WO2020107507A1 - 一种可调加热速度的电池系统及其控制方法 - Google Patents

一种可调加热速度的电池系统及其控制方法 Download PDF

Info

Publication number
WO2020107507A1
WO2020107507A1 PCT/CN2018/119302 CN2018119302W WO2020107507A1 WO 2020107507 A1 WO2020107507 A1 WO 2020107507A1 CN 2018119302 W CN2018119302 W CN 2018119302W WO 2020107507 A1 WO2020107507 A1 WO 2020107507A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
battery
control module
current
module
Prior art date
Application number
PCT/CN2018/119302
Other languages
English (en)
French (fr)
Inventor
吴宁宁
毛永志
郭长新
Original Assignee
荣盛盟固利新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣盛盟固利新能源科技有限公司 filed Critical 荣盛盟固利新能源科技有限公司
Priority to US16/754,873 priority Critical patent/US20210323442A1/en
Priority to KR1020207008631A priority patent/KR102457327B1/ko
Priority to JP2020519682A priority patent/JP7130036B2/ja
Priority to EP18934521.8A priority patent/EP3686051A4/en
Publication of WO2020107507A1 publication Critical patent/WO2020107507A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/14Supplying electric power to auxiliary equipment of vehicles to electric lighting circuits
    • B60L1/16Supplying electric power to auxiliary equipment of vehicles to electric lighting circuits fed by the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/15Failure diagnostics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention belongs to the technical field of batteries for electric vehicles, and particularly relates to a battery system with adjustable heating speed and a control method thereof.
  • the purpose of the present invention is to provide a battery system with adjustable heating speed and its control method in order to solve the problems that the heating power of the battery system cannot be adjusted and the heating speed is slow in the prior art, and to achieve a fast heating rate of the battery system , Low failure rate, low maintenance difficulty and good security benefits.
  • a battery system with adjustable heating speed includes a battery pack, a heating chip, a power control module, and a battery management system; wherein the battery pack is electrically connected to the heating chip and the power control module, respectively;
  • the power control module is electrically connected to the battery pack, heater and battery management system respectively;
  • the power control module When the temperature of the battery pack is lower than the preset self-heating start temperature, the power control module is turned on, and the battery management system transmits the collected battery pack status information to the power control module, which is adjusted by the PWM (pulse width modulation) signal
  • PWM pulse width modulation
  • the heating time and frequency of the heating plate can adjust the heating power and heating speed to achieve self-heating of the battery; when the temperature of the battery pack reaches the preset self-heating shutdown temperature, the power control module is turned off and the heating is stopped;
  • the power control module further includes a current adjustment module, a current acquisition module, and a heating control module.
  • the current adjustment module is electrically connected to the heater chip, the current acquisition module, and the heating control module to adjust the current flowing through the heater chip In order to adjust the heating power of the system;
  • the heating control module is electrically connected to the current acquisition module, the current adjustment module and the battery management system, the heating control module interacts with the battery management system, and the heating control module sends a current adjustment command to the current adjustment module ,
  • the heating control module reads the heating current collected by the current collection module.
  • the battery pack status information collected by the battery management system is specifically, the highest voltage of the single battery, the average voltage of the single battery, the lowest voltage of the single battery, the highest temperature of the single battery, the lowest temperature of the single battery, the pressure difference of the single battery, The overall voltage of the battery pack, the overall temperature of the battery pack, the insulation state of the battery pack, the battery heating operation mode, etc. are used to set the heating power to the current adjustment module.
  • the battery management system and the heating control module perform information interaction, specifically: the battery management system sends vehicle state information and heating operation mode requirements to the heating control module, and the heating operation mode includes a parking heating mode and a driving heating mode , DC charging heating mode, AC charging heating mode; among them, DC charging heating mode, AC charging heating mode realizes charging heating by the charger, there are two operating modes to choose from, one is: through the charger to provide high voltage to the heating sheet alone For heating, the other is: the charger provides high-voltage power supply to the battery pack and the heating sheet at the same time.
  • the battery management system calculates the collected battery pack status information, selects the current heating operation mode, and sends the current heating operation mode to the heating control module. During the heating process, the battery management system sends the current status information of the battery pack to the heating control module in real time.
  • the current adjustment module includes a switching electronic component, an isolation driving unit, and an isolation power supply, and controls the heating current on-off time and the switching frequency through a PWM signal;
  • any of the switching electronic components is an IGBT (insulated gate bipolar transistor), MOSFET (metal-oxide semiconductor field effect transistor), thyristor, relay, etc., which has a turn-on and turn-off function or a turn-on angle. Adjusted electronic components.
  • the current adjustment module is an IGBT (insulated gate bipolar transistor)
  • its circuit specifically includes an isolated drive unit, an isolated power supply, and an IGBT (insulated gate bipolar transistor)
  • the processor power control module outputs a PWM signal via After the drive unit is isolated, the IGBT (Insulated Gate Bipolar Transistor) control signal is generated, and the isolated drive unit is powered by the isolated power supply.
  • the current acquisition module includes a Hall sensor, an LDO (low dropout linear voltage regulator), a port protection circuit, and a signal conditioning circuit.
  • the Hall sensor transmits the collected current signal to the port protection circuit and the signal adjustment circuit and then transmits it to Current acquisition module interface.
  • the Hall sensor divides the transmission channel of the collected current signal into a high-range channel and a low-range channel, where the high-range channel transmits the high-frequency current signal through the port protection circuit 1 and the signal adjustment circuit 1 to the current acquisition module interface 1,
  • the low-range channel transmits the low-frequency current signal through the port protection circuit two and the signal adjustment circuit two to the current acquisition module interface two.
  • the heating control module controls the current adjustment module through a pulse width modulation signal.
  • the heating control module includes an MCU controller, a power circuit, a clock, a CAN communication chip, a current adjustment module interface, a current acquisition module interface, and a battery management system interface.
  • the MCU controller is connected to the battery management system interface through the CAN communication chip, and the MCU controls
  • the device is connected to the current adjustment module through the PWM generation module, and the MCU controller is connected to the current acquisition module through the ADC channel.
  • the heating sheet is one or more of nickel sheet, copper sheet, aluminum sheet, iron sheet, graphite sheet, PTC heater or heating film.
  • the heating sheet is formed by connecting a plurality of individual heating sheet units through series connection, parallel connection, or series-parallel connection; the heating sheet is provided inside the single battery, outside the single battery, at the bottom of the battery module, The top of the battery module or the side of the battery module.
  • the battery pack is composed of a plurality of single batteries connected in series, parallel, or a series-parallel connection; wherein, the single batteries are lithium iron phosphate batteries, ternary lithium batteries, lithium manganese batteries, solid-state lithium batteries, One of a nickel-metal hydride battery, a nickel-cadmium battery, a silver-zinc battery, a fuel cell, or a lead-acid battery.
