WO2020104525A1 - Ensemble et procédé de compensation de la dépendance vis-à-vis de la température d'une lentille à facettes pour la définition de la topographie d'un œil - Google Patents
Ensemble et procédé de compensation de la dépendance vis-à-vis de la température d'une lentille à facettes pour la définition de la topographie d'un œilInfo
- Publication number
- WO2020104525A1 WO2020104525A1 PCT/EP2019/081926 EP2019081926W WO2020104525A1 WO 2020104525 A1 WO2020104525 A1 WO 2020104525A1 EP 2019081926 W EP2019081926 W EP 2019081926W WO 2020104525 A1 WO2020104525 A1 WO 2020104525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- facet
- facet lens
- lens
- temperature dependence
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/008—Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/107—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/255—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
Definitions
- the present invention relates to a solution for compensating the temperature dependency of a facet lens that is used to determine the topography of an eye.
- Keratometry is the measurement of the shape and shape of the cornea of the eye.
- the radii of curvature of the cornea are determined centrally and in the periphery using an ophthalmometer (also called a keratometer).
- ophthalmometer also called a keratometer
- a special form of keratometry is topography, in which the central and peripheral radii of curvature of the cornea are measured using special methods and evaluated mathematically.
- keratometers or keratographs Methods for measuring the shape of the surface of the cornea using so-called keratometers or keratographs have long been known in the prior art.
- a pattern, preferably concentric, that is imaged on the cornea is reflected by the tear film of the cornea and recorded and evaluated with a camera.
- the reflected pattern detected by the camera is distorted.
- the distortions of the pattern must be compared with a known shape, which is usually chosen as a sphere with a radius of 7.8 mm.
- a preferred system for determining the topography of the cornea of an eye is described in DE 10 201 1 102 355 A1.
- This type of topography measurement has the advantage that displacements of the measuring system in relation to the patient's eye are only reflected in the measurement data as defocusing (axial displacement) and translation of the entire point pattern in the camera image (lateral displacement). Since only the relative distances of the light points carry useful information, the measurement is therefore independent of such a shift. In practice, however, this only applies within certain limits, namely as long as each light beam hits the part of the corneal surface for which the required angular relationship according to DE 10 2014 207 058 A1 applies.
- the spatial element in which this applies to all light points in the pattern is referred to as the “alignment range” of the topography measurement. Since this is finally large, the device software has to check for each individual measurement whether the positioning of the measuring system to the patient's eye is within the alignment range. This check is known as an “alignment check”.
- the angles of the beams depend on the temperature of the faceted lens.
- the temperature influences on plastic have a stronger effect than on glass.
- the temperature-dependent change in the angles of the beam bundles results from the change in the optical effect of the facet lens by changing the geometry and / or the refractive index of the plastic.
- the object of the present invention is to develop a solution for the temperature-independent determination of the topography of an eye on the basis of a facet lens.
- the faceted lens should be easy to manufacture, preferably made of plastic and should be usable in a temperature range from 10 ° C to 40 ° C.
- the task of compensating for the temperature dependence of a facet lens for determining the topography of an eye consisting of a loading Illumination unit, a facet lens, an image recording unit, optical elements for separating the illumination and detection beam path and a control and evaluation unit is achieved according to the invention in that there are additional temperature sensors for determining the temperature of the facet lens that the temperature in the control and evaluation unit Dependency of the radiation angle of the beams are stored and that the control and evaluation unit is designed to take into account the temperature of the facet lens transmitted by the temperature sensors and the stored temperature dependencies of the radiation angle of the beam bundles when evaluating the recordings of the image recording unit.
- the proposed solution to compensate for the temperature dependence of a plastic lens is particularly intended for facet lenses that are used to determine the topography of an eye.
- the proposed solution can be used wherever an existing temperature dependency, in particular optical components, has to be compensated.
- Figure 3 the dependence of the focal length f in on the temperature T
- Figure 4 Heavy and boundary beams of several beams for three different temperatures in comparison.
