WO2020103735A1 - 一种网络质量监控方法及装置 - Google Patents

一种网络质量监控方法及装置

Info

Publication number
WO2020103735A1
WO2020103735A1 PCT/CN2019/117958 CN2019117958W WO2020103735A1 WO 2020103735 A1 WO2020103735 A1 WO 2020103735A1 CN 2019117958 W CN2019117958 W CN 2019117958W WO 2020103735 A1 WO2020103735 A1 WO 2020103735A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel performance
network quality
network
quality monitoring
channel
Prior art date
Application number
PCT/CN2019/117958
Other languages
English (en)
French (fr)
Inventor
吴俊�
包德伟
丁律
孙振航
叶浩楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021523628A priority Critical patent/JP7327766B2/ja
Priority to KR1020217015936A priority patent/KR102655457B1/ko
Priority to EP19887754.0A priority patent/EP3866400B1/en
Priority to MX2021006038A priority patent/MX2021006038A/es
Publication of WO2020103735A1 publication Critical patent/WO2020103735A1/zh
Priority to US17/325,933 priority patent/US11800386B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0888Throughput
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/12Network monitoring probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a network quality monitoring method and device.
  • the throughput of an access point has a close relationship with the network quality.
  • the network quality also deteriorates.
  • the network quality can be monitored by monitoring the throughput of the AP.
  • the AP throughput model may be established according to some parameters that affect the throughput of the AP. These parameters that affect the throughput of the AP may include, but are not limited to, air interface capacity (such as frequency bands, bandwidth, etc. affecting air interface capacity), and device capacity (such as Communication protocols, multiple input multiple output MIMO mode, etc. affect device capacity), AP coverage (such as received signal strength, etc. reflecting AP coverage), interference factors (such as co-frequency interference rate between APs, etc.), the AP
  • the input of the throughput model is the above parameters, and the output is the throughput of the AP (that is, it can be understood as the throughput threshold of the AP).
  • the network quality monitoring device can obtain the actual throughput of the AP in the wireless network and the above parameters, and then combine the AP throughput threshold output by the AP's throughput model to determine the network quality. If the actual throughput of the AP If the throughput threshold is less than the AP, the network quality is considered poor.
  • Embodiments of the present application provide a network quality monitoring method, device, and system, which can more effectively monitor network quality.
  • an embodiment of the present application provides a network quality monitoring method.
  • the method includes: a network quality monitoring device obtains network operation data, where the network operation data includes static data and dynamic data of an access point AP, and the dynamic data includes multiple Multiple sets of dynamic data corresponding to each sampling period; and the network quality monitoring device determines multiple channel performance values of the AP based on the multiple sets of dynamic data of the AP, where one channel performance value of the AP is the effective data transmission time in one sampling period The amount of data transmitted per unit time in a segment; and the network quality monitoring device determines the channel performance baseline of the AP based on the static data of the AP.
  • the channel performance baseline of the AP is used to indicate the reference value of the channel performance value of the AP and the first dynamic parameter.
  • the first dynamic parameter is one of the dynamic data; and the network quality monitoring device determines the network quality of the wireless local area network where the AP is based on multiple channel performance values of the AP and the channel performance baseline of the AP.
  • the network quality monitoring method provided by the embodiment of the present application, because the network quality monitoring device can determine the multiple channel performance values of the AP and the channel performance baseline of the AP according to the network operation data (including the static data and multiple sets of dynamic data of the AP) obtained by the network quality monitoring device Then, according to the multiple channel performance values of the AP and the channel performance baseline of the AP, determine the network quality of the wireless local area network where the AP is located, and because the channel performance value of the AP can truly reflect the network quality due to various factors to a certain extent Changes, so the network quality monitoring method provided in this application can achieve more effective monitoring of network quality.
  • the effective data transmission time period in the above one sampling period may be a continuous time period within the sampling period, and the effective data transmission time period may also be several non-continuous times within the sampling period
  • the time period composed of segments is not specifically limited in the embodiments of the present application.
  • the dynamic data includes the throughput of the AP, the channel utilization of the AP, and the co-frequency interference rate of the AP.
  • the static data includes the AP type, network frequency band, and bandwidth.
  • network operation data can be collected through a data collection device in the network, and the network operation data can be divided into logs, key performance indicators (KPIs), alarm data, and configuration data.
  • the network quality monitoring device may obtain network operation data, such as KPI and configuration data, within a preset time period (also referred to as a sampling time, which includes multiple sampling periods) collected by the data collection device from the data collection device.
  • a preset time period also referred to as a sampling time, which includes multiple sampling periods
  • a set of dynamic data can be obtained for each sampling period of the preset time period
  • the configuration data includes static data (which does not change with time).
  • the channel performance value is defined as:
  • tx_bytes is the number of bytes sent by the AP in the sampling period
  • rx_bytes is the number of bytes received by the AP in the sampling period
  • tx_frame is the time taken by the AP to send data
  • rx_frame is the time taken by the AP to receive data
  • pcu_cycle is the sampling period
  • Rx_busy is the channel busy time
  • the above method for determining the channel performance baseline of the AP includes: the network quality monitoring device determines that the channel performance baseline corresponding to the AP type, network frequency band, and bandwidth in the pre-configured channel performance baseline library is the AP ’s Channel performance baseline.
  • a fixed The set of static data remains unchanged, and multiple values of the first dynamic parameter (such as multiple values of channel utilization) obtained by testing correspond to multiple values of the channel performance value (the channel performance values obtained under these test environments are hereinafter referred to as channels
  • the reference value of the performance value, or the threshold of the channel performance value so that the curve formed by the multiple values of the first dynamic parameter and the corresponding reference values of the channel performance value is used as the judgment standard for determining the network quality, which is called Channel performance baseline.
  • different static data corresponds to different channel performance baselines.
  • Multiple channel performance baselines may constitute a channel performance baseline library.
  • test data under different static data may be used (the test data includes multiple different The first dynamic parameter and its corresponding reference value of the channel performance value) obtain the above channel performance baseline.
  • a channel performance baseline library can be pre-configured on the network quality monitoring device, and the channel performance baseline library includes multiple channel performance baselines corresponding to multiple sets of static data of the AP, a given set of AP types, network frequency bands, and bandwidth
  • a first dynamic parameter can correspond to a channel performance value on the channel performance baseline
  • the channel performance value on the channel performance baseline can be used as a reference value for the channel performance value of the AP (also called AP Threshold value of channel performance value)
  • a channel performance baseline can reflect the change trend of the channel performance value of the AP with the first dynamic parameter.
  • the channel performance baseline of the AP may be a curve of the relationship between the reference value of the channel performance value of the AP and the throughput of the AP, or the reference value of the channel performance value of the AP and the AP The curve of the change relationship between the channel utilization rate, or the curve of the relationship between the reference value of the channel performance value of the AP and the co-channel interference rate of the AP.
  • the channel performance value of the AP is similar to the change relationship between the above three dynamic parameters, that is, the channel performance baselines corresponding to the three different dynamic parameters are similar.
  • the first dynamic parameter is channel utilization.
  • the network quality monitoring device determines the network quality of the wireless local area network where the AP is based on multiple channel performance values of the AP and the channel performance baseline of the AP Including: among the multiple channel performance values of the AP, the ratio of the number of channel performance values less than the channel performance value corresponding to the channel performance baseline to the total number of AP channel performance values is greater than or equal to the preset ratio, then the network quality monitoring device determines the AP The network quality of the wireless local area network is poor; among the multiple channel performance values of the AP, the ratio of the number of channel performance values less than the channel performance value corresponding to the channel performance baseline to the number of AP channel performance values is less than the preset ratio, then the network quality The monitoring device determines that the network quality of the wireless local area network where the AP is located is normal.
  • the unit time is transmitted within the effective data transmission time period
  • the amount of data is relatively small; among the multiple channel performance values of the AP, for channel performance values greater than the corresponding channel performance baseline, it means that under the corresponding channel utilization rate, the amount of data transmitted per unit time within the effective data transmission time period is relatively large .
  • the ratio of the number of channel performance values less than the channel performance value corresponding to the channel performance baseline is greater than or equal to the preset ratio, indicating that the effect of data transmission is relatively poor
  • the network quality monitoring device Determine that the wireless LAN in which the AP is located has poor network quality.
  • the ratio of the number of channel performance values less than the channel performance value corresponding to the channel performance baseline is less than the preset ratio, indicating that the data transmission effect is better
  • the network quality monitoring device determines the location of the AP The network quality of the wireless LAN is normal.
  • the network quality monitoring device determines the network quality of the wireless local area network where the AP is based on multiple channel performance values of the AP and the channel performance baseline of the AP Including: among the multiple channel performance values of the AP, if the number of channel performance values continuously smaller than the channel performance value corresponding to the channel performance baseline is greater than or equal to the preset number, the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is poor; Among the multiple channel performance values, the number of channel performance values that are continuously less than the channel performance value corresponding to the channel performance baseline is less than the preset number, then the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is normal.
  • the number of channel performance values continuously smaller than the channel performance value corresponding to the channel performance baseline is greater than or equal to the preset number, indicating that the data transmission effect is relatively poor, and the network quality monitoring device determines the network quality of the wireless local area network where the AP is located difference.
  • the number of channel performance values that are continuously less than the channel performance value corresponding to the channel performance baseline is less than the preset number, indicating that the data transmission effect is better, and the network quality monitoring device determines the wireless local area network where the AP is located.
  • the network quality is normal.
  • the network quality monitoring device determines the network quality of the wireless local area network where the AP is based on multiple channel performance values of the AP and the channel performance baseline of the AP Including: the ratio of the first distance to the number of AP channel performance values is greater than the preset ratio, then the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is poor, wherein the first distance is the multiple channel performance values of the AP Among them, the sum of the distances between all channel performance values less than the channel performance value corresponding to the channel performance baseline and the channel performance values corresponding to the channel performance baseline; the ratio of the first distance to the number of AP channel performance values is less than or equal to the preset Ratio, the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is normal.
  • the ratio of the first distance to the number of channel performance values of the AP can reflect the degree to which the channel performance value of the AP is less than the channel performance value corresponding to the channel performance baseline, when the first distance and the channel performance value of the AP.
  • the ratio of the number is greater than the preset ratio, indicating that the effect of data transmission is relatively poor, and the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is poor.
  • the ratio of the first distance to the number of AP channel performance values is less than or equal to the preset ratio, indicating that the data transmission effect is better, the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is normal.
  • the present application provides a network quality monitoring device, including an acquisition module, a first determination module, and a second determination module.
  • the acquisition module is used to acquire network operation data
  • the network operation data includes static data and dynamic data of the access point AP
  • the dynamic data includes multiple sets of dynamic data corresponding to multiple sampling periods
  • the first determination module is used to Determine multiple channel performance values of the AP based on multiple sets of dynamic data of the AP acquired by the acquisition module, and determine the channel performance baseline of the AP based on the static data of the AP acquired by the acquisition module, where one channel performance value of the AP is a sample
  • the amount of data transmitted per unit time in the effective data transmission period of the cycle, and the channel performance baseline of the AP is used to indicate the relationship between the reference value of the channel performance value of the AP and the first dynamic parameter, which is dynamic data One of them
