WO2020108635A1 - 电池加热系统和方法 - Google Patents

电池加热系统和方法 Download PDF

Info

Publication number
WO2020108635A1
WO2020108635A1 PCT/CN2019/122132 CN2019122132W WO2020108635A1 WO 2020108635 A1 WO2020108635 A1 WO 2020108635A1 CN 2019122132 W CN2019122132 W CN 2019122132W WO 2020108635 A1 WO2020108635 A1 WO 2020108635A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
battery
module
heating
voltage data
Prior art date
Application number
PCT/CN2019/122132
Other languages
English (en)
French (fr)
Inventor
刘宇
娄其栋
李前邓
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US16/964,314 priority Critical patent/US11394066B2/en
Priority to EP19888514.7A priority patent/EP3731333B1/en
Publication of WO2020108635A1 publication Critical patent/WO2020108635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature

Definitions

  • the present application relates to the field of batteries, and in particular to a battery heating system and method.
  • the capacity of the battery will decrease rapidly with the temperature drop.
  • the output power of the battery also decreases.
  • the battery needs to be heated according to the battery temperature collected in real time. For example, in the process of using batteries as the power of new energy vehicles, especially during low temperature driving.
  • the battery heating system and method provided in the embodiments of the present application can improve the fineness of battery heating.
  • an embodiment of the present application provides a battery heating system, including: a temperature sampling module for collecting a target sampling temperature, wherein the target sampling temperature includes the real-time temperature of the battery module set or the outside of the battery pack to which the battery module set belongs The real-time temperature of the environment, the battery module set contains N battery modules, N is a positive integer; the first switching device is used to turn on or off according to the drive signal; the control module is used to according to the target sampling temperature and target sampling temperature Corresponding to the driving signal, it is determined to control the on time of the first switching device and the off time of the first switching device; and, based on the on time of the first switching device and the off time of the first switching device, generate a driving signal, wherein The corresponding relationship between the target sampling temperature and the driving signal includes the corresponding relationship between the target sampling temperature and the duration of controlling the on-time of the first switching device and the corresponding relationship between the target sampling temperature and the duration of controlling the off-time of the first switching device; the heating module, one end of the heating
  • an embodiment of the present application provides a battery heating method, including: a temperature sampling module collects a target sampling temperature; the control module determines to control the conduction of the first switching device according to the target sampling temperature and the corresponding relationship between the target sampling temperature and the driving signal Duration and control the first switching device off duration; the control module generates and outputs a driving signal based on the first switching device on duration and the first switching device off duration; the first switching module receives the driving signal and turns on according to the driving signal Or off; the first switch device is on, the heating module uses the output power of the battery module set to heat the battery module set; the first switch module is off, the heating module stops heating the battery module set.
  • the first switching device can be turned on or off according to the driving signal, and when the first switching device is turned on, the heating module heats the battery module assembly, when the first switch When the device is disconnected, the heating module stops heating the battery module assembly. Because the driving signal is determined according to the duration of controlling the on-time of the first switching device and the duration of controlling the off-time of the first switching device, and the duration of controlling the on-time of the first switching device and the duration of turning off the first switching device correspond to the target sampling temperature relationship.
  • the control module can control the on time and the off time of the first switching device, thereby controlling the heating time of the heating module to the battery module assembly and the time of stopping heating, finely heating the battery, and improving the battery The fineness of heating.
  • FIG. 1 is a schematic structural diagram of a battery heating system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a partial correspondence relationship between a target sampling temperature and a duty cycle of a driving signal in an example of an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a reference driving signal and a feedback signal in an example of an embodiment of this application;
  • FIG. 4 is a schematic structural diagram of a battery heating circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another battery heating circuit provided by an embodiment of the present application.
  • FIG. 6 shows a flowchart of a battery heating method provided by an embodiment of the present application.
  • the battery pack includes a plurality of battery modules connected in series, parallel or mixed. Among them, a plurality of battery modules in the battery pack may be called a set of battery modules, and each battery module includes a plurality of single cells.
  • the embodiments of the present application provide a battery heating system and method, which can be applied in a low-temperature driving scenario.
  • the heating module can use the output power of the battery module assembly to heat the battery module assembly.
  • a first switching device is provided between the heating module and the battery module set, and the control module is used to control the on-time duration of the first switching device and the off-time duration of the first switching device.
  • the control module controls the first switching device to turn on, the heating module heats the battery module assembly; when the control module controls the first switching device to turn off, the heating module stops heating the battery module assembly.
  • control module can control the on-time duration of the first switching device and the off-time duration of the first switching device according to the real-time temperature of the battery module set or the real-time temperature of the external environment of the battery pack to which the battery module set belongs.
  • the duration of the first switching device being turned on and the duration of the first switching device being turned off can be controlled according to the temperature of the battery module set or the external ambient temperature of the battery pack to which the battery heating system belongs, thereby further realizing the dynamics of the heating module control. Therefore, the fineness of battery heating can be improved.
  • FIG. 1 is a schematic structural diagram of a battery heating system according to an embodiment of the present application.
  • the battery heating system 10 includes a temperature sampling module 11, a control module 12, a first switching device 13 and a heating module 14.
  • the temperature sampling module 11 is used to collect the target sampling temperature.
  • the target sampling temperature includes the real-time temperature of one battery module in the battery module set 20, the average real-time temperature of the plurality of battery modules in the battery module set 20, the internal temperature of the battery pack to which the battery module set 20 belongs, and the battery The housing temperature of the battery pack to which the module set 20 belongs or the real-time temperature of the external environment of the battery pack to which the battery module set 20 belongs.
  • the battery module set 20 includes N battery modules, where N is a positive integer.
  • the chain line in FIG. 1 indicates that the temperature sampling module 11 can collect the target sampling temperature from the battery module set 20.
  • a temperature sampling unit may be provided for each of the N battery modules included in the battery module set 20.
  • each temperature sampling unit can collect the real-time temperature of each single cell included in the corresponding battery module.
  • the temperature sampling unit corresponding to the battery module can collect i real-time temperature data, T1, T2, ..., Ti.
  • the minimum temperature data of the collected i real-time temperature data can be used as the real-time temperature of the battery module, where i is a positive integer.
  • a minimum real-time temperature value can be selected from the real-time temperatures of the N battery modules as the real-time temperature of the battery module set 20.
  • the temperature sampling module 11 may be provided in the battery pack box Outside.
  • the battery pack is installed in a new energy vehicle, and the temperature sampling module 11 may be installed on the chassis of the new energy vehicle.
  • the temperature sampling module 11 and the control module 12 are connected through a first communication line.
  • the control module 12 sends a control instruction for controlling the temperature sampling module 11 to collect the target sampling temperature to the temperature sampling module 11 through the first communication line.
  • the temperature sampling module 11 collects the target sampling temperature, and returns the collected target sampling temperature to the control module 12 through the first communication line.
  • the specific implementation of the first communication line may be a daisy chain communication structure.
  • control module 12 and the temperature sampling module 11 can also be connected by wireless communication.
  • the temperature sampling module 11 when the temperature sampling module 11 includes a plurality of temperature sampling units, adjacent temperature sampling units are connected through a second communication line.
  • the real-time temperature of the multiple battery modules collected by the multiple temperature sampling units is transmitted and summarized through the second communication line.
  • the aggregated real-time temperature of the plurality of battery modules is converted into a data stream satisfying the first communication line protocol by the isolation conversion unit and returned to the control module 12.
  • the specific implementation of the second communication line may be a daisy chain communication structure.
  • the control module 12 is configured to determine the control duration of the first switching device 13 and the control duration of the first switching device 13 according to the target sampling temperature and the corresponding relationship between the target sampling temperature and the driving signal; and, based on the first switching device 13 The on time and the off time of the first switching device 13 generate a drive signal.
  • the correspondence relationship between the target sampling temperature and the driving signal includes the correspondence relationship between the target sampling temperature and the control duration of the first switching device 13 and the correspondence relationship between the target sampling temperature and the control duration of the first switching device 13.
  • control module 12 is specifically used to:
  • the control module 12 determines to control the ON duration of the first switching device 13 and the first switching device 13 according to the target sampling temperature and the corresponding relationship between the target sampling temperature and the driving signal Off duration; and, based on the on duration of the first switching device 13 and the off duration of the first switching device 13, a drive signal is generated.
  • the driving signal includes two different driving sub-signals, a first driving sub-signal and a second driving sub-signal.
  • the first driving sub-signal can control the first switching device 13 to turn on, and the second driving sub-signal can control the first switching device 13 to turn off.
  • the target sampling temperature in order to ensure that the target sampling temperature is always maintained at the battery target operating temperature during driving, when the target sampling temperature is not less than the first temperature threshold and not greater than the battery target operating temperature, the target sampling temperature The greater the difference from the battery target operating temperature, the longer the first switching device 13 is turned on, and the shorter the first switching device 13 is turned off; the smaller the difference between the target sampling temperature and the battery target operating temperature, the first switch The shorter the on-time of the device 13 is, the longer the off-time of the first switching device 13 is.
  • the first switching device 13 when the target sampling temperature is less than the first temperature threshold, the first switching device 13 is turned off for 0, that is, the first switching device 13 continues to be turned on; when the target sampling temperature reaches the battery target operating temperature, the first The duration of the switching device 13 being turned on is 0, that is, the first switching device 13 is continuously turned off.
  • the battery module set 20 since the battery module set 20 itself has a thermal effect, when the target sampling temperature reaches the second temperature threshold, the battery module set 20 can rely on its own thermal effect to keep the target sampling temperature at the battery target operating temperature, the first The duration of the switch 13 can be set to 0.
  • the second temperature threshold is less than the target operating temperature of the battery, and the second temperature threshold is greater than the first temperature threshold.
  • the battery target operating temperature represents the temperature at which the battery module assembly is expected to operate.
  • the target sampling temperature reaches the battery target operating temperature temperature, it can be considered that the battery module set is operating at the temperature where it is expected.
  • the corresponding relationship between the target sampling temperature and the driving signal may specifically include: the ratio of the on-time duration of the first switching device 13 to the off-time duration of the first switching device 13 and the corresponding relationship between the target sampling temperature .
  • the drive signal represents a pulse signal with a period T.
  • the corresponding relationship between the target sampling temperature and the driving signal includes: the corresponding relationship between the target sampling temperature and the conduction duration of the first switching device 13 in each cycle, and the target sampling temperature and each Correspondence of the off-time duration of the first switching device 13 within a period.
  • the first driving sub-signal may be high level, and the second driving sub-signal may be low level.