- the proposed solution is based on the use of a facet lens, as described for example in DE 10 2011 102 355 A1.
- the system consists of the facet lens, which is illuminated by a lighting unit with plane waves, an image recording unit and a control and evaluation unit.
- the image acquisition unit is designed for telecentric, distance-independent image acquisition.
- this type of topography measurement has the advantage that displacements of the measuring system in relation to the patient's eye are only expressed in the measurement data as an axial or lateral displacement of the entire point pattern in the camera image.
- the normal vector on the surface of the cornea is known geometrically for each light point, regardless of the specific measurement, and can be assigned to the respective light point for the reconstruction of the surface by determining the associated reference point.
- the normal vectors are assumed to be known or are calibrated accordingly for each individual device.
- the proposed arrangement for compensating the temperature dependence of a facet lens for determining the topography of an eye consists of an illumination unit, a facet lens, an image recording unit, optical elements for separating the illumination and detection beam path, and a control and evaluation unit.
- temperature sensors for determining the temperature of the facet lens are additionally provided. Furthermore, the temperature and dependence of the radiation angle of the beam for the facet lens and thus the normal vectors are stored in the control and evaluation unit on the surface of the cornea.
- the control and evaluation unit is formed when evaluating the recordings of the image recording unit
- the temperature sensors are arranged in the immediate vicinity, on or in the facet lens and, after the measurement, are read out in addition to the image recording unit and, if necessary, stored.
- the dependence of the beam directions on the temperature for 8 rings of a facet lens is shown as an example in FIG. 1.
- the illustration shows a linear dependence of the deviation of the beam directions. At a temperature of 25 ° C there are no deviations in the beam angle of the beams of the individual rings of the facet lens.
- the temperature dependencies of the beam angle for the facet lens to be stored in the control and evaluation unit must be determined in advance for a facet lens design.
- the determination of the temperature dependence of the radiation angle of the beam bundle results from an optical simulation and / or from a measurement by means of a reference body.
- a reference reference is used for determining the temperature dependence of the radiation angle of the beam as a facet lens, the reference body being a precisely manufactured glass ball with a known radius.
- the angles of the beam bundles can be calculated back from the deviations of the recorded point pattern from the expected point pattern.
- the largest possible temperature range is covered to take into account the increased internal temperature of the measuring device.
- the heavy and boundary beams of several beam bundles for three different temperatures are shown in comparison in FIG. Dashed, vertical auxiliary lines have been inserted in the illustration in order to more clearly work out the different beam angles of the beams of the individual rings of the facet lens.
- the 3-dimensional section of the beam bundle describes the alignment range.
- a facet lens is illuminated by an illumination unit, the pattern reflected by the eye is recorded by an image recording unit and passed on to a control and evaluation unit.
- the lighting and detection beam paths are separated by means of optical elements.
- the temperature of the facet lens is additionally determined by means of temperature sensors, the temperature dependence of the radiation angle of the beam bundles is stored in the control and evaluation unit, and the temperature of the facet lens and transmitted by the temperature sensors is evaluated by the control and evaluation unit when evaluating the recordings of the image recording unit the stored temperature dependencies of the beam angle are taken into account.
- the temperature is measured in the immediate vicinity, on or in the facet lens, the temperature being measured before, during and / or after the recording by the image recording unit and forwarded to the control and evaluation unit and stored.
- FIG. 1 exemplifies the dependence of the beam directions on the temperature for 8 rings of a facet lens.
- the illustration shows a linear dependence of the deviation of the beam directions. At a temperature of 25 ° C, there are no deviations in the beam angle of the beams of the individual rings of the facet lens.
- the temperature dependence of the radiation angle of the beam bundle is determined in advance for each facet lens by optical simulation and / or by measurement using a reference body.
- the temperature dependency can be determined by the description with a mathematical function, the mathematical function preferably being linear.
- FIG. 2 shows the dependence of the refractive refractive index n on the temperature T, which has a linear profile.
