WO2020103675A1 - 机器人控制方法以及机器人系统 - Google Patents

机器人控制方法以及机器人系统

Info

Publication number
WO2020103675A1
WO2020103675A1 PCT/CN2019/115099 CN2019115099W WO2020103675A1 WO 2020103675 A1 WO2020103675 A1 WO 2020103675A1 CN 2019115099 W CN2019115099 W CN 2019115099W WO 2020103675 A1 WO2020103675 A1 WO 2020103675A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
narrow
working area
area
value
Prior art date
Application number
PCT/CN2019/115099
Other languages
English (en)
French (fr)
Inventor
朱绍明
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2020103675A1 publication Critical patent/WO2020103675A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of intelligent control, in particular to a robot control method and a robot system, and in particular to a robot return path control method and a robot system.
  • the mowing robot uses the electronic boundary to surround the lawn and the rockery, fountains and other obstacles in the lawn, and performs random mowing on the lawn within the electronic boundary , In order to liberate users from manual labor, and is widely used because of its low price.
  • the walking path of the mowing robot is mostly based on non-narrow areas for traversal operations, so for regular work areas, the mowing robot can usually meet user needs; however, in practical applications, often complex and diverse Mowing areas, especially those with narrow channels, for working areas with narrow channels, when the mowing robot returns to the base station along the line, it may accidentally enter the narrow channel and drive away from the base station, especially through the narrow
  • the channel enters another working area far away from the base station, when the area of the other working area is larger or the shape is more complicated, on the one hand, it will cause the robot's battery power return threshold to be high, making its energy unable to be fully utilized ; On the other hand, it will cause the mowing robot to return for a long time, reducing the efficiency of mowing.
  • an object of the present invention is to provide a robot control method and a robot system.
  • a robot control method of the present invention includes: S01: Obtaining the area level value corresponding to each non-narrow work area and the channel level value corresponding to each connection channel; any non-narrow work
  • the zone level value of the zone is positively related to the number of least connected channels included in the connection path between the current non-narrow working zone and the initial working zone, and the zone level value of the initial working zone is the smallest; the channel level value of any connection channel is equal to The minimum area level value of the non-narrow work area directly connected to the current connection channel; set the base station's non-narrow work area as the initial work area;
  • S02 According to the area level value of the robot's current non-narrow work area and the current non-narrow work area The channel level value corresponding to each connected channel selects the return path of the robot.
  • step S01 before the step S01, the following steps are further included: driving the robot to perform the line patrol mode, recording the connection channels in the entire work area and the non-narrow work area formed by the separation of the connection channels position.
  • the method further includes: transmitting a signal along the patrol route to generate an electromagnetic signal near the patrol route; the patrol route is a boundary line of the work area where the robot is located A closed loop is formed; during driving the robot to walk along the extension direction of the patrol path, the position of the narrow channel on the patrol path is confirmed according to the change of the electromagnetic signal actually received by the robot.
  • "determining whether the current working area of the robot is the initial working area” specifically includes: acquiring the value of the number of crossings of the connection channel connected to the initial working area by the robot, when the number of crossings is When the number is even, confirm that the current working area of the robot is the initial working area; in the initial working state, the number of crossings is 0; after any connection channel connected to the initial working area is crossed by the robot, the number of crossings is increased by 1; When the robot returns to the base station, the value of the number of crossings is cleared.
  • the working area includes a first connecting channel and a first non-narrow working area and a second non-narrow working area formed by the first connecting channel.
  • the narrow working area is the initial working area; the method further includes: acquiring the value of the first number of crossings of the first connection channel traversed by the robot during the operation of the robot, wherein each time the robot traverses the first connection channel, the first connection is cumulatively crossed The first crossing number value of the channel, when the robot returns to the base station, the first crossing number value is cleared; the current working position of the robot is confirmed according to the first crossing number value; the current working position planning of the robot is planned The shortest walking path for the robot to return.
  • “confirming the current working position of the robot according to the value of the first number of crossings” specifically includes: when the value of the first number of crossings is an odd number, confirming that the robot is in The first non-narrow working area; when the value of the first number of crossings is an even number, confirm that the robot is in the second non-narrow working area.
  • "planning the shortest walking path for the robot to return according to the current working position of the robot” specifically includes: when the robot is in the first non-narrow working area, driving the robot according to a preset Returns to the base station along the walking direction of the line, if it enters the first connection channel during the return process, the robot is driven to rotate on the current boundary line of the first connection channel so that it enters the boundary line on the other side of the current first connection channel, When the robot reaches the boundary line on the other side, the rotation direction of the robot is driven again to make it return to the base station according to the preset walking direction; when the robot is in the second non-narrow working area, the robot is driven according to the preset Return to the base station along the direction of the line; if the first connection channel is entered during the return process, the robot is driven through the first connection channel into the first non-narrow working area, and in the same manner as when the robot is in the first non-narrow working area Return to the base
  • the working area further includes a third non-narrow working area, and a second connection channel connecting the second non-narrow working area and the third non-narrow working area; the method also Including: during the working process of the robot, the value of the number of second crossings of the second connection channel traversed by the robot is obtained, wherein the value of the number of second crossings of the second connection channel is accumulated every time the robot traverses the second connection channel, when the robot When returning to the base station, the second crossing number value is cleared; the current working position of the robot is confirmed according to the first crossing number value and the second crossing number value; the shortest walking path for the robot to return is planned according to the current working position of the robot .
  • “confirming the current working position of the robot according to the first crossing number value and the second crossing number value” specifically includes: when the first crossing number value and the When the value of the second number of crossings is even, confirm that the robot is in the first non-narrow working area; when the value of the first number of crossings is odd, and the value of the second number of crossings is even, confirm that the robot is in the second Narrow working area; when the first and second crossing times are both odd, confirm that the robot is in the third non-narrow working area; when the first crossing number value is even, the second crossing time When the value is an odd number, error processing is performed on the current position of the robot.