  • the number of single cells is 1 to 9999.
  • the invention also relates to a control method of a battery system with adjustable heating speed, including the following steps:
  • Step 1) Initialize the battery system with adjustable heating speed, collect the current battery pack information in real time through the battery management system, calculate the collected battery pack information, select the current battery pack heating operation mode, and the battery management system will control the heating
  • the status information and heating operation mode of the battery pack required by the module are sent to the heating control module;
  • the heating operation mode is divided into four types: parking heating mode, driving heating mode, DC charging heating mode, and AC charging heating mode;
  • Step 2) The heating control module switches the heating control module to the corresponding heating operation mode according to the received battery heating operation mode information; the heating control module sends the corresponding PWM to the current adjustment module according to the parameters set by the current heating operation mode Signal to adjust the current value of the heating circuit in real time; the heating control module receives the current value fed back by the current acquisition module, adjusts the PWM signal so that the actual current value reaches the set value, realizes closed-loop control, and diagnoses whether the heating circuit has a fault; if there is a fault , Then judge whether to stop the current heating operation mode or reduce the heating power according to the fault level; if there is no fault, continue to the current heating operation mode;
  • Step 3 When the temperature, temperature difference, and pressure difference of the single cells in the battery pack reach the preset threshold, or the voltage and insulation resistance of the single cell are lower than the preset threshold, an alarm is given, and the heating control module sends a current adjustment module Send control commands with zero heating power;
  • Step 4) Send a request to turn off the heating operation mode to the battery management system, exit the current heating operation mode; and return to step 1).
  • the heating control module determines whether the heating sheet, the current adjustment module, and the current collection module are faulty, and the current adjustment module responds to the faulty operation of the heating control module.
  • the present invention has the following beneficial effects:
  • current adjustment module By adapting and setting the heating sheet, current adjustment module, current acquisition module, heating control module, battery management system, and heating operation mode is divided into parking heating mode, driving heating mode, DC charging heating mode, AC charging heating mode It solves the problems of low heating efficiency, single heating mode, and unadjustable heating power in the prior art, and realizes the beneficial effects of fast heating rate of the power battery system at low temperature, long driving range, and fast charging at low temperature.
  • FIG. 1 is a schematic diagram of a battery system with adjustable heating speed according to the present invention
  • FIG. 3 is a schematic diagram of the relevant circuit of the current acquisition module of the present invention.
  • FIG. 4 is a circuit schematic diagram of the heating control module of the present invention.
  • battery pack 1 heating sheet 2
  • power control module 3 current adjustment module 4
  • current acquisition module 5 current acquisition module 6
  • battery management system 6 heating control module 7
  • a battery system with adjustable heating speed includes a battery pack 1, a heating sheet 2, a power control module 3, and a battery management system 6; wherein, the battery pack 1 is The heating chip 2 and the power control module 3 are electrically connected; the power control module 3 is electrically connected to the battery pack 1, the heating chip 2 and the battery management system 6, respectively.
  • the power control module 3 When the temperature of the battery pack 1 is lower than the preset self-heating start temperature, the power control module 3 is turned on, and the battery management system 6 passes the collected state information of the battery pack 1 to the power control module 3, and the power control module 3 passes the PWM ( (Pulse width modulation) signal adjusts the current on and off time and frequency of the heating chip 2 to adjust the heating power and heating speed, so as to achieve self-heating of the battery; when the temperature of the battery pack 1 reaches the preset self-heating shutdown temperature, the power control module is turned off 3. Stop heating.
  • PWM Pulse width modulation
  • the power control module 3 further includes a current adjustment module 4, a current collection module 5 and a heating control module 7, the current adjustment module 4 is electrically connected to the heating sheet 2, the current collection module 5 and the heating control module 7 for In order to adjust the current flowing through the heater 2 to adjust the heating power of the system; the heating control module 7 is electrically connected to the current acquisition module 5, the current adjustment module 4 and the battery management system 6, the heating control module 7 and the battery management system 6 During information exchange, the heating control module 7 sends a current adjustment command to the current adjustment module 4, and the heating control module 7 reads the heating current collected by the current collection module 5.
  • the state information of the battery pack 1 collected by the battery management system 6 is specifically: the highest voltage of the single battery, the average voltage of the single battery, the lowest voltage of the single battery, the highest temperature of the single battery, the lowest temperature of the single battery, the single battery voltage The difference, the overall voltage of the battery pack 1, the overall temperature of the battery pack 1, the insulation state of the battery pack 1, the battery heating operation mode, etc. are used to set the heating power to the current adjustment module 4.
  • the battery management system 6 performs information interaction with the heating control module 7, specifically: the battery management system 6 sends vehicle status information and heating operation mode requirements to the heating control module 7, the heating operation mode includes a parking heating mode, a driving heating Mode, DC charging heating mode, AC charging heating mode; among them, DC charging heating mode and AC charging heating mode have two operating modes to choose from, one is: the charger is provided with a separate high-pressure heating plate 2 for heating, and the other One is: the charger provides high-voltage power supply to the battery pack 1 and the heating sheet 2 at the same time.
  • the battery management system 6 calculates the collected battery pack 1 status information, selects the current heating operation mode, and sends the current heating operation mode to the heating control module 7. During the heating process, the battery management system 6 sends the current state information of the battery pack 1 to the heating control module 7 in real time.
  • the current adjustment module 4 includes a switching electronic component, an isolated driving unit, an isolated power supply, and a heating and switching time of the heating current is controlled by a PWM signal; wherein the switching electronic component is an IGBT (insulated gate bipolar transistor) and a MOSFET (metal-oxide (Element semiconductor field effect transistor), thyristor, relay, etc. any of the electronic components with on and off function or with adjustable conduction angle.
  • the switching electronic component is an IGBT (insulated gate bipolar transistor) and a MOSFET (metal-oxide (Element semiconductor field effect transistor), thyristor, relay, etc. any of the electronic components with on and off function or with adjustable conduction angle.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal-oxide (Element semiconductor field effect transistor), thyristor, relay, etc. any of the electronic components with on and off function or with adjustable conduction angle.
  • the current adjustment module 4 may specifically include an isolated drive unit, an isolated power supply, and an IGBT (insulated gate bipolar transistor), After the heating control module 7 outputs the PWM signal through the isolation drive unit, an IGBT (insulated gate bipolar transistor) control signal is generated, and the isolation drive unit is powered by the isolation power supply.
