WO2020105199A1 - Resistance temperature sensor - Google Patents

Resistance temperature sensor

Info

Publication number
WO2020105199A1
WO2020105199A1 PCT/JP2019/003994 JP2019003994W WO2020105199A1 WO 2020105199 A1 WO2020105199 A1 WO 2020105199A1 JP 2019003994 W JP2019003994 W JP 2019003994W WO 2020105199 A1 WO2020105199 A1 WO 2020105199A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
pair
lead terminal
layer
electrode pad
Prior art date
Application number
PCT/JP2019/003994
Other languages
French (fr)
Japanese (ja)
Inventor
裕志 木澤
文雄 西野
植田 要治
友樹 坂井
Original Assignee
立山科学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立山科学工業株式会社 filed Critical 立山科学工業株式会社
Publication of WO2020105199A1 publication Critical patent/WO2020105199A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer

Definitions

  • the present invention relates to a resistor temperature sensor having a resistor formed of a platinum thin film on an insulating substrate.
  • a resistor temperature sensor in which a resistor is formed by a platinum thin film on an insulating substrate has been used as an automobile exhaust gas temperature sensor.
  • a resistor temperature sensor for example, in Patent Document 1, a resistor is formed by a platinum thin film on an insulating substrate, and electrode pads are formed on both sides of the resistor by thick film printing, A resistor temperature sensor for connecting a lead terminal to an electrode pad is disclosed. Platinum is mainly used as the electrode pad and the lead terminal, and the lead terminal made of a platinum wire is connected to the platinum electrode pad by welding.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a resistor temperature sensor in which a lead terminal and an electrode pad are firmly connected.
  • the resistor temperature sensor of the present invention has an insulating substrate, a resistor portion, and a pair of connecting portions connected to both ends of the resistor portion, and a resistor formed of a platinum thin film on the insulating substrate, and a pair.
  • a pair of electrode pads formed to cover each of the connection parts, a pair of lead terminals connected to each of the pair of electrode pads, and a lead terminal protective layer formed to cover the pair of electrode pads.
  • a barrier layer formed so as to cover at least the resistance portion, the electrode pad being laminated on the insulating substrate, the first electrode pad layer being made of a platinum-based metal having high adhesion to the insulating substrate;
  • a second electrode pad layer which is laminated on the electrode pad layer and is made of a porous platinum-based metal.
  • the first electrode pad layer is formed of the platinum-based metal having high adhesiveness, the adhesiveness with the insulating substrate can be ensured, and further, the porous platinum-based metal is used. Since the second electrode pad layer is made of metal, residual stress due to strain generated when welding the lead terminals is relieved, and the strength and thermal shock resistance of the connecting portion between the lead terminals and the electrode pads are improved. be able to.
  • the lead terminal protective layer includes a first lead terminal protective layer including porous crystallized glass laminated so as to cover the electrode pad, and a first lead terminal protective layer. And a second lead terminal protective layer configured to include the amorphous glass laminated on the.
  • the lead terminal protection layer Conventionally, glass ceramics or glass was used for the lead terminal protection layer, but higher holding strength of the lead terminal and higher airtightness were required.
  • the first lead terminal protective layer configured to include the porous crystallized glass can ensure a high holding strength of the lead terminal, and the amorphous glass High airtightness can be ensured by the second lead terminal protective layer configured to include.
  • the lead terminal protective layer is configured to include a glass material containing a filler that is reactive during the firing process.
  • the glass material forming the lead terminal protective layer is such that a component having high airtightness is melted first in the firing process to surround the unmelted filler having a high melting point, and When rises, the filler melts and becomes like semi-crystallized glass. Thereby, high holding strength of the lead terminal can be secured and high airtightness can be secured.
  • the barrier layer is a first barrier layer made of an alumina-based material that is laminated so as to cover at least the resistance portion, and is laminated so as to cover the first barrier layer.
  • a second barrier layer containing magnesium oxide, titanium oxide, or strontium oxide.
  • the barrier layer that covers the resistor portion.
  • alumina has low reactivity with platinum, it has low airtightness and functions to prevent the entry of contaminants. There was a problem that was insufficient.
  • the second barrier layer having high airtightness is formed on the outer side of the first barrier layer while ensuring low reactivity with the substrate by the first barrier layer. It is possible to improve the airtightness while ensuring the low reactivity of the barrier layer with respect to the resistance portion.
  • the pair of connecting portions of the resistor are arranged at intervals in the lateral direction, and the resistor extends from the pair of connecting portions in one of the vertical directions, and the resistor portion is interposed therebetween.
  • a pair of arm portions provided with, the resistance portion, one folding portion on one side in the vertical direction, the other folding portion on the other side in the vertical direction, one folding portion and the other folding portion.
  • a barrier portion that extends is formed.
  • the barrier portion is formed between the arm portions, it is possible to prevent contaminants from entering through between the pair of connecting portions.
  • the vertical width of the barrier portion is at least twice the line width of the extension portion of the resistance portion, and the lateral width of the arm portion is 2 times the line width of the extension portion of the resistance portion.
  • the width in the vertical direction of the folded-back portion on one side in the vertical direction of the resistance portion is twice or more the line width of the extension portion of the resistance portion.
  • FIG. 2 is a sectional view taken along the line II-II of the resistor temperature sensor shown in FIG. 1.
  • FIG. 3 is a sectional view taken along the line III-III of the resistor temperature sensor shown in FIG. 1.
  • FIG. 4 is a sectional view taken along the line IV-IV of the resistor temperature sensor shown in FIG. 1. It is a top view which shows the shape of the resistor of the resistor temperature sensor shown in FIG. It is sectional drawing corresponding to FIG. 3 which shows the resistor temperature sensor of 2nd Embodiment of this invention.
  • FIG. 1 is a plan view showing a resistor temperature sensor according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along the line II-II of the resistor temperature sensor shown in FIG. 1
  • FIG. 3 is a diagram showing the resistor temperature sensor shown in FIG. III-III sectional view
  • FIG. 4 is an IV-IV sectional view of the resistor temperature sensor shown in FIG.
  • FIG. 5 is a plan view showing the shape of the resistor of the resistor temperature sensor shown in FIG.
  • the resistor temperature sensor 1 includes an insulating substrate 2, a resistor 4, a pair of electrode pads 6, a pair of lead terminals 10, and a lead terminal protection layer 8.
  • the insulating substrate 2 is composed of a rectangular plate made of ceramics such as alumina.
  • the insulating substrate 2 it is preferable to use a substrate of high-purity alumina ceramics that does not cause precipitation of impurities even when fired.
  • a high-purity alumina ceramic substrate has high hardness, is difficult to process, and is costly, a general alumina ceramic substrate having a purity of about 96% can be used.
  • impurities such as Mg, Ca, and Na in the alumina ceramic substrate are precipitated in the resistor 4 to increase the electric resistance, so that the surface of the insulating substrate 2 may be covered with an undercoat film (not shown).
  • the undercoat film is formed by coating high-purity sol-like alumina or magnesia.
  • the resistor 4 is composed of a platinum thin film formed on the insulating substrate 2.
  • the platinum thin film forming the resistor 4 can be formed by a vacuum thin film forming method such as vapor deposition or sputtering.
  • the resistor 4 is formed between the pair of connecting portions 4B, the pair of arm portions 4D1 and 4D2 (4D) extending from the pair of connecting portions 4B, and the pair of arm portions 4D1 and 4D2.
  • a barrier portion 4C extending from one arm portion 4D1.
  • the pair of connecting portions 4B are formed in a U shape, and are arranged at intervals in the lateral direction (vertical direction in FIG. 1, lateral direction in FIG. 5).
  • the pair of connecting portions 4B are connected to both ends of the resistor portion 4A via the arm portions 4D1 and 4D2.
  • the pair of arm portions 4D1 and 4D2 extend from each of the pair of connecting portions 4B in the vertical direction (rightward in FIG. 1, upward in FIG. 5).
  • the resistor section 4A is provided between the pair of arm sections 4D1 and 4D2.
  • the resistance portion 4A includes one folded portion 4A2 located on one side in the vertical direction, the other folded portion 4A3 located on the other side in the vertical direction (leftward in FIG. 1, downward in FIG. 5), and one folded portion and the other folded portion. 4A2 and 4A3, and an extending portion 4A1 extending between them, and has a zigzag shape.
  • the barrier portion 4C extends from a portion between the resistance portion 4A and the connection portion 4B of the one arm portion 4D1 toward the other arm portion 4D2.
  • the vertical width D1 of the barrier portion 4C is 160 ⁇ m, and is at least twice the line width of the extending portion 4A1 of the resistance portion 4A in order to prevent contaminants from entering the resistance portion 4A. Is preferable, and specifically, it is preferably 50 ⁇ m or more.
  • the width D2 between the tip of the barrier portion 4C and the other arm portion 4D2 is 200 ⁇ m in the present embodiment, and it is possible to cover the void existing between the pair of connection portions 4B (in FIG. 5, the barrier portion).
  • the right end of 4C is located on the right side of the left edge of the connecting portion 4B2).
