WO2020107859A1 - 校准监测装置及天线系统 - Google Patents

校准监测装置及天线系统 Download PDF

Info

Publication number
WO2020107859A1
WO2020107859A1 PCT/CN2019/090787 CN2019090787W WO2020107859A1 WO 2020107859 A1 WO2020107859 A1 WO 2020107859A1 CN 2019090787 W CN2019090787 W CN 2019090787W WO 2020107859 A1 WO2020107859 A1 WO 2020107859A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
distribution network
power distribution
coupling
branch
Prior art date
Application number
PCT/CN2019/090787
Other languages
English (en)
French (fr)
Inventor
陈宏亮
赖展军
李轶帆
田欢
高彬
李明超
陈礼涛
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2020107859A1 publication Critical patent/WO2020107859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles

Definitions

  • the invention relates to the technical field of mobile communication, and in particular to a calibration monitoring device and an antenna system.
  • the calibration network plays an important role in ensuring system performance.
  • the calibration network is used to detect the inherent and delay errors of each channel, and the corresponding compensation is performed in the signal processing algorithm, thereby ensuring the performance of the beam.
  • the calibration network is mostly designed using a power distribution network and a directional coupler. Currently, it is only used for the calibration of the antenna system, without monitoring the antenna.
  • an embodiment of the present invention provides a calibration monitoring device, including a power distribution network module and a plurality of coupler units;
  • the coupler unit is used to connect between the antenna unit and the base station equipment
  • the power distribution network module includes a first power distribution network unit and a second power distribution network unit;
  • Each branch port of the first power distribution network unit is connected in one-to-one correspondence with one end of each coupler unit, and the merged port is connected to the base station monitoring equipment;
  • Each branch port of the second power distribution network unit is connected to the other end of each coupler unit in a one-to-one correspondence, and the merged port is connected to the base station calibration device.
  • the coupler unit includes a coupling main circuit, a first coupling branch, and a second coupling branch, and the first coupling branch and the second coupling branch are coupled to the coupling main circuit, respectively;
  • One end of the coupling main circuit is used to connect the antenna unit, and the other end is used to connect the base station equipment; one end of the first coupling branch is connected to the branch port of the first power distribution network unit; one end of the second coupling branch is connected to the second power distribution network The branch port of the unit.
  • the other end of the first coupling branch is connected to the first resistor, and the other end of the second coupling branch is connected to the second resistor.
  • the coupling main circuit is a two-port network circuit; the first coupling branch is a two-port network circuit; and the second coupling branch is a two-port network circuit.
  • the coupler unit includes a coupling main circuit and a coupling branch
  • One end of the coupling main circuit is used to connect the antenna unit, and the other end is used to connect the base station equipment; one end of the coupling branch is connected to the branch port of the first power distribution network unit, and the other end is connected to the branch port of the second power distribution network unit.
  • the coupling main circuit is a two-port network circuit; the coupling branch is a two-port network circuit.
  • the first power distribution network unit includes multiple cascaded first power dividers;
  • the second power distribution network unit includes multiple cascaded second power dividers;
  • the branch port of the first power divider at the cascade end is connected to one end of the coupler unit; the branch port of the second power divider at the cascade end is connected to the other end of the coupler unit.
  • the first power divider is a one-to-two power divider
  • the second power divider is a one-to-two power divider.
  • the first power distribution network unit, the plurality of coupler units, and the second power distribution network unit are provided on the same dielectric board.
  • an embodiment of the present invention also provides an antenna system including an antenna body and a calibration monitoring device as described above; the antenna body includes multiple antenna units;
  • Each coupler unit of the calibration monitoring device is connected to each antenna unit in one-to-one correspondence.
  • Each branch port based on the first power distribution network unit is connected in one-to-one correspondence with one end of each coupler unit, and the merged port is connected to the base station monitoring equipment; each branch port of the second power distribution network unit is one-on-one with the other end of each coupler unit Correspondingly, the merge port is connected to the base station calibration equipment.
  • the base station device sends a signal to the coupler unit, the signal is transmitted to the antenna unit through the coupler unit.
  • the base station calibration device can detect the inherent and delay of each channel according to the coupled transmission signal The corresponding error is compensated in the signal processing algorithm to further achieve the calibration of the base station equipment.
  • the reflected signal of the antenna unit is coupled and transmitted to the first power distribution network unit, and the base station monitoring device monitors the antenna unit according to the coupled transmission signal. Furthermore, the integration of antenna calibration and monitoring can be realized.
  • FIG. 1 is a schematic block diagram of a calibration monitoring device in an embodiment
  • FIG. 2 is a first schematic block diagram of a calibration monitoring device in another embodiment
  • FIG. 3 is a schematic diagram of a first structure of a calibration monitoring device in another embodiment
  • FIG. 4 is a second schematic block diagram of a calibration monitoring device in yet another embodiment
  • FIG. 5 is a second schematic structural diagram of a calibration monitoring device in yet another embodiment
  • FIG. 6 is a schematic diagram of the principle of the antenna system in an embodiment.
  • FIG. 1 is a schematic block diagram of a calibration monitoring device in an embodiment. As shown in FIG. 1, it includes a power distribution network module and a plurality of coupler units 140; the coupler unit 140 is used to connect between the antenna unit and the base station device.
  • the power distribution network module includes a first power distribution network unit 120 and a second power distribution network unit 130.
  • Each branch port of the first power distribution network unit 120 is connected to one end of each coupler unit 140 in a one-to-one correspondence, and the merged port is connected to a base station monitoring device; each branch port of the second power distribution network unit 130 is connected to the other One end is connected in one-to-one correspondence, and the merged port is connected to the base station calibration equipment.
  • the coupler unit 140 may couple and output the signal transmitted by the base station device to the second power distribution network unit 130; the coupler unit 140 may also couple and output the reflected signal radiated by the antenna unit to the first power distribution network unit 120.
  • the number of branch ports included in the first power distribution network unit 120 and the number of branch ports included in the second power distribution network unit 130 are equal.
  • the antenna unit refers to a device that can effectively radiate or receive radio waves.
  • the antenna unit may include one vibrator or multiple vibrators.
  • the base station monitoring equipment can monitor the antenna system based on the received coupling signal; the base station calibration equipment can detect the inherent and delay errors of each channel according to the received coupling signal, and compensate accordingly in the signal processing algorithm, Thereby, the calibration of the base station equipment is further realized.
  • the first power distribution network unit 120 includes a merge port and a plurality of branch ports. Based on the one-to-one correspondence between each branch port of the first power distribution network unit 120 and one end of each coupler unit 140, the first power distribution network unit The merge port of 120 is connected to the base station monitoring device; when the base station device sends a signal to the coupler unit 140, the signal is transmitted to the antenna unit through the coupler unit 140. During the transmission of the signal from the coupler unit 140 to the antenna unit, the antenna unit generates a reflected signal. Based on the coupling effect of the coupler unit 140, the reflected signal of the antenna unit is coupled and transmitted to the first power distribution network unit 120, and then the base station monitoring device transmits according to the coupling The reflected signal of the monitors the corresponding antenna unit.
