WO2020104154A1 - Verfahren zur bestimmung der position eines objektes, vorrichtung zur bestimmung der position eines objektes und system - Google Patents

Verfahren zur bestimmung der position eines objektes, vorrichtung zur bestimmung der position eines objektes und system

Info

Publication number
WO2020104154A1
WO2020104154A1 PCT/EP2019/079642 EP2019079642W WO2020104154A1 WO 2020104154 A1 WO2020104154 A1 WO 2020104154A1 EP 2019079642 W EP2019079642 W EP 2019079642W WO 2020104154 A1 WO2020104154 A1 WO 2020104154A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
transmission
angle
incidence
receiving
Prior art date
Application number
PCT/EP2019/079642
Other languages
English (en)
French (fr)
Inventor
Jürgen Schmitz
Markus Jung
Michael Camp
Alexander Graf
Ellen Dudek
Original Assignee
Rheinmetall Waffe Munition Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Waffe Munition Gmbh filed Critical Rheinmetall Waffe Munition Gmbh
Priority to EP19798033.7A priority Critical patent/EP3884299A1/de
Priority to US17/291,094 priority patent/US11762083B2/en
Publication of WO2020104154A1 publication Critical patent/WO2020104154A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/12Means for clearing land minefields; Systems specially adapted for detection of landmines
    • F41H11/13Systems specially adapted for detection of landmines
    • F41H11/136Magnetic, electromagnetic, acoustic or radiation systems, e.g. ground penetrating radars or metal-detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/876Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/468Indirect determination of position data by Triangulation, i.e. two antennas or two sensors determine separately the bearing, direction or angle to a target, whereby with the knowledge of the baseline length, the position data of the target is determined

