIG. 9.
  • 12 and 13 are exemplary views for explaining a method for detecting obstacles based on inter-vehicle communication according to another embodiment of the present invention.
  • the vehicle-to-vehicle communication-based obstacle verification system 100 is mounted to a vehicle to operate a reliable driving assistance system (ADAS); It includes a sensor module 110, an obstacle detection module 120, a communication module 130, a security module 140, a cross verification module 150 and a vehicle control module 160.
  • ADAS reliable driving assistance system
  • the sensor module 110 is for collecting information related to obstacles around the vehicle, and may include one or a plurality of sensors capable of collecting vehicle surrounding information.
  • the sensor module 110 may be provided as, for example, a front/rear camera, a laser distance sensor, a LIDAR, or a radar, but is not limited thereto and can collect information around the vehicle. Can be used without any limitation.
  • the obstacle detection module 120 detects an obstacle from the information collected by the sensor module 110 (S10).
  • the obstacle detection module 120 includes obstacles located in the vicinity of the vehicle, for example, surrounding vehicles located in the front/rear or side of the vehicle (driving vehicle, main/stop vehicle, accident vehicle, etc.), people, wildlife, It may include objects or animals on the road that may interfere with the driving of the vehicle, such as falling cargo, falling rocks, fallen trees, sinkholes, tripods, and the like.
  • the obstacle detection module 120 may detect an obstacle, for example, through object recognition through image processing.
  • the obstacle detection module 120 may detect the location (direction, angle), distance, shape (shape) and size of the obstacle, and movement state (speed).
  • the method of detecting an obstacle in the obstacle detection module 120 is well known in the art to which the present invention pertains, so a detailed description of the obstacle detection method will be omitted so as not to obscure the subject matter of the present invention.
  • first obstacle information' information obtained by detecting a peripheral obstacle (first obstacle) in a vehicle
  • second obstacle information' information obtained by detecting a peripheral obstacle (second obstacle) in a vehicle surrounding the vehicle
  • first peripheral vehicle information obtained by detecting a peripheral obstacle (second obstacle) in a vehicle surrounding the vehicle
  • first peripheral vehicle information obtained by detecting a peripheral obstacle (second obstacle) in a vehicle surrounding the vehicle
  • first peripheral vehicle information obtained by detecting a peripheral obstacle (second obstacle) in a vehicle surrounding the vehicle
  • second surrounding vehicle information obtained by detecting a surrounding obstacle (third obstacle) from another surrounding vehicle
  • third obstacle information' information obtained by detecting a surrounding obstacle (third obstacle) from another surrounding vehicle.
  • the first to third obstacles may include some of the same obstacles, or different obstacles.
  • the communication module 130 is provided for inter-vehicle communication, and transmits the first obstacle information OB1 detected in relation to the first obstacle in the vehicle so that it can be used by surrounding vehicles (S20). In addition, the communication module 130 receives the second obstacle information OB2 detected and transmitted in relation to the second obstacle by the surrounding vehicle (S30).
  • the obstacle information OB1 and OB2 may include angle information and distance information of the obstacle, movement state information and shape information of the obstacle, and the like.
  • the first obstacle information OB1 transmitted to the surrounding vehicle through the communication module 130 may include information about the first obstacle detected by the vehicle and the vehicle's sender information.
  • the second obstacle information OB2 transmitted from the surrounding vehicle to the vehicle may include information about the second obstacle and sender information of the surrounding vehicle.
  • the sender information included in the second obstacle information OB2 may include identification information of surrounding vehicles that have transmitted the second obstacle information OB2.
  • the sender information of the second obstacle information OB2 may include a vehicle unique ID and authentication information generated by a secret key previously generated and registered in the central server 200.
  • the communication module 130 may transmit/receive information between vehicles through wireless communication such as a wireless LAN, Wi-Fi, and Bluetooth, but is not limited to such a wireless communication method.
  • the second obstacle information OB2 received by the communication module 130 is transmitted to the security module 140 for reliability verification.
  • the security module 140 may verify the sender information included in the second obstacle information OB2 based on the public key in order to confirm the reliability of data included in the second obstacle information OB2 (S40 ).
  • FIG. 3 is a detailed flowchart of step S40 shown in FIG. 2. 1 to 3, when the second obstacle information OB2 is received from the surrounding vehicle, the security module 140 may request authentication from the central server 200 for verification of the sender information (S41). . If authentication fails from the central server 200, the security module 140 determines that the second obstacle information OB2 is unauthenticated obstacle information, and notifies the cross verification module 150 (S42, S43). Subsequently, the second obstacle information OB2 is cross-verified by the cross-validation module 150 and compared with the obstacle information collected from the first obstacle information OB1 or other surrounding vehicles, and the reliability is cross-verified. Whether or not the second obstacle information OB2 is used for vehicle control is determined according to whether the obstacle is located in a blind spot of the vehicle.
  • the security module 140 may cache authentication information for a set period (S42, S44).
  • the security module 140 does not need to request authentication from the central server 200 each time the second obstacle information OB2 is received from the surrounding vehicle, and if the first authentication is successful, the second obstacle information OB2 without authentication for a set period Reliability can be verified by checking only the sender information of (S45). Therefore, it is possible to reduce the calculation time for processing the second obstacle information OB2 continuously received from the surrounding vehicle.
  • the security module 140 may request the central server 200 to re-authenticate the sender information (S46). If the re-authentication is successful by the central server 200, the security module 140 may maintain (extend) the caching status of the existing authentication information for a set period or update the new authentication information to cache.
  • the cross verification module 150 cross-verifies the obstacles based on the first obstacle information OB1 detected by the vehicle and the second obstacle information OB2 detected by the surrounding vehicle. It can be performed (S50).
  • The'cross-validation' of the obstacle is based on the authentication result of the security module 140 and the first obstacle information OB1 detected in the vehicle and/or obstacle information (third obstacle information) detected by another nearby vehicle. 2 It may mean that the reliability of the obstacle information OB2 is finally verified.
  • the cross-verification module 150 may give high reliability (first reliability) to the second obstacle information OB2.
  • the second obstacle information OB2 may be reflected in vehicle control with high reliability (first reliability).
  • the second obstacle information OB2 when the sender information of the second obstacle information OB2 fails to authenticate, the second obstacle information OB2 is not reflected in the vehicle control or is determined to be an obstacle located in a blind spot difficult to be detected by the vehicle As long as the authentication of the second obstacle information is successful, it may be reflected in the vehicle control with a second reliability lower than the reliability.
  • the reliability of the second obstacle information OB2 may have various effects on vehicle control. For example, when the reliability of the second obstacle information OB2 is high, in order to prevent collision with the second obstacle recognized from the second obstacle information OB2, decelerate the vehicle or take active vehicle control such as lane change Can be.
  • the second obstacle information OB2 when the second obstacle information OB2 is reflected with low reliability, the second obstacle information recognized from the second obstacle information OB2 is notified to the driver of the vehicle by a warning sound or the like, and induction of deceleration or lane change is induced. You can only take passive measures such as (guide). In addition, obstacles of low reliability are not used to control the vehicle immediately, but can be utilized for vehicle control after being verified by comparing with obstacle information received from another vehicle.
  • the cross-validation module 150 does not determine the reliability of the second obstacle information OB2 by reflecting only the authentication result of the security module 140, and the obstacle information of the vehicle or other surrounding vehicles Through the comparison result, the reliability of the second obstacle information OB2 can be verified.
  • the second obstacle information OB2 when the second obstacle (obstacle not located in the blind spot of the vehicle) included in the second obstacle information OB2 is subsequently detected in the first obstacle information OB1, the second obstacle information OB2 Even if the authentication has failed, the second obstacle information OB2 continuously transmitted from the surrounding vehicles can be reflected in the vehicle control with low reliability.
  • a vehicle In general, a vehicle often travels at a similar speed while maintaining a certain distance from surrounding vehicles, and continuously provides information between vehicles for a long time from minutes to minutes, e.g., highway driving, etc. They also drive while receiving.
  • the cross-validation module 150 hacks the surrounding vehicle. Accordingly, it is determined that there is a low possibility that the false information has been maliciously transmitted to the vehicle control with low reliability even if the sender information of the surrounding vehicle is not authenticated.
  • the cross verification module 150 determines whether the second obstacle determined from the second obstacle information OB2 is located in the blind spot of the vehicle, and determines whether the second obstacle information OB2 is reflected according to the determination result. Can decide. That is, when it is determined that the second obstacle is not located in the blind spot, the vehicle may detect the second obstacle, so the cross-validation module 150 does not control the vehicle according to the second obstacle information OB2 Then, the obstacle detection module 120 detects the second obstacle to generate the first obstacle information OB1, and controls the vehicle according to the first obstacle information OB1 generated about the second obstacle by the vehicle. The vehicle control module 160 can be notified. If it is determined that the second obstacle is located in a blind spot, the second obstacle cannot be detected in the vehicle, so the cross-validation module 150 controls the vehicle by reflecting the second obstacle information OB2 with low reliability. The vehicle control module 160 can be notified.
  • the result of comparing obstacle information between the vehicle and the surrounding vehicle and whether the obstacle detected by the surrounding vehicle is located in the blind spot of the vehicle Based on this, the reliability of the second obstacle information (OB2) detected and provided by the surrounding vehicle is appropriately determined according to the situation, effectively preventing a malicious attack such as hacking of the surrounding vehicle and effectively preventing a blind spot due to communication between vehicles.
  • OB2 second obstacle information
  • the reliability of the second obstacle information OB2 may be determined only by comparison with the first obstacle information OB1 detected by the vehicle, or may be determined through comparison with third obstacle information received from another nearby vehicle. For example, if it is determined that information about the same obstacle is continuously received from two or more surrounding vehicles, the cross-validation module 150 determines that all of the surrounding vehicles provide normal obstacle information, and the obstacle is determined with a predetermined level of reliability. Information can be considered for vehicle control.
  • the cross verification module 150 gives the highest first reliability when the authentication of the security module 140 is successful with respect to the second obstacle information OB2, and has the same reliability as the first obstacle information OB1 detected in the vehicle. It can be reflected in vehicle control. Even if the authentication of the security module 140 fails with respect to the second obstacle information OB2, the cross-verification module 150 provides the second obstacle information OB2 when it is verified through comparison with the first obstacle information OB1. 2 It can be reflected in vehicle control with reliability, and when verified through comparison with obstacle information received from other surrounding vehicles, the second obstacle information (OB2) is reflected in vehicle control with a third reliability lower than the second reliability. can do.
  • the vehicle control module 160 controls the vehicle based on obstacle information verified by the cross-validation module 150 (S60).
  • The'verified' obstacle information is not limited to the obstacle information authenticated by the security module 140, and may include obstacle information that is successfully verified through comparison of obstacle information between vehicles.