  • the width D3 between the barrier portion 4C and the connection portion 4B is 200 ⁇ m in the present embodiment, and is preferably 50 ⁇ m or more in order to prevent a short circuit with the connection portion 4B.
  • the width D4 in the lateral direction of the pair of arm portions 4D1 and 4D2 and the width D5 in the longitudinal direction of the folded portion 4A2 on one side are 100 ⁇ m in the present embodiment, and the resistance in order to prevent contaminants from entering the resistance portion 4A.
  • the line width of the extending portion 4A1 of the portion 4A is preferably twice or more, and specifically 50 ⁇ m or more.
  • the pair of electrode pads 6 are formed so as to cover the pair of connecting portions 4B, respectively.
  • Each electrode pad 6 has a first electrode pad layer 6A laminated on the insulating substrate 2 and a second electrode pad layer 6B laminated on the first electrode pad layer 6A.
  • the first electrode pad layer 6A is made of a platinum-based metal having high adhesion to the insulating substrate 2.
  • the platinum-based metal having high adhesion to the insulating substrate 2 means one that does not cause poor adhesion by the "peeling test" in 15.1 and 15.2 of JIS H8504. More specifically, it refers to a platinum-based metal having an adhesion strength of 10 N / mm 2 or more.
  • a platinum-based metal having high adhesion a platinum group metal (platinum, ruthenium, rhodium, palladium, osmium, iridium) and glass frit (powdered glass) containing silicon as a main component, or silicon, aluminum, A mixture of oxides of manganese, cobalt, titanium, magnesium, calcium, barium, and strontium may be used.
  • the second electrode pad layer 6B is made of a porous platinum-based metal.
  • Porous platinum-based metal refers to platinum-based metal having a porosity of 20 to 80% specified in JIS R 1600 4112.
  • the lead terminal protection layer 8 is formed so as to cover the pair of electrode pads 6.
  • the lead terminal protective layer 8 has a first lead terminal protective layer 8A laminated so as to cover the electrode pad 6, and a second lead terminal protective layer 8B laminated so as to cover the first lead terminal protective layer 8A. ..
  • the first lead terminal protection layer 8A is made of porous crystallized glass.
  • Porous glass means porous glass defined in JIS R1600 2326.
  • the porosity of the porous crystallized glass forming the first lead terminal protection layer 8A is preferably 10 to 80%.
  • the second lead terminal protection layer 8B uses non-crystallized glass for high airtightness.
  • Non-crystallized glass means glass other than crystallized glass defined in JIS R1600 2329.
  • the pair of lead terminals 10 is made of platinum in this embodiment.
  • the lead terminal 10 may be made of platinum group metal (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, copper, or an alloy thereof.
  • the barrier layer 12 is configured to cover at least the resistance portion 4A of the resistor 4.
  • the barrier layer 12 has a first barrier layer 12A laminated so as to cover the resistor portion 4A and a second barrier layer 12B laminated so as to cover the first barrier layer 12A.
  • the first barrier layer 12A is composed of a thin film of alumina-based material.
  • the thickness of the first barrier layer 12A is 100-500 nm.
  • the second barrier layer 12B is composed of a thin film containing silicon oxide in the present embodiment, and may be composed of a thin film containing aluminum oxide, magnesium oxide, titanium oxide, or strontium oxide.
  • the thickness of the second barrier layer 12B is 10-200 nm.
  • the resistance part protection layer 14 is formed so as to cover the barrier layer 12.
  • the resistance part protection layer 14 is made of, for example, Si—Ba—Al—Zr system glass, Si—Ca—Al—Ba—Sr system glass, or alumina (Al 2 O 3) or quartz (SiO 2) ceramics.
  • the lid 16 is formed so as to cover the resistance part protection layer 14.
  • the lid 16 is made of, for example, alumina (Al2O3) or quartz (SiO2) ceramics.
  • a method of manufacturing the resistor temperature sensor 1 of this embodiment will be described.
  • a resist for patterning is applied on the surface, and the pattern of the resistor 4 is exposed and developed to form the pattern of the resistor 4.
  • a platinum thin film is formed on the surface of the insulating substrate 2.
  • a uniform thin film is formed on the insulating substrate 2 by a vacuum thin film forming method such as vapor deposition or sputtering.
  • the platinum thin film is lifted off, and the pattern of the resistor 4 made of the platinum thin film is formed on the surface of the insulating substrate 2.
  • a resist for patterning is applied on the platinum thin film resistor 4 and exposed and developed using a mask shape having an opening over the resistor 4 and a part of the electrode pad 6 of the connecting portion 4B to develop a barrier layer. Twelve patterns are formed. This mask may also be used as a masking mask for the pad portion.
  • the barrier layer material is uniformly formed by a vacuum thin film forming method using a mask to form the barrier layer 12.
  • the first electrode pad layer 6A is formed on the connection portion 4B of the resistor 4 by thick film printing, and heat treatment is performed.
  • a mask (not shown) having an opening in the shape of the first electrode pad layer 6A is used.
  • the heat treatment is performed at a constant high temperature of about 900 ° C. to 1400 ° C. to stabilize the crystal grain boundaries of the platinum thin film of the resistor 4.
  • the second electrode pad layer 6B is formed on the first electrode pad layer 6A by thick film printing, and heat treatment is performed in the same manner as the first electrode pad layer 6A.
  • a trimming groove is formed in an adjusting portion which is a part of the resistance body 4 by laser trimming.
  • a glass paste for the resistance part protection layer 14 is applied so as to cover the barrier layer 12 using a predetermined mask having an opening of a size that covers the barrier layer 12, and the material of the lid 16 is further applied. To coat. Then, the glass paste is heat-treated at a temperature of about 900 ° C. to 1200 ° C. to form the resistance part protection layer 14 and the lid 16.
  • the large-sized ceramic substrate is divided into the insulating substrates 2.
  • the lead terminal 10 is welded to the electrode pad 6.
  • spot welding or the like is used to form welded portions at a plurality of locations for each lead terminal 10.
  • the end portion of the lead terminal 10 is positioned so as to be close to or overlap with the end edge portion of the lid 16.
  • the welded portion is covered with a glass paste for the first lead terminal protective layer 8A by a method such as dispensing so that the welded portion of the electrode pad 6 and the lead terminal 10 is covered.
  • the glass paste is heat-treated at a temperature of about 900 ° C. to 1200 ° C.
  • the first lead terminal protection layer 8A is covered with the glass paste for the second lead terminal protection layer 8B, and heat treatment is performed in the same manner as the first lead terminal protection layer 8A to form the lead terminal protection layer 8 and the resistor temperature sensor 1 And
  • the electrode pad 6 has the first electrode pad layer 6A and the second electrode pad layer 6B, and the first electrode pad layer 6A is made of a platinum-based metal having high adhesiveness. Since the second electrode pad layer 6B is made of a porous platinum-based metal, the residual stress due to the strain generated when the lead terminal 10 is welded is relaxed. The strength and thermal shock resistance of the connecting portion between the lead terminal 19 and the electrode pad 6 can be improved.
  • the lead terminal protective layer 8 includes the first lead terminal protective layer 8A configured to include the porous crystallized glass laminated so as to cover the electrode pads, and the first lead terminal.
  • a second lead terminal protective layer 8B which is formed by including amorphous glass laminated on the protective layer 8A.
  • the first lead terminal protective layer 8A configured to include the porous crystallized glass can ensure a high holding strength of the lead terminal 10 and includes the amorphous glass. High airtightness can be ensured by the formed second lead terminal protection layer 8B.
  • the barrier layer 12 is laminated so as to cover at least the resistor portion 4A, and the first barrier layer 12A made of an alumina-based material and the first barrier layer 12A are laminated so as to be oxidized.
  • the barrier portion 4C is formed between the arm portions 4D1 and 4D2 of the resistor 4, it is possible to prevent contaminants from entering between the pair of connecting portions 4B.
  • the barrier portion 4C has a vertical width of 50 ⁇ m or more
  • the arm portions 4D1 and 4D2 have a horizontal width of 50 ⁇ m or more
  • the resistance portion 4A has a vertical folding portion 4A2.
  • the width in the vertical direction is 50 ⁇ m or more.
  • the lead terminal protection layer 8 includes the first lead terminal protection layer 8A including porous crystallized glass and the second lead terminal protection layer including amorphous glass.
  • the present invention is not limited to this.
  • FIG. 6 is a sectional view corresponding to FIG. 3, showing a resistor temperature sensor according to a second embodiment of the present invention.
  • the lead terminal protection layer 108 is composed of one layer.
  • the lead terminal protection layer 108 is made of glass containing a filler that is reactive during the firing process.
  • Filled glass refers to, for example, a glass material containing alumina as a main component, in which a filler such as silicon, magnesium, calcium, barium or strontium oxide is mixed, and the particle shape of the filler is round or crushed.
  • the particle size of the filler is preferably 0.1 to 10 ⁇ m, and the content ratio of the filler is preferably 10 to 30%.
  • the lead terminal protective layer is configured to include a glass material containing a filler that is reactive during the firing process.
  • the glass material that constitutes the lead terminal protective layer is a semi-crystallized glass that melts the highly airtight component first and surrounds the unmelted filler in the firing process, and when the temperature rises, the filler melts. become that way. Thereby, high holding strength of the lead terminal can be secured and high airtightness can be secured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Details Of Resistors (AREA)

