WO2020108565A1 - 发动机egr系统和发动机egr系统的诊断策略 - Google Patents

发动机egr系统和发动机egr系统的诊断策略 Download PDF

Info

Publication number
WO2020108565A1
WO2020108565A1 PCT/CN2019/121623 CN2019121623W WO2020108565A1 WO 2020108565 A1 WO2020108565 A1 WO 2020108565A1 CN 2019121623 W CN2019121623 W CN 2019121623W WO 2020108565 A1 WO2020108565 A1 WO 2020108565A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
differential pressure
pressure difference
valve
engine
Prior art date
Application number
PCT/CN2019/121623
Other languages
English (en)
French (fr)
Inventor
崔亚彬
张士伟
刘义佳
关松
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2020108565A1 publication Critical patent/WO2020108565A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system

Definitions

  • the invention relates to the technical field of engine manufacturing, and relates to an engine EGR system and a diagnosis strategy of the engine EGR system.
  • the engine EGR system is external EGR, which leads the exhaust gas after the catalyst to the intake supercharger, and needs to pass through the supercharger, the intake intercooler and the throttle valve to enter the engine cylinder.
  • Cooled EGR has a certain suppressive effect on medium and high load knocking, but it has a negative effect on combustion at small loads. In the small load area where EGR is increased, it will cause unstable combustion and a certain risk of misfire. Therefore, at low loads, it is necessary to increase the temperature of the coolant and reduce friction while increasing combustion stability, thereby reducing the risk of misfire and reducing fuel consumption.
  • medium load a lower water temperature is required, which can suppress knocking to a certain extent.
  • the lowest possible water temperature is required, which can further reduce the knocking of external characteristics and greatly improve the power. , Reduce the exhaust temperature at the power point and increase the power.
  • EGR is composed of combustion exhaust gas, which is easily condensed and coked after being cooled by the cooler, causing clogging of the EGR cooler and the EGR valve.
  • the clogging of the EGR pipe will cause inaccurate adjustment of the EGR rate.
  • inaccurate adjustment of the EGR rate may easily cause serious knocking of the engine, and there is a risk of scrapping the engine.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • an object of the present invention is to propose an engine EGR system, including: an EGR line, the EGR line is provided with an EGR cooler and an EGR valve, the intake end of the EGR valve and the EGR cooler Is connected to the outlet end of the differential pressure sensor; the inlet end of the differential pressure sensor can selectively communicate with one of the first point and the second point on the EGR line, the first point is located in the EGR cooling The second end is located between the outlet end of the EGR cooler and the inlet end of the EGR valve, and the outlet end of the differential pressure sensor is connected to the EGR line and connected The point is located at the outlet end of the EGR valve; a controller, which is communicatively connected to the differential pressure sensor to determine the clogging failure of the EGR line according to the detection value of the differential pressure sensor.
  • the detection of clogging of the EGR cooler and EGR valve can be achieved by providing a differential pressure sensor with multiple intake air, which helps to accurately adjust the EGR rate and avoid engine knocking and fuel consumption due to inaccurate adjustment of the EGR rate increase.
  • Another object of the present invention is to propose a diagnosis strategy for an engine EGR system, including the following steps: monitoring the first pressure difference P1 between the intake end of the EGR cooler and the intake end of the EGR valve; Compare the pressure difference P1 with the first standard pressure difference SP1. If P1 ⁇ SP1, continue to monitor the first pressure difference P1; if P1>SP1, measure the second between the intake end of the EGR valve and the outlet end of the EGR valve Pressure difference P2; comparing the second pressure difference P2 with the second standard pressure difference SP2, if P2 ⁇ SP2, it is judged that the EGR cooler is clogged, and if P2>SP2, it is judged that the EGR valve is clogged.
  • FIG. 1 is a structural schematic diagram of an engine EGR system according to an embodiment of the present invention.
  • FIG. 2 is a logic diagram of a diagnosis strategy of an engine EGR system according to an embodiment of the invention.
  • Figure 3 is the calibration logic diagram of the standard pressure difference
  • Figure 4 is a logic diagram of the self-healing procedure of the EGR valve.
  • FIG. 5 is a map of the EGR rate distribution area.
  • the engine EGR system of the embodiment of the present invention is a low-pressure EGR system.
  • the engine EGR system includes an EGR line, the intake end of the EGR line is connected to the outlet of the catalyst 10, and the outlet of the EGR line is
  • the intake end of the compressor 2 is connected, and the outlet end of the compressor 2 is connected to the intake end of the intake intercooler 3 through an intake pipe, and a throttle valve is provided between the output end of the intake intercooler 3 and the intake manifold 5.
  • the exhaust gas of the cylinder is discharged after passing through the turbine 9, the outlet end of the turbine 9 is connected to the inlet end of the catalyst 10, and the catalyst 10 may be a three-way catalyst.
  • the EGR system draws gas from the catalyst 10, passes through the EGR cooler 11 and the EGR valve 12, and then introduces it into the compressor 2, passes through the engine's supercharger, intake intercooler 3, and throttle valve 5, and enters the cylinder.
  • EGR has a negative effect on combustion in the small load in the A region. In the small load region where EGR is increased, it will cause unstable combustion and a certain risk of misfire.
  • increasing EGR at small loads can reduce pumping losses.
  • a larger EGR rate is needed to suppress knocking and reduce fuel consumption.
  • a certain EGR rate is needed, which can further reduce knocking of external characteristics and greatly improve power Performance, reduce the exhaust temperature at the power point and increase the power.
  • the engine EGR system includes: an EGR line, a pressure difference sensor 13, and a controller.
  • the EGR pipe is provided with an EGR cooler 11 and an EGR valve 12, the intake end of the EGR valve 12 is connected to the outlet end of the EGR cooler 11, and the inlet end of the differential pressure sensor 13 can be selectively connected to the first end of the EGR pipe
  • One point communicates with one of the second points, the first point is located at the intake end of the EGR cooler 11, the second point is located between the outlet end of the EGR cooler 11 and the intake end of the EGR valve 12, the pressure difference sensor 13 Is connected to the EGR line, and the connection point is located at the outlet of the EGR valve 12
  • the intake line of the differential pressure sensor 13 is connected to the front and rear of the EGR cooler 11, and the return line of the differential pressure sensor 13 is connected to the EGR valve 12.
  • the differential pressure detected by the differential pressure sensor 13 is the sum of the differential pressures of the EGR cooler 11 and the EGR valve 12; the inlet end of the differential pressure sensor 13 is connected After reaching the outlet end of the EGR cooler 11, the pressure difference detected by the pressure difference sensor 13 is the pressure difference of the EGR valve 12.
  • the engine EGR system may further include: a three-way valve 15, the first port of the three-way valve 15 is connected to the first point, a second port of the three-way valve 15 is connected to the second point, and the three-way valve 15
  • the third port is connected to the inlet end of the differential pressure sensor 13, and the third port of the three-way valve 15 can selectively communicate with the first port or the second port of the three-way valve 15.