  • the corresponding relationship between the target sampling temperature and the drive signal can be expressed as the relationship between the target sampling temperature and the duty cycle of the drive signal.
  • the duty ratio of the driving signal indicates that in a cycle, the ratio of the on duration of the first switching device 13 to the total duration of the cycle.
  • FIG. 2 is a schematic diagram of the partial correspondence between the target sampling temperature and the duty ratio of the driving signal in an example of an embodiment of the present application.
  • the target sampling temperature is the real-time temperature of the external environment of the battery pack to which the battery module assembly 20 belongs.
  • the corresponding drive signal duty cycle is 98%; when the target sampling temperature is -25°C, the corresponding drive signal duty cycle is 90%; when the target sampling temperature is -20°C , The corresponding drive signal duty cycle is 83%; when the target sampling temperature is -15 °C, the corresponding drive signal duty cycle is 70%; when the target sampling temperature is -10 °C, the corresponding drive signal duty cycle
  • the ratio is 61%; when the target sampling temperature is -5°C, the corresponding drive signal duty cycle is 43%; when the target sampling temperature is 0°C, the corresponding drive signal duty cycle is 30%; when the target sampling temperature At 5°C, the corresponding duty cycle of the drive signal is 23%.
  • the first temperature threshold is less than -30°C, that is, when the target sampling temperature does not exceed the first temperature threshold, the duty cycle of the driving signal is 100%.
  • the battery module can rely on its own thermal effect to maintain the target sampling temperature at 20°C, that is, the second temperature threshold is equal to 5°C.
  • the corresponding relationship between the target sampling temperature and the driving signal is different. Therefore, the corresponding relationship between the target sampling temperature and the driving signal often needs to be calibrated.
  • control module 12 when the driving signal is a pulse signal, the control module 12 may be specifically used to:
  • the difference between the target sampling temperature and the battery target operating temperature is taken as the actual temperature deviation.
  • the on-time duration of the first switching device 13 and the off-time duration of the first switching device 13 are determined.
  • control module 12 may be specifically implemented as a controller and a driving unit.
  • the controller is used to send a driving instruction for controlling the driving unit to generate a driving signal, and send various instructions to other functional modules of the battery heating system.
  • the driving unit is configured to receive a driving instruction sent by the controller of the control module 12 to control the driving unit to generate a driving signal, and generate a driving signal capable of driving the first switching device 13 on or off in response to the control instruction.
  • an isolation unit is provided between the drive unit and the controller of the control module 12 to electrically isolate the communication between the two.
  • the first switching device 13 is used to turn on or off according to the driving signal.
  • the first switching device 13 is a switching device that can be turned on or off under the control of the control module 12.
  • the first switching device 13 may include a relay, a metal oxide semiconductor (Metal Oxide Semiconductor, MOS) field effect transistor, or other switching devices.
  • a relay Metal Oxide Semiconductor, MOS
  • MOS Metal Oxide Semiconductor
  • the first switching device 13 in order to achieve fast and precise control of the heating module 14 through the rapid turning on and off of the first switching device 13, includes a metal oxide semiconductor field effect transistor.
  • the control module 12 in this embodiment controls the heating module 14 by controlling the metal oxide semiconductor field effect transistor, which can realize fast and precise control of the heating module 14, and the entire battery heating system is relatively simple. The energy consumption of the entire battery heating system is reduced.
  • the first switching device 13 is preferably a switching device with over-temperature protection.
  • the first switching device 13 may be an over-temperature protection metal oxide semiconductor field effect transistor.
  • the battery heating system further includes: a signal feedback back detection module.
  • the drive signal of the first switching device 13 is returned to the control module 12 as a feedback signal, and the drive signal generated by the control module 12 is used as a reference drive signal, and it is determined whether the feedback signal is the same as the reference drive signal.
  • the signal is a normal feedback signal, and the first switching device 13 is normal; if the feedback signal does not completely track the copy reference driving signal, it is considered that the first switching device 13 has an over-temperature fault.
  • FIG. 3 is a schematic diagram of a reference driving signal and a feedback signal in an example of an embodiment of the present application.
  • the feedback signal is a normal feedback signal; if compared to the reference drive signal, when the reference drive signal is at a high level Usually, the feedback signal is pulled down to low level frequently, then the feedback signal is the over-temperature feedback signal.
  • the first switching device 13 in order to protect the first switching device 13 from over-temperature, when the feedback signal is an over-temperature feedback signal, the first switching device 13 realizes the characteristic of short input impedance. Specifically, when the input impedance characteristic of the first switching device 13 is activated, a short circuit is formed between the gate and the drain of the first switching device 13, the voltage of the gate is less than the threshold voltage, and the first switching device 13 is turned off.
  • Heating module 14 one end of the heating module 14 is connected to one end of the battery module assembly 20 through the first switching device 13, and the other end of the heating module 14 is connected to the other end of the battery module assembly 20, when the first switching device 13 is turned on, The heating module 14 uses the output power of the battery module set 20 to heat the battery module set 20. When the first switching device 13 is turned off, the heating module 14 stops heating the battery module set 20.
  • the first switching device 13 can be turned on or off according to the driving signal.
  • the heating module 14 heats the battery module assembly 20 when When the first switching device 13 is turned off, the heating module 14 stops heating the battery module assembly 20.
  • the driving signal is determined according to the control of the on-time duration of the first switching device 13 and the control of the off-time duration of the first switching device 13, and the control of the on-time duration of the first switching device 13 and the off-time duration of the first switching device 13 and the target sampling There is a corresponding relationship between the temperatures.
  • control module 12 can control the on time and the off time of the first switching device 13, and then control the heating time of the heating module 14 to the battery module assembly 20 and the time of stopping heating, thereby improving The fineness of battery heating.
  • the heating module 14 in order to improve the uniformity of heating and the heating performance of the heating module 14, includes N heaters connected in series.
  • the N heaters included in the heating module 14 correspond to the N battery modules included in the battery module set 20 in one-to-one correspondence.
  • the battery module set 20 includes N battery modules connected in series
  • N heaters connected in series may be provided on one side of the battery module set 20, each heater heating the corresponding battery module .
  • the distance between each heater and the corresponding battery module may be equal.
  • each heater may include multiple heating units. Specifically, each heater may include m heating units, and m heating units may be evenly distributed around each battery module assembly 20, where m is a positive integer. Exemplarily, if each heater includes 2 heating units, N heating units may be disposed on one side of the battery module set 20, and correspond one-to-one to the N battery modules included in the battery module set 20. The remaining N heating units may be disposed on the other side of the battery module set 20, and correspond one-to-one to the N battery modules included in the battery module set 20.
  • the battery heating system 10 further includes: a second switching device.
  • the second switching device is disposed between the other end of the heating module 14 and the other end of the battery module assembly 20.
  • the control module 12 may indirectly control the first switching device 13 and the second switching device to be simultaneously turned on or turned off at the same time.
  • the heating module 14 is controlled to heat the battery module assembly 20 or the heating module 14 is indirectly controlled to stop heating the battery module assembly 20.
  • the heating module 14 needs to be controlled to stop heating the battery module assembly 20, by setting the first switching device 13 and the second switching device, when any one of the first switching device 13 and the second switching device fails
  • the heating of the battery module assembly 20 by the heating module 14 can be stopped in time by controlling the opening of another switching device.
  • the second switching device has the same features as the first switching device 13 in the foregoing embodiments, and details are not described herein again.
  • the second switching device may be a relay, a metal oxide semiconductor field effect transistor, or other switching devices that can be turned on or off under the control of the control module 12.
  • At least one of the first switching device 13 and the second switching device may be a metal oxide semiconductor field effect transistor.
  • the second switching device is a relay.
  • the second switching device can be controlled to be always in a closed state, and a driving signal is output to the first switching device 13.
  • the battery heating system 10 may further include a voltage sampling module.
  • the voltage sampling module is respectively connected to both ends of the heating module 14, and the voltage sampling module is used to separately collect the first collected voltage data at one end of the heating module 14 and the second collected voltage data at the other end of the heating module 14.
  • one end of the heating module 14 is connected to the negative electrode of the battery module set 20 through the first switching device 13
  • the other end of the heating module 14 is connected to the positive electrode of the battery module set 20 through the second switching device.
  • control module 12 is specifically used to:
  • the battery heating system 10 According to the first collected voltage data, the second collected voltage data collected by the voltage sampling module and the preset normal operation judgment conditions, it is determined whether the battery heating system 10 is operating normally. If both the first collected voltage data and the second collected voltage data satisfy the normal operation judgment condition, it is determined that the battery heating system 10 is operating normally.
  • the first collected voltage data in the embodiment of the present application represents: the potential difference between the potential at one end of the heating module 14 and the reference potential.
  • the second collected voltage data represents: the potential difference between the potential at the other end of the heating module 14 and the reference potential.
  • the reference potential may be the potential of the negative electrode of the battery module set 20.
  • the voltage sampling module is connected to the control module 12.
  • control module 12 sends a working instruction for instructing the voltage sampling module to collect the first collected voltage data and the second collected voltage data to the voltage sampling module, and the voltage sampling module collects the first collected data and the second in response to the working instruction Collect the voltage data, and return the collected first collected voltage data and second collected voltage data to the control module 12.
  • connection between the voltage sampling module and the control module 12 may be a wired connection or a wireless connection.
  • an isolation unit is provided between the voltage sampling module and the control module 12.
  • the normal operation of the battery heating system 10 indicates that the battery heating system 10 does not have a heating failure.
  • the normal operation of the battery heating system 10 includes that the first switching device 13 and the second switching device can normally turn on and off according to the driving signal open.
  • the normal operation judgment condition specifically includes:
  • the first collected voltage data and the second collected voltage data are both less than the preset first calibration value; And, when the first switching device 13 is opened and the second switching device is closed, both the first collected voltage data and the second collected voltage data are greater than the preset second calibration value; and, when the first switching device 13 and the second switch When the devices are closed, the first collected voltage data is less than the preset first calibration value, and the second collected voltage data is greater than the preset second calibration value.
  • the first calibration value is the product of the first calibration voltage and the first calibration coefficient.
  • the first calibration voltage is the voltage at the connection between the second switching device and the positive electrode of the battery module assembly 20 when both the first switching device 13 and the second switching device are disconnected and the battery module assembly 20 outputs a rated voltage.
  • the second calibration value is the product of the second calibration voltage and the second calibration coefficient.
  • the second calibration voltage is the voltage at the connection between the heating module 14 and the first switching device 13 when both the first switching device 13 and the second switching device are closed and the battery module assembly 20 outputs a rated voltage.
  • the first calibrated voltage in the embodiment of the present application represents: the potential difference between the potential of the end of the second switching device connected to the positive electrode of the battery module set 20 and the reference potential.
  • the second calibrated voltage indicates that the potential of one end of the heating module 14 is different from the reference potential.
  • one end of the heating module 14 may be connected to the positive electrode of the battery module set 20, and the other end of the heating module 14 is connected to the negative electrode of the battery module set 20.