  • a second determination module which is used to determine the network quality of the wireless local area network where the AP is based on multiple channel performance values of the AP and the channel
  • the dynamic data includes the throughput of the AP, the channel utilization of the AP, and the co-frequency interference rate of the AP.
  • the static data includes the AP type, network frequency band, and bandwidth.
  • the above-mentioned first determining module is specifically configured to determine that the channel performance baseline corresponding to the AP type, network frequency band, and bandwidth in the pre-configured channel performance baseline library is the AP channel performance baseline.
  • the first dynamic parameter is channel utilization.
  • the above-mentioned second determining module is specifically used when the channel performance value of the AP is less than the channel performance value corresponding to the channel performance baseline
  • the ratio of the number of values to the number of AP channel performance values is greater than or equal to the preset ratio, determine that the network quality of the wireless local area network where the AP is located is poor; when the multiple channel performance values of the AP are less than the channel performance value corresponding to the channel performance baseline
  • the ratio of the number of channel performance values to the number of AP channel performance values is less than the preset ratio, it is determined that the network quality of the wireless local area network where the AP is located is normal.
  • the above-mentioned second determination module is specifically used for a channel where the channel performance value corresponding to the channel performance baseline is continuously less than the channel performance value of the multiple channel performance values of the AP
  • the number of performance values is greater than or equal to the preset number, it is determined that the network quality of the wireless local area network where the AP is located is poor; when multiple channel performance values of the AP, the number of channel performance values continuously less than the channel performance value corresponding to the channel performance baseline is less than the preset
  • determine that the network quality of the wireless LAN where the AP is located is normal.
  • the above-mentioned second determination module is specifically configured to determine the AP when the ratio of the first distance to the number of AP channel performance values is greater than the preset ratio The network quality of the wireless local area network where it is located is poor; when the ratio of the first distance to the number of channel performance values of the AP is less than or equal to the preset ratio, it is determined that the network quality of the wireless local area network where the AP is located is normal, where the first distance is the AP Of the multiple channel performance values, the sum of the distances between all channel performance values that are less than the channel performance value corresponding to the channel performance baseline and the channel performance value corresponding to the channel performance baseline.
  • an embodiment of the present application provides a network quality monitoring apparatus, including a processor and a memory coupled to the processor; the memory is used to store a computer program, and the processor is used to call the computer program.
  • the processor executes the network quality monitoring method described in any one of the first aspect and various possible implementation manners thereof.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium may include computer instructions.
  • the network quality monitoring apparatus performs the first aspect and the above The network quality monitoring method described in any one of various possible implementation manners.
  • an embodiment of the present application provides a computer program product including computer instructions, which, when the computer program product runs on a computer, causes a network quality monitoring apparatus to perform any of the first aspect and various possible implementation manners thereof One of the network quality monitoring methods.
  • the network quality monitoring apparatus described in the second aspect and the network quality monitoring apparatus described in the third aspect, the computer storage medium described in the fifth aspect, and the computer program product described in the sixth aspect are provided above. It is used to perform the corresponding method provided above. Therefore, for the beneficial effects that can be achieved, reference may be made to the beneficial effects in the corresponding method provided above, which will not be repeated here.
  • FIG. 1 is a schematic hardware diagram of a server provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram 1 of a network quality monitoring method provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram 1 of an AP channel performance baseline provided by an embodiment of this application.
  • FIG. 4 is a second schematic diagram of a channel performance baseline of an AP provided by an embodiment of this application.
  • FIG. 5 is a second schematic diagram of a network quality monitoring method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram 3 of a network quality monitoring method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram 4 of a network quality monitoring method provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram 1 of a network quality monitoring device provided by an embodiment of the present application.
  • FIG. 9 is a second structural diagram of a network quality monitoring device provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations or explanations. Any embodiments or design solutions described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • Throughput refers to the amount of data successfully transmitted by a communication device in a unit of time.
  • the throughput of an AP can reflect the network quality of the wireless local area network where the AP is located to a certain extent.
  • the operation and maintenance personnel receive After the user reports the fault, he can run the test software on site to test whether the AP's throughput reaches the throughput threshold. If the AP's throughput is less than the throughput threshold, the network quality is judged to be poor.
  • common factors that affect network quality include: frequency bands and bandwidths supported by the AP, communication protocols supported by the AP, and input and output modes of the AP. All of the above factors can reduce the throughput of the AP in the wireless LAN. Causes the network quality to deteriorate. Specifically; the frequency band and bandwidth supported by the AP are relatively small, which makes the AP's throughput low; when the AP supports different communication protocols, the AP's throughput is also different; the AP's input and output modes (such as MIMO mode) are different, Throughput is affected.
  • the factors that affect the network quality also include user-side factors and air-interface-side factors.
  • Table 1 below shows examples of various factors and causes of poor network quality.
  • Channel effectiveness used to measure the effect of data transmission.
  • Channel effectiveness can be used to measure the channel effectiveness of an AP.
  • the channel effectiveness value of an AP refers to the time period during which the AP is used to transmit data during a sampling period (that is, the AP actually transmits)
  • the data period hereinafter referred to as the effective data transmission period
  • the effective data transmission period is the amount of data transmitted per unit time. For example, if the sampling period is 1 minute and the effective data transmission period is 40 seconds, then the amount of data transmitted per second in the 40 seconds is the channel performance value of the AP.
  • the channel performance value of the AP may also reflect the network quality of the wireless local area network.
  • the network quality monitoring device can obtain network operation data according to it, which specifically includes AP static data and multiple sets of dynamic data corresponding to multiple sampling periods , And then determine the multiple channel performance values of the AP based on the multiple sets of dynamic data of the AP, and determine the channel performance baseline of the AP based on the static data of the AP, and then determine the AP location based on the multiple channel performance values of the AP and the channel performance baseline of the AP.
  • the network quality of the wireless local area network can achieve more effective monitoring of the network quality.
  • the network quality monitoring device provided in the embodiment of the present application may also be an analyzer, which is mainly used to analyze network operation data to obtain the channel performance value of the AP, so as to analyze whether the network quality is abnormal.
  • the above analyzer may be a server.
  • the various components of the server provided by the embodiments of the present application are specifically described with reference to FIG. 1.
  • the server 10 may include a processor 11, a memory 12, a communication interface 13, and the like.
  • Processor 11 It is the core component of the server 10, and is used to run the operating system of the server 10 and the application programs (including system application programs and third-party application programs) on the server 30, for example, the processor 11 runs the network quality on the server Monitoring methods and procedures to monitor network quality.
  • the processor 11 may specifically be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC) ), Field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof, which can implement or execute the various descriptions described in conjunction with the disclosure of the embodiments of the present application Exemplary logical blocks, modules and circuits; the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, DSP and microprocessor combinations, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA Field programmable gate array
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, DSP and microprocessor combinations, etc.
  • Memory 12 can be used to store software programs and modules.
  • the processor 11 executes various functional applications and data processing of the server 10 by running the software programs and modules stored in the memory 12.
  • the memory 12 may include one or more computer-readable storage media.
  • the memory 12 includes a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one function required application program, etc., and the storage data area may store data created by the server 10, etc.
  • the memory 12 may include a program for network monitoring, network operation data, an AP channel performance value obtained from the network operation data, and an AP channel performance baseline library.
  • the memory 12 may specifically include a volatile memory (volatile memory), such as a random access memory (random-access memory, RAM); the memory may also include a non-volatile memory (non-volatile memory) , Such as read-only memory (ROM), flash memory (flash memory), hard disk (hard disk drive), or solid-state drive (SSD); the memory can also include the above types of Memory combination.
  • volatile memory such as a random access memory (random-access memory, RAM
  • non-volatile memory non-volatile memory
  • ROM read-only memory
  • flash memory flash memory
  • hard disk hard disk drive
  • SSD solid-state drive
  • Communication interface 13 an interface circuit used for the server 10 to communicate with other devices.
  • the communication interface may be a transceiver, a transceiver circuit, or other structure with a transceiver function.
  • data can be received through the communication interface 13 on the server 10 Network operation data collected by the collection equipment.
  • the network quality monitoring method provided by the embodiments of the present application may include S101-S104:
  • the network quality monitoring device obtains network operation data.
  • the above network operation data includes static data and dynamic data of the AP, and the dynamic data includes multiple sets of dynamic data corresponding to multiple sampling periods.
  • network operation data can be collected through a data collection device in the network, and the network operation data can be divided into logs, key performance indicators (KPIs), alarm data, and configuration data.
  • the network quality monitoring device may obtain network operation data, such as KPI and configuration data, within a preset time period (also referred to as a sampling time, which includes multiple sampling periods) collected by the data collection device from the data collection device. Including dynamic data, and static data in configuration data.
  • a set of dynamic data can be acquired during each sampling period of the preset time period, and each set of dynamic data includes the throughput of the AP, the channel utilization of the AP, and the co-frequency interference rate of the AP.
  • dynamic data is time-series data (ie, data that changes with time).
  • the acquired static data includes the type of AP, network frequency band and bandwidth.
  • the static data does not change with time.
  • the type of AP can be AP7000, AP6000, etc.
  • the network frequency band can be 2.4GHz (i.e. Hertz, Ghz is one billion Hertz), 5GHz, etc.
  • the network bandwidth can be 20MHz (that is, Megahertz), 40MHz, etc.
  • Table 2 shows several examples of AP static data.
  • the network quality monitoring device determines multiple channel performance values of the AP based on multiple sets of dynamic data of the AP.
  • a channel performance value of the AP is the amount of data transmitted per unit time within a valid data transmission period in a sampling period.
  • the effective data transmission time period in the above one sampling period may be a continuous time period within the sampling period, and the effective data transmission time period may also be several non-continuous within the sampling period.
  • the time period composed of time periods is not specifically limited in the embodiments of the present application.
  • the channel performance value is defined as:
  • tx_bytes is the number of bytes sent by the AP in the sampling period
  • rx_bytes is the number of bytes received by the AP in the sampling period
  • tx_frame is the time taken by the AP to send data
  • rx_frame is the time taken by the AP to receive data
  • pcu_cycle is the sampling period
  • Rx_busy is the channel busy time
  • rx_inf is the channel interference time.
  • AP_tp is the throughput of the AP
  • AP_cu is the channel utilization rate of the AP
  • AP_cf is the co-channel interference rate of the AP.
  • the channel performance value of the AP is:
  • AP_cp AP_tp / (AP_cu-AP_cf) (2)
  • AP_cp is the channel performance value of the AP
  • AP_tp is the throughput of the AP
  • AP_cu is the channel utilization rate of the AP
  • AP_cf is the co-frequency interference rate of the AP.
  • the calculation process of the channel performance value of the AP is explained in detail through an example. Assuming that the sampling period is 30 seconds (s), the throughput of the AP is 200 megabits per second (Mbps) during the sampling period, and the channel utilization rate of the AP is 20%. , The co-channel interference rate of the AP is 0, and the channel performance value of the AP is 1000Mbps according to the above formula (2). In this sampling period, the effective data transmission time period is 6s (that is, 30s * 20%). The channel performance of the AP is 1000Mbps can be understood as: within this 6s, the average amount of data transmitted by the AP per second is 1000 megabits (Mb).
  • Mb megabits
  • a channel performance value of the AP can be determined by using formula (2). Based on multiple sets of dynamic data of the AP, multiple channel performance values of the AP can be obtained.
  • the network quality monitoring device determines the AP channel performance baseline based on the static data of the AP.
  • the channel performance baseline is used to indicate the relationship between the reference value of the channel performance value of the AP and the first dynamic parameter.