  • the detection target of the differential pressure sensor 13 can be controlled by the communication mode of the three-way valve 15.
  • the controller is communicatively connected to the differential pressure sensor 13 to determine the clogging fault of the EGR line according to the detection value of the differential pressure sensor 13.
  • the three-way valve 15 can be a solenoid valve, and the controller is communicatively connected to the three-way valve 15
  • the detection value of the difference sensor 13 controls the communication mode of the three-way valve 15.
  • the engine EGR system may further include: a check valve 14 connected between the outlet end of the differential pressure sensor 13 and the EGR line, and the check valve 14 exits from the outlet of the differential pressure sensor 13 One-way connection from end to EGR line.
  • the default state of the engine EGR system is that the inlet end of the differential pressure sensor 13 communicates with the first point on the EGR line, that is, the third interface of the three-way valve 15 communicates with the first interface of the three-way valve 15.
  • the controller is configured such that when the inlet end of the differential pressure sensor 13 communicates with the first point, the first differential pressure P1 measured by the differential pressure sensor 13 is greater than the first standard differential pressure SP1, and the differential pressure sensor 13 When the inlet of the inlet is connected to the second point, the second differential pressure P2 measured by the differential pressure sensor 13 is greater than the second standard differential pressure SP2, it is judged that the EGR valve 12 is clogged; the controller is set at the inlet end of the differential pressure sensor 13 and the second The first differential pressure measured by the differential pressure sensor 13 when one point is connected is greater than the first standard differential pressure, and the second differential pressure measured by the differential pressure sensor 13 when the inlet of the differential pressure sensor 13 is connected to the second point is not greater than At the second standard pressure difference, it is determined that the EGR cooler 11 is clogged.
  • the differential pressure sensor 13 defaults to taking gas from the EGR cooler 11.
  • the differential pressure measured by the differential pressure sensor 13 is the first differential pressure P1, which is compared with the first standard differential pressure SP1 corresponding to the first differential pressure P1. If the first pressure difference P1 exceeds the first standard pressure difference SP1, then the three-way valve 15 is adjusted, and the pressure difference sensor 13 takes the air into the cooler and before the EGR valve 12, at this time the measured pressure difference is the second pressure difference P2, and The second standard pressure difference SP2 corresponding to the second pressure difference P2 is compared.
  • the second pressure difference P2 is greater than the second standard pressure difference SP2, it is determined that the EGR valve 12 is blocked; if the second pressure difference P2 is not greater than the second standard pressure difference SP2, However, if the first pressure difference P1 is still greater than the first standard pressure difference SP1, it is determined that the EGR cooler 11 is clogged.
  • the calibration method of the first standard pressure difference SP1 includes: checking the map of the EGR rate between the EGR cooler 11 and the EGR valve 12 according to the engine speed and torque to obtain the first target EGR rate, and according to the first target EGR rate Check the pressure difference map with the target intake air amount to get the first theoretical pressure difference (this pressure difference is the amount of EGR calculated based on the EGR rate and engine intake air amount, based on the amount of EGR and the throttle of the EGR valve 12 and EGR cooler 11 The normal pressure difference is obtained in the test); according to the cumulative working time of the engine, the first attenuation value is obtained after inputting the first attenuation curve of the EGR cooler 11 and the EGR valve 12, and the first attenuation value is multiplied by the first theoretical pressure difference to obtain the first standard Pressure difference.
  • the calibration method of the second standard pressure difference SP2 includes: checking the map of the EGR rate between the EGR valve 12 according to the engine speed and torque to obtain the second target EGR rate, and consulting the pressure difference map according to the second target EGR rate and the target intake air amount to obtain the second Two theoretical pressure difference (this pressure difference is the amount of EGR calculated based on the EGR rate and the engine air intake, and the normal pressure difference is obtained based on the amount of EGR and the throttle of the EGR valve 12 and EGR cooler 11); During the working time, the second attenuation value is obtained after inputting the second attenuation curve of the EGR valve 12, and the second attenuation value is multiplied by the second theoretical pressure difference to obtain the second standard pressure difference.
  • Both the first standard pressure difference SP1 and the second standard pressure difference SP2 are obtained by the logic shown in FIG. 3, but for the EGR cooler 11 and the EGR valve 12, there is a separate map obtained from experimental data.
  • EGR quantity and throttle condition of EGR valve 12 and cooler are tested to get the normal pressure difference); the cumulative working time of the engine, the attenuation value is obtained after inputting the attenuation curve, and the attenuation value is multiplied by the theoretical pressure difference to obtain the standard pressure difference.
  • the cumulative working time of the engine is the cumulative working time of the engine life cycle, because the accumulation of the wall surfaces of the EGR valve 12 and the EGR cooler 11 over time has a natural condensation process, and the pressure difference will naturally increase, which is not a blockage.
  • the decay curve is used instead, and the decay curve is obtained from the test of the entire life cycle. The function of the attenuation curve is to consider the factors of accumulated working time, correct the pressure difference, and avoid misdiagnosis.
  • a differential pressure sensor 13 can realize the detection of the clogging of the EGR cooler 11 and the EGR valve 12, which helps to accurately adjust the EGR rate and avoid engine deflagration and increased fuel consumption due to inaccurate adjustment of the EGR rate.
  • the controller is configured to output the EGR cooler 11 clogging failure signal when it is judged that the EGR cooler 11 is clogged, in other words, if it is judged that the EGR cooler 11 is clogged, it outputs a failure and the EGR cooler 11 needs to be replaced or cleaned.
  • the controller includes a readable storage medium that stores a first computer program.
  • the controller is configured to start the first computer program when it is judged that the EGR valve 12 is blocked.
  • the first computer program is used to drive the EGR valve 12 with a first preset duty cycle. Ratio operation, then oscillate at the first preset frequency to clean the wall surface of the EGR valve 12, and then operate at the second preset duty ratio.
  • the controller is configured to output a fault code if the controller determines that the EGR valve 12 is still blocked after starting the first computer program.
  • the EGR valve 12 is an electromagnetic valve electrically connected to the controller.
  • the controller includes a readable storage medium that stores a first computer program.