Definitions

  • the invention relates to a method for determining a position of an object, which comprises at least one nonlinear component, in particular a semiconductor component. Furthermore, the invention relates to a device for determining a position of an object, which comprises at least one nonlinear component, in particular a semiconductor component.
  • the invention further relates to a system, in particular a vehicle, a trailer or a container, which comprises such a device and / or carries out such a method.
  • NLJ detector non-linear junction detector
  • the primary high-frequency radiation induces a voltage at the pn junctions of the corresponding semiconductor component, which acts like a current-carrying conductor and thus induces its own electromagnetic field
  • the second and / or third harmonics in turn can be received and evaluated by a receiving and evaluation unit via a receiving antenna.
  • DE 10 2013 011 220 A1 discloses a method for determining the distance of an object, which comprises at least one non-linear component, the disclosure of which is incorporated in its entirety by reference in this application. This is a method for determining the distance of an object which contains at least one non-linear component which, when irradiated with a high-frequency pulse-shaped or periodically frequency-modulated transmission signal, generates an object signal with twice and / or triple the frequency of the transmission signal and emits it again.
  • the object of the invention is to create a method, a device and / or a system of the type mentioned at the outset that allows a position of an object that has at least one nonlinear component to be determined.
  • a method for determining a position of an object which comprises at least one non-linear component, in particular a semiconductor component, which is set up to irradiate with high-frequency transmission signals from at least two different positions, object signals with twice and / or three times the frequency of the respective transmission signal generated and emitted again.
  • the device according to the invention for determining a position of an object which comprises at least one nonlinear component, in particular a semiconductor component, which, when irradiated with high-frequency transmission signals from at least two positions, receives object signals with double and / or triple frequency (2nd harmonic, 3rd harmonic) to generate the respective transmission signal and emit it again.
  • the invention provides a system, in particular a vehicle, trailer or container, which comprises such a device or a device developed as described below.
  • a system in particular a vehicle, trailer or container, which comprises such a device or a device developed as described below.
  • This ensures that the object position of an object can be determined with at least one non-linear component.
  • high-frequency transmission signals are emitted from at least two different positions.
  • Each transmission signal that strikes the object, more precisely the non-linear component generates an object signal with twice / or three times the frequency of the respective transmission signal.
  • the generated object signals are emitted again and the position of the object can be determined on the basis of the emitted object signals. It has been found that this method is less susceptible to malfunction and the achievable accuracy is higher. Furthermore, this method only determines the position and not only the distance to an object.
  • the device according to the invention and its further developments are designed accordingly in order to carry out the method according to the invention and the further development of the method in a suitable manner. These further developments of the device have the same advantages which have been described with regard to the method.
  • the method can include the following features: determining the angle of incidence with a maximum backscattering power of each transmission signal, and determining a position of the object by triangulation based on the angle of incidence with the maximum backscattering power of each transmission signal and on the basis of the positions from which the transmission signals are made were broadcast.
  • the position of the object is determined by triangulation on the basis of the irradiation angle thus determined with maximum backscattering power of each transmission signal and on the basis of the positions from which the transmission signals were emitted. This specifies a simple but robust method that allows the position of the object to be determined in a simple and robust manner.
  • the method can comprise the following steps: irradiating the object with at least two transmission signals emitted from different positions by at least one transmission device; Receiving the object signals emitted by the nonlinear components at twice and / or three times the frequency of the transmitted signals by at least one receiving device; Determining a backscattering power of the object signals taking into account an angle of incidence of the send signals. These steps are preferably carried out before the angle of incidence is determined with a maximum backscattering power of each transmission signal. This provides a way of determining how the backscattering power is to be determined. First, the object is irradiated from two different positions by at least one transmission device.
  • the object signals emitted by the nonlinear components of the object are then received by at least one receiving device and the backscattering power is determined taking into account the angle of incidence of the transmission signals.
  • the backscattering power is determined taking into account the angle of incidence of the transmission signals.
  • the method steps are preferably carried out in the aforementioned order, furthermore preferably in immediate sequence.
  • the backscattering power of the object signals for determining the angle of incidence is integrated with the maximum backscattering power in an angle-resolved manner over the entire frequency range of the object signals.
  • the integral of the backscattering power of the object signals is drawn for each angle of incidence over the entire frequency range, and the maximum backscattering powers are determined in an angle-resolved manner.
  • the method can provide that a position of maximum distance and a position of minimum distance is determined on the basis of the shape of the antenna lobes, in particular an opening angle of the main lobes, of the transmitting and / or receiving devices and on the basis of the angles of incidence with the maximum backscattering power.
  • a certain measurement tolerance which is defined by the shape of the antenna lobes, in particular the opening angle of the main lobes. This measurement tolerance is taken into account accordingly in this embodiment of the method.
  • an angle range can be assigned to each angle of incidence with the maximum backscattering power.
  • these are the opening angles of the main lobes. These angular areas of each angle of incidence with the maximum backscattering power intersect and there are intersections which define the area in which the object is located. These intersections define a position of maximum distance and a position of minimum distance.
  • the position of the object is determined from the position of maximum distance and the position of minimum distance.
  • the position of the object is then determined from the initially determined position of maximum distance and the position of minimum distance, for example by determining an average value, so that the position of the object is determined as being midway between the position of maximum distance and the position of minimum distance.
  • mathematical methods other than the determination of an average value are also conceivable, such as, for example, the determination of a center of gravity, a surface spanned by the intersection points of the angular regions.
  • the method can provide that the angle of incidence of each transmission signal is set by mechanically and / or electronically pivoting the antenna lobes of the transmission devices.
  • Mechanical pivoting is realized by pivoting the entire device or the transmitting device.
  • Electronic swiveling can be implemented, for example, in that only certain parts of an array of a transmitter emit transmission signals of a certain angle, and then other parts of the array emit transmission signals with a different angle of incidence. It is hereby achieved that the transmission signals are transmitted with a time delay only in a certain angular range and thus a scanning of an entire swiveling range of the transmission device is realized.
  • the method can provide that each transmission signal is emitted from a single transmission device and is received by a single reception device, the transmission device emitting transmission signals in a first position and the reception device receiving object signals and then, preferably by movement under its own power or by transport , in further positions again emits transmission signals and receives object signals. It is provided for this embodiment of the method that only one transmitting device and one receiving device are required. This is preferably attached to a system, such as, for example, a vehicle, a trailer or a container, in order to be transported to various positions from which transmission signals are emitted and object signals are received. This also specifies a method which makes it possible to determine the position of the object using a simply designed device which has only one transmitting device and one receiving device.
  • the method created thereby provides for a more time-consuming change in the position of the device for carrying out the method, but makes it possible to implement a method according to the method with a comparatively simple device.
  • the method can provide that each transmission signal is emitted from a different transmission device, which are each arranged in different positions, and the respective object signal is received by a respective reception device assigned to the respective transmission device.
  • transmission signals are emitted from different transmission devices, which are each arranged in different positions.
  • the device thus comprises a plurality of transmitting devices which allow transmitting signals from different positions to be transmitted in a short time or simultaneously and to receive the object signals generated by the transmitting signals with the receiving devices assigned to the respective transmitting devices. In this way, a method is specified which makes it possible to implement an implementation in accordance with the method without a relatively time-consuming change in the position of the device for carrying out the method.
  • the device preferably provides a circuit device which is set up to determine the angle of incidence with the maximum backscattering power of each transmission signal and to determine the position of the object by triangulation based on the angle of incidence with the maximum backscattering power of each transmission signal and on the basis of the positions .
  • the device comprises at least one transmission device for generating at least two transmission signals emitted from different positions. It can further be provided in an embodiment that at least one receiving device for receiving object signals, the frequency of which corresponds to two and / or three times the frequency of the respective transmission signals.
  • the at least one transmitting device and the at least one receiving device are preferably operatively connected to the circuit device.
  • the circuit device can be set up to determine the backscattering power of the object signals, taking into account an angle of incidence of the transmission signals.
  • each transmitting device is assigned a receiving device for receiving the respective object signal, that is to say is positioned identically or essentially identically.
  • the transmitting devices and the receiving devices are each combined to form a transmitting and receiving device.
  • the circuit device is set up to integrate the backscattering power of the object signals in an angle-resolved manner over the entire frequency range of the object signals.
  • the circuit device is set up, based on a shape of the antenna lobes, in particular an opening angle of the main lobes, of the transmitting and / or receiving devices and on the angle of incidence with the maximum backscattering power, a position of maximum distance and a position of minimum To determine distance.
  • the circuit device is set up to determine the position of the object from the position of maximum distance and the position of minimum distance.
  • the angle of incidence of each transmission signal can be adjusted by mechanically and / or electronically pivoting the antenna lobes of the transmission devices.
  • the device comprises a single transmission device for emitting each transmission signal and a single reception device for receiving each reception signal, the device being set up for this purpose, preferably by movement under its own power or by transport by means of the transmission device to emit transmission signals in a first position and to receive object signals to the receiving device and then to transmit transmission signals again in further positions by means of the transmitting device and to receive object signals by means of the receiving device.
  • This provides a device that allows the position of the object to be determined with a single transmitting device and a single receiving device.
  • the position of the object can be reliably determined by a device with a simple configuration.
  • the device can provide that the device comprises at least two transmission devices for emitting transmission signals, each in different positions.
  • Each transmitting device is preferably assigned a receiving device for receiving the respective object signal.
  • an array can be formed for this purpose, which has a plurality of subarrays or antennas spaced apart from one another as transmitting devices. Individual, differently positioned antennas can also be provided as transmitting devices. A combination of arrays, subarrays and / or antennas is also possible.
  • the distances between the transmitting units and the receiving units can be of different sizes or equidistant.
  • An equidistant arrangement has the advantage that a high signal-to-noise ratio can be achieved. Different distances have the advantage that the number of ambiguities can be reduced.
  • the accuracy of the device and of the method can be improved by combining it with a time difference measurement between the transmission and reception of the signals of the induced object signal.
  • FIG. 1 shows a schematic representation of a device according to the invention according to one embodiment
  • FIG. 2 shows a schematic representation of a transmitting and receiving device
  • FIG. 3 shows a schematic representation of the device according to the invention in accordance with FIG.
  • FIG. 4 shows a schematic representation of a device according to the invention in accordance with a further embodiment
  • FIG. 5 shows a schematic representation of the device according to the invention according to the in
  • FIG. 6 shows a schematic illustration of a device according to the invention in accordance with one embodiment
  • 7 shows a schematic representation of the device according to the invention in accordance with the embodiment shown in FIG.
  • the 1 shows a device 1 according to the invention for determining a position of an object 2.
  • the object 2 comprises at least one non-linear component 3.
  • the non-linear component 3 preferably has a semiconductor component.
  • the device 1 comprises at least two transmission devices 6 1 , 6 2 , 6n for generating at least two transmission signals 41, 42, 4n emitted from different positions P1, P2, Pn.
  • the device 1 comprises at least two transmission devices 6 1 , 6 2 , 6n for generating at least two transmission signals 41, 42, 4n emitted from different positions P1, P2, Pn.
  • several transmission devices 6 1 , 6 2 , 6 n are formed for this purpose, which are arranged in different positions P 1 , P 2 , P n .
  • the device 1 comprises a plurality of receiving devices 121, 122, 12n for receiving object signals 51, 52, 5n, the frequency of which corresponds to two and / or three times the frequency of the respective transmission signals 41, 42, 4n.
  • the transmitting devices 61, 62, 6n and the receiving devices 121, 122, 12n each form a transmitting and receiving device 61, 121; 62, 122 ,; 6n, 12n are combined.
  • the device thus has at least two transmission devices 61, 62, 6n for emitting transmission signals 41, 42, 4n, which are each arranged in different positions P1, P2, Pn.
  • Each transmitting device P1, P2, Pn is assigned a receiving device 121, 122, 123 for receiving the respective object signal 51, 52, 5n, that is to say they are positioned identically or essentially identically.
  • the device 1 comprises a circuit device 10 to which the transmitting devices 6 1 , 6 2 , 6 n and the receiving devices 121, 122, 12n are operatively connected.
  • the circuit device 10 is set up to determine the backscattering power of the object signals 51, 52, 5n received by the receiving devices, taking into account the angle of incidence a1, a2, on the transmission signals 41, 42, 4n.
  • the angle of incidence a 1 , a 2 , a n of each transmission signal 4 1 , 4 2 , 4 n can be adjusted by mechanically and / or electronically pivoting the antenna lobes 7 1 , 7 2 , 7 n of the transmission devices 6 1 , 6 2 , 6 n .
  • the circuit device 10 is also set up with the angle of incidence to determine the maximum backscattering power a 1max , a 2max , a nmax of each transmission signal 4 1 , 4 2 , 4 n .
  • the circuit device 10 is set up to integrate the backscattering power of the object signals 5 1 , 5 2 , 5 n at an angle resolution over the entire frequency range of the object signals 5 1 , 5 2 , 5 n .
  • These backscattering powers are determined and compared for each angle of incidence of a transmission device 6 1 , 6 2 , 6 n .
  • the angle of incidence a 1 , a 2 , a n for which the greatest backscattering power is determined is the angle of incidence with the maximum backscattering power a 1max , a 2max , a nmax of each transmission signal 4 1 , 4 2 , 4 n .
  • the circuit device 10 is set up to determine the position P obj of the object 2 by triangulation based on the angle of incidence with the maximum backscattering power a1max, a2max, anmax of each transmission signal and on the basis of the positions P1, P2, P3.
  • a more detailed description of the position determination by the circuit device 10 by triangulation follows below in FIG. 3.
  • 2 shows a transmitting device 61, 62, 6n or receiving device 121, 122, 12n according to the present invention.
  • 2 shows the transmission characteristic of the transmission device 61, 62, 6n or the reception device 121, 122, 12n.
  • 2 shows the shape of the main lobe of the respective antenna lobes 71, 72, 7n and the opening angle b1, b2, b3 of the main lobe is marked accordingly.
  • FIG. 3 shows schematically the device according to FIG. 1.
  • Two transmitting devices 61, 62, 6n and two receiving devices 121, 122, 123 are shown here by way of example for purposes of illustration.
  • Each transmission signal 41, 42, 4n is emitted from a different transmission device 61, 62, 6n, which are each arranged in different positions P1, P2, Pn, and each by a reception device 121, 122 assigned to the respective transmission device 61, 62, 6n, 12n, the respective object signal 51, 52, 5n is received.
  • the entire swivel range of the antenna lobes 71, 72, 7n is shown, which the respective radiation angle a1, a2, can pass through when swiveling.
  • the method for determining a position of the object is described below on the basis of its method steps according to FIG.
  • the object 2 is irradiated with at least two transmission signals 4 1 , 4 2 , 4 n emitted from different positions P1, P2, Pn by the transmission devices 6 1 , 6 2 , 6 n .
  • the object signals 5 1 , 5 2 , 5 n emitted by the nonlinear components 3 are received at twice and / or three times the frequency of the transmission signals 41, 42, 4n by at least one receiving device 12 1 , 12 2 , 12 n . Then the backscattering power of the object signals 5 1 , 5 2 , 5 n taking into account the angle of incidence a 1 , a 2 , a n of the transmitted signals 4 1 , 4 2 , 4 n determined.
  • the backscattering power of the object signals 5 1 , 5 2 , 5 n is integrated to determine the maximum backscattering power with an angle resolution over the entire frequency range of the object signals 5 1 , 5 2 , 5 n . This process is repeated until a predefined swivel range or the entire swivel range has been covered.
  • the angle of incidence a 1 , a 2 , a n of each transmission signal 4 1 , 4 2 , 4 n is set by mechanically and / or electronically pivoting the antenna lobes 7 1 , 7 2 , 7 n of the transmission devices 6 1 , 6 2 , 6 n and passes through the swivel range.
  • the corresponding backscattering power is saved at an angle.
  • the angle of incidence is then determined with the maximum backscattering power a 1max , a 2max , a nmax of each transmission signal 4 1 , 4 2 , 4 n .
  • the position P obj of the object 2 is determined by triangulation based on the angle of incidence with the maximum backscattering power a1max, a2max, anmax of each transmission signal 41, 42, 4n and on the basis of the positions P1, P2, Pn from which the transmission signals 41, 42, 4n were broadcast.
  • the positions P1, P2, Pn from which the transmission signals 41, 42, 4n were emitted are stored in the circuit device 10 for this purpose.
  • a certain measurement tolerance is defined for each angle of incidence with the maximum backscattering power a1max, a2max, anmax, which is defined by the shape of the antenna lobes 71, 72, 7n, in particular the opening angle b1, b2, bn of the main lobes.
  • This measurement tolerance is taken into account accordingly in the method shown in FIG. 3.
  • These angles of incidence with the maximum backscattering power a1max, a2max, anmax are each assigned two angular ranges as a tolerance.
  • the device 1 is designed to implement the method described above accordingly.
  • the circuit device 10 is set up to use this form of the antenna lobes 7 1 , 7 2 , 7 N , the transmitting and / or receiving devices 6 1 , 6 2 , 6 n ; 12 1 , 12 2 , 12 n and using the angle of incidence with the maximum backscattering power a 1max , a 2max , a nmax to determine the position of maximum distance Pobj, max and the position of minimum distance Pobj, min.
  • the opening angle b 1 , b 2 , b 3 of the main lobes is used.
  • the circuit device 10 is set up to reduce the position P obj of the object 2 from the position maximum distance P obj, max and the position minimum Distance P obj, min to be determined.
  • the transmitting and / or receiving device can be arranged on a system, in particular a vehicle, a trailer or a container, and can be transported to different positions.
  • FIG. 4 shows a device according to the invention according to a further embodiment, which essentially corresponds to the embodiment according to FIG. 1, the differences from the embodiment according to FIG. 1 being explained below.
  • the transmitting devices 6 1 , 6 2 , 6 n and the receiving devices 12 1 , 122, 12n are combined in an array 8.
  • the individual antennas of the array 8 or subarrays from a plurality of antennas form the transmitting devices 61, 62, 6n and the receiving devices 12 1 , 12 2 , 12 3 .
  • the different positions P1, P2, Pn of the transmission devices 61, 62, 6n, which are designed to emit the transmission signals 41, 42, 4n and the reception devices 121, 122, 12n , which are designed to receive the respective object signal, are predefined and known accordingly.
  • FIG. 5 shows the device 1 according to the embodiment described in FIG. 4.
  • the implementation of the method essentially corresponds to the implementation described in FIG.
  • FIG. 6 shows a device 1 according to the invention in accordance with a further embodiment.
  • the embodiment essentially corresponds to the embodiment according to FIG. 1, the differences from the embodiment according to FIG. 6 embodiment being set out below.
  • the device 1 shown in FIG. 6 has only a single transmission device 61.
  • This one transmission device 61 is used to emit each transmission signal 41, 42, 4n.
  • the device has only a single receiving device 121 for receiving each received signal.
  • the device 1 is set up so that the transmitting device 61 and the receiving device 121 emit transmission signals 41, 42, 4n in a first position P1 and receive object signals 51, 52, 5n. It is then provided that the device 1 again transmits transmission signals 41, 42, 4n and receives object signals 51, 52, 5n in a further position P2, Pn.
  • FIG. 7 shows the device 1 according to the embodiment described in FIG. 6.
  • the implementation of the method essentially corresponds to the implementation described in FIG. 3, with the difference that only a single transmission device 6 1 is provided, which is repositioned before a repeated transmission of transmission signals.
  • Each transmission signal 4 1 , 4 2 , 4 n is emitted from a single transmitter 6 1 and is received by a single receiver 12 1 .
  • the transmitting device 6 1 and the receiving device 12 1 emit transmission signal 4 1 , 4 2 , 4 n and receive the object signals 5 1 , 5 2 , 5 n .
  • signals are emitted and received again in further positions P 2 , P n .
  • transmitting devices and receiving devices these can also be designed accordingly as transmitting and receiving devices.
  • 5 1 , 5 2 , 5 n transmit signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung einer Position (P0bj) eines Objektes (2), das mindestens ein nichtlineares Bauelement (3), insbesondere ein Halbleiterbauelement, umfasst, welches bei Bestrahlung mit hochfrequenten Sendesignalen (41, 42, 4n) aus zumindest zwei unterschiedlichen Positionen (P1, P2, Pn) Objektsignale (51, 52, 5n) mit der doppelten und/oder dreifachen Frequenz des jeweiligen Sendesignals (41, 42, 4n) erzeugt und wieder abstrahlt.