  • the vehicle control module 160 may control the vehicle by reflecting the second obstacle information with high reliability (first reliability). If the authentication of the sender information by the security module 140 fails, the vehicle control module 160 may control the second obstacle information lower than the first reliability only when it is determined that the second obstacle is located in a blind spot of the vehicle. 2
  • the vehicle can be controlled by reflecting it with reliability.
  • FIG. 4 is a configuration diagram of a cross-validation module configuring an inter-vehicle communication-based obstacle verification system according to an embodiment of the present invention.
  • 5 is a detailed flowchart of step S50 shown in FIG. 4.
  • 6 to 7 are exemplary views for explaining steps S51 and S52 shown in FIG. 5.
  • the cross-validation module 150 includes a peripheral vehicle obstacle detection unit 151, an obstacle information conversion unit 152, an obstacle comparison unit 153, a blind spot determination unit 154, and Obstacle information verification unit 155 may be included.
  • the peripheral vehicle obstacle detection unit 151 selects an obstacle corresponding to the peripheral vehicle 20 from the first obstacle information OB1 detected by the vehicle obstacle detection module 120 (S51 ). Since the surrounding vehicle 20 corresponds to one of the obstacles of the vehicle 10, the first obstacle information OB1 includes angle information ⁇ 1 and distance information of the surrounding vehicle 20 based on the vehicle 10 ( R1) may be included. The second obstacle information OB2 may include angle information ⁇ 2 and distance information R2 of the second obstacle 30 based on the surrounding vehicle 20.
  • the second obstacle 30 is located in the blind spot BA of the vehicle 10. That is, the second obstacle 30 is not detectable in the vehicle 40 because the field of view of the vehicle 10 is blocked by the vehicle 40 being stopped. In this case, the vehicle 10 can know the existence of the second obstacle 30 from the second obstacle information OB2 provided from the surrounding vehicle 20.
  • the obstacle information conversion unit 152 uses the location information ⁇ 1 and R1 of the surrounding vehicle 20 included in the first obstacle information OB1, and the second obstacle information OB2. Middle, the position information (angle information and distance information) of the second obstacle 30 based on the surrounding vehicle 20 is converted into angle information ⁇ 3 and distance information R3 based on the vehicle 10. It can be (S52).
  • the obstacle comparison unit 153 includes the first obstacle (obstacle detected by the vehicle obstacle detection module) included in the first obstacle information OB1 and the second obstacle converted into a common coordinate system based on the vehicle 10. By comparing, it may be determined whether the vehicle 10 and the surrounding vehicle 20 detect the same obstacle. That is, it is determined whether the second obstacle 30 identified from the second obstacle information OB2 is a new obstacle different from the first obstacle detected by the vehicle 10 (S53, S54). If it is determined that the vehicle and the surrounding vehicle have detected the same obstacle, the vehicle control module 160 may control the vehicle in consideration of the detected obstacle (S61 ).
  • the blind spot determination unit 154 may determine whether the second obstacle 30 is located in the blind spot BA of the vehicle 10 (S55).
  • the obstacle information verification unit 155 is configured to display the vehicle 10 ), the obstacle detection module 120 is controlled to detect the second obstacle (S56 ), and the second obstacle information OB2 may not be reflected in the control of the vehicle (S61 ).
  • the obstacle information is verified
  • the unit 155 may control the vehicle by reflecting the second obstacle information OB2 with low reliability along with the first obstacle information OB1 (S62).
  • the obstacle information verification unit 155 compares the second obstacle information OB2 with the first obstacle information OB1 or the third obstacle information received from another nearby vehicle, and then verifies the second obstacle 30, It can also be reflected in vehicle control.
  • FIG. 8 is a view for explaining an operation of a method for verifying an obstacle based on communication between vehicles according to another embodiment of the present invention.
  • a blind spot BA is formed by the vehicle 40 that is being parked/stopped, but the blind spot BA of the vehicle 10 is a sensor of the vehicle 10 as shown in FIG. It may be caused by the viewing angle (SA) limitation of the module.
  • the sensor module of the vehicle 10 is composed of a front camera and a rear camera, and due to a viewing angle (SA) limitation of the front/rear cameras, it is installed on both side mirrors of the vehicle 10 This also causes blind spots (BA), which are difficult to confirm.
  • the cross-validation module 150 determines whether the second obstacle information OB2 is the information authenticated by the security module 140 and, if the authenticated information, reflects it to the vehicle control Obstacle information OB2 is provided to the vehicle control module 160 (S71, S72). If the second obstacle information OB2 is information that is not authenticated by the security module 140, the cross-validation module 150 determines whether the second obstacle recognized by the second obstacle information OB2 is located in a blind spot of the vehicle. It is judged (S73).
  • the cross verification module 150 may control the obstacle detection module 120 to collect obstacle information about the second obstacle 30.
  • the cross-validation module 150 selects the second obstacle 30 among the obstacles detected by the obstacle detection module 120 and positions (direction angle) of the second obstacle 30 detected by the vehicle 10. And distance), shape (shape), size, and the like, by comparing the position, shape, size, etc. of the second obstacle 30 detected from the second obstacle information OB2, the reliability of the second obstacle information OB2 It can be evaluated as high, and the second obstacle information OB2 received later can be reflected in the vehicle control.
  • the cross verification module 150 Since the second obstacle information OB2 may be falsely generated information, the reliability of the second obstacle information OB2 can be evaluated low, and the second obstacle information OB2 received thereafter is reflected in the vehicle control. You may not.
  • the second obstacle 30 corresponds to an obstacle located in a blind spot that is hidden by the surrounding vehicles 20 and 22 and cannot be detected by the vehicle 10.
  • the reliability of the second obstacle information OB2 and the third obstacle information OB3 can be evaluated by comparing the second obstacle information OB2 with the third obstacle information OB3 received from the other surrounding vehicles 22. .
  • the reliability of the second and third obstacle information OB2 and OB3 can be highly evaluated, and the reliability of the second and third obstacle information OB2 and OB3 transmitted from neighboring vehicles 20 and 22 afterwards can be evaluated.
  • the vehicle 10 can be controlled by reflecting it highly.
  • the reliability of other obstacle information providing the same obstacle information included in the obstacle information for which authentication is successful can also be highly evaluated. .
  • FIGS. 12 and 13 are exemplary views for explaining a method for detecting obstacles based on inter-vehicle communication according to another embodiment of the present invention.
  • the second obstacle 30 corresponds to a malfunctioning vehicle (or an accident vehicle) stopped in front of the surrounding vehicle 20.
  • the vehicle 10 according to the first obstacle information OB1 detected by the vehicle 10 according to whether the second obstacle 30 is located in the blind spot BA It may be determined whether to control the vehicle 10 or to control the vehicle 10 according to the second obstacle information OB2 received from the surrounding vehicle 20.
  • the blind spot BA of the vehicle 10 is a safety distance (braking distance) SL that is determined according to the driving speed of the vehicle 10, the road surface condition and the weather environment (rainy weather, snow), and the like.
  • the second obstacle 30 in the vehicle 10 may be determined according to the delay time DL, which is determined according to the delay time and the driving speed of the vehicle 10. That is, the blind spot BA of the vehicle 10 does not include all areas (distances) detectable by the sensor module of the vehicle 10 in front of the surrounding vehicle 20, and from the location of the surrounding vehicle 20, It may be limited to an area from the vehicle 10 to the total distance TL, which is the sum of the safety distance SL and the delay distance DL.
  • the surrounding vehicle 20 may prevent collision by changing the lane from the second lane to the first lane after discovering the second obstacle 30 corresponding to the failed vehicle.
  • the vehicle 10 driving from the rear of the vehicle 20 is secondary due to another nearby vehicle 40 traveling from the side even if the surrounding vehicle 20 finds the second obstacle 30 after completing the lane change. It is difficult to avoid the collision with the second obstacle 30 through the change of the lane, and there is no choice but to prevent the collision by applying the brake.
  • the second obstacle 30 is covered by the surrounding vehicle 20 and cannot be detected by the vehicle 10, but the cross-validation module 150 is the surrounding vehicle in the case of FIG. 12 It is determined that the second obstacle 30 is not located in the blind spot BA by determining that the vehicle 10 can control the deceleration by detecting the second obstacle 30 after the lane 20 is changed. In the case of FIG. 13, the second obstacle 30 is located in the blind spot BA because the vehicle 10 may collide with the second obstacle 30 even if the vehicle 10 detects and controls the second obstacle 30. You can judge that.
  • the second obstacle 30 when the second obstacle 30 is located in front of the total distance TL, which is the sum of the safety distance SL and the delay distance DL from the vehicle 10, the second obstacle Even if the vehicle 10 travels by the delay distance DL while the information 10 is transmitted from the surrounding vehicle 20 to the vehicle 10 and the vehicle 10 detects the second obstacle 30, the vehicle 10 ) And the second obstacle 30 may secure a safe distance SL. Therefore, after the vehicle 10 directly detects the second obstacle 30 through the sensor module, the vehicle 10 is provided because the vehicle 10 is provided with a brake to secure a safety distance SL greater than the braking distance required to stop. Even if the vehicle 10 is controlled according to the detected first obstacle information OB1, collision between the vehicle 10 and the second obstacle 30 can be prevented.
  • the cross-validation module 150 recognizes the second obstacle 30 from the second obstacle information OB2 sent by the surrounding vehicle 20 and then communicates with the second obstacle 30.
  • the vehicle control module 160 may be notified to perform vehicle control such as deceleration in advance.
  • the vehicle 10 can be reliably and safely controlled by appropriately setting the blind spot BA in front of the surrounding vehicle 20 according to the driving situation of the vehicle 10,
  • the vehicle can be controlled according to the first obstacle information OB1 as much as possible to implement a more reliable driving assistance system.
  • the wireless communication network used for authentication of the sender information of obstacle information of surrounding vehicles may become unstable when the vehicle is traveling at high speed.
  • the obstacle information that is not authenticated due to network problems is authenticated by the security module and the central server. It is not used basically because it is processed in the same way as the obstacle information that failed, but it can be accepted with low reliability only for obstacles in the blind spot.
  • ADAS Advanced Driver Assistance System
  • the program for executing the method according to each embodiment of the present invention may include code coded in a computer language, such as C, C++, JAVA, machine language, which can be read by a processor (CPU) of a computer.
  • code may include a function code related to a function defining functions described above, and the like, and control code related to an execution procedure necessary for a processor of a computer to execute the functions described above according to a predetermined procedure.
  • Such code may include memory reference-related code as to which location (address address) of the computer's internal or external memory should be referred to additional information or media necessary for the computer's processor to perform the functions described above.