  • the first dynamic parameter is one of the above-mentioned AP dynamic data.
  • the channel performance of the AP The baseline may be a curve formed by multiple values of the first dynamic parameter and corresponding multiple reference values of the channel performance value.
  • a fixed The set of static data remains unchanged, and multiple values of the first dynamic parameter (such as multiple values of channel utilization) obtained by testing correspond to multiple values of the channel performance value (the channel performance values obtained under these test environments are hereinafter referred to as channels
  • the reference value of the performance value, or the threshold of the channel performance value so that the curve formed by the multiple values of the first dynamic parameter and the corresponding reference values of the channel performance value is used as the judgment standard for determining the network quality, which is called Channel performance baseline.
  • different static data corresponds to different channel performance baselines.
  • Multiple channel performance baselines may constitute a channel performance baseline library.
  • test data under different static data may be used (the test data includes multiple different The first dynamic parameter and its corresponding reference value of the channel performance value) obtain the above channel performance baseline.
  • the first dynamic parameter as the channel utilization rate of the AP and taking the static data including the three sets of static data in Table 2 as an example
  • multiple different channel utilizations can be obtained in the test environment under the first set of static data
  • the reference value of the channel performance value of the corresponding AP and the corresponding AP so as to obtain the channel performance baseline corresponding to the first set of static data
  • in the test environment under the second set of static data multiple different channel utilization rates and their corresponding
  • the reference value of the channel performance value of the AP to obtain the channel performance baseline corresponding to the second group of static data; and so on, to obtain the channel performance baseline corresponding to the third group of static data, thereby forming the channel performance baseline library of the AP.
  • historical data during network operation may include different static data, multiple different first dynamic parameters under different static data, and corresponding channel performance Reference value of the value
  • using a learning algorithm to obtain the above channel performance baseline.
  • the method for obtaining the channel performance baseline of the AP based on the above historical data is similar to the method for obtaining the channel performance baseline of the AP based on the above test data, and details are not described here.
  • a channel performance baseline library may be pre-configured on the network quality monitoring device, and the channel performance baseline library includes multiple channel performance baselines corresponding to multiple sets of static data of the AP, a given type of AP,
  • the network frequency band and bandwidth correspond to a channel performance baseline, where a first dynamic parameter can correspond to a channel performance value on the channel performance baseline, and the channel performance value on the channel performance baseline can be used as a reference value for the channel performance value of the AP (also It can be called the threshold of the channel performance value of the AP), that is to say, a channel performance baseline can reflect the change trend of the channel performance value of the AP with the first dynamic parameter.
  • the channel performance baseline of the AP may be a curve of the relationship between the reference value of the channel performance value of the AP and the throughput of the AP, or the reference value of the channel performance value of the AP and the AP The curve of the change relationship between the channel utilization rate, or the curve of the relationship between the reference value of the channel performance value of the AP and the co-channel interference rate of the AP.
  • the reference value of the channel performance value of the AP is similar to the change relationship between the above three dynamic parameters, that is, the channel performance baseline corresponding to the three different dynamic parameters similar.
  • the above-mentioned first dynamic parameter is the channel utilization rate of the AP
  • the type of the AP is AP7000
  • the network frequency band is 5 GHz
  • the bandwidth is 20 MHz.
  • FIG. 3 shows that under this set of static data, the AP A schematic diagram of the channel performance baseline.
  • the network quality monitoring device determines the network quality of the wireless local area network where the AP is based on multiple channel performance values of the AP and the channel performance baseline of the AP.
  • the network quality monitoring device may determine the network quality of the wireless local area network where the AP is located according to the distribution relationship between multiple channel performances of the AP and the channel performance baseline of the AP.
  • the network quality monitoring device may determine the multiple channel performance values of the AP and the channel performance baseline of the AP according to the network operation data (including the static data and multiple sets of dynamic data of the AP) obtained by the network quality monitoring device. According to the multiple channel performance values of the AP and the channel performance baseline of the AP, the network quality of the wireless local area network where the AP is located is determined. Since the channel performance value of the AP can truly reflect the changes in network quality due to various factors to a certain extent, Therefore, the network quality monitoring method provided by the present application can implement more effective monitoring of network quality.
  • the network quality monitoring device obtains multiple sets of dynamic data, and each set of dynamic data includes a channel utilization rate, so network quality monitoring The device acquires multiple channel utilization rates, which correspond to multiple channel performance values, respectively. Further, the dual channel composition of each channel utilization rate of the AP and each channel performance value of the corresponding AP is reflected In the coordinate distribution chart of AP's channel performance value and channel utilization. Exemplarily, in the coordinate distribution diagram shown in FIG.
  • the abscissa is the channel utilization rate of the AP, and the ordinate is the channel performance value of the AP, where curve l1 is the channel performance baseline of the AP corresponding to the static data of the above AP, assuming
  • the network quality monitoring device obtains 50 sets of dynamic data, that is, 50 channel utilization values are obtained, corresponding to 50 channel performance values, and 50 pairs of channel utilization values and channel performance values can be formed. These 50 binary groups Refer to Figure 4 for the distribution in the coordinate distribution diagram.
  • the first dynamic parameter as the channel utilization rate of the AP
  • a method for determining the network quality of the local area network where the AP is located by the network quality monitoring device is specifically introduced.
  • S104 may be implemented through S1041a-S1041b:
  • the network quality monitoring device determines the AP The quality of the wireless LAN is poor.
  • the ratio of the number of channel performance values less than the channel performance value corresponding to the channel performance baseline to the number of the channel performance values of the AP is less than the preset ratio, and the network quality monitoring device determines the wireless location of the AP The network quality of the LAN is normal.
  • the corresponding ordinate on the channel performance baseline is the reference value of the channel performance value.
  • the multiple channel performance values of the AP for channel performance values less than the channel performance value corresponding to the channel performance baseline Value, indicating that under the corresponding channel utilization rate, the amount of data transmitted per unit time within the effective data transmission time period is relatively small; among the multiple channel performance values of the AP, for channel performance values greater than the corresponding channel performance baseline, it indicates that the corresponding Under the channel utilization rate, the amount of data transmitted per unit time in the effective data transmission period is relatively large.
  • the channel performance value can measure the network quality.
  • the proportion of the number of channel performance values less than the channel performance value corresponding to the channel performance baseline is greater than or equal to The preset ratio indicates that the effect of data transmission is relatively poor, and the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is poor.
  • the ratio of the number of channel performance values less than the channel performance value corresponding to the channel performance baseline is less than the preset ratio, indicating that the data transmission effect is better, and the network quality monitoring device determines the location of the AP The network quality of the wireless LAN is normal.
  • S1042a-S1042b may be implemented through S1042a-S1042b:
  • the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is poor.
  • the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is normal.
  • the number of channel performance values continuously smaller than the channel performance value corresponding to the channel performance baseline is greater than or equal to the preset number, indicating that the effect of data transmission is poor, and the network quality is monitored
  • the device determines that the network quality of the wireless local area network where the AP is located is poor.
  • the number of channel performance values that are continuously less than the channel performance value corresponding to the channel performance baseline is less than the preset number, indicating that the data transmission effect is better, and the network quality monitoring device determines the wireless local area network where the AP is located.
  • the network quality is normal.
  • the ratio of the first distance to the number of AP channel performance values is greater than the preset ratio, and the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is poor.
  • the first distance is the sum of the distances between all channel performance values less than the channel performance value corresponding to the channel performance baseline and the channel performance values corresponding to the channel performance baseline among the multiple channel performance values of the AP.
  • the ratio of the first distance to the number of AP channel performance values is less than or equal to the preset ratio, and the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is normal.
  • the ratio of the first distance to the number of channel performance values of the AP can reflect the degree to which the channel performance value of the AP is less than the channel performance value corresponding to the channel performance baseline, when the first distance and the channel performance value of the AP.
  • the ratio of the number is greater than the preset ratio, indicating that the effect of data transmission is relatively poor, and the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is poor.
  • the ratio of the first distance to the number of AP channel performance values is less than or equal to the preset ratio, indicating that the data transmission effect is better, the network quality monitoring device determines that the network quality of the wireless local area network where the AP is located is normal.
  • the network quality monitoring device may refer to the above S1041a-S1041b or S1042a-S1042b or S1043a-S1043b according to the method for determining the network quality of the local area network where the AP is located. Detailed.
  • the network quality monitoring device includes a hardware structure and / or a software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the function modules of the network quality monitoring apparatus according to the above method example, for example, each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 8 shows a possible structural schematic diagram of the network quality monitoring 1000 involved in the foregoing embodiment.
  • the network quality monitoring 1000 may include an acquisition module 1001, a first determination module 1002, and a second determination module 1003.
  • the acquisition module 1001 is used to support the network quality monitoring apparatus 1000 to execute S101 in the above method embodiment
  • the first determination module 1002 is used to support the network quality monitoring apparatus 1000 to perform steps S102 and S103
  • the second determination module 1003 is used to support
  • the network quality monitoring apparatus 1000 executes S104 (including S1041a-S1041b or S1042a-S1042b or S1043a-S1043b) in the above method embodiment.
  • S104 including S1041a-S1041b or S1042a-S1042b or S1043a-S1043b
  • all relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • FIG. 9 shows a possible structural schematic diagram of the network quality monitoring apparatus 2000 involved in the above embodiment.
  • the network quality monitoring apparatus 2000 may include: a processing module 2001 and a communication module 2002.
  • the processing module 2001 can be used to control and manage the actions of the network quality monitoring apparatus 2000.
  • the processing module 2001 can be used to support the network quality monitoring apparatus 2000 to execute S101-S104 in the above method embodiments;
  • the communication module 2002 can be used to support Communication between the network quality monitoring device 2000 and other network entities.
  • the network quality monitoring apparatus 2000 may further include a storage module 203 for storing program codes and data of the network quality monitoring apparatus 2000.
  • the processing module 2001 may be a processor or a controller (for example, it may be the processor 11 in FIG. 1).
  • the communication module 3002 may be a transceiver, a transceiver circuit, a communication interface, or the like (for example, it may be the communication interface 13 in FIG. 1).
  • the communication module 2002 is a radio frequency transceiving circuit, which is used for up-mixing the signal to be transmitted during transmission and down-mixing the received signal during reception.
  • the storage module 2003 may be a memory (for example, the memory 12 in FIG. 1).
  • the processing module 2001 is a processor
  • the communication module 202 is a transceiver
  • the storage module 2003 is a memory
  • the processor, transceiver, and memory may be connected through a bus.
  • the bus may be a peripheral component interconnection (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnection
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the processing module 2001 and the communication module 2002 jointly realize signal reception. Specifically, the processing module 2001 controls or calls the communication module 2002 to receive.
  • the processing module 2001 is the decider and controller of the reception behavior
  • the communication module 2002 is the executor of the reception behavior.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be transmitted from a website site, computer, server or data center via wire (Such as coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available media integrated servers, data centers, and the like.
  • the available media may be magnetic media (eg, floppy disk, magnetic disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state drives (SSD)), etc. .
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a division of logical functions.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