  • the second collected voltage data may be collected at one end of the heating module 14 and the first collected voltage data may be collected at the other end of the heating module 14.
  • the first calibrated voltage means the potential difference between the potential at one end of the first switching device connected to the positive electrode of the battery module set 20 and the reference potential
  • the second calibrated voltage means Potential difference.
  • the heating module 14 heats the battery module assembly 20, which is specifically expressed as: the control module 12 generates a driving signal, and uses the driving signal to control the first switching device 13 to turn on or off, and the second switching device is in Closed.
  • the first switching device 13 and the second switching device respond to the instruction of the control module 12 to instruct the battery heating system 10 to start working, the first switching device 13 is turned on or off according to the driving signal, and the second switching device is in the closed state status.
  • the first switching device 13 is a low-side switching device and the second switching device is a high-side switching device
  • the first collected voltage data is represented as V_P_1
  • the second collected voltage data is represented as V_P_2
  • the first calibration value is represented as Va
  • the first calibration voltage is represented as Va 0
  • the first calibration coefficient is represented as ⁇ a
  • the second calibration value is represented as Vb
  • the first calibration voltage is represented as Vb 0
  • the first calibration coefficient is represented as ⁇ b .
  • normal operating conditions include:
  • V_P_1 ⁇ Va Before the heating module 14 heats the battery module assembly 20, when both the first switching device 13 and the second switching device are turned off, V_P_1 ⁇ Va, and V_P_2 ⁇ Va.
  • Va satisfies formula (1):
  • Va Va 0 ⁇ a (1)
  • Vb satisfies formula (2):
  • Vb Vb 0 ⁇ ⁇ b (2)
  • the first calibration coefficient may take a value less than one.
  • the first calibration coefficient may be 90%.
  • the second calibration coefficient may take a value greater than 1 considering the effect of ground offset.
  • the second calibration coefficient may be 150%.
  • the normal operation judgment conditions specifically include:
  • the heating module 14 ends the heating of the battery module assembly 20
  • the first switching device 13 is opened and the second switching device is closed
  • the first collected voltage data and the second collected voltage data are both greater than the preset second calibration value
  • both the first switching device 13 and the second switching device are turned off, both the first collected voltage data and the second collected voltage data are less than the preset first calibration value.
  • the heating module 14 ends heating the battery module assembly 20, which means that after the driving signal ends, the first switching device 13 continues to be in an off state; or, the first switching device 13 and the second switching device respond to The control module 12 is instructed to stop heating, and is continuously in the off state.
  • V_P_1 ⁇ Va, and V_P_2 ⁇ Va are turned off.
  • an isolation unit is provided between the control module 12 and the first switching device 13 to control the control module 12 and the first The communication between a switching device 13 is electrically isolated.
  • an isolation unit may be provided between the other functional modules and the control module 12.
  • the specific implementation of the battery heating system 10 may be a battery heating circuit
  • FIG. 4 provides an embodiment of the present application. A schematic structural diagram of a battery heating circuit.
  • the battery heating circuit 40 may include: a temperature sampling module 11, a control module 12, a first switching device 13, a heating module 14, a first communication line 15, a second switching device 16, a voltage sampling module 17, a signal Return inspection module 18 and isolation conversion unit 19.
  • the battery module set 20 is formed by connecting N battery modules in series.
  • the N battery modules are M_1, ..., M_N-1, M_N.
  • the end of the battery module set 20 near M_N is the high voltage end of the battery module set 20
  • the end of the battery module set 20 near M_1 is the low voltage end of the battery module set 20
  • the low voltage end of the battery module set 20 is grounded.
  • the temperature sampling module 11 collects the target sampling temperature
  • the collected target sampling temperature is converted into a data stream satisfying the first communication line protocol through the isolation communication unit 19, and then transmitted to the controller 121 through the first communication line 15.
  • the control module 12 is connected to the temperature sampling module 11, the voltage sampling module 17, the gate of the first switching device 13, the signal return detection module 18, and the second switching device 16 respectively.
  • the connection relationship between the control module 12 and the second switch module 16 is not shown in FIG. 4.
  • the heating module 14 includes N heaters connected in series, namely P_1,..., P_N-1, and P_N. N heaters respectively heat N battery modules.
  • One end of the first switching device 13 is connected to one end of the first heater P_1, and the other end of the first switching device 13 is grounded.
  • One end of the second switching device 16 is connected to one end of the Nth heater P_N, and the other end of the second switching device 16 is connected to the high-voltage end of the battery module assembly 20.
  • the voltage sampling module 17 collects the second collected voltage data V_P_2 at the point A through the first solid line 171.
  • the voltage sampling module 17 collects the first collected voltage data V_P_1 at the point C through the second solid line 172.
  • the signal back-checking module 18 includes a first resistor R1 and a second resistor R2. Wherein, one end of the first resistor R1 is connected to the control module 12 and the other end of the first resistor R1 is connected to the first switching device 13. One end of the second resistor R2 is connected to the other end of R1, and the other end of the second resistor R2 is grounded.
  • R1 and R2 constitute a voltage dividing circuit to provide the gate driving voltage of the first switching device 13.
  • the internal resistance of the first switching device 13 will short-circuit the gate-to-source impedance Rgs, making R2
  • the equivalent parallel resistance value after parallel connection with Rgs becomes much smaller than R2. Therefore, the gate driving voltage obtained by dividing the gate of the first switching device 13 is much smaller than the threshold voltage that enables the first switching device 13 to open. Therefore, the first switching device 13 is turned off, and the first switching device 13 functions as an over-temperature protection.
  • the first resistor R1, the second resistor R2 and the short-circuit input impedance RS of the first switching device 13 must satisfy the formula (3) and formula (4):
  • RS represents the input impedance of the gate when the gate is shorted to the source.
  • R1 and R2 need to be within a reasonable range, so that the size of the driving current of the first switching device 13 meets the requirements.
  • control module 12 may include: a controller 121 and a driving unit 122.
  • the battery heating circuit 40 further includes an isolation unit 110.
  • the isolation unit 110 may be disposed on the line between the controller 121 and the driving unit 122, and between the controller 121 and the voltage sampling module 17 On the line and between the controller 121 and the signal recheck module 18.
  • both the first calibration voltage and the second calibration voltage may be collected by the voltage sampling module 17.
  • the dotted line 173 in FIG. 4 indicates that the voltage sampling module 17 collects the voltage at point C, and uses the collected voltage as the first calibrated voltage Va 0 ;
  • the solid line 172 may also indicate that the voltage sampling module 17 collects the voltage at point B , And use the collected voltage as the second calibration voltage Vb 0 .
  • the first calibration voltage Va 0 may also be directly obtained according to the parameters of the battery module and the parameters of the battery module set.
  • a switching device may be provided at either end of the battery module assembly 20, or at both ends of the battery module assembly 20 One switching device is provided for each.
  • a switch device K1 and a switch device K2 are respectively provided at both ends of the battery module set 20.
  • control module 12 can control K1 and/or K2 to disconnect to ensure the safe heating performance of the battery heating system.
  • another specific embodiment of the battery heating system 10 may use another battery heating circuit.
  • FIG. 5 is different from FIG. 4 in that the temperature sampling module 11 includes N temperature sampling units, which are S_1,..., S_N-1, and S_N, respectively.
  • the adjacent temperature sampling units are connected through the second communication line 111.
  • N temperature sampling units are respectively disposed at both ends of the N battery modules.
  • the temperature sampling unit S_1 is disposed at both ends of the battery module M_1, ...
  • the temperature sampling unit S_N-1 is disposed at both ends of the battery module M_N-1
  • the temperature sampling unit S_N is disposed at the battery module M_N Both ends.
  • each temperature sampling unit collects the real-time temperature of the corresponding battery module
  • the real-time temperatures of the multiple battery modules are transmitted in the temperature sampling unit through the second communication line 111.
  • the real-time temperature of the N battery modules is summarized, it is converted into a data stream satisfying the first communication line protocol through the isolation communication unit 19, and then transmitted to the controller through the first communication line 15.
  • this embodiment only shows one transmission method of the real-time temperature of the battery module.
  • the real-time temperature data of the battery module can be sent or collected to the controller 121 by wireless or wired methods, respectively.
  • FIG. 6 shows a flowchart of a battery heating method provided by an embodiment of the present application, which can be applied to the above battery heating system.
  • the battery heating method 60 includes S61 to S66:
  • the temperature sampling module 11 collects the target sampling temperature.
  • the control module 12 determines the control duration of the first switching device 13 and the control duration of the first switching device 13 according to the target sampling temperature and the corresponding relationship between the target sampling temperature and the driving signal.
  • the control module 12 generates and outputs a driving signal based on the on duration of the first switching device 13 and the off duration of the first switching device 13.
  • the first switch module 13 receives the driving signal and turns on or off according to the driving signal.
  • the first switching device 13 is turned on, and the heating module 14 uses the output power of the battery module set 20 to heat the battery module set 20.
  • the heating module 14 includes N heaters, and the N heaters correspond to the N battery modules included in the battery module set 20 in one-to-one correspondence, where N is a positive integer.
  • the battery heating method 60 when a second switching device is provided between the other end of the heating module 14 and the other end of the battery module assembly 20, the battery heating method 60 further includes:
  • the control module 12 collects first collected voltage data and second collected voltage data.
  • the first collected voltage data represents voltage data at one end of the heating module 14 and the second collected voltage data represents voltage data at the other end of the heating module 14.
  • one end of the heating module 14 is connected to the negative electrode of the battery module set 20, and the other end of the heating module 14 is connected to the positive electrode of the battery module set 20.
  • the control module 12 determines whether the battery heating system 10 is operating normally according to the first collected voltage data, the second collected voltage data, and preset normal operation judgment conditions.
  • control module 12 judges that the battery heating system 10 operates normally.
  • the control module 12 judges that the battery heating system 10 operates normally, specifically including the first to fourth steps:
  • the heating module 14 uses the output power of the battery module set 20 to heat the battery module set 20, if the first switching device 13 and the second switching device are both disconnected, the first collected voltage data and the first The two collected voltage data are less than the preset first calibration value.
  • both the first collected voltage data and the second collected voltage data are greater than the preset second calibration value.
  • Step 3 When both the first switching device 13 and the second switching device are closed, the first collected voltage data is less than the preset first calibration value, and the second collected voltage data is greater than the preset second calibration value.
  • control module 12 determines that the battery heating system 10 is operating normally.
  • the control module 12 judges that the battery heating system 10 operates normally, specifically including the first to third steps:
  • Step 1 Before the heating module 14 finishes heating the battery module assembly 20, when the first switching device 13 is opened and the second switching device is closed, both the first collected voltage data and the second collected voltage data are greater than the preset Second calibration value.
  • the first collected voltage data and the second collected voltage data are both less than the preset first calibration value.
  • control module 12 determines that the battery heating system 10 is operating normally.
  • the first switching device 13 includes a metal oxide semiconductor field effect transistor.
  • the driving signal is a pulse signal
  • the duty ratio of the pulse signal is the ratio of controlling the on time of the first switching device 13 to controlling the off time of the first switching device 13.
  • Functional modules in the above embodiments can be implemented as hardware, software, firmware, or a combination thereof.
  • hardware it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, and so on.
  • ASIC application specific integrated circuit
  • the elements of this application are programs or code segments that are used to perform the required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or a communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium capable of storing or transmitting information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池加热系统和方法,涉及电池领域。该电池加热系统包括:温度采样模块,用于采集目标采样温度;第一开关器件,用于根据驱动信号导通或断开;控制模块,用于根据目标采样温度以及目标采样温度与驱动信号的对应关系,确定控制第一开关器件导通时长和控制第一开关器件断开时长;以及生成驱动信号;加热模块,加热模块的一端通过第一开关器件连接电池模组集合的一端,加热模块的另一端连接电池模组集合的另一端,当第一开关器件导通时,加热模块利用电池模组集合的输出功率为电池模组集合加热,当第一开关器件断开时,加热模块停止对电池模组集合加热。能够提高电池加热的精细程度。

