WO2020107256A1 - 一种无人机通信系统及方法 - Google Patents

一种无人机通信系统及方法 Download PDF

Info

Publication number
WO2020107256A1
WO2020107256A1 PCT/CN2018/117895 CN2018117895W WO2020107256A1 WO 2020107256 A1 WO2020107256 A1 WO 2020107256A1 CN 2018117895 W CN2018117895 W CN 2018117895W WO 2020107256 A1 WO2020107256 A1 WO 2020107256A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
drone
controller
network
base station
Prior art date
Application number
PCT/CN2018/117895
Other languages
English (en)
French (fr)
Inventor
梁天永
彭斌
黄李全
Original Assignee
广州极飞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州极飞科技有限公司 filed Critical 广州极飞科技有限公司
Priority to RU2021118361A priority Critical patent/RU2769741C1/ru
Priority to CN201880030853.6A priority patent/CN110651435B/zh
Priority to PCT/CN2018/117895 priority patent/WO2020107256A1/zh
Priority to JP2021527159A priority patent/JP2022509784A/ja
Priority to AU2018450592A priority patent/AU2018450592A1/en
Priority to CA3121282A priority patent/CA3121282A1/en
Priority to KR1020217016654A priority patent/KR20210109523A/ko
Priority to EP18941245.5A priority patent/EP3876216A4/en
Publication of WO2020107256A1 publication Critical patent/WO2020107256A1/zh
Priority to US17/331,907 priority patent/US20210288714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0027Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/18Network protocols supporting networked applications, e.g. including control of end-device applications over a network