  • the code indicates that the processor of the computer is the computer's communication module (eg, wired and/or wireless communication module). )
  • the communication-related code for how to communicate with any other computer or server in the remote, and what information or media should be transmitted/received during communication.
  • the recording medium readable by a computer recording an application which is a program for executing a method according to each embodiment of the present invention, is an application providing server, such as an application store server, a web server related to an application or a corresponding service. It may be a storage medium (eg, a hard disk, etc.) included in the (Application Provider Server) or an application providing server itself.
  • a computer capable of reading a recording medium recording an application which is a program for executing a method according to each embodiment of the present invention, as well as a PC such as an in-vehicle computer, a laptop, a smart phone, a tablet PC, PDAs (Personal Digital Assistants), and It may include a mobile terminal such as a mobile communication terminal, and should be interpreted as all devices capable of computing.
  • the computer capable of reading the recording medium recording the application which is a program for executing the method according to an embodiment of the present invention
  • the application is a mobile terminal such as a smart phone, a tablet PC, PDA (Personal Digital Assistants) and a mobile communication terminal
  • the application may be downloaded from an application providing server to a general PC and installed in a mobile terminal through a synchronization program.

Abstract

차량간 통신 기반으로 수집된 장애물 정보들의 교차 검증에 의해 장애물 정보의 신뢰도를 보장할 수 있는 차량간 통신 기반 장애물 검증 시스템 및 방법이 개시된다. 본 발명의 실시예에 따른 차량간 통신 기반 장애물 검증 시스템은 차량 주변의 정보를 수집하는 센서 모듈; 상기 센서 모듈에 의해 수집된 차량 주변의 정보로부터 제1 장애물을 검출하는 장애물 검출 모듈; 제1 장애물에 관한 제1 장애물 정보를 생성하여 주변 차량으로 송신하고, 주변 차량에 의해 검출된 제2 장애물에 관한 제2 장애물 정보를 수신하는 통신 모듈; 상기 제2 장애물 정보에 포함된 송신자 정보를 공개키 기반으로 검증하는 보안 모듈; 상기 제1 장애물 정보 및 상기 제2 장애물 정보를 기반으로 장애물의 교차 검증을 수행하는 교차 검증 모듈; 및 상기 교차 검증 모듈에 의해 검증된 장애물 정보를 기반으로 상기 차량을 제어하는 차량 제어 모듈을 포함한다.

Description

차량간 통신 기반 장애물 검증 시스템 및 방법
본 발명은 과학기술정보통신부의 정보통신·방송 연구개발 사업의 지능형 차량서비스를 위한 고신뢰·적응형 전장 SW플랫폼 기술 개발에 대한 결과에 따른 것이며, 차량간 통신 기반 장애물 검증 시스템 및 방법에 관한 것으로, 보다 상세하게는 차량간 통신 기반으로 수집된 장애물 정보들의 교차 검증에 의해 장애물 정보의 신뢰도를 보장할 수 있는 차량간 통신 기반 장애물 검증 시스템 및 방법에 관한 것이다.
최근의 차량은 운전 보조 시스템(ADAS; Advanced Driver Assistance System)을 구현하기 위해 카메라 및 거리 측정을 위한 다양한 센서가 장착되어 운용되는 경우가 많이 있다. 또한, 차량간 통신을 통해 서로의 위치를 공유하여 차량간 충돌을 방지하거나, 차량에서 감지한 장애물 정보를 공유하여 사각지대에 대한 보완을 하기도 한다.
그러나, 종래의 차량간 통신 시스템은 악의적인 사용자가 잘못된 장애물 정보를 전파하거나 차량간 통신 정보를 해킹하는 경우, 존재하는 장애물에 관한 정보를 적절한 시간 내에 인식하지 못하게 되거나, 존재하지 않는 장애물을 존재하는 것으로 잘못 인식한 상태로 차량 제어가 이루어질 수 있다. 이와 같이, 다른 차량에서 수신된 장애물 정보에 관하여 신뢰성이 보장되지 않은 상태에서 차량의 제어가 이루어질 경우, 사고로 이어질 가능성도 커지게 된다.
본 발명은 차량간 통신 기반으로 수집된 장애물 정보들의 교차 검증에 의해 장애물 정보의 신뢰도를 보장할 수 있는 차량간 통신 기반 장애물 검증 시스템 및 방법을 제공하기 위한 것이다.
본 발명의 일 측면에 따른 차량간 통신 기반 장애물 검증 시스템은 차량 주변의 정보를 수집하는 센서 모듈; 상기 센서 모듈에 의해 수집된 차량 주변의 정보로부터 제1 장애물을 검출하는 장애물 검출 모듈; 제1 장애물에 관한 제1 장애물 정보를 생성하여 주변 차량으로 송신하고, 주변 차량에 의해 검출된 제2 장애물에 관한 제2 장애물 정보를 수신하는 통신 모듈; 상기 제2 장애물 정보에 포함된 송신자 정보를 공개키 기반으로 검증하는 보안 모듈; 상기 제1 장애물 정보 및 상기 제2 장애물 정보를 기반으로 장애물의 교차 검증을 수행하는 교차 검증 모듈; 및 상기 교차 검증 모듈에 의해 검증된 장애물 정보를 기반으로 상기 차량을 제어하는 차량 제어 모듈을 포함한다.
상기 송신자 정보는 차량 고유 아이디와, 사전 생성되어 중앙 서버에 등록되어 있는 비밀키에 의해 생성된 인증 정보를 포함할 수 있다. 상기 보안 모듈은, 상기 제2 장애물 정보의 상기 송신자 정보에 대한 검증을 위해 상기 중앙 서버에 인증을 요청하고; 상기 중앙 서버로부터 인증에 성공하면 상기 인증 정보를 설정 기간 동안 캐싱하고; 상기 설정 기간 경과 후 상기 송신자 정보에 대한 재인증을 상기 중앙 서버로 요청할 수 있다.
상기 차량 제어 모듈은, 상기 보안 모듈에 의해 상기 송신자 정보의 인증이 성공하면, 상기 제2 장애물 정보를 제1 신뢰도로 반영하여 상기 차량을 제어하고; 상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하면, 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우에 한하여 상기 제2 장애물 정보를 상기 제1 신뢰도보다 낮은 제2 신뢰도로 반영하여 상기 차량을 제어할 수 있다.
상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대가 아닌 영역에 위치하는 경우, 상기 교차 검증 모듈은 상기 제2 장애물 정보를 상기 차량에 의해 상기 제2 장애물에 대하여 검출되는 상기 제1 장애물 정보와 비교하여 상기 제2 장애물 정보를 검증할 수 있다.
상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우, 상기 교차 검증 모듈은 상기 제2 장애물 정보를 다른 주변 차량으로부터 수신된 제3 장애물 정보와 비교하여 상기 제2 장애물 정보를 검증할 수 있다.
상기 교차 검증 모듈은, 상기 제1 장애물 정보 중 상기 주변 차량에 해당하는 장애물을 선정하는 주변차량 장애물 검출부; 상기 차량을 기준으로 하는 상기 주변 차량의 위치 정보를 이용하여, 상기 주변 차량을 기준으로 하는 상기 제2 장애물의 위치 정보를 상기 차량을 기준으로 하는 위치 정보로 변환하는 장애물정보 변환부; 상기 제1 장애물 정보로부터 검출되는 상기 제1 장애물과 상기 제2 장애물 정보로부터 검출되는 상기 제2 장애물을 비교하는 장애물 비교부; 상기 제2 장애물이 상기 차량의 사각지대에 위치하는지를 판단하는 사각지대 판단부; 및 상기 제1 장애물과 상기 제2 장애물의 비교 결과에 따라 상기 제2 장애물 정보의 신뢰도를 결정하는 장애물정보 검증부를 포함할 수 있다. 상기 장애물정보 검증부는, 상기 제2 장애물이 상기 차량의 사각지대가 아닌 영역에 위치한 것으로 판단되면, 상기 제2 장애물을 검출하도록 상기 장애물 검출 모듈을 제어하고; 상기 장애물 검출 모듈에 의해 검출된 장애물 정보에 따라 상기 차량 제어 모듈에서 상기 차량을 제어하도록 할 수 있다.
상기 교차 검증 모듈은 상기 제1 장애물 정보와 상기 제2 장애물 정보를 비교하여 상기 차량과 상기 주변 차량이 동일한 장애물을 검출하는지 여부를 판단할 수 있다. 상기 차량과 상기 주변 차량이 동일한 장애물을 검출한 것으로 판단되면, 상기 차량 제어 모듈은 검출된 장애물을 고려하여 상기 차량을 제어할 수 있다.
본 발명의 다른 측면에 따르면, 차량 주변의 장애물에 관련된 정보를 센서 모듈로부터 수집하는 단계; 장애물 검출 모듈에 의해, 상기 센서 모듈로부터 수집된 정보로부터 장애물을 검출하는 단계; 통신 모듈에 의해, 제1 장애물에 관한 제1 장애물 정보를 생성하여 주변 차량으로 송신하는 단계; 상기 통신 모듈에 의해, 주변 차량에 의해 검출된 제2 장애물에 관한 제2 장애물 정보를 수신하는 단계; 보안 모듈에 의해, 상기 제2 장애물 정보에 포함된 송신자 정보를 공개키 기반으로 검증하는 단계; 교차 검증 모듈에 의해, 상기 제1 장애물 정보 및 상기 제2 장애물 정보를 기반으로 장애물을 교차 검증하는 단계; 및 차량 제어 모듈에 의해, 상기 교차 검증된 장애물 정보를 기반으로 상기 차량을 제어하는 단계를 포함하는 차량간 통신 기반 장애물 검증 방법이 제공된다.
상기 검증하는 단계는, 상기 보안 모듈이 상기 송신자 정보에 대한 검증을 위해 상기 중앙 서버에 인증을 요청하는 단계; 상기 보안 모듈이 상기 중앙 서버로부터 인증에 성공하면 상기 인증 정보를 설정 기간 동안 캐싱하는 단계; 및 상기 설정 기간 경과 후 상기 송신자 정보에 대한 재인증을 상기 중앙 서버로 요청하는 단계를 포함할 수 있다.
상기 차량을 제어하는 단계는, 상기 보안 모듈에 의해 상기 송신자 정보의 인증이 성공하면, 상기 제2 장애물 정보를 제1 신뢰도로 반영하여 상기 차량을 제어하는 단계; 및 상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하면, 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우에 한하여 상기 제2 장애물 정보를 상기 제1 신뢰도보다 낮은 제2 신뢰도로 반영하여 상기 차량을 제어하는 단계를 포함할 수 있다.