Description

B E S C H R E I B U N G
Verfahren zur Bestimmung der Position eines Objektes, Vorrichtung zur Bestimmung der Position eines Objektes und System
Die Erfindung betrifft ein Verfahren zur Bestimmung einer Position eines Objektes, das mindestens ein nichtlineares Bauelement, insbesondere ein Halbleiterbauelement, umfasst. Weiterhin betrifft die Erfindung eine Vorrichtung zur Bestimmung einer Position eines Objektes, das mindestens ein nichtlineares Bauelement, insbesondere ein Halbleiterbauelement, umfasst.
Ferner betrifft die Erfindung ein System, insbesondere ein Fahrzeug, einen Anhänger oder einen Container, das eine solche Vorrichtung umfasst und/oder ein solches Verfahren durchführt.
Aus der DE 10 2006 038 627 A1 ist es bekannt, elektronische Bauelemente, wie sie bei Zündeinrichtungen von Bomben verwendet werden, mit Hilfe eines Detektors zum Aufspüren nichtlinearer Übergänge von Grenzschichten, insbesondere der p-n-Übergänge von Halbleiterbauelementen (Dioden, Transistoren etc.), zu bestimmen. Die Arbeitsweise dieser beispielsweise auch in der WO 02/065419 A1 beschriebenen und als NLJ-Detektoren bezeichneten Detektoren (NLJ-Detektor: Non-Linear Junction-Detektor) besteht darin, dass ein primäres Hochfrequenzsignal einer Sendeantenne auf den zu untersuchenden Gegenstand gestrahlt wird. Sind in dem Gegenstand beispielsweise Halbleiterbauelemente vorhanden, so induziert die primäre Hochfrequenzstrahlung eine Spannung an den p-n- Übergängen des entsprechenden Halbleiterbauelements, der wie ein stromdurchflossener Leiter wirkt und somit ein eigenes elektromagnetisches Feld induziert, dessen zweite und/oder dritte Oberwellen (sekundäre Hochfrequenzstrahlung) wiederum über eine Empfangsantenne von einer Empfangs- und Auswerteeinheit empfangen und ausgewertet werden.
Mit diesen bekannten Verfahren und Vorrichtungen ist es bisher lediglich möglich, das Vorhandensein von Grenzschichtübergängen zu bestimmen. Insbesondere, wenn Gebiete auf Sprengfallen untersucht werden sollen, die einen größeren Abstand von dem NLJ-Detektor besitzen (beispielsweise die Überprüfung der Umgebung einer Straße von einem gepanzerten Fahrzeug aus), ist es erforderlich, auch die Entfernung der Sprengfalle von dem Detektor zu kennen, um gegebenenfalls Maßnahmen zur Entschärfung oder Vernichtung der entsprechenden Sprengfalle einleiten zu können.
Aus der DE 10 2013 011 220 A1, ist ein Verfahren zur Bestimmung der Entfernung eines Objekts, das mindestens ein nichtlineares Bauteil umfasst, bekannt, deren Offenbarung vollumfänglich durch Bezugnahme in diese Anmeldung aufgenommen wird. Hieraus ist ein Verfahren zur Bestimmung der Entfernung eines Objektes, das mindestens ein nichtlineares Bauelement enthält, welches bei Bestrahlung mit einem hochfrequenten impulsförmigen oder periodisch frequenzmodulierten Sendesignal ein Objektsignal mit der doppelten und/oder dreifachen Frequenz des Sendesignales erzeugt und wieder abstrahlt.
Ausgehend davon, liegt der Erfindung die Aufgabe zugrunde, ein Verfahren, eine Vorrichtung und/oder ein System der eingangs genannten Art zu schaffen, dass es erlaubt eine Position eines Objekts, das zumindest ein nichtlineares Bauteil aufweist, zu bestimmen.
Diese Aufgabe wird durch das erfindungsgemäße Verfahren gemäß Anspruch 1 und die erfindungsgemäße Vorrichtung gemäß Anspruch 10 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der jeweiligen Unteransprüche.
Erfindungsgemäß wird ein Verfahren zur Bestimmung einer Position eines Objektes, das mindestens ein nichtlineares Bauelement, insbesondere ein Halbleiterbauelement, umfasst, welches dazu eingerichtet ist, bei Bestrahlung mit hochfrequenten Sendesignalen aus zumindest zwei unterschiedlichen Positionen Objektsignale mit der doppelten und/oder dreifachen Frequenz des jeweiligen Sendesignals erzeugt und wieder abstrahlt.
Die erfindungsgemäße Vorrichtung zur Bestimmung einer Position eines Objektes, das mindestens ein nichtlineares Bauelement, insbesondere ein Halbleiterbauelement, umfasst, welches bei Bestrahlung mit hochfrequenten Sendesignalen aus zumindest zwei Positionen Objektsignale mit der doppelten und/oder dreifachen Frequenz (2. Harmonische, 3. Harmonische)des jeweiligen Sendesignals zu erzeugen und wieder abzustrahlen.
Ferner stellt die Erfindung ein System, insbesondere Fahrzeug, Anhänger oder Container, bereit, das eine solche oder eine wie nachfolgend beschrieben weitergebildete Vorrichtung umfasst. Hierdurch wird erreicht, dass die Objektposition eines Objektes mit mindestens einem nichtlinearen Bauelement bestimmbar ist. Um dies zu erreichen, werden hochfrequente Sendesignale aus zumindest zwei unterschiedlichen Positionen abgestrahlt. Jedes Sendesignal, das auf das Objekt, genauer gesagt das nichtlinearer Bauelement, trifft, erzeugt ein Objektsignal mit der doppelten/oder dreifachen Frequenz des jeweiligen Sendesignals. Die erzeugten Objektsignale werden wieder abgestrahlt und auf Basis der abgestrahlten Objektsignale ist die Position des Objektes bestimmbar. Es hat sich herausgestellt, dass dieses Verfahren weniger störungsanfällig ist und die erreichbare Genauigkeit höher ist. Ferner wird mit diesem Verfahren nur die Position und nicht nur die Entfernung zu einem Objekt ermittelt.
Die erfindungsgemäße Vorrichtung, sowie deren Weiterbildungen sind entsprechend ausgebildet, um das erfindungsgemäße Verfahren sowie die Weiterbildung des Verfahrens in geeigneter Weise durchzuführen. Diesen vorrichtungsgemäßen Weiterbildungen kommen die selben Vorteile zu, welche mit Hinblick auf das Verfahren beschrieben wurden.
In vorteilhafter Weiterbildung kann das Verfahren die folgenden Merkmale umfassen: Bestimmen des Einstrahlwinkels mit einer maximalen Rückstreuleistung eines jeden Sendesignals, und Bestimmen einer Position des Objekts durch Triangulation auf Basis des Einstrahlwinkels mit der maximalen Rückstreuleistung eines jeden Sendesignals und auf Basis der Positionen aus welchen die Sendesignale ausgestrahlt wurden.
Hierdurch wird erreicht, dass für jedes Sendesignal ein Einstrahlwinkel mit einer maximalen Rückstreuleistung bestimmt wird. Dies geschieht für jedes Sendesignal, das aus einer unterschiedlichen Position ausgesendet wurde. Auf Basis der so ermittelten Einstrahlwinkel mit maximaler Rückstreuleistung eines jeden Sendesignals und auf Basis der Positionen, aus denen die Sendesignale ausgestrahlt wurden, wird die Position des Objekts durch Triangulation bestimmt. Hierdurch wird ein einfaches aber robustes Verfahren angegeben, dass es erlaubt die Position des Objektes auf einfache Weise und robust zu bestimmen. Ferner kann das Verfahren die folgenden Schritte umfassen: Bestrahlen des Objekts mit zumindest zwei aus unterschiedlichen Positionen ausgestrahlten Sendesignalen durch zumindest eine Sendeeinrichtung; Empfangen der durch die nichtliniearen Bauelemente abgestrahlten Objektsignale mit der doppelten und/oder dreifachen Frequenz der Sendesignale durch zumindest eine Empfangseinrichtung; Bestimmen einer Rückstreuleistung der Objektsignale unter Berücksichtigung eines Einstrahlwinkels der Sendsignale. Diese Schritte werden vorzugsweise vor dem Bestimmen des Einstrahlwinkels mit einer maximalen Rückstreuleistung eines jeden Sendesignals durchgeführt. Hierdurch wird eine Möglichkeit angegeben, wie die Rückstreuleistung zu bestimmen ist. Zunächst wird das Objekt aus zwei unterschiedlichen Positionen durch zumindest eine Sendeeinrichtung bestrahlt. Anschließend werden die von den nichtlinearen Bauelementen des Objekts abgestrahlten Objektsignale durch zumindest eine Empfangseinrichtung empfangen und es wird unter Berücksichtigung des Einstrahlwinkels der Sendesignale die Rückstreuleistung bestimmt. Neben dieser Möglichkeit zur Bestimmung der Rückstreuleistung der Objektsignale sind auch andere Möglichkeiten denkbar.
Vorzugsweise werden die Verfahrensschritte in der vorgenannten Reihenfolge vorgenommen, ferner vorzugsweise in unmittelbarer Abfolge.
In Weiterbildung des Verfahrens kann vorgesehen sein, dass die Rückstreuleistung der Objektsignale zur Ermittlung des Einstrahlwinkels mit der maximalen Rückstreuleistung winkelaufgelöst über den gesamten Frequenzbereich der Objektsignale integriert wird. Dazu wird für jeden Einstrahlwinkel über den gesamten Frequenzbereich das Integral der Rückstreuleistung der Objektsignale gezogen, und so die maximalen Rückstreuleistungen winkelaufgelöst bestimmt. Dadurch, dass die Sendesignale aus zwei unterschiedlichen Positionen abgestrahlt werden, ist es mittels des erfindungsgemäßen Verfahrens möglich, nicht nur die Entfernung sondern auch die Position des Objekts zu bestimmen.
Weiterhin kann das Verfahren vorsehen, dass anhand der Form der Antennenkeulen, insbesondere eines Öffnungswinkels der Hauptkeulen, der Sende- und/oder Empfangseinrichtungen und anhand der Einstrahlwinkel mit der maximalen Rückstreuleistung eine Position maximaler Entfernung und eine Position minimaler Entfernung bestimmt wird. Für jeden Einstrahlwinkel mit der maximalen Rückstreuleistung ist somit eine gewisse Messtoleranz gegeben, welche durch die Form der Antennenkeulen, insbesondere den Öffnungswinkel der Hauptkeulen, definiert wird. Diese Messtoleranz wird in dieser Ausgestaltung des Verfahrens entsprechend berücksichtigt.
In Ausgestaltung kann dabei jedem Einstrahlwinkel mit der maximalen Rückstreuleistung ein Winkelbereich zugeordnet werden. In vorteilhafter Weiterbildung sind dies die Öffnungswinkel der Hauptkeulen. Diese Winkelbereiche jedes Einstrahlwinkels mit der maximalen Rückstreuleistung schneiden sich und es ergeben sich Schnittpunkte, welche den Bereich definieren, in welchem sich das Objekt befindet. Diese Schnittpunkte definieren eine Position maximaler Entfernung und eine Position minimaler Entfernung.
In Ausgestaltung des Verfahrens kann vorgesehen sein, dass die Position des Objekts aus der Position maximaler Entfernung und der Position minimaler Entfernung bestimmt wird. Aus der zunächst ermittelten Position maximaler Entfernung und der Position minimaler Entfernung wird dann die Position des Objekts, bspw. durch Ermittlung eines Mittelwerts bestimmt, sodass die Position des Objekts als mittig zwischen der Position maximaler Entfernung und der Position minimaler Entfernung bestimmt wird. Es sind aber auch andere mathematische Methoden als die Ermittlung eines Mittelwerts denkbar, wie bspw. die Ermittlung eines Schwerpunkts, einer durch die Schnittpunkte der Winkelbereiche aufgespannten Fläche.