  • the second power distribution network unit 130 includes a merge port and a plurality of branch ports. Based on the one-to-one correspondence between each branch port of the second power distribution network unit 130 and the other end of each coupler unit 140, the second power distribution network unit 130 The merge port is connected to the base station calibration equipment.
  • the base station device sends a signal to the coupler unit 140, the signal is transmitted to the antenna unit through the coupler unit 140.
  • the base station calibration device can detect the inherent characteristics of each channel based on the received coupling signal And the delay error, and make the corresponding compensation in the signal processing algorithm, so as to further realize the calibration of the base station equipment.
  • the first power distribution network unit 120 includes multiple cascaded first power dividers 122; the second power distribution network unit 130 includes multiple cascaded second power dividers 132.
  • the branch port of the first power splitter 122 at the cascade end is connected to one end of the coupler unit 140; the branch port of the second power splitter 132 at the cascade end is connected to the other end of the coupler unit 140.
  • the first power divider 122 may include a merge port and two or more branch ports; the second power divider 132 may include a merge port and two or more branch ports.
  • the branch port of the first power splitter 122 at the cascade end is connected to one end of the coupler unit 140, and the merge port of the first power splitter 122 at the cascade head end is connected to the base station monitoring device; the second power distribution at the cascade end
  • the branch port of the splitter 132 is connected to the other end of the coupler unit 140; the merge port of the second power splitter 132 at the cascade head end is connected to the base station calibration device.
  • the number of coupler units 140 is eight
  • the first power distribution network unit 120 is formed by cascading seven first power distributors 122
  • the second power distribution network unit 130 is formed by cascading seven second power dividers 132.
  • the cascade end of the first power distribution network unit 120 includes four first power distributors 122, and the branch ports of the four first power distributors 122 are connected to one end of the coupler unit 140 in one-to-one correspondence;
  • the second power The cascading end of the distribution network unit 130 includes four second power dividers 132, and the branch ports of the four second power dividers 132 are connected to the other end of the coupler unit 140 in a one-to-one correspondence.
  • coupler units 140 may also be used.
  • the first power divider 122 is a one-to-two power divider; the second power divider 132 is a one-to-two power divider (one-way merge port, two-way branch port power divider).
  • the first power splitter 122 may be a one-multiple power splitter such as a one-fourth power splitter; the second power splitter 132 may be a one-multiple power splitter such as a one-fourth power splitter.
  • the first power divider 122 connected at the end of the cascade is the same as the second power divider 132 at the end of the cascade.
  • the coupler units 140 connected between the branch port of the first power divider 122 at the cascade end and the branch port of the second power divider 132 at the cascade end are mirror-symmetrically arranged.
  • the base station device when the base station device sends a signal to the coupler unit, the signal is transmitted to the antenna unit through the coupler unit.
  • the signal transmission from the base station device to the coupler unit based on the coupling effect of the coupler unit, part of the signal is coupled and transmitted to the second power distribution network unit.
  • the base station calibration device can be used to detect the inherent characteristics of each channel based on the received coupling signal. And the delay error, and make the corresponding compensation in the signal processing algorithm, so as to further achieve the calibration of the base station equipment.
  • the reflected signal of the antenna unit is coupled and transmitted to the first power distribution network unit, and the base station monitoring device monitors the antenna unit according to the coupled transmission signal. Furthermore, the integration of antenna calibration and monitoring can be realized.
  • a calibration monitoring device including a power distribution network module and a plurality of coupler units 240;
  • the power distribution network module includes a first power distribution network unit 220 and a second power distribution The network unit 230;
  • the coupler unit 240 includes a coupling main circuit 242, a first coupling branch 244, and a second coupling branch 246.
  • the first coupling branch 244 and the second coupling branch 246 are coupled to the coupling main circuit 242, respectively.
  • One end of the coupling main path 242 is used to connect the antenna unit, and the other end is used to connect the base station equipment; one end of the first coupling branch 244 is connected to the branch port of the first power distribution network unit 220; one end of the second coupling branch 246 is connected to the first The branch port of the second power distribution network unit 230; the merge port of the first power distribution network unit 220 is connected to the base station monitoring device; the merge port of the second power distribution network unit 230 is connected to the base station calibration device.
  • the base station device sends a signal to the coupling main path 242
  • the signal is transmitted to the antenna unit through the coupling main path 242.
  • the antenna unit generates a reflected signal.
  • the reflected signal of the antenna unit is coupled and transmitted to the first power distribution network unit 220.
  • the coupled transmission signal realizes the monitoring of the corresponding antenna unit.
  • the base station calibration device may use the received coupling signal to detect each The inherent and delay errors of the channel, and corresponding compensation in the signal processing algorithm, so as to further achieve the calibration of the base station equipment.
  • the other end of the first coupling branch 244 is connected to the first resistor, and the other end of the second coupling branch 246 is connected to the second resistor.
  • the other end of the first coupling branch 244 is connected to the first end of the first resistor; the second end of the first resistor is grounded; the other end of the second coupling branch 246 is connected to the first end of the second resistor; second The second end of the resistor is grounded.
  • the resistance value of the resistor may be 50 ohms, or it may be other resistance values.
  • the coupling main circuit 242 is a two-port network circuit; the first coupling branch 244 is a two-port network circuit; and the second coupling branch 246 is a two-port network circuit.
  • the first port coupled to the main path 242 is connected to the base station, and the second port coupled to the main path 242 is connected to the antenna unit;
  • the first port of the first coupling branch 244 is connected to the branch port of the first power distribution network unit 220, the first The second port of the coupling branch 244 is connected to the first resistor;
  • the first port of the second coupling branch 246 is connected to the branch port of the second power distribution network unit 230, and the second port of the second coupling branch 246 is connected to the second resistor.
  • one end of the first coupling branch 244 is connected to the branch port of the first power distribution network unit 220, and the other end is connected to the first end of the first resistor, so that the first coupling branch 244 can couple the antenna unit
  • the reflected signal is transmitted to the first power distribution network unit 220, and the coupling signal generated by the first power distribution network unit 220 is monitored by the base station monitoring device to realize the monitoring of the antenna unit; one end based on the second coupling branch 246 is connected to the first