一种网络质量监控方法及装置,涉及通信技术领域,能够对网络质量进行更加有效地监控。该方法包括:网络质量监控装置获取网络运行数据,该网络运行数据包括AP的静态数据和多个采样周期对应的动态数据;并且根据AP的多组动态数据,确定AP的多个信道效能值;以及根据AP的静态数据,确定AP的信道效能基线;且根据AP的多个信道效能值和AP的信道效能基线,确定AP所在的无线局域网的网络质量。其中,AP的一个信道效能值为一个采样周期中有效数据传输时间段内单位时间传输的数据量,AP的信道效能基线用于指示AP的信道效能值的参考值与第一动态参数之间的变化关系,该第一动态参数为AP的动态数据中的一种。

Description

一种网络质量监控方法及装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种网络质量监控方法及装置。
背景技术
在无线局域网中,接入点(access point,AP)的吞吐量与网络质量有着密切的关系,AP的吞吐量降低时,网络质量也会变差。
通常,可以通过监控AP的吞吐量对网络质量进行监控。具体的,可以根据一些影响AP的吞吐量的参数建立AP的吞吐量模型,这些影响AP的吞吐量的参数可以包括但不限于空口容量(例如频段、带宽等影响空口容量)、设备容量(例如通信协议、多输入多输出MIMO的模式等影响设备容量)、AP的覆盖情况(例如接收信号强度等反映AP的覆盖情况)、干扰因素(例如AP之间的同频干扰率等),该AP的吞吐量模型的输入为上述参数,输出为AP的吞吐量(即可以理解为AP的吞吐量阈值)。在实际应用中,网络质量监控装置可以获取无线网络中的AP的实际吞吐量以及上述参数,然后结合AP的吞吐量模型输出的AP的吞吐量阈值确定网络质量的情况,若AP的实际吞吐量小于AP的吞吐量阈值,则认为网络质量差。
然而,由于根据上述AP的吞吐量模型仅能确定由上述影响AP的吞吐量的参数引起的网络质量变化,其他问题引起的网络质量变化则无法进行监控,因此,可能使得网络质量检测效果不明显。
发明内容
本申请实施例提供一种网络质量监控方法、装置及系统,能够对网络质量进行更加有效地监控。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种网络质量监控方法,该方法包括:网络质量监控装置获取网络运行数据,该网络运行数据包括接入点AP的静态数据和动态数据,该动态数据包括多个采样周期对应的多组动态数据;并且网络质量监控装置根据该AP的多组动态数据,确定AP的多个信道效能值,其中,AP的一个信道效能值为一个采样周期中有效数据传输时间段内单位时间传输的数据量;以及网络质量监控装置根据AP的静态数据,确定AP的信道效能基线,该AP的信道效能基线用于指示AP的信道效能值的参考值与第一动态参数之间的变化关系,该第一动态参数为动态数据中的一种;并且网络质量监控装置根据AP的多个信道效能值和AP的信道效能基线,确定AP所在的无线局域网的网络质量。
本申请实施例提供的网络质量监控方法,由于网络质量监控装置可以根据其获取网络运行数据(包括AP的静态数据和多组动态数据)分别确定AP的多个信道效能值以及AP的信道效能基线,再根据AP的多个信道效能值以及AP的信道效能基线,确定AP所在的无线局域网的网络质量,又由于AP的信道效能值在一定程度上可以真实反映由于各种因素导致的网络质量的变化,因此本申请提供的网络质量监控方法能够实现对网络质量进行更加有效地监控。
在一种可能的实现方式中,上述一个采样周期中有效数据传输时间段可以为该采样周期内连续的时间段,该有效数据传输时间段也可以为该采样周期内,几个不连续的时间段组成的时间段,本申请实施例不作具体限定。
在一种可能的实现方式中,上述动态数据包括AP的吞吐量、AP的信道利用率以及AP的 同频干扰率。
在一种可能的实现方式中,上述静态数据包括AP的类型、网络频段以及带宽。
本申请实施例中,通过网络中的数据采集设备可以采集网络运行数据,该网络运行数据可以分为日志、关键性能指标(key performance indicator,KPI)、告警数据以及配置数据等。网络质量监控装置可以从数据采集设备获取其采集的预设时间段内(也可以称为采样时间,该采样时间包括多个采样周期)的网络运行数据,例如KPI和配置数据,其中,KPI中包括动态数据(随着时间变化而变化的数据),上述预设时间段的每个采样周期可以获取一组动态数据,该配置数据中包括静态数据(不随时间的变化而变化)。
在一种可能的实现方式中,上述网络质量监控装置根据AP的一组动态数据,确定AP的一个信道效能值的方法可以包括:网络质量监控装置采用公式:AP_cp=AP_tp/(AP_cu-AP_cf),确定AP的信道效能值,其中,AP_cp为AP的信道效能值,AP_tp为AP的吞吐量,AP_cu为AP的信道利用率,AP_cf为AP的同频干扰率。
本申请实施例中,在一个采样周期内,信道效能值的定义为:
Figure PCTCN2019117958-appb-000001
其中,tx_bytes为采样周期内AP发送的字节数,rx_bytes为采样周期内AP接收的字节数,tx_frame为AP发送数据所占的时间,rx_frame为AP接收数据所占的时间,pcu_cycle为采样周期,rx_busy为信道繁忙时间,rx_inf为信道干扰时间。由于
Figure PCTCN2019117958-appb-000002
因此可以得到:AP_cp=AP_tp/(AP_cu-AP_cf)。
在一种可能的实现方式中,上述确定AP的信道效能基线的方法包括:网络质量监控装置确定预先配置的信道效能基线库中与AP的类型、网络频段以及带宽对应的信道效能基线为AP的信道效能基线。
本申请实施例中,在一种理想的测试环境下,例如在影响AP的吞吐量的因素(例如频段、带宽、接收信号强度、干扰率等等)为一种临界状态的环境下,固定一组静态数据不变,测试得到第一动态参数的多个值(例如信道利用率的多个值)对应的信道效能值的多个值(这些测试环境下得到的信道效能值以下均称为信道效能值的参考值,或者称为信道效能值的阈值),从而将第一动态参数的多个值与对应的信道效能值的多个参考值形成的曲线作为确定网络质量的判断标准,称为信道效能基线。
具体的,不同的静态数据对应不同的信道效能基线,多条信道效能基线可以构成信道效能基线库,本申请实施例中,可以根据不同的静态数据下的测试数据(测试数据包括多个不同的第一动态参数及其对应的信道效能值的参考值)得到上述信道效能基线。并且,可以在网络质量监控装置上预先配置信道效能基线库,该信道效能基线库中包括AP的多组静态数据对应的多条信道效能基线,一组给定的AP的类型、网络频段以及带宽对应一条信道效能基线,其中,一个第一动态参数可以对应信道效能基线上的一个信道效能值,该信道效能基线上的信道效能值可以作为AP的信道效能值的参考值(也可以称为AP的信道效能值的阈值),也就是说,一条信道效能基线可以反映AP的信道效能值随第一动态参数的变化趋势。
在一种可能的实现方式中,AP的信道效能基线可以为AP的信道效能值的参考值与AP的吞吐量之间的变化关系的曲线,或者为AP的信道效能值的参考值与AP的信道利用率之间的变化关系的曲线,或者为AP的信道效能值的参考值与AP的同频干扰率之间的变化关系的曲线。并且,在一组静态数据下,结合数据统计特性,AP的信道效能值与上述三种动态参数之间的变化关系类似,即三种不同的动态参数对应的信道效能基线类似。
在一种可能的实现方式中,第一动态参数为信道利用率。
在一种可能的实现方式中,第一动态参数为信道利用率时,上述网络质量监控装置根据AP的多个信道效能值和AP的信道效能基线,确定AP所在的无线局域网的网络质量的方法包括:AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量占AP的信道效能值的总数量的比例大于或者等于预设比例,则网络质量监控装置确定AP所在的无线局域网的网络质量差;AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量占AP的信道效能值的数量的比例小于预设比例,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
本申请实施例中,上述AP的多个信道效能值中,对于小于信道效能基线对应的信道效能值的信道效能值,说明在对应的信道利用率下,在有效数据传输时间段内单位时间传输的数据量比较小;AP的多个信道效能值中,对于大于信道效能基线对应的信道效能值,说明在对应的信道利用率下,在有效数据传输时间段内单位时间传输的数据量比较大。从而,在AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量所占的比例大于或者等于预设比例,说明数据传输的效果比较差,则网络质量监控装置确定AP所在的无线局域网的网络质量差。在AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量所占的比例小于预设比例,说明数据传输的效果比较好,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
在一种可能的实现方式中,第一动态参数为信道利用率时,上述网络质量监控装置根据AP的多个信道效能值和AP的信道效能基线,确定AP所在的无线局域网的网络质量的方法包括:AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量大于或者等于预设数量,则网络质量监控装置确定AP所在的无线局域网的网络质量差;AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量小于预设数量,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
本申请实施例中,连续小于信道效能基线对应的信道效能值的信道效能值数量大于或者等于预设数量,说明数据传输的效果比较差,则网络质量监控装置确定AP所在的无线局域网的网络质量差。在AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量小于预设数量,说明数据传输的效果比较好,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
在一种可能的实现方式中,第一动态参数为信道利用率时,上述网络质量监控装置根据AP的多个信道效能值和AP的信道效能基线,确定AP所在的无线局域网的网络质量的方法包括:第一距离与AP的信道效能值的数量的比值大于预设比值,则网络质量监控装置确定AP所在的无线局域网的网络质量差,其中,该第一距离为AP的多个信道效能值中,小于信道效能基线对应的信道效能值的所有信道效能值与信道效能基线对应的信道效能值之间的距离之和;第一距离与AP的信道效能值的数量的比值小于或者等于预设比值,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
本申请实施例中,上述第一距离与AP的信道效能值的数量的比值可以反映AP的信道效 能值小于信道效能基线对应的信道效能值的程度,当第一距离与AP的信道效能值的数量的比值大于预设比值,说明数据传输的效果比较差,则网络质量监控装置确定AP所在的无线局域网的网络质量差。当第一距离与AP的信道效能值的数量的比值小于或者等于预设比值,说明数据传输的效果比较好,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