Weiterhin kann das Verfahren vorsehen, dass der Einstrahlwinkel jedes Sendesignals durch mechanisches und/oder elektronisches Schwenken der Antennenkeulen der Sendeeinrichtungen eingestellt wird.
Ein mechanisches Schwenken wird realisiert, in dem die gesamte Vorrichtung oder die Sendeeinrichtung geschwenkt wird. Ein elektronisches Schwenken kann zum Beispiel realisiert werden, indem nur bestimmte Teile eines Arrays einer Sendeeinrichtung Sendesignale eines bestimmten Winkels ausstrahlen, und anschließend andere Teile des Arrays Sendesignale mit einem anderen Einstrahlwinkel ausstrahlen. Hierdurch wird erreicht, dass die Sendesignale zeitversetzt nur in einem bestimmten Winkelbereich ausgesendet werden und somit ein Abtasten eines gesamten Schwenkbereichs der Sendeeinrichtung realisiert wird.
Weiter kann das Verfahren vorsehen, dass jedes Sendesignal aus einer einzigen Sendeeinrichtung abgestrahlt wird, und durch eine einzige Empfangseinrichtung empfangen wird, wobei die Sendeeinrichtung in einer ersten Position Sendesignale abstrahlt und die Empfangseinrichtung Objektsignale empfängt und danach, vorzugsweise durch Bewegung aus eigener Kraft oder durch Transport, in weiteren Positionen erneut Sendesignale abstrahlt und Objektsignale empfängt. Für diese Ausgestaltung des Verfahrens ist vorgesehen, dass nur eine Sendeeinrichtung und eine Empfangseinrichtung benötigt werden. Diese ist vorzugsweise an einem System, wie beispielsweise einem Fahrzeug, einem Anhänger oder einem Container befestigt, um in verschiedene Positionen transportiert zu werden, aus denen Sendesignale abgestrahlt werden und Objektsignale empfangen werden. Ferner wird hierdurch ein Verfahren angegeben, das es ermöglicht, mit einer einfach ausgebildeten Vorrichtung, die nur eine Sendeeinrichtung und eine Empfangseinrichtung aufweist, die Position des Objektes zu bestimmen. Das hierdurch geschaffene Verfahren sieht zwar ein zeitaufwendigeres Ändern der Position der Vorrichtung zur Durchführung des Verfahrens vor, ermöglicht es jedoch mit einer vergleichsweise einfachen Vorrichtung eine verfahrensgemäße Umsetzung zu realisieren. Zudem kann das Verfahren vorsehen, dass jedes Sendesignal aus einer unterschiedlichen Sendeeinrichtung, die jeweils in unterschiedlichen Positionen angeordnet sind, abgestrahlt wird, und durch jeweils eine der jeweiligen Sendeeinrichtung zugeordneten Empfangseinrichtung das jeweilige Objektsignal empfangen wird. Für die Ausgestaltung des Verfahrens gemäß dieser Ausführung ist vorgesehen, dass Sendesignale aus unterschiedlichen Sendeeinrichtungen abgestrahlt werden, die jeweils in unterschiedlichen Positionen angeordnet sind. Die Vorrichtung umfasst somit mehrere Sendeeinrichtungen, die es erlauben in kurzer Zeit oder auch gleichzeitig Sendesignale aus unterschiedlichen Positionen auszusenden und die durch die Sendesignale erzeugten Objektsignale mit den jeweiligen Sendeeinrichtungen zugeordneten Empfangseinrichtungen zu empfangen. Hierdurch wird ein Verfahren angegeben, das es ermöglicht ohne ein verhältnismäßig zeitaufwendiges ändern der Position der Vorrichtung zur Durchführung des Verfahrens eine verfahrensgemäße Umsetzung zu realisieren.
Vorzugweise sieht die Vorrichtung eine Schaltungseinrichtung vor, die dazu eingerichtet ist, die Einstrahlwinkel mit der maximalen Rückstreuleistung eines jeden Sendesignals zu bestimmen, und die Position des Objekts durch Triangulation auf Basis des Einstrahlwinkels mit der maximalen Rückstreuleistung eines jeden Sendesignals und auf Basis der Positionen zu bestimmen.
In Ausgestaltung der Vorrichtung kann vorgesehen sein, dass diese zumindest eine Sendeeinrichtung zur Erzeugung von zumindest zwei aus unterschiedlichen Positionen ausgestrahlten Sendsignalen umfasst. Ferner kann in Ausgestaltung vorgesehen sein, dass zumindest eine Empfangseinrichtung zum Empfang von Objektsignalen, deren Frequenz dem zwei- und/oder dreifachen der Frequenz der jeweiligen Sendesignale entspricht. Vorzugsweise ist die zumindest eine Sendeeinrichtung und die zumindest eine Empfangseinrichtung mit der Schaltungseinrichtung betriebsmäßig verbunden. Die Schaltungseinrichtung kann dazu eingerichtet sein, die Rückstreuleistung der Objektsignale unter Berücksichtigung eines Einstrahlwinkels der Sendesignale zu bestimmen.
Ferner kann vorgesehen sein, dass jeder Sendeeinrichtung eine Empfangseinrichtung zum Empfang des jeweiligen Objektsignals zugeordnet ist, also gleich oder im Wesentlichen gleich positioniert ist.
In Ausgestaltung der Vorrichtung und auch des Verfahrens kann auch vorgesehen sein, dass die Sendeeinrichtungen und die Empfangseinrichtungen jeweils zu einer Sende- und Empfangseinrichtung zusammengefasst sind. In Ausgestaltung der Vorrichtung kann vorgesehen sein, dass die Schaltungseinrichtung eingerichtet ist, die Rückstreuleistung der Objektsignale winkelaufgelöst über den gesamten Frequenzbereich der Objektsignale zu integrieren.
Ferner kann in Ausgestaltung der Vorrichtung vorgesehen sein, dass die Schaltungseinrichtung eingerichtet ist, anhand einer Form der Antennenkeulen, insbesondere eines Öffnungswinkels der Hauptkeulen, der Sende- und/oder Empfangseinrichtungen und anhand der Einstrahlwinkel mit der maximalen Rückstreuleistung eine Position maximaler Entfernung und eine Position minimaler Entfernung zu bestimmen.
In Weiterbildung der Vorrichtung kann vorgesehen sein, dass die Schaltungseinrichtung eingerichtet ist, um die Position des Objekts aus der Position maximaler Entfernung und der Position minimaler Entfernung zu bestimmen.
In vorteilhafter Weiterbildung der Vorrichtung kann vorgesehen sein, dass der Einstrahlwinkel jedes Sendesignals durch mechanisches und/oder elektronisches Schwenken der Antennenkeulen der Sendeeinrichtungen einstellbar ist.
In Ausgestaltung der Vorrichtung kann ferner vorgesehen sein, dass die Vorrichtung eine einzige Sendeeinrichtung zur Abstrahlung jedes Sendesignals, und eine einzige Empfangseinrichtung zum Empfang jedes Empfangssignals umfasst, wobei die Vorrichtung dazu eingerichtet ist, vorzugsweise durch Bewegung aus eigener Kraft oder durch Transport, mittels der Sendeeinrichtung in einer ersten Position Sendesignale abzustrahlen und der Empfangseinrichtung Objektsignale zu empfangen und danach mittels der Sendeeinrichtung in weiteren Positionen erneut Sendesignale abstrahlen und mittels der Empfangseinrichtung Objektsignale zu empfangen.
Hierdurch wird eine Vorrichtung bereitgestellt, die es erlaubt, mit einer einzigen Sendeeinrichtung und einer einzigen Empfangseinrichtung die Position des Objekts zu bestimmen. Somit kann durch eine Vorrichtung mit einer einfachen Konfiguration sicher die Position des Objekts bestimmt werden.
Ferner kann die Vorrichtung vorsehen, dass die Vorrichtung zumindest zwei Sendeeinrichtungen zur Abstrahlung von Sendesignalen jeweils in unterschiedlichen Positionen umfasst. Vorzugsweise ist jeder Sendeeinrichtung eine Empfangseinrichtung zum Empfang des jeweiligen Objektsignals zugeordnet. In Ausgestaltung der Vorrichtung kann dazu ein Array ausgebildet sein, das als Sendeeinrichtungen mehrere voneinander beabstandete Subarrays oder Antennen aufweist. Ebenfalls können einzelne unterschiedlich positionierte Antennen als Sendeeinrichtungen bereitgestellt werden. Auch eine Kombination aus Arrays, Subarrays und/oder Antennen ist möglich.
Die Abstände zwischen den Sendeeinheiten sowie den Empfangseinheiten können unterschiedlich groß oder äquidistant sein. Eine äquidistante Anordnung hat den Vorteil, dass ein hohes Signal-zu-Rausch-Verhältnis erreichbar ist. Unterschiedliche Abstände haben den Vorteil, dass die Zahl der Mehrdeutigkeiten reduzierbar ist.
Ferner kann die Genauigkeit der Vorrichtung als auch des Verfahrens durch Kombination mit einer Zeitdifferenzmessung zwischen dem Aussenden und dem Empfang der Signale des induzierten Objektsignals verbessert werden.
Ferner kann zu Steigerung der Genauigkeit der Vorrichtung als auch des Verfahrens durch Kombination mit FMCW-VERFAHREN oder FSK-Verfahren möglich sein.
Nachfolgend soll die Erfindung anhand von Ausführungsbeispielen mit Bezug auf die Zeichnungen erläutert werden.
Es zeigt:
Fig.1 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung gemäß einer Ausführungsform;
Fig.2 eine schematische Darstellung einer Sende- und Empfangseinrichtung;
Fig.3 eine schematische Darstellung der erfindungsgemäßen Vorrichtung gemäß der in
Fig.1 gezeigten Ausführungsform;
Fig.4 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung gemäß einer weiteren Ausführungsform;
Fig.5 eine schematische Darstellung der erfindungsgemäßen Vorrichtung gemäß der in
Fig.4 gezeigten Ausführungsform;
Fig.6 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung gemäß einer Ausführungsform; und Fig.7 eine schematische Darstellung der erfindungsgemäßen Vorrichtung gemäß der in Fig.6 gezeigten Ausführungsform.
Fig. 1 zeigt eine erfindungsgemäße Vorrichtung 1 zur Bestimmung einer Position eines Objektes 2. Das Objekt 2 umfasst zumindest ein nichtlineares Bauelement 3. Das nichtlineare Bauelement 3 weist vorzugsweise ein Halbleiterbauelement auf. Bei einer Bestrahlung mit hochfrequenten Sendesignalen 41, 42, 4n durch die Vorrichtung werden Objektsignale 51, 52, 5n mit der doppelten und/oder dreifachen Frequenz des jeweiligen Sendesignals 41, 42, 4n erzeugt und wieder abgestrahlt.
Wie in Fig.1 dargestellt, umfasst die Vorrichtung 1 zumindest zwei Sendeeinrichtungen 61, 62, 6n zur Erzeugung von zumindest zwei aus unterschiedlichen Positionen P1, P2, Pn ausgestrahlten Sendsignalen 41, 42, 4n. Gemäß Fig.1 sind hierzu mehrere Sendeeinrichtungen 61, 62, 6n ausgebildet, die in unterschiedlichen Positionen P1, P2, Pn angeordnet sind.
Ferner umfasst die Vorrichtung 1 mehrere Empfangseinrichtungen 121, 122, 12n zum Empfang von Objektsignalen 51, 52, 5n, deren Frequenz dem zwei- und/oder dreifachen der Frequenz der jeweiligen Sendesignale 41, 42, 4n entspricht.
Es kann auch vorgesehen sein, dass die Sendeeinrichtungen 61, 62, 6n und die Empfangseinrichtungen 121, 122, 12n jeweils zu einer Sende- und Empfangseinrichtung 61, 121; 62, 122,; 6n, 12n zusammengefasst sind.
Die Vorrichtung weist somit zumindest zwei Sendeeinrichtungen 61, 62, 6n zur Abstrahlung von Sendesignalen 41, 42, 4n auf, die jeweils in unterschiedlichen Positionen P1, P2, Pn angeordnet sind. Jeder Sendeeinrichtung P1, P2, Pn ist eine Empfangseinrichtung 121, 122, 123 zum Empfang des jeweiligen Objektsignals 51, 52, 5n zugeordnet, diese also gleich oder im Wesentlichen gleich positioniert sind.