  • the branch port of the second power distribution network unit 230 is connected to the first end of the second resistor at the other end, and then the second coupling branch 246 can transmit the signal of the coupled base station to the second power distribution network unit 230.
  • the coupling signal generated by the second power distribution network unit 230, the base station calibration device can be used to detect the inherent and delay errors of each channel according to the received coupling signal, and perform corresponding compensation in the signal processing algorithm to further realize the Calibration of base station equipment.
  • the signals do not interfere with each other, thereby improving the reliability of the antenna calibration and monitoring functions.
  • FIG. 3 it is a first schematic structural diagram of a calibration monitoring device.
  • the coupler unit 240 includes 2 coupling branches (first coupling branch 244 And the second coupling branch 246)
  • the first power distribution network unit 220 is formed by cascading seven first power distributors 222 (one-by-two power distributors)
  • the second power distribution network unit 230 is composed of seven second
  • the power divider 232 one-by-two power divider
  • the coupling main circuit 242, the first coupling branch 244, and the second coupling branch 246 may be microstrip lines or strip lines, respectively.
  • the first coupling branch 244 and the second coupling branch 246 are independently coupled and transmitted, so that signals do not interfere with each other, thereby realizing accurate antenna calibration and monitoring functions.
  • a calibration monitoring device including a power distribution network module and a plurality of coupler units 440;
  • the power distribution network module includes a first power distribution network unit 420 and a second power distribution The network unit 430;
  • the coupler unit 440 includes a coupling main circuit 442 and a coupling branch 444.
  • One end of the coupling main path 442 is used to connect the antenna unit, and the other end is used to connect the base station equipment; one end of the coupling branch 444 is connected to the branch port of the first power distribution network unit 420, and the other end is connected to the branch of the second power distribution network unit 430 Port; the merged port of the first power distribution network unit 420 is connected to the base station monitoring device, and the merged port of the second power distribution network unit 430 is connected to the base station calibration device.
  • the base station device when the base station device sends a signal to the coupling main path 442, the signal is transmitted to the antenna unit through the coupling main path 442.
  • the antenna unit During the transmission of the signal from the coupling main circuit 442 to the antenna unit, the antenna unit generates a reflected signal.
  • one end of the coupling branch 444 is coupled to the end of the coupling main circuit 442 connected to the antenna unit.
  • the reflected signal of the antenna unit The transmission is coupled to the first power distribution network unit 420, and then the base station monitoring device monitors the corresponding antenna unit according to the coupled transmission signal.
  • the base station calibration device can be used to detect the inherent and delay errors of each channel according to the received coupling signal, and perform corresponding compensation in the signal processing algorithm, thereby further realizing the calibration of the base station device.
  • the port of the coupling branch 444 near the antenna unit is connected to the branch port of the first power distribution network unit 420; the port of the coupling branch 444 remote from the antenna unit is connected to the branch of the second power distribution network unit 430 Branch port connection.
  • the design of connecting the port near the antenna unit of the coupling branch 444 to the branch port of the first power distribution network unit 420 can further couple the reflected signal generated by the antenna unit through the coupling branch 444 and the coupling main circuit 442 , The coupled reflected signal is transmitted to the first power distribution network unit 420, so that the base station monitoring device monitors the antenna unit.
  • the coupling main circuit 442 is a two-port network circuit; the coupling branch circuit 444 is a two-port network circuit.
  • the first port coupled to the main path 442 is connected to the base station, the second port coupled to the main path 442 is connected to the antenna unit; the first port of the coupled branch 444 is connected to the branch port of the first power distribution network unit 420, and the coupled branch 444 The second port of is connected to the branch port of the second power distribution network unit 430.
  • one end of the coupling branch is connected to the branch port of the first power distribution network unit, and the other end is connected to the branch port of the second power distribution network unit, and then the coupling branch can transmit the reflected signal of the coupling antenna unit to
  • the first power distribution network unit monitors the coupling signal generated by the first power distribution network unit through the base station monitoring device to realize the monitoring of the antenna; the coupling branch can transmit the signal coupling the base station device to the second power distribution network unit,
  • the base station calibration device can use the coupled signal generated by the second power distribution network unit to detect the inherent and delay errors of each channel according to the received coupled signal, and perform corresponding compensation in the signal processing algorithm , To further realize the calibration of the base station equipment.
  • FIG. 5 it is a second schematic structural diagram of a calibration monitoring device.
  • eight coupler units 440 are included.
  • the coupler unit 440 includes a single coupling branch 444 and a first power distribution network unit 420 is formed by cascading seven first power dividers 422 (one-by-two power dividers), and the second power distribution network unit 430 is cascaded by seven second power dividers 432 (one-by-two power dividers) to make.
  • the coupling main path 442 and the coupling branch 444 may be microstrip lines or strip lines, respectively.
  • the coupler unit 440 adopts a single coupling branch 444 design, with a compact and concise structure, which can achieve miniaturization and reduce costs.
  • the first power distribution network unit, the plurality of coupler units, and the second power distribution network unit are provided on the same dielectric board.
  • the dielectric board may be a ceramic circuit board, an aluminum-based circuit board, a PCB (Printed Circuit Board) board, etc.
  • the dielectric board is a PCB board.
  • an antenna system which includes an antenna body 650 and a calibration monitoring device as described above; the antenna body 650 includes multiple antenna units 652.
  • Each coupler unit 640 of the calibration monitoring device is connected to each antenna unit 652 in a one-to-one correspondence.
  • each coupler unit 640 of the calibration monitoring device is connected to each antenna unit 652 in a one-to-one correspondence, where the antenna unit 652 may include one or more vibrators.
  • the base station device sends a signal to the coupler unit 640
  • the signal is transmitted to the antenna unit through the coupler unit 640.
  • the antenna unit 652 generates a reflected signal.
  • the reflected signal of the antenna unit 652 is coupled and transmitted to the first power distribution network unit 620, and then the base station monitoring equipment The antenna unit 652 is monitored based on the coupled transmitted reflected signal.
  • the base station calibration device may use the received coupling signal to detect each channel The inherent and delay errors are compensated in the signal processing algorithm to further calibrate the base station equipment.
  • the antenna shown in the embodiment of the present invention is eight antenna units 652. Adding or reducing the antenna unit 652 on the basis of the embodiment of the present invention can also realize the functions of antenna calibration and monitoring, so no detailed discussion will be given.
  • the base station calibration device may use the received coupling signal for detection
  • the inherent and delay errors of each channel are compensated in the signal processing algorithm to further calibrate the base station equipment.
  • the reflected signal of the antenna unit is coupled and transmitted to the first power distribution network unit, and the base station monitoring device monitors the corresponding antenna unit according to the coupled transmitted reflected signal , And then can achieve the integration of antenna calibration and monitoring.