상기 교차 검증하는 단계는, 상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대가 아닌 영역에 위치하는 경우, 상기 제2 장애물 정보를 상기 차량에 의해 상기 제2 장애물에 대하여 검출되는 상기 제1 장애물 정보와 비교하여 상기 제2 장애물 정보를 검증하는 단계; 및 상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우, 상기 제2 장애물 정보를 다른 주변 차량으로부터 수신된 제3 장애물 정보와 비교하여 상기 제2 장애물을 검증하는 단계를 포함할 수 있다.
상기 교차 검증하는 단계는, 상기 제1 장애물 정보 중 상기 주변 차량에 해당하는 장애물을 선정하는 단계; 상기 차량을 기준으로 하는 상기 주변 차량의 위치 정보를 이용하여, 상기 주변 차량을 기준으로 하는 상기 제2 장애물의 위치 정보를 상기 차량을 기준으로 하는 위치 정보로 변환하는 단계; 상기 제1 장애물 정보로부터 검출되는 상기 제1 장애물과 상기 제2 장애물 정보로부터 검출되는 상기 제2 장애물을 비교하는 단계; 상기 제2 장애물이 상기 차량의 사각지대에 위치하는지 여부를 판단하는 단계; 및 상기 제2 장애물이 상기 사각지대에 위치하지 않는 경우 상기 제2 장애물을 검출하도록 제어하는 단계를 포함할 수 있다.
본 발명의 또 다른 측면에 따르면, 상기 차량간 통신 기반 장애물 검증 방법을 실행하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체가 제공된다.
본 발명의 실시예에 의하면, 차량간 통신 기반으로 수집된 장애물 정보들의 교차 검증에 의해 장애물 정보의 신뢰도를 보장할 수 있는 차량간 통신 기반 장애물 검증 시스템 및 방법이 제공된다.
도 1은 본 발명의 일 실시예에 따른 차량간 통신 기반 장애물 검증 시스템의 구성도이다.
도 2는 본 발명의 일 실시예에 따른 차량간 통신 기반 장애물 검증 방법의 흐름도이다.
도 3은 도 2에 도시된 단계 S40의 구체적인 흐름도이다.
도 4는 본 발명의 실시예에 따른 차량간 통신 기반 장애물 검증 시스템을 구성하는 교차 검증 모듈의 구성도이다.
도 5는 도 4에 도시된 단계 S50의 구체적인 흐름도이다.
도 6 내지 도 7은 도 5에 도시된 단계 S51 및 단계 S52를 설명하기 위한 도면이다.
도 8은 본 발명의 다른 실시예에 따른 차량간 통신 기반 장애물 검증 방법의 동작을 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에 따른 차량간 통신 기반 장애물 검출 방법에 따라 장애물 정보를 검증하는 과정을 나타낸 흐름도이다.
도 10은 도 9에 도시된 단계 S74 및 단계 S75를 설명하기 위한 예시도이다.
도 11은 도 9에 도시된 단계 S76 및 단계 S77을 설명하기 위한 예시도이다.
도 12 및 도 13은 본 발명의 다른 실시예에 따른 차량간 통신 기반 장애물 검출 방법을 설명하기 위한 예시도이다.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 이하의 설명에서 동일한 식별 기호는 동일한 구성을 의미하며, 불필요한 중복적인 설명 및 공지 기술에 대한 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 차량간 통신 기반 장애물 검증 시스템의 구성도이다. 도 2는 본 발명의 일 실시예에 따른 차량간 통신 기반 장애물 검증 방법의 흐름도이다. 도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 차량간 통신 기반 장애물 검증 시스템(100)은 차량에 장착되어 신뢰성 있는 운전 보조 시스템(ADAS; Advanced Driver Assistance System)을 운용하기 위한 것으로, 센서 모듈(110), 장애물 검출 모듈(120), 통신 모듈(130), 보안 모듈(140), 교차 검증 모듈(150) 및 차량 제어 모듈(160)을 포함한다.
센서 모듈(110)은 차량 주변의 장애물 등에 관련된 정보를 수집하기 위한 것으로, 차량 주변 정보를 수집할 수 있는 하나 또는 복수개의 센서를 포함할 수 있다. 센서 모듈(110)은 예를 들어, 전/후방 카메라나 레이저 거리센서, 라이다(LIDAR), 레이더(RADAR) 등으로 제공될 수 있으나, 이에 제한되는 것은 아니고 차량 주변의 정보를 수집할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다.
장애물 검출 모듈(120)은 센서 모듈(110)에 의해 수집된 정보로부터 장애물을 검출한다(S10). 장애물 검출 모듈(120)은 차량의 주변에 위치한 장애물들, 예를 들어, 차량의 전/후방 또는 측방에 위치한 주변 차량(주행중인 차량, 주/정차 차량, 사고 차량 등), 사람, 야생동물, 낙하화물, 낙석, 쓰러진 나무, 싱크홀, 삼각대 등과 같이, 차량의 주행에 방해를 줄 수 있는 도로 상의 물체나 동물 등을 포함할 수 있다.
장애물 검출 모듈(120)은 예를 들어, 영상 처리를 통한 객체 인식을 통해 장애물을 검출할 수 있다. 장애물 검출 모듈(120)은 장애물의 위치(방향, 각도), 거리, 장애물의 모양(형상)과 크기, 이동 상태(속도) 등을 검출할 수 있다. 장애물 검출 모듈(120)에서 장애물을 검출하는 방식은 본 발명이 속하는 기술분야에서 잘 알려져 있으므로, 본 발명의 요지가 흐려지지 않도록 장애물 검출 방법에 관한 상세한 설명은 생략하기로 한다.
이하에서, 차량에서 주변 장애물(제1 장애물)을 검출하여 얻은 정보를 '제1 장애물 정보'라 하고, 차량의 주변 차량(제1 주변 차량)에서 주변 장애물(제2 장애물)을 검출하여 얻은 정보를 '제2 장애물 정보'라 하고, 또 다른 주변 차량(제2 주변 차량)에서 주변 장애물(제3 장애물)을 검출하여 얻은 정보를 '제3 장애물 정보'라 하여 설명한다. 제1 내지 제3 장애물들은 동일한 장애물을 일부 포함할 수도 있고, 서로 다른 장애물일 수도 있다.
통신 모듈(130)은 차량간 통신을 위해 제공되는 것으로, 차량에서 제1 장애물에 관하여 검출한 제1 장애물 정보(OB1)를 주변 차량에서 이용할 수 있도록 송신한다(S20). 또한, 통신 모듈(130)은 주변 차량에 의해 제2 장애물에 관하여 검출되어 송신된 제2 장애물 정보(OB2)를 수신한다(S30). 장애물 정보(OB1, OB2)는 장애물의 각도 정보 및 거리 정보, 장애물의 이동 상태 정보 및 모양 정보 등을 포함할 수 있다.
통신 모듈(130)을 통해 주변 차량으로 전송되는 제1 장애물 정보(OB1)에는 차량에서 검출한 제1 장애물에 관한 정보와, 차량의 송신자 정보가 포함될 수 있다. 주변 차량으로부터 차량으로 송신되는 제2 장애물 정보(OB2)에는 제2 장애물에 관한 정보와, 주변 차량의 송신자 정보가 포함될 수 있다. 제2 장애물 정보(OB2)에 포함되는 송신자 정보는 제2 장애물 정보(OB2)를 전송한 주변 차량의 식별 정보를 포함할 수 있다. 실시예에서, 제2 장애물 정보(OB2)의 송신자 정보는 차량 고유 아이디와, 사전 생성되어 중앙 서버(200)에 등록되어 있는 비밀키에 의해 생성된 인증 정보를 포함할 수 있다.
통신 모듈(130)은 무선랜, 와이파이(Wifi), 블루투스(Bluetooth) 등의 무선 통신을 통해 차량간 정보를 송/수신할 수 있으나, 이러한 무선 통신 방식으로 제한되지는 않는다. 통신 모듈(130)로 수신된 제2 장애물 정보(OB2)는 신뢰성 검증을 위해 보안 모듈(140)로 전달된다. 보안 모듈(140)은 제2 장애물 정보(OB2)에 포함된 데이터의 신뢰성을 확인하기 위해, 제2 장애물 정보(OB2)에 포함된 송신자 정보를 공개키 기반으로 검증할 수 있다(S40).
도 3은 도 2에 도시된 단계 S40의 구체적인 흐름도이다. 도 1 내지 도 3을 참조하면, 주변 차량으로부터 제2 장애물 정보(OB2)가 수신되면, 보안 모듈(140)은 송신자 정보에 대한 검증을 위해 중앙 서버(200)에 인증을 요청할 수 있다(S41). 중앙 서버(200)로부터 인증에 실패하는 경우, 보안 모듈(140)은 제2 장애물 정보(OB2)가 비인증 장애물 정보인 것으로 결정하고, 교차 검증 모듈(150)에 알린다(S42, S43). 이후, 제2 장애물 정보(OB2)는 교차 검증 모듈(150)에 의해 제1 장애물 정보(OB1) 또는 다른 주변 차량으로부터 수집된 장애물 정보와 비교를 통해 신뢰도가 교차 검증되고, 교차 검증 결과와 제2 장애물이 차량의 사각지대에 위치하는지 여부에 따라 제2 장애물 정보(OB2)를 차량 제어에 활용할지 여부 등이 결정된다.
보안 모듈(140)은 중앙 서버(200)로부터 인증에 성공하면 인증 정보를 설정 기간 동안 캐싱할 수 있다(S42, S44). 보안 모듈(140)은 주변 차량으로부터 제2 장애물 정보(OB2)를 수신할 때마다 중앙 서버(200)에 인증을 요청할 필요 없이, 최초 인증에 성공하면 설정 기간 동안 인증 없이 제2 장애물 정보(OB2)의 송신자 정보 만을 확인하여 신뢰성을 검증할 수 있다(S45). 따라서, 주변 차량으로부터 연속적으로 수신되는 제2 장애물 정보(OB2)들의 처리를 위한 연산 시간을 줄일 수 있다.
중앙 서버(200)로부터 인증을 성공한 후 설정 기간이 경과하면, 보안 모듈(140)은 중앙 서버(200)에 송신자 정보에 대한 재인증을 요청할 수 있다(S46). 중앙 서버(200)에 의해 재인증에 성공하면, 보안 모듈(140)은 기존 인증 정보의 캐싱 상태를 설정 기간 동안 유지(연장)하거나, 새로운 인증 정보로 업데이트하여 캐싱할 수 있다.
다시 도 1 및 도 2를 참조하면, 교차 검증 모듈(150)은 차량에 의해 검출된 제1 장애물 정보(OB1) 및 주변 차량에 의해 검출된 제2 장애물 정보(OB2)를 기반으로 장애물의 교차 검증을 수행할 수 있다(S50). 장애물의 '교차 검증'은 보안 모듈(140)의 인증 결과 및 차량에서 검출한 제1 장애물 정보(OB1) 및/또는 또 다른 주변 차량에 의해 검출된 장애물 정보(제3 장애물 정보)를 기반으로 제2 장애물 정보(OB2)의 신뢰도를 최종 검증하는 것을 의미할 수 있다.