- thermal expansion is linear, there is also a linear dependency A ⁇ ⁇ - ⁇ 0 + a & tp ⁇ ⁇ 0 'A ⁇ in the Ro the radius for the expansion of the lens radius R,
- DT define the temperature change of the facet lens.
- the global effect ie the focal length effect
- the focal length f of the facet lens results as a function of temperature: in the R the radius,
- DT define the temperature change of the facet lens.
- Figure 3 shows the dependence of the focal length f in on the temperature T, which also has a linear profile.
- the temperature dependency is determined by the description using a mathematical function, the mathematical function preferably being logarithmic. This alternative option is possible because logarithmic temperature dependencies exist in practice.
- a reference facet lens and a precisely manufactured glass bead with a known radius are used for determining the temperature dependence of the radiation angle of the beam.
- the angles of the beam bundles can be calculated back from the deviations of the recorded point pattern from the expected point pattern.
- the temperature dependency is determined for a permissible temperature range of 10 ° C to 40 ° C.
- a second advantageous embodiment of the method relates to the determination of the temperature dependence. Since the facet lens largely has a rotational symmetry, the determination can be simplified to the extent that this is done only once for a facet ring.
- the accuracy can be increased by determining the temperature dependency for each facet ring several times and averaging the measured values.
- the third advantageous embodiment of the method relates to a calibration of each facet lens during manufacture to a normal temperature of 25 ° C.
- each of the 650 or even more individual facets is calibrated, the angle of incidence of the respective normal vector being stored for each facet.
- the function of the temperature compensation is then set to this base temperature.
- the temperature dependence of the radiation angle of the beam bundles on each facet lens determined by optics simulation and / or by measurement using a reference body is then adapted to each individual facet lens for this calibration.
- the calculation can be linear, with the constant portion coming from the calibration of the individual device and the slope of the device from the known temperature dependency according to the optical calculation or reference measurement. This results in the normal vectors for the temperature-compensated reconstruction of the topography.
- logarithmic or exponential functions can be used, as these are often to be expected with temperature effects.
- the temperature-dependent alignment range can either be determined as a 3-dimensional section of many beam bundles with temperature-dependent angles (see FIG. 4) or experimentally on the reference sphere.
- the beam bundle is preferably cut using the angle calibration for each individual device.
- the difference between the ideal alignment point of the individual device and the ideal alignment point can be simplified and calculated according to the model or reference device.
- the calibration of each facet lens during production can be omitted if the manufacturing tolerances are small.
- the present invention provides a solution for the temperature-independent determination of the topography of an eye based on a facet lens made available, which can be used in a wide temperature range from 10 ° C to 40 ° C despite being made of plastic.
- the combination also has the advantage that the alignment range is reduced less by temperature changes.