Abstract

本申请公开一种校准监测装置及天线系统,包括功率分配网络模块以及多个耦合器单元;耦合器单元用于连接在天线单元和基站设备之间;功率分配网络模块包括第一功率分配网络单元和第二功率分配网络单元;第一功率分配网络单元的各分支端口与各耦合器单元的一端一一对应相连,合并端口连接基站监测设备;第二功率分配网络单元的各分支端口与各耦合器单元的另一端一一对应相连,合并端口连接基站校准设备,进而能够实现天线校准以及监测的一体化。

Description

校准监测装置及天线系统 技术领域
本发明涉及移动通信技术领域,特别是涉及一种校准监测装置及天线系统。
背景技术
随着移动宽带网络的发展,通信系统将面向5G演进,5G天线成为了一种重要的发展趋势。校准网络作为5G天线系统的核心部件之一,对保证系统性能起到举足轻重的作用。利用校准网络检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而保证了波束的性能。校准网络多采用功率分配网络及定向耦合器进行设计,目前只用于天线系统的校准,而没有实现对天线的监测。
在实现过程中,发明人发现传统技术中至少存在如下问题:传统天线系统中难以实现校准及监测功能。
发明内容
基于此,有必要针对传统天线系统中难以实现校准和监测功能的问题,提供一种校准监测装置及天线系统。
为了实现上述目的,本发明实施例提供了一种校准监测装置,包括功率分配网络模块以及多个耦合器单元;
耦合器单元用于连接在天线单元和基站设备之间;
功率分配网络模块包括第一功率分配网络单元和第二功率分配网络单元;
第一功率分配网络单元的各分支端口与各耦合器单元的一端一一对应相连, 合并端口连接基站监测设备;
第二功率分配网络单元的各分支端口与各耦合器单元的另一端一一对应相连,合并端口连接基站校准设备。
在其中一个实施例中,耦合器单元包括耦合主路、第一耦合支路和第二耦合支路,第一耦合支路和第二耦合支路分别与耦合主路耦合连接;
耦合主路的一端用于连接天线单元,另一端用于连接基站设备;第一耦合支路的一端连接第一功率分配网络单元的分支端口;第二耦合支路的一端连接第二功率分配网络单元的分支端口。
在其中一个实施例中,第一耦合支路的另一端连接第一电阻,第二耦合支路的另一端连接第二电阻。
在其中一个实施例中,耦合主路为二端口网络电路;第一耦合支路为二端口网络电路;第二耦合支路为二端口网络电路。
在其中一个实施例中,耦合器单元包括耦合主路和耦合支路;
耦合主路的一端用于连接天线单元,另一端用于连接基站设备;耦合支路的一端连接第一功率分配网络单元的分支端口,另一端连接第二功率分配网络单元的分支端口。
在其中一个实施例中,耦合主路为二端口网络电路;耦合支路为二端口网络电路。
在其中一个实施例中,第一功率分配网络单元包括多个级联的第一功率分配器;第二功率分配网络单元包括多个级联的第二功率分配器;
级联末端的第一功率分配器的分支端口连接耦合器单元的一端;级联末端的第二功率分配器的分支端口连接耦合器单元的另一端。
在其中一个实施例中,第一功率分配器为一分二功率分配器;
第二功率分配器为一分二功率分配器。
在其中一个实施例中,第一功率分配网络单元、多个耦合器单元及第二功率分配网络单元设于同一介质板上。
另一方面,本发明实施例还提供了一种天线系统,包括天线主体以及如上述任一项的校准监测装置;天线主体包括多个天线单元;
校准监测装置的各耦合器单元与各天线单元一一对应连接。
上述技术方案中的一个技术方案具有如下优点和有益效果:
基于第一功率分配网络单元的各分支端口与各耦合器单元的一端一一对应相连,合并端口连接基站监测设备;第二功率分配网络单元的各分支端口与各耦合器单元的另一端一一对应相连,合并端口连接基站校准设备。当基站设备向耦合器单元发送信号时,信号通过耦合器单元传输给天线单元。在基站设备向耦合器单元传输信号过程中,基于耦合器单元的耦合作用,部分信号耦合传输给第二功率分配网络单元,基站校准设备根据耦合传输的信号可检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。耦合器单元向天线单元传输信号过程中,基于耦合器单元的耦合作用,天线单元的反射信号耦合传输给第一功率分配网络单元,基站监测设备根据耦合传输信号实现对天线单元的监测。进而能够实现天线校准以及监测的一体化。
附图说明
图1为一个实施例中校准监测装置的原理框图;
图2为另一个实施例中校准监测装置的第一原理框图;
图3为另一个实施例中校准监测装置的第一结构示意图;
图4为又一个实施例中校准监测装置的第二原理框图;
图5为又一个实施例中校准监测装置的第二结构示意图;
图6为一个实施例中天线系统的原理示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了解决传统天线系统中难以实现校准及监测功能的问题,本发明实施例提供了一种校准监测装置,图1为一个实施例中校准监测装置的原理框图。如图1所示,包括功率分配网络模块以及多个耦合器单元140;耦合器单元140用于连接在天线单元和基站设备之间。功率分配网络模块包括第一功率分配网络单元120和第二功率分配网络单元130。
第一功率分配网络单元120的各分支端口与各耦合器单元140的一端一一对应相连,合并端口连接基站监测设备;第二功率分配网络单元130的各分支端口与各耦合器单元140的另一端一一对应相连,合并端口连接基站校准设备。
其中,耦合器单元140可对基站设备传输的信号进行耦合输出给第二功率分配网络单元130;耦合器单元140还可对天线单元辐射的反射信号进行耦合输 出给第一功率分配网络单元120。优选的,第一功率分配网络单元120包含的分支端口与第二功率分配网络单元130包含的分支端口的数量相等。天线单元指的是能够有效辐射或接收无线电波的器件。天线单元可包括1个振子,也可包括多个振子。基站监测设备可基于接收到的耦合信号对天线系统进行监测;基站校准设备可根据接收到的耦合信号,检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。