  • the first computer program is used to drive the EGR valve 12 to work at the first preset duty cycle, and then Oscillate at the first preset frequency to clean the wall surface of the EGR valve 12, and then work at the second preset duty cycle. If the EGR valve 12 is still blocked, a fault code is output and the controller is set to determine when the EGR valve 12 is blocked. Start the first computer program.
  • the first preset duty cycle is not less than 90%
  • the second preset duty cycle is not less than 90%
  • the first preset frequency is not less than 3 Hz.
  • the EGR valve 12 If it is judged that the EGR valve 12 is faulty, first perform a self-repair program (the first computer program). If the pressure drop after self-repair is reduced and the use is satisfied, continue to use it, otherwise report a fault and prompt to replace the EGR valve 12 or disassemble Clean the EGR valve 12.
  • a self-repair program the first computer program. If the pressure drop after self-repair is reduced and the use is satisfied, continue to use it, otherwise report a fault and prompt to replace the EGR valve 12 or disassemble Clean the EGR valve 12.
  • the first computer program includes driving the EGR valve 12 with a larger duty cycle (not less than 90%), and then oscillating with a high frequency (not less than 3 Hz) to clean the valve wall and use the large
  • the duty ratio (not less than 90%) is squeezed to determine the new zero position.
  • the clogging of the EGR cooler 11 and the EGR valve 12 can be diagnosed. And take corresponding measures for different situations to avoid engine deflagration and fuel consumption increase due to inaccurate adjustment of EGR rate.
  • the invention also discloses a diagnosis strategy of the engine EGR system.
  • the structure of the engine EGR system can refer to the description of the above embodiment.
  • the diagnosis strategy of the engine EGR system includes the following steps: monitoring the first pressure difference P1 between the intake end of the EGR cooler 11 and the intake end of the EGR valve 12; comparing the first pressure difference P1 with the first standard pressure difference SP1 , If P1 ⁇ SP1, continue to monitor the first pressure difference P1; if P1>SP1, then measure the second pressure difference P2 between the intake end of the EGR valve 12 and the outlet end of the EGR valve 12; P2 is compared with the second standard pressure difference SP2. If P2 ⁇ SP2, it is determined that the EGR cooler 11 is clogged, and if P2>SP2, the EGR valve 12 is determined to be clogged.
  • the differential pressure sensor 13 defaults to taking gas from the EGR cooler 11.
  • the differential pressure measured by the differential pressure sensor 13 is the first differential pressure P1, which is compared with the first standard differential pressure SP1 corresponding to the first differential pressure P1. If the first pressure difference P1 exceeds the first standard pressure difference SP1, then the three-way valve 15 is adjusted, and the pressure difference sensor 13 takes the air into the cooler and before the EGR valve 12, at this time the measured pressure difference is the second pressure difference P2, and The second standard pressure difference SP2 corresponding to the second pressure difference P2 is compared.
  • the second pressure difference P2 is greater than the second standard pressure difference SP2, it is determined that the EGR valve 12 is blocked; if the second pressure difference P2 is not greater than the second standard pressure difference SP2, However, if the first pressure difference P1 is still greater than the first standard pressure difference SP1, it is determined that the EGR cooler 11 is clogged.
  • the step outputs a failure signal of the EGR cooler 11 after determining that the EGR cooler 11 is clogged. In other words, if it is determined that the EGR cooler 11 is clogged, an output failure occurs and the EGR cooler 11 needs to be replaced or cleaned.
  • the method further includes the step of performing a self-repair procedure of the EGR valve 12, if the P2 ⁇ SP2 is performed after the self-repair procedure of the EGR valve 12, the EGR valve 12 fault signal is output otherwise. .
  • the step of performing the self-repair process of the EGR valve 12 includes driving the EGR valve 12 to work at the first preset duty cycle, then oscillating at the first preset frequency to clean the wall surface of the EGR valve 12, and then using the second The preset duty cycle works.
  • the first preset duty cycle is not less than 90%
  • the second preset duty cycle is not less than 90%
  • the first preset frequency is not less than 3 Hz.
  • the calibration method of the first standard pressure difference SP1 includes: checking the map of the EGR rate between the EGR cooler 11 and the EGR valve 12 according to the engine speed and torque to obtain the first target EGR rate, and according to the first target EGR rate Check the pressure difference map with the target intake air amount to get the first theoretical pressure difference (this pressure difference is the amount of EGR calculated based on the EGR rate and engine intake air amount, based on the amount of EGR and the throttle of the EGR valve 12 and EGR cooler 11 The normal pressure difference is obtained in the test); according to the cumulative working time of the engine, the first attenuation value is obtained after inputting the first attenuation curve of the EGR cooler 11 and the EGR valve 12, and the first attenuation value is multiplied by the first theoretical pressure difference to obtain the first standard Pressure difference.
  • the calibration method of the second standard pressure difference SP2 includes: checking the map of the EGR rate between the EGR valve 12 according to the engine speed and torque to obtain the second target EGR rate, and according to the second target EGR rate and the target intake air amount Refer to the pressure difference map to obtain the second theoretical pressure difference (this pressure difference is the amount of EGR calculated based on the EGR rate and the engine intake air amount, and the normal pressure is obtained according to the EGR amount and the throttle of the EGR valve 12 and the EGR cooler 11 (Difference); according to the cumulative working time of the engine, the second attenuation value is obtained after inputting the second attenuation curve of the EGR valve 12, and the second attenuation value is multiplied by the second theoretical pressure difference to obtain the second standard pressure difference.
  • Both the first standard pressure difference SP1 and the second standard pressure difference SP2 are obtained by the logic shown in FIG. 3, but for the EGR cooler 11 and the EGR valve 12, there are separate maps obtained from experimental data.
  • EGR quantity and throttle condition of EGR valve 12 and cooler are tested to get the normal pressure difference); the cumulative working time of the engine, the attenuation value is obtained after inputting the attenuation curve, and the attenuation value is multiplied by the theoretical pressure difference to obtain the standard pressure difference.
  • the cumulative working time of the engine is the cumulative working time of the engine life cycle, because the accumulation of the wall surfaces of the EGR valve 12 and the EGR cooler 11 over time has a natural condensation process, and the pressure difference will naturally increase, which is not a blockage.
  • the decay curve is used instead, and the decay curve is obtained from the test of the entire life cycle. The function of the attenuation curve is to consider the factors of accumulated working time, correct the pressure difference, and avoid misdiagnosis.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is more than two, unless otherwise specifically limited.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • installation can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • the first feature is "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are indirectly through an intermediary contact.
  • the first feature is “above”, “above” and “above” the second feature may be that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