  • "planning the shortest walking path for the robot to return according to the current working position of the robot” specifically includes: when the robot is in the first non-narrow working area, driving the robot according to a preset Returns to the base station along the walking direction of the line, if it enters the first connection channel during the return process, the robot is driven to rotate on the current boundary line of the first connection channel so that it enters the boundary line on the other side of the current first connection channel, When the robot reaches the boundary line on the other side, the rotation direction of the robot is driven again to make it return to the base station according to the preset walking direction; when the robot is in the second non-narrow working area, the robot is driven according to the preset Return to the base station along the direction of the line; if the first connection channel is entered during the return process, the robot is driven through the first connection channel into the first non-narrow working area, and in the same manner as when the robot is in the first non-narrow working area Return to the base
  • the robot's rotation direction is driven again to return it to the base station according to the preset walking direction; when the robot is in the third non-narrow working area, the robot is driven according to the preset walking direction Return to the base station; if the second connection channel is entered during the return process, the robot is driven through the second connection channel into the second non-narrow working area, and returns to the base station in the same manner as when the robot is in the second non-narrow working area; When receiving an error report of the current position of the robot, the robot is directly driven to return to the base station according to a preset walking direction.
  • the working area further includes a third non-narrow working area, and a third connection channel connecting the first non-narrow working area and the third non-narrow working area; the method also Including: During the working process of the robot, the value of the number of third crossings that the third connection channel is traversed by the robot is obtained, wherein each time the robot crosses the third connection channel, the value of the number of third crossings through the third connection channel is accumulated, When returning to the base station, the value of the third number of crossings is cleared; the current working position of the robot is confirmed according to the first number of crossings and the third number of crossings; the shortest walking path for the robot to return is planned according to the current working position of the robot .
  • “confirming the current working position of the robot according to the first crossing number value and the third crossing number value” specifically includes: when the first crossing number value and the When the value of the second number of crossings is even, confirm that the robot is in the first non-narrow working area; when the value of the first number of crossings is odd, and the value of the second number of crossings is even, confirm that the robot is in the second Narrow working area; when the value of the first number of crossings is even and the value of the second number of crossings is odd, confirm that the robot is in the third non-narrow working area; when the value of the first number of crossings and the value of the second number of crossings When both are odd, error processing is performed on the current position of the robot.
  • "planning the shortest walking path for the robot to return according to the current working position of the robot” specifically includes: when the robot is in the first non-narrow working area, driving the robot according to a preset Returns to the base station along the direction of the line, if the connection channel is entered during the return process, the connection channel includes the first connection channel or the second connection channel, then the robot is driven to rotate in the current boundary line of the current connection channel to make it enter the current connection On the boundary line on the other side of the channel, when the robot reaches the boundary line on the other side, the rotation direction of the robot is driven again to return it to the base station according to the preset walking direction; when the robot is in the second non-narrow operation During the zone, the robot is driven to return to the base station according to the preset walking direction; if the first connection channel is entered during the return process, the robot is driven to cross the first connection channel into the first non-narrow working area and follow the robot Return to the base station in the first
  • the method further includes: distinguishing different connection channels by the length and / or width of the connection channels; or setting different characteristic signal points in each connection channel to distinguish different Connect the channel.
  • Another object of the present invention is to provide a robot system including an area dividing module for recording connection channels in the entire working area and a non-narrow working area formed by the connection channels, and setting a non-narrow base station
  • the work area is the initial work area
  • the acquisition module is used to obtain the area level value corresponding to each non-narrow work area and the channel level value corresponding to each narrow channel
  • the area level value of any non-narrow work area is different from the current non-narrow work area to
  • the minimum number of narrow channels included in the connection path between the initial working areas is positively correlated, and the area level value of the initial working area is the smallest
  • the channel level value of any narrow channel is equal to the minimum of the non-narrow area directly connected to the current narrow channel
  • the area level value of the; processing planning module used to select the walking path of the robot return according to the area level value of the non-narrow working area where the robot is currently located and the channel level value corresponding to each connection channel connected to the current non-narrow working area.
  • the system further includes: a signal transmission module for transmitting a pulse-coded signal along the patrol route to generate an electromagnetic signal on the patrol route; the patrol route It is a closed loop formed by the boundary line of the working area where the robot is located; the area dividing module is also used to drive the robot to walk along the extension direction of the line-tracking path, recording the strength of the electromagnetic signal actually received by the robot, according to the actual generated The strength of the electromagnetic signal and the strength of the electromagnetic signal actually received by the robot.
  • the robot control method and robot system of the present invention can quickly locate the area where the robot is located by acquiring the area level value corresponding to each non-narrow working area and the channel level value corresponding to each narrow channel, and according to Planning the return route where it is located; especially when the robot is working in a work area with a narrow channel and is in the process of returning to the base station, it is enough to shorten the return path and improve the working efficiency of the robot.
  • FIG. 1 is a schematic structural diagram of a robot in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a control method for a robot to return to a base station according to an embodiment of the present invention
  • 4A is an application effect diagram of a second specific example of the present invention.
  • FIG. 4B is a schematic flowchart of a specific implementation of the example shown in FIG. 4A;
  • 5A is an application effect diagram of a third specific example of the present invention.
  • 5B is a schematic diagram of a specific implementation process of the example shown in FIG. 5A;
  • 6A is an application effect diagram of a third specific example of the present invention.
  • FIG. 6B is a schematic flowchart of a specific implementation of the example shown in FIG. 6A;
  • FIG. 7 is a schematic block diagram of a robot system provided by an embodiment of the present invention.
  • the robot of the present invention may be an automatic lawn mower, or an automatic vacuum cleaner, etc., which automatically walks in the work area for mowing and vacuuming work.
  • the robot is used as a mowing robot for specific description, corresponding
  • the working area may be a lawn.
  • a preferred embodiment of the present invention provides a robot.
  • the robot includes a body 10, a mobile unit and a control unit provided on the body 10.