具体地,第一功率分配网络单元120包括合并端口和多个分支端口,基于第一功率分配网络单元120的各分支端口与各耦合器单元140的一端一一对应相连,第一功率分配网络单元120的合并端口连接基站监测设备;当基站设备向耦合器单元140发送信号时,信号通过耦合器单元140传输给天线单元。耦合器单元140向天线单元传输信号过程中,天线单元产生反射信号,基于耦合器单元140的耦合作用,天线单元的反射信号耦合传输给第一功率分配网络单元120,进而基站监测设备根据耦合传输的反射信号实现对相应天线单元的监测。
第二功率分配网络单元130包括合并端口和多个分支端口,基于第二功率分配网络单元130的各分支端口与各耦合器单元140的另一端一一对应相连,第二功率分配网络单元130的合并端口连接基站校准设备。当基站设备向耦合器单元140发送信号时,信号通过耦合器单元140传输给天线单元。在基站设备向耦合器单元140传输信号过程中,基于耦合器单元的耦合作用,部分信号耦合传输给第二功率分配网络单元130,基站校准设备可根据接收到的耦合信号,检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。
在一个具体的实施例中,第一功率分配网络单元120包括多个级联的第一功率分配器122;第二功率分配网络单元130包括多个级联的第二功率分配器 132。
级联末端的第一功率分配器122的分支端口连接耦合器单元140的一端;级联末端的第二功率分配器132的分支端口连接耦合器单元140的另一端。
其中,第一功率分配器122可包括合并端口和两个或多个分支端口;第二功率分配器132可包括合并端口和两个或多个分支端口。
具体地,级联末端的第一功率分配器122的分支端口连接耦合器单元140的一端,级联首端的第一功率分配器122的合并端口连接基站监测设备;级联末端的第二功率分配器132的分支端口连接耦合器单元140的另一端;级联首端的第二功率分配器132的合并端口连接基站校准设备。例如,如图1所示,本实施例中,耦合器单元140的数量为8个,第一功率分配网络单元120由7个第一功率分配器122级联而成,第二功率分配网络单元130由7个第二功率分配器132级联而成。其中,第一功率分配网络单元120的级联末端包括4个第一功率分配器122,该4个第一功率分配器122的分支端口与耦合器单元140的一端一一对应连接;第二功率分配网络单元130的级联末端包括4个第二功率分配器132,该4个第二功率分配器132的分支端口与耦合器单元140的另一端一一对应连接。
需要说明的是,在其他实施例中,还可采用其他数量的耦合器单元140、第一功率分配器122和第二功率分配器132。
在本实施例中,第一功率分配器122为一分二功率分配器;第二功率分配器132为一分二功率分配器(一路合并端口,两路分支端口的功率分配器)。
在其他实施例中,第一功率分配器122可以一分四功率分配器等一分多功率分配器;第二功率分配器132可以是一分四功率分配器等一分多功率分配器。
在一个具体的实施例中,连接在级联末端的第一功率分配器122与级联末 端的第二功率分配器132相同。例如,连接在级联末端的第一功率分配器122的分支端口、与级联末端的第二功率分配器132的分支端口之间的耦合器单元140镜像对称排布。通过对耦合器单元140镜像对称排布,可使得功率分配网络模块和各个耦合器单元140紧凑布局,缩小天线系统的体积,实现天线的小型化。
上述实施例中,当基站设备向耦合器单元发送信号时,信号通过耦合器单元传输给天线单元。在基站设备向耦合器单元传输信号过程中,基于耦合器单元的耦合作用,部分信号耦合传输给第二功率分配网络单元,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。耦合器单元向天线单元传输信号过程中,基于耦合器单元的耦合作用,天线单元的反射信号耦合传输给第一功率分配网络单元,基站监测设备根据耦合传输信号实现对天线单元的监测。进而能够实现天线校准以及监测的一体化。
在一个实施例中,如图2所示,提供了一种校准监测装置,包括功率分配网络模块以及多个耦合器单元240;功率分配网络模块包括第一功率分配网络单元220和第二功率分配网络单元230;耦合器单元240包括耦合主路242、第一耦合支路244和第二耦合支路246,第一耦合支路244和第二耦合支路246分别与耦合主路242耦合连接。
耦合主路242的一端用于连接天线单元,另一端用于连接基站设备;第一耦合支路244的一端连接第一功率分配网络单元220的分支端口;第二耦合支路246的一端连接第二功率分配网络单元230的分支端口;第一功率分配网络单元220的合并端口连接基站监测设备;第二功率分配网络单元230的合并端口连接基站校准设备。
具体地,当基站设备向耦合主路242发送信号时,信号通过耦合主路242传输给天线单元。耦合主路242向天线单元传输信号过程中,天线单元产生反射信号,基于第一耦合支路244的耦合作用,天线单元的反射信号耦合传输给第一功率分配网络单元220,进而基站监测设备根据耦合传输信号实现对相应天线单元的监测。当基站设备向耦合主路242发送信号时,基于第二耦合支路246的耦合作用,部分信号耦合传输给第二功率分配网络单元230,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。
在一个具体的实施例中,如图2所示,第一耦合支路244的另一端连接第一电阻,第二耦合支路246的另一端连接第二电阻。