Abstract

The present invention provides a resistance temperature sensor in which a lead terminal and an electrode pad are firmly connected to each other. This resistance temperature sensor is provided with: an insulating substrate 2; a resistor 4 which is formed of a thin platinum film on the insulating substrate 2 and comprises a resistive part 5A and a pair of connection parts 4B that are connected to both ends of the resistive part 5A; a pair of electrode pads 6 which are formed so as to respectively cover the pair of connection parts 4B; a pair of lead terminals 10 which are respectively connected to the pair of electrode pads 6; a lead terminal protective layer 8 which is formed so as to cover the pair of electrode pads 6; and a barrier layer 12 which is formed so as to cover at least the resistive part 4A. Each of the electrode pads 6 comprises: a first electrode pad layer 6A which is superposed on the insulating substrate 2 and is formed from a platinum-based metal that exhibits good adhesion to the insulating substrate 2; and a second electrode pad layer 6B which is superposed on the first electrode pad layer 6A and is formed from a porous platinum-based metal.

Description

抵抗体温度センサResistor temperature sensor
 本発明は絶縁基板上に白金薄膜により抵抗体が形成されてなる抵抗体温度センサに関する。 The present invention relates to a resistor temperature sensor having a resistor formed of a platinum thin film on an insulating substrate.
 従来より、自動車の排気ガス温度センサとして、絶縁基板上に白金薄膜により抵抗体が形成されてなる抵抗体温度センサが用いられている。このような抵抗体温度センサとして、例えば、特許文献1には、絶縁基板上に白金薄膜により抵抗体を形成し、この抵抗体の両側の接続端部に電極パッドを厚膜印刷により形成し、電極パッドにリード端子を接続する抵抗体温度センサが開示されている。電極パッド及びリード端子としては白金が主に用いられ、白金線からなるリード端子を白金電極パッドに溶接することで接続されている。 Conventionally, a resistor temperature sensor in which a resistor is formed by a platinum thin film on an insulating substrate has been used as an automobile exhaust gas temperature sensor. As such a resistor temperature sensor, for example, in Patent Document 1, a resistor is formed by a platinum thin film on an insulating substrate, and electrode pads are formed on both sides of the resistor by thick film printing, A resistor temperature sensor for connecting a lead terminal to an electrode pad is disclosed. Platinum is mainly used as the electrode pad and the lead terminal, and the lead terminal made of a platinum wire is connected to the platinum electrode pad by welding.
特開2014-6052号公報JP, 2014-6052, A
 ここで、特許文献1に記載されているような抵抗体温度センサでは、白金線からなるリード端子と、白金電極パッドとの接合強度が不足したり、熱衝撃性が弱かったりするなどにより、白金リード端子が白金電極パッドからはがれてしまうという問題があった。 Here, in the resistor temperature sensor as described in Patent Document 1, since the lead terminal made of a platinum wire and the platinum electrode pad have insufficient bonding strength or weak thermal shock, There is a problem that the lead terminal may come off from the platinum electrode pad.
 本発明は、上記の問題に鑑みなされたものであり、リード端子と電極パッドとが強固に接続された抵抗体温度センサを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a resistor temperature sensor in which a lead terminal and an electrode pad are firmly connected.
 本発明の抵抗体温度センサは、絶縁基板と、抵抗部、及び、抵抗部の両端部に接続された一対の接続部を有し、絶縁基板上に白金薄膜により形成された抵抗体と、一対の接続部のそれぞれを覆うように形成された一対の電極パッドと、一対の電極パッドのそれぞれに接続された一対のリード端子と、一対の電極パッドを覆うように形成されたリード端子保護層と、少なくとも抵抗部を覆うように形成されたバリア層と、を備え、電極パッドは、絶縁基板に積層され、絶縁基板との密着性が高い白金系金属からなる第1電極パッド層と、第1電極パッド層に積層され、多孔質な白金系金属からなる第2電極パッド層と、を有する、ことを特徴とする。 The resistor temperature sensor of the present invention has an insulating substrate, a resistor portion, and a pair of connecting portions connected to both ends of the resistor portion, and a resistor formed of a platinum thin film on the insulating substrate, and a pair. A pair of electrode pads formed to cover each of the connection parts, a pair of lead terminals connected to each of the pair of electrode pads, and a lead terminal protective layer formed to cover the pair of electrode pads. A barrier layer formed so as to cover at least the resistance portion, the electrode pad being laminated on the insulating substrate, the first electrode pad layer being made of a platinum-based metal having high adhesion to the insulating substrate; A second electrode pad layer which is laminated on the electrode pad layer and is made of a porous platinum-based metal.
 上記構成の本発明によれば、密着性の高い白金系金属により第1の電極パッド層が構成されているため、絶縁基板との密着性を確保することができ、さらに、多孔質な白金系金属により第2の電極パッド層が構成されているため、リード端子を溶接する際に発生する歪による残留応力が緩和され、リード端子と電極パッドとの接続部の強度と熱衝撃性を向上することができる。 According to the present invention having the above-described structure, since the first electrode pad layer is formed of the platinum-based metal having high adhesiveness, the adhesiveness with the insulating substrate can be ensured, and further, the porous platinum-based metal is used. Since the second electrode pad layer is made of metal, residual stress due to strain generated when welding the lead terminals is relieved, and the strength and thermal shock resistance of the connecting portion between the lead terminals and the electrode pads are improved. be able to.
 また、本発明において、好ましくは、リード端子保護層は、電極パッドを覆うように積層された多孔質の結晶化ガラスを含んで構成された第1リード端子保護層と、第1リード端子保護層に積層された非結晶ガラスを含んで構成された第2リード端子保護層と、を有する。 In the present invention, preferably, the lead terminal protective layer includes a first lead terminal protective layer including porous crystallized glass laminated so as to cover the electrode pad, and a first lead terminal protective layer. And a second lead terminal protective layer configured to include the amorphous glass laminated on the.
 リード端子保護層は、従来、ガラスセラミックス又はガラスが用いられていたが、より高いリード端子の保持強度、及び、より高い気密性が要求されていた。これに対して、上記構成の本発明によれば、多孔質の結晶化ガラスを含んで構成された第1リード端子保護層により、高いリード端子の保持強度を確保することができ、非結晶ガラスを含んで構成された第2リード端子保護層により高気密性を確保することができる。 Conventionally, glass ceramics or glass was used for the lead terminal protection layer, but higher holding strength of the lead terminal and higher airtightness were required. On the other hand, according to the present invention having the above-described configuration, the first lead terminal protective layer configured to include the porous crystallized glass can ensure a high holding strength of the lead terminal, and the amorphous glass High airtightness can be ensured by the second lead terminal protective layer configured to include.
 また、本発明において、好ましくは、リード端子保護層は、焼成プロセス時に反応性のあるフィラーを含むガラス材料を含んで構成されている。 Further, in the present invention, preferably, the lead terminal protective layer is configured to include a glass material containing a filler that is reactive during the firing process.
 このような構成の本発明によれば、リード端子保護層を構成するガラス材料は、焼成プロセスにおいて、気密性の高い成分が先に溶けて、融点が高く溶けていないフィラーを取り囲み、さらに、温度が上昇するとフィラーが溶けて半結晶化ガラスのようになる。これにより、高いリード端子の保持強度を確保することができるとともに、高気密性を確保することができる。 According to the present invention having such a configuration, the glass material forming the lead terminal protective layer is such that a component having high airtightness is melted first in the firing process to surround the unmelted filler having a high melting point, and When rises, the filler melts and becomes like semi-crystallized glass. Thereby, high holding strength of the lead terminal can be secured and high airtightness can be secured.
 また、本発明において、好ましくは、バリア層は、少なくとも抵抗部を覆うように積層されたアルミナ系材料からなる第1バリア層と、第1バリア層を覆うように積層され、酸化シリコン、酸化アルミニウム、酸化マグネシウム、酸化チタン、又は酸化ストロンチウムを含む第2バリア層と、を有する。 Further, in the present invention, preferably, the barrier layer is a first barrier layer made of an alumina-based material that is laminated so as to cover at least the resistance portion, and is laminated so as to cover the first barrier layer. And a second barrier layer containing magnesium oxide, titanium oxide, or strontium oxide.
 従来は、抵抗部を覆うバリア層としては、アルミナリッチな結晶化ガラス又はアルミナが用いられていたが、アルミナは白金との反応性が低いものの、気密性が低く、汚染物質の侵入を防ぐ機能が不十分であるという問題があった。これに対して、上記構成の本発明によれば、第1バリア層により基板との低反応性を確保した上で、第1のバリア層の外側に気密性の高い第2バリア層を形成することができ、バリア層の抵抗部に対する低反応性を確保した上で、気密性を向上することができる。 Conventionally, alumina-rich crystallized glass or alumina was used as the barrier layer that covers the resistor portion.Although alumina has low reactivity with platinum, it has low airtightness and functions to prevent the entry of contaminants. There was a problem that was insufficient. On the other hand, according to the present invention having the above structure, the second barrier layer having high airtightness is formed on the outer side of the first barrier layer while ensuring low reactivity with the substrate by the first barrier layer. It is possible to improve the airtightness while ensuring the low reactivity of the barrier layer with respect to the resistance portion.