Description

电池加热系统和方法
相关申请的交叉引用
本申请要求享有于2018年11月30日提交的名称为“电池加热系统和方法”的中国专利申请201811457403.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池领域,尤其涉及一种电池加热系统和方法。
背景技术
随着新能源的发展,越来越多的领域采用新能源作为动力。比如,采用电池作为动力。伴随着电池的广泛应用,电池的安全问题引起消费者和企业的广泛关注。
由于电池的内阻会随着温度的下降而急剧升高,电池的容量会随着温度的下降而迅速下降。当电池所处的环境温度降低时,电池的输出功率也随之降低。为了保证电池输出功率的性能,需要根据实时采集的电池温度,对电池进行加热。比如在将电池作为新能源汽车的动力的过程中,特别是在低温行车的过程中。
发明内容
本申请实施例提供的电池加热系统和方法,可以提高电池加热的精细程度。
一方面,本申请实施例提供一种电池加热系统,包括:温度采样模块,用于采集目标采样温度,其中,目标采样温度包括电池模组集合的实时温度或电池模组集合所属电池包的外部环境的实时温度,电池模组集合包含N个电池模组,N为正整数;第一开关器件,用于根据驱动信号导通或断 开;控制模块,用于根据目标采样温度以及目标采样温度与驱动信号的对应关系,确定控制第一开关器件导通时长和控制第一开关器件断开时长;以及,基于第一开关器件导通时长和第一开关器件断开时长,生成驱动信号,其中,目标采样温度与驱动信号的对应关系包括目标采样温度与控制第一开关器件导通时长的对应关系和目标采样温度与控制第一开关器件断开时长的对应关系;加热模块,加热模块的一端通过第一开关器件连接电池模组集合的一端,加热模块的另一端连接电池模组集合的另一端,当第一开关器件导通时,加热模块利用电池模组集合的输出功率为电池模组集合加热,当第一开关器件断开时,加热模块停止对电池模组集合加热。
另一方面,本申请实施例提供一种电池加热方法,包括:温度采样模块采集目标采样温度;控制模块根据目标采样温度以及目标采样温度与驱动信号的对应关系,确定控制第一开关器件导通时长和控制第一开关器件断开时长;控制模块基于第一开关器件导通时长和第一开关器件断开时长,生成并输出驱动信号;第一开关模块接收驱动信号,并根据驱动信号导通或断开;第一开关器件导通,加热模块利用电池模组集合的输出功率为电池模组集合加热;第一开关模块断开,加热模块停止对电池模组集合的加热。
根据本申请实施例中的电池加热系统和方法,第一开关器件能够根据驱动信号导通或断开,当第一开关器件导通时,加热模块对电池模组集合进行加热,当第一开关器件断开时,加热模块停止对电池模组集合加热。由于驱动信号是根据控制第一开关器件导通时长和控制第一开关器件断开时长确定的,且控制第一开关器件导通时长和控制第一开关器件断开时长与目标采样温度均存在对应关系。因此,根据实时采集的目标采样温度,控制模块能够控制第一开关器件导通时长和断开时长,进而控制加热模块对电池模组集合的加热时长和停止加热的时长,精细加热电池,提高电池加热的精细程度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例 中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的一种电池加热系统的结构示意图;
图2为本申请一实施例的示例中的目标采样温度与驱动信号占空比的部分对应关系的示意图;
图3为本申请一实施例的示例中的基准驱动信号与反馈信号的示意图;
图4为本申请一实施例提供的一种电池加热电路的结构示意图;
图5为本申请一实施例提供的另一种电池加热电路的结构示意图;
图6示出了本申请一实施例提供的电池加热方法的流程图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
电池包,包含多个串联、并联或混联的电池模组。其中,电池包内的多个电池模组可称为一个电池模组集合,每一电池模组均包含多个单体电芯。
本申请实施例提供了一种电池加热系统和方法,可应用于低温行车的场景中。在电池加热系统中,加热模块可利用电池模组集合的输出功率为电池模组集合加热。在本申请实施例中,在加热模块和电池模组集合之间设置第一开关器件,并利用控制模块控制第一开关器件导通时长和第一开关器件断开时长。当控制模块控制第一开关器件导通时,加热模块对电池模组集合进行加热;当控制模块控制第一开关器件断开时,加热模块停止对电池模组集合加热。
由于控制模块可以根据电池模组集合的实时温度或电池模组集合所属电池包的外部环境的实时温度,控制第一开关器件导通时长和第一开关器件断开时长。本申请实施例中可以根据电池模组集合的温度或电池加热系统所属的电池包的外部环境温度,控制第一开关器件导通时长和第一开关器件断开时长,进而实现对加热模块的动态控制。因此,可以提高电池加热的精细程度。
图1为本申请一实施例提供的一种电池加热系统的结构示意图。
如图1所示,电池加热系统10包括:温度采样模块11、控制模块12、第一开关器件13和加热模块14。
温度采样模块11,用于采集目标采样温度。其中,目标采样温度包括电池模组集合20中的一个电池模组的实时温度、电池模组集合20中多个电池模组的平均实时温度、电池模组集合20所属电池包的内部温度、电池模组集合20所属电池包的壳体温度或电池模组集合20所属电池包的外部环境的实时温度。电池模组集合20包含N个电池模组,N为正整数。
在本申请的一些实施例中,当需要采集电池模组集合20的实时温度作为目标采样温度时,图1中的点划线表示温度采样模块11可从电池模组集合20采集目标采样温度。具体地,可以为电池模组集合20所包含的N个电池模组各设置一温度采样单元。具体地,每一温度采样单元均可采集对应的电池模组所包含的每一单体电芯的实时温度。
示例性地,若一个电池模组包含i个单体电芯,则该电池模组对应的温度采样单元,共可采集i个实时温度数据,T1、T2、……、Ti。本示例中可以将所采集的i个实时温度数据中的最小温度数据作为该电池模组的 实时温度,其中,i为正整数。
相应地,在本示例中,可从N个电池模组的实时温度中筛选出一个最小实时温度值,作为电池模组集合20的实时温度。
在本申请的一些实施例中,当需要采集电池模组集合20所属的电池包的外部环境的实时温度作为目标采样温度时,在一种情况下,温度采样模块11可设置于电池包箱体的外侧。在另一种情况下,上述电池包安装于新能源汽车内,温度采样模块11可设置于新能源汽车的汽车底盘上。
在本申请的一些实施例中,温度采样模块11与控制模块12之间通过第一通信线路进行连接。控制模块12通过第一通信线路向温度采样模块11发送用于控制温度采样模块11采集目标采样温度的控制指令。温度采样模块11响应于该控制指令,采集目标采样温度,并通过第一通信线路将采集到的目标采样温度返回至控制模块12。
在一些实施例中,第一通信线路的具体实现方式可以是菊花链通信结构。
需要说明的是,控制模块12与温度采样模块11之间还可以通过无线通信的方式进行连接。
在一些实施例中,当温度采样模块11包括多个温度采样单元时,相邻的温度采样单元之间通过第二通信线路进行连接。多个温度采样单元采集的多个电池模组的实时温度通过第二通信线路进行传递和汇总。汇总后的多个电池模组的实时温度通过隔离转换单元转换为满足第一通信线路协议的数据流返回至控制模块12。
在一个实施例中,第二通信线路的具体实现方式可以是菊花链通信结构。
控制模块12,用于根据目标采样温度以及目标采样温度与驱动信号的对应关系,确定控制第一开关器件13导通时长和控制第一开关器件13断开时长;以及,基于第一开关器件13导通时长和第一开关器件13断开时长,生成驱动信号。
其中,目标采样温度与驱动信号的对应关系包括目标采样温度与控制第一开关器件13导通时长的对应关系和目标采样温度与控制第一开关器件 13断开时长的对应关系。
在本申请的一些实施例中,控制模块12具体用于:
判断目标采样温度低于预设的起始加热温度阈值;控制模块12根据目标采样温度以及目标采样温度与驱动信号的对应关系,确定控制第一开关器件13导通时长和控制第一开关器件13断开时长;以及,基于第一开关器件13导通时长和第一开关器件13断开时长,生成驱动信号。
在本申请的一些实施例中,驱动信号包括两个不同的驱动子信号,第一驱动子信号和第二驱动子信号。其中,第一驱动子信号可控制第一开关器件13导通,第二驱动子信号可控制第一开关器件13断开。
在本申请的一些实施例中,在行车过程中,为了保证使目标采样温度始终保持在电池目标运行温度,当目标采样温度不小于第一温度阈值且不大于电池目标运行温度时,目标采样温度与电池目标运行温度的差值越大,第一开关器件13导通时长越长,第一开关器件13断开时长越短;目标采样温度与电池目标运行温度的差值越小,第一开关器件13导通时长越短,第一开关器件13断开时长越长。
需要说明的是,当目标采样温度小于第一温度阈值时,第一开关器件13断开时长为0,即第一开关器件13持续导通;当目标采样温度达到电池目标运行温度时,第一开关器件13导通时长为0,即第一开关器件13持续断开。
还需要说明的是,由于电池模组集合20自身具有热效应,当目标采样温度达到第二温度阈值时,电池模组集合20可依靠自身的热效应使目标采样温度保持在电池目标运行温度,第一开关13导通时长可设置为0。其中,第二温度阈值小于电池目标运行温度,且第二温度阈值大于第一温度阈值。
在一些实施例中,电池目标运行温度表示期望电池模组集合运行所在的温度。当目标采样温度达到电池目标运行温度温度时,可视为电池模组集合运行于期望其所在的温度上。
在本申请的一些实施例中,目标采样温度与驱动信号的对应关系可具体包括:第一开关器件13的导通时长与第一开关器件13断开时长的比值,与目标采样温度的对应关系。
在一些实施例中,驱动信号表示周期为T的脉冲信号。
需要说明的是,当驱动信号为脉冲信号时,目标采样温度与驱动信号的对应关系包括:目标采样温度与每个周期内第一开关器件13导通时长的对应关系,和目标采样温度与每个周期内第一开关器件13断开时长的对应关系。
在一个实施例中,第一驱动子信号可以为高电平,第二驱动子信号可以为低电平。
相应地,目标采样温度与驱动信号的对应关系可以表示为目标采样温度和驱动信号占空比的关系。其中,驱动信号占空比表示表示:在一个周期内,第一开关器件13导通时长与该周期的总时长的比值。
作一个示例,图2为本申请一实施例的示例中的目标采样温度与驱动信号占空比的部分对应关系的示意图。
如图2所示,若电池目标运行温度为20℃,目标采样温度为电池模组集合20所属电池包的外部环境的实时温度。当目标采样温度为-30℃时,对应的驱动信号占空比为98%;当目标采样温度为-25℃时,对应的驱动信号占空比为90%;当目标采样温度为-20℃时,对应的驱动信号占空比为83%;当目标采样温度为-15℃时,对应的驱动信号占空比为70%;当目标采样温度为-10℃时,对应的驱动信号占空比为61%;当目标采样温度为-5℃时,对应的驱动信号占空比为43%;当目标采样温度为0℃时,对应的驱动信号占空比为30%;当目标采样温度为5℃时,对应的驱动信号占空比为23%。