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a drone communication system and method.
  • UAVs are usually controlled manually or automatically to accurately control UAVs to complete some flying missions. These flying missions include spraying operations, aerial photography, line patrols, surveying, metering, and cargo transportation.
  • the controller sends a control signal to control the drone, or the drone feeds back some data to the controller.
  • the controller in the related art is generally a hand-held remote control.
  • the transmission power of the remote control is large, which may easily cause the problem of short battery life.
  • the antenna direction on the remote control needs to be strictly controlled, so that the alignment requirements of the antenna are high, and the operation requirements are also increased.
  • the embodiments of the present disclosure provide a drone communication system and method, which can reduce the transmission power of the controller, can increase the battery life of the controller, can reduce the requirements for antenna alignment, thereby reducing the difficulty of operation, and can be flexibly networked for convenience Realizing the functions of one control multiple machines and one control one machine can solve the problem of poor communication quality caused by obstacles between the UAV and the controller, and the problem of insufficient communication distance expansion.
  • An embodiment of the present disclosure provides a drone communication system, including at least one controller, at least one drone, and mesh equipment;
  • the controller, the drone, and the mesh device respectively serve as mesh nodes, and each mesh node communicates through a mesh network.
  • An embodiment of the present disclosure also provides a drone communication system, including at least one controller, at least one drone, and other equipment;
  • the controller and the other devices communicate through a mesh network, and the other devices and the drone form a star network.
  • An embodiment of the present disclosure also provides a drone communication method, including:
  • the controller sends a control signal to control the drone through the mesh network, or receives feedback data of the drone through the mesh network, and processes the feedback data.
  • An embodiment of the present disclosure also provides a drone communication method, including:
  • the mesh device receives the control signal sent by the controller through the mesh network, and forwards the control signal to the drone through the mesh network; or,
  • the mesh device receives the feedback data sent by the drone through the mesh network, and forwards the feedback data to the controller through the mesh network.
  • An embodiment of the present disclosure also provides a drone communication method, including:
  • the drone receives the control signal forwarded by the mesh device through the mesh network and performs the corresponding operation according to the control signal; or,
  • the drone sends feedback data through the mesh network.
  • An embodiment of the present disclosure also provides a drone communication method, including:
  • the controller sends a control signal to control the drone, or receives the feedback data of the drone, and processes the feedback data;
  • the mesh device forwards the control signal or the feedback data
  • the drone receives the control signal forwarded by the mesh device, and performs a corresponding operation according to the control signal, or sends the feedback data.
  • controller, the drone, and the mesh device respectively serve as mesh nodes, and the mesh nodes communicate through a mesh network.
  • FIG. 1 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a drone communication method provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a drone communication system provided by an embodiment of the present disclosure, where the drone communication system can be applied in a general scenario of drone flight, optionally, where the system can It is used in scenarios where plant protection is carried out by drones, for example, spraying pesticides.
  • the controller is generally a hand-held remote control.
  • the transmission power of the remote controller is large, which may easily cause the problem of short battery life.
  • the antenna direction on the remote control needs to be strictly controlled, so that the alignment requirements of the antenna are high, and the operation requirements are also increased.
  • the communication architecture of a drone is a star network centered on the controller. For example, the controller communicates directly with several drones, or communicates indirectly with the drone through the main controller.
  • the drone When the drone is flying, there may be obstacles between the controller and the drone, and the obstacles may cause poor communication quality between the controller and the drone.
  • the drone when the drone is in plant protection operations, there may be corn, sunflowers, trees, or undulating terrain between the controller and the drone, resulting in poor communication quality between the controller and the drone, especially This problem is often encountered when man-machines are flying at low altitudes; when the flying distance of the drone is long, the inclination angle between the drone and the controller becomes smaller, and the communication between the controller and the drone is more vulnerable to obstacles The influence of things.
  • the mesh device, the drone, and the controller communicate with each other through the mesh network, the transmission power of the controller can be reduced, and the amount can be increased.
  • the life time of the controller can reduce the requirements of antenna alignment, thereby reducing the difficulty of operation, and can be flexibly networked, which is convenient to realize the functions of one control multiple machines, multiple control one machine, multiple control multiple machines, can solve the drone and control
  • the problem of poor communication quality due to obstacles between the controllers can solve the problem of poor communication quality due to obstacles between the controller and the drone.
  • the drone communication system includes at least one controller, at least one drone, and mesh devices.
  • the controller, the unmanned aerial vehicle, and the mesh device respectively serve as device nodes, and the device nodes communicate at least through a wireless mesh network.
  • the controller is used to send control signals to control the drone; or to receive feedback data from the drone and process the feedback data;
  • the mesh device is used to forward control signals or feedback data.
  • the mesh device may be a device that supports the mesh function.
  • the mesh device includes at least one of a drone, a controller, a repeater, and an RTK base station.
  • the RTK base station has high-precision positioning auxiliary information broadcasting function, routing and forwarding function, and can also be used as a repeater. In practice, due to its high installation height, it can usually be used as a repeater.
  • the RTK base station can receive satellite signals and decode the satellite signals to generate measurement information and broadcast the measurement information to the drone.
  • the drone uses the measurement information sent by the RTK base station The positioning accuracy can be improved to realize flexible communication.
  • the RTK base station can also directly send data to the controller or the drone (for example, the measurement information generated by the RTK base station itself).
  • the RTK base station directly sends data to the controller so that the controller can monitor its status; the RTK base station directly sends data to the drone, which can be used to improve the navigation accuracy of the drone.
  • the RTK base station serves as a mesh node in the mesh network, and can also send data to the target drone or controller through other mesh nodes, where the other mesh nodes can be controllers, drones, and relays. Device or other RTK base station, thereby extending the communication distance between the RTK base station and the target drone or controller. In the same way, the above two situations also apply to any mesh node in the mesh network.
  • the UAV communication system needs to support one-to-many communication.
  • multiple controllers are required to control the same drone.
  • some controllers control the flight attitude, and some controllers control the sensors to collect data. Therefore, the UAV communication system Need to support many-to-one communication.
  • the drone communication system includes at least one controller, at least one drone and mesh device, and the controller, drone and mesh device communicate through a mesh network.
  • controllers, drones, and mesh can be used as mesh nodes, respectively, which can facilitate the addition or reduction of drones, controllers, or mesh devices, thereby realizing one-control multi-machine, multi-control, one-machine, multi-control Multi-machine function.
  • the mesh device includes at least one of a controller with a mesh function, an unmanned aerial vehicle, an RTK base station, or a repeater.
  • a mesh device needs to be added, configuration and other tedious steps can be avoided. Immediate use, convenient for users and improve the efficiency of use.
  • the antenna gain of the controller is required to be large, so the antenna length needs to be matched with the carrier wavelength, which may make the volume or length of the antenna larger, and also require an antenna of a suitable shape, but the controller is generally It is a hand-held form.
  • the hand-held remote control has restrictions on the shape and volume of the antenna, which can easily lead to the use of a better antenna; and when the hand-held remote control is far away from the drone, the remote The larger the power, the easier the short battery life.
  • the wireless communication system provided by the embodiments of the present disclosure can forward the communication data between the controller and the drone through the mesh device. When the controller and the drone are far away, the controller can communicate with the mesh device.
  • the transmission power of different types of mesh nodes may be different.
  • the transmission power of the controller is less than the first set power threshold.
  • the drone and/or mesh device The transmit power of is greater than the second set power threshold; wherein, the first set power threshold is less than the second set power threshold.
  • the first set power threshold and the second set power threshold can be set according to actual needs, rather than fixed values. In other words, the transmission power of the controller can be small, and the transmission power of the mesh device or drone can be large.
  • the controller and the mesh device form the first hop link.
  • the communication distance can be closer.
  • the mesh device and the UAV form a second hop link. Due to the large transmission power, the communication distance is relatively long. Therefore, the characteristics of the mesh network can be used, and the remote controller can use the mesh device as a relay node to communicate with the drone at a long distance.
  • each mesh node determines the communication distance between the mesh nodes.
  • the relay node can be added, which is convenient to operate and can solve the problem of the convenience of extending the communication distance.
  • each hop link can achieve a communication distance of 1km, then N hops can achieve a communication distance of N * 1Km.
  • each mesh device can be used as a relay node, not necessarily a dedicated relay device.
  • the direction of the controller antenna device needs to be strictly controlled, thereby requiring higher requirements on the operation posture.
  • the embodiment of the present disclosure provides a mesh device, and each device node communicates through the mesh network, and the controller and the drone can communicate through the mesh device.
  • the mesh network mechanism selects the appropriate communication path, so the controller
  • the direction of the antenna device above may not be required, therefore, the operation posture can also be selected according to user comfort, which is convenient for user operation.
  • the antenna devices of each mesh node may be different.
  • the gain of the antenna device of the controller is less than the first set gain value, and the gain of the antenna device of the drone and/or mesh device is greater than the second set gain value; wherein, the first set gain value is less than the first set gain value 2.
  • Set the gain value It should be noted that the first set gain value and the second set gain value may be set according to specific requirements.
  • the antenna device of the controller may be an omnidirectional antenna. Among them, the gain of the antenna device of the controller can be small, and the elevation angle requirements of the antenna device of the drone and the mesh device are not too high, and the gain can be large. Therefore, the drone and the mesh device (RTK base station, relay The communication distance between devices, etc.) is relatively long. Therefore, by controlling the antenna device of each mesh node and reducing the constraints on the gain of the antenna device, the design of the antenna is more in line with the appearance and structural requirements of the whole machine, which can reduce the production cost of the controller antenna device and reduce the cost.
  • the UAV communication system is a star network centered on the controller, that is, the controller communicates with multiple drones, or communicates with multiple drones through the main controller.
  • the UAV communication system in the related art if there is an obstacle between the controller and the drone, the communication quality between the controller and the drone becomes poor.
  • the mesh device provided by the embodiment of the present disclosure, and the mesh device, the controller and the drone communicate through the mesh network, and when there is an obstacle between the controller and the drone, the mesh device can be used for indirect communication ;
  • each device node can also automatically select a communication path, can bypass obstacles, and forward data to achieve communication between the controller and the drone, Therefore, the technical solution provided by the embodiments of the present disclosure can solve the problem that the communication quality is deteriorated due to the presence of an obstacle between the controller and the drone.
  • the controller can find a suitable path through a path discovery algorithm. For example, when the controller cannot detect the specific signal of the drone or the detected specific signal is less than a certain power threshold, the controller asks whether its neighbor nodes It can communicate with the target drone, and so on. If the network deployment is reasonable, the controller can find a suitable path to communicate with the drone. For example, when there is an obstacle between the controller and the drone, the controller cannot directly communicate with the drone.
  • the controller can communicate indirectly with the target drone through neighbor A (that is, the adjacent mesh node), and the controller and the neighbor A is the first hop link, and neighbor A and the drone are the second hop link.
  • the way to determine the communication path can be the same as the way the controller determines the communication path.
  • the mesh network may also be referred to as a multi-hop network.
  • the network architecture is flexible, with features such as self-discovery, ad hoc networking, and automatic routing.
  • the controller may be a ground control device in the form of a ground station, a remote control, a smart phone, a back clip, or the like.
  • the height of each mesh node is different.
  • the height of the mesh device is greater than the height of the obstacle.
  • the height of the mesh device is greater than the height of the obstacle, which can avoid the communication between the controller and the mesh device being affected and the communication between the mesh and the drone. The problem can solve the problem that the communication quality is affected when there is an obstacle between the controller and the drone.
  • the controller is usually set on the ground and is easily blocked by obstacles.
  • Mesh devices RTK base stations or other mesh devices
  • Mesh devices can be erected at a high height, for example, they can be erected by brackets. Above the crop, the height is also higher. Therefore, the height of the mesh device and the unmanned aerial vehicle are relatively high, usually without obstacles, and the communication distance is relatively long.
  • the controller, the mesh device and the drone communicate through the mesh network. Using the characteristics of the mesh network, the controller can use the mesh device as a relay node to communicate with the drone over a long distance. In the same way, the controller can use other mesh devices as relay nodes, and use its height characteristics to communicate with the UAV over long distances. If a drone is used as a relay node, the drone can fly to a position that can bypass obstacles, which can be hillsides or woods.