 また、本発明において、好ましくは、抵抗体の一対の接続部は横方向に間隔をあけて配置されており、抵抗体は、一対の接続部から縦方向の一方に延びて、間に抵抗部が設けられた一対の腕部を有し、抵抗部は、縦方向の一方側の一方の折り返し部と、縦方向の他方側の他方の折り返し部と、一方の折り返し部と他方の折り返し部との間に延在する延在部とを有し、つづら折り状に形成されており、一対の腕部の一方の抵抗部よりも縦方向の他方側には、一対の腕部の他方に向かって延びる、障壁部が形成されている。 Further, in the present invention, preferably, the pair of connecting portions of the resistor are arranged at intervals in the lateral direction, and the resistor extends from the pair of connecting portions in one of the vertical directions, and the resistor portion is interposed therebetween. A pair of arm portions provided with, the resistance portion, one folding portion on one side in the vertical direction, the other folding portion on the other side in the vertical direction, one folding portion and the other folding portion. Has an extending portion extending between, and is formed in a zigzag shape, on the other side in the longitudinal direction than the resistance portion of one of the pair of arm portions, toward the other of the pair of arm portions. A barrier portion that extends is formed.
 上記構成の本発明によれば、腕部の間に障壁部が形成されているため、一対の接続部の間を通って汚染物質が入り込むのを防止できる。 According to the present invention having the above configuration, since the barrier portion is formed between the arm portions, it is possible to prevent contaminants from entering through between the pair of connecting portions.
 本発明において、好ましくは、障壁部の縦方向の幅は抵抗部の延在部の線幅の2倍以上であり、腕部の横方向の幅は抵抗部の延在部の線幅の2倍以上であり、抵抗部の縦方向の一方側の折り返し部の縦方向の幅は抵抗部の延在部の線幅の2倍以上である。 In the present invention, preferably, the vertical width of the barrier portion is at least twice the line width of the extension portion of the resistance portion, and the lateral width of the arm portion is 2 times the line width of the extension portion of the resistance portion. The width in the vertical direction of the folded-back portion on one side in the vertical direction of the resistance portion is twice or more the line width of the extension portion of the resistance portion.
 上記構成の本発明によれば、障壁部、腕部、及び折り返し部を越えて汚染物質が抵抗部内まで到達するのを防止できる。 According to the present invention having the above configuration, it is possible to prevent contaminants from reaching the inside of the resistance portion beyond the barrier portion, the arm portion, and the folded portion.
 本発明によれば、リード端子と電極パッドとが強固に接続された抵抗体温度センサを提供することができる。 According to the present invention, it is possible to provide a resistor temperature sensor in which a lead terminal and an electrode pad are firmly connected.
本発明の一実施形態の抵抗体温度センサを示す平面図である。It is a top view which shows the resistor temperature sensor of one Embodiment of this invention. 図1に示す抵抗体温度センサのII-II断面図である。FIG. 2 is a sectional view taken along the line II-II of the resistor temperature sensor shown in FIG. 1. 図1に示す抵抗体温度センサのIII-III断面図である。FIG. 3 is a sectional view taken along the line III-III of the resistor temperature sensor shown in FIG. 1. 図1に示す抵抗体温度センサのIV-IV断面図である。FIG. 4 is a sectional view taken along the line IV-IV of the resistor temperature sensor shown in FIG. 1. 図1に示す抵抗体温度センサの抵抗体の形状を示す平面図である。It is a top view which shows the shape of the resistor of the resistor temperature sensor shown in FIG. 本発明の第2実施形態の抵抗体温度センサを示し、図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 which shows the resistor temperature sensor of 2nd Embodiment of this invention.
 以下、本発明の抵抗体温度センサの一実施形態を図面を参照しながら詳細に説明する。
 図1は、本発明の一実施形態の抵抗体温度センサを示す平面図、図2は図1に示す抵抗体温度センサのII-II断面図、図3は図1に示す抵抗体温度センサのIII-III断面図、図4は図1に示す抵抗体温度センサのIV-IV断面図である。また、図5は、図1に示す抵抗体温度センサの抵抗体の形状を示す平面図である。
Hereinafter, an embodiment of a resistor temperature sensor of the present invention will be described in detail with reference to the drawings.
1 is a plan view showing a resistor temperature sensor according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-II of the resistor temperature sensor shown in FIG. 1, and FIG. 3 is a diagram showing the resistor temperature sensor shown in FIG. III-III sectional view, FIG. 4 is an IV-IV sectional view of the resistor temperature sensor shown in FIG. FIG. 5 is a plan view showing the shape of the resistor of the resistor temperature sensor shown in FIG.
 図1及び図2に示すように、本実施形態の抵抗体温度センサ1は、絶縁基板2と、抵抗体4と、一対の電極パッド6と、一対のリード端子10と、リード端子保護層8と、バリア層12と、抵抗部保護層14と、蓋16とを有する。 As shown in FIGS. 1 and 2, the resistor temperature sensor 1 according to the present embodiment includes an insulating substrate 2, a resistor 4, a pair of electrode pads 6, a pair of lead terminals 10, and a lead terminal protection layer 8. A barrier layer 12, a resistance portion protection layer 14, and a lid 16.
 絶縁基板2は、例えばアルミナ等のセラミックス製の矩形状のプレートからなる。絶縁基板2は、焼成しても不純物の析出のない高純度のアルミナセラミックスの基板を用いることが好ましい。また、高純度のアルミナセラミック基板は硬度が高く加工しにくく、コストもかかるので、一般的な純度96%程度のアルミナセラミック基板を用いることもできる。この場合、アルミナセラミック基板中の不純物であるMg、Ca、Na等が抵抗体4中に析出して、電気抵抗を増加させるので、絶縁基板2表面に図示しないアンダーコート膜を被覆すると良い。アンダーコート膜は、高純度のゾル状のアルミナ又はマグネシアをコーティングして形成する。 The insulating substrate 2 is composed of a rectangular plate made of ceramics such as alumina. As the insulating substrate 2, it is preferable to use a substrate of high-purity alumina ceramics that does not cause precipitation of impurities even when fired. Further, since a high-purity alumina ceramic substrate has high hardness, is difficult to process, and is costly, a general alumina ceramic substrate having a purity of about 96% can be used. In this case, impurities such as Mg, Ca, and Na in the alumina ceramic substrate are precipitated in the resistor 4 to increase the electric resistance, so that the surface of the insulating substrate 2 may be covered with an undercoat film (not shown). The undercoat film is formed by coating high-purity sol-like alumina or magnesia.
 抵抗体4は、絶縁基板2上に形成された白金薄膜により構成されている。抵抗体4を構成する白金薄膜は、蒸着やスパッタリング等の真空薄膜形成方法により形成することができる。図5に示すように、抵抗体4は、一対の接続部4Bと、一対の接続部4Bから延びる一対の腕部4D1、4D2(4D)と、一対の腕部4D1、4D2の間に形成された抵抗部4Aと、一方の腕部4D1から延びる障壁部4Cとを有する。 The resistor 4 is composed of a platinum thin film formed on the insulating substrate 2. The platinum thin film forming the resistor 4 can be formed by a vacuum thin film forming method such as vapor deposition or sputtering. As shown in FIG. 5, the resistor 4 is formed between the pair of connecting portions 4B, the pair of arm portions 4D1 and 4D2 (4D) extending from the pair of connecting portions 4B, and the pair of arm portions 4D1 and 4D2. And a barrier portion 4C extending from one arm portion 4D1.
 一対の接続部4Bは、U字形に形成されており、横方向(図1の上下方向、図5の左右方向)に間隔をあけて配置されている。一対の接続部4Bは腕部4D1、4D2を介して抵抗部4Aの両端部に接続されている。
 一対の腕部4D1、4D2は、一対の接続部4Bのそれぞれから縦方向一方(図1の右方向、図5の上方向)に延びている。
The pair of connecting portions 4B are formed in a U shape, and are arranged at intervals in the lateral direction (vertical direction in FIG. 1, lateral direction in FIG. 5). The pair of connecting portions 4B are connected to both ends of the resistor portion 4A via the arm portions 4D1 and 4D2.
The pair of arm portions 4D1 and 4D2 extend from each of the pair of connecting portions 4B in the vertical direction (rightward in FIG. 1, upward in FIG. 5).
 抵抗部4Aは、一対の腕部4D1、4D2の間に設けられている。抵抗部4Aは、縦方向一方に位置する一方の折り返し部4A2と、縦方向他方(図1の左方向、図5の下方向)に位置する他方の折り返し部4A3と、一方及び他方の折り返し部4A2、4A3との間を延びる延在部4A1とにより構成されており、つづら折り状(ジグザグ状)になっている。 The resistor section 4A is provided between the pair of arm sections 4D1 and 4D2. The resistance portion 4A includes one folded portion 4A2 located on one side in the vertical direction, the other folded portion 4A3 located on the other side in the vertical direction (leftward in FIG. 1, downward in FIG. 5), and one folded portion and the other folded portion. 4A2 and 4A3, and an extending portion 4A1 extending between them, and has a zigzag shape.
 障壁部4Cは、一方の腕部4D1の抵抗部4Aと接続部4Bとの間の部分から、他方の腕部4D2に向かって延びている。
 障壁部4Cの縦方向の幅D1は、本実施形態では、160μmであり、汚染物質の抵抗部4Aへの侵入を防ぐために抵抗部4Aの延在部4A1の線幅の2倍以上であることが好ましく、具体的には又は50μm以上であることが好ましい。
The barrier portion 4C extends from a portion between the resistance portion 4A and the connection portion 4B of the one arm portion 4D1 toward the other arm portion 4D2.
In the present embodiment, the vertical width D1 of the barrier portion 4C is 160 μm, and is at least twice the line width of the extending portion 4A1 of the resistance portion 4A in order to prevent contaminants from entering the resistance portion 4A. Is preferable, and specifically, it is preferably 50 μm or more.
 障壁部4Cの先端と他方の腕部4D2との間の幅D2は、本実施形態では200μmであり、一対の接続部4Bの間に存在する空隙を覆うことができる(図5において、障壁部4Cの右側の端が、接続部4B2の左側の縁よりも右側に位置する)長さであることが好ましい。障壁部4Cと接続部4Bとの間の幅D3は、本実施形態では200μmであり、接続部4Bとのショートを防ぐために50μm以上であることが好ましい。 The width D2 between the tip of the barrier portion 4C and the other arm portion 4D2 is 200 μm in the present embodiment, and it is possible to cover the void existing between the pair of connection portions 4B (in FIG. 5, the barrier portion). The right end of 4C is located on the right side of the left edge of the connecting portion 4B2). The width D3 between the barrier portion 4C and the connection portion 4B is 200 μm in the present embodiment, and is preferably 50 μm or more in order to prevent a short circuit with the connection portion 4B.