需要说明的是,在本示例中,第一温度阈值小于-30℃,即当目标采样温度不超过第一温度阈值时,驱动信号占空比为100%。在本示例中,当目标采样温度大于5℃时,电池模组可以依靠自身的热效应使目标采样温度保持在20℃,即第二温度阈值等于5℃。
还需要说明的是,对于不同的电池模组集合20、不同的电池目标运行温度等不同情况,目标采样温度与驱动信号的对应关系不同。因此,目标采样温度和驱动信号的对应关系往往需要进行整车标定。
在本申请的一些实施例中,当驱动信号为脉冲信号时,控制模块12具 体可用于:
将目标采样温度与电池目标运行温度的差值作为实际温度偏差。
根据实际温度偏差和比例-积分-导数(proportion-integral-derivative,PID)算法,确定第一开关器件13导通时长和第一开关器件13断开时长。
在本申请的一些实施例中,控制模块12可具体实现为控制器和驱动单元。
其中,控制器用于发送用于控制驱动单元生成驱动信号的驱动指令,以及向电池加热系统的其他功能模块发送各项指令。
驱动单元用于:接收由控制模块12的控制器发送的用于控制驱动单元生成驱动信号的驱动指令,并响应于该控制指令生成能够驱动第一开关器件13导通或断开的驱动信号。
需要说明的是,该驱动单元与控制模块12的控制器之间设置有隔离单元,以对两者之间的通信进行电气隔离。
第一开关器件13,用于根据驱动信号导通或断开。
在本申请的一些实施例中,第一开关器件13为能够在控制模块12控制下导通或断开的开关器件。
在一些实施例中,第一开关器件13可以包括继电器、金属氧化物半导体(Metal Oxide Semiconductor,MOS)场效应管或其他开关器件。
在一些可选的实施例中,为了通过第一开关器件13的快速导通和断开,实现对加热模块14的快速精准控制,第一开关器件13包括金属氧化物半导体场效应管。
需要说明的是,当通过继电器实现对加热模块14的控制时,继电器的机械性能使得继电器无法进行快速导通和断开,并且需要为继电器配置相应的控制电路。因此,相较于继电器,本实施例中控制模块12通过控制金属氧化物半导体场效应管,实现对加热模块14的控制,能够实现对加热模块14快速精准的控制,整个电池加热系统较为简单,减小了整个电池加热系统的能量消耗。
在本申请的一些实施例中,第一开关器件13优选为具有过温保护的开关器件。示例性地,第一开关器件13可为过温保护金属氧化物半导体场效 应管。
在一些实施例中,若第一开关器件13为过温保护金属氧化物半导体场效应管时,电池加热系统还包括:信号反馈回检模块。
具体地,将第一开关器件13的驱动信号作为反馈信号返回至控制模块12,并将控制模块12生成的驱动信号作为基准驱动信号,并判断反馈信号是否与基准驱动信号相同,若相同,反馈信号为正常反馈信号,且第一开关器件13正常;若反馈信号未完全跟踪复制基准驱动信号,则认为第一开关器件13产生过温故障。
作一个示例,图3为本申请一实施例的示例中的基准驱动信号与反馈信号的示意图。
如图3所示,若基准驱动信号为脉冲信号,若反馈信号与基准驱动信号的占空比相同,则反馈信号为正常反馈信号;若相较于基准驱动信号,当基准驱动信号处于高电平时,反馈信号频繁拉低至低电平,则反馈信号为过温反馈信号。
在一些实施例中,为了对第一开关器件13过温保护,当反馈信号为过温反馈信号时,第一开关器件13实现输入阻抗短地特性。具体地,当启动第一开关器件13的输入阻抗短地特性时,第一开关器件13的栅极和漏级之间形成短路,栅极的电压小于阈值电压,第一开关器件13断开。
加热模块14,加热模块14的一端通过第一开关器件13连接电池模组集合20的一端,加热模块14的另一端连接电池模组集合20的另一端,当第一开关器件13导通时,加热模块14利用电池模组集合20的输出功率为电池模组集合20加热,当第一开关器件13断开时,加热模块14停止对电池模组集合20加热。
根据本申请实施例中的电池加热系统10,第一开关器件13能够根据驱动信号导通或断开,当第一开关器件13导通时,加热模块14对电池模组集合20进行加热,当第一开关器件13断开时,加热模块14停止对电池模组集合20加热。由于驱动信号是根据控制第一开关器件13导通时长和控制第一开关器件13断开时长确定的,且控制第一开关器件13导通时长和控制第一开关器件13断开时长与目标采样温度均存在对应关系。因此, 根据实时采集的目标采样温度,控制模块12能够控制第一开关器件13导通时长和断开时长,进而控制加热模块14对电池模组集合20的加热时长和停止加热的时长,从而提高电池加热的精细程度。
在本申请的一些实施例中,为了提高加热的均匀性和加热模块14的加热性能,加热模块14包括相串联的N个加热器。其中,加热模块14所包含的N个加热器与电池模组集合20所包含的N个电池模组一一对应。
示例性地,若电池模组集合20包含N个相串联的电池模组,可以在电池模组集合20的一侧设置N个相串联的加热器,每一加热器为对应的电池模组加热。优选地,为了进一步提高加热的均匀性和加热模块14的加热性能,每一加热器与所对应的电池模组之间的距离可相等。
需要说明的是,为了进一步提高加热的均匀性和加热模块14的加热性能,每一加热器可包括多个加热单元。具体地,每一加热器可以包括m个加热单元,每一电池模组集合20的周围可以均匀分布m个加热单元,其中,m为正整数。示例性地,若每一加热器包括2个加热单元,N个加热单元可设置于电池模组集合20的一侧,与电池模组集合20所包含的N个电池模组一一对应。剩下的N个加热单元可设置于电池模组集合20的另一侧,与电池模组集合20所包含的N个电池模组一一对应。
在本申请的一些实施例中,出于电池加热系统10的加热安全性,电池加热系统10还包括:第二开关器件。
其中,第二开关器件设置于加热模块14的另一端与电池模组集合20的另一端之间。
在一些实施例中,当电池加热系统10包括第一开关器件13和第二开关器件时,控制模块12可以通过控制第一开关器件13和第二开关器件同时导通或同时断开,来间接控制加热模块14对电池模组集合20进行加热或间接控制加热模块14停止对电池模组集合20加热。
在需要控制加热模块14停止对电池模组集合20加热的具体场景中,通过设置第一开关器件13和第二开关器件,当第一开关器件13和第二开关器件中任一开关器件发生故障或粘连等情况导致无法正常断开时,可通过控制另一开关器件的断开,来及时停止加热模块14对电池模组集合20 的加热。
在一些可选的实施例中,第二开关器件与上述实施例中的第一开关器件13特征相同,在此不再赘述。
需要说明的是,第二开关器件可以为继电器、金属氧化物半导体场效应管或其他能够在控制模块12的控制下导通或断开的开关器件。
在本申请的一些实施例中,为了实现对加热模块14的快速精准控制,第一开关器件13和第二开关器件中的至少一个开关器件,可以为金属氧化物半导体场效应管。
作一个示例,若第一开关器件13为金属氧化物半导体场效应管,第二开关器件为继电器。当需要利用电池加热系统10对电池模组集合20进行加热时,可控制第二开关器件始终处于闭合状态,并向第一开关器件13输出驱动信号。
在本申请的一些实施例中,电池加热系统10除包括上述实施例中的第一开关器件13、第二开关器件之外,电池加热系统还可包括:电压采样模块。
其中,电压采样模块分别连接加热模块14的两端,电压采样模块用于:分别采集加热模块14的一端的第一采集电压数据,以及加热模块14的另一端的第二采集电压数据。其中,加热模块14的一端通过第一开关器件13与电池模组集合20的负极相连接,加热模块14的另一端通过第二开关器件与电池模组集合20的正极相连接。
此时,控制模块12具体用于:
根据电压采样模块采集的第一采集电压数据、第二采集电压数据和预设的正常运行判断条件,判断电池加热系统10是否正常运行。若第一采集电压数据和第二采集电压数据均满足正常运行判断条件,判定电池加热系统10正常运行。
需要说明的是,本申请实施例中的第一采集电压数据表示:加热模块14的一端的电势与基准电势之间的电势差。第二采集电压数据表示:加热模块14的另一端的电势与基准电势之间的电势差。其中,基准电势可以为电池模组集合20的负极的电势。
在一些实施例中,电压采样模块与控制模块12相连接。
具体地,控制模块12向电压采样模块发送用于指示电压采样模块采集第一采集电压数据和第二采集电压数据的工作指令,电压采样模块响应于该工作指令,采集第一采集数据和第二采集电压数据,并将采集的第一采集电压数据和第二采集电压数据返回控制模块12。
其中,电压采样模块与控制模块12之间的连接可以是有线连接或者无线连接。
在一个实施例中,电压采样模块与控制模块12之间设置有隔离单元。
在本申请的一些实施例中,电池加热系统10的正常运行表示电池加热系统10不存在加热故障。
示例性地,若电池加热系统10包括第一开关器件13和第二开关器件,则电池加热系统10的正常运行包括第一开关器件13和第二开关器件能够根据驱动信号正常的导通和断开。
在本申请的一些实施例中,正常运行判断条件,具体包括:
在加热模块14对电池模组集合20加热之前,当第一开关器件13和第二开关器件均断开时,第一采集电压数据和第二采集电压数据均小于预设的第一标定值;以及,当第一开关器件13断开,第二开关器件闭合,第一采集电压数据和第二采集电压数据均大于预设的第二标定值;以及,当第一开关器件13和第二开关器件均闭合时,第一采集电压数据小于预设的第一标定值,以及第二采集电压数据大于预设的第二标定值。
其中,第一标定值是第一标定电压与第一标定系数的乘积。第一标定电压是当第一开关器件13和第二开关器件均断开,且电池模组集合20输出额定电压时,第二开关器件与电池模组集合20的正极的连接处的电压。
第二标定值是第二标定电压与第二标定系数的乘积。第二标定电压是当第一开关器件13和第二开关器件均闭合,且电池模组集合20输出额定电压时,加热模块14与第一开关器件13的连接处的电压。
需要说明的是,本申请实施例中的第一标定电压表示:第二开关器件与电池模组集合20的正极相连的一端的电势与基准电势的电势差。第二标定电压表示:加热模块14的一端的电势与基准电势的电势差。
还需要说明的,在本申请的另一些实施方式中,加热模块14的一端还可以与电池模组集合20的正极相连接,加热模块14的另一端与电池模组集合20的负极相连接。
可在加热模块14的一端采集第二采集电压数据,在加热模块14的另一端采集第一采集电压数据。此时,第一标定电压表示:第一开关器件与电池模组集合20的正极相连的一端的电势与基准电势的电势差,第二标定电压表示:加热模块14的另一端的电势与基准电势的电势差。
在一个实施例中,上述加热模块14对电池模组集合20加热,具体表示为:控制模块12生成驱动信号,并利用驱动信号控制第一开关器件13导通或断开,第二开关器件处于闭合状态。或者,第一开关器件13和第二开关器件响应于控制模块12用于指示电池加热系统10开始工作的指示之后,第一开关器件13根据驱动信号导通或断开,第二开关器件处于闭合状态。
作一个示例,若第一开关器件13为低压侧开关器件,第二开关器件为高压侧开关器件,第一采集电压数据表示为V_P_1,第二采集电压数据表示为V_P_2,第一标定值表示为Va,第一标定电压表示为Va 0,第一标定系数表示为α a,第二标定值表示为Vb,第一标定电压表示为Vb 0,第一标定系数表示为α b
此时,正常运行条件包括:
在加热模块14对电池模组集合20加热之前,当第一开关器件13和第二开关器件均断开时,V_P_1<Va,且V_P_2<Va。