Zudem umfasst die Vorrichtung 1 eine Schaltungseinrichtung 10, mit der die Sendeeinrichtungen 61, 62, 6n und die Empfangseinrichtungen 121, 122, 12n betriebsmäßig verbunden sind. Die Schaltungseinrichtung 10 ist eingerichtet, die Rückstreuleistung der durch die Empfangseinrichtungen empfangenen Objektsignale 51, 52, 5n unter Berücksichtigung des Einstrahlwinkels a1, a2, an der Sendesignale 41, 42, 4n zu bestimmen.
Der Einstrahlwinkel a1, a2, an jedes Sendesignals 41, 42, 4n ist durch mechanisches und/oder elektronisches Schwenken der Antennenkeulen 71, 72, 7n der Sendeeinrichtungen 61, 62, 6n einstellbar. Die Schaltungseinrichtung 10 ist ferner dazu eingerichtet, die Einstrahlwinkel mit der maximalen Rückstreuleistung a1max, a2max, anmax eines jeden Sendesignals 41, 42, 4n zu bestimmen. Dazu ist die Schaltungseinrichtung 10 eingerichtet, die Rückstreuleistung der Objektsignale 51, 52, 5n winkelaufgelöst über den gesamten Frequenzbereich der Objektsignale 51, 52, 5n zu integrieren. Diese Rückstreuleistungen werden für jeden Einstrahlwinkel einer Sendeeinrichtung 61, 62, 6n ermittelt und verglichen. Der Einstrahlwinkel a1, a2, an für den die größte Rückstreuleistung ermittelt wird, ist der Einstrahlwinkel mit der maximalen Rückstreuleistung a1max, a2max, anmax eines jeden Sendesignals 41, 42, 4n.
Ferner ist die Schaltungseinrichtung 10 dazu eingerichtet, die Position Pobj des Objekts 2 durch Triangulation auf Basis des Einstrahlwinkels mit der maximalen Rückstreuleistung a1max, a2max, anmax eines jeden Sendesignals und auf Basis der Positionen P1, P2, P3 zu bestimmen. Eine genauere Beschreibung der Positionsbestimmung durch die Schaltungseinrichtung 10 durch Triangulation erfolgt nachfolgend zu Fig.3.
Fig.2 zeigt eine Sendeeinrichtung 61, 62, 6n oder Empfangseinrichtung 121, 122, 12n gemäß der vorliegenden Erfindung. In Fig. 2 ist die Sendecharakteristik der Sendeeinrichtung 61, 62, 6n bzw. der Empfangseinrichtung 121, 122, 12n dargestellt. In der Fig. 2 ist die Form der Hauptkeule der jeweiligen Antennenkeulen 71, 72, 7n dargestellt und der Öffnungswinkel b1, b2, b3 der Hauptkeule entsprechend markiert.
Fig.3 zeigt schematisch die Vorrichtung gemäß Fig.1. Hier sind beispielhaft zu Zwecken der Veranschaulichung zwei Sendeeinrichtungen 61, 62, 6n und zwei Empfangseinrichtungen 121, 122, 123 dargestellt. Jedes Sendesignal 41, 42, 4n wird aus einer unterschiedlichen Sendeeinrichtung 61, 62, 6n, die jeweils in unterschiedlichen Positionen P1, P2, Pn angeordnet sind, abgestrahlt und durch jeweils eine der jeweiligen Sendeeinrichtung 61, 62, 6n zugeordneten Empfangseinrichtung 121, 122, 12n wird das jeweilige Objektsignal 51, 52, 5n empfangen.
Wie in der Fig.3 dargestellt, ist der gesamte Schwenkbereich der Antennenkeulen 71, 72, 7n dargestellt, welchen der jeweilige Einstrahlwinkel a1, a2, an beim Schwenken durchlaufen kann. Nachfolgend wird das Verfahren zur Bestimmung einer Position des Objektes anhand seiner Verfahrensschritte gemäß Fig.3 beschrieben. Wie in der Fig.3 erkennbar findet ein Bestrahlen des Objekts 2 mit zumindest zwei aus unterschiedlichen Positionen P1, P2, Pn ausgestrahlten Sendesignalen 41, 42, 4n durch die Sendeeinrichtungen 61, 62, 6n statt. Anschließend werden die durch die nichtlinearen Bauelemente 3 abgestrahlten Objektsignale 51, 52, 5n mit der doppelten und/oder dreifachen Frequenz der Sendesignale 41, 42, 4n durch zumindest eine Empfangseinrichtung 121, 122, 12n empfangen. Danach wird die Rückstreuleistung der Objektsignale 51, 52, 5n unter Berücksichtigung des Einstrahlwinkels a1, a2, an der Sendsignale 41, 42, 4n bestimmt. Hierzu wird die Rückstreuleistung der Objektsignale 51, 52, 5n zur Ermittlung der maximalen Rückstreuleistung winkelaufgelöst über den gesamten Frequenzbereich der Objektsignale 51, 52, 5n integriert. Dieser Vorgang wird solange wiederholt, bis ein vordefinierter Schwenkbereich oder der gesamte Schwenkbereich durchlaufen ist. Dazu wird der Einstrahlwinkel a1, a2, an jedes Sendesignals 41, 42, 4n durch mechanisches und/oder elektronisches Schwenken der Antennenkeulen 71, 72, 7n der Sendeeinrichtungen 61, 62, 6n eingestellt und durchläuft den Schwenkbereich. Die entsprechenden Rückstreuleistungen werden winkelaufgelöst gespeichert. Anschließend wird der Einstrahlwinkel mit der maximalen Rückstreuleistung a1max, a2max, anmax eines jeden Sendesignals 41, 42, 4n bestimmt. Schließlich wird die Position Pobj des Objekts 2 durch Triangulation auf Basis des Einstrahlwinkels mit der maximalen Rückstreuleistung a1max, a2max, anmax eines jeden Sendesignals 41, 42, 4n und auf Basis der Positionen P1, P2, Pn aus welchen die Sendesignale 41, 42, 4n ausgestrahlt wurden, bestimmt. Die Positionen P1, P2, Pn aus welchen die Sendesignale 41, 42, 4n ausgestrahlt wurden, werden dazu in der Schaltungseinrichtung 10 gespeichert.
Wie erkennbar in Fig.3 ist, ist für jeden Einstrahlwinkel mit der maximalen Rückstreuleistung a1max, a2max, anmax eine gewissen Messtoleranz, welche durch die Form der Antennenkeulen 71, 72, 7n, insbesondere den Öffnungswinkel b1, b2, bn der Hauptkeulen definiert. Diese Messtoleranz wird bei dem in Fig. 3 gezeigten Verfahren entsprechend berücksichtigt. Für zwei Sendeeinrichtungen 61, 62, 6n ergeben sich somit zwei Einstrahlwinkel mit der maximalen Rückstreuleistung a1max, a2max, anmax. Diesen Einstrahlwinkeln mit der maximalen Rückstreuleistung a1max, a2max, anmax sind als Toleranz jeweils zwei Winkelbereiche zugeordnet. Diese sind im Fall der in Fig. 3 die Öffnungswinkel b1, b2, bn der Hauptkeulen. In der Fig. 3 sind diese durch gepunktete Linien hervorgehoben. Wie aus der Fig. 3 erkennbar ist, schneiden sich diese und es ergeben sich Schnittpunkte, welche den Bereich definieren, in welchem sich das Objekt 2 befindet. Diese Schnittpunkte definieren eine Position maximaler Entfernung Pobj,max und eine Position minimaler Entfernung Pobj,min. Aus diesen Positionen wird dann Position Pobj des Objekts 2 ermittelt bspw. durch Mitteln.
Die Vorrichtung 1 ist dazu ausgebildet, das vorstehend beschriebene Verfahren entsprechend umzusetzen. Die Schaltungseinrichtung 10 ist dazu eingerichtet, anhand dieser Form der Antennenkeulen 71, 72, 7N, der Sende- und/oder Empfangseinrichtungen 61, 62, 6n; 121, 122, 12n und anhand der Einstrahlwinkel mit der maximalen Rückstreuleistung a1max, a2max, anmax die Position maximaler Entfernung Pobj,max und die Position minimaler Entfernung Pobj,min zu bestimmen. Dabei wird insbesondere auf den Öffnungswinkel b1, b2, b3 der Hauptkeulen zurückgegriffen. Ferner ist die Schaltungseinrichtung 10 dazu eingerichtet, die Position Pobj des Objekts 2 aus der Position maximaler Entfernung Pobj,max und der Position minimaler Entfernung Pobj,min zu bestimmen. In Ausgestaltung kann dazu die Sende- und/oder Empfangseinrichtung auf einem System, insbesondere einem Fahrzeug, einem Anhänger oder einem Container angeordnet sein und in unterschiedliche Positionen transportiert werden.
Fig. 4 zeigt eine erfindungsgemäße Vorrichtung gemäß einer weiteren Ausführungsform die im Wesentlichen der Ausführungsform gemäß Fig. 1 entspricht, wobei nachfolgend die Unterschiede zur Ausführungsform gemäß Fig.1 dargelegt werden. In der in Fig.4 gezeigten Ausführungsform sind die Sendeeinrichtungen 61, 62, 6n und die Empfangseinrichtungen 121, 122, 12n in einem Array 8 zusammengefasst. Hierbei bilden die einzelnen Antennen des Arrays 8 oder Subarrays aus Mehrzahl an Antennen die Sendeeinrichtungen 61, 62, 6n und die Empfangseinrichtungen 121, 122, 123 aus. Aufgrund der vorgegebenen Positionen der einzelnen Antennen oder der Subarrays im Array 8 sind die unterschiedlichen Positionen P1, P2, Pn der Sendeeinrichtungen 61, 62, 6n, die zur Abstrahlung der Sendesignale 41, 42, 4n ausgebildet sind und der Empfangseinrichtungen 121, 122, 12n, die zum Empfang des jeweiligen Objektsignals ausgebildet sind, entsprechend vorgegeben und bekannt.
Fig. 5 zeigt die Vorrichtung 1 gemäß der in Fig. 4 beschriebene Ausführungsform. Die Umsetzung des Verfahrens entspricht im Wesentlichen der in Fig.3 beschriebenen Umsetzung.
Fig.6 zeigt eine erfindungsgemäße Vorrichtung 1 gemäß einer weiteren Ausführungsform. Die Ausführungsform entspricht im Wesentlichen der Ausführungsform gemäß Fig. 1, wobei nachfolgend die Unterschiede der Ausführungsform nach Fig. 6 Ausführungsform dargelegt werden.
Die in Fig.6 gezeigte Vorrichtung 1 weist nur eine einzige Sendeeinrichtung 61 auf. Diese eine Sendeeinrichtung 61 dient zur Abstrahlung jedes Sendesignal 41, 42, 4n. Weiterhin weist die Vorrichtung nur eine einzige Empfangseinrichtung 121 zum Empfang jedes Empfangssignals auf. Die Vorrichtung 1 ist dazu eingerichtet, dass die Sendeeinrichtung 61 und die Empfangseinrichtung 121 in einer ersten Position P1 Sendesignale 41, 42, 4n abstrahlt und Objektsignale 51, 52, 5n empfängt. Danach ist vorgesehen, dass die Vorrichtung 1 in einer weiteren Position P2, Pn erneut Sendesignale 41, 42, 4n abstrahlt und Objektsignale 51, 52, 5n empfängt.
Fig. 7 zeigt die Vorrichtung 1 gemäß der in Fig. 6 beschriebenen Ausführungsform. Die Umsetzung des Verfahrens entspricht im Wesentlichen der in Fig.3 beschriebenen Umsetzung mit dem Unterschied, dass nur eine einzige Sendeeinrichtung 61 vorgesehen ist, die vor einem wiederholten abstrahlen von Sendesignalen erneut positioniert wird. Jedes Sendesignal 41, 42, 4n wird aus einer einzigen Sendeeinrichtung 61 abgestrahlt und wird durch eine einzige Empfangseinrichtung 121 empfangen. Die Sendeeinrichtung 61 und die Empfangseinrichtung 121 strahlen in der ersten Position P1 Sendesignal 41, 42, 4n ab und Empfangen die Objektsignale 51, 52, 5n. Danach werden in weiteren Positionen P2, Pn erneut Signale abgestrahlt und empfangen.
Wenn vorstehend auf Sendeeinrichtungen und Empfangseinrichtungen Bezug genommen wurde, so können diese auch entsprechend als Sende- und Empfangseinrichtung ausgebildet sein.
B E Z U G S Z E I C H E N L I S T E
1 Vorrichtung
2 Objekt
3 nichtlineares Bauelement
51, 52, 5n Sendesignale
51, 52, 5n Objektsignale
61, 62, 6n Sendeinrichtungen
71, 72, 7n Antennenkeule
8 Array
10 Schaltungseinrichtung
121, 122, 123 Empfangseinrichtungen
P1, P2, Pn Positionen
Pobj Position des Objekts
a1, a2, an Einstrahlwinkel
a1max, a2max, anmax Einstrahlwinkel maximaler Rückstreuleistung b1, b 2, b n Öffnungswinkel