만약, 제2 장애물 정보(OB2)의 송신자 정보가 인증에 성공한 경우, 교차 검증 모듈(150)은 제2 장애물 정보(OB2)에 대해 높은 신뢰도(제1 신뢰도)를 부여할 수 있다. 이 경우에 제2 장애물 정보(OB2)는 높은 신뢰도(제1 신뢰도)로 차량 제어에 반영될 수 있다.
이와 달리, 제2 장애물 정보(OB2)의 송신자 정보가 인증에 실패한 경우, 제2 장애물 정보(OB2)는 차량 제어에 반영되지 않거나, 차량에 의해 검출되기 어려운 사각지대에 위치한 장애물인 것으로 판단되는 경우에 한하여, 제2 장애물 정보의 인증에 성공한 경우의 신뢰도보다 낮은 제2 신뢰도로 차량 제어에 반영될 수 있다.
제2 장애물 정보(OB2)의 신뢰도는 차량 제어에 다양한 영향을 미칠 수 있다. 예를 들면, 제2 장애물 정보(OB2)의 신뢰도가 높은 경우, 제2 장애물 정보(OB2)로부터 인식된 제2 장애물과 충돌을 방지하기 위하여, 차량을 감속하거나 차선 변경 등의 적극적인 차량 제어를 취할 수 있다.
이와 달리, 제2 장애물 정보(OB2)를 낮은 신뢰도로 반영하는 경우에는 제2 장애물 정보(OB2)로부터 인식된 제2 장애물의 정보를 차량의 운전자에게 경고음 등으로 알리거나, 감속 또는 차선 변경을 유도(안내)하는 등의 소극적인 조치 만을 취할 수 있다. 또한, 낮은 신뢰도의 장애물은 즉시 차량을 제어하는데 사용하지 않고, 또 다른 차량으로부터 수신된 장애물 정보와 비교하여 검증된 뒤에 차량 제어에 활용될 수 있다.
본 발명의 실시예에서, 교차 검증 모듈(150)은 보안 모듈(140)의 인증 결과만을 반영하여 제2 장애물 정보(OB2)의 신뢰도를 결정하지 않고, 차량 또는 다른 주변 차량의 장애물 정보들과의 비교 결과를 통해 제2 장애물 정보(OB2)의 신뢰도를 검증할 수 있다.
예를 들어, 제2 장애물 정보(OB2)에 포함된 제2 장애물(차량의 사각지대에 위치하지 않은 장애물)이 이후 제1 장애물 정보(OB1)에서 검출되는 경우, 제2 장애물 정보(OB2)의 인증에 실패한 경우라 하더라도, 이후에 주변 차량으로부터 지속적으로 송신되는 제2 장애물 정보(OB2)를 낮은 신뢰도로 차량 제어에 반영할 수 있다.
일반적으로, 차량은 주변 차량과 일정 거리를 유지하면서 비슷한 속도로 주행하는 경우가 많고, 주변 차량으로부터 상당 시간, 예를 들어 고속도로 주행 등의 경우에 길게는 수분 내지 수십분 동안 차량간 정보를 지속적으로 주고받으면서 주행하기도 한다.
이러한 경우, 차량과 주변 차량에서 검출하는 장애물들의 상당수가 중복되므로, 주변 차량으로부터 수신한 장애물 정보와, 차량에서 검출한 장애물 정보가 거의 일치하는 경우, 교차 검증 모듈(150)은 주변 차량이 해킹 등에 의해 악의적으로 허위 정보를 송신하였을 가능성이 낮은 것으로 판단하여 주변 차량의 송신자 정보가 인증되지 않더라도 낮은 신뢰도로 차량 제어에 반영할 수 있다.
또한, 교차 검증 모듈(150)은 제2 장애물 정보(OB2)로부터 판단한 제2 장애물이 차량의 사각지대에 위치하는지 여부를 판단하여, 그 판단 결과에 따라 제2 장애물 정보(OB2)의 반영 여부를 결정할 수 있다. 즉, 제2 장애물이 사각지대에 위치하지 않은 것으로 판단되는 경우, 차량에서도 제2 장애물을 검출할 수 있으므로, 교차 검증 모듈(150)은 제2 장애물 정보(OB2)에 따라 차량을 제어하도록 하지 않고, 이후에 장애물 검출 모듈(120)에서 제2 장애물을 검출하여 제1 장애물 정보(OB1)를 생성하도록 하고, 차량에 의해 제2 장애물에 관하여 생성된 제1 장애물 정보(OB1)에 따라 차량을 제어하도록 차량 제어 모듈(160)에 알릴 수 있다. 만약, 제2 장애물이 사각지대에 위치하는 것으로 판단되는 경우, 차량에서 제2 장애물을 검출할 수 없으므로, 교차 검증 모듈(150)은 낮은 신뢰도로 제2 장애물 정보(OB2)를 반영하여 차량을 제어하도록 차량 제어 모듈(160)에 알릴 수 있다.
본 발명의 실시예에 의하면, 보안 모듈(140)의 인증 결과를 반영할 뿐 아니라, 차량과 주변 차량의 장애물 정보들을 비교한 결과와 주변 차량에서 검출한 장애물이 차량의 사각지대에 위치하는지 여부를 기반으로, 주변 차량에서 검출하여 제공하는 제2 장애물 정보(OB2)의 신뢰도를 상황에 맞게 적절하게 결정하여, 주변 차량의 해킹 등 악의적인 공격을 방지하면서도 차량간 통신에 의한 사각지대의 장애물 등에 효과적으로 대처할 수 있는 이점이 제공된다.
제2 장애물 정보(OB2)의 신뢰도는 차량에서 검출한 제1 장애물 정보(OB1)와의 비교만으로 결정될 수도 있고, 또 다른 주변 차량으로부터 수신된 제3 장애물 정보와의 비교를 통해 결정될 수도 있다. 예를 들어, 2 이상의 주변 차량으로부터 동일한 장애물에 관한 정보가 지속적으로 수신되는 것으로 판단되면, 교차 검증 모듈(150)은 주변 차량들 모두 정상적인 장애물 정보를 제공하는 것으로 판단하여, 설정된 수준의 신뢰도로 장애물 정보를 차량 제어에 고려할 수 있다.
교차 검증 모듈(150)은 제2 장애물 정보(OB2)에 대해 보안 모듈(140)의 인증이 성공한 경우 가장 높은 제1 신뢰도를 부여하여, 차량에서 검출한 제1 장애물 정보(OB1)와 동일한 신뢰도로 차량 제어에 반영되게 할 수 있다. 교차 검증 모듈(150)은 제2 장애물 정보(OB2)에 대해 보안 모듈(140)의 인증이 실패하더라도, 제1 장애물 정보(OB1)와 비교를 통해 검증된 경우 제2 장애물 정보(OB2)를 제2 신뢰도로 차량 제어에 반영되게 할 수 있으며, 다른 주변 차량으로부터 수신된 장애물 정보와 비교를 통해 검증된 경우에는 제2 장애물 정보(OB2)를 제2 신뢰도 보다 낮은 제3 신뢰도로 차량 제어에 반영되게 할 수 있다.
차량 제어 모듈(160)은 교차 검증 모듈(150)에 의해 검증된 장애물 정보를 기반으로 차량을 제어한다(S60). '검증된' 장애물 정보는 보안 모듈(140)에 의해 인증된 장애물 정보인 것으로 제한되지 않고, 차량간 장애물 정보의 비교를 통해 검증에 성공한 장애물 정보를 포함할 수 있다. 차량 제어 모듈(160)은 보안 모듈(140)에 의해 송신자 정보의 인증이 성공하면, 제2 장애물 정보를 높은 신뢰도(제1 신뢰도)로 반영하여 차량을 제어할 수 있다. 차량 제어 모듈(160)은 보안 모듈(140)에 의해 송신자 정보의 인증이 실패하면, 제2 장애물이 차량의 사각지대에 위치하는 것으로 판단된 경우에 한하여 제2 장애물 정보를 제1 신뢰도보다 낮은 제2 신뢰도로 반영하여 차량을 제어할 수 있다.
도 4는 본 발명의 실시예에 따른 차량간 통신 기반 장애물 검증 시스템을 구성하는 교차 검증 모듈의 구성도이다. 도 5는 도 4에 도시된 단계 S50의 구체적인 흐름도이다. 도 6 내지 도 7은 도 5에 도시된 단계 S51 및 단계 S52를 설명하기 위한 예시도이다. 도 1, 도 4 내지 도 7을 참조하면, 교차 검증 모듈(150)은 주변차량 장애물 검출부(151), 장애물정보 변환부(152), 장애물 비교부(153), 사각지대 판단부(154) 및 장애물정보 검증부(155)를 포함할 수 있다.
주변차량 장애물 검출부(151)는 차량의 장애물 검출 모듈(120)에서 검출한 제1 장애물 정보(OB1) 중 주변 차량(20)에 해당하는 장애물을 선정한다(S51). 주변 차량(20)은 차량(10)의 장애물들 중 하나에 해당하므로, 제1 장애물 정보(OB1)에는 차량(10)을 기준으로 하는 주변 차량(20)의 각도 정보(θ1) 및 거리 정보(R1)가 포함될 수 있다. 제2 장애물 정보(OB2)에는 주변 차량(20)을 기준으로 하는 제2 장애물(30)의 각도 정보(θ2) 및 거리 정보(R2)가 포함될 수 있다.
도 6에 도시된 예에서, 제2 장애물(30)은 차량(10)의 사각지대(BA)에 위치해 있다. 즉, 정차 중인 차량(40)에 의해 차량(10)의 시야가 가려져 차량(40)에서 제2 장애물(30)을 검출할 수 없는 상태이다. 이러한 경우, 차량(10)은 주변 차량(20)으로부터 제공되는 제2 장애물 정보(OB2)로부터 제2 장애물(30)의 존재를 알 수 있게 된다.
장애물정보 변환부(152)는 도 7에 도시된 바와 같이, 제1 장애물 정보(OB1)에 포함된 주변 차량(20)의 위치 정보(θ1, R1)을 이용하여, 제2 장애물 정보(OB2) 중, 주변 차량(20)을 기준으로 하는 제2 장애물(30)의 위치 정보(각도 정보 및 거리 정보)를 차량(10)을 기준으로 하는 각도 정보(θ3) 및 거리 정보(R3)로 변환할 수 있다(S52).