以及,当第一开关器件13断开且第二开关器件闭合时,V_P_1>Vb,且V_P_2>Vb。
以及,当第一开关器件13和第二开关器件均闭合时,V_P_1<Va,且V_P_2>Vb。
其中,Va满足公式(1):
Va=Va 0×α a         (1)
Vb满足公式(2):
Vb=Vb 0×α b        (2)
在一些实施例中,考虑到第一标定电压可能产生电压波动,第一标定系数可取小于1的值。示例性地,第一标定系数可取90%。
在一些实施例中,若第一开关器件和电池模组集合20均接地,考虑到地偏移的影响,第二标定系数可取大于1的值。示例性地,第二标定系数可取150%。
在另一些实施例中,正常运行判断条件,具体包括:
在加热模块14结束电池模组集合20加热之前,当第一开关器件13断开,第二开关器件闭合时,第一采集电压数据和第二采集电压数据均大于预设的第二标定值;以及,当第一开关器件13和第二开关器件均断开时,第一采集电压数据和第二采集电压数据均小于预设的第一标定值。
在一个实施例中,加热模块14结束对电池模组集合20加热,表示:驱动信号结束之后,第一开关器件13持续处于断开状态;或者,第一开关器件13和第二开关器件响应于控制模块12的停止加热的指示,而持续处于断开状态。
作一个示例,当第一开关器件13断开,第二开关器件闭合时,V_P_1>Vb,且V_P_2>Vb。
以及,当第一开关器件13和第二开关器件均断开时,V_P_1<Va,且V_P_2<Va。
在本申请的一些实施例中,为了保证控制模块12与第一开关器件13之间的通信质量,控制模块12与第一开关器件13之间设置有隔离单元,用于对控制模块12与第一开关器件13之间的通信进行电气隔离。
需要说明的是,电池加热系统10中除第一开关器件13之外的其他功能模块,与控制模块12进行通信时,该其他功能模块与控制模块12之间可设置隔离单元。
在本申请的一些实施例中,当目标采样温度是电池模组集合20的实时温度时,电池加热系统10的具体实施方式可以是一种电池加热电路,图4为本申请一实施例提供的一种电池加热电路的结构示意图。
如图4所示,电池加热电路40可包括:温度采样模块11、控制模块12、第一开关器件13、加热模块14、第一通信线路15、第二开关器件16、 电压采样模块17、信号回检模块18和隔离转换单元19。
其中,电池模组集合20由N个电池模组串联而成。其中,N个电池模组分别为M_1、……、M_N-1、M_N。电池模组集合20靠近M_N的一端为电池模组集合20的高压端,电池模组集合20靠近M_1的一端为电池模组集合20的低压端,电池模组集合20的低压端接地。
温度采样模块11采集目标采样温度之后,将采集的目标采样温度通过隔离通信单元19转换为满足第一通信线路协议的数据流之后,通过第一通信线路15传输至控制器121。
控制模块12分别与温度采样模块11、电压采样模块17、第一开关器件13的栅极、信号回检模块18、第二开关器件16相连。其中,控制模块12与第二开关模块16的连接关系未在图4中示出。
加热模块14包括N个相串联的加热器,分别为P_1、……、P_N-1、P_N。N个加热器分别为N个电池模组加热。
第一开关器件13的一端与第一加热器P_1的一端连接,第一开关器件13的另一端接地。
第二开关器件16的一端与第N加热器P_N的一端连接,第二开关器件16的另一端与电池模组集合20的高压端相连接。
电压采样模块17通过第一实线171,在点A处采集第二采集电压数据V_P_2。电压采样模块17通过第二实线172,在点C处采集第一采集电压数据V_P_1。
在一些实施例中,信号回检模块18包括第一电阻R1和第二电阻R2。其中,第一电阻R1的一端连接控制模块12,第一电阻R1的另一端连接第一开关器件13。第二电阻R2的一端与R1的另一端相连,第二电阻R2的另一端接地。
具体地,当第一开关器件13正常工作时,R1和R2构成分压电路提供第一开关器件13的栅极驱动电压。当第一开关器件13过温或者由于漏级直接短路到电源产生短路电流造成过温时,第一开关器件13内部会将第一开关器件13的栅极对源极的阻抗Rgs短路,使得R2和Rgs并联后的等效并联电阻值变得远远小于R2。从而使得第一开关器件13的栅极通过分压 得到的栅极驱动电压远远小于能使第一开关器件13打开的门槛电压。从而使得第一开关器件13断开,对第一开关器件13起到过温保护的作用。
在一个可选的实施例中,为了使第一开关器件13具有良好的过温保护性能,第一电阻R1、第二电阻R2和第一开关器件13的短路输入阻抗RS之间要同时满足公式(3)和公式(4):
R2>10×R1      (3)
R1>>10×RS      (4)
其中,RS表示栅极对源极短路时,栅极输入阻抗。
需要说明的是,R1和R2需要在合理的范围内,以使第一开关器件13的驱动电流的大小满足要求。
在一些实施例中,控制模块12可包括:控制器121和驱动单元122。此时,电池加热电路40还包括隔离单元110。
为了对控制器121与其他功能模块或功能单元之间的通信进行电气隔离,隔离单元110可设置于控制器121和驱动单元122之间的线路上、控制器121与电压采样模块17之间的线路上和控制器121与信号回检模块18之间的线路上。
在一些实施例中,第一标定电压和第二标定电压均可以由电压采样模块17采集。此时,图4中的虚线173表示电压采样模块17在点C处采集电压,并将采集的电压作为第一标定电压Va 0;实线172还可表示电压采样模块17在点B处采集电压,并将采集的电压作为第二标定电压Vb 0
需要说明的是,第一标定电压Va 0也可以是根据电池模组的参数和电池模组集合的参数直接获取的。
还需要说明的是,为了快速断开电池模组集合20与电池加热电路40之间的连接,可在电池模组集合20的任意一端设置一开关器件,或在电池模组集合20的两端各设置一开关器件。示例性的,如图4所示,电池模组集合20的两端分别设置了开关器件K1和开关器件K2。
值得一提的是,当第一开关器件13和第二开关器件16发送故障无法正常断开时,控制模块12可以控制K1和/或K2断开,以保证电池加热系统的安全加热性能。
在本申请的另一些实施例中,当电池模组集合20所属电池包的外部环境的实时温度时,电池加热系统10的具体实施方式可采用另一种电池加热电路,图5为本申请一实施例提供的另一种电池加热电路的结构示意图。
其中,图5与图4的不同之处在于,温度采样模块11包括N个温度采样单元,分别为S_1、……、S_N-1、S_N。相邻温度采样单元之间通过第二通信线路111进行连接。
N个温度采样单元分别设置于N个电池模组的两端。示例性地,温度采样单元S_1设置于电池模组M_1的两端,……,温度采样单元S_N-1设置于电池模组M_N-1的两端,温度采样单元S_N设置于电池模组M_N的两端。
每一温度采样单元采集对应的电池模组的实时温度后,多个电池模组的实时温度通过第二通信线路111在温度采样单元中进行传递。N个电池模组的实时温度汇总之后,通过隔离通信单元19转换为满足第一通信线路协议的数据流之后,通过第一通信线路15传输至控制器。
需要说明的是,本实施仅示出了电池模组的实时温度的一种传输方式,电池模组的实时温度数据可以通过无线或有线的方式,分别发送或汇总后发送至控制器121。
基于相同的申请构思,本申请实施例还提供了一种电池加热方法。图6示出了本申请一实施例提供的电池加热方法的流程图,可应用于上述电池加热系统。如图6所示,电池加热方法60包括S61至S66:
S61,温度采样模块11采集目标采样温度。
S62,控制模块12根据目标采样温度以及目标采样温度与驱动信号的对应关系,确定控制第一开关器件13导通时长和控制第一开关器件13断开时长。
S63,控制模块12基于第一开关器件13导通时长和第一开关器件13断开时长,生成并输出驱动信号。
S64,第一开关模块13接收驱动信号,并根据驱动信号导通或断开。
S65,第一开关器件13导通,加热模块14利用电池模组集合20的输出功率为电池模组集合20加热。
S66,第一开关模块13断开,加热模块14停止对电池模组集合20的加热。
在本申请的一些实施例中,加热模块14包含N个加热器,N个加热器与电池模组集合20所包含的N个电池模组一一对应,其中,N为正整数。
在本申请的一些实施例中,当加热模块14的另一端与电池模组集合20的另一端之间设置有第二开关器件,电池加热方法60还包括:
控制模块12采集第一采集电压数据和第二采集电压数据,第一采集电压数据表示加热模块14的一端的电压数据,第二采集电压数据表示加热模块14的另一端的电压数据。其中,加热模块14的一端与电池模组集合20的负极相连接,加热模块14的另一端与电池模组集合20的正极相连接。
控制模块12根据第一采集电压数据、第二采集电压数据和预设的正常运行判断条件,判断电池加热系统10是否正常运行。
若第一采集电压数据和第二采集电压数据均满足正常运行判断条件,控制模块12判断电池加热系统10正常运行。
在一些实施例中,上述若第一采集电压数据和第二采集电压数据均满足正常运行判断条件,控制模块12判断电池加热系统10正常运行,具体包括第一步至第四步:
第一步、在加热模块14利用电池模组集合20的输出功率为电池模组集合20加热之前,若当第一开关器件13和第二开关器件均断开时,第一采集电压数据和第二采集电压数据均小于预设的第一标定值。
第二步、当第一开关器件13断开,第二开关器件闭合时,第一采集电压数据和第二采集电压数据均大于预设的第二标定值。
第三步、当第一开关器件13和第二开关器件均闭合时,第一采集电压数据小于预设的第一标定值,第二采集电压数据大于预设的第二标定值。
第四步、控制模块12判断电池加热系统10正常运行。
在一些实施例中,若上述第一采集电压数据和第二采集电压数据均满足正常运行判断条件,控制模块12判断电池加热系统10正常运行,具体包括第一步至第三步:
第一步、在加热模块14结束对电池模组集合20的加热之前,当第一 开关器件13断开,第二开关器件闭合时,第一采集电压数据和第二采集电压数据均大于预设的第二标定值。
第二步、当第一开关器件13和第二开关器件均断开时,第一采集电压数据和第二采集电压数据均小于预设的第一标定值。
第三步、控制模块12判断电池加热系统10正常运行。
在本申请的一些实施例中,第一开关器件13包括金属氧化物半导体场效应管。
在本申请的一些实施例中,驱动信号为脉冲信号,脉冲信号的占空比为控制第一开关器件13导通时长与控制第一开关器件13断开时长的比值。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。其中方法实施例描述得比较简单,相关之处请参见系统实施例的说明部分。本申请并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本申请的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。
上述实施例中的功能模块(如温度采样模块、温度采样单元、控制模块、控制器、驱动单元、第一开关器件、第二开关器件、加热模块、隔离单元、隔离转换单元、信号回检模块和隔离转换单元)可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。