  • the number of controllers may be at least two, and the number of drones may be at least two.
  • the mesh device may be an RTK base station or a repeater. By setting at least two controllers and at least two drones, multiple controllers can control multiple drones.
  • the number of controllers is 1, the number of drones is 1, the mesh device is an RTK base station or a repeater, and one controller can control one Drone.
  • the number of controllers is one, the number of drones is one, and the number of mesh devices is one.
  • the mesh device can be an RTK base station or a repeater.
  • the controller, mesh device and drone communicate through the mesh network. Among them, the controller and the drone can communicate directly, or the controller and the drone can communicate with the drone through a mesh device (such as an RTK base station or a repeater, etc.) as a relay node .
  • the number of controllers is one, the number of drones is at least two, and the mesh device is an RTK base station or a repeater, which can be controlled by one controller.
  • a drone As shown in Figure 3, the number of controllers is one, and the number of drones is multiple.
  • Mesh devices can be RTK base stations or repeaters. Among them, the controller can communicate directly with each UAV, and can control the controllable equipment on the UAV, such as the gimbal. Or the controller can also use the RTK base station or repeater as a relay node to communicate indirectly with the drone.
  • the wireless communication system can be applied to a two-hop relay scenario.
  • the mesh device can be an RTK base station or a repeater, a controller, and a drone Indirectly communicate with the UAV through the RTK base station or a dedicated repeater as a relay node.
  • the unmanned aerial vehicle, the mesh equipment and the unmanned aerial vehicle communicate through the mesh network, that is, each device node constitutes a pure mesh network.
  • All the devices in Fig. 5 can be a mesh node, and the mesh nodes are in a peer-to-peer relationship. Any mesh node can directly communicate with neighbor nodes. When within a specific coverage area, all mesh nodes can also be connected in a single hop, that is, direct communication. When there is no condition for a single-hop connection, a meshed multi-hop network is formed.
  • the wireless communication system may be applied in a multi-hop relay scenario.
  • the number of controllers is one, the number of drones is one, and the number of mesh devices is at least three.
  • n relay nodes are deployed in the wireless communication system, that is, a mesh device with a relay function, which can be a device that implements data routing and forwarding functions, and the mesh device can be a controller or no one.
  • the controller, unmanned aerial vehicle and mesh equipment can be used as equipment nodes, and each equipment node communicates through the mesh network.
  • the mesh network's routing mechanism can select appropriate relay nodes and communication paths to achieve a significant expansion of wireless signal coverage.
  • the controller can communicate directly with the drone, when the drone is at position 1, the controller can communicate indirectly with the drone through the mesh device 1; when the drone is In position 2, the controller and the drone can communicate through mesh device 1 and mesh device 2 in sequence.
  • the mesh device 1 may be an RTK base station
  • the mesh device 2 may be a repeater
  • the mesh device 3 may be a drone.
  • At least one of the drone, the controller, and the mesh device is a device with a network backhaul function; a device with a network backhaul function is used for Receive access requests from other devices and access the server according to the access requests, and forward the data fed back from the server to other devices.
  • the other devices are any devices other than those with network functions in the system.
  • a device with a network backhaul function not only supports the mesh function, but also can have a backhaul link, a backhaul link It can be a wired backhaul link or a wireless backhaul link, such as a 4G wireless communication network or an Asymmetric Digital Subscriber Line (ADSL) network.
  • the device is used to receive the access request of the controller or the drone, access the server according to the access request, and forward the data returned by the server to the controller or the drone.
  • the server may be a cloud server or other servers.
  • the device can access the Internet or a dedicated private cloud network through a backhaul link, and other mesh nodes can indirectly access the Internet or a private cloud network through a device with a backhaul function.
  • a device with a network backhaul function may include a mesh network module, a gateway, and a backhaul link module (Portal module).
  • the backhaul link module may include a backhaul link.
  • the backhaul link may be a wired backhaul link or a wireless backhaul link, such as a 4G wireless communication network or a non-ADSL network.
  • the gateway can be used to realize the data routing and forwarding between the mesh function module and the return link module, and can realize the data conversion between the mesh network and the cloud network.
  • At least one of the drone, the controller and the mesh device is a device with a backhaul function, that is, in addition to having a mesh function, it may also include a gateway and a backhaul connection module.
  • Functional devices can access the cloud network in both directions. Therefore, by setting at least one of the mesh device, the controller, and the drone as a device with a backhaul function, the device and other devices communicate through the mesh network, and other device nodes can access the network through the device. It can facilitate online access to obtain more information, improve the convenience and versatility of the wireless communication system, can obtain operation parameters and operation status from the server and submit it to the server, and can realize remote monitoring of the UAV operation system.
  • An embodiment of the present disclosure provides a drone communication system.
  • the system includes at least one controller, at least one drone, and other devices; the controller and the other devices communicate through a mesh network. Man and machine form a star network.
  • the other equipment includes at least one of an RTK base station, a drone repeater, and a controller.
  • the other device is a device with a mesh function and an access point AP function; the drone has a station STA function.
  • the relay forwarding function of certain devices may be defined as needed.
  • the number of controllers may be one, the number of drones is at least two, and the number of other devices may be one.
  • the number of controllers is one, the number of drones is at least two, and the other devices are RTK base stations.
  • the controller and the RTK base station can communicate through the mesh network; the RTK base station and the drone can communicate through the star network.
  • the relay forwarding function of the drone is limited.
  • RTK base station not only has mesh network function, but also has access point (access) (AP) function.
  • RTK base station can use 802.11 protocol family related technology to achieve communication with the controller;
  • the wired network is converted into a WiFi wireless signal for the controller or drone to connect.
  • Unmanned aerial vehicles can have a station STA function. All unmanned aerial vehicles form a star network centered on RTK base stations or repeaters. Controllers communicate indirectly through RTK base stations or repeaters.
  • the composition of the star network connects many points to points through the central device, that is, each device in the network is connected to the central device to form a star network.
  • the AP is the creator of a wireless network and can be the central node of the wireless network.
  • STA that is, a station, every device connected to the wireless network can be called a station.
  • the critical path equipment can be equipped with a mesh function, and a key mesh-enabled device can be used as the central equipment.
  • Devices with non-critical paths form a star network, and a more reasonable network architecture can improve network performance. That is, by using a hybrid network (mesh network and star network) between the controller, other devices, and the drone, network performance can be improved, and data transmission efficiency can be improved.
  • the wireless communication system may further include a third-party device, and the third-party device has a mesh function; the third-party device, the controller, and other devices communicate through a mesh network.
  • the number of controllers is one, the number of drones is multiple, and the other devices are RTK base stations.
  • Third-party devices, controllers and RTK base stations communicate with each other through a mesh network; RTK base stations and drones communicate through a star network.
  • the third-party device may be a surveying and mapping device.
  • surveying and mapping equipment can measure farmland, etc., and surveying and mapping equipment, controllers, and drones can interact with each other.
  • FIG. 11 of the embodiment of the present disclosure exemplarily introduces communication methods between third-party devices, controllers, mesh devices, and drones, but the communication methods between them are not limited to those described in FIG. 11 Communication methods, in which third-party devices, controllers, mesh devices and drones can also communicate with each other through the mesh network.
  • An embodiment of the present disclosure provides a drone communication method, which includes: a controller sends a control signal for controlling a drone through a mesh network, or receives feedback data of the drone through a mesh network, and responds to the feedback The data is processed.
  • the controller sends control signals or receives data through the mesh network, and can flexibly network with other devices to facilitate the communication system to realize the functions of one control multiple machines and one control one machine.
  • An embodiment of the present disclosure provides a drone communication method, including: a mesh device receives a control signal sent by a controller through a mesh network, and forwards the control signal to the drone through the mesh network; or, the The mesh device receives the feedback data sent by the drone through the mesh network, and forwards the feedback data to the controller through the mesh network.
  • the mesh device realizes the forwarding of control signals or data through the mesh network, which can increase the communication distance between the controller and the drone, can reduce the transmission power of the controller, can increase the life time of the controller, and can reduce the antenna Standard requirements, thereby reducing the difficulty of operation, which can solve the problem of poor communication quality caused by obstacles between the drone and the controller and the problem of insufficient communication distance expansion.
  • An embodiment of the present disclosure provides a drone communication method, including: a drone receives a control signal forwarded by a mesh device through a mesh network, and performs a corresponding operation according to the control signal; or, the drone passes a mesh network Send feedback data.
  • the UAV can receive control signals or send data through the mesh network, and can flexibly network with other devices to facilitate the communication system to realize the functions of one control multiple machines and one control one machine.
  • FIG. 12 is a flowchart of a drone communication method provided by an embodiment of the present disclosure, wherein the method can be applied to a drone communication system provided by an embodiment of the present disclosure.
  • the drone communication system includes at least one controller, at least A drone and mesh equipment.
  • the communication method provided by the embodiments of the present disclosure includes:
  • Step 110 The controller sends a control signal to control the drone; or receives the feedback data of the drone and processes the feedback data;
  • Step 120 The mesh device forwards the control signal or feedback data
  • Step 130 The drone receives the control signal forwarded by the mesh device, and performs a corresponding operation according to the control signal, or sends the feedback data; wherein, the controller, the drone, and the mesh device respectively act as Device nodes, device nodes communicate through a wireless mesh network.
  • the mesh device includes at least one of an RTK base station, a drone, a repeater, and a controller.
  • the transmission power of different types of mesh nodes is different.
  • the transmit power of the controller is less than a first set power threshold, and the transmit power of the drone and/or mesh device is greater than a second set power threshold; wherein, the first set The power threshold is smaller than the second set power threshold.
  • the height of each mesh node is different.
  • the height of the mesh device is greater than the height of the obstacle.
  • different types of mesh nodes have different antenna devices.
  • the gain of the antenna device of the controller is less than the first set gain value, and the gain of the antenna device of the drone and/or the mesh device is greater than the second set gain value; wherein, the The first set gain value is less than the second set gain value.
  • the antenna device of the controller is an omnidirectional antenna.
  • the number of the controller is one, the number of the drone is one, and the mesh device is an RTK base station or a repeater.
  • the number of the controller is one, the number of the drone is at least two, and the mesh device is an RTK base station or a repeater.
  • the number of the controller is at least two, the number of the drone is one, and the mesh device is an RTK base station or a repeater.
  • the number of the controller is at least two, the number of the drone is at least two, and the mesh device is an RTK base station or a repeater.
  • the number of the controller is one, the number of the drone is one, and the number of the mesh devices is at least three.
  • the mesh device includes an RTK base station, a repeater, and a drone.
  • At least one of the drone, the controller, and the mesh device is a device with a network backhaul function
  • the device with a network backhaul function is used to receive an access request from another device and access the server according to the access request, and forward data fed back from the server to the other device, the other device is the system Any device except network-capable devices.
  • the device with a network backhaul function includes a mesh network module, a gateway, and a backhaul link module;
  • the backhaul link module includes a backhaul link
  • the gateway is used for routing and forwarding data between the mesh network module and the return link module.
  • the number of the controller is at least two, the number of the drone is at least two, and the mesh device is a device with a network backhaul function.
  • the method may further include:
  • the mesh node When the mesh node cannot detect the setting signal sent by the neighbor node, delete the routing information of the neighbor node; wherein, the neighbor node refers to a node that directly communicates with the mesh node; if the mesh node detects the target device The sent measurement signal establishes a communication link with the target device and adds routing information of the target device.
  • the mesh node if the mesh node cannot detect the neighbor node, it may be that the neighbor node has completed the job task, or the power is exhausted, or it may be other conditions.
  • the routing information of the newly added device the communication between the newly added device and the original device can be realized.
  • the routing information of the device it does not affect the mutual communication between the remaining devices.
  • the technical solution provided by the embodiments of the present disclosure can reduce the transmit power of the controller by increasing the drone, the controller and the mesh device to form a mesh network, and the drone, the controller and the mesh device communicate through the mesh network
  • the life time of the controller can reduce the requirements of antenna alignment, thereby reducing the difficulty of operation, and can be flexibly networked, which is convenient to realize the functions of one control multiple machines, multiple control one machine, multiple control multiple machines, can solve the drone and control There are obstacles between the devices that cause poor communication quality and the problem of insufficient communication distance expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种无人机通信系统及方法,其中,该系统包括至少一个控制器、至少一个无人机和至少一个mesh设备;所述控制器、所述无人机和所述mesh设备分别作为mesh节点,所述mesh节点之间通过mesh网络进行通信。上述系统及方法可以降低控制器的发射功率,可以增加控制器的续航时间,可以降低天线对准的要求,从而降低操作难度,可以灵活组网,方便实现一控多机、多控一机、多控多机的功能,可以解决无人机和控制器之间存在障碍物导致通信质量较差的问题,以及通信距离扩展不够便捷的问题。