一种发动机EGR系统和发动机EGR系统的诊断策略,发动机EGR系统包括:EGR管路,所述EGR管路上设有EGR冷却器(11)和EGR阀(12),所述EGR阀(12)的进气端与所述EGR冷却器(11)的出气端相连;压差传感器(13)的进口端可选择性地与所述EGR管路上的第一点和第二点中的一个连通,所述第一点位于所述EGR冷却器(11)的进气端,所述第二点位于所述EGR冷却器(11)的出气端、所述EGR阀(12)的进气端之间,所述压差传感器(13)的出口端与所述EGR管路相连,且连接点位于所述EGR阀(12)的出气端;控制器与所述压差传感器(13)通讯连接。

Description

发动机EGR系统和发动机EGR系统的诊断策略
相关申请的交叉引用
本申请要求长城汽车股份有限公司于2018年11月30日提交的、发明名称为“发动机EGR系统和发动机EGR系统的诊断策略”的、中国专利申请号“201811453614.X”的优先权。
技术领域
本发明涉及发动机制造技术领域,涉及一种发动机EGR系统和发动机EGR系统的诊断策略。
背景技术
环境问题,能源危机,苛刻的排放及油耗法规的出台,为内燃机行业提出了严峻的挑战。降油耗、降排放是目前最核心的两个问题。
在上述背景下,各车企及研究机构提出低压EGR系统应用于汽油机,将废气由催化器后引出,引入到压气机前,用冷却后的废气引入缸内,降低缸内工质的温度及比热比,降低中小负荷的泵气损失,在大负荷引入EGR后,可以降低压缩终点温度,从而可以向前提点火角,从而提高高负荷的热效率。
所述发动机EGR系统为外部EGR,其是将催化器后的废气引到进气增压器前,需要经过增压器,进气中冷器以及节气门进入到发动机缸内。经过冷却的EGR对中高负荷爆震具有一定抑制作用,但在小负荷对燃烧起到负面作用,在增加EGR的小负荷区域,会造成燃烧不稳定,并且有一定的失火的风险。因此在小负荷需要提高冷却液温度,降低摩擦的同时,增加燃烧稳定性,从而降低失火风险,降低油耗。在中等负荷,需要较低的水温,这样可以在一定程度上抑制爆震,在高负荷及功率点,需要尽可能低的水温,这样可以进一步降低外特性的爆震,极大的提升动力性,在功率点降低排气温度,提升功率。
EGR由燃烧废气构成,在受到冷却器冷却后容易凝结,结焦,对EGR冷却器及EGR阀造成堵塞。EGR管路的堵塞会造成EGR率调节不准确,在高负荷需要大EGR率的工况下,EGR率调节不准确容易造成发动机严重的爆震,有报废发动机的风险。
相关技术中,还未有较为简单的系统和策略用来测试EGR冷却器及EGR阀的堵塞情况,存在改进空间。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种发动机EGR系统,包括:EGR管路,所述EGR管路上设有EGR冷却器和EGR阀,所述EGR阀的进气端与所述EGR冷却器的出气端相连;压差传感器,所述压差传感器的进口端可选择性地与所述EGR管路上的第一点和第二点中的一个连通,所述第一点位于所述EGR冷却器的进气端,所述第二点位于所述EGR冷却器的出气端、所述EGR阀的进气端之间,所述压差传感器的出口端与所述EGR管路相连,且连接点位于所述EGR阀的出气端;控制器,所述控制器与所述压差传感器通讯连接,以根据所述压差传感器的检测值判断所述EGR管路的堵塞故障。
由此,通过设置具有多路进气的压差传感器即可实现EGR冷却器、EGR阀的堵塞情况检测,有助于准确调节EGR率,避免因为EGR率调节不准确的问题造成发动机爆燃以及油耗增加。
本发明的另一目的在于提出一种发动机EGR系统的诊断策略,包括如下步骤:监控EGR冷却器的进气端到EGR阀的进气端之间的第一压差P1;将所述第一压差P1与第一标准压差SP1比较,若P1≤SP1,则继续监控第一压差P1;若P1>SP1,则测量EGR阀的进气端到EGR阀的出气端之间的第二压差P2;将所述第二压差P2与第二标准压差SP2比较,若P2≤SP2,则判断EGR冷却器堵塞,若P2>SP2,则判断EGR阀堵塞。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明实施例所述的发动机EGR系统的结构原理图;
图2为本发明实施例所述的发动机EGR系统的诊断策略的逻辑图;
图3为标准压差的标定逻辑图;
图4为EGR阀的自我修复程序的逻辑图;和
图5为EGR率分布区域图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图来详细描述根据本发明实施例的发动机EGR系统和发动机EGR系统的诊断策略。
如图1所示,本发明实施例的发动机EGR系统为低压EGR系统,发动机EGR系统包括EGR管路,EGR管路的进气端与催化器10的出气端相连,EGR管路的出气端与压气机2的进气端相连,压气机2的出气端通过进气管与进气中冷器3的进气端相连,进气中冷器3的出气端与进气歧管之间设置节气门5,气缸的排气经过涡轮机9后排出,涡轮机9的出气端与催化器10的进气端相连,催化器10可以为三效催化器。
EGR系统由催化器10后取气,经过EGR冷却器11及EGR阀12后引入到压气机2前,经过发动机的增压器、进气中冷器3以及节气门5后进入到气缸内。
如图5所示,EGR对A区域的小负荷对燃烧起到负面作用,在增加EGR的小负荷区域以,会造成燃烧不稳定,并且有一定的失火的风险。但小负荷增加EGR可以降低泵气损失。在B区域中等负荷,需要量比较大的EGR率抑制爆震,降低油耗,在C区域高负荷及功率点,需要一定的EGR率,这样可以进一步降低外特性的爆震,极大的提升动力性,在功率点降低排气温度,提升功率。