Claims (15)

  1. 一种电池加热系统,其中,包括:
    温度采样模块,用于采集目标采样温度,其中,所述目标采样温度包括电池模组集合的实时温度或所述电池模组集合所属电池包的外部环境的实时温度,所述电池模组集合包含N个电池模组,N为正整数;
    第一开关器件,用于根据所述驱动信号导通或断开;
    控制模块,用于根据所述目标采样温度以及所述目标采样温度与驱动信号的对应关系,确定控制第一开关器件导通时长和控制所述第一开关器件断开时长;以及,基于所述第一开关器件导通时长和所述第一开关器件断开时长,生成驱动信号,其中,所述目标采样温度与驱动信号的对应关系包括所述目标采样温度与所述控制第一开关器件导通时长的对应关系和所述目标采样温度与所述控制第一开关器件断开时长的对应关系;
    加热模块,所述加热模块的一端通过所述第一开关器件连接所述电池模组集合的一端,所述加热模块的另一端连接所述电池模组集合的另一端,当所述第一开关器件导通时,所述加热模块利用所述电池模组集合的输出功率为所述电池模组集合加热,当所述第一开关器件断开时,所述加热模块停止对所述电池模组集合加热。
  2. 根据权利要求1所述的电池加热系统,其中,所述加热模块包括串联的N个加热器,N个所述加热器与所述电池模组集合所包含的N个所述电池模组一一对应。
  3. 根据权利要求1所述的电池加热系统,其中,所述电池加热系统还包括:
    第二开关器件,所述第二开关器件设置于所述加热模块的另一端与所述电池模组集合的另一端之间。
  4. 根据权利要求3所述的电池加热系统,其中,所述电池加热系统还包括:
    电压采样模块,所述电压采样模块分别连接所述加热模块的两端,用于分别采集所述加热模块的一端的第一采集电压数据和所述加热模块的另 一端的第二采集电压数据,其中,所述加热模块的一端通过所述第一开关器件与所述电池模组集合的负极相连接,所述加热模块的另一端通过所述第二开关器件与所述电池模组集合的正极相连接;
    所述控制模块,具体用于根据所述电压采样模块采集的所述第一采集电压数据、所述第二采集电压数据和预设的正常运行判断条件,判断所述电池加热系统是否正常运行;若所述第一采集电压数据和第二采集电压数据均满足所述正常运行判断条件,判定所述电池加热系统正常运行。
  5. 根据权利要求4所述的电池加热系统,其中,
    所述正常运行判断条件,具体包括:
    在所述加热模块对所述电池模组集合加热之前,当所述第一开关器件和所述第二开关器件均断开时,所述第一采集电压数据和所述第二采集电压数据均小于预设的第一标定值;当所述第一开关器件断开,所述第二开关器件闭合时,所述第一采集电压数据和所述第二采集电压数据均大于预设的第二标定值;以及,当所述第一开关器件和所述第二开关器件均闭合时,所述第一采集电压数据小于预设的第一标定值,以及所述第二采集电压数据大于预设的第二标定值;
    其中,所述第一标定值是第一标定电压与第一标定系数的乘积,所述第一标定电压是当所述第一开关器件和第二开关器件均断开,且所述电池模组集合输出额定电压时,所述第二开关器件与所述电池模组集合正极的连接处的电压,
    所述第二标定值是第二标定电压与第二标定系数的乘积,所述第二标定电压是当所述第一开关器件和第二开关器件均闭合,且所述电池模组集合输出额定电压时,所述加热模块与所述第一开关器件的连接处的电压。
  6. 根据权利要求4所述的电池加热系统,其中,
    所述正常运行判断条件,具体包括:
    在所述加热模块结束所述电池模组集合加热之前,当所述第一开关器件断开,所述第二开关器件闭合时,所述第一采集电压数据和所述第二采集电压数据均大于预设的第二标定值;以及,当所述第一开关器件和所述第二开关器件均断开时,所述第一采集电压数据和所述第二采集电压数据 均小于预设的第一标定值;
    其中,所述第一标定值是第一标定电压与第一标定系数的乘积,所述第一标定电压是当所述第一开关器件和第二开关器件均断开,且所述电池模组集合输出额定电压时,所述第二开关器件与所述电池模组集合正极的连接处的电压,
    所述第二标定值是第二标定电压与第二标定系数的乘积,所述第二标定电压是当所述第一开关器件和第二开关器件均闭合,且所述电池模组集合输出额定电压时,所述加热模块与所述第一开关器件的连接处的电压。
  7. 根据权利要求1至6任一项所述的电池加热系统,其中,所述第一开关器件包括金属氧化物半导体场效应管。
  8. 根据权利要求1至6任一项所述的电池加热系统,其中,所述驱动信号为脉冲信号,所述脉冲信号的占空比为每个脉冲周期中所述控制第一开关器件导通时长与所述控制第一开关器件断开时长的比值。
  9. 一种电池加热方法,应用于权利要求1所述的电池加热系统,其中,所述电池加热方法包括:
    所述温度采样模块采集所述目标采样温度;
    所述控制模块根据所述目标采样温度以及所述目标采样温度与驱动信号的对应关系,确定控制第一开关器件导通时长和控制所述第一开关器件断开时长,其中,所述目标采样温度与驱动信号的对应关系包括所述目标采样温度与所述控制第一开关器件导通时长的对应关系和所述目标采样温度与所述控制第一开关器件断开时长的对应关系;
    所述控制模块基于所述第一开关器件导通时长和所述第一开关器件断开时长,生成并输出驱动信号;
    所述第一开关模块接收所述驱动信号,并根据所述驱动信号导通或断开;
    所述第一开关器件导通,所述加热模块利用所述电池模组集合的输出功率为所述电池模组集合加热;
    所述第一开关模块断开,所述加热模块停止对所述电池模组集合的加热。
  10. 根据权利要求9所述的电池加热方法,其中,
    所述加热模块包含串联的N个加热器,N个所述加热器与所述电池模组集合所包含的N个所述电池模组一一对应,其中,N为正整数。
  11. 根据权利要求9所述的电池加热方法,其中,所述加热模块的另一端与所述电池模组集合的另一端之间设置有所述第二开关器件,所述电池加热方法还包括:
    所述控制模块采集第一采集电压数据和第二采集电压数据,所述第一采集电压数据表示所述加热模块的一端的电压数据,所述第二采集电压数据表示所述加热模块的另一端的电压数据,其中,所述加热模块的一端通过所述第一开关器件与所述电池模组集合的负极相连接,所述加热模块的另一端通过所述第二开关器件与所述电池模组集合的正极相连接;
    所述控制模块根据所述第一采集电压数据、所述第二采集电压数据和预设的正常运行判断条件,判断所述电池加热系统是否正常运行;
    若所述第一采集电压数据和第二采集电压数据均满足所述正常运行判断条件,所述控制模块判断所述电池加热系统正常运行。
  12. 根据权利要求11所述的电池加热方法,其中,所述若所述第一采集电压数据和第二采集电压数据均满足所述正常运行判断条件,控制模块判断所述电池加热系统正常运行,具体包括:
    在所述加热模块利用所述电池模组集合的输出功率为所述电池模组集合加热之前,若当所述第一开关器件和所述第二开关器件均断开时,所述第一采集电压数据和所述第二采集电压数据均小于预设的第一标定值,
    且当所述第一开关器件断开,所述第二开关器件闭合时,所述第一采集电压数据和所述第二采集电压数据均大于预设的第二标定值,
    且当第一开关器件和所述第二开关器件均闭合时,所述第一采集电压数据小于预设的第一标定值,所述第二采集电压数据大于预设的第二标定值,
    所述控制模块判断所述电池加热系统正常运行;
    其中,所述第一标定值是第一标定电压与第一标定系数的乘积,所述第一标定电压是当所述第一开关器件和第二开关器件均断开,且所述电池 模组集合输出额定电压时,所述第二开关器件与所述电池模组集合正极的连接处的电压,所述第二标定值是第二标定电压与第二标定系数的乘积,所述第二标定电压是当所述第一开关器件和第二开关器件均闭合,且所述电池模组集合输出额定电压时,所述加热模块与所述第一开关器件的连接处的电压。
  13. 根据权利要求11所述的电池加热方法,其中,所述若所述第一采集电压数据和第二采集电压数据均满足所述正常运行判断条件,控制模块判断所述电池加热系统正常运行,具体包括:
    在所述加热模块结束对所述电池模组集合的加热之前,当所述第一开关器件断开,所述第二开关器件闭合时,所述第一采集电压数据和所述第二采集电压数据均大于预设的第二标定值,
    且当所述第一开关器件和所述第二开关器件均断开时,所述第一采集电压数据和所述第二采集电压数据均小于预设的第一标定值,
    所述控制模块判断所述电池加热系统正常运行,
    其中,所述第一标定值是第一标定电压与第一标定系数的乘积,所述第一标定电压是当所述第一开关器件和第二开关器件均断开时,所述第二开关器件与所述电池模组集合正极相连的一端的电压,所述第二标定值是第二标定电压与第二标定系数的乘积,所述第二标定电压是当所述第一开关器件和第二开关器件均断开时,所述加热模块与所述第一开关器件连接处的电压。
  14. 根据权利要求9至13任一项所述的电池加热方法,其中,所述第一开关器件包括金属氧化物半导体场效应管。
  15. 根据权利要求9至13任一项所述的电池加热方法,其中,
    所述驱动信号为脉冲信号,所述脉冲信号的占空比为所述控制第一开关器件导通时长与所述控制第一开关器件断开时长的比值。
PCT/CN2019/122132 2018-11-30 2019-11-29 电池加热系统和方法 WO2020108635A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/964,314 US11394066B2 (en) 2018-11-30 2019-11-29 Battery heating system and method
EP19888514.7A EP3731333B1 (en) 2018-11-30 2019-11-29 Battery heating system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811457403.3 2018-11-30
CN201811457403.3A CN110970689B (zh) 2018-11-30 2018-11-30 电池加热系统和方法