  • a base station independent of the robot, there is also a base station that can provide power to the robot.
  • the base station is connected to a boundary line arranged along the peripheral side of the working area.
  • the signal is transmitted within the boundary line to form an electromagnetic signal near the boundary line.
  • the signal is a pulse code signal.
  • the mobile unit includes: a driving wheel 21, a passive wheel 23, and a motor 25 for driving the driving wheel 21; the motor 25 may be a brushless motor with a reduction gear box; after the motor 25 is started, the driving wheel may be driven by the reduction gear box 21 Walking, and controlling the rotation speed of the driving wheel 21, further, in conjunction with the adjustment of the driving wheel 21, the entire robot is driven to realize forward, backward, turning and other actions.
  • the passive wheel 23 may be a universal wheel, which mainly serves to support balance.
  • the control unit includes at least a status sensor for acquiring various information obtained during the robot walking along the patrol path during the robot walking along the patrol path, for example, acquiring the electromagnetic signal strength on the patrol path
  • the status sensor includes a boundary line sensor, which will be described in detail below; a data storage is used to store various information obtained by the robot walking along the line-travel path.
  • the data storage is, for example: EPROM, Flash or SD card etc.
  • the control unit can control the operation of the motor according to the strength of the electromagnetic signal near the boundary line and the difference between the internal and external signals obtained by the status sensor , So that the robot always runs along the boundary line or inside or outside along the boundary line with equal distance from the boundary line.
  • the robot further includes: a cutter head for cutting grass, and various sensors for sensing the walking state of the robot, such as: dump, ground, collision sensors, etc., which will not be repeated here.
  • the working area may be a whole block, or may be multiple working areas connected by at least one connection channel.
  • the present invention is mainly applied to multiple working areas connected by at least one connection channel.
  • the length and width of the work area are generally much larger than the size of the robot body 10, so in the following, the work area is also referred to as a non-narrow work area.
  • the width of the connection channel is usually only several times the size of the robot body 10; more specifically, the width of the connection channel is usually not more than twice the width of the robot body 10, so in the following, the connection channel is also referred to as a narrow channel.
  • a robot control method provided by a preferred embodiment of the present invention is specifically a control method for a robot to return to a base station.
  • the method includes: S01, driving the robot to perform a line patrol mode, recording connection channels in the entire work area, and The location of the non-narrow working area formed by the connection channels.
  • the base station transmits a pulse-coded signal along the patrol route to generate electromagnetic signals near the patrol route;
  • the patrol route is a closed loop formed by the boundary line of the working area where the robot is located;
  • Configure at least one line patrol mode and one working mode for the robot in the line patrol mode, when driving the robot to walk along the extension direction of the line patrol path, confirm the narrow channel on the line patrol path according to the changes of the electromagnetic signals actually received by the robot position.
  • the electromagnetic signal actually received by the robot is received by the boundary line sensor.
  • a pair of boundary line sensors are symmetrically arranged along the center line of the robot.
  • the pair of boundary line sensors respectively detect the electromagnetic intensity on both sides of the patrol line path; the narrow area
  • the superposition of the magnetic field generated by the relative boundary line strengthens the magnetic field strength between the narrow areas and weakens the magnetic field strength outside the narrow area.
  • the robot when the signal change reaches or exceeds a threshold, the robot can be confirmed to enter the narrow channel; conversely, when the signal change returns below the threshold, the robot can be confirmed to leave the narrow channel.
  • the step S01 further includes: in the line patrol mode, acquiring the area level value corresponding to each non-narrow work area and the channel level value corresponding to each connection channel; the area level value of any non-narrow work area is different from the current non-narrow work area
  • the minimum number of connection channels included in the connection path between the narrow working area and the initial working area is positively correlated, and the area level value of the initial working area is the smallest; the channel level value of any connection channel is equal to the non-directly connected to the current narrow channel
  • the minimum area level value of the narrow working area is to set the non-narrowing working area of the base station as the initial working area.
  • the present invention describes a specific example for reference.
  • the area level value of any non-narrow working area is equal to the minimum number of narrow channels included in the connection path between the current non-narrow working area and the initial working area.
  • the working area includes: non-narrow working areas A, B, C, D, E, and F, referred to as area A, area B, area C, area D, area E, and area F in the following content, and Narrow channel P AB connecting area A and area B, referred to as channel P AB , narrow channel P AC connecting area A and area C, referred to as channel P AC , narrow channel P BF connecting area B and area F, referred to as channel P BF ,
  • the narrow channel P CD connecting area C and area D referred to as channel P CD
  • the narrow channel P CE connecting area C and area E referred to as channel P CE
  • the narrow channel P DE connecting area D and area E referred to as channel P DE
  • the narrow channel P DF connecting area D and area F referred to as channel P DF for short.
  • the method includes: S02, selecting the regression path of the robot according to the area level value of the non-narrow work area where the robot is currently located and the channel level value corresponding to each connection channel connected to the current non-narrow work area.
  • a characteristic signal point in the initial working area such as the boundary line coiled at this point, the RFID tag set at this point, etc.
  • unused characteristic signal points can be set in different non-narrow working areas and narrow passages, or at the boundary between non-narrow working areas and narrow passages. By detecting these unused characteristic signal points, the robot can accurately determine In which non-narrow working area and / or through which narrow passage.
  • the number of crossing times T through which the connection channel connected to the initial work area is traversed by the robot is obtained.
  • the number of crossing times T is an even number, it is confirmed that the current working area of the robot is the initial working area; wherein, the initial work In the state, the number of crossing times T is 0; after any connection channel connected to the initial work area is traversed by the robot, the number of crossing times T is increased by 1; when the robot returns to the base station, the value of the number of crossing times T is cleared zero.
  • the value of the number of crossings for the narrow passage directly connected to the area A is calculated.
  • the value of the number of crossings for narrow passages directly connected to other areas may also be calculated.
  • the robot can be selected to return to the nearest base station or a designated base station according to the above method.