 一対の腕部4D1、4D2の横方向の幅D4、及び、一方の折り返し部4A2の縦方向の幅D5は、本実施形態では100μmであり、汚染物質の抵抗部4Aへの侵入を防ぐために抵抗部4Aの延在部4A1の線幅の2倍以上であることが好ましく、具体的には50μm以上であることが好ましい。 The width D4 in the lateral direction of the pair of arm portions 4D1 and 4D2 and the width D5 in the longitudinal direction of the folded portion 4A2 on one side are 100 μm in the present embodiment, and the resistance in order to prevent contaminants from entering the resistance portion 4A. The line width of the extending portion 4A1 of the portion 4A is preferably twice or more, and specifically 50 μm or more.
 一対の電極パッド6は、一対の接続部4Bをそれぞれ覆うように形成されている。各電極パッド6は、絶縁基板2に積層された第1電極パッド層6Aと、第1電極パッド層6Aに積層された第2電極パッド層6Bとを有する。 The pair of electrode pads 6 are formed so as to cover the pair of connecting portions 4B, respectively. Each electrode pad 6 has a first electrode pad layer 6A laminated on the insulating substrate 2 and a second electrode pad layer 6B laminated on the first electrode pad layer 6A.
 第1電極パッド層6Aは、絶縁基板2との密着性の高い白金系金属からなる。ここで、絶縁基板2との密着性の高い白金系金属とは、JIS H 8504の15.1、15.2における「引きはがし試験」により密着不良とならないものを意味する。より具体的には、密着強度が10N/mm2以上の白金系金属をいう。このような密着性の高い白金系金属としては、白金族金属(白金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム)と、シリコンを主成分としたガラスフリット(粉末ガラス)、又は、シリコン、アルミ、マンガン、コバルト、チタン、マグネシウム、カルシウム、バリウム、ストロンチウムのいずれかの酸化物の混合物を用いれば良い。 The first electrode pad layer 6A is made of a platinum-based metal having high adhesion to the insulating substrate 2. Here, the platinum-based metal having high adhesion to the insulating substrate 2 means one that does not cause poor adhesion by the "peeling test" in 15.1 and 15.2 of JIS H8504. More specifically, it refers to a platinum-based metal having an adhesion strength of 10 N / mm 2 or more. As such a platinum-based metal having high adhesion, a platinum group metal (platinum, ruthenium, rhodium, palladium, osmium, iridium) and glass frit (powdered glass) containing silicon as a main component, or silicon, aluminum, A mixture of oxides of manganese, cobalt, titanium, magnesium, calcium, barium, and strontium may be used.
 第2電極パッド層6Bは、多孔質な白金系金属からなる。多孔質な白金系金属とは、JIS R 1600 4112 に規定される気孔率が20~80%である白金系金属をいう。 The second electrode pad layer 6B is made of a porous platinum-based metal. Porous platinum-based metal refers to platinum-based metal having a porosity of 20 to 80% specified in JIS R 1600 4112.
 リード端子保護層8は、一対の電極パッド6を覆うように形成されている。リード端子保護層8は、電極パッド6を覆うように積層された第1リード端子保護層8Aと、第1リード端子保護層8Aを覆うように積層された第2リード端子保護層8Bとを有する。 The lead terminal protection layer 8 is formed so as to cover the pair of electrode pads 6. The lead terminal protective layer 8 has a first lead terminal protective layer 8A laminated so as to cover the electrode pad 6, and a second lead terminal protective layer 8B laminated so as to cover the first lead terminal protective layer 8A. ..
 第1リード端子保護層8Aは、多孔質の結晶化ガラスにより構成される。多孔質ガラスとは、JISR1600 2326に定義された多孔質ガラスを意味する。第1リード端子保護層8Aを構成する多孔質の結晶化ガラスの気孔率は、10~80%が好ましい。 The first lead terminal protection layer 8A is made of porous crystallized glass. Porous glass means porous glass defined in JIS R1600 2326. The porosity of the porous crystallized glass forming the first lead terminal protection layer 8A is preferably 10 to 80%.
 第2リード端子保護層8Bは、高気密性に非結晶化ガラスを用いている。非結晶化ガラスとは、JISR1600 2329に定義された結晶化ガラス以外のガラスを意味する。 The second lead terminal protection layer 8B uses non-crystallized glass for high airtightness. Non-crystallized glass means glass other than crystallized glass defined in JIS R1600 2329.
 一対のリード端子10は、本実施形態では、白金により形成されている。なお、リード端子10には、白金族金属(白金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム)、又は、金、銀、銅、及び、これらの合金を用いることができる。 The pair of lead terminals 10 is made of platinum in this embodiment. The lead terminal 10 may be made of platinum group metal (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, copper, or an alloy thereof.
 バリア層12は、少なくとも抵抗体4の抵抗部4Aを覆うように構成されている。バリア層12は、抵抗部4Aを覆うように積層された第1バリア層12Aと、第1バリア層12Aを覆うように積層された第2バリア層12Bとを有する。 The barrier layer 12 is configured to cover at least the resistance portion 4A of the resistor 4. The barrier layer 12 has a first barrier layer 12A laminated so as to cover the resistor portion 4A and a second barrier layer 12B laminated so as to cover the first barrier layer 12A.
 第1バリア層12Aは、アルミナ系材料の薄膜により構成されている。第1バリア層12Aの厚さは100-500nmである。 The first barrier layer 12A is composed of a thin film of alumina-based material. The thickness of the first barrier layer 12A is 100-500 nm.
 第2バリア層12Bは、本実施形態では酸化シリコンを含む薄膜により構成され、その他、酸化アルミニウム、酸化マグネシウム、酸化チタン、又は酸化ストロンチウムを含む薄膜により構成することができる。第2バリア層12Bの厚さは10-200nmである。 The second barrier layer 12B is composed of a thin film containing silicon oxide in the present embodiment, and may be composed of a thin film containing aluminum oxide, magnesium oxide, titanium oxide, or strontium oxide. The thickness of the second barrier layer 12B is 10-200 nm.
 抵抗部保護層14は、バリア層12を覆うように形成されている。抵抗部保護層14は、例えばSi-Ba-Al-Zr系や、Si-Ca-Al-Ba-Sr系のガラスや、アルミナ(Al2O3)又は石英(SiO2)のセラミックスから成る。 The resistance part protection layer 14 is formed so as to cover the barrier layer 12. The resistance part protection layer 14 is made of, for example, Si—Ba—Al—Zr system glass, Si—Ca—Al—Ba—Sr system glass, or alumina (Al 2 O 3) or quartz (SiO 2) ceramics.
 蓋16は、抵抗部保護層14を覆うように形成されている。蓋16は、例えばアルミナ(Al2O3)又は石英(SiO2)のセラミックスから成る。 The lid 16 is formed so as to cover the resistance part protection layer 14. The lid 16 is made of, for example, alumina (Al2O3) or quartz (SiO2) ceramics.
 次に、本実施形態の抵抗体温度センサ1の製造方法を説明する。まず、大型のセラミック基板を用いて、表面にパターンニング用のレジストを塗布し、抵抗体4のパターンを露光して現像し、抵抗体4のパターンを形成する。この後、絶縁基板2表面に白金薄膜を形成する。白金薄膜は、蒸着やスパッタリング等の真空薄膜形成方法により均一な薄い膜を絶縁基板2上に形成する。この後、白金薄膜をリフトオフし、絶縁基板2表面に白金薄膜による抵抗体4のパターンを形成する。 Next, a method of manufacturing the resistor temperature sensor 1 of this embodiment will be described. First, using a large ceramic substrate, a resist for patterning is applied on the surface, and the pattern of the resistor 4 is exposed and developed to form the pattern of the resistor 4. After that, a platinum thin film is formed on the surface of the insulating substrate 2. As the platinum thin film, a uniform thin film is formed on the insulating substrate 2 by a vacuum thin film forming method such as vapor deposition or sputtering. After that, the platinum thin film is lifted off, and the pattern of the resistor 4 made of the platinum thin film is formed on the surface of the insulating substrate 2.
 この後、白金薄膜の抵抗体4上にパターンニング用のレジストを塗布し、抵抗体4及び接続部4Bの電極パッド6の一部にかけて開口したマスク形状を用いて露光して現像し、バリア層12のパターンを形成する。このマスクは、パッド部のマスキングマスクと兼用すると良い。マスクを用いてバリア層材料を真空薄膜形成方法により均一に形成しバリア層12とする。 After that, a resist for patterning is applied on the platinum thin film resistor 4 and exposed and developed using a mask shape having an opening over the resistor 4 and a part of the electrode pad 6 of the connecting portion 4B to develop a barrier layer. Twelve patterns are formed. This mask may also be used as a masking mask for the pad portion. The barrier layer material is uniformly formed by a vacuum thin film forming method using a mask to form the barrier layer 12.
 次に、第1電極パッド層6Aを抵抗体4の接続部4Bに厚膜印刷により形成し、熱処理する。厚膜印刷には、第1電極パッド層6Aの形状に開口した図示しないマスクを用いる。熱処理は、900℃~1400℃程度の一定の高温で処理し、抵抗体4の白金薄膜の結晶粒界を安定化させる。次に、第2電極パッド層6Bを第1電極パッド層6Aに厚膜印刷により形成し、第1電極パッド層6Aと同様に熱処理する。さらに、抵抗体4を所定の抵抗値に規制するために、レーザートリミングにより、抵抗体4の一部である調整部にトリミング溝を形成する。 Next, the first electrode pad layer 6A is formed on the connection portion 4B of the resistor 4 by thick film printing, and heat treatment is performed. For thick film printing, a mask (not shown) having an opening in the shape of the first electrode pad layer 6A is used. The heat treatment is performed at a constant high temperature of about 900 ° C. to 1400 ° C. to stabilize the crystal grain boundaries of the platinum thin film of the resistor 4. Next, the second electrode pad layer 6B is formed on the first electrode pad layer 6A by thick film printing, and heat treatment is performed in the same manner as the first electrode pad layer 6A. Further, in order to regulate the resistance body 4 to a predetermined resistance value, a trimming groove is formed in an adjusting portion which is a part of the resistance body 4 by laser trimming.
 この後、バリア層12を覆うように、抵抗部保護層14用のガラスペーストを、バリア層12を覆う大きさの開口を有した所定のマスクを用いて塗布し、さらに、蓋16の材料を被覆する。そして、ガラスペーストを900℃~1200℃程度の温度で熱処理し、抵抗部保護層14及び蓋16を形成する。 After that, a glass paste for the resistance part protection layer 14 is applied so as to cover the barrier layer 12 using a predetermined mask having an opening of a size that covers the barrier layer 12, and the material of the lid 16 is further applied. To coat. Then, the glass paste is heat-treated at a temperature of about 900 ° C. to 1200 ° C. to form the resistance part protection layer 14 and the lid 16.
 次に、抵抗部保護層14及び蓋16の形成後、大型のセラミック基板を絶縁基板2毎に分割する。この後、電極パッド6にリード端子10を溶接する。溶接は、スポット溶接等により、リード端子10毎に複数箇所に溶接部を形成する。このときリード端子10の端部は、蓋16の端縁部に近接又は重なるようにして位置させる。