具体地,第一耦合支路244的另一端连接第一电阻的第一端;第一电阻的第二端接地;第二耦合支路246的另一端连接第二电阻的第一端;第二电阻的第二端接地。
需要说明的是,电阻的阻值可以是50欧姆,也可以是其他大小的阻值。
在一个具体的实施例中,耦合主路242为二端口网络电路;第一耦合支路244为二端口网络电路;第二耦合支路246为二端口网络电路。
具体的,耦合主路242的第一端口连接基站,耦合主路242的第二端口连接天线单元;第一耦合支路244的第一端口连接第一功率分配网络单元220的分支端口,第一耦合支路244的第二端口连接第一电阻;第二耦合支路246的第一端口连接第二功率分配网络单元230的分支端口,第二耦合支路246的第二端口连接第二电阻。
在本实施例中,基于第一耦合支路244的一端连接第一功率分配网络单元220的分支端口,另一端连接第一电阻的第一端,进而第一耦合支路244可将耦 合天线单元的反射信号传输给第一功率分配网络单元220,通过基站监测设备对第一功率分配网络单元220产生的耦合信号进行监测,实现对天线单元的监测;基于第二耦合支路246的一端连接第二功率分配网络单元230的分支端口,另一端连接第二电阻的第一端,进而第二耦合支路246可将耦合基站的信号传输给第二功率分配网络单元230,通过基站校准设备对第二功率分配网络单元230产生的耦合信号,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。通过第一耦合支路244和第二耦合支路246之间的各自独立的耦合传输,进而信号互不干扰,提高了天线校准与监测功能的可靠性。
进一步的,如图3所示,为校准监测装置的第一结构示意图,在本实施例中,包括8个耦合器单元240,耦合器单元240包含2个耦合支路(第一耦合支路244和第二耦合支路246),第一功率分配网络单元220由7个第一功率分配器222(一分二功率分配器)级联而成、第二功率分配网络单元230由7个第二功率分配器232(一分二功率分配器)级联而成。其中,耦合主路242、第一耦合支路244和第二耦合支路246分别可以是微带线,也可以是带状线。第一耦合支路244和第二耦合支路246之间各自独立耦合传输,进行信号互不干扰,实现精准的天线校准与监测的功能。
在一个实施例中,如图4所示,提供了一种校准监测装置,包括功率分配网络模块以及多个耦合器单元440;功率分配网络模块包括第一功率分配网络单元420和第二功率分配网络单元430;耦合器单元440包括耦合主路442和耦合支路444。
耦合主路442的一端用于连接天线单元,另一端用于连接基站设备;耦合支路444的一端连接第一功率分配网络单元420的分支端口,另一端连接第二 功率分配网络单元430的分支端口;第一功率分配网络单元420的合并端口连接基站监测设备,第二功率分配网络单元430的合并端口连接基站校准设备。
具体地,当基站设备向耦合主路442发送信号时,信号通过耦合主路442传输给天线单元。耦合主路442向天线单元传输信号过程中,天线单元产生反射信号,基于耦合支路444的耦合作用,耦合支路444的一端与耦合主路442连接天线单元的一端耦合,天线单元的反射信号耦合传输给第一功率分配网络单元420,进而基站监测设备根据耦合传输的信号实现对相应天线单元的监测。当基站设备向耦合主路442发送信号时,基于耦合支路444的耦合作用,耦合支路444的另一端与耦合主路442连接基站设备的一端耦合,部分信号耦合传输给第二功率分配网络单元430,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。
在一个具体的实施例中,耦合支路444的靠近天线单元的端口与第一功率分配网络单元420的分支端口连接;耦合支路444的远离天线单元的端口与第二功率分配网络单元430的分支端口连接。
具体地,将耦合支路444的靠近天线单元的端口与第一功率分配网络单元420的分支端口连接设计,进而可将天线单元产生的反射信号,通过耦合支路444与耦合主路442的耦合,将耦合反射信号传输给第一功率分配网络单元420,实现基站监测设备对天线单元的监测。将耦合支路444的远离天线单元的端口与第二功率分配网络单元430的分支端口连接设计,进而基站设备向耦合主路442传输信号时,通过耦合支路444与耦合主路442的耦合,将耦合信号得到信号传输给第二功率分配网络单元430,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿, 从而进一步实现对基站设备的校准。
在一个具体的实施例中,耦合主路442为二端口网络电路;耦合支路444为二端口网络电路。
具体的,耦合主路442的第一端口连接基站,耦合主路442的第二端口连接天线单元;耦合支路444的第一端口连接第一功率分配网络单元420的分支端口,耦合支路444的第二端口连接第二功率分配网络单元430的分支端口。
在本实施例中,基于耦合支路的一端连接第一功率分配网络单元的分支端口,另一端连接第二功率分配网络单元的分支端口,进而耦合支路可将耦合天线单元的反射信号传输给第一功率分配网络单元,通过基站监测设备对第一功率分配网络单元产生的耦合信号进行监测,实现对天线的监测;耦合支路可将耦合基站设备的信号传输给第二功率分配网络单元,通过基站校准设备对第二功率分配网络单元产生的耦合信号,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。通过在耦合器单元中采用单个耦合支路,在实现天线校准与监测的功能,同时结构紧凑简洁,实现天线小型化,降低成本。
进一步的,如图5所示,为校准监测装置的第二结构示意图,在本实施例中,包括8个耦合器单元440,耦合器单元440包括单个耦合支路444,第一功率分配网络单元420由7个第一功率分配器422(一分二功率分配器)级联而成、第二功率分配网络单元430由7个第二功率分配器432(一分二功率分配器)级联而成。其中,耦合主路442、耦合支路444分别可以是微带线,也可以是带状线。耦合器单元440采用单个耦合支路444设计,结构紧凑简洁,可实现小型化,降低了成本。