  • IGBT insulated gate bipolar transistor
  • the current acquisition module 5 includes a Hall sensor, an LDO (low-dropout linear regulator), a port protection circuit, and a signal conditioning circuit.
  • the Hall sensor transmits the collected current signal to the ADC channel after passing through the port protection circuit and the signal adjustment circuit .
  • the Hall sensor divides the transmission channel of the collected current signal into a high-range channel and a low-range channel, where the high-range channel transmits the high-frequency current signal through the port protection circuit 1 and the signal adjustment circuit 1 to the current collection module Interface one, the low-range channel transmits the low-frequency current signal through the port protection circuit two and the signal adjustment circuit two to the current acquisition module interface two.
  • the heating control module 7 controls the current adjustment module 4 through the PWM signal.
  • the heating control module 7 includes an MCU controller, a power circuit, a clock, a CAN communication chip, a current adjustment module interface, a current acquisition module interface, and a battery management system interface.
  • the MCU controller is connected to the battery management system interface through the CAN communication chip.
  • the MCU The controller is connected to the current adjustment module interface through the PWM generation module, and the MCU controller is connected to the current acquisition module interface through the ADC channel.
  • the heating sheet 2 is one or more of nickel sheet, copper sheet, aluminum sheet, iron sheet, graphite sheet, PTC heater or heating film.
  • the heating sheet 2 is formed by connecting a plurality of individual heating sheet units through series connection, parallel connection, or series-parallel connection; the heating sheet 2 is arranged inside the single battery, outside the single battery, and at the bottom of the module 1 of the battery pack 1 Or the side of the battery pack 1 module.
  • the battery pack 1 is composed of a plurality of single cells connected in series, parallel, or a series-parallel connection; wherein, the single cells are a lithium iron phosphate battery, a ternary lithium battery, a lithium manganese battery, a solid-state lithium battery, a nickel-metal hydride battery One of a battery, a nickel-cadmium battery, a silver-zinc battery, a fuel cell, or a lead-acid battery.
  • the number of single cells is 1 to 9999.
  • control method includes the following steps:
  • Step 1) Initialize the battery system with adjustable heating speed, collect the current battery pack 1 information in real time through the battery management system 6, calculate the collected battery pack 1 information, select the current battery pack 1 heating operation mode, battery management The system 6 sends the status information and thermal operation mode of the battery pack 1 required by the heating control module 7 to the heating control module 7; the heating operation mode is divided into a parking heating mode, a driving heating mode, a DC charging heating mode, and an AC charging heating Four modes;
  • Step 3 When the temperature, temperature difference, and pressure difference of the single cells in the battery pack 1 are higher than the preset threshold, or the voltage and insulation resistance of the single cells are lower than the preset threshold, an alarm is given, and the heating control module 7
  • the current adjustment module 4 sends a control command with zero heating power
  • Step 4) Send a request to turn off the heating operation mode to the battery management system 6, after confirmation, exit the current heating operation mode; and return to step 1), waiting for the next heating operation mode.
  • the heating control module 7 determines whether the heating sheet 2, the current adjustment module 4, and the current collection module 5 have malfunctioned, and the current adjustment module 4 responds to the malfunction of the heating control module 7.
  • the single battery uses a lithium ion battery, the single battery capacity is 70Ah, the rated voltage is 3.7V, the battery system is 4 and 36 strings, the battery heater 2 uses a nickel sheet, the resistance value is 80m ⁇ , the heater 2 is built into the battery, the heater The connection mode of 2 is 4 parallel and 36 strings, and the ambient temperature is -20°C.
  • the battery management system 6 sends the parking heating mode to the heating control module 7. After the battery management system 6 sends the heating mode to the heating control module 7, the PWM sends a duty cycle of 100%, the heating control module 7 starts quickly, the IGBT is turned on 100%, and the heating is performed at the maximum speed, the heating current is 147A at the maximum, the battery system temperature is The speed increases rapidly every 5°C/min. When the battery temperature reaches the set stop heating temperature of 10°C, the heating control module 7 stops the heating action and the heating stops. At this time, the battery temperature has reached 10 °C or more, the vehicle can start driving, or charge.
  • the single battery uses a lithium ion battery, the single battery capacity is 70Ah, the rated voltage is 3.7V, the battery system is 4 and 36 strings, the battery heater 2 uses a nickel sheet, the resistance value is 80m ⁇ , the heater 2 is built into the battery, the heater The connection mode of 2 is 4 parallel and 36 strings, the ambient temperature is -20°C, the vehicle is plugged into a DC charger, and the battery management system 6 sends a DC charging heating mode to the heating control module 7.
  • the heating control module 7 sends a PWM duty cycle of 60%, the heating control module 7 starts, controls the IGBT pulse operation, heating starts, the heating current is 149A, the charger output current is set to 60A, and the battery system temperature is every 5°C/min The speed of the battery rises rapidly.
  • the heating control module 7 stops heating, the heating stops, the charger continues to work, the battery management system 6 sends a charging current request of 140A, the battery starts charging, and the charging SOC (Remaining battery) Stop charging when it reaches 100%.
  • the single battery uses a lithium ion battery, the single battery capacity is 70Ah, the rated voltage is 3.7V, the battery system is 4 and 36 strings, the battery heater 2 uses a nickel sheet, the resistance value is 80m ⁇ , the heater 2 is built into the battery, the heater The connection mode of 2 is 4 parallel and 36 strings, the ambient temperature is -20°C, the vehicle is plugged into an AC charging gun, and the battery management system 6 sends the AC charging heating mode to the heating control module 7.
  • the heating control module 7 sends a PWM duty cycle of 90%, the heating control module 7 starts, controls the IGBT pulse operation, the heating starts, the heating current is 139A, the charger output current is set to 20A, and the battery system temperature is 5°C/min The speed of the battery rises rapidly.
  • the heating control module 7 stops heating, the heating stops, the charger continues to work, the battery management system 6 sends a charging current request of 20A, the battery starts charging, and the charging SOC (Remaining battery) Stop charging when it reaches 100%.
  • the single battery uses a lithium ion battery, the single battery capacity is 70Ah, the rated voltage is 3.7V, the battery system is 4 parallel 168 strings, the battery heater 2 uses a nickel sheet, the resistance value is 80m ⁇ , the heater 2 is built into the battery, the heater The connection mode of 2 is 4 parallel 168 series, the ambient temperature is -20°C, the driver starts the vehicle, the vehicle runs at a speed of 10 km/h, and the battery management system 6 sends the driving heating mode to the heating control module 7.
  • the heating control module 7 sends a PWM duty cycle of 20%, the heating control module 7 starts, controls the IGBT pulse operation, heating starts, the heating current is 29A, the battery system temperature rises at a rate of 1°C/min, and stops when the battery temperature reaches When the heating temperature is 10°C, the heating control module 7 stops the heating action, the heating stops, the vehicle continues to travel, the vehicle speed can reach a maximum speed of 100km/h, and the energy recovery from the brake is normal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明涉及一种可调加热速度的电池系统及其控制方法,所述电池系统包括电池组、加热片、功率控制模块、电池管理系统;当电池组的温度低于预设的自加热开启温度时,开启功率控制模块,电池管理系统将采集到的电池组状态信息传递给功率控制模块,功率控制模块通过PWM信号调节加热片的电流通断时间及开关频率来调节加热功率和加热速度,从而实现电池自加热;当电池组的温度达到预设的自加热关闭温度时,关闭功率控制模块,停止加热;其中,所述功率控制模块进一步包括电流调整模块、电流采集模块和加热控制模块;本发明可实现动力电池系统在低温下加热速率快、续驶里程长、低温下可快速充电的有益效果。