- the present invention provides a solution for determining the topography of an eye, in which the compensation of the temperature dependence of a facet lens is realized in a simple and convenient manner.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Ophthalmology & Optometry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Eye Examination Apparatus (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Lens Barrels (AREA)
Abstract
L'invention concerne une solution de compensation de la dépendance vis-à-vis de la température d'une lentille à facettes, qui est utilisée pour définir la topographie d'un œil. La présente solution est constituée d'une unité d'éclairage, d'une lentille à facettes, d'une unité d'enregistrement d'images, d'éléments optiques servant à séparer un chemin optique d'éclairage et un chemin optique de détection, ainsi qu'une unité de commande et d'évaluation. Selon l'invention, des capteurs de température servant à définir la température de la lentille à facettes sont présents en supplément. Par ailleurs, la dépendance vis-à-vis de la température des angles de rayonnement des faisceaux de rayons est enregistrée dans l'unité de commande et d'évaluation, qui, outre la température, transmise par les capteurs de température, de la lentille à facettes, sont pris en compte par l'unité de commande et d'évaluation lors de l'évaluation des enregistrements de l'unité d'enregistrement d'images. La solution proposée est prévue en particulier pour des lentilles à facettes, qui sont utilisées pour définir la topographie d'un oeil. En principe, la solution proposée peut être employée toutefois dans tous les domaines, où une dépendance à la température présente en particulier de composants optiques doit être compensée.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19808750.4A EP3883453B1 (fr) | 2018-11-21 | 2019-11-20 | Dispositif et procede de compensation de la dependance de la temperature d'une lentille a facettes pour la determination de la topographie d'un oeil |
US17/295,006 US12078862B2 (en) | 2018-11-21 | 2019-11-20 | Arrangement and method for compensating for the temperature dependence of a facet lens for determining the topography of an eye |
CN201980076700.XA CN113164039B (zh) | 2018-11-21 | 2019-11-20 | 补偿用于确定眼睛地形图的多棱面透镜的温度相关性装置和方法 |
JP2021528421A JP7416789B2 (ja) | 2018-11-21 | 2019-11-20 | 眼のトポグラフィーを決定するためのファセットレンズの温度依存性を補償するための装置および方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018219902.7 | 2018-11-21 | ||
DE102018219902.7A DE102018219902A1 (de) | 2018-11-21 | 2018-11-21 | Anordnung und Verfahren zur Kompensation der Temperaturabhängigkeit einer Facettenlinse für die Bestimmung der Topographie eines Auges |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020104525A1 true WO2020104525A1 (fr) | 2020-05-28 |
Family
ID=68654473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/081926 WO2020104525A1 (fr) | 2018-11-21 | 2019-11-20 | Ensemble et procédé de compensation de la dépendance vis-à-vis de la température d'une lentille à facettes pour la définition de la topographie d'un œil |
Country Status (6)
Country | Link |
---|---|
US (1) | US12078862B2 (fr) |
EP (1) | EP3883453B1 (fr) |
JP (1) | JP7416789B2 (fr) |
CN (1) | CN113164039B (fr) |
DE (1) | DE102018219902A1 (fr) |
WO (1) | WO2020104525A1 (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080239444A1 (en) * | 2007-03-29 | 2008-10-02 | Fujitsu Limited | Wavelength selective switch |
US20120026466A1 (en) * | 2006-01-20 | 2012-02-02 | Clarity Medical Systems, Inc. | Large diopter range real time sequential wavefront sensor |
DE102011102355A1 (de) | 2011-05-24 | 2012-11-29 | Carl Zeiss Meditec Ag | System zur Bestimmung der Topographie der Kornea eines Auges |
WO2014074572A1 (fr) * | 2012-11-07 | 2014-05-15 | Clarity Meidcal Systems, Inc. | Appareil et procédé pour le fonctionnement d'un capteur de fronts d'onde séquentiel en temps réel à large plage de dioptries |