  • the shape of the working area changes variously, and on the basis of the above method, some special examples are used for description.
  • the working area includes a first narrow channel P AB and a first non-narrow working area A and a second non-narrow working area B formed by the first narrow channel P AB.
  • the narrow working area A is the initial working area.
  • the method further includes: S11. During the operation of the robot, obtain a value of the first number of crossings of the first narrow channel traversed by the robot, wherein each time the robot traverses the first narrow channel, the first narrow channel is accumulated The value of the first crossing number of the channel, when the robot returns to the base station, the first crossing number value is cleared;
  • the step S12 specifically includes: when the first crossing number value is an odd number, confirming that the robot is in the first non-narrow working area; when the first crossing number value is an even number To confirm that the robot is in the second non-narrow working area.
  • the step S13 specifically includes: when the robot is in the first non-narrow working area, driving the robot to return to the base station according to a preset walking direction, and if the first narrow channel is entered during the return process, the first narrow channel Drives the robot's rotation direction on the current boundary line to make it enter the boundary line on the other side of the current first narrow channel, and when the robot reaches the boundary line on the other side, the robot rotation direction is driven again to make it follow the preset Return to the base station along the direction of walking;
  • the robot When the robot is in the second non-narrow working area, the robot is driven to return to the base station according to the preset walking direction; if the first narrow channel is entered during the return process, the robot is driven through the first narrow channel to enter the first The non-narrow working area, and return to the base station in the manner that the robot is in the first non-narrow working area.
  • the preset walking direction of the robot along the line is the direction shown by arrow D1, that is, the robot walks counterclockwise along the line-tracking path, and the initial value of the first crossing number T AB is 0, and the robot Enter the area A from the base station in the direction of D1, or walk to the starting point after walking to the starting point along the boundary line, and turn to enter the area A or area B to start the operation.
  • T AB2 T AB1 +1
  • T AB1 means crossing
  • T AB2 represents the value of the number of first crossings after crossing the first narrow passage.
  • the robot when the robot is in the first non-narrow working area A and enters the first narrow channel P AB during the return to the base station, the robot is driven to rotate 90 ° counterclockwise to enter the other side of the first narrow channel P AB On the boundary line, rotate 90 ° counterclockwise and return to the base station along the patrol route.
  • the working area further includes a first non-narrow working area C, and a second narrow passage connecting the second non-narrow working area B and the third non-narrow working area C P BC .
  • the method shown in FIG. 4B is improved.
  • the method specifically includes:
  • the step S22 specifically includes: when the first crossing number value and the second crossing number value are both even numbers, confirming that the robot is in the first non-narrow working area; When the value of the first number of crossings is odd, and the value of the second number of crossings is even, confirm that the robot is in the second non-narrow work area; when the value of the first number of crossings and the value of the second number of crossings are both odd, confirm The robot is in the third non-narrow working area; when the first number of crossings is an even number and the second number of crossings is an odd number, an error processing is performed on the current position of the robot.
  • the step S23 specifically includes: when the robot is in the first non-narrow working area, driving the robot to return to the base station according to a preset walking direction, if the first narrow channel is entered during the return process, the first narrow channel Drives the robot's rotation direction on the current boundary line to make it enter the boundary line on the other side of the current first narrow channel, and when the robot reaches the boundary line on the other side, the robot rotation direction is driven again to make it follow the preset Return to the base station along the direction of walking;
  • the robot When the robot is in the second non-narrow working area, the robot is driven to return to the base station according to the preset walking direction; if the first narrow channel is entered during the return process, the robot is driven through the first narrow channel to enter the first Non-narrow working area, and return to the base station as the robot is in the first non-narrow working area; if the second narrow channel is entered during the return process, the robot's rotation direction is driven on the current boundary line of the second narrow channel to make It enters the boundary line on the other side of the current second narrow channel. When the robot reaches the boundary line on the other side, the robot is driven to rotate again to return to the base station according to the preset walking direction;
  • the robot When the robot is in the third non-narrow working area, the robot is driven to return to the base station according to a preset walking direction; if a second narrow channel is entered during the return process, the robot is driven through the second narrow channel to enter the second The non-narrow working area, and return to the base station according to the manner in which the robot is in the second non-narrow working area; when an error is received from the current position of the robot, the robot is directly driven to return to the base station according to a preset walking direction.
  • different narrow channels when the number of narrow channels is greater than 1, different narrow channels can be distinguished in various ways; in a specific embodiment of the present invention, different narrow channels are distinguished by the length and / or width of the narrow channels; Or set different characteristic signal points in each narrow channel to distinguish different narrow channels.
  • the preset walking direction of the robot along the line is the direction indicated by the arrow D1, that is, the robot walks counter-clockwise along the line-tracking path, the first crossing number value T AB and the second crossing number value T
  • the initial value of BC is 0, the robot enters area A from the base station in the direction of D1, or walks along the boundary line to the starting point, and then turns to enter area A or area B or area C to start work.
  • T AB2 T AB1 +1
  • T BC2 T BC1 +1
  • T AB1 represents the value of the number of first crossings before crossing the first narrow channel
  • T AB2 represents the crossing of the first narrow
  • T BC1 represents the value of the second crossing number before crossing the second narrow passage
  • T BC2 represents the value of the second crossing number after crossing the second narrow passage.
  • the working area further includes a third non-narrow working area C, and a third narrow connecting the first non-narrow working area A and the third non-narrow working area C Channel P AC .
  • the method shown in FIG. 4B is improved.
  • the method specifically includes:
  • the step S32 specifically includes: when the first crossing number value and the second crossing number value are both even numbers, confirm that the robot is in the first non-narrow working area; When the value of the first number of crossings is odd and the value of the second number of crossings is even, confirm that the robot is in the second non-narrow working area; when the value of the first number of crossings is even and the value of the second number of crossings is odd, Confirm that the robot is in the third non-narrow working area; when the first crossing number value and the second crossing number value are both odd numbers, perform error processing on the current position of the robot.