장애물 비교부(153)는 제1 장애물 정보(OB1)에 포함된 제1 장애물(차량의 장애물 검출 모듈에 의해 검출된 장애물)과, 차량(10)을 기준으로 하는 공통 좌표계로 변환된 제2 장애물을 비교하여, 차량(10)과 주변 차량(20)이 동일한 장애물을 검출하는지 여부를 판단할 수 있다. 즉, 제2 장애물 정보(OB2)로부터 파악한 제2 장애물(30)이 차량(10)에서 검출한 제1 장애물과 다른 새로운 장애물인지를 판단한다(S53, S54). 차량과 주변 차량이 동일한 장애물을 검출한 것으로 판단되면, 차량 제어 모듈(160)은 검출된 장애물을 고려하여 차량을 제어할 수 있다(S61).
만약, 제1 장애물 정보(OB1)와 제2 장애물 정보(OB2)를 비교하여 차량(10)이 검출하지 못한 제2 장애물(30)에 관한 정보를 주변 차량(20)에서 송신받은 제2 장애물 정보(OB2)에 의해 알게 된 경우, 사각지대 판단부(154)는 제2 장애물(30)이 차량(10)의 사각지대(BA)에 위치하는지 판단할 수 있다(S55).
제2 장애물(30)이 차량의 사각지대(BA)가 아닌 영역에 위치한 경우, 차량(10)에서 제2 장애물(30)의 검출이 가능한 상황이므로, 장애물정보 검증부(155)는 차량(10)에서 제2 장애물을 검출하도록 장애물 검출 모듈(120)을 제어하고(S56), 제2 장애물 정보(OB2)를 차량의 제어에 반영하지 않을 수 있다(S61). 또한, 보안 모듈(130)에 의해 제2 장애물 정보(OB2)의 송신자 정보에 대한 인증이 실패하고 제2 장애물(30)이 차량(10)의 사각지대(BA)에 위치하는 경우, 장애물정보 검증부(155)는 제1 장애물 정보(OB1)와 함께 낮은 신뢰도로 제2 장애물 정보(OB2)를 반영하여 차량을 제어할 수 있다(S62). 이때, 장애물정보 검증부(155)는 제2 장애물 정보(OB2)를 제1 장애물 정보(OB1) 또는 다른 주변 차량으로부터 수신된 제3 장애물 정보와 비교하여 제2 장애물(30)을 검증한 후, 차량 제어에 반영할 수도 있다.
도 8은 본 발명의 다른 실시예에 따른 차량간 통신 기반 장애물 검증 방법의 동작을 설명하기 위한 도면이다. 도 6에서는 주/정차 중인 차량(40)에 의해 사각지대(BA)가 형성되는 예를 도시하였으나, 차량(10)의 사각지대(BA)는 도 8에 도시된 바와 같이 차량(10)의 센서 모듈의 시야각(SA) 제한에 의해 발생될 수도 있다. 도 8에 도시된 예에서, 차량(10)의 센서 모듈은 전방 카메라와, 후방 카메라로 구성되고, 전/후방 카메라의 시야각(SA) 제한으로 인해, 차량(10)의 양 측방에 사이드 미러에 의해서도 확인이 어려운 사각지대(BA)가 발생한다. 이 경우에도, 주변 차량(20)이 제2 장애물(30)을 검출하여 송신한 제2 장애물 정보(OB2)로부터 차량(10)의 측방 사각지대(BA)에서 주행중인 제2 장애물(30)을 인지할 수 있게 된다.
도 9는 본 발명의 실시예에 따른 차량간 통신 기반 장애물 검출 방법에 따라 장애물 정보를 검증하는 과정을 나타낸 흐름도이다. 도 1 및 도 9를 참조하면, 교차 검증 모듈(150)은 제2 장애물 정보(OB2)가 보안 모듈(140)에 의해 인증된 정보인지 판단하여, 인증된 정보인 경우 차량 제어에 반영하도록 제2 장애물 정보(OB2)를 차량 제어 모듈(160)로 제공한다(S71, S72). 제2 장애물 정보(OB2)가 보안 모듈(140)에 의해 인증되지 못한 정보이면, 교차 검증 모듈(150)은 제2 장애물 정보(OB2)에 의해 인식된 제2 장애물이 차량의 사각지대에 위치해있는지 판단한다(S73).
도 10은 도 9에 도시된 단계 S74 및 단계 S75를 설명하기 위한 예시도이다. 도 9 및 도 10을 참조하면, 제2 장애물(30)이 차량(10)의 사각지대가 아닌 영역에 위치한 경우, 차량(10)에 의해 제2 장애물(30)의 검출이 가능하므로, 제2 장애물 정보(OB2)를 차량(10)에 의해 검출되는 제1 장애물 정보와 비교하여 주변 차량(20)에서 보낸 제2 장애물 정보(OB2)의 신뢰도를 검증할 수 있다. 이를 위해, 교차 검증 모듈(150)은 제2 장애물(30)에 대하여 장애물 정보를 수집하도록 장애물 검출 모듈(120)을 제어할 수 있다.
이후, 교차 검증 모듈(150)은 장애물 검출 모듈(120)에 의해 검출된 장애물들 중 제2 장애물(30)을 선정하고, 차량(10)에서 검출한 제2 장애물(30)의 위치(방향 각도 및 거리), 모양(형상)과 크기 등을 제2 장애물 정보(OB2)로부터 검출한 제2 장애물(30)의 위치, 모양, 크기 등과 비교하여 일치하는 경우 제2 장애물 정보(OB2)의 신뢰도가 높은 것으로 평가하고, 이후에 수신되는 제2 장애물 정보(OB2)를 차량 제어에 반영할 수 있다.
만약, 제2 장애물 정보(OB2)로부터 차량(10)의 사각지대가 아닌 영역에 위치한 것으로 검출되었던 제2 장애물(30)이 차량(10)에 의해서는 검출되지 않는 경우, 교차 검증 모듈(150)은 제2 장애물 정보(OB2)가 허위로 생성된 정보일 가능성이 있으므로, 제2 장애물 정보(OB2)의 신뢰도를 낮게 평가할 수 있으며, 이후에 수신되는 제2 장애물 정보(OB2)를 차량 제어에 반영하지 않을 수 있다.
도 11은 도 9에 도시된 단계 S76 및 단계 S77을 설명하기 위한 예시도이다. 도 11의 예에서 제2 장애물(30)은 주변 차량들(20, 22)에 의해 가려져 차량(10)에 의해 검출될 수 없는 사각지대에 위치한 장애물에 해당한다. 도 9 및 도 11을 참조하면, 단계 S73에서 제2 장애물(30)이 차량(10)의 사각지대에 위치한 것으로 판단되는 경우, 차량(10)에 의해 제2 장애물(30)을 검출하는 것이 불가능하므로, 제2 장애물 정보(OB2)를 다른 주변 차량(22)으로부터 수신되는 제3 장애물 정보(OB3)와 비교하여 제2 장애물 정보(OB2) 및 제3 장애물 정보(OB3)의 신뢰도를 평가할 수 있다.
즉, 2 이상의 주변 차량들(20, 22)에서 동일한 장애물(제2 장애물 30)에 대해 일치되는 장애물 정보를 송신하는 경우, 주변 차량들(20, 22)에서 보내는 장애물 정보가 정상적일 가능성이 높으므로, 제2 및 제3 장애물 정보(OB2, OB3)의 신뢰도를 높게 평가할 수 있으며, 이후에 주변 차량들(20, 22)로부터 송신되는 제2 및 제3 장애물 정보(OB2, OB3)의 신뢰도를 높게 반영하여 차량(10)을 제어할 수 있다. 또한, 2 또는 3 이상의 복수개의 장애물 정보들 중 어느 하나의 장애물 정보에 대해 인증이 성공한 경우에는 인증이 성공한 장애물 정보에 포함된 것과 동일한 장애물의 정보를 제공하는 다른 장애물 정보들의 신뢰도도 높게 평가할 수 있다.
도 12 및 도 13은 본 발명의 다른 실시예에 따른 차량간 통신 기반 장애물 검출 방법을 설명하기 위한 예시도이다. 도 12 및 도 13의 예에서, 제2 장애물(30)은 주변 차량(20)의 전방에서 정지해 있는 고장 차량(또는 사고 차량)에 해당한다. 도 1, 도 12 및 도 13을 참조하면, 제2 장애물(30)이 사각지대(BA)에 위치하는지 여부에 따라 차량(10)에서 검출한 제1 장애물 정보(OB1)에 따라 차량(10)을 제어할지, 혹은 주변 차량(20)으로부터 수신한 제2 장애물 정보(OB2)에 따라 차량(10)을 제어할지 여부가 결정될 수 있다.
실시예에서, 차량(10)의 사각지대(BA)는 차량(10)의 주행 속도, 노면 상태 및 기상 환경(우천, 눈) 등에 따라 결정되는 안전 거리(제동 거리)(SL)와, 차량간 통신 및 데이터 처리를 통해 차량(10)에서 제2 장애물(30)이 검출되는데 소요되는 지연 시간 및 차량(10)의 주행 속도에 따라 결정되는 지연 거리(DL)에 따라 결정될 수 있다. 즉, 차량(10)의 사각지대(BA)는 주변 차량(20) 전방의 차량(10)의 센서 모듈에 의해 검출 가능한 모든 영역(거리)을 포함하지 않고, 주변 차량(20)의 위치에서부터, 차량(10)으로부터 안전 거리(SL)와 지연 거리(DL)를 합한 전체 거리(TL)까지 이르는 영역으로 제한될 수 있다.
도 12 및 도 13에 도시된 예에서, 주변 차량(20)은 고장 차량에 해당하는 제2 장애물(30)을 발견한 후 2차로에서 1차로로 차선 변경을 하여 충돌을 방지할 수 있으나, 주변 차량(20)의 후방에서 주행 중인 차량(10)은 주변 차량(20)이 차선 변경을 완료한 후 제2 장애물(30)을 발견하더라도 측방에서 주행 중인 또 다른 주변 차량(40)으로 인해 2차로로 차선 변경을 통해 제2 장애물(30)과 충돌을 피하기 어렵고, 브레이크를 밟아 충돌을 방지할 수 밖에 없는 상황이다.
도 12 및 도 13의 예들에서 제2 장애물(30)은 주변 차량(20)에 의해 가려져 차량(10)에 의해 검출될 수 없는 상태이지만, 교차 검증 모듈(150)은 도 12의 경우에는 주변 차량(20)이 차선 변경한 후 차량(10)에서 제2 장애물(30)을 검출해 감속 등의 제어를 할 수 있는 것으로 판단하여 제2 장애물(30)이 사각지대(BA)에 위치하지 않은 것으로 판단하고, 도 13의 경우에는 차량(10)이 제2 장애물(30)을 검출하여 제어하더라도 제2 장애물(30)과 충돌될 수 있기 때문에 제2 장애물(30)이 사각지대(BA)에 위치한 것으로 판단할 수 있다.