如图1所示,发动机EGR系统包括:EGR管路、压差传感器13、控制器。
其中,EGR管路上设有EGR冷却器11和EGR阀12,EGR阀12的进气端与EGR冷却器11的出气端相连,压差传感器13的进口端可选择性地与EGR管路上的第一点和第二点中的一个连通,第一点位于EGR冷却器11的进气端,第二点位于EGR冷却器11的出气端、EGR阀12的进气端之间,压差传感器13的出口端与EGR管路相连,且连接点位于EGR阀12的出气端
也就是说,压差传感器13的进气管路连接EGR冷却器11的前、后两路,压差传感器13的回气管路连接在EGR阀12后。
压差传感器13的进口端连接到EGR冷却器11的进口端之前时,压差传感器13检测的压差为EGR冷却器11和EGR阀12的压差的总和;压差传感器13的进口端连接到EGR冷却器11的出口端之后时,压差传感器13检测的压差为EGR阀12的压差。
在一些实施例中,发动机EGR系统还可以包括:三通阀15,三通阀15的第一接口与第一点相连,三通阀15的第二接口与第二点相连,三通阀15的第三接口与压差传感器13的进口端相连,三通阀15的第三接口可选择性地与三通阀15的第一接口或第二接口连通。通过三通阀15的连通方式即可控制压差传感器13的检测目标。
控制器与压差传感器13通讯连接,以根据压差传感器13的检测值判断EGR管路的堵塞故障,三通阀15可以为电磁阀,控制器与三通阀15通讯连接,控制器根据压差传感器13的检测值控制三通阀15的连通方式。
在一些实施例中,发动机EGR系统还可以包括:单向阀14,单向阀14连接在压差传感器13的出口端与EGR管路之间,且单向阀14从压差传感器13的出口端到EGR管路单向导 通。
发动机EGR系统的默认状态为压差传感器13的进口端与EGR管路上的第一点连通,即三通阀15的第三接口与三通阀15的第一接口连通。
如图2所示,控制器设置为在压差传感器13的进口端与第一点连通时压差传感器13测得的第一压差P1大于第一标准压差SP1,且在压差传感器13的进口端与第二点连通时压差传感器13测得的第二压差P2大于第二标准压差SP2时,判断EGR阀12堵塞;控制器设置为在压差传感器13的进口端与第一点连通时压差传感器13测得的第一压差大于第一标准压差,且在压差传感器13的进口端与第二点连通时压差传感器13测得的第二压差不大于第二标准压差时,判断EGR冷却器11堵塞。
压差传感器13默认为由EGR冷却器11前取气体,经过压差传感器13测得压力差为第一压差P1,与第一压差P1对应的第一标准压差SP1作比较,如果第一压差P1超过第一标准压差SP1,那么三通阀15调节,压差传感器13取气改为冷却器后、EGR阀12前,此时测得压力差为第二压差P2,与第二压差P2对应的第二标准压差SP2比较,第二压差P2大于第二标准压差SP2则判定为EGR阀12堵塞;如若第二压差P2不大于第二标准压差SP2,但第一压差P1仍然大于第一标准压差SP1,则判断为EGR冷却器11堵塞。
如图3所示,第一标准压差SP1的标定方法包括:根据发动机转速及扭矩查EGR冷却器11到EGR阀12之间EGR率的map得到第一目标EGR率,根据第一目标EGR率与目标进气量查阅压差map得到第一理论压差(此压力差为根据EGR率及发动机进气量计算EGR的量,根据EGR的量以及EGR阀12及EGR冷却器11的节流情况试验得到正常的压力差);根据发动机累计工作时间,输入EGR冷却器11和EGR阀12的第一衰减曲线后得到第一衰减值,第一衰减值乘以第一理论压差得到第一标准压力差。
第二标准压差SP2的标定方法包括:根据发动机转速及扭矩查EGR阀12之间EGR率的map得到第二目标EGR率,根据第二目标EGR率与目标进气量查阅压差map得到第二理论压差(此压力差为根据EGR率及发动机进气量计算EGR的量,根据EGR的量以及EGR阀12及EGR冷却器11的节流情况试验得到正常的压力差);根据发动机累计工作时间,输入EGR阀12的第二衰减曲线后得到第二衰减值,第二衰减值乘以第二理论压差得到第二标准压力差。
第一标准压差SP1和第二标准压差SP2都是由图3所示的逻辑得到,不过针对EGR冷却器11以及EGR阀12,有单独的map,由实验数据得到。根据发动机转速及扭矩查EGR率的map得到目标EGR率,目标EGR率与目标进气量查阅压差map得到理论压差(此压力差为根据EGR率及发动机进气量计算EGR的量,根据EGR的量以及EGR阀12及冷却器的节流情况试验得到正常的压力差);发动机累计工作时间,输入衰减曲线后得到衰减值,衰减值乘以理论压差得到标准压力差。
可以理解的是,发动机累计工作时间为发动机生命周期内的累计工作时间,因为EGR阀12及EGR冷却器11的壁面随时间的累计有一个自然的凝结过程,压差会自然增加,不属于堵塞,逻辑中用衰减曲线去替代,衰减曲线由全生命周期的试验获得。衰减曲线的作用为考虑累计工作时间的因素,修正压差,避免误诊断。
这样,通过设置一个压差传感器13即可实现EGR冷却器11、EGR阀12的堵塞情况检测,有助于准确调节EGR率,避免因为EGR率调节不准确的问题造成发动机爆燃以及油耗增加。
控制器设置为在判断EGR冷却器11堵塞时,输出EGR冷却器11堵塞故障信号,换言之,如果判断为EGR冷却器11堵塞,则输出故障,需要更换或清洗EGR冷却器11。
控制器包括存储有第一计算机程序的可读存储介质,控制器设置为在判断EGR阀12堵塞时启动第一计算机程序,第一计算机程序用于驱动EGR阀12先以第一预设占空比工作,然后以第一预设频率振荡以清洗EGR阀12的壁面,再以第二预设占空比工作。控制器设置为在启动第一计算机程序后,若控制器判断EGR阀12仍然堵塞,则输出故障码。
EGR阀12为与控制器电连接的电磁阀,控制器包括存储有第一计算机程序的可读存储介质,第一计算机程序用于驱动EGR阀12先以第一预设占空比工作,然后以第一预设频率振荡以清洗EGR阀12的壁面,再以第二预设占空比工作,若EGR阀12仍然堵塞,则输出故障码,控制器设置为在判断EGR阀12堵塞时,启动第一计算机程序。第一预设占空比不小于90%,第二预设占空比不小于90%,第一预设频率不小于3Hz。
如果判断为EGR阀12故障的话,首先进行自我修复程序(第一计算机程序),如果自我修复后压差降低了,满足使用了,则继续使用,否则报故障,提示更换EGR阀12或拆解清洗EGR阀12。
如图4所示,第一计算机程序包括使用较大的占空比(不小于90%)驱动EGR阀12,然后采用高频(不小于3Hz)振荡,对于阀壁进行清理,再次使用大的占空比(不小于90%)进行挤压,确定新的零点位置。
综上所述,根据本发明实施例的发动机EGR系统,能够诊断出EGR冷却器11以及EGR阀12的堵塞情况。并针对不同的情况采取相应的措施,避免因为EGR率调节不准确的问题造成发动机爆燃以及油耗增加。
本发明还公开了一种发动机EGR系统的诊断策略,发动机EGR系统的结构可以参考上述实施例的描述。
发动机EGR系统的诊断策略包括如下步骤:监控EGR冷却器11的进气端到EGR阀12的进气端之间的第一压差P1;将第一压差P1与第一标准压差SP1比较,若P1≤SP1,则继续监控第一压差P1;若P1>SP1,则测量EGR阀12的进气端到EGR阀12的出气端之间的第二压差P2;将第二压差P2与第二标准压差SP2比较,若P2≤SP2,则判断EGR冷却器11 堵塞,若P2>SP2,则判断EGR阀12堵塞。
压差传感器13默认为由EGR冷却器11前取气体,经过压差传感器13测得压力差为第一压差P1,与第一压差P1对应的第一标准压差SP1作比较,如果第一压差P1超过第一标准压差SP1,那么三通阀15调节,压差传感器13取气改为冷却器后、EGR阀12前,此时测得压力差为第二压差P2,与第二压差P2对应的第二标准压差SP2比较,第二压差P2大于第二标准压差SP2则判定为EGR阀12堵塞;如若第二压差P2不大于第二标准压差SP2,但第一压差P1仍然大于第一标准压差SP1,则判断为EGR冷却器11堵塞。
这样,可以准确地实现EGR冷却器11、EGR阀12的堵塞情况检测,有助于准确调节EGR率,避免因为EGR率调节不准确的问题造成发动机爆燃以及油耗增加。
在一些实施例中,步骤判断EGR冷却器11堵塞后输出EGR冷却器11故障信号。换言之,如果判断为EGR冷却器11堵塞,则输出故障,需要更换或清洗EGR冷却器11。
在一些实施例中,步骤判断EGR阀12堵塞后还包括步骤:进行EGR阀12自我修复程序,若进行EGR阀12自我修复程序后,P2≤SP2,则继续使用,反之输出EGR阀12故障信号。
换言之,如果判断为EGR阀12故障的话,首先进行自我修复程序(第一计算机程序),如果自我修复后压差降低了,满足使用了,则继续使用,否则报故障,提示更换EGR阀12或拆解清洗EGR阀12。
如图4所示,步骤进行EGR阀12自我修复程序包括驱动EGR阀12先以第一预设占空比工作,然后以第一预设频率振荡以清洗EGR阀12的壁面,再以第二预设占空比工作。第一预设占空比不小于90%,第二预设占空比不小于90%,第一预设频率不小于3Hz。
如图3所示,第一标准压差SP1的标定方法包括:根据发动机转速及扭矩查EGR冷却器11到EGR阀12之间EGR率的map得到第一目标EGR率,根据第一目标EGR率与目标进气量查阅压差map得到第一理论压差(此压力差为根据EGR率及发动机进气量计算EGR的量,根据EGR的量以及EGR阀12及EGR冷却器11的节流情况试验得到正常的压力差);根据发动机累计工作时间,输入EGR冷却器11和EGR阀12的第一衰减曲线后得到第一衰减值,第一衰减值乘以第一理论压差得到第一标准压力差。
如图3所示,第二标准压差SP2的标定方法包括:根据发动机转速及扭矩查EGR阀12之间EGR率的map得到第二目标EGR率,根据第二目标EGR率与目标进气量查阅压差map得到第二理论压差(此压力差为根据EGR率及发动机进气量计算EGR的量,根据EGR的量以及EGR阀12及EGR冷却器11的节流情况试验得到正常的压力差);根据发动机累计工作时间,输入EGR阀12的第二衰减曲线后得到第二衰减值,第二衰减值乘以第二理论压差得到第二标准压力差。
第一标准压差SP1和第二标准压差SP2都是由图3所示的逻辑得到,不过针对EGR冷却 器11以及EGR阀12,有单独的map,由实验数据得到。根据发动机转速及扭矩查EGR率的map得到目标EGR率,目标EGR率与目标进气量查阅压差map得到理论压差(此压力差为根据EGR率及发动机进气量计算EGR的量,根据EGR的量以及EGR阀12及冷却器的节流情况试验得到正常的压力差);发动机累计工作时间,输入衰减曲线后得到衰减值,衰减值乘以理论压差得到标准压力差。
可以理解的是,发动机累计工作时间为发动机生命周期内的累计工作时间,因为EGR阀12及EGR冷却器11的壁面随时间的累计有一个自然的凝结过程,压差会自然增加,不属于堵塞,逻辑中用衰减曲线去替代,衰减曲线由全生命周期的试验获得。衰减曲线的作用为考虑累计工作时间的因素,修正压差,避免误诊断。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种发动机EGR系统,其特征在于,包括:
    EGR管路,所述EGR管路上设有EGR冷却器(11)和EGR阀(12),所述EGR阀(12)的进气端与所述EGR冷却器(11)的出气端相连;
    压差传感器(13),所述压差传感器(13)的进口端可选择性地与所述EGR管路上的第一点和第二点中的一个连通,所述第一点位于所述EGR冷却器(11)的进气端,所述第二点位于所述EGR冷却器(11)的出气端、所述EGR阀(12)的进气端之间,所述压差传感器(13)的出口端与所述EGR管路相连,且连接点位于所述EGR阀(12)的出气端;
    控制器,所述控制器与所述压差传感器(13)通讯连接,以根据所述压差传感器(13)的检测值判断所述EGR管路的堵塞故障。
  2. 根据权利要求1所述的发动机EGR系统,其特征在于,还包括:三通阀(15),所述三通阀(15)的第一接口与所述第一点相连,所述三通阀(15)的第二接口与所述第二点相连,所述三通阀(15)的第三接口与所述压差传感器(13)的进口端相连,所述三通阀(15)的第三接口可选择性地与所述三通阀(15)的第一接口或第二接口连通。
  3. 根据权利要求1所述的发动机EGR系统,其特征在于,还包括:单向阀(14),所述单向阀(14)连接在所述压差传感器(13)的出口端与所述EGR管路之间,且所述单向阀(14)从所述压差传感器(13)的出口端到所述EGR管路单向导通。
  4. 根据权利要求1所述的发动机EGR系统,其特征在于,所述控制器设置为在所述压差传感器(13)的进口端与所述第一点连通时所述压差传感器(13)测得的第一压差大于第一标准压差,且在所述压差传感器(13)的进口端与所述第二点连通时所述压差传感器(13)测得的第二压差大于第二标准压差时,判断所述EGR阀(12)堵塞;
    所述控制器设置为在所述压差传感器(13)的进口端与所述第一点连通时所述压差传感器(13)测得的第一压差大于第一标准压差,且在所述压差传感器(13)的进口端与所述第二点连通时所述压差传感器(13)测得的第二压差不大于第二标准压差时,判断所述EGR冷却器(11)堵塞。
  5. 根据权利要求4所述的发动机EGR系统,其特征在于,所述控制器设置为在判断所述EGR冷却器(11)堵塞时,输出EGR冷却器(11)堵塞故障信号;
    所述控制器包括存储有第一计算机程序的可读存储介质,所述控制器设置为在判断所述EGR阀(12)堵塞时启动所述第一计算机程序,所述第一计算机程序用于驱动所述EGR阀(12)先以第一预设占空比工作,然后以第一预设频率振荡以清洗所述EGR阀(12)的壁面,再以第二预设占空比工作。
  6. 根据权利要求5所述的发动机EGR系统,其特征在于,所述控制器设置为在启动所述第一计算机程序后,若所述控制器判断所述EGR阀(12)仍然堵塞,则输出故障码。
  7. 一种发动机EGR系统的诊断策略,其特征在于,包括如下步骤:
    监控EGR冷却器(11)的进气端到EGR阀(12)的进气端之间的第一压差P1;
    将所述第一压差P1与第一标准压差SP1比较,若P1≤SP1,则继续监控第一压差P1;
    若P1>SP1,则测量EGR阀(12)的进气端到EGR阀(12)的出气端之间的第二压差P2;
    将所述第二压差P2与第二标准压差SP2比较,若P2≤SP2,则判断EGR冷却器(11)堵塞,若P2>SP2,则判断EGR阀(12)堵塞。
  8. 根据权利要求7所述的发动机EGR系统的诊断策略,其特征在于,所述步骤判断EGR冷却器(11)堵塞后输出EGR冷却器(11)故障信号。
  9. 根据权利要求7所述的发动机EGR系统的诊断策略,其特征在于,
    所述步骤判断EGR阀(12)堵塞后还包括步骤:进行EGR阀(12)自我修复程序,若进行EGR阀(12)自我修复程序后,P2≤SP2,则继续使用,反之输出EGR阀(12)故障信号。
  10. 根据权利要求9所述的发动机EGR系统的诊断策略,其特征在于,所述步骤进行EGR阀(12)自我修复程序包括驱动所述EGR阀(12)先以第一预设占空比工作,然后以第一预设频率振荡以清洗所述EGR阀(12)的壁面,再以第二预设占空比工作。
  11. 根据权利要求7所述的发动机EGR系统的诊断策略,其特征在于,所述第一标准压差SP1的标定方法包括:根据发动机转速及扭矩查所述EGR冷却器(11)到所述EGR阀(12)之间EGR率的map得到第一目标EGR率,根据所述第一目标EGR率与目标进气量查阅压差map得到第一理论压差;根据发动机累计工作时间,输入所述EGR冷却器(11)和所述EGR阀(12)的第一衰减曲线后得到第一衰减值,所述第一衰减值乘以所述第一理论压差得到所述第一标准压力差;
    所述第二标准压差SP2的标定方法包括:根据发动机转速及扭矩查所述EGR阀(12)之间EGR率的map得到第二目标EGR率,根据所述第二目标EGR率与目标进气量查阅压差map得到第二理论压差;根据发动机累计工作时间,输入所述EGR阀(12)的第二衰减曲线后得到第二衰减值,所述第二衰减值乘以所述第二理论压差得到所述第二标准压力差。
PCT/CN2019/121623 2018-11-30 2019-11-28 发动机egr系统和发动机egr系统的诊断策略 WO2020108565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811453614.X 2018-11-30
CN201811453614.XA CN110566381B (zh) 2018-11-30 2018-11-30 发动机egr系统和发动机egr系统的诊断策略