  • the step S33 specifically includes: when the robot is in the first non-narrow working area, driving the robot to return to the base station according to a preset walking direction, and if a narrow channel is entered during the return process, the narrow channel includes the first narrow Channel or the second narrow channel, then the robot's rotation direction is driven on the current boundary line of the current narrow channel to make it enter the boundary line on the other side of the current narrow channel. When the robot reaches the boundary line on the other side, again Drive the rotation direction of the robot so that it returns to the base station according to the preset walking direction;
  • the robot When the robot is in the second non-narrow working area, the robot is driven to return to the base station according to the preset walking direction; if the first narrow channel is entered during the return process, the robot is driven through the first narrow channel to enter the first A non-narrow working area, and return to the base station according to the manner when the robot is in the first non-narrow working area;
  • the robot When the robot is in the third non-narrow working area, the robot is driven to return to the base station according to a preset walking direction; if a third narrow channel is entered during the return process, the robot is driven through the third narrow channel to enter the first A non-narrow working area, and return to the base station according to the manner when the robot is in the first non-narrow working area;
  • the robot When receiving an error report of the current position of the robot, the robot is directly driven to return to the base station according to a preset walking direction.
  • the preset walking direction of the robot along the line is the direction indicated by the arrow D1, that is, the robot walks counter-clockwise along the line-tracking path, the first crossing number value T AB and the third crossing number value T
  • the initial value of AC is 0, the robot enters area A from the base station in the direction of D1, or walks along the boundary line to the starting point, and then turns to enter area A or area B or area C to start work.
  • T AB2 T AB1 +1
  • T AC2 T AC1 +1
  • T AB1 represents the value of the first crossing number before crossing the first narrow passage
  • T AB2 represents the first narrow crossing
  • T AC1 represents the value of the second crossing number before crossing the second narrow passage
  • T AC2 represents the value of the third crossing number after crossing the third narrow passage.
  • an embodiment of the present invention provides a robot system that implements the above control method, which includes an area division module 100, an acquisition module 200, a processing planning module 300, and a signal transmission module 400.
  • the area dividing module 100 is used to drive the robot to perform a line-tracking mode, record the narrow channel and the non-narrow working area formed by the narrow channel in the entire working area, and set the non-narrow working area of the base station as the initial working area.
  • the base station transmits a pulse-coded signal along the patrol route through the signal transmission module 400 to generate an electromagnetic signal near the patrol route; the patrol route is formed by the boundary line of the working area where the robot is located Closed loop
  • Configure at least one line patrol mode and one working mode for the robot in the line patrol mode, when driving the robot to walk along the extension direction of the line patrol path, confirm the narrow channel on the line patrol path according to the changes of the electromagnetic signals actually received by the robot position.