第二方面,本申请提供一种网络质量监控装置,包括获取模块、第一确定模块以及第二确定模块。其中,获取模块,用于获取网络运行数据,该网络运行数据包括接入点AP的静态数据和动态数据,该动态数据包括多个采样周期对应的多组动态数据;第一确定模块,用于根据获取模块获取的AP的多组动态数据,确定AP的多个信道效能值,并且根据获取模块获取的AP的静态数据,确定AP的信道效能基线,其中,AP的一个信道效能值为一个采样周期中有效数据传输时间段内单位时间传输的数据量,AP的信道效能基线用于指示AP的信道效能值的参考值与第一动态参数之间的变化关系,该第一动态参数为动态数据中的一种;第二确定模块,用于根据AP的多个信道效能值和AP的信道效能基线,确定AP所在的无线局域网的网络质量。
在一种可能的实现方式中,上述动态数据包括AP的吞吐量、AP的信道利用率以及AP的同频干扰率。
在一种可能的实现方式中,上述静态数据包括AP的类型、网络频段以及带宽。
在一种可能的实现方式中,上述第一确定模块,具体用于采用公式:AP_cp=AP_tp/(AP_cu-AP_cf),确定AP的信道效能值,其中,AP_cp为AP的信道效能值,AP_tp为AP的吞吐量,AP_cu为AP的信道利用率,AP_cf为AP的同频干扰率。
在一种可能的实现方式中,上述第一确定模块,具体用于确定预先配置的信道效能基线库中与AP的类型、网络频段以及带宽对应的信道效能基线为AP的信道效能基线。
在一种可能的实现方式中,第一动态参数为信道利用率。
在一种可能的实现方式中,第一动态参数为信道利用率时,上述第二确定模块,具体用于当AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量占AP的信道效能值的数量的比例大于或者等于预设比例时,确定AP所在的无线局域网的网络质量差;当AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量占AP的信道效能值的数量的比例小于预设比例时,确定AP所在的无线局域网的网络质量正常。
在一种可能的实现方式中,第一动态参数为信道利用率时,上述第二确定模块,具体用于当AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量大于或者等于预设数量时,确定AP所在的无线局域网的网络质量差;当AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量小于预设数量时,确定AP所在的无线局域网的网络质量正常。
在一种可能的实现方式中,第一动态参数为信道利用率时,上述第二确定模块,具体用于当第一距离与AP的信道效能值的数量的比值大于预设比值时,确定AP所在的无线局域网的网络质量差;当第一距离与AP的信道效能值的数量的比值小于或者等于预设比值时,确定AP所在的无线局域网的网络质量正常,其中,该第一距离为AP的多个信道效能值中,小于信道效能基线对应的信道效能值的所有信道效能值与信道效能基线对应的信道效能值之间的距离之和。
第三方面,本申请实施例提供一种网络质量监控装置,包括处理器和与处理器耦合连接 的存储器;该存储器用于存储计算机程序,处理器用于调用计算机程序,当计算机程序被执行时,处理器执行上述第一方面及其各种可能的实现方式中任意之一所述的网络质量监控方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质可以包括计算机指令,当该计算机指令在计算机上运行时,使得网络质量监控装置执行上述第一方面及其各种可能的实现方式中任意之一所述的网络质量监控方法。
第五方面,本申请实施例提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得网络质量监控装置执行上述第一方面及其各种可能的实现方式中任意之一所述的网络质量监控方法。
可以理解地,上述提供的第二方面所述的网络质量监控装置和第三方面所述的网络质量监控装置、第五方面所述的计算机存储介质,以及第六方面所述的计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种服务器的硬件示意图;
图2为本申请实施例提供的网络质量监控方法示意图一;
图3为本申请实施例提供的一种AP的信道效能基线的示意图一;
图4为本申请实施例提供的一种AP的信道效能基线的示意图二;
图5为本申请实施例提供的网络质量监控方法示意图二;
图6为本申请实施例提供的网络质量监控方法示意图三;
图7为本申请实施例提供的网络质量监控方法示意图四;
图8为本申请实施例提供的网络质量监控装置的结构示意图一;
图9为本申请实施例提供的网络质量监控装置的结构示意图二。
具体实施方式
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
首先对本申请实施例提供的一种网络质量监控方法及装置中涉及的一些概念做解释说明。
吞吐量:指的是通信设备在单位时间内成功传输的数据量,在无线局域网中,AP的吞吐量在一定程度上可以反映该AP所在的无线局域网的网络质量,通常,运维人员接到用户报障以后,可以通过现场运行测试软件,测试AP的吞吐量是否达到吞吐量阈值,若AP的吞吐量小于吞吐量阈值,则判断网络质量比较差。
本申请实施例中,常见的影响网络质量的因素有:AP支持的频段以及带宽、AP支持的通信协议、AP的输入输出模式等,上述因素均可以使得无线局域网中的AP的吞吐量降低而导致网络质量变差。具体的;AP支持的频段以及带宽比较小时,使得AP的吞吐量比较低;AP 支持的通信协议不同时,AP的吞吐量也不同;AP的输入输出模式(例如MIMO模式)不同,则AP的吞吐量受影响。
此外,影响网络质量的因素还包括用户侧因素和空口侧因素,如下表1是示例的各种因素以及造成网络质量差的原因。
表1
Figure PCTCN2019117958-appb-000003
信道效能:用于衡量数据传输效果,可以用信道效能值衡量AP的信道效能,具体的,AP的信道效能值指的是AP在一个采样周期中用于传输数据的时间段(即AP真正传输数据的时间段,以下均称为有效数据传输时间段)内单位时间传输的数据量。例如,采样周期为1分钟,有效数据传输时间段为40秒,则在该40秒内每秒钟传输的数据量即为AP的信道效能值。本申请实施例中,AP的信道效能值也可以反映无线局域网的网络质量。
基于背景技术存在的问题,本申请实施例提供一种网络质量监控方法及装置,网络质量监控装置可以根据其获取网络运行数据,具体包括AP的静态数据和多个采样周期对应的多组动态数据,然后根据AP的多组动态数据确定AP的多个信道效能值,并且根据AP的静态数据确定AP的信道效能基线,再根据AP的多个信道效能值以及AP的信道效能基线,确定AP所在的无线局域网的网络质量,能够实现对网络质量进行更加有效地监控。
本申请实施例提供的网络质量监控装置也可以为分析器,主要用于对网络运行数据进行分析,得到AP的信道效能值,从而分析网络质量是否异常,上述分析器可以为一台服务器,下面结合图1具体介绍本申请实施例提供的服务器的各个部件。如图1所示,该服务器10可以包括:处理器11、存储器12和通信接口13等。
处理器11:是服务器10的核心部件,用于运行服务器10的操作系统与服务器30上的应用程序(包括系统应用程序和第三方应用程序),例如处理器11通过运行该服务器上的网络质量监控的方法程序,对网络质量进行监控。
本申请实施例中,处理器11具体可以为中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或 者其任意组合,其可以实现或执行结合本申请实施例公开的内容所描述的各种示例性的逻辑方框,模块和电路;处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
存储器12:可用于存储软件程序以及模块,处理器11通过运行存储在存储器12里的软件程序以及模块,从而执行服务器10的各种功能应用以及数据处理。存储器12可包含一个或多个计算机可读存储介质。存储器12包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等,存储数据区可存储服务器10创建的数据等,本申请实施例中,存储器12中可以包括用于进行网络监控的程序、网络运行数据、根据网络运行数据得到的AP的信道效能值以及AP的信道效能基线库。
本申请实施例中,存储器12具体可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);该存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);该存储器还可以包括上述种类的存储器的组合。
通信接口13:用于服务器10与其他设备进行通信的接口电路,通信接口可以为收发器、收发电路等具有收发功能的结构,本申请实施例中,通过服务器10上的通信接口13可以接收数据采集设备采集的网络运行数据等。
如图2所示,本申请实施例提供的网络质量监控方法可以包括S101-S104:
S101、网络质量监控装置获取网络运行数据。
其中,上述网络运行数据包括AP的静态数据和动态数据,该动态数据包括多个采样周期对应的多组动态数据。
本申请实施例中,通过网络中的数据采集设备可以采集网络运行数据,该网络运行数据可以分为日志、关键性能指标(key performance indicator,KPI)、告警数据以及配置数据等。网络质量监控装置可以从数据采集设备获取其采集的预设时间段内(也可以称为采样时间,该采样时间包括多个采样周期)的网络运行数据,例如KPI和配置数据,其中,KPI中包括动态数据,配置数据中包括静态数据。
本申请实施例中,在上述预设时间段的每个采样周期可以获取一组动态数据,每组动态数据包括AP的吞吐量、AP的信道利用率以及AP的同频干扰率。可以理解的是,动态数据是时序数据(即随着时间变化而变化的数据)。
在上述预设时间段内,获取的静态数据包括AP的类型、网络频段以及带宽,静态数据不随时间的变化而变化,AP的类型可以为AP7000、AP6000等,网络频段可以为2.4GHz(即吉赫兹,Ghz也就是十亿赫兹)、5GHz等,网络带宽可以为20MHz(即兆赫兹)、40MHz等
示例性的,如下表2为AP的静态数据的几组示例。
表2
AP的类型 网络频段 带宽
AP7000 5GHz 20MHz
AP6000 5GHz 40MHz
AP2000 2.4GHz 20MHz
S102、网络质量监控装置根据AP的多组动态数据,确定AP的多个信道效能值。
其中,AP的一个信道效能值为一个采样周期中有效数据传输时间段内单位时间传输的数据量。
可选的,本申请实施例中,上述一个采样周期中有效数据传输时间段可以为该采样周期内连续的时间段,该有效数据传输时间段也可以为该采样周期内,几个不连续的时间段组成的时间段,本申请实施例不作具体限定。
本申请实施例中,在一个采样周期内,信道效能值的定义为:
Figure PCTCN2019117958-appb-000004
其中,tx_bytes为采样周期内AP发送的字节数,rx_bytes为采样周期内AP接收的字节数,tx_frame为AP发送数据所占的时间,rx_frame为AP接收数据所占的时间,pcu_cycle为采样周期,rx_busy为信道繁忙时间,rx_inf为信道干扰时间。
上述公式(1)中,
Figure PCTCN2019117958-appb-000005
AP_tp为AP的吞吐量;
Figure PCTCN2019117958-appb-000006
AP_cu为AP的信道利用率,AP_cf为AP的同频干扰率。
综上可知,AP的信道效能值为:
AP_cp=AP_tp/(AP_cu-AP_cf)      (2)
其中,AP_cp为AP的信道效能值,AP_tp为AP的吞吐量,AP_cu为AP的信道利用率,AP_cf为AP的同频干扰率。
下面通过实例详细说明AP的信道效能值的计算过程,假设采样周期为30秒(s),在采样周期内AP的吞吐量为200兆比特每秒(Mbps),AP的信道利用率为20%,AP的同频干扰率为0,根据上述公式(2)得到AP的信道效能值1000Mbps,该采样周期内,有效数据传输时间段为6s(即30s*20%),上述AP的信道效能为1000Mbps可以理解为:在该6s内,AP平均每秒传输的数据量为1000兆比特(Mb)。