在一个实施例中,第一功率分配网络单元、多个所述耦合器单元及所述第二功率分配网络单元设于同一介质板上。
其中,介质板可为陶瓷电路板、铝基电路板、PCB(Printed Circuit Board,印刷电路板)板等等,优选的,介质板为PCB板。
在一个实施例,如图6所示,提供了一种天线系统,包括天线主体650以及如上述任一项的校准监测装置;天线主体650包括多个天线单元652。
校准监测装置的各耦合器单元640与各天线单元652一一对应连接。
具体地,将校准监测装置的各耦合器单元640与各天线单元652一一对应连接,其中,天线单元652可包括一个或多个振子。当基站设备向耦合器单元640发送信号时,信号通过耦合器单元640传输给天线单元。耦合器单元640向天线单元652传输信号过程中,天线单元652产生反射信号,基于耦合器单元640的耦合作用,天线单元652的反射信号耦合传输给第一功率分配网络单元620,进而基站监测设备根据耦合传输的反射信号实现对天线单元652的监测。在基站设备向耦合器单元640传输信号过程中,基于耦合器单元640的耦合作用,部分信号耦合传输给第二功率分配网络单元630,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理算法中进行相应的补偿,从而进一步实现对基站设备的校准。
需要指出的是,本发明实施例所示的天线为8个天线单元652,在本发明实施例基础上增加或减少天线单元652,亦可实现天线校准及监测的功能,故不展开详细论述。
基于本实施例,在基站设备向耦合器单元传输信号过程中,基于耦合器单元的耦合作用,部分信号耦合传输给第二功率分配网络单元,基站校准设备可根据接收到的耦合信号用于检测各通道的固有的和时延的误差,并在信号处理 算法中进行相应的补偿,从而进一步实现对基站设备的校准。耦合器单元向天线单元传输信号过程中,基于耦合器单元的耦合作用,天线单元的反射信号耦合传输给第一功率分配网络单元,基站监测设备根据耦合传输的反射信号实现对相应天线单元的监测,进而能够实现天线校准以及监测的一体化。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种校准监测装置,其特征在于,包括功率分配网络模块以及多个耦合器单元;
    所述耦合器单元用于连接在天线单元和基站设备之间;
    所述功率分配网络模块包括第一功率分配网络单元和第二功率分配网络单元;
    所述第一功率分配网络单元的各分支端口与各所述耦合器单元的一端一一对应相连,合并端口连接基站监测设备;
    所述第二功率分配网络单元的各分支端口与各所述耦合器单元的另一端一一对应相连,合并端口连接基站校准设备。
  2. 根据权利要求1所述的校准监测装置,其特征在于,所述耦合器单元包括耦合主路、第一耦合支路和第二耦合支路,所述第一耦合支路和所述第二耦合支路分别与所述耦合主路耦合连接;
    所述耦合主路的一端用于连接所述天线单元,另一端用于连接所述基站设备;所述第一耦合支路的一端连接所述第一功率分配网络单元的分支端口;所述第二耦合支路的一端连接所述第二功率分配网络单元的分支端口。
  3. 根据权利要求2所述的校准监测装置,其特征在于,所述第一耦合支路的另一端连接第一电阻,所述第二耦合支路的另一端连接第二电阻。
  4. 根据权利要求2所述的校准监测装置,其特征在于,所述耦合主路为二端口网络电路;所述第一耦合支路为二端口网络电路;所述第二耦合支路为二端口网络电路。
  5. 根据权利要求1所述的校准监测装置,其特征在于,所述耦合器单元包括耦合主路和耦合支路;
    所述耦合主路的一端用于连接所述天线单元,另一端用于连接所述基站设备;所述耦合支路的一端连接所述第一功率分配网络单元的分支端口,另一端连接所述第二功率分配网络单元的分支端口。
  6. 根据权利要求5所述的校准监测装置,其特征在于,所述耦合主路为二端口网络电路;所述耦合支路为二端口网络电路。
  7. 根据权利要求1所述的校准监测装置,其特征在于,所述第一功率分配网络单元包括多个级联的第一功率分配器;所述第二功率分配网络单元包括多个级联的第二功率分配器;
    级联末端的第一功率分配器的分支端口连接所述耦合器单元的一端;级联末端的第二功率分配器的分支端口连接所述耦合器单元的另一端。
  8. 根据权利要求7所述的校准监测装置,其特征在于,所述第一功率分配器为一分二功率分配器;
    所述第二功率分配器为一分二功率分配器。
  9. 根据权利要求1至8任意一项所述的校准监测装置,其特征在于,所述第一功率分配网络单元、多个所述耦合器单元及所述第二功率分配网络单元设于同一介质板上。
  10. 一种天线系统,其特征在于,包括天线主体以及如权利要求1至9任意一项所述的校准监测装置;所述天线主体包括多个天线单元;
    所述校准监测装置的各耦合器单元与各所述天线单元一一对应连接。
PCT/CN2019/090787 2018-11-27 2019-06-11 校准监测装置及天线系统 WO2020107859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811422088.0A CN109450565A (zh) 2018-11-27 2018-11-27 校准监测装置及天线系统
CN201811422088.0 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020107859A1 true WO2020107859A1 (zh) 2020-06-04