  • the obtaining module 200 is used to obtain the area level value corresponding to each non-narrow working area and the channel level value corresponding to each narrow channel in the line patrol mode; the area level value of any non-narrow working area and the current non-narrow working area to the initial
  • the minimum number of narrow channels included in the connection path between the work areas is positively correlated, and the area level value of the initial work area is the smallest; the channel level value of any narrow channel is equal to the minimum of the non-narrow area directly connected to the current narrow channel Regional level value.
  • the processing planning module 300 is used to select a walking path for the robot to return according to the area level value of the non-narrow working area where the robot is currently located and the channel level value corresponding to each narrow channel connected to the current non-narrow working area.
  • the method and robot system of the robot returning to the base station of the present invention can quickly locate the area where the robot is located by acquiring the area level value corresponding to each non-narrow working area and the channel level value corresponding to each narrow channel, And plan the return route according to its location; especially when the robot is working in the working area with a narrow channel and is in the process of returning to the base station, it can shorten the return path and improve the working efficiency of the robot.
  • the disclosed system, system, and method may be implemented in other ways.
  • the system implementation described above is only schematic.
  • the division of the modules is only a division of logical functions.
  • there may be other divisions for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, systems or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware, or in the form of hardware plus software function modules.
  • the above integrated modules implemented in the form of software function modules may be stored in a computer-readable storage medium.
  • the above software function modules are stored in a storage medium, and include several instructions to enable a computer system (which may be a personal computer, a server, or a network system, etc.) or a processor (processor) to perform the methods described in the various embodiments of the present application. Partial steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

提供一种机器人控制方法及机器人系统,方法包括:驱动机器人执行巡线模式,记录整个工作区域内的狭窄通道以及由狭窄通道分隔而形成的非狭窄工作区,基站设置的非狭窄工作区为初始工作区;在巡线模式下获取各个非狭窄工作区对应的区域级别值以及各个连接通道对应的通道级别值(S01);根据机器人当前所在非狭窄工作区的区域级别值以及当前非狭窄工作区相连接的各个连接通道对应的通道级别值选择机器人的回归路径(S02)。机器人回归基站的方法以及机器人系统,能够缩短回归路径,提高机器人的工作效率。

Description

机器人控制方法以及机器人系统 技术领域
本发明涉及智能控制领域,具体涉及一种机器人控制方法以及机器人系统,尤其涉及一种机器人回归路径控制方法及机器人系统。
背景技术
随着科学技术的不断进步,各种自动工作设备已经开始慢慢的走进人们的生活,例如:自动吸尘机器人、自动割草机器人等。这种自动工作设备具有行走装置、工作装置及自动控制装置,从而使得自动工作设备能够脱离人们的操作,在一定范围内自动行走并执行工作,在自动工作设备的储能装置能量不足时,其能够自动返回充电站装置进行充电,然后继续工作。
以自动工作设备为割草机器人为例进行说明,割草机器人在工作过程中,用电子边界围住草坪四周及草坪内假山、喷泉等障碍物,在电子边界内的草坪上进行随机割草作业,以将用户从体力劳动中解放出来,并且由于其价格低廉而得到广泛使用。
现有技术中,割草机器人的行走路径大多是基于非狭窄区域进行遍历作业,因此对于规则的工作区域,割草机器人通常都可以满足用户需求;然而,实际应用中,经常会出现复杂多样的割草区域,特别是带有狭窄通道的割草区域,对于存在狭窄通道的工作区域,割草机器人在沿线回归基站时可能会意外进入狭窄通道而朝向远离基站的方向驶离,特别是通过狭窄通道而进入远离基站所在的另一工作区的状况下,当另一工作区的面积较大或形状较为复杂时,一方面会导致机器人的电池电量的回归阈值较高,使其能源无法充分利用;另一方面会导致割草机器人回归时间长,降低割草效率。
发明内容
为解决上述技术问题,本发明的目的在于提供一种机器人控制方法及机器 人系统。