US20150083193A1 (en) * | 2012-03-30 | 2015-03-26 | Sharp Kabushiki Kaisha | Secondary lens, photovoltaic cell mounting body, concentrating photovoltaic power generation unit, and concentrating photovoltaic power generation module |
DE102014207058A1 (de) | 2014-04-11 | 2015-10-15 | Carl Zeiss Meditec Ag | Verfahren zum Messen und Rekonstruieren gekrümmter, spiegelnder Flächen |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0994225A (ja) * | 1995-09-29 | 1997-04-08 | Canon Inc | 眼科測定装置 |
US7365909B2 (en) * | 2002-10-17 | 2008-04-29 | Xradia, Inc. | Fabrication methods for micro compounds optics |
DE10301416B3 (de) * | 2003-01-16 | 2004-07-15 | Medizinisches Laserzentrum Lübeck GmbH | Verfahren und Vorrichtung zur kontaktlosen Temperaturüberwachung und -regelung |
KR100838642B1 (ko) * | 2006-10-12 | 2008-06-16 | 유니코스주식회사 | 검안기의 온도 보정 방법 및 그 장치 |
KR100897736B1 (ko) * | 2007-02-21 | 2009-05-15 | 주식회사 휴비츠 | 온도 보상부를 구비한 검안기 |
ES2338723T3 (es) * | 2008-04-22 | 2010-05-11 | Wavelight Ag | Dispositivo para la cirugia ocular de optica laser. |
JP5285518B2 (ja) * | 2009-06-30 | 2013-09-11 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置の走査光学系の製造方法 |
US20140182659A1 (en) * | 2011-06-10 | 2014-07-03 | Orafol Americas Inc. | Methods for optimizing materials for lenses and lens arrays and devices thereof |
EP2682079B1 (fr) * | 2012-07-06 | 2014-12-31 | Neoptics AG | Système d'insertion d'une lentille intracornéenne |
DE102012220596A1 (de) * | 2012-11-13 | 2014-05-15 | Carl Zeiss Smt Gmbh | Verfahren zum Zuordnen einer Pupillenfacette eines Pupillenfacettenspiegels einer Beleuchtungsoptik einer Projektionsbelichtungsanlage zu einer Feldfacette eines Feldfacettenspiegels der Beleuchtungsoptik |
RU2554599C1 (ru) * | 2013-12-09 | 2015-06-27 | Акционерное общество "Научно-производственное предприятие "Геофизика-Космос" (АО "НПП "Геофизика-Космос") | Углоизмерительный прибор |
DE102014210787A1 (de) * | 2014-06-05 | 2015-12-17 | Carl Zeiss Meditec Ag | Entfernungskompensierte Messeinrichtung für topographische und keratometrische Messungen am Auge |
FR3038823B1 (fr) * | 2015-07-17 | 2022-03-04 | Essilor Int | Dispositif de compensation visuelle, procede de commande d'un dispositif de compensation visuelle et dispositif binoculaire d'optometrie |
KR101761014B1 (ko) * | 2015-08-20 | 2017-07-25 | 한국과학기술원 | 마이크로 렌즈 3차원 광학 굴절률 촬영 장치 및 방법 |
DE102016213380A1 (de) * | 2016-07-21 | 2018-01-25 | Osram Gmbh | Optisches element und beleuchtungsvorrichtung |
US10799998B2 (en) * | 2016-10-17 | 2020-10-13 | Virtek Vision International Ulc | Laser projector with flash alignment |
DE102017203010A1 (de) * | 2017-02-24 | 2018-08-30 | Carl Zeiss Meditec Ag | Verfahren und Anordnung zur hochauflösenden Topographie der Kornea eines Auges |
-
2018
- 2018-11-21 DE DE102018219902.7A patent/DE102018219902A1/de active Pending
-
2019
- 2019-11-20 JP JP2021528421A patent/JP7416789B2/ja active Active
- 2019-11-20 WO PCT/EP2019/081926 patent/WO2020104525A1/fr unknown
- 2019-11-20 US US17/295,006 patent/US12078862B2/en active Active
- 2019-11-20 EP EP19808750.4A patent/EP3883453B1/fr active Active
- 2019-11-20 CN CN201980076700.XA patent/CN113164039B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120026466A1 (en) * | 2006-01-20 | 2012-02-02 | Clarity Medical Systems, Inc. | Large diopter range real time sequential wavefront sensor |
US20080239444A1 (en) * | 2007-03-29 | 2008-10-02 | Fujitsu Limited | Wavelength selective switch |
DE102011102355A1 (de) | 2011-05-24 | 2012-11-29 | Carl Zeiss Meditec Ag | System zur Bestimmung der Topographie der Kornea eines Auges |
US20150083193A1 (en) * | 2012-03-30 | 2015-03-26 | Sharp Kabushiki Kaisha | Secondary lens, photovoltaic cell mounting body, concentrating photovoltaic power generation unit, and concentrating photovoltaic power generation module |