 電極パッド6とリード端子10を溶接接合した部分を被覆する様にして、ディスペンス等の方法により、溶接部を第1リード端子保護層8A用のガラスペーストで被覆する。この後、ガラスペーストを900℃~1200℃程度の温度で熱処理して第1リード端子保護層8Aを形成する。そして、第2リード端子保護層8B用のガラスペーストで第1リード端子保護層8Aを覆い、第1リード端子保護層8Aと同様に熱処理し、リード端子保護層8を形成し抵抗体温度センサ1とする。
Next, after forming the resistance part protection layer 14 and the lid 16, the large-sized ceramic substrate is divided into the insulating substrates 2. Then, the lead terminal 10 is welded to the electrode pad 6. For welding, spot welding or the like is used to form welded portions at a plurality of locations for each lead terminal 10. At this time, the end portion of the lead terminal 10 is positioned so as to be close to or overlap with the end edge portion of the lid 16.
The welded portion is covered with a glass paste for the first lead terminal protective layer 8A by a method such as dispensing so that the welded portion of the electrode pad 6 and the lead terminal 10 is covered. Then, the glass paste is heat-treated at a temperature of about 900 ° C. to 1200 ° C. to form the first lead terminal protection layer 8A. Then, the first lead terminal protection layer 8A is covered with the glass paste for the second lead terminal protection layer 8B, and heat treatment is performed in the same manner as the first lead terminal protection layer 8A to form the lead terminal protection layer 8 and the resistor temperature sensor 1 And
 本実施形態によれば、以下の効果が奏される。
 本実施形態では、電極パッド6が第1電極パッド層6Aと第2電極パッド層6Bとを有し、密着性の高い白金系金属により第1電極パッド層6Aが構成されているため、絶縁基板との密着性を確保することができ、さらに、多孔質な白金系金属により第2電極パッド層6Bが構成されているため、リード端子10を溶接する際に発生する歪による残留応力が緩和され、リード端子19と電極パッド6との接続部の強度と熱衝撃性を向上することができる。
According to this embodiment, the following effects are exhibited.
In the present embodiment, the electrode pad 6 has the first electrode pad layer 6A and the second electrode pad layer 6B, and the first electrode pad layer 6A is made of a platinum-based metal having high adhesiveness. Since the second electrode pad layer 6B is made of a porous platinum-based metal, the residual stress due to the strain generated when the lead terminal 10 is welded is relaxed. The strength and thermal shock resistance of the connecting portion between the lead terminal 19 and the electrode pad 6 can be improved.
 また、本実施形態によれば、リード端子保護層8は、電極パッドを覆うように積層された多孔質の結晶化ガラスを含んで構成された第1リード端子保護層8Aと、第1リード端子保護層8Aに積層された非結晶ガラスを含んで構成された第2リード端子保護層8Bと、を有する。このような構成によれば、多孔質の結晶化ガラスを含んで構成された第1リード端子保護層8Aにより、高いリード端子10の保持強度を確保することができ、非結晶ガラスを含んで構成された第2リード端子保護層8Bにより高気密性を確保することができる。 Further, according to the present embodiment, the lead terminal protective layer 8 includes the first lead terminal protective layer 8A configured to include the porous crystallized glass laminated so as to cover the electrode pads, and the first lead terminal. A second lead terminal protective layer 8B which is formed by including amorphous glass laminated on the protective layer 8A. With such a configuration, the first lead terminal protective layer 8A configured to include the porous crystallized glass can ensure a high holding strength of the lead terminal 10 and includes the amorphous glass. High airtightness can be ensured by the formed second lead terminal protection layer 8B.
 また、本実施形態によれば、バリア層12が、少なくとも抵抗部4Aを覆うように積層されたアルミナ系材料からなる第1バリア層12Aと、第1バリア層12Aを覆うように積層され、酸化シリコン、酸化アルミニウム、酸化マグネシウム、酸化チタン、又は酸化ストロンチウムを含む第2バリア層12Bと、を有する。これにより、第1バリア層12Aにより基板との低反応性を確保した上で、第1バリア層12Aの外側に気密性の高い第2バリア層12Bを形成することができ、バリア層12の抵抗部4Aに対する低反応性を確保した上で、気密性を向上することができる。 Further, according to the present embodiment, the barrier layer 12 is laminated so as to cover at least the resistor portion 4A, and the first barrier layer 12A made of an alumina-based material and the first barrier layer 12A are laminated so as to be oxidized. A second barrier layer 12B containing silicon, aluminum oxide, magnesium oxide, titanium oxide, or strontium oxide. As a result, the second barrier layer 12B having high airtightness can be formed outside the first barrier layer 12A while ensuring low reactivity with the substrate by the first barrier layer 12A, and the resistance of the barrier layer 12 can be increased. The airtightness can be improved while ensuring low reactivity to the portion 4A.
 また、本実施形態によれば、抵抗体4の腕部4D1、4D2の間に障壁部4Cが形成されているため、一対の接続部4Bの間を通って汚染物質が入り込むのを防止できる。 Further, according to the present embodiment, since the barrier portion 4C is formed between the arm portions 4D1 and 4D2 of the resistor 4, it is possible to prevent contaminants from entering between the pair of connecting portions 4B.
 また、本実施形態によれば、障壁部4Cの縦方向の幅が50μm以上であり、腕部4D1、4D2の横方向の幅が50μm以上であり、抵抗部4Aの縦方向の折り返し部4A2の縦方向の幅は50μm以上である。これにより、障壁部4C、腕部4D1、4D2、及び折り返し部4A2を越えて汚染物質が抵抗部4A内まで到達するのを防止できる。 Further, according to the present embodiment, the barrier portion 4C has a vertical width of 50 μm or more, the arm portions 4D1 and 4D2 have a horizontal width of 50 μm or more, and the resistance portion 4A has a vertical folding portion 4A2. The width in the vertical direction is 50 μm or more. As a result, it is possible to prevent contaminants from reaching the inside of the resistance portion 4A beyond the barrier portion 4C, the arm portions 4D1 and 4D2, and the folded portion 4A2.
 なお、上記の実施形態では、リード端子保護層8が、多孔質の結晶化ガラスを含んで構成された第1リード端子保護層8Aと、非結晶ガラスを含んで構成された第2リード端子保護層8Bとにより構成された場合について説明したが、本発明はこれに限られない。 In the above embodiment, the lead terminal protection layer 8 includes the first lead terminal protection layer 8A including porous crystallized glass and the second lead terminal protection layer including amorphous glass. Although the case of being constituted by the layer 8B has been described, the present invention is not limited to this.
 図6は、本発明の第2実施形態の抵抗体温度センサを示し、図3に対応する断面図である。なお、本実施形態では、リード端子保護層の構成のみが第1実施形態と異なっており、第1実施形態と同様の構成について同じ符号を付して説明を省略する。図6に示すように、第2実施形態における抵抗体温度センサ101では、リード端子保護層108が一層により構成されている。 FIG. 6 is a sectional view corresponding to FIG. 3, showing a resistor temperature sensor according to a second embodiment of the present invention. In this embodiment, only the structure of the lead terminal protection layer is different from that of the first embodiment, and the same structures as those of the first embodiment are designated by the same reference numerals and the description thereof is omitted. As shown in FIG. 6, in the resistor temperature sensor 101 according to the second embodiment, the lead terminal protection layer 108 is composed of one layer.
 リード端子保護層108は、焼成プロセス時に反応性のあるフィラー入りのガラスにより構成されている。フィラー入りガラスとは、例えば、アルミナを主成分とした、シリコン、マグネシウム、カルシウム、バリウム又はストロンチウムの酸化物などのフィラーが混入されたガラス材料をいい、フィラーの粒子形状としては丸形又は破砕形状、フィラーの粒径としては0.1~10μm、フィラーの含有割合としては、10~30%が好ましい。 The lead terminal protection layer 108 is made of glass containing a filler that is reactive during the firing process. Filled glass refers to, for example, a glass material containing alumina as a main component, in which a filler such as silicon, magnesium, calcium, barium or strontium oxide is mixed, and the particle shape of the filler is round or crushed. The particle size of the filler is preferably 0.1 to 10 μm, and the content ratio of the filler is preferably 10 to 30%.
 上記の構成の第2実施形態によれば、リード端子保護層が焼成プロセス時に反応性のあるフィラーを含むガラス材料を含んで構成されている。リード端子保護層を構成するガラス材料は、焼成プロセスにおいて、気密性の高い成分が先に溶けて、融点が高く溶けていないフィラーを取り囲み、さらに、温度が上昇するとフィラーが溶けて半結晶化ガラスのようになる。これにより、高いリード端子の保持強度を確保することができるとともに、高気密性を確保することができる。 According to the second embodiment having the above configuration, the lead terminal protective layer is configured to include a glass material containing a filler that is reactive during the firing process. The glass material that constitutes the lead terminal protective layer is a semi-crystallized glass that melts the highly airtight component first and surrounds the unmelted filler in the firing process, and when the temperature rises, the filler melts. become that way. Thereby, high holding strength of the lead terminal can be secured and high airtightness can be secured.
1   抵抗体温度センサ
2   絶縁基板
4   抵抗体
4A  抵抗部
4A1 延在部
4A2 折り返し部
4A3 折り返し部
4B  接続部
4C  障壁部
4D1 腕部
4D2 腕部
6   電極パッド
6A  第1電極パッド層
6B  第2電極パッド層
8   リード端子保護層
8A  第1リード端子保護層
8B  第2リード端子保護層
10  リード端子
12  バリア層
12A 第1バリア層
12B 第2バリア層
12b 調整部
14  抵抗部保護層
16  蓋
101 抵抗体温度センサ
108 リード端子保護層
1 Resistor Temperature Sensor 2 Insulating Substrate 4 Resistor 4A Resistor 4A1 Extension 4A2 Folding Back 4A3 Folding Back 4B Connection 4C Barrier 4D1 Arm 4D2 Arm 6 Electrode Pad 6A First Electrode Pad Layer 6B Second Electrode Pad Layer 8 Lead terminal protective layer 8A First lead terminal protective layer 8B Second lead terminal protective layer 10 Lead terminal 12 Barrier layer 12A First barrier layer 12B Second barrier layer 12b Adjustment section 14 Resistive section protective layer 16 Lid 101 Resistor temperature Sensor 108 Lead terminal protective layer