즉, 도 12에 도시된 바와 같이, 제2 장애물(30)이 차량(10)으로부터 안전 거리(SL)와 지연 거리(DL)를 합한 전체 거리(TL) 보다 더 앞쪽에 위치한 경우, 제2 장애물 정보(OB2)가 주변 차량(20)으로부터 차량(10)으로 송신되어 차량(10)이 제2 장애물(30)을 검출하는 동안에 차량(10)이 지연 거리(DL)만큼 주행하더라도, 차량(10)과 제2 장애물(30) 간에 안전 거리(SL)가 확보될 수 있다. 따라서, 차량(10)이 센서 모듈을 통해 직접 제2 장애물(30)을 검출한 후 차량(10)을 브레이크 제공하여 멈추는데까지 소요되는 제동 거리 이상의 안전 거리(SL)가 확보되기 때문에 차량(10)이 검출한 제1 장애물 정보(OB1)에 따라 차량(10)을 제어하더라도 차량(10)과 제2 장애물(30)의 충돌을 방지할 수 있다.
도 13에 도시된 바와 같이, 제2 장애물(30)이 사각지대(BA)에 위치한 것으로 판단되는 경우에는 차량(10)에서 직접 제2 장애물(30)을 검출한 후에 제동하더라도 제2 장애물(30)과 충돌을 방지할 수 없기 때문에, 교차 검증 모듈(150)은 주변 차량(20)이 보낸 제2 장애물 정보(OB2)로부터 제2 장애물(30)을 인지한 후 제2 장애물(30)과의 충돌을 방지하기 위하여 미리 감속 등의 차량 제어를 하도록 차량 제어 모듈(160)에 알릴 수 있다.
도 12 및 도 13의 실시예에 의하면, 차량(10)의 주행 상황에 따라 주변 차량(20) 전방의 사각지대(BA)를 적절하게 설정하여 차량(10)을 신뢰성 있고 안전하게 제어할 수 있으며, 차량(10)에서 장애물을 검출하여 주행을 안전하게 제어할 수 있는 경우에는 차량을 가급적 제1 장애물 정보(OB1)에 따라 제어할 수 있도록 하여, 보다 신뢰도 있는 운전 보조 시스템을 구현하도록 할 수 있다.
한편, 주변 차량들의 장애물 정보의 송신자 정보 인증을 위해 사용되는 무선 통신망은 차량의 고속 주행시 네트워크 상태가 불안정해질 수 있으며, 이 경우 네트워크 문제로 인해 인증되지 않은 장애물 정보는 보안 모듈 및 중앙 서버에 의한 인증에 실패한 장애물 정보와 동일하게 처리하여 기본적으로 사용하지 않되, 사각지대의 장애물에 한해 낮은 신뢰도로 받아들일 수 있다.
본 발명의 실시예에 의하면, 악의적인 사용자가 해킹 등에 의해 잘못된 장애물 정보를 전파하더라도 장애물 교차 검증을 통해 신뢰성 있는 차량간 통신을 구현하여 차량간 통신 과정에서 발생할 수 있는 해킹에 의한 잘못된 장애물 정보 수신으로 인한 잘못된 차량 운용을 방지하고, 운전 보조 시스템(ADAS; Advanced Driver Assistance System)을 높은 신뢰도로 운용할 수 있다. 특히 차량에서 감지할 수 없는 사각지대의 장애물 정보에 관한 신뢰성을 확보하여 보다 안전한 차량 운용을 할 수 있다.
본 발명의 각 실시예에 따른 방법을 실행시키기 위한 프로그램은 컴퓨터의 프로세서(CPU)가 읽을 수 있는 C, C++, JAVA, 기계어 등의 컴퓨터 언어로 코드화된 코드(Code)를 포함할 수 있다. 이러한 코드는 전술한 기능들을 정의한 함수 등과 관련된 기능적인 코드(Function Code)를 포함할 수 있고, 전술한 기능들을 컴퓨터의 프로세서가 소정의 절차대로 실행시키는데 필요한 실행 절차 관련 제어 코드를 포함할 수도 있다.
이러한 코드는 전술한 기능들을 컴퓨터의 프로세서가 실행시키는데 필요한 추가 정보나 미디어가 컴퓨터의 내부 또는 외부 메모리의 어느 위치(주소 번지)에서 참조되어야 하는지에 대한 메모리 참조 관련 코드를 포함할 수 있다. 또한, 컴퓨터의 프로세서가 전술한 기능들을 실행시키기 위하여 원격(Remote)에 있는 어떠한 다른 컴퓨터나 서버 등과 통신이 필요한 경우, 코드는 컴퓨터의 프로세서가 컴퓨터의 통신 모듈(예: 유선 및/또는 무선 통신 모듈)을 이용하여 원격(Remote)에 있는 어떠한 다른 컴퓨터나 서버 등과 어떻게 통신해야만 하는지, 통신 시 어떠한 정보나 미디어를 송수신해야 하는지 등에 대한 통신 관련 코드를 더 포함할 수도 있다.
그리고, 본 발명을 구현하기 위한 기능적인(Functional) 프로그램과 이와 관련된 코드 및 코드 세그먼트 등은 기록매체를 읽어서 프로그램을 실행시키는 컴퓨터의 시스템 환경 등을 고려하여, 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론되거나 변경될 수도 있다. 이상에서 전술한 바와 같은 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체는 일 예로, ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 미디어 저장장치 등이 있다.
특히, 본 발명의 각 실시예에 따른 방법을 실행시키기 위한 프로그램인 애플리케이션을 기록한 컴퓨터로 읽을 수 있는 기록매체는 애플리케이션 스토어 서버(Application Store Server), 애플리케이션 또는 해당 서비스와 관련된 웹 서버 등의 애플리케이션 제공 서버(Application Provider Server)에 포함된 저장매체(예: 하드디스크 등)이거나, 애플리케이션 제공 서버 그 자체일 수도 있다.
본 발명의 각 실시예에 따른 방법을 실행시키기 위한 프로그램인 애플리케이션을 기록한 기록매체를 읽을 수 있는 컴퓨터는 차량 내장형 컴퓨터, 노트북 등의 PC 뿐만 아니라, 스마트 폰, 태블릿 PC, PDA(Personal Digital Assistants) 및 이동통신 단말기 등의 모바일 단말기를 포함할 수 있으며, 이뿐만 아니라, 컴퓨팅 (Computing) 가능한 모든 기기로 해석되어야 할 것이다. 또한, 본 발명의 실시예에 따른 방법을 실행시키기 위한 프로그램인 애플리케이션을 기록한 기록매체를 읽을 수 있는 컴퓨터가 스마트 폰, 태블릿 PC, PDA(Personal Digital Assistants) 및 이동통신 단말기 등의 모바일 단말기인 경우, 애플리케이션은 애플리케이션 제공 서버에서 일반 PC로 다운로드되어 동기화 프로그램을 통해 모바일 단말기에 설치될 수도 있다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 적어도 하나로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 차량 주변의 정보를 수집하는 센서 모듈;
    상기 센서 모듈에 의해 수집된 차량 주변의 정보로부터 제1 장애물을 검출하는 장애물 검출 모듈;
    제1 장애물에 관한 제1 장애물 정보를 생성하여 주변 차량으로 송신하고, 주변 차량에 의해 검출된 제2 장애물에 관한 제2 장애물 정보를 수신하는 통신 모듈;
    상기 제2 장애물 정보에 포함된 송신자 정보를 공개키 기반으로 검증하는 보안 모듈;
    상기 제1 장애물 정보 및 상기 제2 장애물 정보를 기반으로 장애물의 교차 검증을 수행하는 교차 검증 모듈; 및
    상기 교차 검증 모듈에 의해 검증된 장애물 정보를 기반으로 상기 차량을 제어하는 차량 제어 모듈을 포함하는 차량간 통신 기반 장애물 검증 시스템.
  2. 제1항에 있어서,
    상기 송신자 정보는 차량 고유 아이디와, 사전 생성되어 중앙 서버에 등록되어 있는 비밀키에 의해 생성된 인증 정보를 포함하고,
    상기 보안 모듈은,
    상기 제2 장애물 정보의 상기 송신자 정보에 대한 검증을 위해 상기 중앙 서버에 인증을 요청하고;
    상기 중앙 서버로부터 인증에 성공하면 상기 인증 정보를 설정 기간 동안 캐싱하고;
    상기 설정 기간 경과 후 상기 송신자 정보에 대한 재인증을 상기 중앙 서버로 요청하는 차량간 통신 기반 장애물 검증 시스템.
  3. 제2항에 있어서,
    상기 차량 제어 모듈은,
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 성공하면, 상기 제2 장애물 정보를 제1 신뢰도로 반영하여 상기 차량을 제어하고;
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하면, 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우에 한하여 상기 제2 장애물 정보를 상기 제1 신뢰도보다 낮은 제2 신뢰도로 반영하여 상기 차량을 제어하는 차량간 통신 기반 장애물 검증 시스템.
  4. 제3항에 있어서,
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대가 아닌 영역에 위치하는 경우, 상기 교차 검증 모듈은 상기 제2 장애물 정보를 상기 차량에 의해 상기 제2 장애물에 대하여 검출되는 상기 제1 장애물 정보와 비교하여 상기 제2 장애물 정보를 검증하는 차량간 통신 기반 장애물 검증 시스템.
  5. 제3항에 있어서,
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우, 상기 교차 검증 모듈은 상기 제2 장애물 정보를 다른 주변 차량으로부터 수신된 제3 장애물 정보와 비교하여 상기 제2 장애물 정보를 검증하는 차량간 통신 기반 장애물 검증 시스템.
  6. 제1항에 있어서,
    상기 교차 검증 모듈은,
    상기 제1 장애물 정보 중 상기 주변 차량에 해당하는 장애물을 선정하는 주변차량 장애물 검출부;
    상기 차량을 기준으로 하는 상기 주변 차량의 위치 정보를 이용하여, 상기 주변 차량을 기준으로 하는 상기 제2 장애물의 위치 정보를 상기 차량을 기준으로 하는 위치 정보로 변환하는 장애물정보 변환부;
    상기 제1 장애물 정보로부터 검출되는 상기 제1 장애물과 상기 제2 장애물 정보로부터 검출되는 상기 제2 장애물을 비교하는 장애물 비교부;
    상기 제2 장애물이 상기 차량의 사각지대에 위치하는지를 판단하는 사각지대 판단부; 및
    상기 제1 장애물과 상기 제2 장애물의 비교 결과에 따라 상기 제2 장애물 정보의 신뢰도를 결정하는 장애물정보 검증부를 포함하고,
    상기 장애물정보 검증부는,
    상기 제2 장애물이 상기 차량의 사각지대가 아닌 영역에 위치한 것으로 판단되면, 상기 제2 장애물을 검출하도록 상기 장애물 검출 모듈을 제어하고;
    상기 장애물 검출 모듈에 의해 검출된 장애물 정보에 따라 상기 차량 제어 모듈에서 상기 차량을 제어하도록 하는 차량간 통신 기반 장애물 검증 시스템.