WO2014074572A1 (fr) * | 2012-11-07 | 2014-05-15 | Clarity Meidcal Systems, Inc. | Appareil et procédé pour le fonctionnement d'un capteur de fronts d'onde séquentiel en temps réel à large plage de dioptries |
DE102014207058A1 (de) | 2014-04-11 | 2015-10-15 | Carl Zeiss Meditec Ag | Verfahren zum Messen und Rekonstruieren gekrümmter, spiegelnder Flächen |
Also Published As
Publication number | Publication date |
---|---|
EP3883453B1 (fr) | 2024-04-24 |
US20220035116A1 (en) | 2022-02-03 |
US12078862B2 (en) | 2024-09-03 |
EP3883453A1 (fr) | 2021-09-29 |
CN113164039B (zh) | 2024-10-15 |
DE102018219902A1 (de) | 2020-05-28 |
CN113164039A (zh) | 2021-07-23 |
JP7416789B2 (ja) | 2024-01-17 |
JP2022511743A (ja) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010042540B4 (de) | Verfahren und Vorrichtung zum Kalibrieren einer Abstandsbestimmungsvorrichtung eines optischen Systems | |
AT506110B1 (de) | Vorrichtung und verfahren zur erfassung von körpermassdaten und konturdaten | |
DE10131778B4 (de) | Optische Messvorrichtung | |
DE102013203883B4 (de) | Verfahren zum Messen einer asphärischen Oberfläche, Vorrichtung zum Messen einer asphärischen Oberfläche, Vorrichtung zum Erzeugen eines optischen Elements und optisches Element | |
DE102013004043B4 (de) | Messverfahren für eine asphärische Oberfläche, Messvorrichtung für eine asphärische Oberfläche, Fertigungsvorrichtung für ein optisches Element und optisches Element | |
DE102011102355A1 (de) | System zur Bestimmung der Topographie der Kornea eines Auges | |
DE102008003387A1 (de) | Verfahren und Vorrichtung zur Bestimmung des Kontaktwinkels aus dem Tropfenkrümmungsradius durch optische Distanzmessung | |
EP3682794B1 (fr) | Procédé et système d'examen de la vue destinés au contrôle des yeux | |
DE102014004005A1 (de) | Verfahren und Vorrichtung zur Wellenfrontmessung und Herstellverfahren für ein optisches Element | |
EP3746740A2 (fr) | Procédé et dispositif de mesure d'une lentille optique pour des situations de port individuelles d'un utilisateur | |
EP2542140A1 (fr) | Dispositif de diagnostic pour la détection d'une limite de couche dans un oeil, et élément annulaire pour le dispositif de diagnostic | |
DE60132551T2 (de) | Verfahren und apparat zur messung der geometrischen struktur eines optischen bauteils durch lichtübertragung | |
EP3585245B1 (fr) | Procédé et dispositif pour la topographie à haute résolution de la cornée d'un oeil | |
EP2799832A2 (fr) | Procédé et dispositif destinés au contrôle qualité de verre de lunette | |
DE102011102354A1 (de) | System zur Bestimmung der Oberflächenform der Kornea eines Auges | |
WO2020104525A1 (fr) | Ensemble et procédé de compensation de la dépendance vis-à-vis de la température d'une lentille à facettes pour la définition de la topographie d'un œil | |
EP3784980A1 (fr) | Procédé et dispositif de contrôle de propriétés géométriques de composants optiques | |
DE102017200427A1 (de) | Verfahren zur Korrektur von Messdaten eines optischen Messgeräts | |
DE102018109726A1 (de) | Verfahren und Vorrichtung zur Cornea-Vermessung | |
DE102018133671A1 (de) | Normal zur Kalibrierung eines Koordinatenmessgeräts | |
DE10224317A1 (de) | Verfahren zur Kalibrierung eines Radienprüfplatzes | |
DE102007021953A1 (de) | Interferometrische Messvorrichtung zum Vermessen einer Oberfläche eines Prüflings | |
DE202004009727U1 (de) | Vorrichtung zur Messung von Winkeln optischer Oberflächen | |
DE102017009334B3 (de) | Verfahren zum Prüfen eines optischen Systems | |
DE102010037738A1 (de) | Verfahren und Koordinatenmessgerät zur Bestimmung der Geometrie eines Messobjektes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19808750 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021528421 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019808750 Country of ref document: EP Effective date: 20210621 |