为了实现上述发明目的之一,本发明的一种机器人控制方法,所述方法包括:S01:获取各个非狭窄工作区对应的区域级别值以及各个连接通道对应的通道级别值;任一非狭窄工作区的区域级别值与当前非狭窄工作区到初始工作区之间连接路径中包含的最少的连接通道的数量呈正相关关系,初始工作区的区域级别值最小;任一连接通道的通道级别值等于与当前连接通道直接相连的非狭窄工作区的最小的区域级别值;设置基站的非狭窄工作区为初始工作区;S02:根据机器人当前所在非狭窄工作区的区域级别值以及当前非狭窄工作区相连接的各个连接通道对应的通道级别值选择机器人的回归路径。
作为本发明的一具体实施方式的优选方案,所述步骤S01之前还包括以下步骤:驱动机器人执行巡线模式,记录整个工作区域内的连接通道以及由连接通道分隔而形成的非狭窄工作区的位置。
作为本发明的一具体实施方式的优选方案,所述方法还包括:沿巡线路径发射信号,以在所述巡线路径附近产生电磁信号;所述巡线路径为机器人所在工作区域的边界线形成的闭合回路;驱动所述机器人沿巡线路径的延伸方向行走过程中,根据机器人实际接收到的电磁信号的变化确认巡线路径上狭窄通道的位置。
作为本发明的一具体实施方式的优选方案,步骤S02具体包括:判断机器人当前所在工作区域是否为初始工作区,若是,则驱动机器人直接沿初始工作区的巡线路径返回至基站;若否,则驱动机器人沿当前非狭窄工作区的巡线路径行走,并搜索当前非狭窄工作区对应的回归连接通道进行穿越,直至返回至基站;其中,所述回归连接通道的确认方法包括:获取机器人所在非狭窄工作区对应的区域级别值LA,将当前非狭窄工作区连接的通道级别值为LP的连接通道作为回归连接通道,LP=LA-1。
作为本发明的一具体实施方式的优选方案,“判断机器人当前所在工作区域是否为初始工作区”具体包括:获取与初始工作区相连的连接通道被机器人穿越 的穿越次数值,当穿越次数值为偶数时,确认机器人当前所在工作区域为初始工作区;其中,初始工作状态下,所述穿越次数值为0;与初始工作区相连的任一连接通道被机器人穿越后,所述穿越次数值加1;当机器人回归至基站时,所述穿越次数值清零。
作为本发明的一具体实施方式的优选方案,所述工作区域包括第一连接通道以及由第一连接通道分隔而形成的第一非狭窄工作区和第二非狭窄工作区,所述第一非狭窄工作区为初始工作区;所述方法还包括:机器人工作过程中,获取第一连接通道被机器人穿越的第一穿越次数值,其中,机器人每穿越一次第一连接通道,累加穿越第一连接通道的第一穿越次数值,当所述机器人回归基站时,所述第一穿越次数值清零;根据所述第一穿越次数值确认机器人当前所处的工作位置;根据机器人的当前工作位置规划机器人回归的最短行走路径。
作为本发明的一具体实施方式的优选方案,“根据所述第一穿越次数值确认机器人当前所处的工作位置”具体包括:当所述第一穿越次数值为奇数时,确认所述机器人处于第一非狭窄工作区;当所述第一穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区。
作为本发明的一具体实施方式的优选方案,“根据机器人的当前工作位置规划机器人回归的最短行走路径”具体包括:当所述机器人处于第一非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入第一连接通道,则在第一连接通道的当前边界线上驱动机器人旋转方向以使其进入当前第一连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一连接通道,则驱动所述机器人穿越第一连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站。
作为本发明的一具体实施方式的优选方案,所述工作区域还包括第三非狭 窄工作区,以及连接第二非狭窄工作区和第三非狭窄工作区的第二连接通道;所述方法还包括:机器人工作过程中,获取第二连接通道被机器人穿越的第二穿越次数值,其中,机器人每穿越一次第二连接通道,累加穿越第二连接通道的第二穿越次数值,当所述机器人回归基站时,所述第二穿越次数值清零;根据所述第一穿越次数值以及第二穿越次数值确认机器人当前所处的工作位置;根据机器人的当前工作位置规划机器人回归的最短行走路径。
作为本发明的一具体实施方式的优选方案,“根据所述第一穿越次数值以及第二穿越次数值确认机器人当前所处的工作位置”具体包括:当所述第一穿越次数值和所述第二穿越次数值同为偶数时,确认所述机器人处于第一非狭窄工作区;当所述第一穿越次数值为奇数,第二穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区;当所述第一穿越次数值以及第二穿越次数值同为奇数时,确认所述机器人处于第三非狭窄工作区;当所述第一穿越次数值为偶数,第二穿越次数值为奇数时,对机器人的当前位置进行报错处理。
作为本发明的一具体实施方式的优选方案,“根据机器人的当前工作位置规划机器人回归的最短行走路径”具体包括:当所述机器人处于第一非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入第一连接通道,则在第一连接通道的当前边界线上驱动机器人旋转方向以使其进入当前第一连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一连接通道,则驱动所述机器人穿越第一连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;若回归过程中进入第二连接通道,则在第二连接通道的当前边界线上驱动机器人旋转方向以使其进入当前第二连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;当所述机器人处于第三非狭窄工作区时,驱动所述机器 人按照预设的沿线行走方向回归基站;若回归过程中进入第二连接通道,则驱动所述机器人穿越第二连接通道进入第二非狭窄工作区,并按照所述机器人处于第二非狭窄工作区时的方式回归基站;当接收到机器人的当前位置报错时,则直接驱动所述机器人按照预设的沿线行走方向回归基站。
作为本发明的一具体实施方式的优选方案,所述工作区域还包括第三非狭窄工作区,以及连接第一非狭窄工作区和第三非狭窄工作区的第三连接通道;所述方法还包括:机器人工作过程中,获取第三连接通道被机器人穿越的第三穿越次数值,其中,机器人每穿越一次第三连接通道,累加穿越第三连接通道的第三穿越次数值,当所述机器人回归基站时,所述第三穿越次数值清零;根据所述第一穿越次数值以及第三穿越次数值确认机器人当前所处的工作位置;根据机器人的当前工作位置规划机器人回归的最短行走路径。
作为本发明的一具体实施方式的优选方案,“根据所述第一穿越次数值以及第三穿越次数值确认机器人当前所处的工作位置”具体包括:当所述第一穿越次数值和所述第二穿越次数值同为偶数时,确认所述机器人处于第一非狭窄工作区;当所述第一穿越次数值为奇数,第二穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区;当所述第一穿越次数值为偶数,第二穿越次数值为奇数时,确认所述机器人处于第三非狭窄工作区;当所述第一穿越次数值以及第二穿越次数值同为奇数时,对机器人的当前位置进行报错处理。
作为本发明的一具体实施方式的优选方案,“根据机器人的当前工作位置规划机器人回归的最短行走路径”具体包括:当所述机器人处于第一非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入连接通道,所述连接通道包括第一连接通道或第二连接通道,则在当前连接通道的当前边界线上驱动机器人旋转方向以使其进入当前连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一连接 通道,则驱动所述机器人穿越第一连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;当所述机器人处于第三非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第三连接通道,则驱动所述机器人穿越第三连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;当接收到机器人的当前位置报错时,则直接驱动所述机器人按照预设的沿线行走方向回归基站。
作为本发明的一具体实施方式的优选方案,所述方法还包括:通过连接通道的长度和/或宽度区分不同的连接通道;或在每个连接通道内设置不同的特征信号点以区分不同的连接通道。