Publications (1)

Publication Number Publication Date
WO2020108635A1 true WO2020108635A1 (zh) 2020-06-04

Family

ID=70029561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122132 WO2020108635A1 (zh) 2018-11-30 2019-11-29 电池加热系统和方法

Country Status (4)

Country Link
US (1) US11394066B2 (zh)
EP (1) EP3731333B1 (zh)
CN (1) CN110970689B (zh)
WO (1) WO2020108635A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053382A (zh) * 2021-01-08 2022-09-13 宁德时代新能源科技股份有限公司 电池热管理系统、电池加热系统的控制方法、装置、设备及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112455290A (zh) * 2020-10-28 2021-03-09 东风汽车集团有限公司 一种动力电池加热保护电路、方法和装置
CN112874378B (zh) * 2021-01-27 2022-12-09 一汽解放汽车有限公司 一种电池采样温度的处理方法、装置、设备及车辆
CN114597548A (zh) * 2022-03-14 2022-06-07 潍柴动力股份有限公司 一种电池系统的加热控制方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157532A (ja) * 2014-02-24 2015-09-03 三菱自動車工業株式会社 車両の制御装置
CN105633506A (zh) * 2016-03-04 2016-06-01 宁德时代新能源科技股份有限公司 电池加热系统
CN107919506A (zh) * 2017-11-09 2018-04-17 北京长城华冠汽车技术开发有限公司 电动汽车电池温控系统、温控方法、电动汽车电池总成
CN108736107A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热模块和电池组加热方法、加热系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020650B2 (ja) 2002-01-30 2007-12-12 三洋電機株式会社 車両用のバッテリー装置
US9214706B2 (en) * 2010-07-30 2015-12-15 Byd Company Limited Battery heating circuits and methods using resonance components in series based on charge balancing
DE102011077264B4 (de) * 2011-06-09 2024-04-25 Robert Bosch Gmbh Heizeinrichtung für Energiespeichereinrichtung und Verfahren zum Anwärmen von Energiespeicherzellen einer Energiespeichereinrichtung
CN103213508B (zh) * 2012-01-18 2016-06-01 比亚迪股份有限公司 一种电动车行车控制系统
CN203056041U (zh) * 2013-01-15 2013-07-10 无锡新纬电池有限公司 锂电池模组充电预加热装置
EP2978065B1 (en) 2013-05-08 2018-01-10 LG Chem, Ltd. Battery preheating system and method for preheating battery using same
KR101551088B1 (ko) 2014-05-09 2015-09-07 현대자동차주식회사 배터리 승온 시스템 및 릴레이 고장 검출 장치 및 그 방법
CN104377402B (zh) * 2014-12-02 2017-01-11 天津航空机电有限公司 一种电池加热器控制与故障诊断系统
CN105226757B (zh) * 2015-10-27 2018-07-31 北京新能源汽车股份有限公司 电池加热系统的故障诊断装置和方法
CN105789734B (zh) * 2016-03-21 2019-06-04 北京新能源汽车股份有限公司 一种用于电池系统加热的装置和具有该装置的新能源汽车
WO2017179879A1 (ko) * 2016-04-15 2017-10-19 전자부품연구원 배터리 히터, 그를 포함하는 배터리 시스템 및 그의 제조 방법
CN108336453A (zh) * 2017-01-20 2018-07-27 比亚迪股份有限公司 车辆及电池加热器的控制方法和装置
CN108390131B (zh) * 2018-02-09 2021-01-12 刘杰 纯内阻电池加热系统
CN108808173B (zh) * 2018-07-31 2020-08-25 北京航空航天大学 一种锂离子电池低温内外组合加热装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157532A (ja) * 2014-02-24 2015-09-03 三菱自動車工業株式会社 車両の制御装置
CN105633506A (zh) * 2016-03-04 2016-06-01 宁德时代新能源科技股份有限公司 电池加热系统
CN107919506A (zh) * 2017-11-09 2018-04-17 北京长城华冠汽车技术开发有限公司 电动汽车电池温控系统、温控方法、电动汽车电池总成
CN108736107A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热模块和电池组加热方法、加热系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731333A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115053382A (zh) * 2021-01-08 2022-09-13 宁德时代新能源科技股份有限公司 电池热管理系统、电池加热系统的控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN110970689B (zh) 2020-12-29
EP3731333A4 (en) 2021-04-21
CN110970689A (zh) 2020-04-07
EP3731333B1 (en) 2022-03-30
US11394066B2 (en) 2022-07-19
US20200350649A1 (en) 2020-11-05
EP3731333A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2020108635A1 (zh) 电池加热系统和方法
WO2020108633A1 (zh) 电池加热系统和方法
CN110116653B (zh) 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
US10886757B2 (en) Battery pack system, control method thereof and management device
CN101685971B (zh) 车载磷酸铁锂锂电池的低温激活装置及方法
CN109301366B (zh) 电池组电路及电池组加热方法
CN104347911B (zh) 一种动力锂离子电池组冷热控制系统及控制方法
CN103427137A (zh) 纯电动汽车动力电池的低温充电加热系统及加热方法
WO2014007996A2 (en) Battery electronics and control system
CN105966199A (zh) 一种新能源汽车ptc加热控制系统及方法
WO2021244649A1 (zh) 能量转换装置及其安全控制方法
CN211743349U (zh) 一种电池加热电路、电池、电子设备及充电电路
KR20230005943A (ko) 전기 자동차, 이의 제어 시스템 및 전기 가열 장치
CN204131459U (zh) 太阳能遮荫电路
CN111654087A (zh) 电池双向脉冲充电及自加热电路及控制方法
WO2024046412A1 (zh) 电池管理系统、用电设备和车辆
CN114714981A (zh) 电池加热的电路、系统以及方法
CN108321465B (zh) 基于电容器的电池内部交流加热电路、系统及方法
CN106992565B (zh) 一种蓄电池恒流放电装置
CN206274644U (zh) 结合电感转换器使用的振荡器以及电感转换器
WO2024037112A1 (zh) 电池自加热装置和具有其的车辆
CN107799849A (zh) 电池包加热系统和电动车
CN211980819U (zh) 电池管理系统与组合电池
WO2021218813A1 (zh) 一种电池系统、电机驱动装置以及供电控制方法
TWI580155B (zh) 電池預熱系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19888514.7

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019888514

Country of ref document: EP

Effective date: 20200724

NENP Non-entry into the national phase

Ref country code: DE