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zur Bestimmung einer Position (Pobj) eines Objektes (2), das mindestens ein nichtlineares Bauelement (3), insbesondere ein Halbleiterbauelement, umfasst, welches bei Bestrahlung mit hochfrequenten Sendesignalen (41, 42, 4n) aus zumindest zwei unterschiedlichen Positionen (P1, P2, Pn) Objektsignale (51, 52, 5n) mit der doppelten und/oder dreifachen Frequenz des jeweiligen Sendesignals (41, 42, 4n) erzeugt und wieder abstrahlt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren die folgenden Schritte umfasst:
Bestimmen des Einstrahlwinkels mit einer maximalen Rückstreuleistung (a1max, a2max, anmax) eines jeden Sendesignals (41, 42, 4n), und
Bestimmen einer Position (Pobj) des Objekts (2) durch Triangulation auf Basis des Einstrahlwinkels mit der maximalen Rückstreuleistung (a1max, a2max, anmax) eines jeden Sendesignals (41, 42, 4n) und auf Basis der Positionen (P1, P2, Pn) aus welchen die Sendesignale (41, 42, 4n) ausgestrahlt wurden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verfahren die folgenden Schritte umfasst:
Bestrahlen des Objekts (2) mit zumindest zwei aus unterschiedlichen Positionen (P1, P2, Pn) ausgestrahlten Sendesignalen (41, 42, 4n) durch zumindest eine Sendeeinrichtung (61, 62, 6n);
Empfangen der durch die nichtliniearen Bauelemente (3) abgestrahlten Objektsignale (51, 52, 5n) mit der doppelten und/oder dreifachen Frequenz der Sendesignale (41, 42, 4n) durch zumindest eine Empfangseinrichtung (121, 122, 12n);
Bestimmen einer Rückstreuleistung der Objektsignale (51, 52, 5n) unter Berücksichtigung eines Einstrahlwinkels (a1, a2, an) der Sendsignale (41, 42, 4n).
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Rückstreuleistung der Objektsignale (51, 52, 5n) zur Ermittlung des Einstrahlwinkels mit der maximalen Rückstreuleistung (a1max, a2max, anmax) winkelaufgelöst über den gesamten Frequenzbereich der Objektsignale (51, 52, 5n) integriert wird.
5. Verfahren nach Anspruch 2 bis 4, dadurch gekennzeichnet, dass anhand einer
Form der Antennenkeulen (71, 72, 7n), insbesondere eines Öffnungswinkels (b1, b2, bn) der Hauptkeulen, der Sende- und/oder Empfangseinrichtungen (61, 62, 6n; 121, 122, 12n) und anhand der Einstrahlwinkel mit der maximalen Rückstreuleistung (a1max, a2max, anmax) eine Position maximaler Entfernung (Pobj,max) und eine Position minimaler Entfernung (Pobj,min) bestimmt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Position (Pobj) des
Objekts (2) aus der Position maximaler Entfernung (Pobj,max) und der Position minimaler Entfernung (Pobj,min) bestimmt wird.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der
Einstrahlwinkel (a1, a2, an) jedes Sendesignals (41, 42, 4n) durch mechanisches und/oder elektronisches Schwenken der Antennenkeulen (71, 72, 7n) der Sendeeinrichtungen (61, 62, 6n) eingestellt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes Sendesignal (41, 42, 4n) aus einer einzigen Sendeeinrichtung (61) abgestrahlt wird, und durch eine einzige Empfangseinrichtung (121) empfangen wird, wobei die Sendeeinrichtung (61) in einer ersten Position (P1) Sendesignale (41) abstrahlt und die Empfangseinrichtung (121) Objektsignale (51) empfängt und danach, vorzugsweise durch Bewegung aus eigener Kraft oder durch Transport, in weiteren Positionen (P2, Pn) erneut Sendesignale (42, 4n) abstrahlt und Objektsignale (52, 5n) empfängt.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass jedes
Sendesignal (41, 42, 4n) aus einer unterschiedlichen Sendeeinrichtung (61, 62, 6n), die jeweils in unterschiedlichen Positionen (P1, P2, Pn) angeordnet sind, abgestrahlt wird, und durch jeweils eine der jeweiligen Sendeeinrichtung (61, 62, 6n) zugeordneten Empfangseinrichtung (121, 122, 123) das jeweilige Objektsignal (51, 52, 5n) empfangen wird.
10. Vorrichtung (1) zur Bestimmung einer Position (Pobj) eines Objektes (2), das mindestens ein nichtlineares Bauelement (3), insbesondere ein Halbleiterbauelement, umfasst, welches bei Bestrahlung mit hochfrequenten Sendesignalen (41, 42, 4n) aus zumindest zwei unterschiedlichen Positionen (P1, P2, Pn) Objektsignale (51, 52, 5n) mit der doppelten und/oder dreifachen Frequenz des jeweiligen Sendesignals (41, 42, 4n) erzeugt und wieder abstrahlt.
11. Vorrichtung (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Vorrichtung
(1) eine Schaltungseinrichtung (10) aufweist, die dazu eingerichtet ist, die Einstrahlwinkel mit der maximalen Rückstreuleistung (a1max, a2max, anmax) eines jeden Sendesignals (41, 42, 4n) zu bestimmen, und die Position (Pobj) des Objekts (2) durch Triangulation auf Basis des Einstrahlwinkels mit der maximalen Rückstreuleistung (a1max, a2max, anmax) eines jeden Sendesignals und auf Basis der Positionen (P1, P2, Pn) zu bestimmen.
12. Vorrichtung (1) nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die
Vorrichtung (1) ferner umfasst:
zumindest eine Sendeeinrichtung (61, 62, 6n) zur Erzeugung von zumindest zwei aus unterschiedlichen Positionen (P1, P2, Pn) ausgestrahlten Sendsignalen (41, 42, 4n);
zumindest eine Empfangseinrichtung (121, 122, 12n) zum Empfang von Objektsignalen (51, 52, 5n), deren Frequenz dem zwei- und/oder dreifachen der Frequenz der jeweiligen Sendesignale (41, 42, 4n) entspricht; wobei
die zumindest eine Sendeeinrichtung (61, 62, 6n) und die zumindest eine Empfangseinrichtung (121, 122, 12n) mit der Schaltungseinrichtung (10) betriebsmäßig verbunden sind, die eingerichtet ist die Rückstreuleistung der Objektsignale (51, 52, 5n) unter Berücksichtigung eines Einstrahlwinkels (a1, a2, an) der Sendesignale (41, 42, 4n) zu bestimmen.
13. Vorrichtung (1) nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die
Schaltungseinrichtung (10) eingerichtet ist, die Rückstreuleistung der Objektsignale (51, 52, 5n) winkelaufgelöst über den gesamten Frequenzbereich der Objektsignale (51, 52, 5n) zu integrieren.
14. Vorrichtung (1) nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Schaltungseinrichtung (10) eingerichtet ist, anhand einer Form der Antennenkeulen (71, 72, 7N), insbesondere eines Öffnungswinkel (b1, b2, b3) der Hauptkeulen, der Sende- und/oder Empfangseinrichtungen (61, 62, 6n; 121, 122, 12n) und anhand der Einstrahlwinkel mit der maximalen Rückstreuleistung (a1max, a2max, anmax) die eine Position maximaler Entfernung (Pobj,max) und ein Position minimaler Entfernung (Pobj,min) zu bestimmen.
15. Vorrichtung (1) nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Schaltungseinrichtung (10) eingerichtet ist, die Position (Pobj) des Objekts (2) aus der Position maximaler Entfernung (Pobj,max) und der Position minimaler Entfernung (Pobj,min) zu bestimmen.
16. Vorrichtung (1) nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass der Einstrahlwinkel (a1, a2, an) jedes Sendesignals (41, 42, 4n) durch mechanisches und/oder elektronisches Schwenken der Antennenkeulen (71, 72, 7n) der Sendeeinrichtungen (61, 62, 6n) einstellbar ist.
17. Vorrichtung (1) nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass die Vorrichtung (1) eine einzige Sendeeinrichtung (61) zur Abstrahlung jedes Sendesignal (41, 42, 4n), und eine einzige Empfangseinrichtung (121) zum Empfang jedes Empfangssignals umfasst, wobei die Vorrichtung (1) dazu eingerichtet ist, vorzugsweise durch Bewegung aus eigener Kraft oder durch Transport, mittels der Sendeeinrichtung (61) in einer ersten Position (P1) Sendesignale (41) abzustrahlen und der Empfangseinrichtung (121) Objektsignale (51) zu empfangen und danach mittels der Sendeeinrichtung (61) in weiteren Positionen (P2, Pn) erneut Sendesignale (42, 4n) abstrahlen und Objektsignale (52, 5n) zu empfangen.
18. Vorrichtung (1) nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass die Vorrichtung (1) zumindest zwei Sendeeinrichtungen (61, 62, 6n) zur Abstrahlung von Sendesignalen jeweils in unterschiedlichen Positionen (P1, P2, Pn) angeordnet sind, umfasst und wobei jeder Sendeeinrichtung (P1, P2, Pn) eine Empfangseinrichtung (121, 122, 123) zum Empfang des jeweiligen Objektsignals (51, 52, 5n) zugeordnet ist.
19. System, insbesondere Fahrzeug, Anhänger oder Container, umfassend eine
Vorrichtung (1) nach einem der Ansprüchen 11-18.
PCT/EP2019/079642 2018-11-19 2019-10-30 Verfahren zur bestimmung der position eines objektes, vorrichtung zur bestimmung der position eines objektes und system WO2020104154A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19798033.7A EP3884299A1 (de) 2018-11-19 2019-10-30 Verfahren zur bestimmung der position eines objektes, vorrichtung zur bestimmung der position eines objektes und system
US17/291,094 US11762083B2 (en) 2018-11-19 2019-10-30 Method for determining the position of an object, device for determining the position of an object, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018128962.6 2018-11-19
DE102018128962.6A DE102018128962A1 (de) 2018-11-19 2018-11-19 Verfahren zur Bestimmung der Position eines Objektes, Vorrichtung zur Bestimmung der Position eines Objektes und System