Description

一种可调加热速度的电池系统及其控制方法 技术领域
本发明属于电动汽车的电池技术领域,尤其涉及一种可调加热速度的电池系统及其控制方法。
背景技术
随着新能源行业的迅猛发展,电动汽车已经普及到全世界各个地方。电动汽车的核心是电池系统,电池系统的充放电性能在很大程度上影响电动汽车的动力性、经济性。一方面,电动汽车在低温条件下,电池系统充放电功率低,在很大程度上影响电动汽车的动力性、、续驶里程和充电时间等,用户抱怨多;另一个方面,虽然应用于低温地区的电动汽车,其电池系统已具备加热系统及保温系统,但都存在加热功率低、速度慢、保温效果差的问题。
上述两方面原因严重影响了电动汽车在低温地区的使用推广,严重影响了客户的使用体验。因此,为了解决上述两个问题,开发一种安全可靠的具有快速自加热且可调加热速度功能的电池系统是十分有必要的。
发明内容
本发明的目的在于,针对上述缺陷,提供一种可调加热速度的电池系统及其控制方法,以解决现有技术中电池系统加热功率不可调节、加热速度慢的问题,实现电池系统加热速率快、故障率低、维护难度小和安全性好的有益效果。
本发明的技术方案是这样实现的:
提供一种可调加热速度的电池系统,所述电池系统包括电池组、加热片、功率控制模块、电池管理系统;其中,所述电池组分别与加热片及功率控制模块进行电气连接;所述功率控制模块分别与电池组、加热片及电池管理系统进行电气连接;
当电池组的温度低于预设的自加热开启温度时,开启功率控制模块,电池管理系统将采集到的电池组状态信息传递给功率控制模块,功率控制模块通过PWM(脉冲宽度调制)信号调节加热片的电流通断时间及频率来调节加热功率和加热速度,从而实现电池自加热;当电池组的温度达到预设的自加热关闭温度时,关闭功率控制模块,停止加热;
其中,所述功率控制模块进一步包括电流调整模块、电流采集模块和加热控制模块,所述电流调整模块与加热片、电流采集模块、加热控制模块进行电气连接,用于调整流经加热片的电流,从而调整系统加热功率;所述加热控制模块与电流采集模块、电流调整模块及电池管理系统进行电气连接,加热控制模块与电池管理系统进行信息交互,加热控制模块向电流调整模块发送电流调整命令,加热控制模块读取电流采集模块采集到的加热电流。
电池管理系统采集的电池组状态信息具体为,单体电池最高电压,单体电池单体平均电压、单体电池最低电压、单体电池最高温度、单体电池最低温度、单体电池压差、电池组整体电压、电池组整体温度、电池组绝缘状态、电池加热运行模式等,用于向电流调整模块设置加热功率。
进一步地,所述电池管理系统与加热控制模块进行信息交互,具体为:电池管理系统向加热控制模块发送车辆状态信息及加热运行模式需求,所述加热运行模式包括驻车加热模式、行驶加热模式、直流充电加热模式、交流充电加热模式;其中,直流充电加热模式、交流充电加热模式通过充电机实现充电加热,具有两种运行方式可选,一种为:通过充电机向加热片单独提供高压进行加热,另一种为:充电机向电池组与加热片同时提供高压供电。
电池管理系统,对所采集电池组状态信息进行运算,选择当前加热运行模式,并将当前加热运行模式发送至加热控制模块。在加热过程中,电池管理系 统向加热控制模块实时发送电池组当前状态信息。
进一步地,所述电流调整模块包括开关电子元器件、隔离驱动单元、隔离电源,通过PWM信号控制加热电流通断时间和开关频率;
其中开关电子元器件为IGBT(绝缘栅双极型晶体管)、MOSFET(金属-氧化物半导体场效应晶体管)、可控硅、继电器等中任一具有导通和关断功能或具备导通角可调整的电子元器件。优选地,当电流调整模块为IGBT(绝缘栅双极型晶体管)时,其电路具体为包括隔离驱动单元、隔离电源及IGBT(绝缘栅双极型晶体管),处理器功率控制模块输出PWM信号经隔离驱动单元后,产生IGBT(绝缘栅双极型晶体管)的控制信号,隔离驱动单元由隔离电源供电。
进一步地,所述电流采集模块包括霍尔传感器、LDO(低压差线性稳压器)、端口防护电路、信号调理电路,霍尔传感器将采集到电流信号通过端口防护电路和信号调整电路后传输至电流采集模块接口。霍尔传感器将采集到电流信号的传输通道分为高量程通道和低量程通道,其中,高量程通道将高频电流信号通过端口防护电路一和信号调整电路一后传输至电流采集模块接口一,低量程通道将低频电流信号通过端口防护电路二和信号调整电路二后传输至电流采集模块接口二。
进一步地,所述加热控制模块通过脉冲宽度调制信号对电流调整模块进行控制。所述加热控制模块包括MCU控制器、电源电路、时钟、CAN通信芯片、电流调整模块接口、电流采集模块接口和电池管理系统接口,MCU控制器通过CAN通信芯片与电池管理系统接口连接,MCU控制器通过PWM产生模块与电流调整模块接口连接,MCU控制器通过ADC通道与电流采集模块接口连接。
进一步地,所述加热片为镍片、铜片、铝片、铁片、石墨片、PTC加热器或加热薄膜中一种或多种。
进一步地,所述加热片由多个单独加热片单元通过串联连接、并联连接或串并联混合连接而成;所述加热片设置在单体电池内部、单体电池外部、电池组模组底部、电池模组顶部或电池组模组侧面。
进一步地,所述电池组由多个单体电池串联、并联或串并联混合所组成;其中,所述单体电池为磷酸铁锂电池、三元锂电池、锰酸锂电池、固态锂电池、镍氢电池、镍镉电池、银锌电池、燃料电池或铅酸电池中的一种,优选地,单体电池数量为1至9999个。
本发明还涉及了一种可调节加热速度的电池系统的控制方法,包括如下步骤:
步骤1):将可调节加热速度的电池系统初始化,通过电池管理系统实时采集当前电池组信息,将所采集到的电池组信息进行运算,选择当前电池组加热运行模式,电池管理系统将加热控制模块所需电池组的状态信息及加热运行模式发送至加热控制模块;所述加热运行模式分为驻车加热模式、行驶加热模式、直流充电加热模式、交流充电加热模式四种;