本申请实施例中,对于AP的每一组动态数据中的AP的吞吐量、AP的信道利用率以及AP的同频干扰率,采用公式(2)可以确定AP的一个信道效能值,如此,基于AP的多组动态数据,可以得到AP的多个信道效能值。
S103、网络质量监控装置根据AP的静态数据,确定AP的信道效能基线。
其中,信道效能基线用于指示AP的信道效能值的参考值与第一动态参数之间的变化关系,该第一动态参数为上述AP的动态数据中的一种,具体的,AP的信道效能基线可以为第一动态参数的多个值与对应的信道效能值的多个参考值形成的曲线。
本申请实施例中,在一种理想的测试环境下,例如在影响AP的吞吐量的因素(例如频段、带宽、接收信号强度、干扰率等等)为一种临界状态的环境下,固定一组静态数据不变,测试得到第一动态参数的多个值(例如信道利用率的多个值)对应的信道效能值的多个值(这些测试环境下得到的信道效能值以下均称为信道效能值的参考值,或者称为信道效能值的阈值),从而将第一动态参数的多个值与对应的信道效能值的多个参考值形成的曲线作为确定网络质量的判断标准,称为信道效能基线。
具体的,不同的静态数据对应不同的信道效能基线,多条信道效能基线可以构成信道效能基线库,本申请实施例中,可以根据不同的静态数据下的测试数据(测试数据包括多个不同的第一动态参数及其对应的信道效能值的参考值)得到上述信道效能基线。示例性,以第 一动态参数为AP的信道利用率,以静态数据包括上述表2中的3组静态数据为例,在第一组静态数据下的测试环境中可以得到多个不同的信道利用率以及其对应的AP的信道效能值的参考值,从而得到第一组静态数据对应的信道效能基线;在第二组静态数据下的测试环境中可以得到多个不同的信道利用率以及其对应的AP的信道效能值的参考值,从而得到第二组静态数据对应的信道效能基线;依此类推,得到第三组静态数据对应的信道效能基线,从而构成AP的信道效能基线库。
可选的,本申请实施例中,还可以根据网络运行过程中的历史数据(该历史数据包括不同的静态数据,不同的静态数据下的多个不同的第一动态参数及其对应的信道效能值的参考值),采用学习算法学习得到上述信道效能基线。需要说明的是,根据上述历史数据得到AP的信道效能基线的方法与根据上述测试数据得到AP的信道效能基线的方法类似,此处不再赘述。
本申请实施例中,可以在网络质量监控装置上预先配置信道效能基线库,该信道效能基线库中包括AP的多组静态数据对应的多条信道效能基线,一组给定的AP的类型、网络频段以及带宽对应一条信道效能基线,其中,一个第一动态参数可以对应信道效能基线上的一个信道效能值,该信道效能基线上的信道效能值可以作为AP的信道效能值的参考值(也可以称为AP的信道效能值的阈值),也就是说,一条信道效能基线可以反映AP的信道效能值随第一动态参数的变化趋势。
可选的,本申请实施例中,AP的信道效能基线可以为AP的信道效能值的参考值与AP的吞吐量之间的变化关系的曲线,或者为AP的信道效能值的参考值与AP的信道利用率之间的变化关系的曲线,或者为AP的信道效能值的参考值与AP的同频干扰率之间的变化关系的曲线。
可以理解的是,在一组静态数据下,结合数据统计特性,AP的信道效能值的参考值与上述三种动态参数之间的变化关系类似,即三种不同的动态参数对应的信道效能基线类似。
本申请实施例中,若上述第一动态参数为AP的信道利用率,示例性的,假设AP的类型为AP7000,网络频段为5GHz,带宽为20MHz,图3为在该组静态数据下,AP的信道效能基线的一种示意图。
S104、网络质量监控装置根据AP的多个信道效能值和AP的信道效能基线,确定AP所在的无线局域网的网络质量。
本申请实施例中,网络质量监控装置可以根据AP的多个信道效能与AP的信道效能基线的分布关系,确定AP所在的无线局域网的网络质量。
本申请实施例提供的网络质量监控方法,网络质量监控装置可以根据其获取网络运行数据(包括AP的静态数据和多组动态数据)分别确定AP的多个信道效能值以及AP的信道效能基线,再根据AP的多个信道效能值以及AP的信道效能基线,确定AP所在的无线局域网的网络质量,由于AP的信道效能值在一定程度上可以真实反映由于各种因素导致的网络质量的变化,因此本申请提供的网络质量监控方法能够实现对网络质量进行更加有效地监控。
可选的,本申请实施例中,若上述第一动态参数为AP的信道利用率,上述网络质量监控装置获取了多组动态数据,每组动态数据中包括一个信道利用率,如此网络质量监控装置获取了多个信道利用率,该多个信道利用率分别对应多个信道效能值,进一步的,将AP的每个信道利用率与对应的AP的每个信道效能值组成的二元组体现在AP的信道效能值与信道利用率的坐标分布图中。示例性的,图4所示的坐标分布图中,横坐标为AP的信道利用率,纵坐标为AP的信道效能值,其中,曲线l1为上述AP静态数据对应的AP的信道效能基线,假设 网络质量监控装置获取了50组动态数据,即获取了50个信道利用率,则对应50个信道效能值,可以组成50个信道利用率与信道效能值的二元组,这50个二元组在该坐标分布图中的分布情况可以参见图4。
需要说明的是,以下实施例中,以第一动态参数为AP的信道利用率为例,具体介绍网络质量监控装置确定AP所在的局域网的网络质量的方法。
结合图2,如图5所示,在一种实现方式中,上述S104可以通过S1041a-S1041b实现:
S1041a、AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量占AP的信道效能值的总数量的比例大于或者等于预设比例,则网络质量监控装置确定AP所在的无线局域网的网络质量差。
S1041b、AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量占AP的信道效能值的数量的比例小于预设比例,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
本申请实施例中,结合上述图3,信道效能基线上对应的纵坐标为信道效能值的参考值,上述AP的多个信道效能值中,对于小于信道效能基线对应的信道效能值的信道效能值,说明在对应的信道利用率下,在有效数据传输时间段内单位时间传输的数据量比较小;AP的多个信道效能值中,对于大于信道效能基线对应的信道效能值,说明在对应的信道利用率下,在有效数据传输时间段内单位时间传输的数据量比较大。
可以理解的是,信道效能值可以衡量网络质量,本申请实施例中,在AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量所占的比例大于或者等于预设比例,说明数据传输的效果比较差,则网络质量监控装置确定AP所在的无线局域网的网络质量差。在AP的多个信道效能值中,小于信道效能基线对应的信道效能值的信道效能值数量所占的比例小于预设比例,说明数据传输的效果比较好,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
结合图2,如图6所示,在另一种实现方式中,上述S104可以通过S1042a-S1042b实现:
S1042a、AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量大于或者等于预设数量,则网络质量监控装置确定AP所在的无线局域网的网络质量差。
S1042b、AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量小于预设数量,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
本申请实施例中,在AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量大于或者等于预设数量,说明数据传输的效果比较差,则网络质量监控装置确定AP所在的无线局域网的网络质量差。在AP的多个信道效能值中,连续小于信道效能基线对应的信道效能值的信道效能值数量小于预设数量,说明数据传输的效果比较好,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
结合图2,如图7所示,在又一种实现方式中,上述S104可以通过S1043a-S1043b实现:
S1043a、第一距离与AP的信道效能值的数量的比值大于预设比值,则网络质量监控装置确定AP所在的无线局域网的网络质量差。
其中,第一距离为AP的多个信道效能值中,小于信道效能基线对应的信道效能值的所有信道效能值与信道效能基线对应的信道效能值之间的距离之和。
S1043b、第一距离与AP的信道效能值的数量的比值小于或者等于预设比值,则网络质 量监控装置确定AP所在的无线局域网的网络质量正常。
本申请实施例中,上述第一距离与AP的信道效能值的数量的比值可以反映AP的信道效能值小于信道效能基线对应的信道效能值的程度,当第一距离与AP的信道效能值的数量的比值大于预设比值,说明数据传输的效果比较差,则网络质量监控装置确定AP所在的无线局域网的网络质量差。当第一距离与AP的信道效能值的数量的比值小于或者等于预设比值,说明数据传输的效果比较好,则网络质量监控装置确定AP所在的无线局域网的网络质量正常。
可以理解的是,本申请实施例中,信道效能基线为AP的信道效能值的参考值与AP的吞吐量之间的变化关系的曲线时,或者信道效能基线为AP的信道效能值的参考值与AP的同频干扰率之间的变化关系的曲线时,网络质量监控装置根据确定AP所在的局域网的网络质量的方法可以参见上述S1041a-S1041b或S1042a-S1042b或S1043a-S1043b,此处不再详述。
上述主要从网络质量监控装置(即分析器)的角度对本申请实施例提供的方案进行了介绍。可以理解的是,网络质量监控装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络质量监控装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图8示出了上述实施例中所涉及的网络质量监控1000的一种可能的结构示意图。如图8所示,网络质量监控1000可以包括获取模块1001、第一确定模块1002以及第二确定模块1003。该获取模块1001用于支持网络质量监控装置1000执行上述方法实施例中的S101,该第一确定模块1002用于支持网络质量监控装置1000执行步骤S102和S103,该第二确定模块1003用于支持网络质量监控装置1000执行上述方法实施例中的S104(包括S1041a-S1041b或S1042a-S1042b或S1043a-S1043b)。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的网络质量监控装置2000的一种可能的结构示意图。如图9所示,网络质量监控装置2000可以包括:处理模块2001和通信模块2002。处理模块2001可以用于对网络质量监控装置2000的动作进行控制管理,例如该处理模块2001可以用于支持网络质量监控装置2000执行上述方法实施例中的S101-S104;通信模块2002可以用于支持网络质量监控装置2000与其他网络实体的通信。可选的,如图9所示,该网络质量监控装置2000还可以包括存储模块203,用于存储网络质量监控装置2000的程序代码和数据。
其中,处理模块2001可以是处理器或控制器(例如可以为图1中的处理器11)。通信模块3002可以是收发器、收发电路或通信接口等(例如可以为图1中的通信接口13)。示例性地,通信模块2002是射频收发电路,用于在发送时对待发送信号做上混频,在接收时对接收 信号做下混频。存储模块2003可以是存储器(例如可以为图1中的存储器12)。