Family

ID=65554666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090787 WO2020107859A1 (zh) 2018-11-27 2019-06-11 校准监测装置及天线系统

Country Status (2)

Country Link
CN (1) CN109450565A (zh)
WO (1) WO2020107859A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450565A (zh) * 2018-11-27 2019-03-08 京信通信系统(中国)有限公司 校准监测装置及天线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150126135A1 (en) * 2013-11-04 2015-05-07 Radio Frequency Systems, Inc. Methods And Systems For Calibrating LTE Antenna Systems
CN205211943U (zh) * 2015-11-24 2016-05-04 京信通信技术(广州)有限公司 一种天线校准装置
CN106374983A (zh) * 2016-08-26 2017-02-01 四川天邑康和通信股份有限公司 一种基于5g网络的大规模天线系统
CN109450565A (zh) * 2018-11-27 2019-03-08 京信通信系统(中国)有限公司 校准监测装置及天线系统
CN209072507U (zh) * 2018-11-27 2019-07-05 京信通信系统(中国)有限公司 校准监测装置及天线系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1134670C (zh) * 2000-03-30 2004-01-14 华为技术有限公司 一种驻波比的检测方法及其装置
CN2755871Y (zh) * 2004-11-17 2006-02-01 大唐移动通信设备有限公司 直线排列智能天线阵的耦合校准网络装置
DE102005018090A1 (de) * 2005-04-19 2006-10-26 Rohde & Schwarz Gmbh & Co. Kg Kalibriervorrichtung und Kalibrierverfahren zum Abgleich eines Richtkoppler-Messsystems
CN104718713B (zh) * 2012-09-13 2019-01-01 爱立信(中国)通信有限公司 用于天线校准的方法和装置
CN203119911U (zh) * 2013-03-27 2013-08-07 厦门特力通信息技术有限公司 一种带远程监测功能的无源天线装置
CN104155511A (zh) * 2014-08-14 2014-11-19 重庆微标科技有限公司 基于驻波检测的采集电路和功率监控电路
CN108828538B (zh) * 2018-04-26 2021-02-09 中国科学院地质与地球物理研究所 雷达发射功率监测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150126135A1 (en) * 2013-11-04 2015-05-07 Radio Frequency Systems, Inc. Methods And Systems For Calibrating LTE Antenna Systems
CN205211943U (zh) * 2015-11-24 2016-05-04 京信通信技术(广州)有限公司 一种天线校准装置
CN106374983A (zh) * 2016-08-26 2017-02-01 四川天邑康和通信股份有限公司 一种基于5g网络的大规模天线系统
CN109450565A (zh) * 2018-11-27 2019-03-08 京信通信系统(中国)有限公司 校准监测装置及天线系统
CN209072507U (zh) * 2018-11-27 2019-07-05 京信通信系统(中国)有限公司 校准监测装置及天线系统

Also Published As

Publication number Publication date
CN109450565A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
US8140042B2 (en) Distributing apparatus and method for communication using the same
US8441964B2 (en) Feeding device for smart antenna
US20220231415A1 (en) Antenna calibration device
WO2019109994A1 (zh) 双天线射频功率检测电路、装置及移动终端
US8570116B2 (en) Power combiner/divider
WO2023116083A1 (zh) 一种射频高速切换控制电路及装置
WO2020107859A1 (zh) 校准监测装置及天线系统
CN109066043A (zh) 一种x波段一分三功分器
CN206313134U (zh) 多端口双频宽带馈电网络
US11212016B1 (en) Distribution of inter/intra calibration signals for antenna beamforming signals
WO2018121152A1 (zh) 具有双频宽带功能的圆极化天线
TWI676352B (zh) 功率組合器/分離器及其操作方法
US11416430B2 (en) Port multiplier and radio communication test system
CN209072507U (zh) 校准监测装置及天线系统
KR102299451B1 (ko) 광대역 특성을 갖는 분배/합성기
KR101260710B1 (ko) 선택적 전력 분배 기능을 갖는 전력 분배기
US20220053163A1 (en) Wideband splitter
CN113363693B (zh) 一种耦合器及其耦合电路、通信装置
US20090111405A1 (en) Signal matching module for single or multiple systems
KR102070405B1 (ko) 분리도 제공 장치를 구비한 이중편파 안테나
KR102424306B1 (ko) 커플러 기반 전이중 무선통신 전단부 회로 및 그 제어방법
TW201836350A (zh) 用於處理MoCA信號之信號處理方法及信號放大裝置
JP2006345179A (ja) 検査端子を有する通信装置
WO2018120592A1 (zh) 双频宽带馈电网络
JPS61101133A (ja) 低雑音受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890654

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19890654

Country of ref document: EP

Kind code of ref document: A1