Description

一种无人机通信系统及方法 技术领域
本公开实施例涉及通信技术领域,尤其涉及一种无人机通信系统及方法。
背景技术
随着无人机的普及,越来越多的人开始了解和使用无人机。当前无人机通常都是在人工或者自动控制下,精准控制无人机完成一些飞行任务,这些飞行任务包括喷洒作业、航拍、巡线、勘测、计量、货物运送等等。
在无人机飞行作业过程中,往往需要与控制器进行通信,例如,控制器发送控制信号对无人机进行控制,或者无人机将一些数据反馈给控制器。相关技术中的控制器一般是手持遥控器,当控制器和无人机的距离较远时,为了保证与无人机的正常通信,遥控器的发射功率较大,容易导致续航时间短的问题。并且当相关技术中为了实现遥控器和无人机更好的通信,需要对遥控器上的天线方向进行严格的控制,从而对天线的对准要求较高,同时也增加了操作要求。另外,相关技术中当控制器和无人机之间存在障碍物时,容易导致通信质量变差,影响通信效果。
发明内容
本公开实施例提供一种无人机通信系统及方法,可以降低控制器的发射功率,可以增加控制器的续航时间,可以降低天线对准的要求,从而降低操作难度,可以灵活组网,方便实现一控多机,多控一机的功能,可以解决无人机和控制器之间存在障碍物导致通信质量较差的问题以及通信距离扩展不够便捷的问题。
本公开实施例提供了一种无人机通信系统,包括至少一个控制器、至少一个无人机和mesh设备;
所述控制器、所述无人机和所述mesh设备分别作为mesh节点,各所述mesh节点之间通过mesh网络进行通信。
本公开实施例还提供了一种无人机通信系统,包括至少一个控制器、至少一个无人机和其他设备;
所述控制器和所述其他设备之间通过mesh网络进行通信,其他设备和所述无人机形成星形网络。
本公开实施例还提供了一种无人机通信方法,包括:
控制器通过mesh网络发送控制无人机的控制信号,或者通过mesh网络接收所述无人机的反馈数据,并对所述反馈数据进行处理。
本公开实施例还提供了一种无人机通信方法,包括:
mesh设备通过mesh网络接收控制器发送的控制信号,并通过所述mesh网络将所述控制信号转发给无人机;或者,
所述mesh设备通过mesh网络接收无人机发送的反馈数据,并通过所述mesh网络将所述反馈数据转发给所述控制器。
本公开实施例还提供了一种无人机通信方法,包括:
无人机通过mesh网络接收mesh设备转发的控制信号,并根据所述控制信号执行对应操作;或者,
所述无人机通过mesh网络发送反馈数据。
本公开实施例还提供了一种无人机通信方法,包括:
控制器发送控制无人机的控制信号,或者接收所述无人机的反馈数据,对所述反馈数据进行处理;
mesh设备转发所述控制信号或者所述反馈数据;
所述无人机接收所述mesh设备转发的所述控制信号,并根据所述控制信号执行对应操作,或者发送所述反馈数据。
其中,所述控制器、所述无人机和所述mesh设备分别作为mesh节点,所述mesh节点之间通过mesh网络进行通信。
附图说明
图1是本公开实施例提供的一种无人机通信系统结构示意图;
图2是本公开实施例提供的一种无人机通信系统结构示意图;
图3是本公开实施例提供的一种无人机通信系统结构示意图;
图4是本公开实施例提供的一种无人机通信系统结构示意图;
图5是本公开实施例提供的一种无人机通信系统结构示意图;
图6是本公开实施例提供的一种无人机通信系统结构示意图;
图7是本公开实施例提供的一种无人机通信系统结构示意图;
图8是本公开实施例提供的一种无人机通信系统结构示意图;
图9是本公开实施例提供的一种无人机通信系统结构示意图;
图10是本公开实施例提供的一种无人机通信系统结构示意图;
图11是本公开实施例提供的一种无人机通信系统结构示意图;
图12是本公开实施例提供的一种无人机通信方法流程图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
图1是本公开实施例提供的一种无人机通信系统结构示意图,其中,所述无人机通信系统可以应用在无人机飞行的通用场景下,可选的,其中,所述系统可以应用在无人机进行植保作业的场景下,例如,喷洒农药等场景。
本公开实施例提供的无人机通信系统可以应用在如下场景下:例如,相关技术中,控制器一般是手持遥控器,当遥控器和无人机的距离较远时,为了保证与无人机的正常通信,遥控器的发射功率较大,容易导致续航时间短的问题。并且当相关技术中为了实现遥控器和无人机更好的通信,需要对遥控器上的天线方向进行严格的控制,从而对天线的对准要求较高,同时也增加了操作要求。又如,无人机的通信架构是以控制器为中心的星形网络,例如,控制器与若干无人机直接通信,或者通过主控器与无人机之间间接通信。当无人机飞行时,控制器和无人机之间可能存在障碍物,障碍物容易导致控制器和无人机之间的通信质量较差。可选的,在无人机在植保作业时,控制器和无人机之间可能存在玉米、向日葵、树木或者起伏的地形,导致控制器和无人机之间通信质量变差,尤其是无人机在低空飞行时常常会遇到该问题;当无人机飞行距离较远时,无人机和控制器之间的倾角变小,控制器和无人机之间的通信越容易受到障碍物的影响。因此,本公开实施例提供的无人机通信系统,通过在系统中增加mesh设备,mesh设备、无人机和控制器相互之间通过mesh网络进行通信,可以降低控制器的发射功率,可以增加控制器的续航时间,可以降低天线对准的要求,从而降低操作难度,可以灵活组网,方便实现一控多机,多控一机、多控多机的功能,可以解决无人机和控制器之间存在障碍物导致通信质量较差的问题, 可以解决控制器和无人机之间存在障碍物,导致通信质量变差的问题。
如图1所示,本公开实施例提供的无人机通信系统包括至少一个控制器、至少一个无人机和mesh设备。其中,控制器、无人机和mesh设备分别作为设备节点,设备节点之间至少通过无线网状mesh网络进行通信。其中,控制器,用于发送控制无人机的控制信号;或者接收无人机的反馈数据,对反馈数据进行处理;mesh设备,用于转发控制信号或者反馈数据。其中,mesh设备可以是支持mesh功能的设备。
可选的,mesh设备包括无人机、控制器、中继器、RTK基站中的至少一个。其中,RTK基站,具有高精度定位辅助信息广播功能、路由及转发功能,也可以同时当作中继器使用,在实践中由于其架设高度较高,通常能用作中继器,当mesh设备为RTK基站时,相对于其他mesh设备而言,RTK基站可以接收卫星信号,并对卫星信号进行解码从而产生测量信息,将测量信息广播给无人机,无人机利用RTK基站发送的测量信息可以提高定位精度,从而实现灵活通信。需要说明的是,RTK基站除了具有中继转发功能外,还可以直接向控制器或无人机发送数据(例如RTK基站自身产生的测量信息)。例如,RTK基站直接给控制器发送数据,以便于控制器监控其状态;RTK基站直接给无人机发送数据,可用于提高无人机的导航精度。当然,RTK基站作为mesh网路中的一个mesh节点,也可以通过其他mesh节点将数据发送给目标无人机或控制器,其中,所述其他mesh节点可以为控制器、无人机、中继器或其他RTK基站,从而扩展RTK基站与目标无人机或控制器的通信距离。同理,上述两种情况也适用于mesh网络中的任一mesh节点。
其中,无人机在自主飞行的情况下,为了可以实现一个控制器控制多台无人机,实现较高的作业效率,无人机通信系统需要支持一对多的通信。为了实现复杂、精准的控制,有的情况下需要多个控制器控制同一台无人机,如,有的控制器控制飞行姿态,有的控制器控制传感器采集数据,因此,无人机通信系统需要支持多对一通信。又如,有的情况也需要多个控制器控制多个无人机,从而需要无人机通信系统支持多对多通信。本公开实施例提供的技术方案,通过将无人机通信系统中包括至少一个控制器、至少一个无人机和mesh设备,并且控制器、无人机和mesh设备之间通过mesh网络进行通信,利用mesh网络的灵活性,控制器、无人机和mesh可以分别作为mesh节点,可以方便增加或者减少无人机、控制器或者mesh设备,从而实现一控多机、多控一机,多控多机的功能。
相关技术中,当增加专用的中继设备时,通常需要进行配置,很难做到开机即用。因此,本公开实施例提供的mesh设备包括具有mesh功能的控制器、无人机、RTK基站或者中继器中的至少一个,当需要增加mesh设备时,可以避免配置等繁琐的步骤,开机可以立即使用,方便用户,提高使用效率。
相关技术中,为了支持远距离通信,要求控制器的天线增益较大,因此天线长度需与载波波长匹配,可能使得天线的体积或长度较大,同时也需要合适形状的天线,但是控制器一般是手持的形式,如手持遥控器对天线的形状、体积均有限制,容易导致手持遥控器不能使用较优的天线;并且当手持遥控器与无人机的距离较远时,遥控器的发射功率较大,容易造成续航时间短的问题。本公开实施例提供的无线通信系统,可以通过mesh设备对控制器和无人机之间的通信数据进行转发,当控制器和无人机距离较远时,控制器可以与mesh设备进行通信,可以降低控制器的功耗,增加续航时间,也可以减小控制器的增益,以降低对控制器的体积和对电池容量的要求。因此,在本公开实施例的一个实施方式中,不同类型的mesh节点的发射功率可以不相同,可选的,控制器的发射功率小于第一设定功率阈值,无人机和/或mesh设备的发射功率大于第二设定功率阈值;其中,第一设定功率阈值小于第二设定功率阈值。需要说明的是,所述第一设定功率阈值和所述第二设定功率阈值可根据实际需要进行设置,而非固定值。也就是说控制器的发射功率可以较小,而mesh设备或者无人机的发射功率可以较大,控制器与mesh设备(RTK基站、中继器或者其他mesh设备)构成第一跳链路,通信距离可以近些,mesh设备与无人机构成第二跳链路,由于发射功率较大,通信距离较远。因此,可以利用mesh网络的特性,遥控器可以通过mesh设备作为中继节点,从而与无人机进行远距离通信。
其中,多数情况下,各个mesh节点的发射功率决定了mesh节点之间的通信距离,在不增加发射功率的情况下,可以通过增加中继节点,操作方便,可解决扩展通信距离便捷性的问题。例如,每一跳链路可以实现1km的通信距离,那么N跳可以实现N*1Km的通信距离。其中,每个mesh设备都可以作为中继节点,不一定是专用中继设备。
相关技术中,为了实现控制器和无人机之间更好的通信,需要对控制器天线装置的方向进行严格的控制,从而需要对操作姿势有较高的要求。本公开实施例提供了mesh设备,并且各个设备节点之间通过mesh网络进行通信,控制器和无人机之间可以通过mesh设备进行通信,由mesh网络机制选择合适的通信路 径,因此对控制器上的天线装置的方向可以不作要求,因此,操作姿势也可以根据用户舒适性进行选择,方便用户操作。在本公开实施例的一个实施方式中,各mesh节点的天线装置可以是不相同的。可选的,控制器的天线装置的增益小于第一设定增益值,无人机和/或mesh设备的天线装置的增益大于第二设定增益值;其中,第一设定增益值小于第二设定增益值。需要说明的是,所述第一设定增益值和所述第二设定增益值可根据具体需求设定。可选的,控制器的天线装置可以是全向天线。其中,控制器的天线装置的增益可以较小,无人机和mesh设备的天线装置的仰角要求并不太高,其增益可以较大,因此,无人机和mesh设备(RTK基站、中继器等)之间的通信距离较远。由此通过控制各个mesh节点的天线装置,以及减少对天线装置的增益的约束,天线的设计更符合整机外观及结构要求,可以降低控制器天线装置的制作成本,降低无人机通信系统的成本。
相关技术中,无人机通信系统是以控制器为中心的星形网络,即控制器分别与多个无人机进行通信,或者通过主控器分别与多个无人机进行通信。但是当采用相关技术中的无人机通信系统时,若控制器和无人机之间存在障碍物,则控制器和无人机之间的通信质量变差。因此,本公开实施例提供的mesh设备,并且mesh设备、控制器和无人机之间通过mesh网络进行通信,当控制器和无人机之间存在障碍物时,可以通过mesh设备进行间接通信;控制器、无人机和mesh设备组成的mesh网络中,每个设备节点也可以自动选择通信路径,可以绕过障碍物,将数据进行转发,实现控制器和无人机之间的通信,因此,本公开实施例提供的技术方案可以解决控制器和无人机之间存在障碍物导致通信质量变差的问题。
具体的,控制器可以通过路径发现算法去找出合适的路径,例如当控制器无法检测到无人机的特定信号或者检测到的特定信号小于一定的功率门限时,控制器询问其邻居节点是否可以与目标无人机进行通信,以此类推,如果网络部署合理,控制器能够找到合适的路径与无人机进行通信。比如控制器与无人机之间有障碍物时,控制器无法与无人机直接通信,控制器可通过邻居A(即相邻的mesh节点)与目标无人机间接通信,控制器与邻居A是第一跳链路,邻居A与无人机是第二跳链路。同理,无人机向控制器反馈数据时,确定通信路径的方式与控制器确定通信路径的方式可以相同。在本公开实施例中,mesh网络也可以称为多跳网络,网络架构灵活,具有自发现、自组网、自动路由等特性, 使用方便,可以便捷增加或者减少设备。控制器可以是地面站、遥控器、智能手机、背夹等形态的地面控制设备。
在本公开实施例的一个实施方式中,可选的,各所述mesh节点的高度不同。当控制器与无人机之间存在障碍物时,mesh设备的高度大于所述障碍物的高度。其中,当控制器和无人机之间存在障碍物时,mesh设备的高度大于障碍物的高度,可以避免控制器和mesh设备之间通信受到影响以及mesh与无人机之间通信受到影响的问题,可以解决当控制器和无人机之间存在障碍物时,通信质量受到影响的问题。
可选的,控制器通常设置在地面,容易受到障碍物的遮挡,mesh设备(RTK基站、或者其他mesh设备)可以架设的高度较高,例如可以通过支架架设起来,无人机在作业时位于作物的上方,高度也较高。因此,mesh设备和无人机的高度均较高,通常没有障碍物遮挡,通信距离较远。控制器、mesh设备和无人机之间通过mesh网络进行通信,利用mesh网络的特性,控制器可以通过mesh设备作为中继节点与无人机进行远距离通信。同理,控制器可以利用其他mesh设备作为中继节点,利用其高度特性,从而与无人机进行远距离通信。如采用无人机作为中继节点,无人机可以飞到能绕开障碍物的位置,障碍物可以是山坡或者树林等。
在本公开实施例的一个实施方式中,可选的,如图1所示,控制器的数量可以至少为两个,无人机的数量可以至少为两个。其中,mesh设备可以为RTK基站或中继器。通过设置控制器数量至少为两个,无人机的数量为至少两个,可以实现多台控制器控制多台无人机。
在本公开实施例的一个实施方式中,可选的,控制器的数量为1个,无人机的数量为1个,mesh设备为RTK基站或者中继器,可以实现一个控制器控制一台无人机。如图2所示,控制器的数量为1个,无人机的数量为1个,mesh设备的数量为1个。mesh设备可以是RTK基站或者中继器。控制器、mesh设备和无人机之间通过mesh网络进行通信。其中,控制器和无人机之间可以直接通信,或者控制器和无人机之间可以通过mesh设备(如,RTK基站或者中继器等)作为中继节点与无人机之间进行通信。
在本公开实施例的一个实施方式中,可选的,控制器的数量为1个,无人机的数量为至少两个,mesh设备为RTK基站或者中继器,可以实现一个控制器控制多台无人机。如图3所示,控制器的数量为1个,无人机的数量为多个,mesh设 备可以是RTK基站或者中继器。其中,控制器可以与每一台无人机进行直接通信,可以控制无人机上的可控设备,如云台等。或者控制器也可以使用RTK基站或者中继器作为中继节点与无人机进行间接通信。
在本公开实施例的一个实施方式中,可选的,控制器的数量为至少两个,无人机的数量为1个,mesh设备为RTK基站或者中继器,可以实现多个控制器控制一台无人机,如图4所示,控制器的数量为至少两个,无人机的数量为1个,mesh设备的数量为1个,mesh设备为RTK基站或者中继器,多个控制器可以直接与无人机通信(可以控制无人机的可控设备,如云台),或者使用RTK基站或者专用中继器作为中继节点与无人机进行间接通信。
在本公开实施例的一个实施方式中,无线通信系统可以应用于两跳中继场景,如图5所示,可选的,mesh设备可以是RTK基站或者中继器,控制器和无人机之间通过RTK基站或者专用中继器作为中继节点与无人机间接通信。其中,无人机、mesh设备和无人机之间通过mesh网络进行通信,即各个设备节点组成纯mesh网络。图5中所有设备均可以是一个mesh节点,mesh节点之间是对等关系,任何mesh节点与邻居节点可以直接通信。当在特定的覆盖范围内,所有mesh节点之间也可以单跳连接,即直接通信。当不具有单跳连接的条件时,会形成网状的多跳网络。
在本公开实施例一个实施方式中,可选的,无线通信系统可以应用于多跳中继场景中。可选的,控制器的数量为1个,无人机的数量为1个,所述mesh设备的数量为至少3个。例如,如图6所示,无线通信系统中部署了n个中继节点,即具有中继功能的mesh设备,可以是实现数据路由及转发的功能的设备,mesh设备可以是控制器、无人机、RTK基站或者中继器等。其中,控制器、无人机和mesh设备可以作为设备节点,各个设备节点之间通过mesh网络进行通信。当无人机从位置0到位置m变化时,mesh网络的路由机制可以选择合适的中继节点以及通信路径,实现无线信号覆盖范围大幅扩展。例如,当无人机在位置0时,控制器可以和无人机进行直接通信,当无人机在位置1时,控制器可以和无人机通过mesh设备1进行间接通信;当无人机在位置2时,控制器和无人机之间可以依次通过mesh设备1和mesh设备2进行通信。其中,可选的,如图7所示,mesh设备1可以是RTK基站、mesh设备2可以是中继器,mesh设备3可以是无人机。
在本公开实施例的一个实施方式中,可选的,无人机、控制器和mesh设备中的至少一个为带有网络回传功能的设备;带有网络回传络功能的设备,用于 接收其他设备的访问请求并根据访问请求访问服务器,以及将服务器反馈的数据转发至其他设备,其他设备为系统除带有网络功能的设备之外的任意一个设备。可选的,以mesh设备为带有网络回传功能的设备为例,如图8所示,带有网络回传功能的设备不仅支持mesh功能,还可以具有回传链路,回传链路可以是有线回传链路或者无线回传链路,如4G无线通信网络,非对称数字用户线路(Asymmetric Digital Subscriber Line,ADSL)网络。其中,该设备用于接收控制器或者无人机的访问请求,并根据访问请求访问服务器,以及将服务器返回的数据转发至控制器或无人机。其中,服务器可以是云服务器,也可以是其他服务器。其中,该设备可以通过回传链路访问互联网或者专用私有云网络,其他mesh节点可以通过带有回传功能的设备间接访问互联网或者私有云网络。
其中,可选的,如图9所示,带有网络回传功能的设备可以包括mesh网络模块,网关和回传链路模块(Portal模块)。其中,回传链路模块可以包含回传链路,回传链路可以是有线回传链路或者无线回传链路,如4G无线通信网络,非ADSL网络等。网关可以用于实现mesh功能模块和回传链路模块之间的数据路由和转发,可以实现mesh网络和云网络的数据转换。
其中,无人机、控制器和mesh设备中的至少一个为带有回传功能的设备,即除了具有mesh功能之外,还可以包括网关和回传连接模块,其他设备通过该带有回传功能的设备可以双向访问云网络。由此,通过设置mesh设备、控制器、无人机中的至少一个为带有回传功能的设备,该设备与其他设备之间通过mesh网络进行通信,其他设备节点可以通过该设备访问网络,可以方便上网获取更多信息,提高无线通信系统的便捷性和通用性,可以实现从服务器获取作业参数、作业状态提交到服务器,可以实现对无人机作业系统的远程监控。
本公开实施例提供了一种无人机通信系统,该系统包括至少一个控制器、至少一个无人机和其他设备;控制器和所述其他设备之间通过mesh网络进行通信,其他设备和无人机形成星形网络。可选的,其他设备包括RTK基站、无人机中继器和控制器中的至少一个。可选的,其他设备为具有mesh功能,且具有接入点AP功能的设备;无人机具有站点STA功能。
在本公开实施例中,可以根据需要限定某些设备的中继转发功能。在本公开实施例的一个实施方式中,可选的,控制器的数量可以是1个,无人机的数量为至少两个,其他设备的数量可以是1个。可选的,如图10所示,控制器的数量 为1个,无人机的数量为至少两个,其他设备为RTK基站。控制器与RTK基站之间可以通过mesh网络进行通信;RTK基站和无人机之间可以通过星形网络进行通信,此时,限制了无人机的中继转发功能。其中,RTK基站不仅具有mesh网络功能,还具有接入点(access poiont,AP)功能,其中,RTK基站可以采用802.11协议族相关技术,实现与控制器的通信;RTK基站具有的AP功能可以将有线网络转换成WiFi无线信号,供控制器或者无人机等设备连接。无人机可以具有站点STA功能,所有无人机组成以RTK基站或者中继器为中心的星形网络,控制器通过RTK基站或者中继器间接通信。
其中,星形网络的组成通过中心设备将许多点到点连接,即网络中的每个设备都与中心设备相连,形成星形网络。AP是一个无线网络的创建者,可以是无线网络的中心节点。STA,也就是站点,每一个连接到无线网络中的设备都可以称为一个站点。
当mesh节点数量较多时,网络复杂性增加,消耗也会增加,从而降低网络性能,可以将关键路径的设备具有mesh功能,以某个关键的具有mesh功能的设备为中心设备,该中心设备与非关键路径的设备形成星形网络,实现更合理的网络架构,可以提高网络性能。即,通过在控制器、其他设备和无人机之间使用混合网络(mesh网络和星形网络),可以提高网络性能,可以提高数据传输效率。
在本公开实施例中,无线通信系统还可以包括第三方设备,所述第三方设备具有mesh功能;第三方设备、控制器和其他设备之间通过mesh网络进行通信。如图11所示,可选的,控制器的数量为1个,无人机的数量为多个,其他设备为RTK基站。第三方设备、控制器和RTK基站相互之间通过mesh网络进行通信;RTK基站与无人机之间通过星形网络的进行通信。可选的,第三方设备可以是测绘设备。例如,测绘设备可以对农田等进行测量,测绘设备、控制器、无人机之间可以相互交互。
需要说明的是,本公开实施例图11示例性介绍了第三方设备、控制器、mesh设备、无人机之间的通信方式,但是它们之间的通信方式并不局限于图11中介绍的通信方式,其中,第三方设备、控制器、mesh设备和无人机相互之间也可以通过mesh网络进行通信。
本公开实施例提供了一种无人机通信方法,该包括:控制器通过mesh网络发送控制无人机的控制信号,或者通过mesh网络接收所述无人机的反馈数据, 并对所述反馈数据进行处理。
由此,控制器通过mesh网络发送控制信号或者接收数据,可以与其他设备灵活组网,方便通信系统实现一控多机、多控一机的功能。
本公开实施例提供了一种无人机通信方法,包括:mesh设备通过mesh网络接收控制器发送的控制信号,并通过所述mesh网络将所述控制信号转发给无人机;或者,所述mesh设备通过mesh网络接收无人机发送的反馈数据,并通过所述mesh网络将所述反馈数据转发给所述控制器。
由此,mesh设备通过mesh网络实现控制信号或者数据的转发,可以增加控制器和无人机之间的通信距离,可以降低控制器的发射功率,可以增加控制器的续航时间,可以降低天线对准的要求,从而降低操作难度,可以解决无人机和控制器之间存在障碍物导致通信质量较差的问题及通信距离扩展不够便捷的问题。
本公开实施例提供了一种无人机通信方法,包括:无人机通过mesh网络接收mesh设备转发的控制信号,并根据所述控制信号执行对应操作;或者,所述无人机通过mesh网络发送反馈数据。
由此,无人机通过mesh网络接收控制信号或者发送数据,可以与其他设备灵活组网,方便通信系统实现一控多机、多控一机的功能。
图12是本公开实施例提供的一种无人机通信方法流程图,其中,该方法可以应用于本公开实施例提供的无人机通信系统,无人机通信系统包括至少一个控制器、至少一个无人机和mesh设备。如图12所示,本公开实施例提供的通信方法包括:
步骤110:控制器发送控制无人机的控制信号;或者接收无人机的反馈数据,对反馈数据进行处理;
步骤120:mesh设备转发控制信号或者反馈数据;
步骤130:所述无人机接收所述mesh设备转发的所述控制信号,并根据所述控制信号执行对应操作,或者发送所述反馈数据;其中,控制器、无人机和mesh设备分别作为设备节点,设备节点之间通过无线网状mesh网络进行通信。
可选的,所述mesh设备包括RTK基站、无人机、中继器和控制器中的至少一个。
可选的,不同类型的mesh节点的发射功率不相同。
可选的,所述控制器的发射功率小于第一设定功率阈值,所述无人机和/或 所述mesh设备的发射功率大于第二设定功率阈值;其中,所述第一设定功率阈值小于所述第二设定功率阈值。
可选的,各所述mesh节点的高度不同。
可选的,当所述控制器与所述无人机之间存在障碍物时,所述mesh设备的高度大于所述障碍物的高度。
可选的,不同类型的mesh节点的天线装置不相同。
可选的,所述控制器的天线装置的增益小于第一设定增益值,所述无人机和/或所述mesh设备的天线装置的增益大于第二设定增益值;其中,所述第一设定增益值小于所述第二设定增益值。
可选的,所述控制器的天线装置为全向天线。
可选的,所述控制器的数量为1个,所述无人机的数量为1个,所述mesh设备为RTK基站或者中继器。
可选的,所述控制器的数量为1个,所述无人机的数量为至少两个,所述mesh设备为RTK基站或者中继器。
可选的,所述控制器的数量为至少两个,所述无人机的数量为1个,所述mesh设备为RTK基站或者中继器。
可选的,所述控制器的数量为至少两个,所述无人机的数量为至少两个,所述mesh设备为RTK基站或者中继器。
可选的,所述控制器的数量为1个,所述无人机的数量为1个,所述mesh设备的数量为至少3个。
可选的,所述mesh设备包括RTK基站、中继器和无人机。
可选的,所述无人机、所述控制器和所述mesh设备中的至少一个为带有网络回传功能的设备;
所述带有网回传络功能的设备,用于接收其他设备的访问请求并根据所述访问请求访问服务器,以及将服务器反馈的数据转发至所述其他设备,所述其他设备为所述系统除带有网络功能的设备之外的任意一个设备。
可选的,所述带有网络回传功能的设备包括mesh网络模块、网关和回传链路模块;
所述回传链路模块包括回传链路;
所述网关,用于实现所述mesh网络模块和所述回传链路模块之间数据的路由和转发。
可选的,所述控制器的数量为至少两个,所述无人机的数量为至少两个,所述mesh设备为带有网络回传功能的设备。
在上述实施例的基础上,所述方法还可以包括:
当所述mesh节点监测不到邻居节点发送的设定信号时,将邻居节点的路由信息进行删除;其中,邻居节点是指与所述mesh节点直接进行通信的节点;若mesh节点监测到目标设备发送的测量信号,建立与目标设备的通信链路,并添加目标设备的路由信息。
其中,mesh节点监测不到邻居节点可能是邻居节点已经完成作业任务,或者电量耗尽的情况,或者也可以是其他情况。
由此,通过添加新增设备路由信息,可以实现新增设备与原有设备的互相通信,通过删除设备的路由信息,并不影响剩余设备之间的互相通信。
本公开实施例提供的技术方案,通过将无人机、控制器和mesh设备组成mesh网络,无人机、控制器和mesh设备之间通过mesh网络通信,可以降低控制器的发射功率,可以增加控制器的续航时间,可以降低天线对准的要求,从而降低操作难度,可以灵活组网,方便实现一控多机,多控一机、多控多机的功能,可以解决无人机和控制器之间存在障碍物导致通信质量较差的问题及通信距离扩展不够便捷的问题。

Claims (26)

  1. 一种无人机通信系统,包括至少一个控制器、至少一个无人机和mesh设备;
    所述控制器、所述无人机和所述mesh设备分别作为mesh节点,各所述mesh节点之间通过mesh网络进行通信。
  2. 根据权利要求1所述的系统,其中,所述mesh设备包括RTK基站、无人机、中继器和控制器中的至少一个。
  3. 根据权利要求1所述的系统,其中,不同类型的mesh节点的发射功率不相同。
  4. 根据权利要求3所述的系统,其中,所述控制器的发射功率小于第一设定功率阈值,所述无人机和/或所述mesh设备的发射功率大于第二设定功率阈值;其中,所述第一设定功率阈值小于所述第二设定功率阈值。
  5. 根据权利要求1所述的系统,其中,各所述mesh节点的高度不同。
  6. 根据权利要求5所述的系统,其中,当所述控制器与所述无人机之间存在障碍物时,所述mesh设备的高度大于所述障碍物的高度。
  7. 根据权利要求1所述的系统,其中,不同类型的mesh节点的天线装置不相同。
  8. 根据权利要求7所述的系统,其中,所述控制器的天线装置的增益小于第一设定增益值,所述无人机和/或所述mesh设备的天线装置的增益大于第二设定增益值;其中,所述第一设定增益值小于所述第二设定增益值。
  9. 根据权利要求7所述的系统,其中,所述控制器的天线装置为全向天线。
  10. 根据权利要求2所述的系统,其中,所述控制器的数量为1个,所述无人机的数量为1个,所述mesh设备为RTK基站或者中继器。
  11. 根据权利要求2所述的系统,其中,所述控制器的数量为1个,所述无人机的数量为至少两个,所述mesh设备为RTK基站或者中继器。
  12. 根据权利要求2所述的系统,其中,所述控制器的数量为至少两个,所述无人机的数量为1个,所述mesh设备为RTK基站或者中继器。
  13. 根据权利要求2所述的系统,其中,所述控制器的数量为至少两个,所述无人机的数量为至少两个,所述mesh设备为RTK基站或者中继器。
  14. 根据权利要求2所述的系统,其中,所述控制器的数量为1个,所述无人机的数量为1个,所述mesh设备的数量为至少3个。
  15. 根据权利要求14所述的系统,其中,所述mesh设备包括RTK基站、中继 器和无人机。
  16. 根据权利要求1所述的系统,其中,所述无人机、所述控制器和所述mesh设备中的至少一个为带有网络回传功能的设备;
    所述带有网回传络功能的设备,用于接收其他设备的访问请求并根据所述访问请求访问服务器,以及将服务器反馈的数据转发至所述其他设备,所述其他设备为所述系统除带有网络功能的设备之外的任意一个设备。
  17. 根据权利要求16所述的系统,其中,所述带有网络回传功能的设备包括mesh网络模块、网关和回传链路模块;
    所述回传链路模块包括回传链路;
    所述网关,用于实现所述mesh网络模块和所述回传链路模块之间数据的路由和转发。
  18. 根据权利要求16所述的系统,其中,所述控制器的数量为至少两个,所述无人机的数量为至少两个,所述mesh设备为带有网络回传功能的设备。
  19. 一种无人机通信系统,包括至少一个控制器、至少一个无人机和其他设备;
    所述控制器和所述其他设备之间通过mesh网络进行通信,其他设备和所述无人机形成星形网络。
  20. 根据权利要求19所述的系统,其中,
    所述其他设备为具有mesh功能,且具有接入点AP功能的设备;
    所述无人机具有站点STA功能。
  21. 根据权利要求19或权利要求20所述的系统,其中,
    所述其他设备包括RTK基站、无人机中继器和控制器中的至少一个。
  22. 根据权利要求21所述的系统,其中,所述系统还包括第三方设备,所述第三方设备具有mesh功能;
    所述第三方设备、所述控制器和所述其他设备之间通过mesh网络进行通信。
  23. 一种无人机通信方法,包括:
    控制器通过mesh网络发送控制无人机的控制信号,或者通过mesh网络接收所述无人机的反馈数据,并对所述反馈数据进行处理。
  24. 一种无人机通信方法,包括:
    mesh设备通过mesh网络接收控制器发送的控制信号,并通过所述mesh网络将所述控制信号转发给无人机;或者,
    所述mesh设备通过mesh网络接收无人机发送的反馈数据,并通过所述mesh网络将所述反馈数据转发给所述控制器。
  25. 一种无人机通信方法,包括:
    无人机通过mesh网络接收mesh设备转发的控制信号,并根据所述控制信号执行对应操作;或者,
    所述无人机通过mesh网络发送反馈数据。
  26. 一种无人机通信方法,包括:
    控制器发送控制无人机的控制信号,或者接收所述无人机的反馈数据,对所述反馈数据进行处理;
    mesh设备转发所述控制信号或者所述反馈数据;
    所述无人机接收所述mesh设备转发的所述控制信号,并根据所述控制信号执行对应操作,或者发送所述反馈数据;
    其中,所述控制器、所述无人机和所述mesh设备分别作为mesh节点,所述mesh节点之间通过mesh网络进行通信。
PCT/CN2018/117895 2018-11-28 2018-11-28 一种无人机通信系统及方法 WO2020107256A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2021118361A RU2769741C1 (ru) 2018-11-28 2018-11-28 Система и способ связи для беспилотного летательного аппарата
CN201880030853.6A CN110651435B (zh) 2018-11-28 2018-11-28 一种无人机通信系统及方法
PCT/CN2018/117895 WO2020107256A1 (zh) 2018-11-28 2018-11-28 一种无人机通信系统及方法
JP2021527159A JP2022509784A (ja) 2018-11-28 2018-11-28 無人機の通信システム及び方法
AU2018450592A AU2018450592A1 (en) 2018-11-28 2018-11-28 Communication system and method for unmanned aerial vehicle
CA3121282A CA3121282A1 (en) 2018-11-28 2018-11-28 Communication system and method for unmanned aerial vehicle
KR1020217016654A KR20210109523A (ko) 2018-11-28 2018-11-28 무인기 통신 시스템 및 방법
EP18941245.5A EP3876216A4 (en) 2018-11-28 2018-11-28 COMMUNICATION METHOD AND SYSTEM OF UNPILOTED AERIAL VEHICLE
US17/331,907 US20210288714A1 (en) 2018-11-28 2021-05-27 Communication system and method for unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117895 WO2020107256A1 (zh) 2018-11-28 2018-11-28 一种无人机通信系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/331,907 Continuation US20210288714A1 (en) 2018-11-28 2021-05-27 Communication system and method for unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020107256A1 true WO2020107256A1 (zh) 2020-06-04

Family

ID=69009259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117895 WO2020107256A1 (zh) 2018-11-28 2018-11-28 一种无人机通信系统及方法

Country Status (9)

Country Link
US (1) US20210288714A1 (zh)
EP (1) EP3876216A4 (zh)
JP (1) JP2022509784A (zh)
KR (1) KR20210109523A (zh)
CN (1) CN110651435B (zh)
AU (1) AU2018450592A1 (zh)
CA (1) CA3121282A1 (zh)
RU (1) RU2769741C1 (zh)
WO (1) WO2020107256A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048892B2 (ja) * 2018-07-24 2022-04-06 日本電信電話株式会社 通信システム及び通信方法
US11368284B2 (en) * 2019-09-25 2022-06-21 Ford Global Technologies, Llc Vehicle blockchain transactions
CN111194038B (zh) * 2020-01-07 2021-07-02 北京航空航天大学 多无人机移动基站位置部署方法
CN111251321A (zh) * 2020-03-16 2020-06-09 浙江图讯科技股份有限公司 一种远程控制防爆侦察系统
CN111465046B (zh) * 2020-04-11 2021-03-19 中广核(北京)新能源科技有限公司 一种基于平原开阔地貌的风电场站无线网络系统
WO2021223167A1 (zh) * 2020-05-07 2021-11-11 深圳市大疆创新科技有限公司 控制方法及设备、可移动平台及计算机可读存储介质
CN111724631B (zh) * 2020-05-29 2021-09-24 北京三快在线科技有限公司 无人机业务管理系统、方法、可读存储介质及电子设备
CN112944287B (zh) * 2021-02-08 2023-05-30 西湖大学 一种具有主动光源的空中修补系统
US11669087B2 (en) * 2021-07-15 2023-06-06 Howe & Howe Inc. Controlling and monitoring remote robotic vehicles
CN114189872B (zh) * 2021-12-08 2022-11-29 香港中文大学(深圳) 无人机中继服务位置的确定方法与装置
CN114245479A (zh) * 2021-12-21 2022-03-25 江苏翰林正川工程技术有限公司 一种无人机的无线组网系统
CN114244424A (zh) * 2021-12-24 2022-03-25 承德石油高等专科学校 一种垂直起降固定翼无人机通信方法与系统
JP2023122456A (ja) * 2022-02-22 2023-09-01 株式会社日立国際電気 メッシュネットワークシステム及び移動ノード

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711118A (zh) * 2012-06-21 2012-10-03 北京邮电大学 一种移动通信系统和方法
CN106713875A (zh) * 2017-03-28 2017-05-24 朱华章 一种城市道路交通全景视频控制方法及系统
CN106792916A (zh) * 2016-12-13 2017-05-31 浙江科技学院 一种混合型远距离无线传感器网络系统及其通信方法
CN107204130A (zh) * 2017-07-14 2017-09-26 哈尔滨工业大学(威海) 民用无人机空管系统及采用该系统实现对无人机进行飞行控制的方法
CN107728642A (zh) * 2017-10-30 2018-02-23 北京博鹰通航科技有限公司 一种无人机飞行控制系统及其方法
US9927807B1 (en) * 2015-07-13 2018-03-27 ANRA Technologies, LLC Command and control of unmanned vehicles using cellular and IP mesh technologies for data convergence

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654200B2 (en) * 2005-07-18 2017-05-16 Mutualink, Inc. System and method for dynamic wireless aerial mesh network
RU2387080C1 (ru) * 2008-08-28 2010-04-20 Общество с ограниченной ответственностью "Технологическая лаборатория" Система видеомониторинга и связи
US9859972B2 (en) * 2014-02-17 2018-01-02 Ubiqomm Llc Broadband access to mobile platforms using drone/UAV background
FR3028186A1 (fr) * 2014-11-12 2016-05-13 Parrot Equipement de telecommande de drone a longue portee
US9940842B2 (en) * 2015-11-02 2018-04-10 At&T Intellectual Property I, L.P. Intelligent drone traffic management via radio access network
CN205320073U (zh) * 2015-12-25 2016-06-15 顺丰科技有限公司 无人机数据传输自组网网络
US9948380B1 (en) * 2016-03-30 2018-04-17 X Development Llc Network capacity management
US11209815B2 (en) * 2016-04-01 2021-12-28 Intel Corporation Drone control registration
US9949138B2 (en) * 2016-07-28 2018-04-17 At&T Intellectual Property I, L.P. Systems and methods to augment the capacities and capabilities of cellular networks through an unmanned aerial vehicle network overlay
US10470241B2 (en) * 2016-11-15 2019-11-05 At&T Intellectual Property I, L.P. Multiple mesh drone communication
CN106656300A (zh) * 2016-12-21 2017-05-10 中国航天时代电子公司 一种采用自组网数据链的无人机集群作战系统
CN106791653A (zh) * 2016-12-23 2017-05-31 湖南基石通信技术有限公司 一种扩展无人机图传范围的方法
KR102715376B1 (ko) * 2016-12-30 2024-10-11 인텔 코포레이션 라디오 통신을 위한 방법 및 디바이스
CN107380443A (zh) * 2017-09-08 2017-11-24 深圳市道通智能航空技术有限公司 无人机控制系统及实现方法、地面控制设备和中继站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711118A (zh) * 2012-06-21 2012-10-03 北京邮电大学 一种移动通信系统和方法
US9927807B1 (en) * 2015-07-13 2018-03-27 ANRA Technologies, LLC Command and control of unmanned vehicles using cellular and IP mesh technologies for data convergence
CN106792916A (zh) * 2016-12-13 2017-05-31 浙江科技学院 一种混合型远距离无线传感器网络系统及其通信方法
CN106713875A (zh) * 2017-03-28 2017-05-24 朱华章 一种城市道路交通全景视频控制方法及系统
CN107204130A (zh) * 2017-07-14 2017-09-26 哈尔滨工业大学(威海) 民用无人机空管系统及采用该系统实现对无人机进行飞行控制的方法
CN107728642A (zh) * 2017-10-30 2018-02-23 北京博鹰通航科技有限公司 一种无人机飞行控制系统及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876216A4 *

Also Published As

Publication number Publication date
EP3876216A1 (en) 2021-09-08
RU2769741C1 (ru) 2022-04-05
JP2022509784A (ja) 2022-01-24
CA3121282A1 (en) 2020-06-04
KR20210109523A (ko) 2021-09-06
AU2018450592A1 (en) 2021-06-24
CN110651435B (zh) 2022-06-21
CN110651435A (zh) 2020-01-03
EP3876216A4 (en) 2022-04-27
US20210288714A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2020107256A1 (zh) 一种无人机通信系统及方法
US11449049B2 (en) Flight management system for UAVs
Bulut et al. Trajectory optimization for cellular-connected UAVs with disconnectivity constraint
US20220118870A1 (en) Unmanned aerial vehicle drive testing and mapping of carrier signals
US10341010B2 (en) Mobility and power management for high altitude platform (HAP) communication systems
US11962390B2 (en) Methods, apparatus and system for extended wireless communications
US9918235B2 (en) Adaptive antenna operation for UAVs using terrestrial cellular networks
Sahingoz Mobile networking with UAVs: Opportunities and challenges
WO2019041874A1 (zh) 飞行器控制方法及装置
EP3328733A1 (en) Airborne relays in cooperative-mimo systems
KR20170012337A (ko) 동적 상황 인지 데이터에 기초하여 복수의 자율 이동 노드를 제어하기 위한 방법 및 장치
CN106325298A (zh) 无人机增程控制系统和方法
Sundaresan et al. SkyLiTE: End-to-end design of low-altitude UAV networks for providing LTE connectivity
WO2018092412A1 (ja) 無線通信システム、無線中継装置及び無線通信方法
WO2019204997A1 (zh) 一种自主移动平台、控制端以及自主移动平台系统
CN110830350B (zh) 通信系统
Vlasceanu et al. Multi-UAV architecture for ground data collection
JP2021136581A (ja) アドホックネットワークシステム
WO2023162434A1 (ja) メッシュネットワークシステム及び移動ノード
WO2024138499A1 (zh) 一种应急机动部署的无人机自主着陆引导系统及引导方法
CN109050947A (zh) 一种能够抗干扰的桨夹
CN118158638A (zh) 一种基于光通信的无人机组网方法
CN115691184A (zh) 一种基于无人机确定性网络的智能协同集群车运输系统
CN112566139A (zh) 一种空中基站辅助的延迟容忍呼叫业务请求方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527159

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3121282

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2101003017

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018941245

Country of ref document: EP

Effective date: 20210601

ENP Entry into the national phase

Ref document number: 2018450592

Country of ref document: AU

Date of ref document: 20181128

Kind code of ref document: A