步骤2):加热控制模块根据接收到的电池组加热运行模式信息,切换加热控制模块至相应的加热运行模式;加热控制模块根据当前加热运行模式设定的参数,向电流调整模块发送对应的PWM信号,以实时调整加热回路电流值;加热控制模块接收电流采集模块反馈的电流值,调整PWM信号,使实际电流值达到设定值,实现闭环控制,同时诊断加热回路是否产生故障;若存在故障,则依据故障等级判断是否停止当前加热运行模式或降低加热功率,若无故障,则继续进行当前加热运行模式;
步骤3):当电池组中的单体电池的温度、温差、压差达到预设阈值,或者单体电池的电压、绝缘电阻低于预设阈值时,进行报警,加热控制模块向电流 调整模块发送加热功率为零的控制指令;
步骤4):向电池管理系统发送关闭加热运行模式请求,退出当前加热运行模式;并返回至步骤1)。
进一步地,加热控制模块判断加热片、电流调整模块、电流采集模块是否发生故障,电流调整模块响应加热控制模块的故障操作。
本发明与现有技术相比,具有如下有益效果:
通过适配设置加热片、电流调整模块、电流采集模块、加热控制模块、电池管理系统,并且将加热运行模式分为驻车加热模式、行驶加热模式、直流充电加热模式、交流充电加热模式四种,解决现有技术中电池组加热效率低、加热方式单一、加热功率不可调节的问题,实现动力电池系统在低温下加热速率快、续驶里程长、低温下可快速充电的有益效果。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1是本发明的可调节加热速度的电池系统原理图;
图2是本发明的电流调整模块电路原理图;
图3是本发明的电流采集模块相关电路原理图;
图4是本发明的加热控制模块电路原理图。
其中,电池组1、加热片2、功率控制模块3、电流调整模块4、电流采集模块5、电池管理系统6、加热控制模块7
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。
如图1-4所示,一种可调加热速度的电池系统,所述电池系统包括电池组1、加热片2、功率控制模块3、电池管理系统6;其中,所述电池组1分别与加热片2及功率控制模块3进行电气连接;所述功率控制模块3分别与电池组1、加热片2及电池管理系统6进行电气连接。
当电池组1的温度低于预设的自加热开启温度时,开启功率控制模块3,电池管理系统6将采集到的电池组1状态信息传递给功率控制模块3,功率控制模块3通过PWM(脉冲宽度调制)信号调节加热片2的电流通断时间及频率来调节加热功率和加热速度,从而实现电池自加热;当电池组1的温度达到预设的自加热关闭温度时,关闭功率控制模块3,停止加热。
其中,所述功率控制模块3进一步包括电流调整模块4、电流采集模块5和加热控制模块7,所述电流调整模块4与加热片2、电流采集模块5、加热控制模块7进行电气连接,用于调整流经加热片2的电流,从而调整系统加热功率;所述加热控制模块7与电流采集模块5、电流调整模块4及电池管理系统6进行电气连接,加热控制模块7与电池管理系统6进行信息交互,加热控制模块7向电流调整模块4发送电流调整命令,加热控制模块7读取电流采集模块5采集到的加热电流。
电池管理系统6采集的电池组1状态信息具体为:单体电池最高电压,单体电池单体平均电压、单体电池最低电压、单体电池最高温度、单体电池最低温度、单体电池压差、电池组1整体电压、电池组1整体温度、电池组1绝缘状态、电池加热运行模式等,用于向电流调整模块4设置加热功率。
所述电池管理系统6与加热控制模块7进行信息交互,具体为:电池管理 系统6向加热控制模块7发送车辆状态信息及加热运行模式需求,所述加热运行模式包括驻车加热模式、行驶加热模式、直流充电加热模式、交流充电加热模式;其中,直流充电加热模式、交流充电加热模式中具有两种运行方式可选,一种为:通过充电机向加热片2单独提供高压进行加热,另一种为:充电机向电池组1与加热片2同时提供高压供电。
电池管理系统6,对所采集电池组1状态信息进行运算,选择当前加热运行模式,并将当前加热运行模式发送至加热控制模块7。在加热过程中,电池管理系统6向加热控制模块7实时发送电池组1当前状态信息。
所述电流调整模块4包括开关电子元器件、隔离驱动单元、隔离电源,通过PWM信号控制加热电流通断时间;其中开关电子元器件为IGBT(绝缘栅双极型晶体管)、MOSFET(金属-氧化物半导体场效应晶体管)、可控硅、继电器等中任一具有导通和关断功能或具备导通角可调整的电子元器件。优选地,当电流调整模块4的开关电子元器件为IGBT(绝缘栅双极型晶体管)时,电流调整模块4可具体为包括隔离驱动单元、隔离电源及IGBT(绝缘栅双极型晶体管),加热控制模块7输出PWM信号经隔离驱动单元后,产生IGBT(绝缘栅双极型晶体管)的控制信号,隔离驱动单元由隔离电源供电。
所述电流采集模块5包括霍尔传感器、LDO(低压差线性稳压器)、端口防护电路、信号调理电路,霍尔传感器将采集到电流信号通过端口防护电路和信号调整电路后传输至ADC通道。具体地,霍尔传感器将采集到电流信号的传输通道分为高量程通道和低量程通道,其中,高量程通道将高频电流信号通过端口防护电路一和信号调整电路一后传输至电流采集模块接口一,低量程通道将低频电流信号通过端口防护电路二和信号调整电路二后传输至电流采集模块接口二。
所述加热控制模块7通过PWM信号对电流调整模块4进行控制。所述加热控制模块7包括MCU控制器、电源电路、时钟、CAN通信芯片、电流调整模块接口、电流采集模块接口和电池管理系统接口,MCU控制器通过CAN通信芯片与电池管理系统接口连接,MCU控制器通过PWM产生模块与电流调整模块接口连接,MCU控制器通过ADC通道与电流采集模块接口连接。
所述加热片2为镍片、铜片、铝片、铁片、石墨片、PTC加热器或加热薄膜中一种或多种。
所述加热片2由多个单独加热片单元通过串联连接、并联连接或串并联混合连接而成;所述加热片2设置在单体电池内部、单体电池外部、电池组1模组1底部或电池组1模组侧面。
所述电池组1由多个单体电池串联、并联或串并联混合所组成;其中,所述单体电池为磷酸铁锂电池、三元锂电池、锰酸锂电池、固态锂电池、镍氢电池、镍镉电池、银锌电池、燃料电池或铅酸电池中的一种,优选地,单体电池数量为1至9999个。