Publications (1)

Publication Number Publication Date
WO2020108565A1 true WO2020108565A1 (zh) 2020-06-04

Family

ID=68772488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121623 WO2020108565A1 (zh) 2018-11-30 2019-11-28 发动机egr系统和发动机egr系统的诊断策略

Country Status (2)

Country Link
CN (1) CN110566381B (zh)
WO (1) WO2020108565A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220298993A1 (en) * 2021-03-16 2022-09-22 Toyota Jidosha Kabushiki Kaisha Egr valve deterioration degree calculation system, control device for internal combustion engine, and vehicle
US20230212993A1 (en) * 2022-01-06 2023-07-06 Transportation Ip Holdings, Llc Sensor system and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251202A (zh) * 2020-09-24 2022-03-29 深圳臻宇新能源动力科技有限公司 发动机egr系统及其诊断方法
US11603811B2 (en) * 2021-05-18 2023-03-14 Ford Global Technologies, Llc EGR system diagnostics
CN114876679B (zh) * 2022-04-19 2023-02-24 江铃汽车股份有限公司 一种egr阀保护策略测试系统及方法
CN114922750B (zh) * 2022-06-13 2023-06-23 潍柴动力股份有限公司 一种单向阀的检测方法和装置
CN117418969B (zh) * 2023-12-18 2024-03-19 潍柴动力股份有限公司 Egr系统及其控制方法
CN117418972B (zh) * 2023-12-19 2024-04-16 潍柴动力股份有限公司 一种egr冷却器的故障检测方法以及控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051000A1 (en) * 2008-09-04 2010-03-04 Tobias Kress Method and device for monitoring an exhaust gas recirculation system
CN103249940A (zh) * 2011-12-01 2013-08-14 丰田自动车株式会社 Egr系统的异常诊断装置
CN103758649A (zh) * 2013-12-06 2014-04-30 潍柴动力股份有限公司 Egr系统管路状态检测方法、装置及具有该装置的车辆
CN104747307A (zh) * 2015-02-13 2015-07-01 长城汽车股份有限公司 应用egr系统的增压汽油机的控制方法、系统及车辆
CN105863897A (zh) * 2015-02-06 2016-08-17 福特环球技术公司 用于诊断排气再循环阀上的烟粒积聚的系统和方法
CN108286481A (zh) * 2017-01-10 2018-07-17 罗伯特·博世有限公司 用于识别和区分废气再循环的流量故障和动态故障的方法和计算机程序产品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551024B2 (ja) * 1998-06-12 2004-08-04 トヨタ自動車株式会社 内燃機関の排気ガス還流制御装置
US6981370B2 (en) * 2002-12-03 2006-01-03 Caterpillar Inc Method and apparatus for PM filter regeneration
KR20130063946A (ko) * 2011-12-07 2013-06-17 현대자동차주식회사 배기가스 재순환 진단장치 및 배기가스 재순환 진단방법
US9759165B2 (en) * 2012-07-18 2017-09-12 Nissan Motor Co., Ltd. Internal combustion engine
JP6653274B2 (ja) * 2017-01-30 2020-02-26 日立オートモティブシステムズ株式会社 低圧egrシステムの故障診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051000A1 (en) * 2008-09-04 2010-03-04 Tobias Kress Method and device for monitoring an exhaust gas recirculation system
CN103249940A (zh) * 2011-12-01 2013-08-14 丰田自动车株式会社 Egr系统的异常诊断装置
CN103758649A (zh) * 2013-12-06 2014-04-30 潍柴动力股份有限公司 Egr系统管路状态检测方法、装置及具有该装置的车辆
CN105863897A (zh) * 2015-02-06 2016-08-17 福特环球技术公司 用于诊断排气再循环阀上的烟粒积聚的系统和方法
CN104747307A (zh) * 2015-02-13 2015-07-01 长城汽车股份有限公司 应用egr系统的增压汽油机的控制方法、系统及车辆
CN108286481A (zh) * 2017-01-10 2018-07-17 罗伯特·博世有限公司 用于识别和区分废气再循环的流量故障和动态故障的方法和计算机程序产品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220298993A1 (en) * 2021-03-16 2022-09-22 Toyota Jidosha Kabushiki Kaisha Egr valve deterioration degree calculation system, control device for internal combustion engine, and vehicle
US11473537B2 (en) * 2021-03-16 2022-10-18 Toyota Jidosha Kabushiki Kaisha EGR valve deterioration degree calculation system, control device for internal combustion engine, and vehicle
US20230212993A1 (en) * 2022-01-06 2023-07-06 Transportation Ip Holdings, Llc Sensor system and method

Also Published As

Publication number Publication date
CN110566381A (zh) 2019-12-13
CN110566381B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2020108565A1 (zh) 发动机egr系统和发动机egr系统的诊断策略
CN101387654B (zh) 涡轮增压发动机的涡轮速度传感器诊断
CN102893011B (zh) 内燃机的egr率的确定方法以及内燃机的控制装置
WO2017110242A1 (ja) 内燃機関の異常検出装置
CN107687381B (zh) 用于诊断传感器的失效的装置和方法
JP5857666B2 (ja) インタークーラー診断システム
JP2017078378A (ja) 診断装置
WO2015016303A1 (ja) 診断装置
CN106017968A (zh) 一种egr冷却器换热效率检测系统
CN113757000B (zh) 废气再循环系统的检测方法、装置、设备和存储介质
CN103867319A (zh) 用于确定内燃机空气输入系统中的故障的方法和装置
CN113250864B (zh) Egr流量诊断方法、诊断系统及汽车
JP2012241664A (ja) 内燃機関の吸気漏洩診断装置
WO2010067579A1 (ja) 内燃機関のegr装置
JP2013108416A (ja) インタークーラー診断システム
US10787953B2 (en) Device for determining abnormalities of cooling water temperature sensors
JP5845843B2 (ja) Egrクーラー診断システム
US11698018B2 (en) Control device and control method for internal combustion engine
RU2773089C1 (ru) Система EGR двигателя и стратегия диагностики системы EGR двигателя
CN115485469A (zh) 使用发动机转速传感器进行失火检测的设备、方法、系统和技术
JP2010096023A (ja) 吸気温度センサの異常検出装置
CN117419858B (zh) 一种发动机进气侧的漏气检测方法及其漏气检测装置
KR101664081B1 (ko) 수냉식 인터쿨러를 갖는 엔진시스템
WO2016189912A1 (ja) サーモスタットの異常判定装置
CN117418919B (zh) 一种呼吸器的防结冰方法及其防结冰装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890513

Country of ref document: EP

Kind code of ref document: A1