Publications (1)

Publication Number Publication Date
WO2020104154A1 true WO2020104154A1 (de) 2020-05-28

Family

ID=68461771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/079642 WO2020104154A1 (de) 2018-11-19 2019-10-30 Verfahren zur bestimmung der position eines objektes, vorrichtung zur bestimmung der position eines objektes und system

Country Status (4)

Country Link
US (1) US11762083B2 (de)
EP (1) EP3884299A1 (de)
DE (1) DE102018128962A1 (de)
WO (1) WO2020104154A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498482A (zh) * 2020-10-15 2021-10-12 深圳市安卫普科技有限公司 一种扫描式非线性结点探测方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065419A1 (en) 2001-02-13 2002-08-22 Audiotel International Limited Non-linear junction detector
US20030179126A1 (en) * 2000-09-27 2003-09-25 Jablonski Daniel G. System and method of radar detection of non linear interfaces
US20060109159A1 (en) * 2004-11-22 2006-05-25 The Boeing Company Method and apparatus for detecting, locating, and identifying microwave transmitters and receivers at distant locations
EP1744177A1 (de) * 2005-07-12 2007-01-17 Rafael-Armament Development Authority Ltd. Radargerät und -verfahren zur Lokalisierung und Identifizierung von Objekten durch ihre nicht-linearen Echosignale
DE102006038627A1 (de) 2006-08-17 2008-02-21 Rheinmetall Waffe Munition Gmbh Vorrichtung und Verfahren zur Detektion von nichtlinearen elektronischen Bauelementen oder Schaltungen insbesondere einer Sprengfalle oder dergleichen
US20110231150A1 (en) * 2009-06-10 2011-09-22 The Boeing Company Difference Frequency Detection with Range Measurement
EP2500749A1 (de) * 2011-03-17 2012-09-19 MBDA France Integriertes System zum Kampf gegen unbekannte Sprengvorrichtungen
DE102013011220A1 (de) 2013-07-05 2015-01-08 Rheinmetall Waffe Munition Gmbh Verfahren und Vorrichtungen zur Bestimmung der Entfernung eines Objektes