当处理模块2001为处理器,通信模块202为收发器,存储模块2003为存储器时,处理器、收发器和存储器可以通过总线连接。总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended Industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。
当执行信号接收的时候,处理模块2001和通信模块2002共同实现信号接收。具体地,处理模块2001控制或调用通信模块2002做接收。处理模块2001是接收行为的决定者和控制者,通信模块2002是接收行为的执行者。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))方式或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、磁盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state drives,SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个 人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种网络质量监控方法,其特征在于,包括:
    网络质量监控装置获取网络运行数据,所述网络运行数据包括接入点AP的静态数据和动态数据,所述动态数据包括多个采样周期对应的多组动态数据;
    所述网络质量监控装置根据所述AP的多组动态数据,确定所述AP的多个信道效能值,所述AP的一个信道效能值为一个采样周期中有效数据传输时间段内单位时间传输的数据量;
    所述网络质量监控装置根据所述AP的静态数据,确定所述AP的信道效能基线,所述AP的信道效能基线用于指示所述AP的信道效能值的参考值与第一动态参数之间的变化关系,所述第一动态参数为所述动态数据中的一种;
    所述网络质量监控装置根据所述AP的多个信道效能值和所述AP的信道效能基线,确定所述AP所在的无线局域网的网络质量。
  2. 根据权利要求1所述的方法,其特征在于,
    所述动态数据包括所述AP的吞吐量、所述AP的信道利用率以及所述AP的同频干扰率。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述静态数据包括所述AP的类型、网络频段以及带宽。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述网络质量监控装置根据所述AP的一组动态数据,确定所述AP的一个信道效能值,包括:
    所述网络质量监控装置采用公式:AP_cp=AP_tp/(AP_cu-AP_cf),确定所述AP的信道效能值,其中,AP_cp为所述AP的信道效能值,AP_tp为所述AP的吞吐量,AP_cu为所述AP的信道利用率,AP_cf为所述AP的同频干扰率。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述确定所述AP的信道效能基线,包括:
    所述网络质量监控装置确定预先配置的信道效能基线库中与所述AP的类型、网络频段以及带宽对应的信道效能基线为所述AP的信道效能基线。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,
    所述第一动态参数为信道利用率。
  7. 根据权利要求6所述的方法,其特征在于,所述网络质量监控装置根据所述AP的多个信道效能值和所述AP的信道效能基线,确定所述AP所在的无线局域网的网络质量,包括:
    所述AP的多个信道效能值中,小于所述信道效能基线对应的信道效能值的信道效能值数量占所述AP的信道效能值的总数量的比例大于或者等于预设比例,则所述网络质量监控装置确定所述AP所在的无线局域网的网络质量差;
    所述AP的多个信道效能值中,小于所述信道效能基线对应的信道效能值的信道效能值数量占所述AP的信道效能值的数量的比例小于所述预设比例,则所述网络质量监控装置确定所述AP所在的无线局域网的网络质量正常。
  8. 根据权利要求6所述的方法,其特征在于,所述网络质量监控装置根据所述AP的多个信道效能值和所述AP的信道效能基线,确定所述AP所在的无线局域网的网络质量,包括:
    所述AP的多个信道效能值中,连续小于所述信道效能基线对应的信道效能值的信道效能值数量大于或者等于预设数量,则所述网络质量监控装置确定所述AP所在的无线局域网的网络质量差;
    所述AP的多个信道效能值中,连续小于所述信道效能基线对应的信道效能值的信道效能值数量小于所述预设数量,则所述网络质量监控装置确定所述AP所在的无线局域网 的网络质量正常。
  9. 根据权利要求6所述的方法,其特征在于,所述网络质量监控装置根据所述AP的多个信道效能值和所述AP的信道效能基线,确定所述AP所在的无线局域网的网络质量,包括:
    第一距离与所述AP的信道效能值的数量的比值大于预设比值,则所述网络质量监控装置确定所述AP所在的无线局域网的网络质量差,其中,所述第一距离为所述AP的多个信道效能值中,小于所述信道效能基线对应的信道效能值的所有信道效能值与所述信道效能基线对应的信道效能值之间的距离之和;
    所述第一距离与所述AP的信道效能值的数量的比值小于或者等于所述预设比值,则所述网络质量监控装置确定所述AP所在的无线局域网的网络质量正常。
  10. 一种网络质量监控装置,其特征在于,包括获取模块、第一确定模块以及第二确定模块;
    所述获取模块,用于获取网络运行数据,所述网络运行数据包括接入点AP的静态数据和动态数据,所述动态数据包括多个采样周期对应的多组动态数据;
    所述第一确定模块,用于根据所述获取模块获取的所述AP的多组动态数据,确定所述AP的多个信道效能值,所述AP的一个信道效能值为一个采样周期中有效数据传输时间段内单位时间传输的数据量;并且根据所述获取模块获取的所述AP的静态数据,确定所述AP的信道效能基线,所述AP的信道效能基线用于指示所述AP的信道效能值的参考值与第一动态参数之间的变化关系,所述第一动态参数为所述动态数据中的一种;
    所述第二确定模块,用于根据所述AP的多个信道效能值和所述AP的信道效能基线,确定所述AP所在的无线局域网的网络质量。
  11. 根据权利要求10所述的网络质量监控装置,其特征在于,
    所述动态数据包括所述AP的吞吐量、所述AP的信道利用率以及所述AP的同频干扰率。
  12. 根据权利要求10或11所述的网络质量监控装置,其特征在于,
    所述静态数据包括所述AP的类型、网络频段以及带宽。
  13. 根据权利要求10至12任一项所述的网络质量监控装置,其特征在于,
    所述第一确定模块,具体用于采用公式:AP_cp=AP_tp/(AP_cu-AP_cf),确定所述AP的信道效能值,其中,AP_cp为所述AP的信道效能值,AP_tp为所述AP的吞吐量,AP_cu为所述AP的信道利用率,AP_cf为所述AP的同频干扰率。
  14. 根据权利要求10至12任一项所述的网络质量监控装置,其特征在于,
    所述第一确定模块,具体用于确定预先配置的信道效能基线库中与所述AP的类型、网络频段以及带宽对应的信道效能基线为所述AP的信道效能基线。
  15. 根据权利要求10至14任一项所述的网络质量监控装置,其特征在于,
    所述第一动态参数为信道利用率。
  16. 根据权利要求15所述的网络质量监控装置,其特征在于,
    所述第二确定模块,具体用于当所述AP的多个信道效能值中,小于所述信道效能基线对应的信道效能值的信道效能值数量占所述AP的信道效能值的数量的比例大于或者等于预设比例时,确定所述AP所在的无线局域网的网络质量差;当所述AP的多个信道效能值中,小于所述信道效能基线对应的信道效能值的信道效能值数量占所述AP的信道效能值的数量的比例小于所述预设比例时,确定所述AP所在的无线局域网的网络质量正常。
  17. 根据权利要求15所述的网络质量监控装置,其特征在于,
    所述第二确定模块,具体用于当所述AP的多个信道效能值中,连续小于所述信道效能基线对应的信道效能值的信道效能值数量大于或者等于预设数量时,确定所述AP所在的无线局域网的网络质量差;当所述AP的多个信道效能值中,连续小于所述信道效能基线对应的信道效能值的信道效能值数量小于所述预设数量时,确定所述AP所在的无线局域网的网络质量正常。
  18. 根据权利要求15所述的网络监控装置,其特征在于,
    所述第二确定模块,具体用于当第一距离与所述AP的信道效能值的数量的比值大于预设比值时,确定所述AP所在的无线局域网的网络质量差;当所述第一距离与所述AP的信道效能值的数量的比值小于或者等于所述预设比值时,确定所述AP所在的无线局域网的网络质量正常,其中,所述第一距离为所述AP的多个信道效能值中,小于所述信道效能基线对应的信道效能值的所有信道效能值与所述信道效能基线对应的信道效能值之间的距离之和。
  19. 一种网络质量监控装置,其特征在于,包括处理器和与所述处理器耦合连接的存储器;
    所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,当所述计算机程序被执行时,所述处理器执行如权利要求1至9任意一项所述的网络质量监控方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质可以包括计算机指令,当所述计算机指令在计算机上运行时,使得所述网络质量监控装置执行如权利要求1至9任意一项所述的网络质量监控方法。
  21. 一种包括计算机指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述网络质量监控装置执行如权利要求1至9任意一项所述的网络质量监控方法。
PCT/CN2019/117958 2018-11-23 2019-11-13 一种网络质量监控方法及装置 WO2020103735A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021523628A JP7327766B2 (ja) 2018-11-23 2019-11-13 ネットワーク品質監視方法、装置、コンピュータ可読記憶媒体、及びコンピュータプログラム
KR1020217015936A KR102655457B1 (ko) 2018-11-23 2019-11-13 네트워크 품질 모니터링 방법 및 장치
EP19887754.0A EP3866400B1 (en) 2018-11-23 2019-11-13 Network quality monitoring method and device
MX2021006038A MX2021006038A (es) 2018-11-23 2019-11-13 Metodo y aparato de monitoreo de calidad de red.
US17/325,933 US11800386B2 (en) 2018-11-23 2021-05-20 Network quality monitoring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811409128.8A CN111225404B (zh) 2018-11-23 2018-11-23 一种网络质量监控方法及装置
CN201811409128.8 2018-11-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/325,933 Continuation US11800386B2 (en) 2018-11-23 2021-05-20 Network quality monitoring method and apparatus