Claims (6)

  1.  絶縁基板と、
     抵抗部、及び、前記抵抗部の両端部に接続された一対の接続部を有し、前記絶縁基板上に白金薄膜により形成された抵抗体と、
     前記一対の接続部のそれぞれを覆うように形成された一対の電極パッドと、
     前記一対の電極パッドのそれぞれに接続された一対のリード端子と、
     前記一対の電極パッドを覆うように形成されたリード端子保護層と、
     少なくとも前記抵抗部を覆うように形成されたバリア層と、
     を備え、
     前記電極パッドは、
      前記絶縁基板に積層され、前記絶縁基板との密着性が高い白金系金属からなる第1電極パッド層と、
      前記第1電極パッド層に積層され、多孔質な白金系金属からなる第2電極パッド層と、を有する、ことを特徴とする抵抗体温度センサ。
    An insulating substrate,
    A resistor portion, and a resistor having a pair of connecting portions connected to both ends of the resistor portion, a resistor formed of a platinum thin film on the insulating substrate,
    A pair of electrode pads formed to cover each of the pair of connecting portions,
    A pair of lead terminals connected to each of the pair of electrode pads,
    A lead terminal protective layer formed to cover the pair of electrode pads;
    A barrier layer formed to cover at least the resistance portion;
    Equipped with
    The electrode pad is
    A first electrode pad layer laminated on the insulating substrate and made of a platinum-based metal having high adhesion to the insulating substrate;
    A second electrode pad layer which is laminated on the first electrode pad layer and is made of a porous platinum-based metal.
  2.  前記リード端子保護層は、
      前記電極パッドを覆うように積層された多孔質の結晶化ガラスを含んで構成された第1リード端子保護層と、
      前記第1リード端子保護層に積層された非結晶ガラスを含んで構成された第2リード端子保護層と、を有する、請求項1に記載の抵抗体温度センサ。
    The lead terminal protective layer is
    A first lead terminal protective layer including a porous crystallized glass laminated so as to cover the electrode pad;
    The resistor temperature sensor according to claim 1, further comprising: a second lead terminal protective layer configured to include amorphous glass laminated on the first lead terminal protective layer.
  3.  前記リード端子保護層は、焼成プロセス時に反応性のあるフィラーを含むガラス材料を含んで構成されている、請求項1に記載の抵抗体温度センサ。 The resistor temperature sensor according to claim 1, wherein the lead terminal protection layer includes a glass material containing a filler that is reactive during a firing process.
  4.  前記バリア層は、
      少なくとも前記抵抗部を覆うように積層されたアルミナ系材料からなる第1バリア層と、
      前記第1バリア層を覆うように積層され、酸化シリコン、酸化アルミニウム、酸化マグネシウム、酸化チタン、又は酸化ストロンチウムを含む第2バリア層と、を有する、請求項1~3の何れか1項に記載の抵抗体温度センサ。
    The barrier layer is
    A first barrier layer made of an alumina-based material laminated so as to cover at least the resistance portion;
    The second barrier layer which is laminated so as to cover the first barrier layer and contains silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, or strontium oxide. Resistor temperature sensor.
  5.  前記抵抗体の前記一対の接続部は横方向に間隔をあけて配置されており、
     前記抵抗体は、前記一対の接続部から縦方向の一方に延びて、間に前記抵抗部が設けられた一対の腕部を有し、
     前記抵抗部は、前記縦方向の一方側の一方の折り返し部と、前記縦方向の他方側の他方の折り返し部と、一方の折り返し部と他方の折り返し部との間に延在する延在部とを有し、つづら折り状に形成されており、
     前記一対の腕部の一方の前記抵抗部よりも前記縦方向の他方側には、前記一対の腕部の他方に向かって延びる、障壁部が形成されている、請求項1~4の何れか1項に記載の抵抗体温度センサ。
    The pair of connecting portions of the resistor are arranged laterally spaced apart,
    The resistor has a pair of arm portions extending in the vertical direction from the pair of connecting portions and having the resistor portion provided therebetween,
    The resistor portion includes one folded portion on one side in the vertical direction, the other folded portion on the other side in the vertical direction, and an extending portion extending between the one folded portion and the other folded portion. And has a zigzag shape,
    5. The barrier section extending toward the other of the pair of arm sections is formed on the other side of the one of the pair of arm sections in the vertical direction with respect to the other of the resistance sections. The resistor temperature sensor according to item 1.
  6.  前記障壁部の前記縦方向の幅は前記抵抗部の延在部の線幅の2倍以上であり、
     前記腕部の前記横方向の幅は前記抵抗部の延在部の線幅の2倍以上であり、
     前記抵抗部の前記縦方向の一方側の折り返し部の前記縦方向の幅は前記抵抗部の延在部の線幅の2倍以上である、請求項5に記載の抵抗体温度センサ。
    The width of the barrier portion in the vertical direction is at least twice the line width of the extension portion of the resistor portion,
    The lateral width of the arm portion is at least twice the line width of the extension portion of the resistance portion,
    The resistor temperature sensor according to claim 5, wherein a width in the vertical direction of the folded portion on one side in the vertical direction of the resistor portion is equal to or more than twice a line width of an extending portion of the resistor portion.
PCT/JP2019/003994 2018-11-21 2019-02-05 Resistance temperature sensor WO2020105199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-218159 2018-11-21
JP2018218159A JP2020085584A (en) 2018-11-21 2018-11-21 Resistor temperature sensor

Publications (1)

Publication Number Publication Date
WO2020105199A1 true WO2020105199A1 (en) 2020-05-28

Family

ID=70773964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003994 WO2020105199A1 (en) 2018-11-21 2019-02-05 Resistance temperature sensor

Country Status (2)

Country Link
JP (1) JP2020085584A (en)
WO (1) WO2020105199A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076045B1 (en) * 2020-12-15 2022-05-26 株式会社メイコー Thin temperature sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292120A (en) * 2004-03-08 2005-10-20 Ngk Spark Plug Co Ltd Platinum resistor type temperature sensor
JP2018072043A (en) * 2016-10-25 2018-05-10 京セラ株式会社 Temperature measuring body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292120A (en) * 2004-03-08 2005-10-20 Ngk Spark Plug Co Ltd Platinum resistor type temperature sensor
JP2018072043A (en) * 2016-10-25 2018-05-10 京セラ株式会社 Temperature measuring body

Also Published As

Publication number Publication date
JP2020085584A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP5976186B2 (en) 1200 ° C film resistor
WO2020105199A1 (en) Resistance temperature sensor
EP3051582B1 (en) Lid body, package, and electronic apparatus
TWI358982B (en)
JP4165910B2 (en) Creeping discharge type discharge element
JP3340003B2 (en) Multilayer wiring board and package for housing semiconductor element
JPH03262101A (en) Platinum temperature sensor
JP3686687B2 (en) Low temperature fired ceramic circuit board
JP2003249403A (en) Chip resistor
JPH09208258A (en) Insulator-glass composition and glass composition for insulating layer of thick film multilayered circuit using the same
JPS6113502A (en) Starting mixture for insulating composition and ink for silkscreen printing using same
JP2750248B2 (en) Package for storing semiconductor elements
JPH10199708A (en) Temperature sensor
JPH0223010Y2 (en)
JP3700510B2 (en) Surge absorbing element and manufacturing method thereof
JPH09129403A (en) Varistor provided with fuse
JPS6395144A (en) Manufacture of glass sheet equipped with transparent electroconductive film and electric power supply electrode
JPS58179668A (en) Glazed base plate for facsimile
JP2746813B2 (en) Package for storing semiconductor elements
JPH02230607A (en) Conductor paste composition and ceramics substrate
JP2000223821A (en) Ceramic wiring board
JPH01130502A (en) Chip resistor
JPH07125277A (en) Manufacture of thermal head
JP2003046033A (en) Wiring board
JPH0613829A (en) Piezoelectric element storing package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886875

Country of ref document: EP

Kind code of ref document: A1