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69227902T3 (de) * 1991-04-29 2010-04-22 Massachusetts Institute Of Technology, Cambridge Vorrichtung für optische abbildung und messung
DE19711863C2 (de) * 1997-03-21 1999-07-15 Fraunhofer Ges Forschung Vorrichtung zum Untersuchen von Grenzflächenbereichen mit Ultraschall
CN1370280A (zh) * 1999-06-09 2002-09-18 光束控制有限公司 确定发射器和接收器之间信道增益的方法
US7139722B2 (en) * 2001-06-27 2006-11-21 Bellsouth Intellectual Property Corporation Location and time sensitive wireless calendaring
WO2004063665A1 (en) * 2003-01-13 2004-07-29 Koninklijke Philips Electronics N.V. Method of and apparatus for determining height or profile of an object
US7466262B2 (en) * 2003-07-03 2008-12-16 Navcom Technology, Inc. Positioning system with a sparse antenna array
EP1646112A1 (de) * 2004-10-11 2006-04-12 Sony Deutschland GmbH Steuerung der Richtcharakteristik in einem drahtlosen Kommunikationssystem mit kurzer Reichweite
US7864107B1 (en) * 2005-07-30 2011-01-04 Rockwell Collins, Inc. RF receiver sensing by harmonic generation
GB0916300D0 (en) * 2009-09-17 2009-10-28 Univ Manchester Metropolitan Remote detection of bladed objects
US8581772B2 (en) * 2010-06-04 2013-11-12 Brigham Young University Method, apparatus, and system to remotely acquire information from volumes in a snowpack
US8547335B2 (en) * 2010-07-30 2013-10-01 International Business Machines Corporation RFID-based input device
NO334246B1 (no) * 2012-03-21 2014-01-20 Bjoern R Hope Fremgangsmåte for observasjon og registrering av ett eller flere fartøyers identitet, posisjon og bevegelse i et bestemt farvann eller en seilingsled
US9645234B2 (en) * 2012-07-12 2017-05-09 Cornell University RFID device, methods and applications
WO2014060777A2 (en) * 2012-10-19 2014-04-24 Ucl Business Plc Apparatus and method for determining the location of a mobile device using multiple wireless access points
US9715609B1 (en) * 2013-03-11 2017-07-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Systems, apparatuses and methods for beamforming RFID tags
DE102013212090A1 (de) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Winkelauflösender FMCW-Radarsensor
US9293812B2 (en) * 2013-11-06 2016-03-22 Delphi Technologies, Inc. Radar antenna assembly
GB201401580D0 (en) * 2014-01-30 2014-03-19 Ucl Business Plc Apparatus and method for calibrating a wireless access point comprising an array of multiple antennas
DE102014104273A1 (de) * 2014-03-26 2015-10-01 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren in einem Radarsystem, Radarsystem bzw. Vorrichtung eines Radarsystems
EP3186655B1 (de) * 2014-08-25 2023-03-08 Lonprox Corporation Innenraumpositionsbestimmung unter verwendung von verzögert abgetasteten direktionalen reflektoren
US10018714B2 (en) * 2015-06-24 2018-07-10 The United States Of America As Represented By The Secretary Of The Army Two-dimensional RF harmonic imaging system and algorithm
EP3324203B1 (de) * 2016-11-22 2024-01-03 Hexagon Technology Center GmbH Laserdistanzmessmodul mit polarisationsanalyse
DE102017207648B4 (de) * 2017-05-05 2019-08-22 Skz-Kfe Ggmbh Verfahren und Vorrichtung zur Messung einer Schichtdicke eines Objekts
US10044104B1 (en) * 2017-07-14 2018-08-07 Rohde & Schwarz Gmbh & Co. Kg Test arrangement and test method
CN107633227B (zh) * 2017-09-15 2020-04-28 华中科技大学 一种基于csi的细粒度手势识别方法和系统
AU2019203737B2 (en) * 2018-06-15 2024-05-09 Diehl Defence Gmbh & Co. Kg Transillumination of the subsurface and cavity detection
US20210364610A1 (en) * 2018-08-24 2021-11-25 Trinamix Gmbh A measurement head for determining a position of at least one object

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179126A1 (en) * 2000-09-27 2003-09-25 Jablonski Daniel G. System and method of radar detection of non linear interfaces
WO2002065419A1 (en) 2001-02-13 2002-08-22 Audiotel International Limited Non-linear junction detector
US20060109159A1 (en) * 2004-11-22 2006-05-25 The Boeing Company Method and apparatus for detecting, locating, and identifying microwave transmitters and receivers at distant locations
EP1744177A1 (de) * 2005-07-12 2007-01-17 Rafael-Armament Development Authority Ltd. Radargerät und -verfahren zur Lokalisierung und Identifizierung von Objekten durch ihre nicht-linearen Echosignale
DE102006038627A1 (de) 2006-08-17 2008-02-21 Rheinmetall Waffe Munition Gmbh Vorrichtung und Verfahren zur Detektion von nichtlinearen elektronischen Bauelementen oder Schaltungen insbesondere einer Sprengfalle oder dergleichen
US20110231150A1 (en) * 2009-06-10 2011-09-22 The Boeing Company Difference Frequency Detection with Range Measurement
EP2500749A1 (de) * 2011-03-17 2012-09-19 MBDA France Integriertes System zum Kampf gegen unbekannte Sprengvorrichtungen
DE102013011220A1 (de) 2013-07-05 2015-01-08 Rheinmetall Waffe Munition Gmbh Verfahren und Vorrichtungen zur Bestimmung der Entfernung eines Objektes

Also Published As

Publication number Publication date
US20220003861A1 (en) 2022-01-06
EP3884299A1 (de) 2021-09-29
DE102018128962A1 (de) 2020-05-20
US11762083B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
EP3140882B1 (de) Antennenvorrichtung für ein fahrzeug
EP2756329B1 (de) Abbildender radarsensor mit schmaler antennenkeule und weitem winkel-detektionsbereich
DE102012021973A1 (de) Verfahren zum Betreiben eines Radarsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102015119660A1 (de) Verfahren zum Kalibrieren eines Sensors eines Kraftfahrzeugs zur Winkelmessung, Recheneinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102013008953B4 (de) Verfahren zum Betreiben einer Radareinrichtung eines Fahrzeugs, insbesondere eines Kraftwagens, sowie Radareinrichtung für ein Fahrzeug, insbesondere einen Kraftwagen
DE102018200688B4 (de) Verfahren und Vorrichtung zum Betreiben eines akustischen Sensors
WO2020074539A2 (de) Reflektorsystem in einem radarzielsimulator zum testen einer funktionsfähigkeit eines radarsensors und verfahren zum testen einer funktionsfähigkeit eines radarsensors
DE102011001387A1 (de) Verfahren zum mehrdimensionalen Abtasten eines Abtastfeldes mittels eines optischen Abtast- oder Scannersystems sowie optisches Abtastsystem
EP2414862B1 (de) Mehrstrahlradarsensorvorrichtung und verfahren zum bestimmen eines abstandes
EP1612578A1 (de) Verfahren zum Betreiben eines Radarsensors
DE102009038907A1 (de) Verfahren und Vorrichtung zur Justierung der Ausrichtung einer Strahlcharakteristik eines Radarsensors
DE102005007917A1 (de) Kraftfahrzeug-Radarsystem und Auswerteverfahren
WO2018219618A1 (de) Verfahren und vorrichtung zur lokalisierung eines fahrzeugs für eine induktive energieübertragung
EP3884299A1 (de) Verfahren zur bestimmung der position eines objektes, vorrichtung zur bestimmung der position eines objektes und system
DE2240749A1 (de) Verfahren zur erfassung von in der luft, im raum oder unter wasser befindlichen objekten durch reflexion elektromagnetischer oder akustischer wellen
WO2019002348A1 (de) Nahfeld-radareinrichtung, land-, luft- oder wasser-fahrzeug, verwendung einer radareinrichtung, verfahren zum betrieb einer radareinrichtung sowie computerprogramm
EP3339876A1 (de) Verfahren zum betreiben eines radarsystems zur vermeidung von täuschungen durch dritte
EP3018490B1 (de) Verfahren zur detektion einer interferenz in einem empfangssignal eines radarsensors eines kraftfahrzeugs, recheneinrichtung, fahrerassistenzsystem, kraftfahrzeug sowie computerprogrammprodukt
EP3017323B1 (de) Verfahren und vorrichtungen zur bestimmung der entfernung eines objektes
DE2055981C3 (de) Schaltung für ein räumliches Monopulsradarsystem mit Sekundärradar-Abfrage
WO2017163169A1 (de) Kommunikationssystem mit beweglichen sendern und empfängern
EP3327408A1 (de) Parabolantenne zur bereitstellung zweier unterschiedlicher richtcharakteristiken
DE102020134228A1 (de) Verfahren zum Erfassen einer Umgebung eines Fahrzeugs mithilfe eines Radarsensors anhand von Drittradarsignalen weiterer Verkehrsteilnehmer sowie Radarsensorsystem
DE102014111987A1 (de) Vorrichtung zur Bestimmung eines Füllstands eines Schüttguts
EP2738564A1 (de) Ortungseinrichtung zum Orten einen kurzzeitigen Hochleistungs-Mikrowellenpuls abgebenden Quelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19798033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019798033

Country of ref document: EP

Effective date: 20210621