  7. 제6항에 있어서,
    상기 교차 검증 모듈은 상기 제1 장애물 정보와 상기 제2 장애물 정보를 비교하여 상기 차량과 상기 주변 차량이 동일한 장애물을 검출하는지 여부를 판단하고,
    상기 차량과 상기 주변 차량이 동일한 장애물을 검출한 것으로 판단되면, 상기 차량 제어 모듈은 검출된 장애물을 고려하여 상기 차량을 제어하는 차량간 통신 기반 장애물 검증 시스템.
  8. 차량 주변의 장애물에 관련된 정보를 센서 모듈로부터 수집하는 단계;
    장애물 검출 모듈에 의해, 상기 센서 모듈로부터 수집된 정보로부터 장애물을 검출하는 단계;
    통신 모듈에 의해, 제1 장애물에 관한 제1 장애물 정보를 생성하여 주변 차량으로 송신하는 단계;
    상기 통신 모듈에 의해, 주변 차량에 의해 검출된 제2 장애물에 관한 제2 장애물 정보를 수신하는 단계;
    보안 모듈에 의해, 상기 제2 장애물 정보에 포함된 송신자 정보를 공개키 기반으로 검증하는 단계;
    교차 검증 모듈에 의해, 상기 제1 장애물 정보 및 상기 제2 장애물 정보를 기반으로 장애물을 교차 검증하는 단계; 및
    차량 제어 모듈에 의해, 상기 교차 검증된 장애물 정보를 기반으로 상기 차량을 제어하는 단계를 포함하는 차량간 통신 기반 장애물 검증 방법.
  9. 제8항에 있어서,
    상기 송신자 정보는 차량 고유 아이디와, 사전 생성되어 중앙 서버에 등록되어 있는 비밀키에 의해 생성된 인증 정보를 포함하고,
    상기 검증하는 단계는,
    상기 보안 모듈이 상기 송신자 정보에 대한 검증을 위해 상기 중앙 서버에 인증을 요청하는 단계;
    상기 보안 모듈이 상기 중앙 서버로부터 인증에 성공하면 상기 인증 정보를 설정 기간 동안 캐싱하는 단계; 및
    상기 설정 기간 경과 후 상기 송신자 정보에 대한 재인증을 상기 중앙 서버로 요청하는 단계를 포함하는 차량간 통신 기반 장애물 검증 방법.
  10. 제9항에 있어서,
    상기 차량을 제어하는 단계는,
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 성공하면, 상기 제2 장애물 정보를 제1 신뢰도로 반영하여 상기 차량을 제어하는 단계; 및
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하면, 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우에 한하여 상기 제2 장애물 정보를 상기 제1 신뢰도보다 낮은 제2 신뢰도로 반영하여 상기 차량을 제어하는 단계를 포함하는 차량간 통신 기반 장애물 검증 방법.
  11. 제9항에 있어서,
    상기 교차 검증하는 단계는,
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대가 아닌 영역에 위치하는 경우, 상기 제2 장애물 정보를 상기 차량에 의해 상기 제2 장애물에 대하여 검출되는 상기 제1 장애물 정보와 비교하여 상기 제2 장애물 정보를 검증하는 단계; 및
    상기 보안 모듈에 의해 상기 송신자 정보의 인증이 실패하고 상기 제2 장애물이 상기 차량의 사각지대에 위치하는 경우, 상기 제2 장애물 정보를 다른 주변 차량으로부터 수신된 제3 장애물 정보와 비교하여 상기 제2 장애물을 검증하는 단계를 포함하는 차량간 통신 기반 장애물 검증 방법.
  12. 제8항에 있어서,
    상기 교차 검증하는 단계는,
    상기 제1 장애물 정보 중 상기 주변 차량에 해당하는 장애물을 선정하는 단계;
    상기 차량을 기준으로 하는 상기 주변 차량의 위치 정보를 이용하여, 상기 주변 차량을 기준으로 하는 상기 제2 장애물의 위치 정보를 상기 차량을 기준으로 하는 위치 정보로 변환하는 단계;
    상기 제1 장애물 정보로부터 검출되는 상기 제1 장애물과 상기 제2 장애물 정보로부터 검출되는 상기 제2 장애물을 비교하는 단계;
    상기 제2 장애물이 상기 차량의 사각지대에 위치하는지 여부를 판단하는 단계; 및
    상기 제2 장애물이 상기 사각지대에 위치하지 않는 경우 상기 제2 장애물을 검출하도록 제어하는 단계를 포함하는 차량간 통신 기반 장애물 검증 방법.
  13. 제8항 내지 제12항 중 어느 한 항에 기재된 차량간 통신 기반 장애물 검증 방법을 실행하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체.
PCT/KR2018/014935 2018-11-29 2018-11-29 차량간 통신 기반 장애물 검증 시스템 및 방법 WO2020111324A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0150574 2018-11-29
KR1020180150574A KR102186810B1 (ko) 2018-11-29 2018-11-29 차량간 통신 기반 장애물 검증 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2020111324A1 true WO2020111324A1 (ko) 2020-06-04

Family

ID=70853329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014935 WO2020111324A1 (ko) 2018-11-29 2018-11-29 차량간 통신 기반 장애물 검증 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR102186810B1 (ko)
WO (1) WO2020111324A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162114A (zh) * 2021-12-07 2022-03-11 杭州伯镭智能科技有限公司 一种汽车无人驾驶用事故应急迫停控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134915A (ko) * 2012-05-31 2013-12-10 현대자동차주식회사 차량간 통신을 이용한 장애물 감지 장치 및 방법
KR20160092315A (ko) * 2015-01-27 2016-08-04 현대모비스 주식회사 운전자 지원 시스템 및 차량간 통신에 기반한 안전 운전 제어 시스템 및 방법
US20170050641A1 (en) * 2015-08-19 2017-02-23 Lg Electronics Inc. Vehicle Assistance Apparatus And Vehicle
KR20180023328A (ko) * 2016-08-25 2018-03-07 현대자동차주식회사 장애물과의 충돌 회피 방법
KR20180042034A (ko) * 2016-10-17 2018-04-25 현대자동차주식회사 V2x 데이터 신뢰도 검증을 위한 v2x 통신 장치, 그를 포함한 v2x 통신 시스템 및 그 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170069096A (ko) * 2015-12-10 2017-06-20 엘지전자 주식회사 차량 운전 보조장치 및 이를 포함하는 차량

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130134915A (ko) * 2012-05-31 2013-12-10 현대자동차주식회사 차량간 통신을 이용한 장애물 감지 장치 및 방법
KR20160092315A (ko) * 2015-01-27 2016-08-04 현대모비스 주식회사 운전자 지원 시스템 및 차량간 통신에 기반한 안전 운전 제어 시스템 및 방법
US20170050641A1 (en) * 2015-08-19 2017-02-23 Lg Electronics Inc. Vehicle Assistance Apparatus And Vehicle
KR20180023328A (ko) * 2016-08-25 2018-03-07 현대자동차주식회사 장애물과의 충돌 회피 방법
KR20180042034A (ko) * 2016-10-17 2018-04-25 현대자동차주식회사 V2x 데이터 신뢰도 검증을 위한 v2x 통신 장치, 그를 포함한 v2x 통신 시스템 및 그 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162114A (zh) * 2021-12-07 2022-03-11 杭州伯镭智能科技有限公司 一种汽车无人驾驶用事故应急迫停控制方法
CN114162114B (zh) * 2021-12-07 2024-03-29 上海伯镭智能科技有限公司 一种汽车无人驾驶用事故应急迫停控制方法

Also Published As

Publication number Publication date
KR20200064439A (ko) 2020-06-08
KR102186810B1 (ko) 2020-12-04

Similar Documents

Publication Publication Date Title
US11582222B2 (en) Authentication of vehicle-to-vehicle communications
EP3975142A1 (en) Smart lock unlocking method and related device
US9842263B2 (en) Inter-vehicle authentication using visual contextual information
TWI513266B (zh) 基於位置認證的方法和用戶裝置
KR102208418B1 (ko) 공유차량의 생체인식 장치 및 방법
JP7067509B2 (ja) 自動バレーパーキングシステム、自動バレーパーキングプログラムおよび記憶媒体
WO2021101054A1 (en) Electronic device for processing v2x message and operating method thereof
CN108399792A (zh) 一种无人驾驶车辆避让方法、装置和电子设备
JP2008217218A (ja) 事故情報取得システム
WO2020111324A1 (ko) 차량간 통신 기반 장애물 검증 시스템 및 방법
KR101612836B1 (ko) 차량내의 사고 영상 취득 방법 및 장치, 그리고 이를 실행하는 컴퓨터 판독 가능한 기록 매체
EP3229163B1 (en) Apparatus and method for authentication based on cognitive information
WO2022045507A1 (ko) 게이트 출입을 위한 인증 방법 및 장치
WO2021066252A1 (ko) 바이오메트릭스 기반 차량 제어 장치 및 이를 이용한 차량 제어 방법
WO2022146017A1 (ko) 도로 상의 장애물 인식 결과를 이용한 사고 영상 선별 방법
WO2022131446A1 (ko) 생체 인식 기반으로 이륜차에 대한 운전자 특정 시동 제어 및 운전 정보 생성을 수행하기 위한 장치 및 방법
KR20220170151A (ko) 차량 내부 네트워크에 대한 침입 대응 방법 및 장치
KR20140092175A (ko) 차량간 통신장치 및 그 방법
WO2022092398A1 (ko) 차량 카메라를 이용한 감시 방법 및 그 시스템
KR100767310B1 (ko) 개체 상호간의 데이터 교환 방법 및 장치
KR100384742B1 (ko) 차량번호 인식 시스템
KR102286264B1 (ko) 스마트 블록을 이용한 철도 요금 정산방법 및 시스템
KR102316893B1 (ko) 블루투스 모듈 이중화를 이용한 출입문 자동열림 오동작 방지장치 및 방법
JP7357019B2 (ja) 事故対応システム、及び事故対応方法
WO2023032011A1 (ja) 生体認証制御ユニット、システム、生体認証制御ユニットの制御方法及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941598

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18941598

Country of ref document: EP

Kind code of ref document: A1