基于以上的一种可调节加热速度的电池系统,其控制方法,包括如下步骤:
步骤1):将可调节加热速度的电池系统初始化,通过电池管理系统6实时采集当前电池组1信息,将所采集到的电池组1信息进行运算,选择当前电池组1加热运行模式,电池管理系统6将加热控制模块7所需电池组1的状态信息及热运行模式发送至加热控制模块7;所述加热运行模式分为驻车加热模式、行驶加热模式、直流充电加热模式、交流充电加热模式四种;
步骤2):加热控制模块7根据接收到的电池组1加热运行模式信息,切换加热控制模块7至相应的加热运行模式;加热控制模块7根据当前加热运行模式设定的参数,向电流调整模块4发送对应的PWM信号,以实时调整加热回路 电流值;加热控制模块7接收电流采集模块5反馈的电流值,调整PWM信号,使实际电流值达到设定值,实现闭环控制,同时诊断加热回路是否产生故障;若存在故障,则依据故障等级判断是否停止当前加热运行模式或降低加热功率,若无故障,则继续进行当前加热运行模式;
步骤3):当电池组1中的单体电池的温度、温差、压差高于预设阈值,或者单体电池的电压、绝缘电阻低于预设阈值时,进行报警,加热控制模块7向电流调整模块4发送加热功率为零的控制指令;
步骤4):向电池管理系统6发送关闭加热运行模式请求,确认后退出当前加热运行模式;并返回至步骤1),等待下一次加热运行模式。
进一步地,加热控制模块7判断加热片2、电流调整模块4、电流采集模块5是否发生故障,电流调整模块4响应加热控制模块7的故障操作。
为了验证本发明的技术效果,通过以下几个具体实施例来进行说明。
实施例1:
单体电池采用锂离子电池,单体容量为70Ah,额定电压为3.7V,电池系统为4并36串,电池加热片2采用镍片,阻值为80mΩ,加热片2内置电池内部,加热片2的连接方式为4并36串,环境温度为-20℃,电池管理系统6向加热控制模块7发送驻车加热模式。电池管理系统6发送加热模式给加热控制模块7后,PWM发送占空比为100%,加热控制模块7迅速启动,IGBT100%导通,以最大速度加热,加热电流最大为147A,电池系统温度以每5℃/min的速度迅速上升,当电池温度达到设定停止加热温度10℃时,加热控制模块7停止加热动作,加热停止。此时电池温度已经达到10℃以上,车辆可以启动行驶,或进行充电。
实施例2:
单体电池采用锂离子电池,单体容量为70Ah,额定电压为3.7V,电池系统为4并36串,电池加热片2采用镍片,阻值为80mΩ,加热片2内置电池内部,加热片2的连接方式为4并36串,环境温度为-20℃,车辆插入直流充电机,电池管理系统6发送直流充电加热模式给加热控制模块7。加热控制模块7发送PWM占空比为60%,加热控制模块7启动,控制IGBT脉冲工作,加热开始,加热电流为149A,充电机输出电流设定为60A,电池系统温度以每5℃/min的速度迅速上升,当电池温度达到充电停止加热温度10℃时,加热控制模块7停止加热动作,加热停止,充电机继续工作,电池管理系统6发送充电电流请求为140A,电池开始充电,充电SOC(剩余电量)达到100%时停止充电。
实施例3:
单体电池采用锂离子电池,单体容量为70Ah,额定电压为3.7V,电池系统为4并36串,电池加热片2采用镍片,阻值为80mΩ,加热片2内置电池内部,加热片2的连接方式为4并36串,环境温度为-20℃,车辆插入交流充电枪,电池管理系统6发送交流充电加热模式给加热控制模块7。加热控制模块7发送PWM占空比为90%,加热控制模块7启动,控制IGBT脉冲工作,加热开始,加热电流为139A,充电机输出电流设定为20A,电池系统温度以每5℃/min的速度迅速上升,当电池温度达到充电停止加热温度10℃时,加热控制模块7停止加热动作,加热停止,充电机继续工作,电池管理系统6发送充电电流请求为20A,电池开始充电,充电SOC(剩余电量)达到100%时停止充电。
实施例4
单体电池采用锂离子电池,单体容量为70Ah,额定电压为3.7V,电池系统为4并168串,电池加热片2采用镍片,阻值为80mΩ,加热片2内置电池内部,加热片2的连接方式为4并168串,环境温度为-20℃,驾驶员启动车辆, 车辆以10km/h的速度行驶,电池管理系统6发送行驶加热模式给加热控制模块7。加热控制模块7发送PWM占空比为20%,加热控制模块7启动,控制IGBT脉冲工作,加热开始,加热电流为29A,电池系统温度以每1℃/min的速度上升,当电池温度达到停止加热温度10℃时,加热控制模块7停止加热动作,加热停止,车辆继续行驶,车速可达到最高100km/h的速度行驶,刹车回收能量正常。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种可调节加热速度的电池系统,其特征在于,所述电池系统包括电池组(1)、加热片(2)、功率控制模块(3)、电池管理系统(6);
    其中,所述电池组(1)分别与加热片(2)及功率控制模块(3)进行电气连接;所述功率控制模块(3)分别与电池组(1)、加热片(2)及电池管理系统(6)进行电气连接;
    当电池组(1)的温度低于预设的自加热开启温度时,开启功率控制模块(3),电池管理系统(6)将采集到的电池组(1)状态信息传递给功率控制模块(3),功率控制模块(3)通过PWM信号调节加热片(2)的电流通断时间及开关频率来调节加热功率和加热速度;当电池组(1)的温度达到预设的自加热关闭温度时,关闭功率控制模块(3),停止加热;
    其中,所述功率控制模块(3)进一步包括电流调整模块(4)、电流采集模块(5)和加热控制模块(7),
    所述加热控制模块(7)与电流采集模块(5)、电流调整模块(4)及电池管理系统(6)进行电气连接,加热控制模块(7)与电池管理系统(6)进行信息交互,加热控制模块(7)向电流调整模块(4)发送电流调整命令,加热控制模块(7)读取电流采集模块(5)采集到的加热电流,实现闭环控制。