Publications (1)

Publication Number Publication Date
WO2020103735A1 true WO2020103735A1 (zh) 2020-05-28

Family

ID=70773752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117958 WO2020103735A1 (zh) 2018-11-23 2019-11-13 一种网络质量监控方法及装置

Country Status (7)

Country Link
US (1) US11800386B2 (zh)
EP (1) EP3866400B1 (zh)
JP (1) JP7327766B2 (zh)
KR (1) KR102655457B1 (zh)
CN (1) CN111225404B (zh)
MX (1) MX2021006038A (zh)
WO (1) WO2020103735A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114697245A (zh) * 2020-12-30 2022-07-01 深圳Tcl新技术有限公司 网络测试方法、装置、计算机可读存储介质及终端设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895003B2 (en) * 2020-07-03 2024-02-06 Nokia Solutions And Networks Oy Managing quality of monitoring models for collection of performance and/or sensing data
CN112925689B (zh) * 2021-01-22 2022-05-20 复旦大学 一种多路监控数据传输优化方法
CN113660648B (zh) * 2021-08-13 2024-04-05 Oppo广东移动通信有限公司 多媒体数据的传输方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677934A (zh) * 2004-03-31 2005-10-05 华为技术有限公司 监控网络业务性能的方法及系统
WO2007148313A2 (en) * 2006-06-20 2007-12-27 Alcatel Lucent Network service performance monitoring apparatus and methods
CN106470461A (zh) * 2015-08-17 2017-03-01 中兴通讯股份有限公司 被测量接入点ap确定方法及装置
CN107104848A (zh) * 2016-02-19 2017-08-29 中国移动通信集团浙江有限公司 信息技术系统监控方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046678B2 (en) * 2000-02-18 2006-05-16 At & T Corp. Channel efficiency based packet scheduling for interactive data in cellular networks
US7095955B2 (en) * 2004-01-28 2006-08-22 Advanced Fibre Communications Inc. System and method for performance monitoring in a passive optical network
US8874099B2 (en) * 2012-02-03 2014-10-28 Eden Rock Communications, Llc Method and apparatus for measuring multi-cell data efficiency in link adaptive wireless networks
CN103580905B (zh) * 2012-08-09 2017-05-31 中兴通讯股份有限公司 一种流量预测方法、系统及流量监测方法、系统
US9215609B2 (en) * 2012-10-16 2015-12-15 Aruba Networks, Inc. Method and system for measuring wireless link quality
JPWO2016088726A1 (ja) * 2014-12-01 2017-06-29 株式会社東芝 無線通信装置および無線通信方法
CN106376032B (zh) * 2016-08-31 2017-09-22 鲁向东 热点区域自动识别方法和装置
US10405204B2 (en) * 2017-02-17 2019-09-03 Cisco Technology, Inc. Optimizing spectral efficiency in a network by activating or deactivating access points based on client device activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677934A (zh) * 2004-03-31 2005-10-05 华为技术有限公司 监控网络业务性能的方法及系统
WO2007148313A2 (en) * 2006-06-20 2007-12-27 Alcatel Lucent Network service performance monitoring apparatus and methods
CN106470461A (zh) * 2015-08-17 2017-03-01 中兴通讯股份有限公司 被测量接入点ap确定方法及装置
CN107104848A (zh) * 2016-02-19 2017-08-29 中国移动通信集团浙江有限公司 信息技术系统监控方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114697245A (zh) * 2020-12-30 2022-07-01 深圳Tcl新技术有限公司 网络测试方法、装置、计算机可读存储介质及终端设备

Also Published As

Publication number Publication date
CN111225404A (zh) 2020-06-02
US11800386B2 (en) 2023-10-24
EP3866400B1 (en) 2023-06-21
JP7327766B2 (ja) 2023-08-16
KR102655457B1 (ko) 2024-04-05
CN111225404B (zh) 2021-08-31
US20210274369A1 (en) 2021-09-02
EP3866400A1 (en) 2021-08-18
MX2021006038A (es) 2021-07-06
EP3866400A4 (en) 2021-12-15
KR20210076987A (ko) 2021-06-24
JP2022506319A (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
WO2020103735A1 (zh) 一种网络质量监控方法及装置
US20230239228A1 (en) Method and system for connectivity diagnostics in communication systems
WO2017166609A1 (zh) 一种基于无线设备的频段切换方法、无线设备和电子设备
US10708803B2 (en) Coexistence reporting based on user equipment (UE) measurements
EP3694149B1 (en) Network quality determining method and apparatus
US11973675B2 (en) Method and system for latency measurement in communication systems
US10523271B2 (en) Cable modem echo cancellation training in full duplex coaxial networks
EP3163313A1 (en) Fault analysis method and device
WO2019184735A1 (zh) 级联ap的通信方法、无线接入点及存储介质
EP4038837B1 (en) Quality of experience measurements for control of wi-fi networks
WO2020103733A1 (zh) 用于实现质差根因分析的方法及网络设备
WO2021254180A1 (zh) 信道分配方法及装置、存储介质
WO2017004994A1 (zh) 空闲信道评估方法和装置
CN111384997B (zh) C-hpav系统的节能方法、存储介质、及电子设备
WO2023089784A1 (ja) 周波数状況観測システム、周波数状況観測方法、制御装置、及び制御プログラム
WO2021254283A1 (zh) 调度方法、装置及系统、存储介质
US20240314622A1 (en) Smart network steering of wireless devices
WO2022082516A1 (zh) 数据传输方法及通信装置
WO2017116395A1 (en) Monitoring of wlan channel availability
WO2024011172A1 (en) A method for application control and adaptive quality of service (qos) handling
WO2024064774A2 (en) Latency-based contention
CN116847398A (zh) 确定网络性能的方法及装置
WO2019063677A1 (en) METHOD FOR MEASURING THE USE OF THE NETWORK OF A WIRELESS MEDIUM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523628

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019887754

Country of ref document: EP

Effective date: 20210510

ENP Entry into the national phase

Ref document number: 20217015936

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE