WO2020105376A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置

Info

Publication number
WO2020105376A1
WO2020105376A1 PCT/JP2019/042188 JP2019042188W WO2020105376A1 WO 2020105376 A1 WO2020105376 A1 WO 2020105376A1 JP 2019042188 W JP2019042188 W JP 2019042188W WO 2020105376 A1 WO2020105376 A1 WO 2020105376A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
solid
film
processing
Prior art date
Application number
PCT/JP2019/042188
Other languages
English (en)
French (fr)
Inventor
弘明 ▲高▼橋
直澄 藤原
正幸 尾辻
幸史 吉田
上田 大
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201980076850.0A priority Critical patent/CN113169061A/zh
Publication of WO2020105376A1 publication Critical patent/WO2020105376A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • Substrates to be processed are, for example, semiconductor wafers, substrates for liquid crystal display devices, FPD (Flat Panel Display) substrates for organic EL (Electroluminescence) display devices, optical disc substrates, magnetic disc substrates, magneto-optical disc substrates.
  • Substrates such as substrates, photomask substrates, ceramic substrates, and solar cell substrates are included.
  • the removal target is removed by the physical action of the cleaning liquid, or a chemical solution that chemically reacts with the removal target is applied to the substrate. It is common to chemically remove the object to be removed by supplying it to.
  • DIW deionized water
  • Patent Document 1 A method of removing the same has been proposed (Patent Document 1 below).
  • the rinse liquid for washing away the removal liquid used to remove the removal target enters the inside of the pattern. Then, a spin dry process is performed to remove the rinse liquid from the substrate. In the spin dry process, the surface tension of the liquid that has entered the pattern acts on the pattern. This surface tension may cause the pattern to collapse.
  • one object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of satisfactorily cleaning the surface of a substrate while suppressing pattern collapse.
  • One embodiment of the present invention includes a first liquid film forming step of forming a first liquid film of the processing liquid on the surface of the substrate by supplying a processing liquid containing a solid-forming substance to the surface of the substrate.
  • a first solid film forming step of forming a first solid film containing the solid forming substance in a solid state from the first liquid film, and a stripping liquid for stripping the first solid film are supplied to the surface of the substrate.
  • a first solid film peeling removal step of peeling and removing the first solid film from the surface of the substrate, and the treatment liquid of the substrate after removing the first solid film from the surface of the substrate.
  • the first solid film is formed from the first liquid film of the processing liquid on the surface of the substrate. Then, the first solid film is peeled and removed from the surface of the substrate by the action of the peeling liquid supplied to the surface of the substrate. That is, the first solid film can be removed from the surface of the substrate while maintaining the solid state. Therefore, the removal target can be suppressed or prevented from falling off from the first solid film, so that the removal target can be suppressed or prevented from reattaching to the surface of the substrate. Therefore, the surface of the substrate can be cleaned well.
  • the second liquid film of the processing liquid is formed by supplying the same type of processing liquid again to the surface of the substrate. Then, the second solid film is formed from the second liquid film.
  • the second solid film is vaporized so as not to pass through the liquid state and removed from the surface of the substrate. Therefore, the surface tension that acts on the surface of the substrate from the processing liquid can be reduced. Therefore, the collapse of the pattern formed on the surface of the substrate can be suppressed or prevented.
  • the surface of the substrate can be cleaned well and the surface of the substrate can be dried well.
  • the first solid film to be peeled off and the second solid film to be vaporized and removed are formed from the same kind of processing liquid. Therefore, the apparatus used for the substrate processing can be simplified as compared with the substrate processing in which the first solid film and the second solid film are formed by different types of processing liquids. As a result, the device cost and the device footprint (installation area) can be suppressed.
  • treatment liquid of the same kind means that the chemical formulas of the solid-forming substances in the treatment liquid are the same, and the “treatment liquids of different types” have different chemical formulas of the solid-forming substance in the treatment liquid. It means that there is. Therefore, even if the treatment liquid used for forming the first solid film and the treatment liquid used for forming the second solid film have different concentrations of the solid-forming substance and the temperature of the treatment liquid, When the chemical formulas of the solid-forming substances are the same, both treatment liquids are the same treatment liquid.
  • the first solid film forming step includes a step of forming the first solid film that holds an object to be removed existing on the surface of the substrate.
  • the 1st solid film exfoliation removal process includes the process of exfoliating the 1st solid film in the state where the removal object was held from the surface of the substrate.
  • the removal target existing on the surface of the substrate is retained by the first solid film when the first solid film is formed, and the substrate is removed when the first solid film is separated from the surface of the substrate. Is pulled away from the surface of. After that, the first solid film holding the removal target is removed from the surface of the substrate by the stripping solution. Therefore, it is possible to suppress or prevent the removal target separated from the surface of the substrate from reattaching to the surface of the substrate.
  • the treatment liquid is a melt of the solid-forming substance.
  • the substrate processing method includes a first cooling step of cooling the first liquid film so that the first liquid film is solidified, and a second solid film forming step. A second cooling step of cooling the second liquid film so that the second liquid film is solidified.
  • the first solid film by cooling the first liquid film so that the first liquid film is solidified, the first solid film is formed, and by cooling the second liquid film so that the second liquid film is solidified.
  • a second solid film is formed. That is, the first solid film and the second solid film can be formed by the common method of cooling the melt.
  • the units required for each method must be provided in the apparatus used for substrate processing.
  • a unit for heating the processing liquid on the substrate a unit for cooling the processing liquid on the substrate.
  • the first solid film and the second solid film can be formed by a common method of cooling the melt, it is sufficient to provide only a unit for cooling the processing liquid on the substrate. Therefore, as compared with the case where the first solid film and the second solid film are formed by different methods, the device used for the substrate processing can be simplified.
  • the first cooling step is continued in the first solid film peeling and removing step.
  • the solid-forming substance on the substrate can be maintained in a solid state without being melted. Therefore, it is possible to remove the first solid film from the surface of the substrate while surely maintaining the solid state in the solid state. Therefore, the removal of the removal target from the first solid film can be further suppressed or prevented, and the reattachment of the removal target to the substrate surface can be further suppressed or prevented.
  • the second cooling step is continued also in the second solid film vaporization removal step.
  • This makes it possible to maintain the solid-forming substance on the substrate in a solid state without melting the solid-forming substance on the substrate even during the second solid film vaporization removal step. Therefore, the second solid film can be vaporized while suppressing or preventing the second solid film from changing to a liquid. Therefore, the surface tension of the treatment liquid acting on the surface of the substrate can be further reduced.
  • the treatment liquid contains the solid-forming substance as a solute and a solvent that dissolves the solid-forming substance.
  • the substrate processing method includes a first precipitation step of evaporating the solvent from the first liquid film to precipitate the solid forming substance, and a second solid film forming step. And a second precipitation step of evaporating the solvent from the second liquid film to precipitate the solid-forming substance.
  • the first solid film and the second solid film are respectively separated by evaporating the solvent in the treatment liquid to precipitate the solid forming substance. It is formed. That is, the first solid film and the second solid film can be formed by the common technique of solvent evaporation. Therefore, as compared with the case where the first solid film and the second solid film are formed by different methods, the device used for the substrate processing can be simplified.
  • the solid-forming substance is a sublimable substance that sublimates from solid to gas.
  • the substrate processing method further includes a substrate heating step of heating the substrate so that evaporation of the solvent from the second liquid film is promoted in the second deposition step. Further, the substrate heating step is continued in the second solid film vaporization removing step.
  • the heating of the substrate performed in the second deposition step is continued in the second solid film vaporization removal step. Therefore, the amount of heat accumulated in the substrate by heating the substrate to evaporate the solvent can be used for heating the second solid film. Therefore, in the second solid film vaporization removal step, the solid-forming substance in the second solid film can be quickly sublimated.
  • the processing liquid in the first liquid film forming step and the second liquid film forming step, is supplied to a discharge nozzle from a common processing liquid tank, and the discharge nozzle is applied to the surface of the substrate.
  • the processing liquid is discharged toward the target.
  • the processing liquid supplied from the common processing liquid tank to the discharge nozzle is discharged toward the surface of the substrate. Therefore, the treatment liquid ejected from the ejection nozzle toward the surface of the substrate in the first liquid film forming step and the treatment liquid ejected from the ejection nozzle toward the surface of the substrate in the second liquid film forming step are separated from each other. It is possible to reduce the number of processing liquid tanks as compared with the method in which the processing liquid tank is supplied to the discharge nozzle. Therefore, the apparatus used for substrate processing can be simplified.
  • the substrate processing method a chemical solution supply step of supplying a chemical solution to the surface of the substrate before the start of the first liquid film forming step, and after the chemical solution supply step, and, Before the start of the first liquid film forming step, a rinse solution supply step of supplying a rinse solution for washing away the chemical solution adhering to the surface of the substrate to the surface of the substrate, and after the completion of the rinse solution supply step, and A first compatible liquid supplying step of supplying, to the surface of the substrate, a first compatible liquid having compatibility with both the rinse liquid and the treatment liquid before the start of the first liquid film forming step; Further includes.
  • the first compatible liquid has compatibility with both the rinse liquid and the processing liquid. Therefore, even when it is difficult to mix the rinse liquid and the processing liquid, the rinse liquid on the substrate is replaced with the first compatible liquid, and then the first compatible liquid on the substrate is replaced with the processing liquid. Thus, the rinse liquid on the substrate can be replaced with the processing liquid. Therefore, the rinse liquid and the treatment liquid can be selected regardless of whether or not the rinse liquid and the treatment liquid are mixed. Therefore, when the surface of the substrate is treated with the chemical liquid before the treatment liquid is supplied to the surface of the substrate, the degree of freedom in selecting the rinse liquid and the treatment liquid is improved.
  • the substrate processing method comprises the stripping solution and the processing solution after the first solid film peeling and removing step is completed and before the second liquid film forming step is started. And a second compatible liquid supplying step of supplying a second compatible liquid having compatibility with both of the above to the surface of the substrate.
  • the second compatible liquid has compatibility with both the stripping solution and the processing solution. Therefore, even if the stripping solution and the processing solution are difficult to mix, the stripping solution on the substrate is replaced with the second compatible liquid, and then the second compatible liquid on the substrate is replaced with the processing solution. Thus, the stripping solution on the substrate can be replaced with the processing solution. Therefore, the stripping liquid and the treatment liquid can be selected regardless of whether or not the stripping liquid and the treatment liquid are mixed. Therefore, the degree of freedom in selecting the stripping solution and the processing solution is improved.
  • the substrate processing method is a first substrate that holds the substrate in a first chamber from the start of the first liquid film forming step to the end of the second solid film forming step.
  • the holding step, the transfer step of transferring the substrate on which the second solid film is formed from the first chamber to the second chamber, and the second solid film vaporization removal step are performed while the first solid film vaporization removal step is performed.
  • the substrate is held in the first chamber from the start of the first liquid film forming step to the end of the second solid film forming step, and the second solid film vaporizing and removing step is performed.
  • the configuration of the second chamber can be specialized for vaporizing the second solid film. Therefore, the surface of the substrate can be satisfactorily dried by vaporizing the second solid film in the second chamber.
  • a processing liquid supply unit that supplies a processing liquid containing a solid-forming substance to a surface of a substrate, and the solid-forming substance in a solid state from the processing liquid on the surface of the substrate
  • a solid forming unit a stripping liquid supply unit for supplying a stripping liquid for stripping the solid forming substance in the solid state from the surface of the substrate to the surface of the substrate, and the solid forming substance in the solid state on the surface of the substrate.
  • a substrate processing apparatus including a vaporization unit that vaporizes without passing through a liquid state, and a controller that controls the treatment liquid supply unit, the solid forming unit, the stripping liquid supply unit, and the vaporization unit.
  • the controller supplies the processing liquid from the processing liquid supply unit to the surface of the substrate to form a first liquid film of the processing liquid on the surface of the substrate;
  • a second solid film vaporization removal step of removing is performed.
  • the first solid film is formed from the first liquid film of the processing liquid on the surface of the substrate. Then, the first solid film is peeled and removed from the surface of the substrate by the action of the peeling liquid supplied to the surface of the substrate. That is, the first solid film can be removed from the surface of the substrate while maintaining the solid state. Therefore, the removal of the object to be removed from the first solid film can be suppressed or prevented, so that the reattachment of the object to be removed to the substrate surface can be suppressed or prevented. Therefore, the surface of the substrate can be cleaned well.
  • the second liquid film of the processing liquid is formed by supplying the same type of processing liquid again to the surface of the substrate. Then, the second solid film is formed from the second liquid film.
  • the second solid film is vaporized so as not to pass through the liquid state and removed from the surface of the substrate. Therefore, the surface tension of the treatment liquid acting on the surface of the substrate can be reduced. Therefore, the surface of the substrate can be dried while suppressing or preventing the collapse of the pattern formed on the surface of the substrate.
  • the surface of the substrate can be cleaned well and the surface of the substrate can be dried well.
  • the first solid film that is peeled off and removed and the second solid film that is vaporized and removed are formed from the same kind of processing liquid. Therefore, the apparatus used for the substrate processing can be simplified as compared with the substrate processing in which the first solid film and the second solid film are formed by different processing liquids. As a result, the cost and footprint of the substrate processing apparatus can be suppressed.
  • the substrate processing apparatus further includes a processing liquid tank that stores the processing liquid.
  • the processing liquid supply unit includes a discharge nozzle that discharges the processing liquid onto the surface of the substrate. Then, in the first liquid film forming step and the second liquid film forming step, the controller directs the processing liquid supplied from the processing liquid tank to the discharge nozzle toward the surface of the substrate from the discharge nozzle. To eject.
  • the processing liquid supplied from the common processing liquid tank to the discharge nozzle is discharged toward the surface of the substrate. Therefore, the treatment liquid ejected from the ejection nozzle toward the surface of the substrate in the first liquid film forming step and the treatment liquid ejected from the ejection nozzle toward the surface of the substrate in the second liquid film forming step are separated from each other.
  • the number of processing liquid tanks can be reduced as compared with the configuration in which the processing liquid tank is supplied to the discharge nozzle. Therefore, the substrate processing apparatus can be simplified.
  • the substrate processing apparatus includes a first chamber that houses the processing liquid supply unit, the solid forming unit and the stripping liquid supply unit, a second chamber that houses the vaporization unit, and And a transfer unit for transferring the substrate from the first chamber to the second chamber.
  • the controller holds a first substrate holding step of holding the substrate in the first chamber from the start of the first liquid film forming step to the end of the second solid film forming step; A transfer step of transferring the substrate on which a solid film is formed from the first chamber to the second chamber by the transfer unit, and the second chamber during the second solid film vaporization removal step.
  • the second substrate holding step of holding the inside is performed.
  • the substrate is held in the first chamber from the start of the first liquid film forming step to the end of the second solid film forming step, while the second solid film vaporizing and removing step is performed.
  • the configuration of the second chamber can be specialized for vaporizing the second solid film. Therefore, the surface of the substrate can be satisfactorily dried by vaporizing the second solid film in the second chamber.
  • FIG. 1 is a schematic plan view showing an internal layout of the substrate processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a schematic diagram showing a configuration for supplying a processing liquid to a central nozzle provided in the processing unit.
  • FIG. 4 is a block diagram showing an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 5 is a schematic cross-sectional view for explaining an example of the structure of the pattern surface of the substrate processed by the substrate processing apparatus.
  • FIG. 6 is a flow chart for explaining an example of substrate processing by the substrate processing apparatus.
  • FIG. 7A is a schematic sectional view showing the substrate processing.
  • FIG. 7B is a schematic sectional view showing the substrate processing.
  • FIG. 7A is a schematic sectional view showing the substrate processing.
  • FIG. 7C is a schematic sectional view showing the substrate processing.
  • FIG. 7D is a schematic sectional view showing the substrate processing.
  • FIG. 7E is a schematic sectional view showing the substrate processing.
  • FIG. 7F is a schematic sectional view showing the substrate processing.
  • FIG. 7G is a schematic sectional view showing the substrate processing.
  • FIG. 7H is a schematic sectional view showing the substrate processing.
  • FIG. 7I is a schematic sectional view showing the substrate processing.
  • FIG. 7J is a schematic sectional view showing the substrate processing.
  • FIG. 7K is a schematic sectional view showing the substrate processing.
  • FIG. 7L is a schematic sectional view showing the substrate processing.
  • FIG. 8A is a schematic sectional view showing how the first solid film is peeled off in the substrate processing.
  • FIG. 8A is a schematic sectional view showing how the first solid film is peeled off in the substrate processing.
  • FIG. 8B is a schematic sectional view showing how the first solid film is peeled off in the substrate processing.
  • FIG. 9A is a schematic sectional view showing how the second solid film is vaporized in the substrate processing.
  • FIG. 9B is a schematic sectional view showing how the second solid film is vaporized in the substrate processing.
  • FIG. 10 is a schematic diagram showing a modification of the solid forming unit included in the processing unit according to the first embodiment.
  • FIG. 11 is a schematic diagram of a processing unit provided in the substrate processing apparatus according to the second embodiment of the present invention.
  • FIG. 12A is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12B is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12C is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12D is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12E is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12F is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12G is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12H is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 12I is a schematic sectional view showing substrate processing by the substrate processing apparatus according to the second embodiment.
  • FIG. 13 is a schematic diagram showing a modification of the solid forming unit included in the processing unit according to the second embodiment.
  • FIG. 14 is a schematic diagram showing another modification of the solid-state forming unit included in the processing unit according to the second embodiment.
  • FIG. 15 is a schematic diagram of a substrate processing apparatus according to the third embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing a modified example of the substrate processing apparatus according to the third embodiment.
  • FIG. 17 is a schematic diagram showing another modification of the substrate processing apparatus according to the third embodiment.
  • FIG. 18 is a schematic sectional view for explaining the principle of pattern collapse due to surface tension.
  • FIG. 1 is a schematic plan view showing an internal layout of a substrate processing apparatus 1 according to the first embodiment of the present invention.
  • the substrate processing apparatus 1 is a single-wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate processing apparatus 1 is placed in a clean room maintained at room temperature (23 ° C. or a value in the vicinity thereof).
  • a substrate processing apparatus 1 has a plurality of processing units 2 that process a substrate W with a processing fluid, and a carrier C that accommodates a plurality of substrates W processed by the processing unit 2.
  • a load port LP, transfer robots IR and CR that transfer the substrate W between the load port LP and the processing unit 2, and a controller 3 that controls the substrate processing apparatus 1.
  • the transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR.
  • the transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have, for example, similar configurations.
  • the processing fluid includes a liquid such as a molten processing liquid, a mixed processing liquid, a rinsing liquid, a stripping liquid, a compatible liquid, a heat medium and a refrigerant, and a gas such as an inert gas, which will be described later.
  • FIG. 2 is a schematic diagram for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a chamber 4 having an internal space, a spin chuck 5 that horizontally holds the substrate W in the chamber 4, and spins the substrate W around a vertical rotation axis A1 that passes through the central portion of the substrate W.
  • the chamber 4 has a box-shaped partition wall 24 provided with a loading / unloading port 24a through which the substrate W passes, a shutter 25 for opening / closing the loading / unloading port 24a, and an upper portion of the partition wall 24 into the partition wall 24 (corresponding to the inside of the chamber 4). And an FFU (fan filter unit) 29 as a blower unit for sending clean air. Clean air, which is air filtered by the FFU 29, is supplied into the chamber 4 from above the partition wall 24.
  • FFU fan filter unit
  • the spin chuck 5 is an example of a substrate holding unit that holds the substrate W horizontally.
  • the substrate holding unit is also called a substrate holder.
  • the spin chuck 5 includes a plurality of chuck pins 20, a spin base 21, a rotation shaft 22, and a spin motor 23.
  • the rotary shaft 22 extends in the vertical direction along the rotary axis A1.
  • the upper end of the rotary shaft 22 is coupled to the center of the lower surface of the spin base 21.
  • a through hole 21 a is formed in the central region of the spin base 21 in a plan view so as to vertically penetrate the spin base 21.
  • the through hole 21a communicates with the internal space 22a of the rotary shaft 22.
  • the spin motor 23 gives a rotating force to the rotating shaft 22.
  • the spin base 21 is rotated by rotating the rotary shaft 22 by the spin motor 23.
  • the substrate W is rotated around the rotation axis A1.
  • the spin motor 23 is included in the substrate rotation unit that rotates the substrate W around the rotation axis A1.
  • the processing cup 7 includes a plurality of guards 71 for receiving the liquid scattered outward from the substrate W held by the spin chuck 5, a plurality of cups 72 for receiving the liquid guided downward by the plurality of guards 71, and a plurality of cups 72.
  • a cylindrical outer wall member 73 that surrounds the guard 71 and the plurality of cups 72 is included.
  • two guards 71 first guard 71A and second guard 71B
  • two cups 72 first cup 72A and second cup 72B
  • Each of the first cup 72A and the second cup 72B has a groove shape opened upward.
  • the first guard 71A surrounds the spin base 21.
  • the second guard 71B surrounds the spin base 21 radially outward of the first guard 71A.
  • the first cup 72A receives the liquid guided downward by the first guard 71A.
  • the second cup 72B is formed integrally with the first guard 71A and receives the liquid guided downward by the second guard 71B.
  • the processing unit 2 includes a guard elevating unit 74 that elevates and lowers the first guard 71A and the second guard 71B separately.
  • the first guard 71A moves up and down between a lower position and an upper position.
  • the second guard 71B moves up and down between the lower position and the upper position.
  • the guard lifting unit 74 includes, for example, a first ball screw mechanism (not shown) attached to the first guard 71A, a first motor (not shown) that gives a driving force to the first ball screw, and a second guard. It includes a second ball screw mechanism (not shown) attached to 71B and a second motor (not shown) that gives a driving force to the second ball screw mechanism.
  • the guard lifting unit 74 is also called a guard lifter.
  • the exhaust unit 8 includes an exhaust duct 26 connected to the bottom portion of the outer wall member 73 of the processing cup 7, and an exhaust valve 27 that opens and closes the exhaust duct 26.
  • the exhaust duct 26 is connected to, for example, an exhaust device 28 that sucks the inside of the chamber 4.
  • the exhaust device 28 may be a part of the substrate processing apparatus 1, or may be provided separately from the substrate processing apparatus 1. When the exhaust device 28 is a part of the substrate processing apparatus 1, the exhaust device 28 is, for example, a vacuum pump or the like.
  • the gas in the chamber 4 is exhausted from the chamber 4 through the exhaust duct 26. As a result, a downflow of clean air is always formed in the chamber 4.
  • the opening degree of the exhaust valve 27 the flow rate of gas flowing through the exhaust duct 26 (exhaust flow rate) can be adjusted.
  • the pressure inside the chamber 4 is changed. That is, the pressure inside the chamber 4 is changed by the controller 3.
  • the inside of the chamber 4 can be depressurized by adjusting the exhaust valve 27 to increase the exhaust flow rate.
  • the facing member 6 faces the substrate W held by the spin chuck 5 from above.
  • the facing member 6 is formed in a disk shape having a diameter substantially equal to or larger than that of the substrate W, and is arranged substantially horizontally above the spin chuck 5.
  • the facing member 6 has a facing surface 6 a facing the upper surface (upper surface) of the substrate W.
  • a hollow shaft 60 is fixed on the opposite side of the facing member 6 from the facing surface 6a.
  • a communication hole that vertically penetrates the facing member 6 and communicates with the internal space of the hollow shaft 60 is formed in a portion of the facing member 6 that includes a position that overlaps with the rotation axis A1 in a plan view.
  • the facing member 6 blocks the atmosphere in the space S between the facing surface 6 a of the facing member 6 and the upper surface of the substrate W from the atmosphere outside the space. Therefore, the facing member 6 is also called a blocking plate.
  • the processing unit 2 further includes a facing member lifting unit 61 that drives the lifting and lowering of the facing member 6.
  • the facing member lifting unit 61 can position the facing member 6 at any position (height) from the lower position to the upper position.
  • the lower position is a position where the facing surface 6 a of the facing member 6 is closest to the substrate W in the movable range of the facing member 6.
  • the upper position is a position where the facing surface 6 a of the facing member 6 is farthest from the substrate W in the movable range of the facing member 6.
  • the facing member lifting unit 61 includes, for example, a ball screw mechanism (not shown) attached to a support member (not shown) that supports the hollow shaft 60, and an electric motor (not shown) that gives a driving force to the ball screw mechanism. Including).
  • the facing member lifting unit 61 is also referred to as a facing member lifter (blocking plate lifter).
  • the processing unit 2 includes at least a first movable nozzle 10 movable in the horizontal direction, a second movable nozzle 11 movable in at least the horizontal direction, a central nozzle 12 facing a central region of the upper surface of the substrate W, and a substrate W. And a lower surface nozzle 13 facing the central region of the lower surface (lower surface) of the.
  • the central area of the upper surface of the substrate W is an area including the center of rotation of the substrate W on the upper surface of the substrate W.
  • the center of rotation of the upper surface of the substrate W is the intersection of the upper surface of the substrate W and the rotation axis A1.
  • the central region of the lower surface of the substrate W is a region on the lower surface of the substrate W including the rotation center of the substrate W.
  • the center of rotation of the lower surface of the substrate W is the intersection of the lower surface of the substrate W and the rotation axis A1.
  • the first moving nozzle 10 is an example of a chemical liquid supply unit that supplies (discharges) a chemical liquid toward the upper surface of the substrate W.
  • the first moving nozzle 10 is moved horizontally and vertically by the first nozzle moving unit 36.
  • the first moving nozzle 10 can move between the center position and the home position (retracted position).
  • the first moving nozzle 10 faces the center of rotation of the upper surface of the substrate W when located at the center position.
  • the first moving nozzle 10 When located at the home position, the first moving nozzle 10 does not face the upper surface of the substrate W, but is located outside the processing cup 7 in plan view.
  • the first moving nozzle 10 can approach the upper surface of the substrate W or can be retracted upward from the upper surface of the substrate W by moving in the vertical direction.
  • the first nozzle moving unit 36 includes, for example, a rotating shaft (not shown) extending in the vertical direction, an arm (not shown) connected to the rotating shaft and extending horizontally, and raising and lowering the rotating shaft. And a rotating shaft drive unit (not shown) for moving the same.
  • the rotation axis drive unit swings the arm by rotating the rotation axis around a vertical rotation axis. Further, the rotating shaft drive unit moves the arm up and down by moving the rotating shaft up and down along the vertical direction.
  • the first moving nozzle 10 is fixed to the arm. The first moving nozzle 10 moves in the horizontal direction and the vertical direction according to the swinging and raising / lowering of the arm.
  • the first moving nozzle 10 is connected to a chemical liquid pipe 40 that guides the chemical liquid.
  • the chemical liquid valve 50 interposed in the chemical liquid pipe 40 is opened, the chemical liquid is continuously discharged downward from the first moving nozzle 10.
  • the chemical liquid discharged from the first moving nozzle 10 is, for example, sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide solution, organic acid (for example, citric acid, oxalic acid, etc.), organic alkali (for example, TMAH: tetramethylammonium hydroxide, etc.), a surfactant, and a solution containing at least one of a corrosion inhibitor.
  • Examples of chemicals mixed with them include SPM solution (sulfuric acid / hydrogen peroxide mixture: sulfuric acid / hydrogen peroxide mixture), SC1 solution (ammonia-hydrogen peroxide mixture: ammonia / hydrogen peroxide mixture), etc. ..
  • the central nozzle 12 is housed in the internal space 60 a of the hollow shaft 60 of the facing member 6.
  • the ejection port 12a provided at the tip of the central nozzle 12 faces the central region of the upper surface of the substrate W from above.
  • the central nozzle 12 includes a plurality of tubes (first tube 31, second tube 32, third tube 33, and fourth tube 34) that discharge the processing fluid downward, and a cylindrical casing 30 that surrounds the plurality of tubes. Including. The plurality of tubes and the casing 30 extend in the vertical direction along the rotation axis A1. The discharge port 12a of the central nozzle 12 is also the discharge port of a plurality of tubes.
  • the first tube 31 is an example of a rinse liquid supply unit that supplies a rinse liquid such as DIW to the upper surface of the substrate W.
  • the second tube 32 is an example of a processing liquid supply unit that supplies the processing liquid to the upper surface of the substrate W.
  • the treatment liquid is a melt treatment liquid which is a melt of the solid-forming substance. Therefore, the second tube 32 is also a melt processing liquid supply unit.
  • the third tube 33 is an example of a compatible liquid supply unit that supplies a compatible liquid such as IPA having compatibility with both the rinse liquid and the melt processing liquid to the upper surface of the substrate W.
  • the fourth tube 34 is an example of a gas supply unit that supplies gas to the space S between the upper surface of the substrate W and the facing surface 6a of the facing member 6.
  • the first tube 31 is connected to a rinse liquid pipe 44 that guides the rinse liquid to the first tube 31.
  • the rinse liquid valve 54 provided in the rinse liquid pipe 44 is opened, the rinse liquid is continuously discharged from the first tube 31 (central nozzle 12) toward the central region of the upper surface of the substrate W.
  • the rinse liquid discharged from the first tube 31 is not limited to DIW.
  • Examples of the rinse liquid discharged from the first tube 31 include, in addition to DIW, carbonated water, electrolytic ion water, dilute concentration (for example, about 1 ppm to 100 ppm) hydrochloric acid water, dilution concentration (for example, about 1 ppm to 100 ppm).
  • the second tube 32 is connected to one end of a processing liquid pipe 45 that guides the molten processing liquid to the second tube 32.
  • the other end of the processing liquid pipe 45 is connected to a processing liquid tank 90 in which the molten processing liquid is stored.
  • the treatment liquid tank 90 is arranged in the fluid box 9 (see also FIG. 1) arranged adjacent to the chamber 4.
  • a new liquid pipe 91 having a new liquid valve 92 interposed therein is connected to the treatment liquid tank 90. When the new liquid valve 92 is opened, new molten processing liquid is supplied from the processing liquid supply source 93 to the processing liquid tank 90 via the new liquid pipe 91.
  • a pump 94, a filter 95, and a treatment liquid valve 55 are provided in the treatment liquid pipe 45.
  • the processing liquid valve 55 is opened, the molten processing liquid in the processing liquid tank 90 is sent to the processing liquid pipe 45 by the pump 94.
  • the molten processing liquid sent to the processing liquid pipe 45 is supplied to the second tube 32 (central nozzle 12) after passing through the filter 95.
  • the molten processing liquid supplied to the second tube 32 is continuously discharged from the central nozzle 12 toward the central region of the upper surface of the substrate W.
  • the inside of the clean room where the substrate processing apparatus 1 is placed is maintained at room temperature. Therefore, if the solidification point of the solid-forming substance is lower than room temperature, the solid-forming substance is maintained in a liquid (melt) without heating. Therefore, in this embodiment, the solid-forming substance preferably has a freezing point lower than room temperature. If the solid-forming substance is a sublimable substance capable of sublimation, the solid-forming substance in the solid state can be easily sublimated by spraying an inert gas, reducing the pressure of the surrounding atmosphere, and heating. Therefore, the solid forming substance is preferably a sublimable substance.
  • “sublimation” means that a solid changes into a gas without passing through a liquid state, which is one mode of vaporization.
  • Examples of sublimable substances that become a melt at room temperature include 1,1,2,2,3,3,4-heptafluorocyclopentane, 1,4-dioxane, cyclohexane, acetic acid and dimethyl carbonate.
  • 1,1,2,2,3,3,4-heptafluorocyclopentane has a vapor pressure at 20 ° C. of about 8266 Pa and a melting point ((freezing point) freezing point at 1 atm. The same applies hereinafter) is 20.5 ° C. The boiling point is 82.5 ° C. Therefore, 1,1,2,2,3,3,4-heptafluorocyclopentane changes to a solid state by cooling to, for example, 20.5 ° C. or lower.
  • the third tube 33 is connected to a compatible liquid pipe 46 that guides a compatible liquid such as IPA to the third tube 33.
  • a compatible liquid such as IPA
  • the compatible liquid valve 56 provided in the compatible liquid pipe 46 is opened, the compatible liquid is continuously discharged from the third tube 33 (central nozzle 12) toward the central region of the upper surface of the substrate W.
  • the compatible liquid has compatibility with the peeling liquid described later in addition to the rinse liquid and the melt processing liquid.
  • the compatible liquid discharged from the third tube 33 is not limited to IPA.
  • Examples of the compatible liquid discharged from the third tube 33 include a liquid containing at least one of IPA, HFE (hydrofluoroether), methanol, ethanol, acetone and Trans-1,2-dichloroethylene. Be done.
  • the fourth tube 34 is connected to a first gas pipe 47 that guides gas to the fourth tube 34.
  • first gas valve 57 interposed in the first gas pipe 47 is opened, the gas is continuously discharged downward from the fourth tube 34 (central nozzle 12).
  • the gas discharged from the fourth tube 34 is, for example, an inert gas such as nitrogen gas (N 2 ).
  • the gas discharged from the fourth tube 34 may be air.
  • the inert gas is not limited to nitrogen gas, but refers to a gas that is inert to the upper surface of the substrate W and the pattern formed on the upper surface of the substrate W. Examples of the inert gas include nitrogen gas and rare gases such as argon.
  • a fifth tube 35 is arranged between the outer peripheral surface of the casing 30 of the central nozzle 12 and the inner peripheral surface of the hollow shaft 60.
  • the fifth tube 35 is an example of a gas supply unit that supplies gas to the space S between the upper surface of the substrate W and the facing surface 6a of the facing member 6.
  • a second gas pipe 48 in which a second gas valve 58 is interposed is connected to the fifth tube 35. When the second gas valve 58 is opened, the gas is supplied from the second gas pipe 48 to the fifth tube 35 and continuously discharged downward from the discharge port of the fifth tube 35.
  • the gas discharged from the fifth tube 35 is, for example, an inert gas such as nitrogen gas (N 2 ).
  • the gas discharged from the fifth tube 35 may be air.
  • the second moving nozzle 11 is an example of a stripping liquid supply unit that supplies (discharges) the stripping liquid toward the upper surface of the substrate W.
  • the second moving nozzle 11 is moved in the horizontal direction and the vertical direction by the second nozzle moving unit 37.
  • the second moving nozzle 11 can move between the center position and the home position (retracted position).
  • the second moving nozzle 11 faces the center of rotation of the upper surface of the substrate W when located at the center position.
  • the second moving nozzle 11 When the second moving nozzle 11 is located at the home position, it does not face the upper surface of the substrate W but is located outside the processing cup 7 in a plan view.
  • the second moving nozzle 11 can approach the upper surface of the substrate W or can be retracted upward from the upper surface of the substrate W by moving in the vertical direction.
  • the second nozzle moving unit 37 has the same configuration as the first nozzle moving unit 36. That is, the second nozzle moving unit 37 includes, for example, a rotating shaft (not shown) extending in the vertical direction, an arm (not shown) that is connected to the rotating shaft and the second moving nozzle 11, and extends horizontally. A rotary shaft drive unit (not shown) for moving the rotary shaft up and down or rotating.
  • the peeling liquid discharged from the second moving nozzle 11 is a liquid for peeling from the upper surface of the substrate W.
  • the stripping solution has such a solubility that the solid-forming substance slightly dissolves the solid state.
  • the stripper has an affinity for the solid-forming substance to such an extent that it can pass through the solid-forming substance in the solid state and reach the upper surface of the substrate W.
  • An example of the stripping liquid discharged from the second moving nozzle 11 is a mixed liquid of IPA and DIW (hereinafter, referred to as “IPA / DIW mixed liquid”).
  • the stripping liquid is preferably an IPA / DIW mixed liquid.
  • the stripping solution is an IPA / DIW mixed solution.
  • the second moving nozzle 11 is connected to one end of a common pipe 41 in which a common valve 51 is interposed.
  • the other end of the common pipe 41 is connected to an IPA pipe 42 in which an IPA valve 52 is interposed and a DIW pipe 43 in which a DIW valve 53 is interposed.
  • the common valve 51, the IPA valve 52 and the DIW valve 53 are opened, IPA and DIW are mixed in the common pipe 41 to prepare an IPA / DIW mixed liquid. Then, the IPA / DIW mixed liquid is continuously discharged downward from the discharge port of the second moving nozzle 11 as a peeling liquid.
  • the ratio of IPA in the IPA / DIW mixed liquid discharged from the second moving nozzle 11 is preferably about several percent.
  • the compatible liquid ejected from the central nozzle 12 preferably has compatibility with the melt processing liquid, the rinse liquid, and the stripping liquid.
  • the melt treatment liquid is 1,1,2,2,3,3,4-heptafluorocyclopentane
  • the rinse liquid is DIW
  • the stripping liquid is an IPA / DIW mixed liquid
  • the compatible liquid is IPA. Is preferred.
  • the second moving nozzle 11 may be supplied with the IPA / DIW mixed liquid adjusted to an appropriate concentration in advance.
  • the second moving nozzle 11 can discharge the IPA / DIW mixed liquid having a stable IPA concentration.
  • IPA and DIW may be ejected from the second moving nozzle 11 and then mixed on the upper side of the substrate W and then land on the upper surface of the substrate W.
  • the IPA and DIW may be mixed with the second moving nozzle. After being ejected from 11, the upper surface of the substrate W may be mixed.
  • IPA and DIW may be ejected from different nozzles.
  • the lower surface nozzle 13 is inserted into a through hole 21a that opens at the center of the upper surface of the spin base 21.
  • the ejection port 13a of the lower surface nozzle 13 is exposed from the upper surface of the spin base 21.
  • the ejection port 13a of the lower surface nozzle 13 faces the central region of the lower surface of the substrate W from below.
  • the lower surface nozzle 13 is an example of a coolant supply unit that supplies a coolant to the substrate W.
  • the lower surface nozzle 13 is connected to a refrigerant pipe 49 that guides the refrigerant to the lower surface nozzle 13.
  • a refrigerant pipe 49 that guides the refrigerant to the lower surface nozzle 13.
  • the refrigerant discharged from the lower surface nozzle 13 is, for example, DIW (low temperature DIW) having a temperature lower than the freezing point of the solid forming substance. Therefore, the low-temperature DIW discharged from the lower surface nozzle 13 can cool the molten treatment liquid on the substrate W to solidify the molten treatment liquid.
  • DIW low temperature DIW
  • the melt treatment liquid is 1,1,2,2,3,3,4-heptafluorocyclopentane
  • DIW cooled to 20.5 ° C. or lower is used as the low temperature DIW.
  • the refrigerant discharged from the lower surface nozzle 13 is not limited to the low-temperature DIW, but may be a liquid other than DIW, for example, one of the liquids listed as the rinse liquid cooled to a low temperature.
  • the refrigerant discharged from the lower surface nozzle 13 may be gas, for example, nitrogen gas (inert gas) having a temperature lower than the freezing point of the solid-forming substance.
  • FIG. 4 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus 1.
  • the controller 3 includes a microcomputer and controls a control target provided in the substrate processing apparatus 1 according to a predetermined program. More specifically, the controller 3 includes a processor (CPU) 3A and a memory 3B in which a program is stored, and the processor 3A executes the program so as to execute various controls for substrate processing. Is configured.
  • the controller 3 includes the transfer robots IR, CR, FFU 29, the spin motor 23, the first nozzle moving unit 36, the second nozzle moving unit 37, the facing member elevating unit 61, the guard elevating unit 74, the exhaust device 28, the pump 94, and the like.
  • Exhaust valve 27 chemical liquid valve 50, common valve 51, IPA valve 52, DIW valve 53, rinse liquid valve 54, treatment liquid valve 55, compatible liquid valve 56, first gas valve 57, second gas valve 58, refrigerant valve 59 and the operation of the new liquid valve 92 are controlled. By controlling these valves, the ejection of fluid from the corresponding nozzles or tubes is controlled.
  • a fine concavo-convex pattern 160 is formed on the upper surface of the substrate W on which the substrate processing is performed.
  • the concavo-convex pattern 160 includes fine convex structures 161 formed on the upper surface of the substrate W, and recesses (grooves) 162 formed between the adjacent structures 161.
  • the surface of the concavo-convex pattern 160 that is, the surfaces of the structures 161 (projections) and the concavities 162 form a pattern surface 165 having concavities and convexities.
  • the surface 161a of the structure body 161 is constituted by a tip surface 161b (top portion) and a side surface 161c, and the surface of the recess 162 is constituted by a bottom surface 162a (bottom portion).
  • a concave portion is formed inside thereof.
  • the structure body 161 may include an insulator film or a conductor film. Further, the structure body 161 may be a stacked film in which a plurality of films is stacked.
  • the uneven pattern 160 is a fine pattern having an aspect ratio of 3 or more.
  • the aspect ratio of the uneven pattern 160 is, for example, 10 to 50.
  • the width L1 of the structures 161 may be about 5 nm to 45 nm, and the interval L2 between the structures 161 may be about 5 nm to several ⁇ m.
  • the height of the structure 161 (pattern height T1) may be, for example, about 50 nm to 5 ⁇ m.
  • the pattern height T1 is the distance between the tip surface 161b of the structure 161 and the bottom surface 162a (bottom portion) of the recess 162.
  • FIG. 6 is a flow chart for explaining an example of substrate processing by the substrate processing apparatus 1, and mainly shows processing realized by the controller 3 executing a program.
  • 7A to 7L are schematic sectional views for explaining the substrate processing by the substrate processing apparatus 1. Substrate processing by the substrate processing apparatus 1 will be described below mainly with reference to FIGS. 2 and 6. Reference will be made to FIGS. 7A to 7L as appropriate.
  • substrate loading step S1
  • chemical solution processing step step S2
  • rinse step step S3
  • first compatible liquid supply step step S4
  • a first liquid film forming step step S5)
  • a first solid film forming step step S6
  • a first solid film peeling removing step step S7
  • a second compatible liquid supplying step step S8
  • a second The liquid film forming step step S9
  • the second solid film forming step step S10
  • the second solid film vaporization removing step step S11
  • drying step step S12
  • substrate unloading step S13
  • the unprocessed substrate W is carried into the processing unit 2 from the carrier C by the transfer robots IR and CR (see FIG. 1) and passed to the spin chuck 5 (step S1).
  • the substrate W is held horizontally by the spin chuck 5 (substrate horizontal holding step).
  • the holding of the substrate W by the spin chuck 5 is continued until the drying step (step S12) is completed.
  • the facing member 6 is retracted to the upper position, and the plurality of guards 71 are retracted to the lower position.
  • step S2 the chemical solution processing step (step S2) is executed.
  • the chemical liquid processing step the upper surface of the substrate W is processed with the chemical liquid by supplying the chemical liquid to the upper surface of the substrate W.
  • the spin motor 23 rotates the spin base 21.
  • the substrate W is rotated (substrate rotating step).
  • the spin base 21 is rotated at a predetermined chemical processing speed.
  • the chemical solution processing speed is, for example, 800 rpm.
  • the first nozzle moving unit 36 moves the first moving nozzle 10 to the processing position while the facing member 6 is located at the upper position.
  • the processing position of the first moving nozzle 10 is, for example, the central position.
  • the chemical liquid valve 50 is opened with at least one guard 71 positioned at the upper position.
  • the chemical liquid is supplied (discharged) from the first moving nozzle 10 toward the upper surface of the substrate W in the rotating state (chemical liquid supply process, chemical liquid discharge process).
  • the chemical liquid discharged from the first moving nozzle 10 reaches the upper surface of the substrate W in a rotating state and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the chemical liquid is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical liquid is formed to cover the entire upper surface of the substrate W.
  • Rinsing process (step S3) is executed after the chemical solution process is executed for a certain period of time.
  • the rinse step by supplying a rinse liquid such as DIW to the upper surface of the substrate W, the chemical liquid attached to the upper surface of the substrate W is washed away by the rinse liquid.
  • the chemical liquid valve 50 is closed when a predetermined time has elapsed since the discharge of the chemical liquid was started. As a result, the supply of the chemical liquid to the substrate W is stopped. Then, the first nozzle moving unit 36 moves the first moving nozzle 10 to the home position. With the first moving nozzle 10 retracted to the home position, the facing member lifting unit 61 moves the facing member 6 to the processing position.
  • the processing position of the facing member 6 is a position between the upper position and the lower position.
  • the rinse liquid valve 54 is opened with the facing member 6 positioned at the processing position.
  • the rinse liquid is supplied (discharged) from the central nozzle 12 toward the upper surface of the substrate W in the rotating state (rinse liquid supply process, rinse liquid discharge process).
  • the spin base 21 is rotated at a predetermined rinse speed.
  • the rinse speed is, for example, 800 rpm.
  • the guard lift unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the rinse liquid ejected from the central nozzle 12 reaches the upper surface of the rotating substrate W and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the chemical liquid on the substrate W is replaced with the rinse liquid, and a liquid film of the rinse liquid covering the entire upper surface of the substrate W is formed.
  • the first compatible liquid supply process (step S4) is executed.
  • a compatible liquid such as IPA having compatibility with both the rinse liquid and the melt processing liquid is supplied to the upper surface of the substrate W, thereby The rinse liquid on W is replaced with a compatible liquid.
  • the rinsing liquid valve 54 is closed after a predetermined time has passed since the discharge of the compatible liquid was started. As a result, the supply of the rinse liquid to the substrate W is stopped. Then, the compatible liquid valve 56 is opened with the facing member 6 positioned at the processing position. As a result, as shown in FIG. 7C, the compatible liquid is supplied (discharged) from the central nozzle 12 toward the upper surface of the substrate W in the rotating state (first compatible liquid supply step, first compatible liquid discharge). Process). In the first compatible liquid supplying step, the spin base 21 is rotated at a predetermined first compatible liquid speed. The first compatible liquid velocity is, for example, 800 rpm.
  • the guard elevating unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the compatible liquid ejected from the central nozzle 12 lands on the upper surface of the rotating substrate W and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the rinse liquid on the substrate W is replaced with the compatible liquid, and a liquid film of the compatible liquid covering the entire upper surface of the substrate W is formed.
  • the first liquid film forming step (step S5) is executed.
  • the first liquid film forming step by supplying the molten processing liquid to the upper surface of the substrate W, a liquid film of the molten processing liquid (first molten processing liquid film 100) is formed on the upper surface of the substrate W.
  • the compatible liquid valve 56 is closed when a predetermined time has elapsed after the discharge of the compatible liquid was started. As a result, the supply of the compatible liquid to the substrate W is stopped. Then, the processing liquid valve 55 is opened with the facing member 6 positioned at the processing position. As a result, as shown in FIG. 7D, the molten treatment liquid is supplied (discharged) from the central nozzle 12 toward the upper surface of the substrate W in the rotating state (first molten treatment liquid supply step, first molten treatment liquid discharge). Process). In the first molten treatment liquid supplying step, the spin base 21 is rotated at a predetermined first molten treatment liquid speed. The first melt processing liquid speed is, for example, 300 rpm.
  • the guard elevating unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the molten processing liquid ejected from the central nozzle 12 reaches the upper surface of the rotating substrate W and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the compatible liquid on the substrate W is replaced with the molten treatment liquid, and the first molten treatment liquid film 100 covering the entire upper surface of the substrate W is formed (first liquid film forming step).
  • the processing liquid valve 55 is closed after a lapse of a predetermined time from the start of discharging the molten processing liquid. As a result, the supply of the molten processing liquid to the substrate W is stopped. After the supply of the molten processing liquid is stopped, the facing member elevating unit 61 moves the facing member 6 below the processing position (for example, the lower position). After the discharge of the molten treatment liquid is stopped, the rotation speed of the spin base 21 is set to the predetermined first thinning speed.
  • the first thinning speed is, for example, 300 rpm, which is the same rotation speed as the first melt processing liquid speed.
  • the substrate W rotates at the same speed as during the ejection of the molten treatment liquid even after the ejection of the molten treatment liquid is stopped. While the rotation of the substrate W is continued, the discharge of the molten processing liquid is stopped. Therefore, although the molten processing liquid is not newly supplied to the upper surface of the substrate W, the molten processing liquid is scattered to the outside of the substrate W by the centrifugal force. This reduces the amount of the molten processing liquid on the upper surface of the substrate W. Therefore, as shown in FIG. 7E, the thickness of the first melt-processed liquid film 100 becomes thin (first thinning step).
  • the first solid film forming step (step S6) is performed.
  • the first solid film 110 is formed by cooling and solidifying the first molten processed liquid film 100.
  • the refrigerant valve 59 is maintained in a state in which the facing member 6 is maintained below the processing position. Is opened.
  • the refrigerant is supplied (discharged) from the lower surface nozzle 13 toward the lower surface of the substrate W in the rotating state (first refrigerant supply step, first refrigerant discharge step).
  • the rotation speed of the spin base 21 is set to a predetermined first cooling speed.
  • the first cooling rate is, for example, 300 rpm.
  • the refrigerant discharged from the lower surface nozzle 13 reaches the lower surface of the substrate W in a rotating state, then flows outward along the lower surface of the substrate W by the centrifugal force, and spreads over the entire lower surface of the substrate W.
  • the substrate W is cooled by the coolant that spreads over the entire lower surface of the substrate W (substrate cooling step).
  • the first molten processed liquid film 100 on the upper surface of the substrate W is cooled by the coolant via the substrate W (first cooling step). Since the temperature of the refrigerant discharged from the lower surface nozzle 13 is lower than the freezing point of the solid forming substance, as shown in FIG. 7F, the solid forming substance (first molten processed liquid film 100) on the upper surface of the substrate W is solidified.
  • the first solid film 110 is formed on the upper surface of the substrate W (first solidifying step, first solid film forming step).
  • the first solid film 110 contains a solid-state solid-forming substance.
  • the lower surface nozzle 13 functions as a solid forming unit.
  • the lower surface nozzle 13 is also a cooling unit that cools the molten treatment liquid on the substrate W below the freezing point of the solid-forming substance.
  • the removal target objects 150 such as particles attached to the pattern surface 165 of the substrate W are separated from the substrate W, and the first solid film 110 is removed. Retained in the membrane 110.
  • the first solid film peeling removal step (step S7) is performed.
  • the first solid film peeling removal step the first solid film 110 is peeled and removed from the upper surface of the substrate W by supplying the peeling liquid to the upper surface of the substrate W.
  • the facing member lifting unit 61 moves the facing member 6 to the upper position.
  • the second nozzle moving unit 37 moves the second moving nozzle 11 to the processing position while the facing member 6 is located at the upper position.
  • the processing position of the second moving nozzle 11 is, for example, the central position.
  • the common valve 51, the IPA valve 52 and the DIW valve 53 are opened.
  • the IPA / DIW mixed liquid (peeling liquid) is supplied (discharged) from the second moving nozzle 11 toward the upper surface of the substrate W in the rotating state (upper surface of the first solid film 110). (Stripping liquid supply process, stripping liquid discharging process).
  • the refrigerant valve 59 is kept open. That is, the first cooling step (substrate cooling step) is also continued in the first solid film peeling removal step. Thereby, the first solid film 110 can be peeled from the upper surface of the substrate W while maintaining the first solid film 110 in the solid state.
  • the spin base 21 is rotated at a predetermined stripping processing speed.
  • the peeling processing speed is, for example, 10 rpm to 1000 rpm.
  • the guard elevating unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the peeling liquid ejected from the second moving nozzle 11 reaches the upper surface of the substrate W in a rotating state and then flows outward along the upper surface of the substrate W by the centrifugal force and spreads over the entire upper surface of the substrate W.
  • the stripping liquid attached to the upper surface of the first solid film 110 passes through the first solid film 110 and reaches the interface between the upper surface (pattern surface 165) of the substrate W and the first solid film 110.
  • the stripping solution may pass through the first solid film 110 by partially dissolving the first solid film 110 to form a through hole, or by penetrating the first solid film 110. You may pass 110.
  • the first solid film 110 is split into film pieces, and the first solid film 110 is stripped from the substrate W while holding the removal target 150 (peeling step). Then, the removal object 150 is removed from the upper surface of the substrate W together with the first solid film 110 by causing the first solid film 110 to flow into the stripping solution and be removed to the outside of the substrate W (first removal step, first 1 Solid film peeling removal step).
  • the second compatible liquid supply process (step S8) is performed.
  • a compatible liquid such as IPA having compatibility with both the stripping liquid and the melt processing liquid is supplied to the upper surface of the substrate W, thereby supplying the substrate W.
  • the upper stripping liquid is replaced with a compatible liquid.
  • the common valve 51, the IPA valve 52, and the DIW valve 53 are closed when a predetermined time has passed since the discharge of the stripping solution was started. As a result, the supply of the IPA / DIW mixed liquid (peeling liquid) to the substrate W is stopped.
  • the refrigerant valve 59 is also closed. As a result, the supply of the coolant to the substrate W is stopped.
  • the second nozzle moving unit 37 moves the second moving nozzle 11 to the home position.
  • the facing member lifting unit 61 moves the facing member 6 to the processing position.
  • the compatible liquid valve 56 is opened.
  • the compatible liquid such as IPA is supplied (discharged) from the central nozzle 12 toward the upper surface of the substrate W in the rotating state (second compatible liquid supply step, second phase). Soluble liquid ejection process).
  • the spin base 21 is rotated at a predetermined second compatible liquid speed.
  • the second compatible liquid velocity is, for example, 800 rpm.
  • the guard elevating unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the compatible liquid ejected from the central nozzle 12 lands on the upper surface of the rotating substrate W and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the stripping liquid on the substrate W is replaced with the compatible liquid, and a liquid film of the compatible liquid covering the entire upper surface of the substrate W is formed.
  • the second liquid film forming step (step S9) is executed.
  • the second liquid film forming step by supplying the melted processing liquid to the upper surface of the substrate W, a liquid film of the melted processing liquid (second melted processing liquid film 101) is formed on the upper surface of the substrate W.
  • the compatible liquid valve 56 is closed when a predetermined time has elapsed after the discharge of the compatible liquid was started. As a result, the supply of the compatible liquid to the substrate W is stopped. Then, the processing liquid valve 55 is opened with the facing member 6 positioned at the processing position. As a result, as shown in FIG. 7I, the molten processing liquid is supplied (discharged) from the central nozzle 12 toward the upper surface of the substrate W in the rotating state (second molten processing liquid supply step, second molten processing liquid discharge). Process). In the second molten treatment liquid supplying step, the spin base 21 is rotated at a predetermined second molten treatment liquid speed. The second melt processing liquid speed is, for example, 300 rpm.
  • the guard elevating unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the molten processing liquid ejected from the central nozzle 12 reaches the upper surface of the rotating substrate W and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, as shown in FIG. 7I, the compatible liquid on the substrate W is replaced with the molten processing liquid, and the second molten processing liquid film 101 covering the entire upper surface of the substrate W is formed (second liquid film forming step). ..
  • the molten processing liquid supplied to the upper surface of the substrate W in the second liquid film forming step is discharged from the same discharge nozzle (central nozzle 12) as in the first liquid film forming step.
  • the molten processing liquid stored in a single processing liquid tank 90 is supplied to the second tube 32 of the central nozzle 12. That is, in the first liquid film forming step and the second liquid film forming step, the molten processing liquid is supplied from the common processing liquid tank 90 to the central nozzle 12, and the molten processing liquid is directed from the central nozzle 12 toward the upper surface of the substrate W. Is ejected.
  • the processing liquid valve 55 is closed after a lapse of a predetermined time from the start of discharging the molten processing liquid. As a result, the supply of the molten processing liquid to the substrate W is stopped. After the supply of the molten treatment liquid is stopped, the facing member elevating unit 61 moves the facing member 6 below the processing position (for example, the lower position). After the discharge of the molten treatment liquid is stopped, the rotation speed of the spin base 21 is set to the predetermined second thinning speed.
  • the second thinning speed is, for example, 300 rpm, which is the same rotation speed as the second melt processing liquid speed. Therefore, the substrate W rotates at the same speed as during the ejection of the molten treatment liquid even after the ejection of the molten treatment liquid is stopped.
  • the second solid film forming step (step S10) is performed.
  • the second solid film 111 is formed by cooling and solidifying the second molten processed liquid film 101.
  • the refrigerant valve 59 is kept in a state in which the facing member 6 is maintained below the processing position. Is opened.
  • the refrigerant is supplied (discharged) from the lower surface nozzle 13 toward the lower surface of the substrate W in the rotating state (second refrigerant supply step, second refrigerant discharge step).
  • the rotation speed of the spin base 21 is set to a predetermined second cooling speed.
  • the second cooling rate is, for example, 300 rpm.
  • the refrigerant discharged from the lower surface nozzle 13 reaches the lower surface of the substrate W in a rotating state, then flows outward along the lower surface of the substrate W by the centrifugal force, and spreads over the entire lower surface of the substrate W.
  • the substrate W is cooled by the coolant that spreads over the entire lower surface of the substrate W (substrate cooling step).
  • the second molten processed liquid film 101 on the upper surface of the substrate W is cooled by the coolant via the substrate W (second cooling step). Since the temperature of the refrigerant discharged from the lower surface nozzle 13 is lower than the freezing point of the solid forming substance, as shown in FIG. 7K, the solid forming substance (second molten processed liquid film 101) on the upper surface of the substrate W is solidified.
  • the second solid film 111 is formed on the upper surface of the substrate W (second solidifying step, second solid film forming step).
  • the second solid film 111 contains a solid-state solid-forming substance. As shown in FIG. 9A, the thickness T2 of the second solid film 111 is preferably set to be thicker than the pattern height T1 and as thin as possible.
  • the second solid film vaporization removal step (step S11) is performed.
  • the second solid film vaporization removal step the second solid film 111 is removed from the upper surface of the substrate W by sublimating the second solid film 111 so as not to go through the liquid state.
  • the first gas valve 57 and the second gas valve 58 are opened while the facing member 6 is maintained below the processing position.
  • an inert gas such as nitrogen gas is supplied to the space S between the facing surface 6a of the facing member 6 and the upper surface of the substrate W.
  • the refrigerant valve 59 is kept open. That is, the second cooling process (substrate cooling process) is also continued in the second solid film vaporization and removal process. Therefore, the inert gas is supplied to the space S while maintaining the state in which the second solid film 111 is formed on the substrate W.
  • the solid-forming substance in the gaseous state is pushed out from the space S, and the partial pressure of the solid-forming substance in the space S is reduced.
  • the solid-forming substance sublimes so that the partial pressure of the solid-forming substance in the space S approaches the vapor pressure (sublimation process, vaporization process). Since the facing member 6 is close to the upper surface of the substrate W, the atmosphere in the space S is easily replaced with the inert gas. Therefore, the partial pressure of the solid-forming substance in the space S can be efficiently reduced.
  • the rotation speed of the spin base 21 is set to a predetermined sublimation speed.
  • the sublimation speed is, for example, 300 rpm.
  • the rotation of the substrate W promotes sublimation of the second solid film 211 (sublimation process, vaporization process).
  • the solid-state solid-forming substance located in the recess 162 of the concavo-convex pattern 160 is completely sublimated, and the second solid film 111 is removed (second removing step, first 2 Solid film vaporization removal step).
  • the fourth tube 34 (center nozzle 12), the fifth tube 35 and the spin motor 23 function as a vaporization unit (sublimation unit).
  • the FFU 29 and the exhaust unit 8 may increase the flow rate of downflow to promote ventilation in the chamber 4. This promotes sublimation of the second solid film 111. That is, the FFU 29 and the exhaust unit 8 also function as a vaporization unit.
  • the chamber 4 may be depressurized by adjusting the exhaust valve 27 to increase the exhaust flow rate (depressurizing step).
  • the sublimation of the second solid film 111 is promoted by the reduced pressure in the chamber 4, that is, the reduced pressure of the atmosphere around the second solid film 111.
  • the thicker the second molten processed liquid film 101 the larger the internal stress (strain) remaining in the second solid film 111.
  • the internal stress remaining in the second solid film 111 can be reduced.
  • the second solid film 111 can be made thin. This can suppress the generation of residues after the second solid film vaporization and removal step.
  • step S12 After the second solid film 111 is removed from the upper surface of the substrate W, a drying step (step S12) is performed to further dry the upper surface of the substrate W.
  • the spin motor 23 sets the rotation speed of the spin base 21 to a predetermined drying speed while the facing member 6 is maintained at the lower position.
  • the drying speed is, for example, 1500 rpm.
  • the first gas valve 57 is closed. As a result, the supply of the inert gas from the central nozzle 12 is stopped.
  • the transport robot CR enters the processing unit 2, scoops the processed substrate W from the spin chuck 5, and carries it out of the processing unit 2 (step S13).
  • the substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
  • the first solidified film 110 is formed by solidifying the first molten processed liquid film 100 on the upper surface of the substrate W. Then, the first solid film 110 is peeled and removed from the upper surface of the substrate W by the action of the peeling liquid supplied to the upper surface of the substrate W. That is, the first solid film 110 can be removed from the upper surface of the substrate W while maintaining the solid state. Therefore, it is possible to suppress or prevent the removal target object 150 from falling off from the first solid film 110, and thus it is possible to suppress or prevent the removal target object 150 from being redeposited on the upper surface of the substrate W. Therefore, the upper surface of the substrate W can be cleaned well.
  • the second molten processing liquid film 101 of the molten processing liquid is formed by supplying the same molten processing liquid again to the upper surface of the substrate W. Then, the second molten processed liquid film 101 is solidified to form the second solid film 111.
  • the second solid film 111 is sublimated so as not to pass through the liquid state and removed from the upper surface of the substrate W. Therefore, the surface tension acting on the upper surface of the substrate from the molten processing liquid can be reduced. Therefore, the upper surface of the substrate W can be dried while suppressing or preventing the collapse of the uneven pattern 160 formed on the upper surface of the substrate W.
  • the upper surface of the substrate W can be cleaned well and the upper surface of the substrate W can be dried well.
  • the first solid film 110 that is peeled off and removed and the second solid film 111 that is vaporized and removed are formed from the same kind of molten treatment liquid. Therefore, the substrate processing apparatus 1 can be simplified as compared with the substrate processing in which the first solid film 110 and the second solid film 111 are formed by different types of processing liquids (chemical formulas of solid-forming substances are different). You can As a result, the device cost and the device footprint (installation area) can be suppressed.
  • the melt supplied from the common processing liquid tank 90 to the central nozzle 12 is melted.
  • the processing liquid is ejected from the central nozzle 12 toward the upper surface of the substrate W. Therefore, the processing liquid ejected from the central nozzle 12 in the first liquid film forming step and the processing liquid ejected from the central nozzle 12 in the second liquid film forming step are supplied to the central nozzle 12 from different processing liquid tanks.
  • the number of processing liquid tanks can be reduced as compared with the method described above. Therefore, the substrate processing apparatus 1 can be simplified.
  • melt-processed liquid means that the chemical formulas of solid-forming substances in the melt-processed liquid are the same
  • melt-processed liquids of different types mean that the solid-formed substances in the melt-processed liquid It means that the chemical formulas are different. Therefore, even if the melt processing liquid used for forming the first solid film 110 and the melt processing liquid used for forming the second solid film 111 have different temperatures, the melt processing liquid is If the chemical formulas of the solid-forming substances are the same, both melt processing liquids are the same kind of melt processing liquid.
  • first solid film 110 to be stripped and removed and the second solid film 111 to be vaporized and removed are formed from the same melting treatment liquid, if the first solid film 110 is stripped and removed by the stripping liquid, the substrate is removed. Even when the residue of the first solid film 110 is attached to the upper surface of W, the residue of the first solid film 110 is removed together with the second solid film 111 when the second solid film 111 is vaporized and removed. be able to. Therefore, since the residue of the first solid film 110 can be reliably removed from the upper surface of the substrate W, the upper surface of the substrate W can be satisfactorily cleaned and the upper surface of the substrate W can be satisfactorily dried. it can.
  • the removal target 150 existing on the upper surface of the substrate W is held by the first solid film 110 when the first solid film 110 is formed, and the first solid film 110 is the substrate.
  • the first solid film 110 holding the removal target 150 is removed from the upper surface of the substrate W by the stripping solution. Therefore, it is possible to suppress or prevent the removal target 150 separated from the upper surface of the substrate W from reattaching to the upper surface of the substrate W.
  • the first solid processed film 110 is formed by cooling the first molten processed liquid film 100 so that the first molten processed liquid film 100 is solidified, and the second molten processed liquid film 101 is formed.
  • the second solid film 111 is formed by cooling the second melt-processed liquid film 101 so that the solidification occurs. That is, the first solid film 110 and the second solid film 111 can be formed by a common method of cooling the molten treatment liquid.
  • the units necessary for the respective methods must be provided in the substrate processing apparatus 1. ..
  • the processing liquid on the substrate W is heated. And a unit for cooling the processing liquid on the substrate W are required.
  • the substrate processing apparatus 1 can be simplified if the first solid film 110 and the second solid film 111 can be formed using the common solid forming unit (lower surface nozzle 13) as in the first embodiment.
  • the first cooling step (substrate cooling step) executed in the first solidification step is continued also in the first solid film peeling removal step. Accordingly, even during the execution of the first solid film peeling-removing step, the solid-forming substance on the substrate W can be maintained in a solid state without being melted. Therefore, the first solid film 110 can be removed from the upper surface of the substrate W while reliably maintaining the solid state. Therefore, the removal of the removal target 150 from the first solid film 110 can be further suppressed or prevented, and the reattachment of the removal target 150 to the upper surface of the substrate W can be further suppressed or prevented.
  • the second cooling step (substrate cooling step) executed in the second solidification step is continued in the second solid film vaporization removal step.
  • the solid forming substance on the substrate W can be maintained in a solid state without being melted. Therefore, the second solid film 111 can be vaporized while suppressing or preventing the second solid film 111 from changing into a liquid. Therefore, the surface tension acting on the upper surface of the substrate W can be further reduced.
  • the compatible liquid having compatibility with both the rinse liquid and the melt treatment liquid after the completion of the rinse liquid supply step and before the start of the first liquid film forming step. Is supplied to the upper surface of the substrate W (first compatible liquid supply step). Therefore, even if the rinse liquid and the melt processing liquid are difficult to mix, the rinse liquid on the substrate W is replaced with the compatible liquid, and then the compatible liquid on the substrate W is replaced with the melt processing liquid. Thus, the rinse liquid on the substrate W can be replaced with the melt processing liquid. Therefore, the rinse liquid and the melt-processed liquid can be selected regardless of whether or not the rinse liquid and the melt-processed liquid are mixed. Therefore, the degree of freedom in selecting the rinse liquid and the melt processing liquid is improved.
  • the peeling liquid and the molten treatment liquid are removed.
  • a compatible liquid that is compatible with both is supplied to the upper surface of the substrate W (second compatible liquid supply step). Therefore, even when the stripping liquid and the melt processing liquid are difficult to mix, the stripping liquid on the substrate W is replaced with the compatible liquid, and then the compatible liquid on the substrate W is replaced with the melt processing liquid.
  • the stripping liquid on the substrate W can be replaced with the melt processing liquid. Therefore, the stripping liquid and the melt processing liquid can be selected regardless of whether or not the stripping liquid and the melt processing liquid are mixed. Therefore, the degree of freedom in selecting the stripping liquid and the melt processing liquid is improved.
  • the lower surface nozzle 13 is an example of the solid forming unit.
  • the solid forming unit is not limited to the lower surface nozzle 13.
  • the cooling plate 120 facing the lower surface of the substrate W from below can also be used as a solid formation unit (cooling unit).
  • the cooling plate 120 is arranged between the upper surface of the spin base 21 and the lower surface of the substrate W sandwiched by the plurality of chuck pins 20.
  • the upper surface 120a of the cooling plate 120 faces the entire lower surface of the substrate W. Even if the spin base 21 rotates, the cooling plate 120 does not rotate.
  • the cooling plate 120 has a built-in refrigerant pipe 121.
  • a refrigerant supply pipe 122 that supplies a refrigerant to the built-in refrigerant tube 121 and a refrigerant discharge tube 123 that discharges the refrigerant from the built-in refrigerant tube 121 are connected to the built-in refrigerant tube 121.
  • a hollow elevating shaft 125 extending in the vertical direction along the rotation axis A1 is coupled to the lower surface of the cooling plate 120.
  • the elevating shaft 125 has a through hole 21 a formed in the center of the spin base 21 and a hollow rotating shaft 22 inserted therethrough.
  • the refrigerant supply pipe 122 and the refrigerant discharge pipe 123 are inserted through the elevating shaft 125.
  • a refrigerant supply valve 124 is interposed in the refrigerant supply pipe 122.
  • the refrigerant is supplied to the built-in refrigerant pipe 121 by opening the refrigerant supply valve 124.
  • the cooling plate 120 is cooled.
  • a cooler elevating unit 126 that elevates the cooling plate 120 relative to the spin base 21 is connected to the elevating shaft 125.
  • Cooler elevating unit 126 includes, for example, a ball screw mechanism (not shown) and an electric motor (not shown) that gives a driving force to the ball screw mechanism.
  • the cooler lifting unit 126 is also called a cooler lifter.
  • the cooling plate 120 is arranged by the cooler elevating / lowering unit 126 at a position in contact with the lower surface of the substrate W or in a position close to the lower surface of the substrate W, so that the molten processing liquid on the substrate W is transferred via the substrate W. Can be cooled.
  • the cooling plate 120 may be configured to lift the substrate W from the chuck pins 20 and support the substrate W by the upper surface 120a in the process of being raised.
  • the plurality of chuck pins 20 can be opened and closed between a closed state in which the chuck W contacts the peripheral edge of the substrate W to grip the substrate W and an open state retracted from the peripheral edge of the substrate W.
  • the facing member 6 is configured to be able to supply the refrigerant therein, the facing member 6 can also be used as a solid forming unit.
  • FIG. 11 is a schematic diagram of a processing unit 2P included in the substrate processing apparatus 1P according to the second embodiment of the present invention.
  • FIG. 11 and FIGS. 12A to 12I, 13 and 14 to be described later configurations similar to those shown in FIGS. 1 to 10 are designated by the same reference numerals as those in FIG. The description is omitted.
  • the main difference between the processing unit 2P according to the second embodiment and the processing unit 2 of the first embodiment (see FIG. 2) is that a mixed processing liquid is used instead of the molten processing liquid.
  • the second tube 32 of the central nozzle 12 is an example of a processing liquid supply unit that supplies a processing liquid prepared by mixing a solvent and a solute to the upper surface of the substrate W.
  • the treatment liquid discharged from the second tube 32 in the second embodiment is a solution in which a solid-forming substance as a solute is dissolved in a solvent.
  • a treatment liquid composed of a solid-forming substance as a solute and a solvent that dissolves the solid-forming substance is called a mixed treatment liquid. Therefore, the second tube 32 is also a mixed treatment liquid supply unit.
  • the second tube 32 is connected to one end of a processing liquid pipe 45 that guides the mixed processing liquid to the second tube 32, and the other end of the processing liquid pipe 45. Is connected to the processing liquid tank 90 (see also FIG. 3).
  • the mixed processing liquid is stored in the processing liquid tank 90.
  • the treatment liquid valve 55 is opened, the mixed treatment liquid in the treatment liquid tank 90 is sent to the treatment liquid pipe 45 by the pump 94.
  • the mixed processing liquid sent to the processing liquid pipe 45 is supplied to the second tube 32 (central nozzle 12) after passing through the filter 95, and the central region of the upper surface of the substrate W from the second tube 32 (central nozzle 12). Is continuously discharged toward.
  • the solvent contained in the mixed treatment liquid maintains a liquid state at room temperature, and the solute contained in the mixed treatment liquid maintains a solid state at room temperature. Therefore, by evaporating the solvent by heating or the like, the solid-forming substance in the solid state is deposited.
  • the solid-state solid-forming substance is preferably a sublimable substance capable of changing its state to a gas state without passing through a liquid state by spraying an inert gas or reducing the pressure of the surrounding atmosphere.
  • alcohols such as 2-methyl-2-propanol (also known as tert-butyl alcohol and t-butyl alcohol) and cyclohexanol
  • fluorinated hydrocarbon compounds 1
  • 3,5-trioxane also known as metaformaldehyde
  • camphor also known as camphor and camphor
  • naphthalene and iodine.
  • camphor when camphor is used as the sublimable substance, IPA, methanol, acetone, PGEE or the like can be used as the solvent.
  • the freezing point of camphor is 175 ° C to 177 ° C.
  • the lower surface nozzle 13 is connected to the heating medium pipe 80 that guides the heating medium to the lower surface nozzle 13.
  • the heat medium valve 81 is controlled by the controller 3 (see FIG. 4). When the heat medium valve 81 interposed in the heat medium pipe 80 is opened, the heat medium is continuously discharged from the lower surface nozzle 13 toward the central region of the lower surface of the substrate W.
  • the heat medium discharged from the lower surface nozzle 13 is, for example, DIW (high temperature DIW) having a temperature higher than room temperature. It is preferable that the heat medium ejected from the lower surface nozzle 13 has a temperature lower than the boiling point of the solvent of the mixed treatment liquid so that the mixed treatment liquid does not boil on the substrate W.
  • the solvent is IPA
  • the high temperature DIW is preferably below the boiling point of IPA, 82.4 ° C.
  • the heat medium discharged from the lower surface nozzle 13 is not limited to the high temperature DIW, and may be a liquid other than DIW, for example, one obtained by heating any of the liquids listed as the rinse liquid to a high temperature. Further, the heat medium discharged from the lower surface nozzle 13 may be a gas, for example, nitrogen gas (inert gas) having a temperature higher than room temperature or the like.
  • the peeling liquid is preferably an IPA / DIW mixed liquid.
  • the compatible liquid a liquid compatible with the mixed treatment liquid, the rinse liquid and the stripping liquid is used.
  • the mixed treatment liquid is a mixed liquid of camphor and IPA
  • the rinse liquid is DIW
  • the stripping liquid is an IPA / DIW mixed liquid
  • the compatible liquid is preferably IPA.
  • FIGS. 12A to 12I are schematic sectional views for explaining substrate processing by the substrate processing apparatus 1P according to the second embodiment.
  • the substrate processing apparatus 1P according to the second embodiment can perform the same substrate processing as the substrate processing (see FIG. 6) by the substrate processing apparatus 1 according to the first embodiment.
  • Substrate processing by the substrate processing apparatus 1P will be described below mainly with reference to FIGS. 11 and 6. Reference is appropriately made to FIGS. 12A to 12I.
  • the substrate loading (step S1) to the first compatible liquid supply step (step S4) are executed.
  • the first liquid film forming step (step S5) is executed.
  • the first liquid film forming step by supplying the mixed processing liquid to the upper surface of the substrate W, a liquid film of the mixed processing liquid (first mixed processing liquid film 200) is formed on the upper surface of the substrate W.
  • the compatible liquid valve 56 is closed when a predetermined time has elapsed after the discharge of the compatible liquid was started. As a result, the supply of the compatible liquid to the substrate W is stopped. Then, the processing liquid valve 55 is opened with the facing member 6 positioned at the processing position. As a result, as shown in FIG. 12A, the mixed treatment liquid is supplied (discharged) from the central nozzle 12 toward the upper surface of the substrate W in the rotating state (first mixed treatment liquid supply step, first mixed treatment liquid discharge). Process). In the first mixed treatment liquid supplying step, the spin base 21 is rotated at a predetermined first mixed treatment liquid speed. The first mixed treatment liquid speed is, for example, 300 rpm.
  • the guard elevating unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the mixed processing liquid ejected from the central nozzle 12 reaches the upper surface of the rotating substrate W and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the compatible liquid on the substrate W is replaced with the mixed treatment liquid, and the first mixed treatment liquid film 200 covering the entire upper surface of the substrate W is formed (first liquid film forming step).
  • the processing liquid valve 55 is closed when a predetermined time has elapsed since the discharge of the mixed processing liquid was started. As a result, the supply of the mixed processing liquid to the substrate W is stopped. After the supply of the mixed processing liquid is stopped, the facing member elevating unit 61 moves the facing member 6 below the processing position (for example, the lower position).
  • the rotation speed of the spin base 21 is set to a predetermined first thinning speed.
  • the first thinning speed is, for example, 300 rpm, which is the same rotation speed as the first mixed processing liquid speed. Therefore, the substrate W rotates at the same speed as during the ejection of the mixed processing liquid even after the ejection of the mixed processing liquid is stopped.
  • the discharge of the mixed processing liquid is stopped. Therefore, although the mixed processing liquid is not newly supplied to the upper surface of the substrate W, the mixed processing liquid is scattered to the outside of the substrate W by the centrifugal force. As a result, the amount of the mixed processing liquid on the upper surface of the substrate W is reduced. Therefore, as shown in FIG. 12B, the thickness of the first mixed treatment liquid film 200 becomes thin (first thinning step).
  • the first solid film forming step (step S6) is performed.
  • the first solid film 210 is formed by evaporating the solvent in the first mixed treatment liquid film 200.
  • the heat medium valve is kept in a state where the facing member 6 is maintained below the processing position. 81 is opened.
  • the heat medium is supplied (discharged) from the lower surface nozzle 13 toward the lower surface of the substrate W in the rotating state (first heat medium supplying step, first heat medium discharging step).
  • the heat medium discharged from the lower surface nozzle 13 reaches the lower surface of the substrate W in a rotating state, then flows outward along the lower surface of the substrate W by the centrifugal force, and spreads over the entire lower surface of the substrate W.
  • the substrate W is heated by the heating medium that spreads over the entire lower surface of the substrate W (substrate heating step).
  • the first mixed treatment liquid film 200 on the upper surface of the substrate W is heated via the substrate W by the heat medium that spreads over the entire lower surface of the substrate W (first heating step). By heating the first mixed treatment liquid film 200 via the substrate W, evaporation of the solvent in the first mixed treatment liquid film 200 is promoted.
  • the rotation speed of the spin base 21 is set to a predetermined first heating speed.
  • the first heating rate is, for example, 300 rpm.
  • the rotation of the substrate W promotes evaporation of the solvent in the first mixed treatment liquid film 200.
  • a gas such as an inert gas may be blown to the first mixed treatment liquid film 200 while heating the first mixed treatment liquid film 200 on the substrate W by the heat medium.
  • the second gas valve 58 is opened.
  • gas is discharged from the fifth tube 35 as shown in FIG. 12C.
  • the gas discharged from the fifth tube 35 is sent into the space S between the facing member 6 and the substrate W and is sprayed onto the upper surface of the first mixed processing liquid film 200 (see FIG. 12B) (first gas spraying step). ).
  • first gas spraying step By blowing the gas, the evaporation of the solvent in the first mixed treatment liquid film 200 is promoted.
  • the chamber 4 When forming the first solid film 210, the chamber 4 may be decompressed by adjusting the exhaust valve 27 to increase the exhaust flow rate (decompression step).
  • the reduced pressure in the chamber 4 that is, the reduced pressure of the atmosphere around the first solid film 210, promotes the evaporation of the solvent in the first mixed treatment liquid film 200.
  • the first solid film 210 is formed on the upper surface of the substrate W by the precipitation of the solid-forming substance (first precipitation process, first solid film formation process).
  • the first solid film 210 contains a solid-state solid-forming substance deposited by evaporation of the solvent.
  • the lower surface nozzle 13, the fifth tube 35, the exhaust unit 8, the FFU 29, and the spin motor 23 function as a solid forming unit.
  • the lower surface nozzle 13 is also a heating unit that heats the mixed processing liquid on the substrate W.
  • the removal target object 150 such as particles attached to the pattern surface 165 of the substrate W is separated from the substrate W, and the first object is removed. It is retained in the solid film 210 (see FIG. 8A).
  • the first solid film peeling removal step (step S7) is performed.
  • the first solid film peeling-removing step the first solid film 210 is peeled off from the upper surface of the substrate W by supplying a peeling liquid to the upper surface of the substrate W.
  • the heat medium valve 81 and the second gas valve 58 are closed. As a result, the supply of the heat medium and the inert gas to the substrate W is stopped. Then, the facing member lifting unit 61 moves the facing member 6 to the upper position.
  • the second nozzle moving unit 37 moves the second moving nozzle 11 to the processing position while the facing member 6 is located at the upper position.
  • the processing position of the second moving nozzle 11 is, for example, the central position.
  • the common valve 51, the IPA valve 52 and the DIW valve 53 are opened.
  • the IPA / DIW mixed liquid (peeling liquid) is supplied (discharged) from the second moving nozzle 11 toward the upper surface of the substrate W in the rotating state (upper surface of the first solid film 210).
  • the spin base 21 is rotated at a predetermined stripping processing speed.
  • the peeling processing speed is, for example, 10 rpm to 1000 rpm.
  • the peeling liquid ejected from the second moving nozzle 11 reaches the upper surface of the substrate W in a rotating state and then flows outward along the upper surface of the substrate W by the centrifugal force and spreads over the entire upper surface of the substrate W.
  • the stripping liquid attached to the upper surface of the first solid film 210 passes through the first solid film 210 and reaches the interface between the upper surface (pattern surface 165) of the substrate W and the first solid film 210.
  • the first solid film 210 is divided into film pieces, and is separated from the substrate W while holding the removal target 150 (separation step) (see FIG. 8B). Then, the removal object 150 is removed from the upper surface of the substrate W together with the first solid film 210 by the first solid film 210 being flown into the stripping solution and removed outside the substrate W (first removal step, first 1 Solid film peeling removal step).
  • the second compatible liquid supply step (step S8) is performed as shown in FIG. 12E.
  • the second compatible liquid supply step (step S8) is almost the same as that of the first embodiment, and thus detailed description thereof will be omitted.
  • the peelable liquid on the substrate W is replaced with the compatible liquid by supplying the compatible liquid to the upper surface of the substrate W.
  • step S9 the second liquid film forming step (step S9) is executed.
  • the second liquid film forming step by supplying the mixed processing liquid to the upper surface of the substrate W, a liquid film of the mixed processing liquid (second mixed processing liquid film 201) is formed on the upper surface of the substrate W.
  • the compatible liquid valve 56 is closed when a predetermined time has elapsed after the discharge of the compatible liquid was started. As a result, the supply of the compatible liquid to the substrate W is stopped. Then, the processing liquid valve 55 is opened with the facing member 6 positioned at the processing position. As a result, as shown in FIG. 12F, the mixed processing liquid is supplied (discharged) from the central nozzle 12 toward the upper surface of the substrate W in the rotating state (second mixed processing liquid supply step, second mixed processing liquid discharge). Process).
  • the spin base 21 is rotated at a predetermined second mixed treatment liquid speed.
  • the second mixed treatment liquid speed is, for example, 300 rpm.
  • the guard elevating unit 74 may move at least one guard 71 vertically in order to switch the guard 71 that receives the liquid discharged from the substrate W.
  • the mixed processing liquid ejected from the central nozzle 12 reaches the upper surface of the rotating substrate W and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the compatible liquid on the substrate W is replaced with the mixed treatment liquid, and the second mixed treatment liquid film 201 covering the entire upper surface of the substrate W is formed (second liquid film forming step).
  • the mixed processing liquid supplied to the upper surface of the substrate W in the second liquid film forming step is discharged from the same discharge nozzle (central nozzle 12) as in the first liquid film forming step.
  • the mixed treatment liquid stored in a single treatment liquid tank 90 is supplied to the second tube 32 of the central nozzle 12. That is, in the first liquid film forming step and the second liquid film forming step, the mixed processing liquid is supplied from the common processing liquid tank 90 to the central nozzle 12, and the mixed processing liquid is discharged from the central nozzle 12 toward the upper surface of the substrate W. Is ejected.
  • the processing liquid valve 55 is closed when a predetermined time has elapsed since the discharge of the mixed processing liquid was started. As a result, the supply of the mixed processing liquid to the substrate W is stopped. After the supply of the mixed processing liquid is stopped, the facing member elevating unit 61 moves the facing member 6 below the processing position (for example, the lower position). After the discharge of the mixed processing liquid is stopped, the rotation speed of the spin base 21 is set to the predetermined second thinning speed.
  • the second thinning speed is, for example, 300 rpm, which is the same rotation speed as the second mixed treatment liquid speed. Therefore, the substrate W rotates at the same speed as during the ejection of the mixed processing liquid even after the ejection of the mixed processing liquid is stopped.
  • the discharge of the mixed processing liquid is stopped. Therefore, although the mixed processing liquid is not newly supplied to the upper surface of the substrate W, the mixed processing liquid is scattered to the outside of the substrate W by the centrifugal force. As a result, the amount of the mixed processing liquid on the upper surface of the substrate W is reduced. Therefore, as shown in FIG. 12G, the thickness of the second mixed treatment liquid film 201 becomes thin (second thinning step).
  • the second solid film forming step (step S10) is performed.
  • the second solid film 211 is formed by heating the second mixed treatment liquid film 201 to evaporate the solvent in the second mixed treatment liquid film 201.
  • the heat medium valve 81 is opened with the facing member 6 maintained in the lower position. Be done. As a result, as shown in FIG. 12H, the heat medium is supplied (discharged) from the lower surface nozzle 13 toward the lower surface of the substrate W in the rotating state (second heat medium supply step, second heat medium discharge step).
  • the heat medium discharged from the lower surface nozzle 13 reaches the lower surface of the substrate W in a rotating state, then flows outward along the lower surface of the substrate W by the centrifugal force, and spreads over the entire lower surface of the substrate W.
  • the substrate W is heated by the heating medium that spreads over the entire lower surface of the substrate W (substrate heating step).
  • the second mixed treatment liquid film 201 on the upper surface of the substrate W is heated via the substrate W by the heat medium that spreads over the entire lower surface of the substrate W (second heating step). By heating the second mixed treatment liquid film 201 via the substrate W, evaporation of the solvent in the second mixed treatment liquid film 201 is promoted.
  • the rotation speed of the spin base 21 is set to a predetermined second heating speed.
  • the second heating rate is, for example, 300 rpm.
  • the rotation of the substrate W promotes the evaporation of the solvent in the second mixed treatment liquid film 201.
  • a gas such as an inert gas may be blown to the second mixed treatment liquid film 201 while heating the second mixed treatment liquid film 201 on the substrate W by the heat medium.
  • the second gas valve 58 is opened.
  • the fifth tube 35 or the gas is discharged.
  • the gas discharged from the fifth tube 35 is sent into the space S between the facing member 6 and the substrate W and is sprayed onto the upper surface of the second mixed processing liquid film 201 (see FIG. 12G) (second gas spraying step). ).
  • second gas spraying step By blowing the gas, the evaporation of the solvent in the second mixed treatment liquid film 201 is promoted.
  • the chamber 4 may be depressurized by adjusting the exhaust valve 27 to increase the exhaust flow rate (depressurizing step).
  • the reduced pressure in the chamber 4, that is, the reduced pressure of the atmosphere around the second solid film 211 promotes the evaporation of the solvent in the second mixed treatment liquid film 201.
  • the solvent in the second mixed treatment liquid film 201 is evaporated and the solid-forming substance is deposited on the upper surface of the substrate W. ..
  • the second solid film 211 is formed on the upper surface of the substrate W by the precipitation of the solid-forming substance (second precipitation process, second solid film formation process).
  • the second solid film 211 contains a solid-state solid-forming substance deposited by evaporation of the solvent.
  • the thickness T2 of the second solid film 211 according to the second embodiment is set to be thicker than the pattern height T1 and as thin as possible. Is preferred (see FIG. 9A).
  • the second solid film vaporization removal step (step S11) is performed.
  • the second solid film vaporization removal step the second solid film 211 is removed from the upper surface of the substrate W by sublimating the second solid film 211 so as not to pass through the liquid state.
  • the first gas valve 57 is opened while the second gas valve 58 is kept open.
  • a gas such as an inert gas is supplied from the central nozzle 12 to the space S between the facing surface 6a of the facing member 6 and the upper surface of the substrate W.
  • the facing member 6 is maintained below the processing position (for example, the lower position).
  • the solid-forming substance in a gaseous state is pushed out from the space S, and the partial pressure of the solid-forming substance in the space S decreases.
  • the solid-forming substance sublimes so that the partial pressure of the solid-forming substance in the space S approaches the vapor pressure (sublimation process, vaporization process). Since the facing member 6 is close to the upper surface of the substrate W, the atmosphere in the space S is easily replaced with the inert gas. Therefore, the partial pressure of the solid-forming substance in the space S can be efficiently reduced.
  • the heat medium valve 81 is kept open. That is, the substrate heating process is continued in the second solid film vaporization removal process. Therefore, the sublimation of the second solid film 211 is promoted by heating the second solid film 211 with the heating medium (sublimation step, vaporization step).
  • the rotation speed of the spin base 21 is set to a predetermined sublimation speed.
  • the sublimation speed is, for example, 300 rpm.
  • the rotation of the substrate W promotes sublimation of the second solid film 211 (sublimation process, vaporization process).
  • the solid-state solid-forming substance located in the recess 162 of the concavo-convex pattern 160 is completely sublimated, and the second solid film 211 is removed (second removing step, Second solid film vaporization removal step) (see FIG. 9B).
  • the lower surface nozzle 13, the fourth tube 34 (center nozzle 12), the fifth tube 35 and the spin motor 23 function as a vaporization unit (sublimation unit).
  • the chamber 4 may be maintained in a depressurized state subsequent to the second solid film forming step (depressurizing step). This promotes sublimation of the second solid film 211. That is, the FFU 29 and the exhaust unit 8 function as a vaporization unit. In the second solid film vaporization removal step, it is preferable that the degree of pressure reduction is higher than that in the second solid film formation step.
  • the thicker the second mixed treatment liquid film 201 the larger the internal stress (strain) remaining in the second solid film 211.
  • the internal stress remaining in the second solid film 211 can be reduced.
  • the thinner the second solid film 211 is, the less residue remains on the upper surface of the substrate W after the second solid film vaporization removal step.
  • the second mixed treatment liquid film 201 By making the second mixed treatment liquid film 201 thin, the second solid film 211 can be made thin. This can suppress the generation of residues after the second solid film vaporization and removal step.
  • step S12 After the second solid film 211 is removed from the upper surface of the substrate W, the heat medium valve 81 is closed. Then, the drying process (step S12) and the substrate unloading (step S13) are performed.
  • the solvent in the first mixed processing liquid film 200 is evaporated on the upper surface of the substrate W, and the solid-forming substance is deposited.
  • the first solid film 210 is formed by evaporating the solvent in the first mixed treatment liquid film 200.
  • the first solid film 210 is peeled and removed from the upper surface of the substrate W by the action of the peeling liquid supplied to the upper surface of the substrate W. That is, it is possible to remove the first solid film 210 from the upper surface of the substrate W while maintaining the first solid film 210 in the solid state without dissolving the first solid film 210 on the substrate W.
  • the removal target 150 can be suppressed or prevented from falling off from the first solid film 210, and thus the removal target 150 can be suppressed or prevented from reattaching to the upper surface of the substrate W. Therefore, the upper surface of the substrate W can be cleaned well.
  • the second mixed processing liquid film 201 is formed by supplying the mixed processing liquid again to the upper surface of the substrate W. Then, the solvent is evaporated from the second mixed treatment liquid film 201 and the solid-forming substance is deposited, so that the second solid film 211 is formed.
  • the second solid film 211 is sublimated so as not to pass through the liquid state and removed from the upper surface of the substrate W. Therefore, the surface tension acting on the upper surface of the substrate W can be reduced. Therefore, the upper surface of the substrate W can be dried while suppressing or preventing the collapse of the uneven pattern 160 formed on the upper surface of the substrate W.
  • the upper surface of the substrate W can be cleaned well and the upper surface of the substrate W can be dried well.
  • the first solid film 210 that is peeled and removed and the second solid film 211 that is vaporized and removed are formed from the same kind of mixed treatment liquid. Therefore, the substrate processing apparatus 1P can be simplified as compared with the substrate processing in which the first solid film 110 and the second solid film 111 are formed by processing liquids of different types (chemical formulas of solid-forming substances are different). You can As a result, the device cost and the device footprint can be suppressed.
  • the substrate processing apparatus 1P in both the first liquid film forming step and the second liquid film forming step, the mixture supplied from the common processing liquid tank 90 to the central nozzle 12 is mixed.
  • the processing liquid is discharged toward the upper surface of the substrate W. Therefore, the processing liquid ejected from the central nozzle 12 in the first liquid film forming step and the processing liquid ejected from the central nozzle 12 in the second liquid film forming step are supplied to the central nozzle 12 from different processing liquid tanks.
  • the number of processing liquid tanks can be reduced as compared with the method described above. Therefore, the substrate processing apparatus 1P can be simplified.
  • the same kind of mixed treatment liquid means that the chemical formulas of the solid-forming substances in the mixed treatment liquid are the same, and "the mixed treatment liquid of different types” means the solid-forming substances of the solid treatment substance in the mixed treatment liquid. It means that the chemical formulas are different. Therefore, the mixed treatment liquid used for forming the first solid film 210 and the mixed treatment liquid used for forming the second solid film 211 may have different concentrations of solid-forming substances or different temperatures of the mixed treatment liquid. If the chemical formulas of the solid-forming substances of both mixed treatment liquids are the same, both mixed treatment liquids are the same kind of mixed treatment liquid.
  • the first solid film 210 to be stripped and removed and the second solid film 211 to be vaporized and removed are formed from the same mixed treatment liquid, if the first solid film 210 is stripped and removed by the stripping liquid, the substrate is removed. Even when the residue of the first solid film 210 is attached to the upper surface of W, when the second solid film 211 is vaporized and removed, the residue of the first solid film 210 is removed together with the second solid film 211. be able to. Therefore, the residue of the first solid film 210 can be surely removed from the upper surface of the substrate W, so that the upper surface of the substrate W can be washed well and the upper surface of the substrate W can be dried well. it can.
  • the removal target object 150 existing on the upper surface of the substrate W is held by the first solid film 210 when the first solid film 210 is formed, and the first solid film 210 is the substrate.
  • the first solid film 210 holding the removal target 150 is removed from the upper surface of the substrate W by the stripping solution. Therefore, it is possible to suppress or prevent the removal target 150 separated from the upper surface of the substrate W from reattaching to the upper surface of the substrate W.
  • the mixed treatment liquid is heated to evaporate the solvent to precipitate the solid-forming substance, whereby the first solid film is formed.
  • 210 and the second solid film 211 are formed respectively. That is, the first solid film 210 and the second solid film 211 can be formed by a common method of heating the mixed treatment liquid (evaporating the solvent). Therefore, similarly to the first embodiment, the substrate processing apparatus 1P can be simplified.
  • the solid-forming substance is a sublimable substance that sublimates from solid to gas.
  • the substrate heating step performed in the second deposition step is continued in the second solid film vaporization removal step. Therefore, the amount of heat accumulated in the substrate W by heating the substrate W to evaporate the solvent can be used for heating the second solid film 211. Therefore, in the second solid film vaporization removal step, the solid-forming substance in the second solid film 211 can be quickly sublimated. That is, the upper surface of the substrate W can be dried quickly. Therefore, the surface tension acting on the upper surface of the substrate W when the mixed processing liquid is removed from the substrate W can be further reduced.
  • both the rinse liquid and the mixed treatment liquid are treated.
  • Compatible liquid is supplied to the upper surface of the substrate W (first compatible liquid supplying step). Therefore, the degree of freedom in selecting the rinse liquid and the mixed treatment liquid is improved.
  • both the stripping solution and the mixed processing solution are provided after the stripping solution supply step is completed and before the second liquid film forming step is started.
  • a compatible liquid having compatibility with is supplied to the upper surface of the substrate W (second compatible liquid supply step). Therefore, the degree of freedom in selecting the stripping solution and the mixed processing solution is improved.
  • the lower surface nozzle 13 is an example of the solid forming unit.
  • the solid forming unit is not limited to the lower surface nozzle 13.
  • a hot plate 130 that faces the lower surface of the substrate W from below can also be used as a solid forming unit (heating unit).
  • the hot plate 130 is provided instead of the lower surface nozzle 13.
  • the hot plate 130 is arranged between the upper surface of the spin base 21 and the lower surface of the substrate W sandwiched by the plurality of chuck pins 20.
  • the upper surface 130a of the hot plate 130 faces the entire lower surface of the substrate W.
  • the hot plate 130 includes a plate body 131 and a heater 132.
  • the plate body 131 is slightly smaller than the substrate W in plan view.
  • the heater 132 may be a resistor built in the plate body 131. By energizing the heater 132, the hot plate 130 is heated. Then, electric power is supplied to the heater 132 from the heater energization unit 133 via the power supply line 134.
  • a hollow elevating shaft 135 extending in the vertical direction along the rotation axis A1 is coupled to the lower surface of the plate body 131.
  • the elevating shaft 135 has a through hole 21 a formed in the center of the spin base 21 and a hollow rotating shaft 22 inserted therethrough.
  • a heater elevating unit 136 for elevating the hot plate 130 relative to the spin base 21 is connected to the elevating shaft 135.
  • the heater elevating / lowering unit 136 includes, for example, a ball screw mechanism (not shown) and an electric motor (not shown) that gives a driving force to the ball screw mechanism.
  • the heater lifting unit 136 is also referred to as a heater lifter.
  • the hot plate 130 is arranged at a position in contact with the lower surface of the substrate W or a position close to the lower surface of the substrate W by the heater elevating / lowering unit 136, so that the mixed processing liquid on the substrate W is transferred via the substrate W. It can be heated.
  • the hot plate 130 may be configured to lift the substrate W from the chuck pins 20 and support the substrate W by the upper surface 130a while being raised to the upper position.
  • the plurality of chuck pins 20 can be opened and closed between a closed state in which the chuck W contacts the peripheral edge of the substrate W to grip the substrate W and an open state retracted from the peripheral edge of the substrate W.
  • FIG. 14 there is a built-in heater 140 built in the facing member 6.
  • the built-in heater 140 is arranged inside the facing member 6.
  • the built-in heater 140 moves up and down together with the facing member 6.
  • the built-in heater 140 faces the substrate W sandwiched by the plurality of chuck pins 20 from above.
  • the built-in heater 140 is a resistor. Electric power is supplied to the built-in heater 140 from the heater energizing unit 143 via the power supply line 144.
  • FIG. 15 is a schematic view of a substrate processing apparatus 1Q according to the third embodiment of the present invention.
  • FIG. 15 and FIGS. 16 and 17 to be described later configurations similar to the configurations shown in FIGS. 1 to 14 are given the same reference numerals as those in FIG. 1 and the like, and description thereof is omitted.
  • the substrate processing apparatus 1Q according to the third embodiment is different from the substrate processing apparatus 1 according to the first embodiment in that the substrate processing apparatus 1Q includes a wet processing unit 2W and a dry processing unit 2D. ..
  • the wet processing unit 2W has the same configuration as the processing unit 2 shown in FIG. 2 or the processing unit 2P shown in FIG. That is, the chamber 4 of the wet processing unit 2W is an example of a first chamber that houses the processing liquid supply unit, the solid forming unit, and the stripping liquid supply unit.
  • the dry processing unit 2D includes a processing gas pipe 190 for guiding the processing gas into the chamber 4D (second chamber) and a plasma generator 191 as a plasma unit for converting the processing gas in the chamber 4D into plasma.
  • a plasma generator 191 includes an upper electrode 192 arranged above the substrate W and a lower electrode 193 arranged below the substrate W and on which the substrate W is placed.
  • the plasma generator 191 changes the processing gas in the chamber 4D into plasma, and causes the second solid films 111 and 211 on the substrate W to be in a liquid state by a chemical reaction such as a decomposition reaction or an oxidation reaction due to oxygen radicals or the like. It can be vaporized without passing through.
  • the chamber W is shown in FIG.
  • the chemical treatment process (step S2) to the second solid film forming process (step S10) are performed. That is, the substrate W is held by the spin chuck 5 in the chamber 4 from the start of the chemical treatment step (step S2) to the end of the second solid film forming step (step S10) (first substrate holding step). ..
  • the substrate W having the second solid films 111 and 211 formed on the upper surface thereof is carried out from the chamber 4 of the wet processing unit 2W by the transfer robot CR, and is transferred to the chamber 4D of the dry processing unit 2D. It is carried in (conveyance process).
  • the transport robot CR is an example of a transport unit.
  • the second solid films 111 and 211 on the substrate W change into gas without passing through liquid due to a chemical reaction caused by plasma in the chamber 4D.
  • the second solid films 111 and 211 are removed from the substrate W (second solid film vaporization removal step).
  • the substrate W is placed (held) on the lower electrode 193 while the second solid film vaporization removal process is performed (second substrate holding process).
  • the substrate W is held in the chamber 4 (first chamber) of the wet processing unit 2W from the start of the first liquid film forming step to the end of the second solid film forming step, It is held in the chamber 4D (second chamber) of the dry processing unit 2D while the second solid film vaporization removing step is executed. Therefore, the configuration of the chamber 4D can be specialized for the vaporization of the second solid films 111 and 111 (for example, the configuration including the plasma generator 191 described above). Therefore, it is possible to vaporize the second solid films 111 and 211 and satisfactorily dry the upper surface of the substrate W.
  • the vaporization unit may be a unit other than the plasma generator 191.
  • the dry processing unit 2D irradiates the base 170 on which the substrate W is placed and the light irradiation lamp 171 that irradiates the upper surface of the substrate W held by the base 170 with light such as UV. May be included.
  • the second solid films 111 and 211 on the substrate W are decomposed by the irradiation of light and change into gas without passing through the liquid state.
  • the second solid films 111 and 211 are vaporized by a chemical reaction. Therefore, the solid-forming substance contained in the treatment liquid does not have to be a sublimable substance.
  • the dry processing unit 2D may include a hot plate 180 on which the substrate W is placed and which heats the substrate W, as a vaporization unit.
  • the hot plate 180 includes a plate body 181 and a heater 182 built in the plate body 181. By energizing the heater 182, the hot plate 180 is heated. Electric power is supplied to the heater 182 from the heater energization unit 183.
  • a mixed treatment liquid that forms the second solid film 211 by heating is used as the treatment liquid.
  • the second solid film 211 on the substrate W is sublimated without being in a liquid state by being heated by the hot plate 180 via the substrate W.
  • the chemical liquid is ejected from the first moving nozzle 10
  • the stripping liquid is ejected from the second moving nozzle 11
  • the treatment liquid mixed treatment liquid, melt treatment liquid
  • the rinse liquid The compatible liquid and the inert gas are discharged.
  • the processing fluid other than the chemical liquid may be discharged from the first moving nozzle 10
  • the processing fluid other than the stripping liquid may be discharged from the second moving nozzle 11.
  • the chemical liquid or the peeling liquid may be discharged from the central nozzle 12.
  • the IPA / DIW mixed liquid is discharged from the second moving nozzle 11 as the peeling liquid.
  • DIW as a rinse liquid supplied to the central nozzle 12 and IPA as a compatible liquid may be mixed and the IPA / DIW mixed liquid as a stripping liquid may be discharged from the central nozzle 12.
  • a liquid having compatibility with the rinse liquid, the processing liquid, and the stripping liquid is used as the compatible liquid.
  • the first compatible liquid that is compatible with both the rinse liquid and the processing liquid, and the second compatible liquid that is compatible with both the processing liquid and the stripping liquid. May be prepared as a different liquid.
  • first solid film 210 and the second solid film 211 according to the second embodiment may be formed by the solid-forming substance precipitated in the mixed treatment liquid by applying ultrasonic waves.
  • the first solid film 110 and the second solid film 111 according to the first embodiment may be formed by leaving the molten processing liquid supplied to the upper surface of the substrate W without cooling it. ..
  • a substance having a melting point (freezing point) higher than room temperature as a solid-forming substance constituting the melt-processed liquid.
  • the molten processing liquid that has landed on the upper surface of the substrate W is The upper surface of the substrate W is naturally cooled and solidified. As a result, the first solid film 110 or the second solid film 111 is formed.
  • first solid film 210 and the second solid film 211 according to the second embodiment may be formed by leaving the substrate W without blowing the gas, heating, rotating the substrate W, and the like. ..
  • the temperature of the gas supplied from the central nozzle 12 (fourth tube 34) or the fifth tube 35 to the space S may be set to a temperature higher than room temperature.
  • the evaporation of the solvent can be promoted to promote the formation of the first solid film 210 and the formation of the second solid film 211, respectively.
  • the second solid film vaporization / removal step is performed. Sublimation of 211 can be promoted.
  • an active gas such as ozone gas may be used as the gas supplied to the second solid films 111 and 211 to oxidize and vaporize the second solid films 111 and 211. ..
  • the first solid film 210 may be formed only by blowing a gas without using a heat medium.
  • the formation and vaporization of the first solid films 110 and 210 and the second solid films 111 and 211 can be performed by combining the methods described above.
  • the first solid film 110 which is a solidified body of the molten treatment liquid, is formed by at least natural cooling, cooling by the cooling plate 120 (see FIG. 10) or the facing member 6, and cooling by supplying the coolant (see FIG. 2). It can be performed using either method.
  • the vaporization of the second solid film 111 which is a solidified body of the molten treatment liquid, can be performed by using at least one of the methods of spraying gas, reducing the pressure of the atmosphere, and rotating the substrate W.
  • the formation of the second solid film 211 which is a precipitate from the mixed treatment liquid, is performed by heating with a heater (heater 132, built-in heater 140), heating by supplying a heat medium, blowing of gas, application of ultrasonic waves, and generation of an atmosphere. It can be performed by using at least one of the method of depressurization and the rotation of the substrate W.
  • the vaporization of the second solid film 211 is performed by heating with a heater (heater 132, built-in heater 140, heater 182), heating by supplying a heat medium, gas blowing, UV irradiation, plasma. At least one of irradiation, application of ultrasonic waves, decompression of the atmosphere, and rotation of the substrate W can be used.
  • the temperatures of the melt processing liquid used for forming the first solid film 110 and the melt processing liquid used for forming the second solid film 111 may be different from each other.
  • the concentration of the solid-forming substance in the mixed treatment liquid and the temperature of the mixed treatment liquid May be different from each other.
  • the chemical liquid processing step (step S2), the rinse step (step S3), and the first compatible liquid supply step (step). S4) is executed before the first liquid film forming step (step S5).
  • the chemical solution processing step (step S2) to the first compatible liquid supply step (step S4) are executed by another apparatus before being carried into the substrate processing apparatus 1, 1P, 1Q.
  • the substrate processing apparatus 1 is processed. It may be brought in. That is, in the substrate processing apparatus 1, 1P, 1Q, after the substrate is loaded (step S1), the chemical liquid processing step (step S2) to the first compatible liquid supply step (step S4) are not executed, and the first liquid film The forming process (step S5) may be performed.
  • the first compatible liquid supply step (step S4) can be omitted.
  • the second compatible liquid supply step (step S8) can be omitted.
  • the first compatible liquid supply step (step S4) can be omitted.
  • the second compatible liquid supply step (step S8) can be omitted.
  • substrate processing apparatus 1P substrate processing apparatus 1Q: substrate processing apparatus 4: chamber (first chamber) 4D: Chamber (second chamber) 8: Exhaust unit (solid forming unit, vaporizing unit) 11: Second moving nozzle (stripping liquid supply unit) 12: Central nozzle (discharge nozzle) 13: Lower surface nozzle (solid forming unit, vaporizing unit) 23: Spin motor (solid forming unit, vaporizing unit) 29: FFU (solid forming unit, vaporizing unit) 32: Second tube (treatment liquid supply unit) 34: Fourth tube (solid forming unit, vaporizing unit) 35: 5th tube (solid forming unit, vaporizing unit) 90: Treatment liquid tank 100: First molten treatment liquid film (first liquid film) 101: Second melt-processed liquid film (second liquid film) 110: first solid film 111: second solid film 120: cooling plate (solid forming unit) 130: Hot plate (solid forming unit, vaporizing unit) 140: Built-in heater (solid forming unit, vaporizing unit) 150: Object to

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板処理方法は、固体形成物質を含有する処理液を、基板の表面に供給することによって、前記処理液の第1液膜を前記基板の表面に形成する第1液膜形成工程と、固体状態の前記固体形成物質を含有する第1固体膜を前記第1液膜から形成する第1固体膜形成工程と、前記第1固体膜を剥離する剥離液を前記基板の表面に供給することによって、前記基板の表面から前記第1固体膜を剥離して除去する第1固体膜剥離除去工程と、前記第1固体膜を前記基板の表面から除去した後に、前記処理液を前記基板の表面に供給することによって、前記基板の表面に前記処理液の第2液膜を形成する第2液膜形成工程と、固体状態の前記固体形成物質を含有する第2固体膜を前記第2液膜から形成する第2固体膜形成工程と、液体状態を経ないように前記第2固体膜を気化させて、前記第2固体膜を前記基板の表面から除去する第2固体膜気化除去工程とを含む。

Description

基板処理方法および基板処理装置
 この発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象になる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等の基板が含まれる。
 半導体装置の製造工程では、基板に付着した各種汚染物、前工程で使用した処理液やレジスト等の残渣、あるいは各種パーティクル等(以下「除去対象物」と総称する場合がある。)を除去するために、洗浄工程が実施される。その後、基板の上面を乾燥するために基板を高速回転させるスピンドライ工程が行われる。
 洗浄工程では、脱イオン水(DIW:Deionized Water)等の洗浄液を基板に供給することにより、除去対象物を洗浄液の物理的作用によって除去したり、除去対象物と化学的に反応する薬液を基板に供給することにより、当該除去対象物を化学的に除去したりすることが一般的である。
 しかし、基板上に形成されるパターンの微細化および複雑化が進んでいるため、除去対象物を洗浄液の物理的作用または薬液の化学的作用で除去することが容易でなくなりつつある。
 そこで、基板の上面に成膜用処理液を供給して、当該成膜用処理液を固化または硬化させたトップコート膜を基板上に形成した後、除去液によって当該トップコート膜を溶解して除去する手法が提案されている(下記特許文献1)。
米国特許出願公開第2014/041685号明細書
 ところが、特許文献1に記載の方法では、除去液を基板の上面に供給することによって、トップコート膜を基板の上で溶解させるため、溶解しつつあるトップコート膜から除去対象物が脱落して、その脱落した除去対象物が基板に再付着するおそれがある。したがって、基板の表面を良好に洗浄できないおそれがある。
 しかも、除去対象物の除去のために用いた除去液を洗い流すためのリンス液は、パターン内部に入り込む。そして、基板上からリンス液を除去するために、スピンドライ工程が実行される。スピンドライ工程において、パターン内部に入り込んだ液体の表面張力がパターンに作用する。この表面張力により、パターンが倒壊するおそれがある。
 詳しくは、図18に示すように、基板の表面を乾燥させる際には、パターン内部に入り込んだ液体の液面(空気と液体との界面)が、パターン内に形成される。そのため、液面とパターンとの接触位置に、液体の表面張力が働く。この表面張力が大きい場合には、パターンの倒壊が起こりやすい。典型的なリンス液であるDIWは、表面張力が大きいために、スピンドライ工程におけるパターンの倒壊が無視できない。
 そこで、この発明の1つの目的は、パターン倒壊を抑制しつつ、基板の表面を良好に洗浄することができる基板処理方法および基板処理装置を提供することである。
 この発明の一実施形態は、固体形成物質を含有する処理液を、基板の表面に供給することによって、前記処理液の第1液膜を前記基板の表面に形成する第1液膜形成工程と、固体状態の前記固体形成物質を含有する第1固体膜を前記第1液膜から形成する第1固体膜形成工程と、前記第1固体膜を剥離する剥離液を前記基板の表面に供給することによって、前記基板の表面から前記第1固体膜を剥離して除去する第1固体膜剥離除去工程と、前記第1固体膜を前記基板の表面から除去した後に、前記処理液を前記基板の表面に供給することによって、前記基板の表面に前記処理液の第2液膜を形成する第2液膜形成工程と、固体状態の前記固体形成物質を含有する第2固体膜を前記第2液膜から形成する第2固体膜形成工程と、液体状態を経ないように前記第2固体膜を気化させて、前記第2固体膜を前記基板の表面から除去する第2固体膜気化除去工程とを含む、基板処理方法を提供する。
 この方法によれば、基板の表面において処理液の第1液膜から第1固体膜が形成される。そして、第1固体膜は、基板の表面に供給された剥離液の作用によって基板の表面から剥離されて除去される。つまり、第1固体膜を固体状態に維持したまま基板の表面から除去することができる。そのため、第1固体膜からの除去対象物の脱落を抑制または防止できるので、除去対象物が基板の表面に再付着することを抑制または防止することができる。したがって、基板の表面を良好に洗浄することができる。
 第1固体膜が基板の表面から除去された後、基板の表面に同種の処理液を再び供給することによって、処理液の第2液膜が形成される。そして、第2液膜から第2固体膜が形成される。第2固体膜は、液体状態を経ないように気化されて基板の表面から除去される。そのため、処理液から基板の表面に作用する表面張力を、低減することができる。したがって、基板の表面に形成されたパターンの倒壊を抑制または防止することができる。
 以上により、基板の表面を良好に洗浄することができ、かつ、基板の表面を良好に乾燥することができる。
 また、この基板処理によれば、剥離除去される第1固体膜と、気化除去される第2固体膜とが同種の処理液から形成される。そのため、第1固体膜と第2固体膜とが互いに異なる種類の処理液によって形成される基板処理と比較して、基板処理に用いられる装置を簡素化することができる。これにより、装置コストや装置のフットプリント(設置面積)を抑えることができる。
 なお、「同種の処理液」とは、処理液中の固体形成物質の化学式が同じであることをいい、「種類が異なる処理液」とは、処理液中の固体形成物質の化学式が異なっていることをいう。そのため、第1固体膜の形成に用いられる処理液と、第2固体膜の形成に用いられる処理液とで、固体形成物質の濃度や処理液の温度が互いに異なっていても、両処理液中の固体形成物質の化学式が同じであれば、両処理液は、互いに同種の処理液である。
 この発明の一実施形態では、前記第1固体膜形成工程が、前記基板の表面に存在する除去対象物を保持する前記第1固体膜を形成する工程を含む。そして、前記第1固体膜剥離除去工程が、前記除去対象物を保持した状態の前記第1固体膜を前記基板の表面から剥離する工程を含む。
 この方法によれば、基板の表面に存在する除去対象物は、第1固体膜が形成される際に第1固体膜によって保持され、第1固体膜が基板の表面から剥離される際に基板の表面から引き離される。その後、除去対象物を保持した状態の第1固体膜が、剥離液によって基板の表面から除去される。そのため、基板の表面から引き離された除去対象物が基板の表面に再付着することを抑制または防止することができる。
 この発明の一実施形態では、前記処理液が、前記固体形成物質の融液である。そして、前記基板処理方法が、前記第1固体膜形成工程において、前記第1液膜が凝固するように前記第1液膜を冷却する第1冷却工程と、前記第2固体膜形成工程において、前記第2液膜が凝固するように前記第2液膜を冷却する第2冷却工程とをさらに含む。
 この方法によれば、第1液膜が凝固するように第1液膜を冷却することによって第1固体膜が形成され、第2液膜が凝固するように第2液膜を冷却することによって第2固体膜が形成される。つまり、融液の冷却という共通の手法によって、第1固体膜および第2固体膜を形成することができる。
 ここで、第1固体膜および第2固体膜が互いに異なる手法によって形成される場合、それぞれの手法に必要なユニットを、基板処理に用いられる装置に設けなければならない。たとえば、第1固体膜および第2固体膜のいずれか一方が処理液の加熱によって形成され、かつ、もう一方が処理液の冷却によって形成される場合、基板上の処理液を加熱するためのユニット、および基板上の処理液を冷却するためのユニットの両方が必要となる。
 そこで、融液の冷却という共通の手法によって第1固体膜および第2固体膜を形成することができれば、基板上の処理液を冷却するためのユニットのみを設ければ済む。そのため、第1固体膜および第2固体膜が互いに異なる手法によって形成される場合と比較して、基板処理に用いられる装置を簡素化することができる。
 この発明の一実施形態では、前記第1冷却工程が、前記第1固体膜剥離除去工程においても継続される。これにより、第1固体膜剥離除去工程の実行中においても、基板上の固体形成物質を溶融させることなく固体状態に維持することができる。そのため、第1固体膜を固体状態に確実に維持したまま基板の表面から除去することができる。したがって、第1固体膜からの除去対象物の脱落を一層抑制または防止し、除去対象物の基板表面への再付着を一層抑制または防止することができる。
 この発明の一実施形態では、前記第2冷却工程が、前記第2固体膜気化除去工程においても継続される。これにより、第2固体膜気化除去工程の実行中においても、基板上の固体形成物質を溶融させることなく固体状態に維持することができる。そのため、第2固体膜が液体に変化することを抑制または防止しながら第2固体膜を気化させることができる。したがって、基板の表面に作用する処理液の表面張力を、一層低減することができる。
 この発明の一実施形態では、前記処理液が、溶質としての前記固体形成物質と、前記固体形成物質を溶解させる溶媒とを含む。そして、前記基板処理方法が、前記第1固体膜形成工程において、前記第1液膜から前記溶媒を蒸発させて前記固体形成物質を析出させる第1析出工程と、前記第2固体膜形成工程において、前記第2液膜から前記溶媒を蒸発させて前記固体形成物質を析出させる第2析出工程とをさらに含む。
 この方法によれば、第1固体膜形成工程および第2固体膜形成工程において、処理液中の溶媒を蒸発させて固体形成物質を析出させることによって、第1固体膜および第2固体膜がそれぞれ形成される。つまり、溶媒の蒸発という共通の手法によって、第1固体膜および第2固体膜を形成することができる。そのため、第1固体膜および第2固体膜が互いに異なる手法によって形成される場合と比較して、基板処理に用いられる装置を簡素化することができる。
 この発明の一実施形態では、前記固体形成物質が、固体から気体に昇華する昇華性物質である。前記基板処理方法が、前記第2析出工程において前記第2液膜からの前記溶媒の蒸発が促進されるように前記基板を加熱する基板加熱工程をさらに含む。さらに、前記基板加熱工程が、前記第2固体膜気化除去工程においても継続される。
 この方法によれば、第2析出工程において行われる基板の加熱が、第2固体膜気化除去工程においても継続される。そのため、溶媒を蒸発させるために基板を加熱することによって基板に蓄積された熱量を、第2固体膜の加熱に利用することができる。そのため、第2固体膜気化除去工程において、第2固体膜中の固体形成物質を速やかに昇華させることができる。
 この発明の一実施形態では、前記第1液膜形成工程および前記第2液膜形成工程では、共通の処理液タンクから吐出ノズルに前記処理液が供給され、前記吐出ノズルから前記基板の表面に向けて前記処理液が吐出される。
 この方法によれば、第1液膜形成工程および第2液膜形成工程のいずれにおいても、共通の処理液タンクから吐出ノズルに供給された処理液が基板の表面に向けて吐出される。そのため、第1液膜形成工程において吐出ノズルから基板の表面に向けて吐出される処理液と、第2液膜形成工程において吐出ノズルから基板の表面に向けて吐出される処理液とが、別々の処理液タンクから吐出ノズルに供給される方法と比較して、処理液タンクの数を減らすことができる。したがって、基板処理に用いられる装置を簡素化することができる。
 この発明の一実施形態では、前記基板処理方法が、前記第1液膜形成工程の開始前に前記基板の表面に薬液を供給する薬液供給工程と、前記薬液供給工程の終了後で、かつ、前記第1液膜形成工程の開始前に、前記基板の表面に付着した前記薬液を洗い流すリンス液を前記基板の表面に供給するリンス液供給工程と、前記リンス液供給工程の終了後で、かつ、前記第1液膜形成工程の開始前に、前記リンス液および前記処理液の両方に対して相溶性を有する第1相溶性液体を前記基板の表面に供給する第1相溶性液体供給工程とをさらに含む。
 この方法によれば、第1相溶性液体が、リンス液と処理液との両方に対して相溶性を有する。そのため、リンス液と処理液とが混和しにくい場合であっても、基板上のリンス液を第1相溶性液体で置換し、その後、基板上の第1相溶性液体を処理液で置換することで、基板上のリンス液を処理液に置換することができる。そのため、リンス液と処理液とが混和するか否かに関係なく、リンス液および処理液を選択することができる。したがって、基板の表面に処理液を供給する前に基板の表面を薬液で処理する場合において、リンス液および処理液の選択の自由度が向上される。
 この発明の一実施形態では、前記基板処理方法が、前記第1固体膜剥離除去工程の終了後であって、かつ、前記第2液膜形成工程の開始前に、前記剥離液および前記処理液の両方に対して相溶性を有する第2相溶性液体を前記基板の表面に供給する第2相溶性液体供給工程をさらに含む。
 この方法によれば、第2相溶性液体が、剥離液および処理液の両方に対して相溶性を有する。したがって、剥離液と処理液とが混和しにくい場合であっても、基板上の剥離液を第2相溶性液体で置換し、その後、基板上の第2相溶性液体を処理液で置換することによって、基板上の剥離液を処理液で置換することができる。そのため、剥離液と処理液とが混和するか否かに関係なく、剥離液および処理液を選択することができる。したがって、剥離液および処理液の選択の自由度が向上される。
 この発明の一実施形態では、前記基板処理方法が、前記第1液膜形成工程の開始から前記第2固体膜形成工程の終了までの間、前記基板を第1チャンバ内に保持する第1基板保持工程と、前記第2固体膜が形成された状態の前記基板を、前記第1チャンバから第2チャンバに搬送する搬送工程と、前記第2固体膜気化除去工程が実行される間、前記第2チャンバ内に保持する第2基板保持工程とをさらに含む。
 この方法によれば、基板は、第1液膜形成工程の開始から第2固体膜形成工程の終了までの間、第1チャンバ内に保持され、第2固体膜気化除去工程が実行される間、第2チャンバ内に保持される。そのため、第2チャンバの構成を第2固体膜の気化に特化したものとすることができる。したがって、第2チャンバ内で第2固体膜を気化させて基板の表面を良好に乾燥させることができる。
 この発明の一実施形態は、固体形成物質を含有する処理液を、基板の表面に供給する処理液供給ユニットと、前記基板の表面上の前記処理液から固体状態の前記固体形成物質を形成する固体形成ユニットと、固体状態の前記固体形成物質を前記基板の表面から剥離する剥離液を前記基板の表面に供給する剥離液供給ユニットと、前記基板の表面上で固体状態の前記固体形成物質を、液体状態を経ないように気化させる気化ユニットと、前記処理液供給ユニット、前記固体形成ユニット、前記剥離液供給ユニットおよび前記気化ユニットを制御するコントローラとを含む、基板処理装置を提供する。
 そして、前記コントローラが、前記処理液を前記処理液供給ユニットから前記基板の表面に供給し、前記処理液の第1液膜を前記基板の表面に形成する第1液膜形成工程と、前記固体形成ユニットによって、固体状態の前記固体形成物質を含有する第1固体膜を前記第1液膜から形成する第1固体膜形成工程と、前記剥離液供給ユニットから前記基板の上面に前記剥離液を供給することによって、前記基板の表面から前記第1固体膜を剥離して除去する第1固体膜剥離除去工程と、前記第1固体膜を前記基板の表面から除去した後に、前記処理液供給ユニットから前記基板の表面に前記処理液を供給することによって、前記処理液の第2液膜を前記基板の表面に形成する第2液膜形成工程と、前記固体形成ユニットによって、固体状態の前記固体形成物質を含有する第2固体膜を前記第2液膜から形成する第2固体膜形成工程と、前記第2固体膜を前記気化ユニットによって気化させて前記基板の表面から前記第2固体膜を除去する第2固体膜気化除去工程とを実行する。
 この構成によれば、基板の表面において処理液の第1液膜から第1固体膜が形成される。そして、第1固体膜は、基板の表面に供給された剥離液の作用によって基板の表面から剥離されて除去される。つまり、第1固体膜を固体状態に維持したまま基板の表面から除去することができる。そのため、第1固体膜からの除去対象物の脱落を抑制または防止できるので、除去対象物の基板表面への再付着を抑制または防止することができる。したがって、基板の表面を良好に洗浄することができる。
 第1固体膜が基板の表面から除去された後、基板の表面に同種の処理液を再び供給することによって、処理液の第2液膜が形成される。そして、第2液膜から第2固体膜が形成される。第2固体膜は、液体状態を経ないように気化されて基板の表面から除去される。そのため、基板の表面に作用する処理液の表面張力を、低減することができる。したがって、基板の表面に形成されたパターンの倒壊を抑制または防止しつつ基板の表面を乾燥させることができる。
 以上により、基板の表面を良好に洗浄することができ、かつ、基板の表面を良好に乾燥することができる。
 また、この構成によれば、剥離除去される第1固体膜と、気化除去される第2固体膜とが同種の処理液から形成される。そのため、第1固体膜と第2固体膜とが互いに異なる処理液によって形成される基板処理と比較して、基板処理に用いられる装置を簡素化することができる。これにより、基板処理装置のコストやフットプリントを抑えることができる。
 この発明の一実施形態では、前記基板処理装置が、前記処理液が貯留された処理液タンクをさらに含む。そして、前記処理液供給ユニットが、前記処理液を前記基板の表面に吐出する吐出ノズルを含む。そして、前記コントローラが、前記第1液膜形成工程および前記第2液膜形成工程において、前記処理液タンクから前記吐出ノズルに供給された前記処理液を、前記吐出ノズルから前記基板の表面に向けて吐出させる。
 この構成によれば、第1液膜形成工程および第2液膜形成工程のいずれにおいても、共通の処理液タンクから吐出ノズルに供給された処理液が基板の表面に向けて吐出される。そのため、第1液膜形成工程において吐出ノズルから基板の表面に向けて吐出される処理液と、第2液膜形成工程において吐出ノズルから基板の表面に向けて吐出される処理液とが、別々の処理液タンクから吐出ノズルに供給される構成と比較して、処理液タンクの数を減らすことができる。したがって、基板処理装置を簡素化することができる。
 この発明の一実施形態では、前記基板処理装置が、前記処理液供給ユニット、前記固体形成ユニットおよび前記剥離液供給ユニットを収容する第1チャンバと、前記気化ユニットを収容する第2チャンバと、前記第1チャンバから前記第2チャンバに前記基板を搬送する搬送ユニットとをさらに含む。
 そして、前記コントローラが、前記第1液膜形成工程の開始から前記第2固体膜形成工程の終了までの間、前記基板を前記第1チャンバ内に保持する第1基板保持工程と、前記第2固体膜が形成された状態の前記基板を、前記搬送ユニットによって、前記第1チャンバから第2チャンバに搬送する搬送工程と、前記第2固体膜気化除去工程が実行される間、前記第2チャンバ内に保持する第2基板保持工程とを実行する。
 この構成によれば、基板は、第1液膜形成工程の開始から第2固体膜形成工程の終了までの間、第1チャンバ内に保持され、第2固体膜気化除去工程が実行される間、第2チャンバ内に保持される。そのため、第2チャンバの構成を第2固体膜の気化に特化したものとすることができる。したがって、第2チャンバ内で第2固体膜を気化させて基板の表面を良好に乾燥させることができる。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、この発明の第1実施形態に係る基板処理装置の内部のレイアウトを示す模式的な平面図である。 図2は、前記基板処理装置に備えられた処理ユニットの模式図である。 図3は、前記処理ユニットに備えられた中央ノズルに処理液を供給する構成を示す模式図である。 図4は、前記基板処理装置の主要部の電気的構成を示すブロック図である。 図5は、前記基板処理装置で処理される基板のパターン面の構造の一例を説明するための模式的な断面図である。 図6は、前記基板処理装置による基板処理の一例を説明するための流れ図である。 図7Aは、前記基板処理を示す図解的な断面図である。 図7Bは、前記基板処理を示す図解的な断面図である。 図7Cは、前記基板処理を示す図解的な断面図である。 図7Dは、前記基板処理を示す図解的な断面図である。 図7Eは、前記基板処理を示す図解的な断面図である。 図7Fは、前記基板処理を示す図解的な断面図である。 図7Gは、前記基板処理を示す図解的な断面図である。 図7Hは、前記基板処理を示す図解的な断面図である。 図7Iは、前記基板処理を示す図解的な断面図である。 図7Jは、前記基板処理を示す図解的な断面図である。 図7Kは、前記基板処理を示す図解的な断面図である。 図7Lは、前記基板処理を示す図解的な断面図である。 図8Aは、前記基板処理における第1固体膜の剥離の様子を示す図解的な断面図である。 図8Bは、前記基板処理における第1固体膜の剥離の様子を示す図解的な断面図である。 図9Aは、前記基板処理における第2固体膜の気化の様子を示す図解的な断面図である。 図9Bは、前記基板処理における第2固体膜の気化の様子を示す図解的な断面図である。 図10は、第1実施形態に係る処理ユニットに備えられた固体形成ユニットの変形例を示す模式図である。 図11は、この発明の第2実施形態に係る基板処理装置に備えられた処理ユニットの模式図である。 図12Aは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Bは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Cは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Dは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Eは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Fは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Gは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Hは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図12Iは、第2実施形態に係る基板処理装置による基板処理を示す図解的な断面図である。 図13は、第2実施形態に係る処理ユニットに備えられた固体形成ユニットの変形例を示す模式図である。 図14は、第2実施形態に係る処理ユニットに備えられた固体形成ユニットの別の変形例を示す模式図である。 図15は、この発明の第3実施形態に係る基板処理装置の模式図である。 図16は、第3実施形態に係る基板処理装置の変形例を示す模式図である。 図17は、第3実施形態に係る基板処理装置の別の変形例を示す模式図である。 図18は、表面張力によるパターン倒壊の原理を説明するための図解的な断面図である。
 <第1実施形態>
 図1は、この発明の第1実施形態に係る基板処理装置1の内部のレイアウトを示す模式的な平面図である。基板処理装置1は、シリコンウエハ等の基板Wを一枚ずつ処理する枚葉式の装置である。基板処理装置1は、常温(23℃またはその近傍の値)に維持されたクリーンルーム内に配置されている。図1を参照して、基板処理装置1は、処理流体で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御するコントローラ3とを含む。
 搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。処理流体には、後述する、溶融処理液、混合処理液、リンス液、剥離液、相溶性液体、熱媒、冷媒等の液体や不活性ガス等の気体が含まれる。
 図2は、処理ユニット2の構成例を説明するための模式図である。処理ユニット2は、内部空間を有するチャンバ4と、チャンバ4内で基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック5と、スピンチャック5に保持されている基板Wの上面に対向する対向部材6と、基板Wから外方に飛散する液体を受け止める筒状の処理カップ7と、チャンバ4内の雰囲気を排気する排気ユニット8とを含む。
 チャンバ4は、基板Wが通過する搬入搬出口24aが設けられた箱型の隔壁24と、搬入搬出口24aを開閉するシャッタ25と、隔壁24の上部から隔壁24内(チャンバ4内に相当)に清浄空気を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)29とを含む。FFU29によってろ過された空気であるクリーンエアは、隔壁24の上部からチャンバ4内に供給される。
 スピンチャック5は、基板Wを水平に保持する基板保持ユニットの一例である。基板保持ユニットは、基板ホルダともいう。スピンチャック5は、複数のチャックピン20と、スピンベース21と、回転軸22と、スピンモータ23とを含む。
 回転軸22は、回転軸線A1に沿って鉛直方向に延びている。回転軸22の上端部は、スピンベース21の下面中央に結合されている。平面視におけるスピンベース21の中央領域には、スピンベース21を上下に貫通する貫通孔21aが形成されている。貫通孔21aは、回転軸22の内部空間22aと連通している。
 スピンモータ23は、回転軸22に回転力を与える。スピンモータ23によって回転軸22が回転されることにより、スピンベース21が回転される。これにより、基板Wが回転軸線A1のまわりに回転される。スピンモータ23は、基板Wを回転軸線A1のまわりに回転させる基板回転ユニットに含まれる。
 処理カップ7は、スピンチャック5に保持された基板Wから外方に飛散する液体を受け止める複数のガード71と、複数のガード71によって下方に案内された液体を受け止める複数のカップ72と、複数のガード71と複数のカップ72とを取り囲む円筒状の外壁部材73とを含む。この実施形態では、2つのガード71(第1ガード71Aおよび第2ガード71B)と、2つのカップ72(第1カップ72Aおよび第2カップ72B)とが設けられている例を示している。
 第1カップ72Aおよび第2カップ72Bのそれぞれは、上向きに開放された溝状の形態を有している。第1ガード71Aは、スピンベース21を取り囲む。第2ガード71Bは、第1ガード71Aよりも径方向外方でスピンベース21を取り囲む。第1カップ72Aは、第1ガード71Aによって下方に案内された液体を受け止める。第2カップ72Bは、第1ガード71Aと一体に形成されており、第2ガード71Bによって下方に案内された液体を受け止める。
 処理ユニット2は、第1ガード71Aおよび第2ガード71Bをそれぞれ別々に昇降させるガード昇降ユニット74を含む。第1ガード71Aは、下位置と上位置との間で昇降する。第2ガード71Bは、下位置と上位置との間で昇降する。
 ガード昇降ユニット74は、たとえば、第1ガード71Aに取り付けられた第1ボールねじ機構(図示せず)と、第1ボールねじに駆動力を与える第1モータ(図示せず)と、第2ガード71Bに取り付けられた第2ボールねじ機構(図示せず)と、第2ボールねじ機構に駆動力を与える第2モータ(図示せず)とを含む。ガード昇降ユニット74は、ガードリフタともいう。
 排気ユニット8は、処理カップ7の外壁部材73の底部に接続された排気ダクト26と、排気ダクト26を開閉する排気バルブ27とを含む。排気ダクト26は、たとえば、チャンバ4内を吸引する排気装置28に接続されている。排気装置28は、基板処理装置1の一部であってもよいし、基板処理装置1とは別に設けられていてもよい。排気装置28が基板処理装置1の一部である場合、排気装置28は、たとえば、真空ポンプ等である。
 チャンバ4内の気体は、排気ダクト26を通じてチャンバ4から排出される。これにより、クリーンエアのダウンフローがチャンバ4内に常時形成される。排気バルブ27の開度を調整することによって、排気ダクト26を流れる気体の流量(排気流量)を調整することができる。
 排気バルブ27を調整して排気流量を調整することによって、チャンバ4の内部の圧力が変更される。つまり、チャンバ4の内部の圧力が、コントローラ3によって変更される。たとえば、排気バルブ27を調整して排気流量を大きくすることによって、チャンバ4内を減圧することができる。
 対向部材6は、スピンチャック5に保持された基板Wに上方から対向する。対向部材6は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状に形成され、スピンチャック5の上方でほぼ水平に配置されている。対向部材6は、基板Wの上面(上側の表面)に対向する対向面6aを有する。
 対向部材6において対向面6aとは反対側には、中空軸60が固定されている。対向部材6において平面視で回転軸線A1と重なる位置を含む部分には、対向部材6を上下に貫通し、中空軸60の内部空間と連通する連通孔が形成されている。
 対向部材6は、対向部材6の対向面6aと基板Wの上面との間の空間S内の雰囲気を当該空間の外部の雰囲気から遮断する。そのため、対向部材6は、遮断板とも呼ばれる。
 処理ユニット2は、対向部材6の昇降を駆動する対向部材昇降ユニット61をさらに含む。対向部材昇降ユニット61は、下位置から上位置までの任意の位置(高さ)に対向部材6を位置させることができる。下位置とは、対向部材6の可動範囲において、対向部材6の対向面6aが基板Wに最も近接する位置である。上位置とは、対向部材6の可動範囲において対向部材6の対向面6aが基板Wから最も離間する位置である。
 対向部材昇降ユニット61は、たとえば、中空軸60を支持する支持部材(図示せず)に取り付けられたボールねじ機構(図示せず)と、当該ボールねじ機構に駆動力を与える電動モータ(図示せず)とを含む。対向部材昇降ユニット61は、対向部材リフタ(遮断板リフタ)ともいう。
 処理ユニット2は、少なくとも水平方向に移動可能な第1移動ノズル10と、少なくとも水平方向に移動可能な第2移動ノズル11と、基板Wの上面の中央領域に対向する中央ノズル12と、基板Wの下面(下側の表面)の中央領域に対向する下面ノズル13とを含む。基板Wの上面の中央領域とは、基板Wの上面において基板Wの回転中心を含む領域のことである。基板Wの上面の回転中心とは、基板Wの上面と回転軸線A1との交差位置である。基板Wの下面の中央領域とは、基板Wの下面において基板Wの回転中心を含む領域のことである。基板Wの下面の回転中心とは、基板Wの下面と回転軸線A1との交差位置である。
 第1移動ノズル10は、基板Wの上面に向けて薬液を供給(吐出)する薬液供給ユニットの一例である。
 第1移動ノズル10は、第1ノズル移動ユニット36によって、水平方向および鉛直方向に移動される。第1移動ノズル10は、中心位置と、ホーム位置(退避位置)との間で移動することができる。第1移動ノズル10は、中心位置に位置するとき、基板Wの上面の回転中心に対向する。
 第1移動ノズル10は、ホーム位置に位置するとき、基板Wの上面には対向せず、平面視において、処理カップ7の外方に位置する。第1移動ノズル10は、鉛直方向への移動によって、基板Wの上面に接近したり、基板Wの上面から上方に退避したりできる。
 第1ノズル移動ユニット36は、たとえば、鉛直方向に沿う回動軸(図示せず)と、回動軸に結合されて水平に延びるアーム(図示せず)と、回動軸を昇降させたり回動させたりする回動軸駆動ユニット(図示せず)とを含む。
 回動軸駆動ユニットは、回動軸を鉛直な回動軸線まわりに回動させることによってアームを揺動させる。さらに、回動軸駆動ユニットは、回動軸を鉛直方向に沿って昇降することにより、アームを上下動させる。第1移動ノズル10はアームに固定される。アームの揺動および昇降に応じて、第1移動ノズル10が水平方向および鉛直方向に移動する。
 第1移動ノズル10は、薬液を案内する薬液配管40に接続されている。薬液配管40に介装された薬液バルブ50が開かれると、薬液が、第1移動ノズル10から下方に連続的に吐出される。
 第1移動ノズル10から吐出される薬液は、たとえば、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえば、クエン酸、蓚酸等)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイド等)、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液である。これらを混合した薬液の例としては、SPM液(sulfuric acid/hydrogen peroxide mixture:硫酸過酸化水素水混合液)、SC1液(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水混合液)等が挙げられる。
 中央ノズル12は、対向部材6の中空軸60の内部空間60aに収容されている。中央ノズル12の先端に設けられた吐出口12aは、基板Wの上面の中央領域に上方から対向する。
 中央ノズル12は、処理流体を下方に吐出する複数のチューブ(第1チューブ31、第2チューブ32、第3チューブ33および第4チューブ34)と、複数のチューブを取り囲む筒状のケーシング30とを含む。複数のチューブおよびケーシング30は、回転軸線A1に沿って上下方向に延びている。中央ノズル12の吐出口12aは、複数のチューブの吐出口でもある。
 第1チューブ31は、DIW等のリンス液を基板Wの上面に供給するリンス液供給ユニットの一例である。第2チューブ32は、処理液を基板Wの上面に供給する処理液供給ユニットの一例である。この実施形態では、処理液は、固体形成物質の融液である溶融処理液である。そのため、第2チューブ32は、溶融処理液供給ユニットでもある。
 第3チューブ33は、リンス液および溶融処理液の両方に対して相溶性を有するIPA等の相溶性液体を基板Wの上面に供給する相溶性液体供給ユニットの一例である。第4チューブ34は、基板Wの上面と対向部材6の対向面6aとの間の空間Sに気体を供給する気体供給ユニットとしての一例である。
 第1チューブ31は、リンス液を第1チューブ31に案内するリンス液配管44に接続されている。リンス液配管44に介装されたリンス液バルブ54が開かれると、リンス液が、第1チューブ31(中央ノズル12)から基板Wの上面の中央領域に向けて連続的に吐出される。
 第1チューブ31から吐出されるリンス液は、DIWに限られない。第1チューブ31から吐出されるリンス液の例としては、DIWの他に、炭酸水、電解イオン水、希釈濃度(たとえば、1ppm~100ppm程度)の塩酸水、希釈濃度(たとえば、1ppm~100ppm程度)のアンモニア水、還元水(水素水)等が挙げられる。
 第2チューブ32は、溶融処理液を第2チューブ32に案内する処理液配管45の一端に接続されている。図3に示すように、処理液配管45の他端は、溶融処理液が貯留される処理液タンク90に接続されている。処理液タンク90は、チャンバ4に隣接して配置された流体ボックス9(図1も参照)内に配置されている。処理液タンク90には、新液バルブ92が介装された新液配管91が接続されている。新液バルブ92が開かれることで、新たな溶融処理液が、新液配管91を介して、処理液供給源93から処理液タンク90に供給される。
 処理液配管45には、ポンプ94、フィルタ95および処理液バルブ55が介装されている。処理液バルブ55が開かれると、処理液タンク90内の溶融処理液がポンプ94によって処理液配管45に送られる。処理液配管45に送られた溶融処理液は、フィルタ95を通った後、第2チューブ32(中央ノズル12)に供給される。第2チューブ32に供給された溶融処理液は、中央ノズル12から基板Wの上面の中央領域に向けて連続的に吐出される。
 前述したように、基板処理装置1が配置されたクリーンルーム内は、常温に維持されている。そのため、固体形成物質の凝固点が常温よりも低い温度であれば、固体形成物質は、加熱しなくても液体(融液)に維持される。そのため、この実施形態では、固体形成物質は、凝固点が常温よりも低いことが好ましい。固体形成物質が昇華可能な昇華性物質であれば、不活性ガスの吹き付け、周囲の雰囲気の減圧、加熱によって、固体状態の固体形成物質を容易に昇華させることができる。そのため、固体形成物質は、昇華性物質であることが好ましい。ここで、「昇華」とは、固体が、液体状態を経ずに気体に変化することをいい、気化の一態様である。
 常温で融液となる昇華性物質としては、たとえば、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,4-ジオキサン、シクロヘキサン、酢酸、炭酸ジメチル等が挙げられる。1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンは、20℃での蒸気圧が約8266Pa、融点((凝固点)1気圧での凝固点。以下同様。)が20.5℃、沸点が82.5℃である。そのため、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンは、たとえば、20.5℃以下に冷却することによって、固体状態に状態変化する。
 第3チューブ33は、IPA等の相溶性液体を第3チューブ33に案内する相溶性液体配管46に接続されている。相溶性液体配管46に介装された相溶性液体バルブ56が開かれると、相溶性液体が、第3チューブ33(中央ノズル12)から基板Wの上面の中央領域に向けて連続的に吐出される。相溶性液体は、リンス液および溶融処理液に加えて、後述する剥離液に対する相溶性も有している。
 第3チューブ33から吐出される相溶性液体は、IPAに限られない。第3チューブ33から吐出される相溶性液体の例としては、IPA、HFE(ハイドロフルオロエーテル)、メタノール、エタノール、アセトンおよびTrans-1,2-ジクロロエチレンのうちの少なくとも1つを含む液等が挙げられる。
 第4チューブ34は、気体を第4チューブ34に案内する第1気体配管47に接続されている。第1気体配管47に介装された第1気体バルブ57が開かれると、気体が、第4チューブ34(中央ノズル12)から下方に連続的に吐出される。
 第4チューブ34から吐出される気体は、たとえば、窒素ガス(N)等の不活性ガスである。第4チューブ34から吐出される気体は、空気であってもよい。不活性ガスとは、窒素ガスに限られず、基板Wの上面や、基板Wの上面に形成されたパターンに対して不活性なガスのことである。不活性ガスの例としては、窒素ガスの他に、アルゴン等の希ガス類が挙げられる。
 中央ノズル12のケーシング30の外周面と中空軸60の内周面との間には、第5チューブ35が配置されている。第5チューブ35は、基板Wの上面と対向部材6の対向面6aとの間の空間Sに気体を供給する気体供給ユニットとしての一例である。第5チューブ35には、第2気体バルブ58が介装された第2気体配管48が接続されている。第2気体バルブ58が開かれると、気体が、第2気体配管48から第5チューブ35に供給され、第5チューブ35の吐出口から下方に連続的に吐出される。
 第5チューブ35から吐出される気体は、たとえば、窒素ガス(N)等の不活性ガスである。第5チューブ35から吐出される気体は、空気であってもよい。
 第2移動ノズル11は、基板Wの上面に向けて剥離液を供給(吐出)する剥離液供給ユニットの一例である。
 第2移動ノズル11は、第2ノズル移動ユニット37によって、水平方向および鉛直方向に移動される。第2移動ノズル11は、中心位置と、ホーム位置(退避位置)との間で移動することができる。第2移動ノズル11は、中心位置に位置するとき、基板Wの上面の回転中心に対向する。
 第2移動ノズル11は、ホーム位置に位置するとき、基板Wの上面には対向せず、平面視において、処理カップ7の外方に位置する。第2移動ノズル11は、鉛直方向への移動によって、基板Wの上面に接近したり、基板Wの上面から上方に退避したりできる。
 第2ノズル移動ユニット37は、第1ノズル移動ユニット36と同様の構成を有している。すなわち、第2ノズル移動ユニット37は、たとえば、鉛直方向に沿う回動軸(図示せず)と、回動軸および第2移動ノズル11に結合されて水平に延びるアーム(図示せず)と、回動軸を昇降させたり回動させたりする回動軸駆動ユニット(図示せず)とを含む。
 第2移動ノズル11から吐出される剥離液は、基板Wの上面から剥離するための液体である。剥離液は、固体形成物質が固体状態を僅かに溶解させる程度の溶解性を有する。剥離液は、固体状態の固体形成物質を通過して基板Wの上面に到達できる程度に固体形成物質に対して親和性を有する。
 第2移動ノズル11から吐出される剥離液の例としては、IPAとDIWとの混合液(以下では、「IPA/DIW混合液」という)等が挙げられる。
 溶融処理液が1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンである場合、剥離液は、IPA/DIW混合液であることが好ましい。この実施形態では、剥離液が、IPA/DIW混合液である例について説明する。
 第2移動ノズル11は、共通バルブ51が介装された共通配管41の一端に接続されている。共通配管41の他端には、IPAバルブ52が介装されたIPA配管42と、DIWバルブ53が介装されたDIW配管43とが接続されている。
 共通バルブ51、IPAバルブ52およびDIWバルブ53が開かれると、IPAとDIWとが共通配管41内で混合されてIPA/DIW混合液が調製される。そして、IPA/DIW混合液が、剥離液として、第2移動ノズル11の吐出口から下方に連続的に吐出される。第2移動ノズル11から吐出されるIPA/DIW混合液中のIPAの割合は、数パーセント程度であることが好ましい。
 前述したように、中央ノズル12から吐出される相溶性液体は、溶融処理液、リンス液、および剥離液に対して相溶性を有することが好ましい。溶融処理液が1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンであり、リンス液がDIWであり、剥離液がIPA/DIW混合液である場合、相溶性液体は、IPAであることが好ましい。
 この実施形態とは異なり、第2移動ノズル11には、予め適切な濃度に調整されたIPA/DIW混合液が供給されてもよい。この場合、第2移動ノズル11は、IPAの濃度が安定したIPA/DIW混合液を吐出することができる。また、IPAとDIWとが、第2移動ノズル11から吐出された後に基板Wの上方で混合されてから基板Wの上面に着液してもよいし、IPAとDIWとが、第2移動ノズル11から吐出された後に、基板Wの上面で混合されてもよい。ノズルから吐出された後にIPAとDIWとが混合される場合、IPAとDIWとが別々のノズルから吐出されてもよい。
 下面ノズル13は、スピンベース21の上面中央部で開口する貫通孔21aに挿入されている。下面ノズル13の吐出口13aは、スピンベース21の上面から露出されている。下面ノズル13の吐出口13aは、基板Wの下面の中央領域に下方から対向する。下面ノズル13は、冷媒を基板Wに供給する冷媒供給ユニットの一例である。
 下面ノズル13は、冷媒を下面ノズル13に案内する冷媒配管49に接続されている。冷媒配管49に介装された冷媒バルブ59が開かれると、冷媒が、下面ノズル13から基板Wの下面の中央領域に向けて連続的に吐出される。冷媒が、基板Wの下面に供給されることによって、基板W上の液体や固体が基板Wを介して冷却される。
 下面ノズル13から吐出される冷媒は、たとえば、固体形成物質の凝固点よりも低い温度のDIW(低温DIW)である。そのため、下面ノズル13から吐出される低温DIWによって、基板W上の溶融処理液を冷却して溶融処理液を凝固させることができる。
 溶融処理液が1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンである場合には、低温DIWとして、20.5℃以下に冷却されたDIWが用いられる。下面ノズル13から吐出される冷媒は、低温DIWに限られず、DIW以外の液体、たとえば、リンス液として列挙された液体のいずれかを低温に冷却したものであってもよい。また、下面ノズル13から吐出される冷媒は、気体であってもよく、たとえば、固体形成物質の凝固点よりも低い温度の窒素ガス(不活性ガス)等であってもよい。
 図4は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。コントローラ3は、マイクロコンピュータを備えており、所定のプログラムに従って、基板処理装置1に備えられた制御対象を制御する。より具体的には、コントローラ3は、プロセッサ(CPU)3Aと、プログラムが格納されたメモリ3Bとを含み、プロセッサ3Aがプログラムを実行することによって、基板処理のための様々な制御を実行するように構成されている。
 特に、コントローラ3は、搬送ロボットIR,CR、FFU29、スピンモータ23、第1ノズル移動ユニット36、第2ノズル移動ユニット37、対向部材昇降ユニット61、ガード昇降ユニット74、排気装置28、ポンプ94、排気バルブ27、薬液バルブ50、共通バルブ51、IPAバルブ52、DIWバルブ53、リンス液バルブ54、処理液バルブ55、相溶性液体バルブ56、第1気体バルブ57、第2気体バルブ58、冷媒バルブ59および新液バルブ92の動作を制御する。これらのバルブが制御されることによって、対応するノズルやチューブからの流体の吐出が制御される。
 図5に示すように、基板処理が実行される基板Wの上面には、微細な凹凸パターン160が形成されている。凹凸パターン160は、基板Wの上面に形成された微細な凸状の構造体161と、隣接する構造体161の間に形成された凹部(溝)162とを含む。
 凹凸パターン160の表面、すなわち、構造体161(凸部)および凹部162の表面は、凹凸のあるパターン面165を形成している。構造体161の表面161aは、先端面161b(頂部)および側面161cによって構成されており、凹部162の表面は、底面162a(底部)によって構成されている。構造体161が筒状である場合には、その内方に凹部が形成されることになる。
 構造体161は、絶縁体膜を含んでいてもよいし、導体膜を含んでいてもよい。また、構造体161は、複数の膜を積層した積層膜であってもよい。
 凹凸パターン160は、アスペクト比が3以上の微細パターンである。凹凸パターン160のアスペクト比は、たとえば、10~50である。構造体161の幅L1は5nm~45nm程度、構造体161同士の間隔L2は5nm~数μm程度であってもよい。構造体161の高さ(パターン高さT1)は、たとえば50nm~5μm程度であってもよい。パターン高さT1は、構造体161の先端面161bと凹部162の底面162a(底部)との間の距離である。
 図6は、基板処理装置1による基板処理の一例を説明するための流れ図であり、主として、コントローラ3がプログラムを実行することによって実現される処理が示されている。図7A~図7Lは、基板処理装置1による基板処理を説明するための図解的な断面図である。以下では、主に図2および図6を参照しながら基板処理装置1による基板処理について説明する。図7A~図7Lについては適宜参照する。
 基板処理装置1による基板処理では、たとえば、図6に示すように、基板搬入(ステップS1)、薬液処理工程(ステップS2)、リンス工程(ステップS3)、第1相溶性液体供給工程(ステップS4)、第1液膜形成工程(ステップS5)、第1固体膜形成工程(ステップS6)、第1固体膜剥離除去工程(ステップS7)、第2相溶性液体供給工程(ステップS8)、第2液膜形成工程(ステップS9)、第2固体膜形成工程(ステップS10)、第2固体膜気化除去工程(ステップS11)、乾燥工程(ステップS12)および基板搬出(ステップS13)がこの順番で実行される。
 具体的には、まず、未処理の基板Wは、搬送ロボットIR,CR(図1参照)によってキャリヤCから処理ユニット2に搬入され、スピンチャック5に渡される(ステップS1)。これにより、基板Wは、スピンチャック5によって水平に保持される(基板水平保持工程)。スピンチャック5による基板Wの保持は、乾燥工程(ステップS12)が終了するまで継続される。基板Wの搬入時には、対向部材6は、上位置に退避しており、複数のガード71は、下位置に退避している。
 搬送ロボットCRが処理ユニット2外に退避した後、薬液処理工程(ステップS2)が実行される。薬液処理工程では、基板Wの上面に薬液を供給することによって、基板Wの上面が薬液で処理される。
 具体的には、まず、スピンモータ23がスピンベース21を回転させる。これにより、基板Wが回転される(基板回転工程)。薬液処理工程では、スピンベース21は、所定の薬液処理速度で回転される。薬液処理速度は、たとえば、800rpmである。
 そして、対向部材6が上位置に位置する状態で、第1ノズル移動ユニット36が第1移動ノズル10を処理位置に移動させる。第1移動ノズル10の処理位置は、たとえば中央位置である。そして、少なくとも1つのガード71が上位置に位置する状態で、薬液バルブ50が開かれる。これにより、図7Aに示すように、回転状態の基板Wの上面に向けて、第1移動ノズル10から薬液が供給(吐出)される(薬液供給工程、薬液吐出工程)。
 第1移動ノズル10から吐出された薬液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、薬液が基板Wの上面全体に供給され、基板Wの上面全体を覆う薬液の液膜が形成される。
 薬液処理工程が一定時間実行された後、リンス工程(ステップS3)が実行される。リンス工程では、DIW等のリンス液を基板Wの上面に供給することによって、基板Wの上面に付着した薬液がリンス液によって洗い流される。
 具体的には、薬液の吐出が開始されてから所定時間が経過すると、薬液バルブ50が閉じられる。これにより、基板Wに対する薬液の供給が停止される。そして、第1ノズル移動ユニット36が第1移動ノズル10をホーム位置に移動させる。第1移動ノズル10がホーム位置に退避した状態で、対向部材昇降ユニット61が、対向部材6を処理位置に移動させる。対向部材6の処理位置は、上位置と下位置との間の位置である。
 対向部材6が処理位置に位置する状態で、リンス液バルブ54が開かれる。これにより、図7Bに示すように、回転状態の基板Wの上面に向けて、中央ノズル12からリンス液が供給(吐出)される(リンス液供給工程、リンス液吐出工程)。リンス工程では、スピンベース21は、所定のリンス速度で回転される。リンス速度は、たとえば、800rpmである。
 リンス液の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 中央ノズル12から吐出されたリンス液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、基板W上の薬液がリンス液で置換され、基板Wの上面全体を覆うリンス液の液膜が形成される。
 リンス工程が一定時間実行された後、第1相溶性液体供給工程(ステップS4)が実行される。第1相溶性液体供給工程では、リンス液および溶融処理液の両方に対して相溶性を有するIPA等の相溶性液体(第1相溶性液体)が基板Wの上面に供給されることによって、基板W上のリンス液が相溶性液体に置換される。
 具体的には、相溶性液体の吐出が開始されてから所定時間が経過すると、リンス液バルブ54が閉じられる。これにより、基板Wに対するリンス液の供給が停止される。そして、対向部材6が処理位置に位置する状態で、相溶性液体バルブ56が開かれる。これにより、図7Cに示すように、回転状態の基板Wの上面に向けて、中央ノズル12から相溶性液体が供給(吐出)される(第1相溶性液体供給工程、第1相溶性液体吐出工程)。第1相溶性液体供給工程では、スピンベース21は、所定の第1相溶性液体速度で回転される。第1相溶性液体速度は、たとえば、800rpmである。
 相溶性液体の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 中央ノズル12から吐出された相溶性液体は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、基板W上のリンス液が相溶性液体で置換され、基板Wの上面全体を覆う相溶性液体の液膜が形成される。
 第1相溶性液体供給工程が一定時間実行された後、第1液膜形成工程(ステップS5)が実行される。第1液膜形成工程では、基板Wの上面に溶融処理液を供給することによって、基板Wの上面に溶融処理液の液膜(第1溶融処理液膜100)が形成される。
 具体的には、相溶性液体の吐出が開始されてから所定時間が経過すると、相溶性液体バルブ56が閉じられる。これにより、基板Wに対する相溶性液体の供給が停止される。そして、対向部材6が処理位置に位置する状態で、処理液バルブ55が開かれる。これにより、図7Dに示すように、回転状態の基板Wの上面に向けて、中央ノズル12から溶融処理液が供給(吐出)される(第1溶融処理液供給工程、第1溶融処理液吐出工程)。第1溶融処理液供給工程では、スピンベース21は、所定の第1溶融処理液速度で回転される。第1溶融処理液速度は、たとえば、300rpmである。
 溶融処理液の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 中央ノズル12から吐出された溶融処理液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、基板W上の相溶性液体が溶融処理液で置換され、基板Wの上面全体を覆う第1溶融処理液膜100が形成される(第1液膜形成工程)。
 溶融処理液の吐出が開始されてから所定時間が経過すると、処理液バルブ55が閉じられる。これにより、基板Wに対する溶融処理液の供給が停止される。溶融処理液の供給が停止された後、対向部材昇降ユニット61は、対向部材6を処理位置よりも下方(たとえば下位置)に移動させる。溶融処理液の吐出が停止された後、スピンベース21の回転速度は、所定の第1薄膜化速度にされる。第1薄膜化速度は、たとえば、300rpmであり、第1溶融処理液速度と同じ回転速度である。そのため、基板Wは、溶融処理液の吐出の停止後も、溶融処理液の吐出中と同じ速度で回転する。基板Wの回転が継続される一方で、溶融処理液の吐出が停止される。そのため、基板Wの上面には新たに溶融処理液が供給されないにもかかわらず、遠心力によって溶融処理液が基板W外に飛散する。これにより、基板Wの上面の溶融処理液の量が減少する。そのため、図7Eに示すように、第1溶融処理液膜100の厚みが薄くなる(第1薄膜化工程)。
 基板Wの上面の第1溶融処理液膜100が薄膜化された後、第1固体膜形成工程(ステップS6)が実行される。第1固体膜形成工程では、第1溶融処理液膜100を冷却して凝固させることによって第1固体膜110が形成される。
 具体的には、溶融処理液の供給の停止と同時に、または溶融処理液の供給が停止されてから所定時間が経過した後に、対向部材6を処理位置よりも下方に維持した状態で冷媒バルブ59が開かれる。これにより、図7Fに示すように、回転状態の基板Wの下面に向けて、下面ノズル13から冷媒が供給(吐出)される(第1冷媒供給工程、第1冷媒吐出工程)。スピンベース21の回転速度は、所定の第1冷却速度にされる。第1冷却速度は、たとえば、300rpmである。
 下面ノズル13から吐出された冷媒は、回転状態の基板Wの下面に着液した後、遠心力によって基板Wの下面に沿って外方に流れて基板Wの下面全体に広がる。基板Wの下面全体に広がる冷媒によって基板Wが冷却される(基板冷却工程)。基板Wの上面の第1溶融処理液膜100は、基板Wを介して冷媒によって冷却される(第1冷却工程)。下面ノズル13から吐出された冷媒の温度は、固体形成物質の凝固点よりも低いため、図7Fに示すように、基板Wの上面の固体形成物質(第1溶融処理液膜100)が凝固して基板Wの上面に第1固体膜110が形成される(第1凝固工程、第1固体膜形成工程)。第1固体膜110は、固体状態の固体形成物質を含有している。この実施形態では、下面ノズル13が、固体形成ユニットとして機能する。下面ノズル13は、固体形成物質の凝固点以下に基板W上の溶融処理液を、冷却する冷却ユニットでもある。
 図8Aに示すように、第1固体膜110が形成される際に、基板Wのパターン面165に付着していたパーティクル等の除去対象物150が、当該基板Wから引き離されて、第1固体膜110中に保持される。
 基板Wの上面に第1固体膜110が形成された後、第1固体膜剥離除去工程(ステップS7)が実行される。第1固体膜剥離除去工程では、基板Wの上面に剥離液を供給することによって、基板Wの上面から第1固体膜110が剥離されて除去される。
 具体的には、対向部材昇降ユニット61が対向部材6を上位置に移動させる。対向部材6が上位置に位置する状態で、第2ノズル移動ユニット37が、第2移動ノズル11を処理位置に移動させる。第2移動ノズル11の処理位置は、たとえば中央位置である。
 そして、共通バルブ51、IPAバルブ52およびDIWバルブ53が開かれる。これにより、図7Gに示すように、回転状態の基板Wの上面(第1固体膜110の上面)に向けて、第2移動ノズル11からIPA/DIW混合液(剥離液)が供給(吐出)される(剥離液供給工程、剥離液吐出工程)。
 共通バルブ51、IPAバルブ52およびDIWバルブ53が開かれる際、冷媒バルブ59は開かれた状態で維持されている。すなわち、第1冷却工程(基板冷却工程)が、第1固体膜剥離除去工程においても継続されている。これにより、第1固体膜110を固体状態に維持しながら、基板Wの上面から第1固体膜110を剥離することができる。
 剥離液供給工程では、スピンベース21は、所定の剥離処理速度で回転される。剥離処理速度は、たとえば、10rpm~1000rpmである。
 剥離液の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 第2移動ノズル11から吐出された剥離液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れて基板Wの上面全体に広がる。第1固体膜110の上面に付着した剥離液は、第1固体膜110を通過して、基板Wの上面(パターン面165)と第1固体膜110との界面に達する。剥離液は、第1固体膜110を部分的に溶解させて貫通孔を形成することによって第1固体膜110を通過してもよいし、第1固体膜110に浸透することによって第1固体膜110を通過してもよい。
 剥離液の作用によって、図8Bに示すように、第1固体膜110が、分裂して膜片となり、除去対象物150を保持した状態で基板Wから剥離される(剥離工程)。そして、第1固体膜110が剥離液に流されて基板W外に排除されることによって、第1固体膜110とともに除去対象物150が基板Wの上面から除去される(第1除去工程、第1固体膜剥離除去工程)。
 第1固体膜110が基板Wの上面から除去された後、つまり、剥離液供給工程の終了後に第2相溶性液体供給工程(ステップS8)が実行される。第2相溶性液体供給工程では、剥離液および溶融処理液の両方に対して相溶性を有するIPA等の相溶性液体(第2相溶性液体)を基板Wの上面に供給することによって、基板W上の剥離液が相溶性液体に置換される。
 具体的には、剥離液の吐出が開始されてから所定時間が経過すると、共通バルブ51、IPAバルブ52およびDIWバルブ53が閉じられる。これにより、基板Wに対するIPA/DIW混合液(剥離液)の供給が停止される。また、冷媒バルブ59も閉じられる。これにより、基板Wに対する冷媒の供給が停止される。
 そして、第2ノズル移動ユニット37が第2移動ノズル11をホーム位置に移動させる。第2移動ノズル11がホーム位置に退避した状態で、対向部材昇降ユニット61が、対向部材6を処理位置に移動させる。そして、相溶性液体バルブ56が開かれる。これにより、図7Hに示すように、回転状態の基板Wの上面に向けて、中央ノズル12からIPA等の相溶性液体が供給(吐出)される(第2相溶性液体供給工程、第2相溶性液体吐出工程)。第2相溶性液体供給工程では、スピンベース21は、所定の第2相溶性液体速度で回転される。第2相溶性液体速度は、たとえば、800rpmである。
 相溶性液体の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 中央ノズル12から吐出された相溶性液体は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、基板W上の剥離液が相溶性液体で置換され、基板Wの上面全体を覆う相溶性液体の液膜が形成される。
 第2相溶性液体供給工程が一定時間実行された後、第2液膜形成工程(ステップS9)が実行される。第2液膜形成工程では、基板Wの上面に溶融処理液を供給することによって、基板Wの上面に溶融処理液の液膜(第2溶融処理液膜101)が形成される。
 具体的には、相溶性液体の吐出が開始されてから所定時間が経過すると、相溶性液体バルブ56が閉じられる。これにより、基板Wに対する相溶性液体の供給が停止される。そして、対向部材6が処理位置に位置する状態で、処理液バルブ55が開かれる。これにより、図7Iに示すように、回転状態の基板Wの上面に向けて、中央ノズル12から溶融処理液が供給(吐出)される(第2溶融処理液供給工程、第2溶融処理液吐出工程)。第2溶融処理液供給工程では、スピンベース21は、所定の第2溶融処理液速度で回転される。第2溶融処理液速度は、たとえば、300rpmである。
 溶融処理液の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 中央ノズル12から吐出された溶融処理液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、図7Iに示すように、基板W上の相溶性液体が溶融処理液で置換され、基板Wの上面全体を覆う第2溶融処理液膜101が形成される(第2液膜形成工程)。
 第2液膜形成工程において基板Wの上面に供給される溶融処理液は、第1液膜形成工程と同じ吐出ノズル(中央ノズル12)から吐出される。中央ノズル12の第2チューブ32には、単一の処理液タンク90に貯留された溶融処理液が供給される。すなわち、第1液膜形成工程および第2液膜形成工程では、共通の処理液タンク90から中央ノズル12に溶融処理液が供給され、中央ノズル12から基板Wの上面に向けて溶融処理液が吐出される。
 溶融処理液の吐出が開始されてから所定時間が経過すると、処理液バルブ55が閉じられる。これにより、基板Wに対する溶融処理液の供給が停止される。溶融処理液の供給が停止された後、対向部材昇降ユニット61は、対向部材6を処理位置よりも下方(たとえば、下位置)に移動させる。溶融処理液の吐出が停止された後、スピンベース21の回転速度は、所定の第2薄膜化速度にされる。第2薄膜化速度は、たとえば、300rpmであり、第2溶融処理液速度と同じ回転速度である。そのため、基板Wは、溶融処理液の吐出の停止後も、溶融処理液の吐出中と同じ速度で回転する。
 基板Wの回転が継続される一方で、溶融処理液の吐出が停止される。そのため、基板Wの上面には新たに溶融処理液が供給されないにもかかわらず、遠心力によって溶融処理液が基板W外に飛散する。これにより、基板Wの上面の溶融処理液の量が減少する。そのため、図7Jに示すように、第2溶融処理液膜101の厚みが薄くなる(第2薄膜化工程)。
 基板Wの上面の第2溶融処理液膜101が薄膜化された後、第2固体膜形成工程(ステップS10)が実行される。第2固体膜形成工程では、第2溶融処理液膜101を冷却して凝固させることによって第2固体膜111が形成される。
 具体的には、溶融処理液の供給の停止と同時に、または溶融処理液の供給が停止されてから所定時間の経過した後に、対向部材6を処理位置よりも下方に維持した状態で冷媒バルブ59が開かれる。これにより、図7Kに示すように、回転状態の基板Wの下面に向けて、下面ノズル13から冷媒が供給(吐出)される(第2冷媒供給工程、第2冷媒吐出工程)。スピンベース21の回転速度は、所定の第2冷却速度にされる。第2冷却速度は、たとえば、300rpmである。
 下面ノズル13から吐出された冷媒は、回転状態の基板Wの下面に着液した後、遠心力によって基板Wの下面に沿って外方に流れて基板Wの下面全体に広がる。基板Wの下面全体に広がる冷媒によって基板Wが冷却される(基板冷却工程)。基板Wの上面の第2溶融処理液膜101は、基板Wを介して冷媒によって冷却される(第2冷却工程)。下面ノズル13から吐出された冷媒の温度は、固体形成物質の凝固点よりも低いため、図7Kに示すように、基板Wの上面の固体形成物質(第2溶融処理液膜101)が凝固して、基板Wの上面に第2固体膜111が形成される(第2凝固工程、第2固体膜形成工程)。
 第2固体膜111は、第1固体膜110(図7F参照)と同様に、固体状態の固体形成物質を含有している。図9Aに示すように、第2固体膜111の厚みT2は、パターン高さT1よりも厚く、かつ、可能な限り薄く設定されていることが好ましい。
 基板Wの上面に第2固体膜111が形成された後、第2固体膜気化除去工程(ステップS11)が実行される。第2固体膜気化除去工程では、液体状態を経ないように第2固体膜111が昇華することによって、第2固体膜111が基板Wの上面から除去される。
 具体的には、対向部材6が処理位置よりも下方に維持した状態で、第1気体バルブ57および第2気体バルブ58が開かれる。これにより、図7Lに示すように、対向部材6の対向面6aと基板Wの上面との間の空間Sに窒素ガス等の不活性ガスが供給される。第1気体バルブ57および第2気体バルブ58が開かれる際、冷媒バルブ59は開かれた状態で維持されている。すなわち、第2冷却工程(基板冷却工程)が第2固体膜気化除去工程においても継続されている。そのため、第2固体膜111が基板W上に形成された状態を維持しながら空間Sへの不活性ガスの供給が行われる。
 第2固体膜111が維持された状態で空間Sに不活性ガスが供給されることによって、空間Sから気体状態の固体形成物質が押し出されて空間Sにおける固体形成物質の分圧が低下する。これにより、空間Sにおける固体形成物質の分圧が蒸気圧に近づくように固体形成物質が昇華する(昇華工程、気化工程)。なお、対向部材6が基板Wの上面に近接しているため、空間S内の雰囲気が不活性ガスで置換されやすい。そのため、空間Sにおける固体形成物質の分圧を効率良く低減できる。
 スピンベース21の回転速度は、所定の昇華速度にされる。昇華速度は、たとえば、300rpmである。基板Wに回転によって、第2固体膜211の昇華が促進される(昇華工程、気化工程)。
 最終的に、図9Bに示すように、凹凸パターン160の凹部162内に位置する固体状態の固体形成物質が昇華し尽くされて、第2固体膜111が除去される(第2除去工程、第2固体膜気化除去工程)。このように、第4チューブ34(中央ノズル12)、第5チューブ35およびスピンモータ23が、気化ユニット(昇華ユニット)として機能する。
 また、FFU29および排気ユニット8がダウンフローの流速を高めて、チャンバ4内の換気を促進してもよい。これにより、第2固体膜111の昇華が促進される。すなわち、FFU29および排気ユニット8も、気化ユニットとして機能する。排気バルブ27を調整して排気流量を大きくすることによって、チャンバ4を減圧してもよい(減圧工程)。チャンバ4内の減圧、すなわち第2固体膜111の周囲の雰囲気の減圧によって、第2固体膜111の昇華が促進される。
 第2溶融処理液膜101が厚いほど、第2固体膜111に残留する内部応力(歪み)が大きくなる。第2溶融処理液膜101を薄くすることで、第2固体膜111に残留する内部応力を、小さくすることができる。
 また、第2固体膜111が薄いほど、第2固体膜気化除去工程後において基板Wの上面に残存する残渣が少ない。第2溶融処理液膜101を薄くすることで、第2固体膜111を薄く調整することができる。これにより、第2固体膜気化除去工程後における残渣の発生を抑制できる。
 基板Wの上面から第2固体膜111が除去された後、基板Wの上面をさらに乾燥させるために、乾燥工程(ステップS12)が実行される。
 具体的には、対向部材6が下位置に維持された状態で、スピンモータ23が、スピンベース21の回転速度を所定の乾燥速度に設定する。乾燥速度は、たとえば、1500rpmである。そして、第1気体バルブ57が閉じられる。これにより、中央ノズル12からの不活性ガスの供給が停止される。
 乾燥工程の後は、スピンベース21の回転が停止され、第2気体バルブ58が閉じられて第5チューブ35からの不活性ガスの供給が停止される。そして、対向部材昇降ユニット61が、対向部材6を上位置に移動させ、ガード昇降ユニット74が複数のガード71を下位置に移動させる。その後、搬送ロボットCRが、処理ユニット2に進入して、スピンチャック5から処理済みの基板Wをすくい取って、処理ユニット2外へと搬出する(ステップS13)。その基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。
 第1実施形態によれば、基板Wの上面において第1溶融処理液膜100が凝固されることによって、第1固体膜110が形成される。そして、第1固体膜110は、基板Wの上面に供給された剥離液の作用によって基板Wの上面から剥離されて除去される。つまり、第1固体膜110を固体状態に維持したまま基板Wの上面から除去することができる。そのため、第1固体膜110からの除去対象物150の脱落を抑制または防止できるので、除去対象物150が基板Wの上面に再付着することを抑制または防止することができる。したがって、基板Wの上面を良好に洗浄することができる。
 第1固体膜110が基板Wの上面から除去された後、基板Wの上面に同種の溶融処理液を再び供給することによって、溶融処理液の第2溶融処理液膜101が形成される。そして、第2溶融処理液膜101が凝固されることによって第2固体膜111が形成される。第2固体膜111は、液体状態を経ないように昇華されて基板Wの上面から除去される。そのため、溶融処理液から基板の上面に作用する表面張力を低減することができる。したがって、基板Wの上面に形成された凹凸パターン160の倒壊を抑制または防止しつつ基板Wの上面を乾燥させることができる。
 以上により、基板Wの上面を良好に洗浄することができ、かつ、基板Wの上面を良好に乾燥することができる。
 また、第1実施形態によれば、剥離除去される第1固体膜110と、気化除去される第2固体膜111とが同種の溶融処理液から形成される。そのため、第1固体膜110と第2固体膜111とが互いに異なる種類の(固体形成物質の化学式が異なる)処理液によって形成される基板処理と比較して、基板処理装置1を簡素化することができる。これにより、装置コストや装置のフットプリント(設置面積)を抑えることができる。
 具体的には、第1実施形態に係る基板処理装置1では、第1液膜形成工程および第2液膜形成工程のいずれにおいても、共通の処理液タンク90から中央ノズル12に供給された溶融処理液が、中央ノズル12から基板Wの上面に向けて吐出される。そのため、第1液膜形成工程において中央ノズル12から吐出される処理液と、第2液膜形成工程において中央ノズル12から吐出される処理液とが、別々の処理液タンクから中央ノズル12に供給される方法と比較して、処理液タンクの数を減らすことができる。したがって、基板処理装置1を簡素化することができる。
 なお、「同種の溶融処理液」とは、溶融処理液中の固体形成物質の化学式が同じであることをいい、「種類が異なる溶融処理液」とは、溶融処理液中の固体形成物質の化学式が異なっていることをいう。そのため、第1固体膜110の形成に用いられる溶融処理液と、第2固体膜111の形成に用いられる溶融処理液とで、溶融処理液の温度が互いに異なっていても、両溶融処理液の固体形成物質の化学式が同じであれば、両溶融処理液は、互いに同種の溶融処理液である。
 また、剥離除去される第1固体膜110と気化除去される第2固体膜111とが同じ溶融処理液から形成されるので、仮に、剥離液で第1固体膜110を剥離除去した後に、基板Wの上面に第1固体膜110の残渣が付着していた場合であっても、第2固体膜111を気化除去する際に、第2固体膜111とともに第1固体膜110の残渣を除去することができる。したがって、基板Wの上面から第1固体膜110の残渣を確実に除去することができるので、基板Wの上面を良好に洗浄することができ、かつ、基板Wの上面を良好に乾燥することができる。
 また、第1実施形態によれば、基板Wの上面に存在する除去対象物150は、第1固体膜110が形成される際に第1固体膜110によって保持され、第1固体膜110が基板Wの上面から剥離される際に基板Wの上面から引き離される。その後、除去対象物150を保持した状態の第1固体膜110が、剥離液によって基板Wの上面から除去される。そのため、基板Wの上面から引き離された除去対象物150が基板Wの上面に再付着することを抑制または防止することができる。
 また、第1実施形態によれば、第1溶融処理液膜100が凝固するように第1溶融処理液膜100を冷却することによって第1固体膜110が形成され、第2溶融処理液膜101が凝固するように第2溶融処理液膜101を冷却することによって第2固体膜111が形成される。つまり、溶融処理液の冷却という共通の手法によって、第1固体膜110および第2固体膜111を形成することができる。
 ここで、第1実施形態とは異なり、第1固体膜110および第2固体膜111が互いに異なる手法によって形成される場合、それぞれの手法に必要なユニットを、基板処理装置1に設けなければならない。たとえば、第1固体膜110および第2固体膜111のいずれか一方が処理液の加熱によって形成され、かつ、もう一方が処理液の冷却によって形成される場合、基板W上の処理液を加熱するためのユニット、および基板W上の処理液を冷却するためのユニットの両方が必要となる。
 第1実施形態のように共通の固体形成ユニット(下面ノズル13)を用いて第1固体膜110および第2固体膜111を形成することができれば、基板処理装置1を簡素化することができる。
 また、第1実施形態によれば、第1凝固工程において実行される第1冷却工程(基板冷却工程)が、第1固体膜剥離除去工程においても継続される。これにより、第1固体膜剥離除去工程の実行中においても、基板W上の固体形成物質を溶融させることなく固体状態に維持することができる。そのため、第1固体膜110を固体状態に確実に維持したまま基板Wの上面から除去することができる。したがって、第1固体膜110からの除去対象物150の脱落を一層抑制または防止し、除去対象物150の基板Wの上面への再付着を一層抑制または防止することができる。
 また、第1実施形態によれば、第2凝固工程において実行される第2冷却工程(基板冷却工程)が、第2固体膜気化除去工程においても継続される。これにより、第2固体膜気化除去工程の実行中においても、基板W上の固体形成物質を溶融させることなく固体状態に維持することができる。そのため、第2固体膜111が液体に変化することを抑制または防止しながら第2固体膜111を気化させることができる。したがって、基板Wの上面に作用する表面張力を、一層低減することができる。
 また、第1実施形態によれば、リンス液供給工程の終了後で、かつ、第1液膜形成工程の開始前に、リンス液および溶融処理液の両方に対して相溶性を有する相溶性液体が基板Wの上面に供給される(第1相溶性液体供給工程)。そのため、リンス液と溶融処理液とが混和しにくい場合であっても、基板W上のリンス液を相溶性液体で置換し、その後、基板W上の相溶性液体を溶融処理液で置換することで、基板W上のリンス液を溶融処理液に置換することができる。そのため、リンス液と溶融処理液とが混和するか否かに関係なく、リンス液および溶融処理液を選択することができる。したがって、リンス液および溶融処理液の選択の自由度が向上される。
 また、第1実施形態によれば、第1固体膜剥離除去工程(剥離液供給工程)の終了後であって、かつ、第2液膜形成工程の開始前に、剥離液および溶融処理液の両方に対して相溶性を有する相溶性液体が基板Wの上面に供給される(第2相溶性液体供給工程)。そのため、剥離液と溶融処理液とが混和しにくい場合であっても、基板W上の剥離液を相溶性液体で置換し、その後、基板W上の相溶性液体を溶融処理液で置換することによって、基板W上の剥離液を溶融処理液で置換することができる。そのため、剥離液と溶融処理液とが混和するか否かに関係なく、剥離液および溶融処理液を選択することができる。したがって、剥離液および溶融処理液の選択の自由度が向上される。
 上述したように、第1実施形態では、下面ノズル13が固体形成ユニットの一例である。しかしながら、固体形成ユニットは、下面ノズル13に限られない。図10に示すように、基板Wの下面に下方から対向するクーリングプレート120を、固体形成ユニット(冷却ユニット)として用いることもできる。
 クーリングプレート120は、スピンベース21の上面と、複数のチャックピン20に挟持された基板Wの下面との間に配置されている。クーリングプレート120の上面120aは、基板Wの下面の全域に対向している。スピンベース21が回転してもクーリングプレート120は回転しない。
 クーリングプレート120には、内蔵冷媒管121が内蔵されている。内蔵冷媒管121には、内蔵冷媒管121に冷媒を供給する冷媒供給管122と、内蔵冷媒管121から冷媒を排出する冷媒排出管123とが接続されている。クーリングプレート120の下面には、回転軸線A1に沿って鉛直方向に延びる中空の昇降軸125が結合されている。昇降軸125は、スピンベース21の中央部に形成された貫通孔21aと、中空の回転軸22とを挿通している。
 冷媒供給管122および冷媒排出管123は、昇降軸125を挿通している。冷媒供給管122には、冷媒供給バルブ124が介装されている。冷媒供給バルブ124が開かれることにより、内蔵冷媒管121に冷媒が供給される。内蔵冷媒管121に冷媒が供給されることによって、クーリングプレート120が冷却される。
 昇降軸125には、クーリングプレート120をスピンベース21に対して相対的に昇降させるクーラ昇降ユニット126が連結されている。クーラ昇降ユニット126は、たとえば、ボールねじ機構(図示せず)と、それに駆動力を与える電動モータ(図示せず)とを含む。クーラ昇降ユニット126は、クーラリフタともいう。
 クーリングプレート120は、クーラ昇降ユニット126によって、基板Wの下面に接触する位置、または、基板Wの下面に近接する位置に配置されることによって、基板Wを介して基板W上の溶融処理液を冷却することができる。
 クーリングプレート120は、上昇させられる過程で、チャックピン20から基板Wを持ち上げて上面120aによって基板Wを支持するように構成されていてもよい。そのためには、複数のチャックピン20は、基板Wの周端に接触して基板Wを把持する閉状態と、基板Wの周端から退避した開状態との間で開閉可能であり、開状態において、基板Wの周端から離間して把持を解除する一方で、基板Wの周縁部の下面に接触して、基板Wを下方から支持するように構成されている必要がある。
 図示しないが、対向部材6がその内部に冷媒を供給できるように構成されていれば、対向部材6を固体形成ユニットとして用いることもできる。
 <第2実施形態>
 図11は、この発明の第2実施形態に係る基板処理装置1Pに備えられた処理ユニット2Pの模式図である。図11ならびに後述する図12A~図12I、図13および図14において、前述の図1~図10に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
 第2実施形態に係る処理ユニット2Pが第1実施形態の処理ユニット2(図2参照)と主に異なる点は、溶融処理液の代わりに、混合処理液が用いられる点である。
 具体的には、中央ノズル12の第2チューブ32が、溶媒と溶質とを混合して調製された処理液を基板Wの上面に供給する処理液供給ユニットの一例である。第2実施形態において第2チューブ32から吐出される処理液は、溶質としての固体形成物質を溶媒に溶解させた溶液である。溶質としての固体形成物質と、固体形成物質を溶解させる溶媒とによって構成される処理液を混合処理液という。そのため、第2チューブ32は、混合処理液供給ユニットでもある。
 第2実施形態では、第1実施形態と同様に、第2チューブ32は、混合処理液を第2チューブ32に案内する処理液配管45の一端に接続されており、処理液配管45の他端は、処理液タンク90に接続されている(図3も参照)。第2実施形態では、処理液タンク90には混合処理液が貯留されている。処理液バルブ55が開かれると、処理液タンク90内の混合処理液がポンプ94によって処理液配管45に送られる。処理液配管45に送られた混合処理液は、フィルタ95を通った後、第2チューブ32(中央ノズル12)に供給され、第2チューブ32(中央ノズル12)から基板Wの上面の中央領域に向けて連続的に吐出される。
 混合処理液に含まれる溶媒は、常温で液体状態を維持し、混合処理液に含まれる溶質は、常温で固体状態を維持する。そのため、加熱等によって溶媒を蒸発させることによって、固体状態の固体形成物質が析出する。固体状態の固体形成物質は、不活性ガスの吹き付けや周囲の雰囲気の減圧によって、液体状態を経ずに気体状態に状態変化可能な昇華性物質であることが好ましい。
 常温で固体状態を維持する昇華性物質としては、たとえば、2-メチル-2-プロパノール(別名:tert-ブチルアルコール、t-ブチルアルコール)やシクロヘキサノール等のアルコール類、フッ化炭化水素化合物、1,3,5-トリオキサン(別名:メタホルムアルデヒド)、樟脳(別名:カンフル、カンファー)、ナフタレン、およびヨウ素が挙げられる。
 たとえば、昇華性物質として樟脳を用いた場合には、溶媒としてIPA、メタノール、アセトン、およびPGEE等を用いることができる。樟脳の凝固点は、175℃~177℃である。
 第2実施形態では、下面ノズル13は、熱媒を下面ノズル13に案内する熱媒配管80に接続されている。熱媒バルブ81は、コントローラ3によって制御される(図4を参照)。熱媒配管80に介装された熱媒バルブ81が開かれると、熱媒が、下面ノズル13から基板Wの下面の中央領域に向けて連続的に吐出される。
 下面ノズル13から吐出される熱媒は、たとえば、常温よりも高い温度のDIW(高温DIW)である。基板W上で混合処理液が沸騰しないように、下面ノズル13から吐出される熱媒は、混合処理液の溶媒の沸点よりも低い温度であることが好ましい。溶媒がIPAである場合には、高温DIWは、IPAの沸点である82.4℃よりも低いことが好ましい。
 下面ノズル13から吐出される熱媒は、高温DIWに限られず、DIW以外の液体、たとえば、リンス液として列挙された液体のいずれかを高温に加熱したものであってもよい。また、下面ノズル13から吐出される熱媒は、気体であってもよく、たとえば、常温よりも高い温度の窒素ガス(不活性ガス)等であってもよい。
 また、混合処理液中の固体形成物質が樟脳である場合、剥離液は、IPA/DIW混合液であることが好ましい。また、相溶性液体としては、混合処理液、リンス液および剥離液に対して相溶性を有する液体が用いられる。混合処理液が樟脳およびIPAの混合液であり、リンス液がDIWであり、剥離液がIPA/DIW混合液である場合、相溶性液体は、IPAであることが好ましい。
 図12A~図12Iは、第2実施形態に係る基板処理装置1Pによる基板処理を説明するための図解的な断面図である。第2実施形態に係る基板処理装置1Pでは、第1実施形態に係る基板処理装置1による基板処理(図6参照)と同様の基板処理が可能である。以下では、主に図11および図6を参照しながら基板処理装置1Pによる基板処理について説明する。図12A~図12Iについては適宜参照する。
 まず、第1実施形態に係る基板処理と同様に、基板搬入(ステップS1)~第1相溶性液体供給工程(ステップS4)が実行される。
 第1相溶性液体供給工程が一定時間実行された後、第1液膜形成工程(ステップS5)が実行される。第1液膜形成工程では、基板Wの上面に混合処理液を供給することによって、基板Wの上面に混合処理液の液膜(第1混合処理液膜200)が形成される。
 具体的には、相溶性液体の吐出が開始されてから所定時間が経過すると、相溶性液体バルブ56が閉じられる。これにより、基板Wに対する相溶性液体の供給が停止される。そして、対向部材6が処理位置に位置する状態で、処理液バルブ55が開かれる。これにより、図12Aに示すように、回転状態の基板Wの上面に向けて、中央ノズル12から混合処理液が供給(吐出)される(第1混合処理液供給工程、第1混合処理液吐出工程)。第1混合処理液供給工程では、スピンベース21は、所定の第1混合処理液速度で回転される。第1混合処理液速度は、たとえば、300rpmである。
 混合処理液の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 中央ノズル12から吐出された混合処理液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、基板W上の相溶性液体が混合処理液で置換され、基板Wの上面全体を覆う第1混合処理液膜200が形成される(第1液膜形成工程)。
 混合処理液の吐出が開始されてから所定時間が経過すると、処理液バルブ55が閉じられる。これにより、基板Wに対する混合処理液の供給が停止される。混合処理液の供給が停止された後、対向部材昇降ユニット61は、対向部材6を処理位置よりも下方(たとえば、下位置)に移動させる。
 混合処理液の吐出が停止された後、スピンベース21の回転速度は、所定の第1薄膜化速度にされる。第1薄膜化速度は、たとえば、300rpmであり、第1混合処理液速度と同じ回転速度である。そのため、基板Wは、混合処理液の吐出の停止後も、混合処理液の吐出中と同じ速度で回転する。
 基板Wの回転が継続される一方で、混合処理液の吐出が停止される。そのため、基板Wの上面には新たに混合処理液が供給されないにもかかわらず、遠心力によって混合処理液が基板W外に飛散する。これにより、基板Wの上面の混合処理液の量が減少する。そのため、図12Bに示すように、第1混合処理液膜200の厚みが薄くなる(第1薄膜化工程)。
 基板Wの上面の第1混合処理液膜200が薄膜化された後、第1固体膜形成工程(ステップS6)が実行される。第1固体膜形成工程では、第1混合処理液膜200中の溶媒を蒸発させることによって第1固体膜210が形成される。
 具体的には、混合処理液の供給の停止と同時に、または混合処理液の供給が停止されてから所定時間の経過した後に、対向部材6を処理位置よりも下方に維持した状態で熱媒バルブ81が開かれる。これにより、図12Cに示すように、回転状態の基板Wの下面に向けて、下面ノズル13から熱媒が供給(吐出)される(第1熱媒供給工程、第1熱媒吐出工程)。
 下面ノズル13から吐出された熱媒は、回転状態の基板Wの下面に着液した後、遠心力によって基板Wの下面に沿って外方に流れて基板Wの下面全体に広がる。基板Wの下面全体に広がる熱媒によって、基板Wが加熱される(基板加熱工程)。基板Wの上面の第1混合処理液膜200は、基板Wの下面全体に広がる熱媒によって、基板Wを介して加熱される(第1加熱工程)。基板Wを介して第1混合処理液膜200が加熱されることによって、第1混合処理液膜200中の溶媒の蒸発が促進される。
 スピンベース21の回転速度は、所定の第1加熱速度にされる。第1加熱速度は、たとえば、300rpmである。基板Wに回転によって、第1混合処理液膜200中の溶媒の蒸発が促進される。
 熱媒によって基板W上の第1混合処理液膜200を加熱する間、第1混合処理液膜200には、不活性ガス等の気体が吹き付けられてもよい。具体的には、第2気体バルブ58が開かれる。これにより、図12Cに示すように、第5チューブ35から気体が吐出される。第5チューブ35から吐出された気体は、対向部材6と基板Wとの間の空間Sに送り込まれ、第1混合処理液膜200(図12B参照)の上面に吹き付けられる(第1気体吹付工程)。気体の吹き付けによって、第1混合処理液膜200中の溶媒の蒸発が促進される。
 第1固体膜210を形成する際、排気バルブ27を調整して排気流量を大きくすることによって、チャンバ4を減圧してもよい(減圧工程)。チャンバ4内の減圧、すなわち第1固体膜210の周囲の雰囲気の減圧によって、第1混合処理液膜200中の溶媒の蒸発が促進される。
 熱媒による加熱、気体の吹き付け、チャンバ4内の減圧、および基板Wの回転に起因して、第1混合処理液膜200中の溶媒が蒸発して基板Wの上面に固体形成物質が析出する。固体形成物質の析出によって、基板Wの上面に第1固体膜210が形成される(第1析出工程、第1固体膜形成工程)。第1固体膜210は、溶媒の蒸発によって析出した固体状態の固体形成物質を含有している。この実施形態では、下面ノズル13、第5チューブ35、排気ユニット8、FFU29およびスピンモータ23が、固体形成ユニットとして機能する。下面ノズル13は、基板W上の混合処理液を加熱する加熱ユニットでもある。
 第1実施形態と同様に、第1固体膜210が形成される際に、基板Wのパターン面165に付着していたパーティクル等の除去対象物150が、当該基板Wから引き離されて、第1固体膜210中に保持される(図8A参照)。
 基板Wの上面に第1固体膜210が形成された後、第1固体膜剥離除去工程(ステップS7)が実行される。第1固体膜剥離除去工程では、基板Wの上面に剥離液を供給することによって、基板Wの上面から第1固体膜210が剥離されて除去される。
 具体的には、熱媒バルブ81および第2気体バルブ58が閉じられる。これにより、基板Wに対する熱媒および不活性ガスの供給が停止される。そして、対向部材昇降ユニット61が対向部材6を上位置に移動させる。対向部材6が上位置に位置する状態で、第2ノズル移動ユニット37が、第2移動ノズル11を処理位置に移動させる。第2移動ノズル11の処理位置は、たとえば中央位置である。
 そして、共通バルブ51、IPAバルブ52およびDIWバルブ53が開かれる。これにより、図12Dに示すように、回転状態の基板Wの上面(第1固体膜210の上面)に向けて、第2移動ノズル11からIPA/DIW混合液(剥離液)が供給(吐出)される(剥離液供給工程、剥離液吐出工程)。剥離液供給工程では、スピンベース21は、所定の剥離処理速度で回転される。剥離処理速度は、たとえば、10rpm~1000rpmである。
 第2移動ノズル11から吐出された剥離液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れて基板Wの上面全体に広がる。第1固体膜210の上面に付着した剥離液は、第1固体膜210を通過して、基板Wの上面(パターン面165)と第1固体膜210との界面に達する。これにより、第1実施形態と同様に、第1固体膜210が、分裂して膜片となり、除去対象物150を保持した状態で基板Wから剥離される(剥離工程)(図8B参照)。そして、第1固体膜210が剥離液に流されて基板W外に排除されることによって、第1固体膜210とともに除去対象物150が基板Wの上面から除去される(第1除去工程、第1固体膜剥離除去工程)。
 第1固体膜210が基板Wの上面から除去された後、図12Eに示すように、第2相溶性液体供給工程(ステップS8)が実行される。第2相溶性液体供給工程(ステップS8)は、第1実施形態とほぼ同じであるため、詳しい説明は省略する。第2相溶性液体供給工程では、相溶性液体を基板Wの上面に供給することによって、基板W上の剥離液が相溶性液体に置換される。
 そして、第2相溶性液体供給工程が一定時間実行された後、第2液膜形成工程(ステップS9)が実行される。第2液膜形成工程では、基板Wの上面に混合処理液を供給することによって、基板Wの上面に混合処理液の液膜(第2混合処理液膜201)が形成される。
 具体的には、相溶性液体の吐出が開始されてから所定時間が経過すると、相溶性液体バルブ56が閉じられる。これにより、基板Wに対する相溶性液体の供給が停止される。そして、対向部材6が処理位置に位置する状態で、処理液バルブ55が開かれる。これにより、図12Fに示すように、回転状態の基板Wの上面に向けて、中央ノズル12から混合処理液が供給(吐出)される(第2混合処理液供給工程、第2混合処理液吐出工程)。第2混合処理液供給工程では、スピンベース21は、所定の第2混合処理液速度で回転される。第2混合処理液速度は、たとえば、300rpmである。
 混合処理液の吐出が開始される前に、ガード昇降ユニット74は、基板Wから排出される液体を受け止めるガード71を切り替えるために、少なくとも一つのガード71を鉛直に移動させてもよい。
 中央ノズル12から吐出された混合処理液は、回転状態の基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、基板W上の相溶性液体が混合処理液で置換され、基板Wの上面全体を覆う第2混合処理液膜201が形成される(第2液膜形成工程)。
 第2液膜形成工程において基板Wの上面に供給される混合処理液は、第1液膜形成工程と同じ吐出ノズル(中央ノズル12)から吐出される。中央ノズル12の第2チューブ32には、単一の処理液タンク90に貯留された混合処理液が供給される。すなわち、第1液膜形成工程および第2液膜形成工程では、共通の処理液タンク90から中央ノズル12に混合処理液が供給され、中央ノズル12から基板Wの上面に向けて混合処理液が吐出される。
 混合処理液の吐出が開始されてから所定時間が経過すると、処理液バルブ55が閉じられる。これにより、基板Wに対する混合処理液の供給が停止される。混合処理液の供給が停止された後、対向部材昇降ユニット61は、対向部材6を処理位置よりも下方(たとえば、下位置)に移動させる。混合処理液の吐出が停止された後、スピンベース21の回転速度は、所定の第2薄膜化速度にされる。第2薄膜化速度は、たとえば、300rpmであり、第2混合処理液速度と同じ回転速度である。そのため、基板Wは、混合処理液の吐出の停止後も、混合処理液の吐出中と同じ速度で回転する。
 基板Wの回転が継続される一方で、混合処理液の吐出が停止される。そのため、基板Wの上面には新たに混合処理液が供給されないにもかかわらず、遠心力によって混合処理液が基板W外に飛散する。これにより、基板Wの上面の混合処理液の量が減少する。そのため、図12Gに示すように、第2混合処理液膜201の厚みが薄くなる(第2薄膜化工程)。
 基板Wの上面の第2混合処理液膜201が薄膜化された後、第2固体膜形成工程(ステップS10)が実行される。第2固体膜形成工程では、第2混合処理液膜201を加熱して第2混合処理液膜201中の溶媒を蒸発させることによって第2固体膜211が形成される。
 具体的には、混合処理液の供給の停止と同時に、または混合処理液の供給が停止されてから所定時間の経過した後に、対向部材6を下位置に維持した状態で熱媒バルブ81が開かれる。これにより、図12Hに示すように、回転状態の基板Wの下面に向けて、下面ノズル13から熱媒が供給(吐出)される(第2熱媒供給工程、第2熱媒吐出工程)。
 下面ノズル13から吐出された熱媒は、回転状態の基板Wの下面に着液した後、遠心力によって基板Wの下面に沿って外方に流れて基板Wの下面全体に広がる。基板Wの下面全体に広がる熱媒によって、基板Wが加熱される(基板加熱工程)。基板Wの上面の第2混合処理液膜201は、基板Wの下面全体に広がる熱媒によって、基板Wを介して加熱される(第2加熱工程)。基板Wを介して第2混合処理液膜201が加熱されることによって、第2混合処理液膜201中の溶媒の蒸発が促進される。
 スピンベース21の回転速度は、所定の第2加熱速度にされる。第2加熱速度は、たとえば、300rpmである。基板Wに回転によって、第2混合処理液膜201中の溶媒の蒸発が促進される。
 熱媒によって基板W上の第2混合処理液膜201を加熱する間、第2混合処理液膜201には、不活性ガス等の気体が吹き付けられてもよい。具体的には、第2気体バルブ58が開かれる。これにより、図12Hに示すように、第5チューブ35か気体が吐出される。第5チューブ35から吐出された気体は、対向部材6と基板Wとの間の空間Sに送り込まれ、第2混合処理液膜201(図12G参照)の上面に吹き付けられる(第2気体吹付工程)。気体の吹き付けによって、第2混合処理液膜201中の溶媒の蒸発が促進される。
 第2固体膜211を形成する際、排気バルブ27を調整して排気流量を大きくすることによって、チャンバ4を減圧してもよい(減圧工程)。チャンバ4内の減圧、すなわち第2固体膜211の周囲の雰囲気の減圧によって、第2混合処理液膜201中の溶媒の蒸発が促進される。
 熱媒による加熱、気体の吹き付け、チャンバ4内の減圧、および基板Wの回転に起因して、第2混合処理液膜201中の溶媒が蒸発して基板Wの上面に固体形成物質が析出する。固体形成物質の析出によって、基板Wの上面に第2固体膜211が形成される(第2析出工程、第2固体膜形成工程)。第2固体膜211は、第1固体膜210(図12C参照)と同様に、溶媒の蒸発によって析出した固体状態の固体形成物質を含有している。
 第1実施形態に係る第2固体膜111と同様に、第2実施形態に係る第2固体膜211の厚みT2は、パターン高さT1よりも厚く、かつ、可能な限り薄く設定されていることが好ましい(図9A参照)。
 基板Wの上面に第2固体膜211が形成された後、第2固体膜気化除去工程(ステップS11)が実行される。第2固体膜気化除去工程では、液体状態を経ないように第2固体膜211が昇華することによって、第2固体膜211が基板Wの上面から除去される。
 具体的には、第2気体バルブ58が開かれた状態に維持しながら、第1気体バルブ57が開かれる。これにより、図12Iに示すように、対向部材6の対向面6aと基板Wの上面との間の空間Sに中央ノズル12から不活性ガス等の気体が供給される。第1気体バルブ57を開く際、対向部材6が処理位置よりも下方(たとえば、下位置)に維持されている。
 第2固体膜211が維持された状態で空間Sに不活性ガスが供給されることによって、空間Sから気体状態の固体形成物質が押し出されて空間Sにおける固体形成物質の分圧が低下する。これにより、空間Sにおける固体形成物質の分圧が蒸気圧に近づくように固体形成物質が昇華する(昇華工程、気化工程)。なお、対向部材6が基板Wの上面に近接しているため、空間S内の雰囲気が不活性ガスで置換されやすい。そのため、空間Sにおける固体形成物質の分圧を効率良く低減できる。
 第1気体バルブ57が開かれる際、熱媒バルブ81は開かれた状態で維持されている。すなわち、基板加熱工程が、第2固体膜気化除去工程においても継続されている。そのため、熱媒による第2固体膜211の加熱によって、第2固体膜211の昇華が促進される(昇華工程、気化工程)。
 スピンベース21の回転速度は、所定の昇華速度にされる。昇華速度は、たとえば、300rpmである。基板Wに回転によって、第2固体膜211の昇華が促進される(昇華工程、気化工程)。
 最終的に、第1実施形態と同様に、凹凸パターン160の凹部162内に位置する固体状態の固体形成物質が昇華し尽くされて、第2固体膜211が除去される(第2除去工程、第2固体膜気化除去工程)(図9B参照)。第2実施形態では、下面ノズル13、第4チューブ34(中央ノズル12)、第5チューブ35およびスピンモータ23が、気化ユニット(昇華ユニット)として機能する。
 また、第2固体膜形成工程に引き続き、チャンバ4を減圧状態に維持してもよい(減圧工程)。これにより、第2固体膜211の昇華が促進される。すなわち、FFU29および排気ユニット8は、気化ユニットとして機能する。第2固体膜気化除去工程では、第2固体膜形成工程よりも、減圧度合が高いことが好ましい。
 第2混合処理液膜201が厚いほど、第2固体膜211に残留する内部応力(歪み)が大きくなる。第2混合処理液膜201を薄くすることで、第2固体膜211に残留する内部応力を、小さくすることができる。
 また、第2固体膜211が薄いほど、第2固体膜気化除去工程後において基板Wの上面に残存する残渣が少ない。第2混合処理液膜201を薄くすることで、第2固体膜211を薄く調整することができる。これにより、第2固体膜気化除去工程後における残渣の発生を抑制できる。
 基板Wの上面から第2固体膜211が除去された後、熱媒バルブ81が閉じられる。その後、乾燥工程(ステップS12)および基板搬出(ステップS13)が実行される。
 第2実施形態によれば、第1実施形態と同様の効果を奏する。
 詳しくは、第2実施形態によれば、基板Wの上面において第1混合処理液膜200中の溶媒が蒸発して固体形成物質が析出する。言い換えると、第1混合処理液膜200中の溶媒が蒸発することによって第1固体膜210が形成される。そして、第1固体膜210は、基板Wの上面に供給された剥離液の作用によって基板Wの上面から剥離され除去される。つまり、第1固体膜210を基板W上で溶解させずに、第1固体膜210を固体状態に維持したまま基板Wの上面から除去することができる。そのため、第1固体膜210からの除去対象物150の脱落を抑制または防止できるので、除去対象物150が基板Wの上面に再付着することを抑制または防止することができる。したがって、基板Wの上面を良好に洗浄することができる。
 第1固体膜210が基板Wの上面から除去された後、基板Wの上面に混合処理液を再び供給することによって、第2混合処理液膜201が形成される。そして、第2混合処理液膜201から溶媒が蒸発して固体形成物質が析出することによって第2固体膜211が形成される。第2固体膜211は、液体状態を経ないように昇華されて基板Wの上面から除去される。そのため、基板Wの上面に作用する表面張力を低減することができる。したがって、基板Wの上面に形成された凹凸パターン160の倒壊を抑制または防止しつつ基板Wの上面を乾燥させることができる。
 以上により、基板Wの上面を良好に洗浄することができ、かつ、基板Wの上面を良好に乾燥することができる。
 また、第2実施形態によれば、剥離除去される第1固体膜210と、気化除去される第2固体膜211とが同種の混合処理液から形成される。そのため、第1固体膜110と第2固体膜111とが互いに異なる種類の(固体形成物質の化学式が異なる)処理液によって形成される基板処理と比較して、基板処理装置1Pを簡素化することができる。これにより、装置コストや装置のフットプリントを抑えることができる。
 具体的には、第2実施形態に係る基板処理装置1Pでは、第1液膜形成工程および第2液膜形成工程のいずれにおいても、共通の処理液タンク90から中央ノズル12に供給された混合処理液が基板Wの上面に向けて吐出される。そのため、第1液膜形成工程において中央ノズル12から吐出される処理液と、第2液膜形成工程において中央ノズル12から吐出される処理液とが、別々の処理液タンクから中央ノズル12に供給される方法と比較して、処理液タンクの数を減らすことができる。したがって、基板処理装置1Pを簡素化することができる。
 なお、「同種の混合処理液」とは、混合処理液中の固体形成物質の化学式が同じであることをいい、「種類が異なる混合処理液」とは、混合処理液中の固体形成物質の化学式が異なっていることをいう。そのため、第1固体膜210の形成に用いられる混合処理液と、第2固体膜211の形成に用いられる混合処理液とで、固体形成物質の濃度や混合処理液の温度が互いに異なっていても、両混合処理液の固体形成物質の化学式が同じであれば、両混合処理液は、互いに同種の混合処理液である。
 また、剥離除去される第1固体膜210と気化除去される第2固体膜211とが同じ混合処理液から形成されるので、仮に、剥離液で第1固体膜210を剥離除去した後に、基板Wの上面に第1固体膜210の残渣が付着していた場合であっても、第2固体膜211を気化除去する際に、第2固体膜211とともに第1固体膜210の残渣を除去することができる。したがって、基板Wの上面から第1固体膜210の残渣を確実に除去することができるので、基板Wの上面を良好に洗浄することができ、かつ、基板Wの上面を良好に乾燥することができる。
 また、第2実施形態によれば、基板Wの上面に存在する除去対象物150は、第1固体膜210が形成される際に第1固体膜210によって保持され、第1固体膜210が基板Wの上面から剥離される際に基板Wの上面から引き離される。その後、除去対象物150を保持した状態の第1固体膜210が、剥離液によって基板Wの上面から除去される。そのため、基板Wの上面から引き離された除去対象物150が基板Wの上面に再付着することを抑制または防止することができる。
 また、第2実施形態によれば、第1固体膜形成工程および第2固体膜形成工程において、混合処理液を加熱して溶媒を蒸発させて固体形成物質を析出させることによって、第1固体膜210および第2固体膜211がそれぞれ形成される。つまり、混合処理液の加熱(溶媒の蒸発)という共通の手法によって、第1固体膜210および第2固体膜211を形成することができる。そのため、第1実施形態と同様に、基板処理装置1Pを簡素化することができる。
 また、第2実施形態によれば、固体形成物質が、固体から気体に昇華する昇華性物質である。さらに、第2析出工程において実行される基板加熱工程が、第2固体膜気化除去工程においても継続される。そのため、溶媒を蒸発させるために基板Wを加熱することによって基板Wに蓄積された熱量を、第2固体膜211の加熱に利用することができる。そのため、第2固体膜気化除去工程において、第2固体膜211中の固体形成物質を速やかに昇華させることができる。つまり、基板Wの上面を速やかに乾燥させることができる。したがって、基板W上から混合処理液を除去する際に基板Wの上面に作用する表面張力を、一層低減することができる。
 また、第2実施形態によれば、第1実施形態と同様に、リンス液供給工程の終了後で、かつ、第1液膜形成工程の開始前に、リンス液および混合処理液の両方に対して相溶性を有する相溶性液体が基板Wの上面に供給される(第1相溶性液体供給工程)。したがって、リンス液および混合処理液の選択の自由度が向上される。
 また、第2実施形態によれば、第1実施形態と同様に、剥離液供給工程の終了後であって、かつ、第2液膜形成工程の開始前に、剥離液および混合処理液の両方に対して相溶性を有する相溶性液体が基板Wの上面に供給される(第2相溶性液体供給工程)。したがって、剥離液および混合処理液の選択の自由度が向上される。
 上述したように、第2実施形態では、下面ノズル13が固体形成ユニットの一例である。しかしながら、固体形成ユニットは、下面ノズル13に限られない。図13に示すように、基板Wの下面に下方から対向するホットプレート130を、固体形成ユニット(加熱ユニット)として用いることもできる。
 ホットプレート130は、下面ノズル13の代わりに設けられている。ホットプレート130は、スピンベース21の上面と、複数のチャックピン20に挟持された基板Wの下面との間に配置されている。ホットプレート130の上面130aは、基板Wの下面の全域に対向している。
 ホットプレート130は、プレート本体131と、ヒータ132とを含む。プレート本体131は、平面視において、基板Wよりも僅かに小さい。ヒータ132は、プレート本体131に内蔵されている抵抗体であってもよい。ヒータ132に通電することによって、ホットプレート130が加熱される。そして、ヒータ132には、給電線134を介して、ヒータ通電ユニット133から電力が供給される。
 プレート本体131の下面には、回転軸線A1に沿って鉛直方向に延びる中空の昇降軸135が結合されている。昇降軸135は、スピンベース21の中央部に形成された貫通孔21aと、中空の回転軸22とを挿通している。
 昇降軸135には、ホットプレート130をスピンベース21に対して相対的に昇降させるヒータ昇降ユニット136が連結されている。ヒータ昇降ユニット136は、たとえば、ボールねじ機構(図示せず)と、それに駆動力を与える電動モータ(図示せず)とを含む。ヒータ昇降ユニット136は、ヒータリフタともいう。
 ホットプレート130は、ヒータ昇降ユニット136によって、基板Wの下面に接触する位置、または、基板Wの下面に近接する位置に配置されることによって、基板Wを介して基板W上の混合処理液を加熱することができる。
 ホットプレート130は、上位置まで上昇させられる過程で、チャックピン20から基板Wを持ち上げて上面130aによって基板Wを支持するように構成されていてもよい。そのためには、複数のチャックピン20は、基板Wの周端に接触して基板Wを把持する閉状態と、基板Wの周端から退避した開状態との間で開閉可能であり、開状態において、基板Wの周端から離間して把持を解除する一方で、基板Wの周縁部の下面に接触して、基板Wを下方から支持するように構成されている必要がある。
 また、第2実施形態における固体形成ユニットの別の変形例として、図14に示すように、対向部材6に内蔵された内蔵ヒータ140が挙げられる。内蔵ヒータ140は、対向部材6の内部に配置されている。内蔵ヒータ140は、対向部材6とともに昇降する。内蔵ヒータ140は、複数のチャックピン20に挟持された基板Wに上方から対向している。内蔵ヒータ140は、抵抗体である。内蔵ヒータ140には、給電線144を介して、ヒータ通電ユニット143から電力が供給される。
 <第3実施形態>
 図15は、この発明の第3実施形態に係る基板処理装置1Qの模式図である。図15ならびに後述する図16および図17において、前述の図1~図14に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
 第3実施形態に係る基板処理装置1Qが、第1実施形態に係る基板処理装置1と異なる点は、基板処理装置1Qが、ウェット処理ユニット2Wとドライ処理ユニット2Dとを備えている点である。ウェット処理ユニット2Wの構成は、図2に示す処理ユニット2または図11に示す処理ユニット2Pと同じ構成である。すなわち、ウェット処理ユニット2Wのチャンバ4は、処理液供給ユニット、固体形成ユニットおよび剥離液供給ユニットを収容する第1チャンバの一例である。
 図15には、ドライ処理ユニット2Dが、チャンバ4D(第2チャンバ)内に処理ガスを案内する処理ガス配管190と、チャンバ4D内の処理ガスをプラズマに変化させるプラズマユニットとしてのプラズマ発生装置191とを含む例を示している。プラズマ発生装置191は、基板Wの上方に配置される上電極192と、基板Wの下方に配置され、基板Wが載置される下電極193とを含む。
 プラズマ発生装置191は、チャンバ4D内の処理ガスをプラズマに変化させて、酸素ラジカル等による分解反応や酸化反応等の化学反応によって、基板W上の第2固体膜111,211を、液体状態を経ずに気化させることができる。
 第3実施形態に係る基板処理装置1Qによる基板処理では、搬送ロボットCRによって基板Wがウェット処理ユニット2Wのチャンバ4(第1チャンバ)内に搬入された後、チャンバ4内で、図6に示す薬液処理工程(ステップS2)から第2固体膜形成工程(ステップS10)までが実行される。つまり、薬液処理工程(ステップS2)の開始から第2固体膜形成工程(ステップS10)の終了までの間、基板Wは、チャンバ4内のスピンチャック5に保持される(第1基板保持工程)。
 その後、上面に第2固体膜111,211が形成された基板Wが、図15に示すように、搬送ロボットCRによって、ウェット処理ユニット2Wのチャンバ4から搬出され、ドライ処理ユニット2Dのチャンバ4Dに搬入される(搬送工程)。搬送ロボットCRは、搬送ユニットの一例である。
 そして、基板W上の第2固体膜111,211は、チャンバ4D内のプラズマに起因する化学反応により液体を経ずに気体に変化する。これにより、基板W上から第2固体膜111,211が除去される(第2固体膜気化除去工程)。このように、第2固体膜気化除去工程が実行される間、基板Wは、下電極193に載置(保持)される(第2基板保持工程)。
 第3実施形態によれば、基板Wは、第1液膜形成工程の開始から第2固体膜形成工程の終了までの間、ウェット処理ユニット2Wのチャンバ4(第1チャンバ)内に保持され、第2固体膜気化除去工程が実行される間、ドライ処理ユニット2Dのチャンバ4D(第2チャンバ)内に保持される。そのため、チャンバ4Dの構成を第2固体膜111,2111の気化に特化したもの(たとえば、上述したプラズマ発生装置191を備えた構成)とすることができる。したがって、第2固体膜111,211を気化させて基板Wの上面を良好に乾燥させることができる。
 基板処理装置1Qが、ウェット処理ユニット2Wとドライ処理ユニット2Dとを備えている構成において、気化ユニットは、プラズマ発生装置191以外のユニットであってもよい。たとえば、図16に示すように、ドライ処理ユニット2Dが、基板Wが載置されるベース170と、ベース170に保持された基板Wの上面に向けてUV等の光を照射する光照射ランプ171とを含んでいてもよい。この場合、基板W上の第2固体膜111,211は、光の照射によって分解されて、液体状態を経ずに気体に変化する。
 図15に示すプラズマ発生装置191や図16に示す光照射ランプ171が気化ユニットとして用いられる場合、第2固体膜111,211は、化学反応により気化する。そのため、処理液に含まれる固体形成物質は、昇華性物質でなくてもよい。
 また、図17に示すように、ドライ処理ユニット2Dが、気化ユニットとして、基板Wが載置され基板Wを加熱するホットプレート180を含んでいてもよい。ホットプレート180は、プレート本体181と、プレート本体181に内蔵されたヒータ182とを含む。ヒータ182に通電することによって、ホットプレート180が加熱される。ヒータ182には、ヒータ通電ユニット183から電力が供給される。気化ユニットとしてホットプレート180が用いられる場合、処理液としては、加熱により第2固体膜211を形成する混合処理液が用いられる。基板W上の第2固体膜211は、基板Wを介してホットプレート180に加熱されることによって液体状態を経ずに昇華する。
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。
 たとえば、上述の実施形態では、第1移動ノズル10から薬液が吐出され、第2移動ノズル11から剥離液が吐出され、中央ノズル12から処理液(混合処理液、溶融処理液)、リンス液、相溶性液体、および不活性ガスが吐出される。しかしながら、第1移動ノズル10から薬液以外の処理流体が吐出されてもよいし、第2移動ノズル11から剥離液以外の処理流体が吐出されてもよい。また、中央ノズル12から薬液や剥離液が吐出されてもよい。
 上述の実施形態では、第2移動ノズル11から剥離液としてIPA/DIW混合液が吐出される。しかしながら、中央ノズル12に供給されるリンス液としてのDIWと相溶性液体としてのIPAとを混ぜ合わせて中央ノズル12から剥離液としてのIPA/DIW混合液が吐出されてもよい。
 上述の実施形態では、リンス液、処理液および剥離液に対して相溶性を有する液体を相溶性液体として用いている。しかしながら、上述の実施形態とは異なり、リンス液および処理液の両方に対して相溶性を有する第1相溶性液体と、処理液および剥離液の両方に対して相溶性を有する第2相溶性液体とが異なる液体として準備されていてもよい。
 また、第2実施形態に係る第1固体膜210および第2固体膜211は、超音波を付与することによって、混合処理液中に析出した固体形成物質によって形成されてもよい。
 また、第1実施形態に係る第1固体膜110および第2固体膜111は、冷却することなく、基板Wの上面に溶融処理液が供給された状態で放置することによって、形成されてもよい。そのためには、溶融処理液を構成する固体形成物質として、常温よりも高い融点(凝固点)を有する物質を用いる必要がある。具体的には、常温よりも高い融点(凝固点)を有する固体形成物質を予め加熱することによって準備された溶融処理液をノズルから吐出すれば、基板Wの上面に着液した溶融処理液は、基板Wの上面で自然冷却されて凝固する。これにより、第1固体膜110または第2固体膜111が形成される。
 また、第2実施形態に係る第1固体膜210および第2固体膜211は、気体の吹き付け、加熱、基板Wの回転等を行うことなく、基板Wを放置することによって、形成されてもよい。そのためには、混合処理液の溶媒として、揮発性が高いものを選択することが好ましい。
 また、第2実施形態において、中央ノズル12(第4チューブ34)や第5チューブ35から空間Sに供給される気体の温度は、常温よりも高い温度に設定されていてもよい。この場合、第1固体膜形成工程および第2固体膜形成工程において、溶媒の蒸発を促進して第1固体膜210の形成および第2固体膜211の形成をそれぞれ促進することができる。また、中央ノズル12(第4チューブ34)や第5チューブ35から空間Sに供給される気体が常温よりも高い温度に設定されている場合、第2固体膜気化除去工程において、第2固体膜211の昇華を促進することができる。
 また、第2固体膜気化除去工程において、第2固体膜111,211に供給される気体として、オゾンガス等の活性ガスを用いて、第2固体膜111,211を酸化して気化させてもよい。
 また、熱媒を用いずに、気体の吹き付けのみによって、第1固体膜210が形成されてもよい。
 第1固体膜110,210および第2固体膜111,211の形成や気化は、上述した方法を組み合わせて行うことができる。
 たとえば、溶融処理液の凝固体である第1固体膜110の形成は、自然冷却、クーリングプレート120(図10参照)または対向部材6による冷却、および冷媒の供給(図2参照)による冷却の少なくともいずれかの手法を用いて行うことができる。
 また、溶融処理液の凝固体である第2固体膜111の気化は、気体の吹き付け、雰囲気の減圧および基板Wの回転の少なくともいずれかの手法を用いて行うことができる。
 また、混合処理液からの析出物である第2固体膜211の形成は、ヒータ(ヒータ132、内蔵ヒータ140)による加熱、熱媒の供給による加熱、気体の吹き付け、超音波の付与、雰囲気の減圧および基板Wの回転の少なくともいずれかの手法を用いて行うことができる。
 また、混合処理液からの析出物である第2固体膜211の気化は、ヒータ(ヒータ132、内蔵ヒータ140、ヒータ182)による加熱、熱媒の供給による加熱、気体の吹き付け、UV照射、プラズマ照射、超音波の付与、雰囲気の減圧、および基板Wの回転の少なくともいずれかの手法を用いて行うことができる。
 また、第1固体膜110の形成に用いられる溶融処理液と、第2固体膜111の形成に用いられる溶融処理液とで、温度が互いに異なっていてもよい。同様に、第1固体膜210の形成に用いられる混合処理液と、第2固体膜211の形成に用いられる混合処理液とで、混合処理液中の固体形成物質の濃度や混合処理液の温度が互いに異なっていてもよい。
 また、上述の実施形態に係る基板処理では、第1液膜形成工程(ステップS5)の前に、薬液処理工程(ステップS2)、リンス工程(ステップS3)および第1相溶性液体供給工程(ステップS4)が実行される。しかしながら、薬液処理工程(ステップS2)~第1相溶性液体供給工程(ステップS4)が基板処理装置1,1P,1Qに搬入される前に別の装置で実行された後、基板処理装置1に搬入されてもよい。すなわち、基板処理装置1,1P,1Qでは、基板搬入(ステップS1)の後、薬液処理工程(ステップS2)~第1相溶性液体供給工程(ステップS4)が実行されずに、第1液膜形成工程(ステップS5)が実行されてもよい。
 また、リンス液と溶融処理液とが混和可能である場合、第1実施形態に係る基板処理とは異なり、第1相溶性液体供給工程(ステップS4)を省略することが可能である。同様に、溶融処理液と剥離液とが混和可能である場合、第1実施形態に係る基板処理とは異なり、第2相溶性液体供給工程(ステップS8)を省略することが可能である。
 また、リンス液と混合処理液とが混和可能である場合、第2実施形態に係る基板処理とは異なり、第1相溶性液体供給工程(ステップS4)を省略することが可能である。同様に、混合処理液と剥離液とが混和可能である場合、第2実施形態に係る基板処理とは異なり、第2相溶性液体供給工程(ステップS8)を省略することが可能である。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2018年11月22日に日本国特許庁に提出された特願2018-219429号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
1     :基板処理装置
1P    :基板処理装置
1Q    :基板処理装置
4     :チャンバ(第1チャンバ)
4D    :チャンバ(第2チャンバ)
8     :排気ユニット(固体形成ユニット、気化ユニット)
11    :第2移動ノズル(剥離液供給ユニット)
12    :中央ノズル(吐出ノズル)
13    :下面ノズル(固体形成ユニット、気化ユニット)
23    :スピンモータ(固体形成ユニット、気化ユニット)
29    :FFU(固体形成ユニット、気化ユニット)
32    :第2チューブ(処理液供給ユニット)
34    :第4チューブ(固体形成ユニット、気化ユニット)
35    :第5チューブ(固体形成ユニット、気化ユニット)
90    :処理液タンク
100   :第1溶融処理液膜(第1液膜)
101   :第2溶融処理液膜(第2液膜)
110   :第1固体膜
111   :第2固体膜
120   :クーリングプレート(固体形成ユニット)
130   :ホットプレート(固体形成ユニット、気化ユニット)
140   :内蔵ヒータ(固体形成ユニット、気化ユニット)
150   :除去対象物
171   :光照射ランプ(気化ユニット)
180   :ホットプレート(気化ユニット)
191   :プラズマ発生装置(気化ユニット)
200   :第1混合処理液膜(第1液膜)
201   :第2混合処理液膜(第2液膜)
210   :第1固体膜
211   :第2固体膜
CR    :搬送ロボット(搬送ユニット)
W     :基板

Claims (14)

  1.  固体形成物質を含有する処理液を、基板の表面に供給することによって、前記処理液の第1液膜を前記基板の表面に形成する第1液膜形成工程と、
     固体状態の前記固体形成物質を含有する第1固体膜を前記第1液膜から形成する第1固体膜形成工程と、
     前記第1固体膜を剥離する剥離液を前記基板の表面に供給することによって、前記基板の表面から前記第1固体膜を剥離して除去する第1固体膜剥離除去工程と、
     前記第1固体膜を前記基板の表面から除去した後に、前記処理液を前記基板の表面に供給することによって、前記基板の表面に前記処理液の第2液膜を形成する第2液膜形成工程と、
     固体状態の前記固体形成物質を含有する第2固体膜を前記第2液膜から形成する第2固体膜形成工程と、
     液体状態を経ないように前記第2固体膜を気化させて、前記第2固体膜を前記基板の表面から除去する第2固体膜気化除去工程とを含む、基板処理方法。
  2.  前記第1固体膜形成工程が、前記基板の表面に存在する除去対象物を保持する前記第1固体膜を形成する工程を含み、
     前記第1固体膜剥離除去工程が、前記除去対象物を保持した状態の前記第1固体膜を前記基板の表面から剥離する工程を含む、請求項1に記載の基板処理方法。
  3.  前記処理液が、前記固体形成物質の融液であり、
     前記第1固体膜形成工程において、前記第1液膜が凝固するように前記第1液膜を冷却する第1冷却工程と、
     前記第2固体膜形成工程において、前記第2液膜が凝固するように前記第2液膜を冷却する第2冷却工程とをさらに含む、請求項1または2に記載の基板処理方法。
  4.  前記第1冷却工程が、前記第1固体膜剥離除去工程においても継続される、請求項3に記載の基板処理方法。
  5.  前記第2冷却工程が、前記第2固体膜気化除去工程においても継続される、請求項3または4に記載の基板処理方法。
  6.  前記処理液が、溶質としての前記固体形成物質と、前記固体形成物質を溶解させる溶媒とを含み、
     前記第1固体膜形成工程において、前記第1液膜から前記溶媒を蒸発させて前記固体形成物質を析出させる第1析出工程と、
     前記第2固体膜形成工程において、前記第2液膜から前記溶媒を蒸発させて前記固体形成物質を析出させる第2析出工程とをさらに含む、請求項1または2に記載の基板処理方法。
  7.  前記固体形成物質が、固体から気体に昇華する昇華性物質であり、
     前記第2析出工程において前記第2液膜からの前記溶媒の蒸発が促進されるように前記基板を加熱する基板加熱工程をさらに含み、
     前記基板加熱工程が、前記第2固体膜気化除去工程においても継続される、請求項6に記載の基板処理方法。
  8.  前記第1液膜形成工程および前記第2液膜形成工程では、共通の処理液タンクから吐出ノズルに前記処理液が供給され、前記吐出ノズルから前記基板の表面に向けて前記処理液が吐出される、請求項1~7のいずれか一項に記載の基板処理方法。
  9.  前記第1液膜形成工程の開始前に前記基板の表面に薬液を供給する薬液供給工程と、
     前記薬液供給工程の終了後で、かつ、前記第1液膜形成工程の開始前に、前記基板の表面に付着した前記薬液を洗い流すリンス液を前記基板の表面に供給するリンス液供給工程と、
     前記リンス液供給工程の終了後で、かつ、前記第1液膜形成工程の開始前に、前記リンス液および前記処理液の両方に対して相溶性を有する第1相溶性液体を前記基板の表面に供給する第1相溶性液体供給工程とをさらに含む、請求項1~8のいずれか一項に記載の基板処理方法。
  10.  前記第1固体膜剥離除去工程の終了後であって、かつ、前記第2液膜形成工程の開始前に、前記剥離液および前記処理液の両方に対して相溶性を有する第2相溶性液体を前記基板の表面に供給する第2相溶性液体供給工程をさらに含む、請求項1~9のいずれか一項に記載の基板処理方法。
  11.  前記第1液膜形成工程の開始から前記第2固体膜形成工程の終了までの間、前記基板を第1チャンバ内に保持する第1基板保持工程と、
     前記第2固体膜が形成された状態の前記基板を、前記第1チャンバから第2チャンバに搬送する搬送工程と、
     前記第2固体膜気化除去工程が実行される間、前記第2チャンバ内に保持する第2基板保持工程とをさらに含む、請求項1~10のいずれか一項に記載の基板処理方法。
  12.  固体形成物質を含有する処理液を、基板の表面に供給する処理液供給ユニットと、
     前記基板の表面上の前記処理液から固体状態の前記固体形成物質を形成する固体形成ユニットと、
     固体状態の前記固体形成物質を前記基板の表面から剥離する剥離液を前記基板の表面に供給する剥離液供給ユニットと、
     前記基板の表面上で固体状態の前記固体形成物質を、液体状態を経ないように気化させる気化ユニットと、
     前記処理液供給ユニット、前記固体形成ユニット、前記剥離液供給ユニットおよび前記気化ユニットを制御するコントローラとを含み、
     前記コントローラが、前記処理液を前記処理液供給ユニットから前記基板の表面に供給し、前記処理液の第1液膜を前記基板の表面に形成する第1液膜形成工程と、前記固体形成ユニットによって、固体状態の前記固体形成物質を含有する第1固体膜を前記第1液膜から形成する第1固体膜形成工程と、前記剥離液供給ユニットから前記基板の上面に前記剥離液を供給することによって、前記基板の表面から前記第1固体膜を剥離して除去する第1固体膜剥離除去工程と、前記第1固体膜を前記基板の表面から除去した後に、前記処理液供給ユニットから前記基板の表面に前記処理液を供給することによって、前記処理液の第2液膜を前記基板の表面に形成する第2液膜形成工程と、前記固体形成ユニットによって、固体状態の前記固体形成物質を含有する第2固体膜を前記第2液膜から形成する第2固体膜形成工程と、前記第2固体膜を前記気化ユニットによって気化させて前記基板の表面から前記第2固体膜を除去する第2固体膜気化除去工程とを実行する、基板処理装置。
  13.  前記処理液が貯留された処理液タンクをさらに含み、
     前記処理液供給ユニットが、前記処理液を前記基板の表面に吐出する吐出ノズルを含み、
     前記コントローラが、前記第1液膜形成工程および前記第2液膜形成工程において、前記処理液タンクから前記吐出ノズルに供給された前記処理液を、前記吐出ノズルから前記基板の表面に向けて吐出させる、請求項12に記載の基板処理装置。
  14.  前記処理液供給ユニット、前記固体形成ユニットおよび前記剥離液供給ユニットを収容する第1チャンバと、
     前記気化ユニットを収容する第2チャンバと、
     前記第1チャンバから前記第2チャンバに前記基板を搬送する搬送ユニットとをさらに含み、
     前記コントローラが、前記第1液膜形成工程の開始から前記第2固体膜形成工程の終了までの間、前記基板を前記第1チャンバ内に保持する第1基板保持工程と、前記第2固体膜が形成された状態の前記基板を、前記搬送ユニットによって、前記第1チャンバから前記第2チャンバに搬送する搬送工程と、前記第2固体膜気化除去工程が実行される間、前記第2チャンバ内に保持する第2基板保持工程とを実行する、請求項12または13に記載の基板処理装置。
PCT/JP2019/042188 2018-11-22 2019-10-28 基板処理方法および基板処理装置 WO2020105376A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980076850.0A CN113169061A (zh) 2018-11-22 2019-10-28 基板处理方法及基板处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018219429A JP7126429B2 (ja) 2018-11-22 2018-11-22 基板処理方法および基板処理装置
JP2018-219429 2018-11-22

Publications (1)

Publication Number Publication Date
WO2020105376A1 true WO2020105376A1 (ja) 2020-05-28

Family

ID=70773968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042188 WO2020105376A1 (ja) 2018-11-22 2019-10-28 基板処理方法および基板処理装置

Country Status (4)

Country Link
JP (1) JP7126429B2 (ja)
CN (1) CN113169061A (ja)
TW (1) TWI743585B (ja)
WO (1) WO2020105376A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024060140A (ja) * 2022-10-19 2024-05-02 株式会社Screenホールディングス 基板処理方法および基板処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243869A (ja) * 2011-05-17 2012-12-10 Tokyo Electron Ltd 基板乾燥方法及び基板処理装置
JP2015162486A (ja) * 2014-02-26 2015-09-07 株式会社Screenホールディングス 基板乾燥装置および基板乾燥方法
JP2018110220A (ja) * 2017-01-05 2018-07-12 株式会社Screenホールディングス 基板洗浄装置および基板洗浄方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216188B2 (ja) 2013-09-04 2017-10-18 株式会社Screenホールディングス 基板乾燥装置および基板乾燥方法
JP6308910B2 (ja) * 2013-11-13 2018-04-11 東京エレクトロン株式会社 基板洗浄方法、基板洗浄システムおよび記憶媒体
JP6426936B2 (ja) * 2014-07-31 2018-11-21 東京エレクトロン株式会社 基板洗浄方法および記憶媒体
JP6371253B2 (ja) * 2014-07-31 2018-08-08 東京エレクトロン株式会社 基板洗浄システム、基板洗浄方法および記憶媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243869A (ja) * 2011-05-17 2012-12-10 Tokyo Electron Ltd 基板乾燥方法及び基板処理装置
JP2015162486A (ja) * 2014-02-26 2015-09-07 株式会社Screenホールディングス 基板乾燥装置および基板乾燥方法
JP2018110220A (ja) * 2017-01-05 2018-07-12 株式会社Screenホールディングス 基板洗浄装置および基板洗浄方法

Also Published As

Publication number Publication date
CN113169061A (zh) 2021-07-23
TWI743585B (zh) 2021-10-21
JP2020088124A (ja) 2020-06-04
TW202044378A (zh) 2020-12-01
JP7126429B2 (ja) 2022-08-26

Similar Documents

Publication Publication Date Title
JP6728009B2 (ja) 基板処理方法および基板処理装置
US10651058B2 (en) Substrate processing method and substrate processing apparatus
TWI746998B (zh) 基板處理方法及基板處理裝置
KR102388636B1 (ko) 기판 처리 방법 및 기판 처리 장치
CN112640057B (zh) 衬底处理方法及衬底处理装置
US11897009B2 (en) Substrate processing method and substrate processing device
JP7010629B2 (ja) 基板乾燥方法および基板処理装置
WO2020021903A1 (ja) 基板処理方法および基板処理装置
JP7030633B2 (ja) 基板処理装置および基板処理方法
WO2020105376A1 (ja) 基板処理方法および基板処理装置
KR102518117B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP7232583B2 (ja) 基板処理方法および基板処理装置
WO2020039835A1 (ja) 基板処理方法および基板処理装置
JP2024047257A (ja) 基板処理方法、基板処理装置及び基板処理液
JP2019186388A (ja) 基板処理方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886617

Country of ref document: EP

Kind code of ref document: A1