  2. 根据权利要求1所述的一种可调节加热速度的电池系统,其特征在于,所述电池管理系统(6)与加热控制模块(7)进行信息交互,具体为:电池管理系统(6)向加热控制模块(7)发送车辆状态信息及加热运行模式需求,所述加热运行模式包括驻车加热模式、行驶加热模式、直流充电加热模式、交流充电加热模式;在加热过程中,电池管理系统(6)向加热控制模块(7)实时发送电池组(1)当前状态信息。
  3. 根据权利要求1或2所述的一种可调节加热速度的电池系统,其特征在于, 所述电流调整模块(4)包括开关电子元器件、隔离驱动单元、隔离电源,通过PWM信号控制加热电流通断时间,开关电子元器件为IGBT、MOSFET、可控硅或继电器中的任一种。
  4. 根据权利要求1或2所述的一种可调节加热速度的电池系统,其特征在于,所述电流采集模块(5)包括霍尔传感器、LDO、端口防护电路、信号调理电路,霍尔传感器将采集到电流信号通过端口防护电路和信号调整电路后传输至电流采集模块接口。
  5. 根据权利要求1或2所述的一种可调节加热速度的电池系统,其特征在于,所述加热控制模块(7)通过PWM信号对电流调整模块(4)进行控制,所述加热控制模块(7)包括MCU控制器、电源电路、时钟、CAN通信芯片、电流调整模块接口、电流采集模块接口和电池管理系统接口,MCU控制器通过CAN通信芯片与电池管理系统接口连接,MCU控制器通过PWM产生模块与电流调整模块接口连接,MCU控制器通过ADC通道与电流采集模块接口连接。
  6. 根据权利要求1或2所述的一种可调节加热速度的电池系统,其特征在于,所述加热片(2)为镍片、铜片、铝片、铁片、石墨片、PTC加热器或加热薄膜中一种或多种。
  7. 根据权利要求6所述的一种可调节加热速度的电池系统,其特征在于,所述加热片(2)由多个单独加热片单元通过串联连接、并联连接或串并联混合连接而成;所述加热片(2)设置在单体电池内部、单体电池外部、电池组(1)模组底部、电池组(1)模组顶部或电池组(1)模组侧面。
  8. 根据权利要求7所述的一种可调节加热速度的电池系统,其特征在于,所述电池组(1)由多个单体电池串联、并联或串并联混合所组成;其中,所述单体电池为磷酸铁锂电池、三元锂电池、锰酸锂电池、固态锂电池、镍氢电池、 镍镉电池、银锌电池、燃料电池或铅酸电池中的一种。
  9. 如权利要求1-8任一项所述的一种可调节加热速度的电池系统的控制方法,其特征在于,包括如下步骤:
    步骤1):将可调节加热速度的电池系统初始化,通过电池管理系统(6)实时采集当前电池组(1)信息,将所采集到的电池组(1)信息进行运算,选择当前电池组(1)加热运行模式,电池管理系统(6)将加热控制模块(7)所需电池组(1)的状态信息及加热运行模式发送至加热控制模块(7);所述加热运行模式分为驻车加热模式、行驶加热模式、直流充电加热模式、交流充电加热模式四种;
    步骤2):加热控制模块(7)根据接收到的电池组(1)加热运行模式信息,切换加热控制模块(7)至相应的加热运行模式;加热控制模块(7)根据当前加热运行模式设定的参数,向电流调整模块(4)发送对应的PWM信号,以实时调整加热回路电流值;加热控制模块(7)接收电流采集模块(5)反馈的电流值,调整PWM信号,使实际电流值达到设定值,实现闭环控制,同时诊断加热回路是否产生故障;若存在故障,则依据故障等级判断是否停止当前加热运行模式或降低加热功率,若无故障,则继续进行当前加热运行模式;
    步骤3):当电池组(1)中的单体电池的温度、温差、压差、加热时间达到预设阈值,或者单体电池的电压、绝缘电阻低于预设阈值时,进行报警,加热控制模块(7)向电流调整模块(4)发送加热功率为零的控制指令;
    步骤4):向电池管理系统(6)发送关闭加热运行模式请求,确认后退出当前加热运行模式;并返回至步骤1)。
  10. 根据权利要求9所述的一种可调节加热速度的电池系统的控制方法,其特征在于,加热控制模块(7)判断加热片(2)、电流调整模块(4)、电流采集 模块(5)是否发生故障,电流调整模块(4)响应加热控制模块(7)的故障操作。
PCT/CN2018/119302 2018-11-27 2018-12-05 一种可调加热速度的电池系统及其控制方法 WO2020107507A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/754,873 US20210323442A1 (en) 2018-11-27 2018-12-05 Battery system with adjustable heating rate and control method thereof
KR1020207008631A KR102457327B1 (ko) 2018-11-27 2018-12-05 가열 속도를 조절 가능한 배터리 시스템 및 이의 제어방법
JP2020519682A JP7130036B2 (ja) 2018-11-27 2018-12-05 加熱速度を調節可能なバッテリーシステム及びその制御方法
EP18934521.8A EP3686051A4 (en) 2018-11-27 2018-12-05 BATTERY SYSTEM WITH ADJUSTABLE HEATING RATE AND CONTROL PROCEDURE FOR IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811424616.6 2018-11-27
CN201811424616.6A CN111216600B (zh) 2018-11-27 2018-11-27 一种可调加热速度的电池系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2020107507A1 true WO2020107507A1 (zh) 2020-06-04

Family

ID=70808045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119302 WO2020107507A1 (zh) 2018-11-27 2018-12-05 一种可调加热速度的电池系统及其控制方法

Country Status (6)

Country Link
US (1) US20210323442A1 (zh)
EP (1) EP3686051A4 (zh)
JP (1) JP7130036B2 (zh)
KR (1) KR102457327B1 (zh)
CN (1) CN111216600B (zh)
WO (1) WO2020107507A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109592A (zh) * 2020-06-17 2020-12-22 上汽通用五菱汽车股份有限公司 车载电池的控制方法、车辆及可读存储介质
CN112670621A (zh) * 2020-12-28 2021-04-16 湖北亿纬动力有限公司 一种加热膜的控制方法及装置
CN113346164A (zh) * 2021-05-20 2021-09-03 山东大学 寒区电动汽车动力电池智能柔性预热方法及系统
CN114614162A (zh) * 2021-03-29 2022-06-10 长城汽车股份有限公司 电池包加热控制方法、装置及车辆
CN114619916A (zh) * 2021-12-01 2022-06-14 安徽绿舟科技有限公司 一种新能源汽车电池数据实时采集系统及方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113895314B (zh) * 2020-06-22 2024-01-23 北京新能源汽车股份有限公司 动力电池电路系统及其控制方法、装置、控制设备及汽车
CN113829964B (zh) * 2020-06-24 2023-11-14 比亚迪股份有限公司 动力电池组自加热方法、系统、汽车及存储介质
CN112706656B (zh) * 2020-06-30 2021-12-07 比亚迪股份有限公司 电动汽车动力电池低温加热方法、系统、汽车及存储介质
CN112382806B (zh) 2020-11-11 2021-11-05 北京理工大学 实现内外部联合加热的锂离子动力电池系统及控制方法
CN112382809B (zh) * 2020-12-02 2022-07-05 普联技术有限公司 一种锂电池的智能辅热方法、设备及存储介质
CN114670656A (zh) * 2020-12-24 2022-06-28 宁德时代新能源科技股份有限公司 控制方法、装置、动力系统及电动汽车
CN113131041B (zh) * 2021-03-08 2023-01-17 北京汽车股份有限公司 一种动力电池加热方法、系统及车辆
CN113078336B (zh) * 2021-03-26 2022-03-15 电子科技大学 一种燃料电池内部温度分布式测控装置及其电堆
CN113097603A (zh) * 2021-04-02 2021-07-09 云度新能源汽车有限公司 一种带温度保护功能的变功率低温加热系统和方法
CN113161650B (zh) * 2021-04-13 2022-11-01 安徽交通职业技术学院 一种用于新能源客车动力电池的自保温控制方法
CN112977173B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池脉冲加热系统和加热方法
CN113161649B (zh) * 2021-04-30 2022-10-04 重庆长安新能源汽车科技有限公司 确定对动力电池脉冲加热时的最优脉冲电流参数的方法
CN216054914U (zh) * 2021-09-28 2022-03-15 宁德时代新能源科技股份有限公司 一种可加热电池包、可加热电池系统及车辆
WO2023050458A1 (zh) * 2021-09-30 2023-04-06 深圳市飞硕科技有限公司 一种电池保护系统
CN114188638A (zh) * 2021-11-15 2022-03-15 海南小鲨鱼智能科技有限公司 一种用于动力型电池的加热结构、加热方法、装置和设备
CN114261314B (zh) * 2021-12-27 2023-05-23 重庆长安新能源汽车科技有限公司 基于电动汽车的电池脉冲加热控制方法、系统及电动汽车
CN116454469A (zh) * 2022-01-06 2023-07-18 宇通客车股份有限公司 一种电池加热控制方法及系统
CN114683967B (zh) * 2022-03-30 2023-05-05 东风汽车集团股份有限公司 一种电动车ptc加热电池包的自适应控制方法及系统
CN115377552A (zh) * 2022-04-24 2022-11-22 宁德时代新能源科技股份有限公司 一种动力电池自加热控制方法、系统、存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522448A (zh) * 2006-10-18 2009-09-02 贝鲁股份公司 汽车辅助电加热器的工作方法
CN106553559A (zh) * 2015-09-29 2017-04-05 比亚迪股份有限公司 电动汽车及其加热系统
CN108736108A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727424B2 (ja) * 1996-08-23 2005-12-14 日置電機株式会社 電流センサ
EP2515408B1 (en) * 2009-12-15 2017-08-16 NGK Insulators, Ltd. Control device for secondary battery, and control method for secondary battery
JP6026093B2 (ja) * 2011-09-30 2016-11-16 株式会社豊田中央研究所 電源システム
US9096134B2 (en) * 2012-01-24 2015-08-04 GM Global Technology Operations LLC Enhanced HV pre-charge heater diagnostic detection system for liquid cooled HV battery packs
CN103419666B (zh) * 2012-05-22 2016-03-02 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
JP2016004680A (ja) * 2014-06-17 2016-01-12 住友電気工業株式会社 電池システム及び電池システムの制御方法
WO2016006152A1 (ja) * 2014-07-11 2016-01-14 パナソニックIpマネジメント株式会社 蓄電池パック、及び、蓄電池パックの動作方法
JP5665246B1 (ja) * 2014-08-29 2015-02-04 株式会社Wave Energy クラウド型の通信システム、オールインワン配電盤、及び、通信機器
JP6388285B2 (ja) * 2015-03-03 2018-09-12 日立建機株式会社 ハイブリッド式建設機械
CN108028443B (zh) * 2015-09-28 2021-01-22 本田技研工业株式会社 电力消耗控制装置
CN205407304U (zh) * 2016-02-16 2016-07-27 新誉集团有限公司 一种低温充电装置及低温充电系统
CN107512180A (zh) * 2016-06-15 2017-12-26 北京科易动力科技有限公司 一种动力电池系统以及用于该系统的控制方法
DE112016007461T5 (de) * 2016-11-21 2019-08-14 Mitsubishi Electric Corporation Energie-umwandlungseinrichtung und elektromotor-antriebseinrichtung, die diese verwendet
CN106602179B (zh) * 2017-02-22 2019-04-19 北京长安汽车工程技术研究有限责任公司 一种电池加热系统和电池加热控制方法
CN108808173B (zh) * 2018-07-31 2020-08-25 北京航空航天大学 一种锂离子电池低温内外组合加热装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522448A (zh) * 2006-10-18 2009-09-02 贝鲁股份公司 汽车辅助电加热器的工作方法
CN106553559A (zh) * 2015-09-29 2017-04-05 比亚迪股份有限公司 电动汽车及其加热系统
CN108736108A (zh) * 2018-05-22 2018-11-02 宁德时代新能源科技股份有限公司 加热控制方法和加热控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686051A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109592A (zh) * 2020-06-17 2020-12-22 上汽通用五菱汽车股份有限公司 车载电池的控制方法、车辆及可读存储介质
CN112670621A (zh) * 2020-12-28 2021-04-16 湖北亿纬动力有限公司 一种加热膜的控制方法及装置
CN112670621B (zh) * 2020-12-28 2022-10-14 湖北亿纬动力有限公司 一种加热膜的控制方法及装置
CN114614162A (zh) * 2021-03-29 2022-06-10 长城汽车股份有限公司 电池包加热控制方法、装置及车辆
CN113346164A (zh) * 2021-05-20 2021-09-03 山东大学 寒区电动汽车动力电池智能柔性预热方法及系统
CN113346164B (zh) * 2021-05-20 2022-05-31 山东大学 寒区电动汽车动力电池智能柔性预热方法及系统
CN114619916A (zh) * 2021-12-01 2022-06-14 安徽绿舟科技有限公司 一种新能源汽车电池数据实时采集系统及方法

Also Published As

Publication number Publication date
KR102457327B1 (ko) 2022-10-20
EP3686051A4 (en) 2021-01-13
JP7130036B2 (ja) 2022-09-02
US20210323442A1 (en) 2021-10-21
KR20200066618A (ko) 2020-06-10
CN111216600A (zh) 2020-06-02
JP2021510289A (ja) 2021-04-15
CN111216600B (zh) 2024-04-16
EP3686051A1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
WO2020107507A1 (zh) 一种可调加热速度的电池系统及其控制方法
CN209581201U (zh) 一种可调加热速度的电池系统
CN101685971B (zh) 车载磷酸铁锂锂电池的低温激活装置及方法
CN104638318B (zh) 一种电动车动力电池组低温快速加热方法及系统
US9446756B2 (en) Power system of hybrid electric vehicle, hybrid electric vehicle comprising the same and method for heating battery group of hybrid electric vehicle
CN104723893B (zh) 一种电池加热系统及电动汽车
CN103427137A (zh) 纯电动汽车动力电池的低温充电加热系统及加热方法
CN105826619B (zh) 锂离子动力电池包恒温热管理系统
US20130033225A1 (en) Lossless Charger
CN112277732B (zh) 一种自加热动力电池系统及行车加热方法
CN109301399B (zh) 一种多支路区域式动力电池系统加热方法及系统
CN108390420A (zh) 通过电机控制器实现动力电池交流快充的装置及方法
CN110406351B (zh) 一种新能源车用热管理系统
CN107845840A (zh) 电池加热电路
CN109004293B (zh) 动力电池液冷系统热管理模块大小循环控制方法
CN106785231A (zh) 一种动力电池加热装置及控制方法
CN205674887U (zh) 一种动力电池系统
CN110212261A (zh) 一种电池充电加热系统及电池充电加热方法
CN113889684B (zh) 一种电池包热管理系统及方法
CN116321562A (zh) 一种锂电池自加热控制系统与方法
WO2022062352A1 (zh) 锂电池系统及高空作业车
CN108258369A (zh) 一种纯电城市客车动力电池温控方法及系统
CN113162141B (zh) 一种适用于低温环境的锂电池便携式安全充电系统及方法
CN105846014A (zh) 基于独立电池组的电池箱热管理系统
CN204348867U (zh) 一种电池组加热装置及具有其的电池组

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020519682

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018934521

Country of ref document: EP

Effective date: 20200330

NENP Non-entry into the national phase

Ref country code: DE