本发明的另一目的在于提供一种机器人系统,所述系统包括:区域划分模块,用于记录整个工作区域内的连接通道以及由连接通道分隔而形成的非狭窄工作区,设置基站的非狭窄工作区为初始工作区;获取模块,用于获取各个非狭窄工作区对应的区域级别值以及各个狭窄通道对应的通道级别值;任一非狭窄工作区的区域级别值与当前非狭窄工作区到初始工作区之间连接路径中包含的最少的狭窄通道的数量呈正相关关系,初始工作区的区域级别值最小;任一狭窄通道的通道级别值等于与当前狭窄通道直接相连的非狭窄区域的最小的区域级别值;处理规划模块,用于根据机器人当前所在非狭窄工作区域的区域级别值以及当前非狭窄工作区域相连接的各个连接通道对应的通道级别值选择机器人回归的行走路径。
作为本发明的一具体实施方式的优选方案,所述系统还包括:信号发射模块,用于沿巡线路径发射脉冲编码信号,以在所述巡线路径上产生电磁信号;所述巡线路径为机器人所在工作区域的边界线形成的闭合回路;所述区域划分模块还用于驱动所述机器人沿巡线路径的延伸方向行走过程中,记录机器人实际接收到电磁信号的强度,根据实际产生的电磁信号的强度以及机器人实际接收到的电磁信号的强度。
与现有技术相比,本发明的机器人控制方法以及机器人系统,通过获取各个非狭窄工作区对应的区域级别值以及各个狭窄通道对应的通道级别值,可以快速定位机器人所处的区域,并根据其所处位置规划回归路线;特别是当机器人处于具有狭窄通道的工作区域工作且处于回归基站的过程中,够缩短回归路径,提高机器人的工作效率。
附图说明
图1是本发明一实施方式中机器人的结构示意图;
图2是本发明一实施方式提供的机器人回归基站的控制方法的流程示意图;
图3是本发明第一具体示例的应用效果图;
图4A是本发明第二具体示例的应用效果图;
图4B是图4A所示示例的具体实现流程示意图;
图5A是本发明第三具体示例的应用效果图;
图5B是图5A所示示例的具体实现流程示意图;
图6A是本发明第三具体示例的应用效果图;
图6B是图6A所示示例的具体实现流程示意图;
图7是本发明一实施方式提供的机器人系统的模块示意图。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
本发明的机器人可以是自动割草机,或者自动吸尘器等,其自动行走于工作区域以进行割草、吸尘工作,本发明具体示例中,以机器人为割草机器人为例做具体说明,相应的,所述工作区域可为草坪。
如图1所示,本发明的一较佳实施方式提供一种机器人,所述机器人包括:本体10,设置于本体10上的移动单元、控制单元。另外,独立于机器人还存 在一可为机器人提供电源的基站。
所述基站连接一沿工作区域的周侧布置的边界线,基站启动并发射信号时,该信号在边界线内传输,以在边界线附近形成电磁信号。在本实施例中,所述信号为脉冲编码信号。
所述移动单元包括:主动轮21、被动轮23以及用于驱动主动轮21的电机25;所述电机25可为带减速箱的无刷电机;电机25启动后,可通过减速箱带动主动轮21行走,并控制主动轮21的转速,进一步的,配合主动轮21调整,带动整个机器人实现前进、后推、转弯等动作。所述被动轮23可为万向轮,其主要起支撑平衡的作用。
所述控制单元至少包括:状态传感器,用于在机器人沿巡线路径行走过程中,用于获取机器人沿巡线路径行走过程中获得的各种信息,例如:获取巡线路径上的电磁信号强度;在本具体实施方式中,状态传感器包括边界线传感器,以下内容中将会详细描述;数据存储器,用于存储机器机器人沿巡线路径行走过程中获得的各种信息,所述数据存储器例如:EPROM、Flash或SD卡等。机器人沿巡线路径行走过程中获得的各种信息有多种,以下内容中将会进一步的详细描述。
由于基站沿边界线发射脉冲编码信号,以在边界线附近形成电磁信号,故,控制单元可根据边界线附近电磁信号的强弱以及其通过状态传感器获取到的边界线内外信号的差异来控制电机运行,从而使机器人始终沿边界线运行或沿距离边界线具有等距的边界线内或外运行。
所述机器人还包括:用于割草的刀盘,用于感应机器人的行走状态的各种传感器,例如:倾倒、离地、碰撞传感器等,在此不做赘述。
本发明的应用环境中,所述工作区域(草坪)可能为一整块,也可能为由至少一个连接通道连接的多块工作区域。本发明主要应用于由至少一个连接通道连接的多块工作区域。具体地,工作区域的长度和宽度通常均远大于机器人本体10的尺寸,所以在下文中,工作区域也被称为非狭窄工作区。连接通道的 宽度通常仅数倍于机器人本体10的尺寸;更为具体地,连接通道的宽度通常不大于为机器人本体10宽度的两倍,所以在下文中,连接通道也被称为狭窄通道。
结合图2所示,本发明一较佳实施提供的机器人控制方法,具体为机器人回归基站的控制方法,所述方法包括:S01、驱动机器人执行巡线模式,记录整个工作区域内的连接通道以及由连接通道分隔而形成的非狭窄工作区的位置。
本发明一较佳实施方式中,基站沿巡线路径发射脉冲编码信号,以在所述巡线路径附近产生电磁信号;所述巡线路径为机器人所在工作区域的边界线形成的闭合回路;
为机器人至少配置一巡线模式和一工作模式;巡线模式下,驱动所述机器人沿巡线路径的延伸方向行走过程中,根据机器人实际接收到的电磁信号的变化确认巡线路径上狭窄通道的位置。
本发明具体实施方式中,通过边界线传感器接收机器人实际接收到的电磁信号。
本发明一较佳实施方式中,沿机器人的中线对称设置一对边界线传感器,机器人沿巡线路径行走过程中,一对边界线传感器分别检测巡线路径两侧的电磁强度;所述狭窄区域因为相对边界线产生的磁场叠加而使狭窄区域之间的磁场强度加强,使狭窄区域外侧的磁场强度减弱,如此,当信号变化达到或超过一阈值后,即可确认机器人进入狭窄通道;相反地,当信号变化回到阈值之下后,即可确认机器人离开狭窄通道,进而以确认狭窄通道的位置及范围,进一步的,通过上述过程以及狭窄通道的分隔确定非狭窄区域的位置及范围。
相应的,当信号变化达到或超过一阈值后,即可确认机器人进入狭窄通道;相反地,当信号变化回到阈值之下后,即可确认机器人离开狭窄通道。
进一步的,所述步骤S01还包括:在巡线模式下,获取各个非狭窄工作区对应的区域级别值以及各个连接通道对应的通道级别值;任一非狭窄工作区的区域级别值与当前非狭窄工作区到初始工作区之间连接路径中包含的最少的连接通道的数量呈正相关关系,初始工作区的区域级别值最小;任一连接通道的 通道级别值等于与当前狭窄通道直接相连的非狭窄工作区的最小的区域级别值,设置基站的非狭窄工作区为初始工作区。
为了便于理解,本发明描述一具体示例供参考。在本示例中,任一非狭窄工作区的区域级别值等于当前非狭窄工作区到初始工作区之间连接路径中包含的最少的狭窄通道的数量。
结合图3所示,工作区包括:非狭窄工作区A、B、C、D、E、F,下述内容中简称区域A、区域B、区域C、区域D、区域E、区域F,以及连接区域A和区域B的狭窄通道P AB,简称通道P AB,连接区域A和区域C的狭窄通道P AC,简称通道P AC,连接区域B和区域F的狭窄通道P BF,简称通道P BF,连接区域C和区域D的狭窄通道P CD,简称通道P CD,连接区域C和区域E的狭窄通道P CE,简称通道P CE,连接区域D和区域E的狭窄通道P DE,简称通道P DE,连接区域D和区域F的狭窄通道P DF,简称通道P DF。对于区域A、B、C、D、E、F,其对应的区域级别值分别以LA A、LA B、LA C、LA D、LA E、LA F表示;对于通道P AB,P AC,P BF,P CD,P CE,P DE,其对应的通道级别值分别以LP AB,LP AC,LP BF,LP CD,LP CE,LP DE表示;以区域F为例进行统计计算可知:区域A与区域F之间存在三条连接路径,其分别为:P AB-P BF、P AC-P CD-P DF以及P AC-P CE-P DE-P DF;如此,对于区域F获得其对应的区域级别值LA F=2;相应的,LA A=0,LA B=LA C=1,LA D=LA E=LA F=2,LP AB=LP AC=0,LP CD=LP CE=LP BF=1,LP DE=LP DF=2。
需要说明的是,为了便于绘图,本示例中将出现的非狭窄工作区以及各个狭窄通道简化示出,实际应用中,各个非狭窄工作区以及各个狭窄通道的形状、大小均会出现不同程度的变化,在此不做详细赘述。
进一步的,所述方法包括:S02、根据机器人当前所在非狭窄工作区的区域级别值以及当前非狭窄工作区相连接的各个连接通道对应的通道级别值选择机器人的回归路径。
本发明一较佳实施方式中,所述步骤S02具体包括:判断机器人当前所在工作区域是否为初始工作区,若是,则驱动机器人直接沿初始工作区的巡线路 径返回至基站;若否,则驱动机器人沿当前非狭窄工作区的巡线路径行走,并搜索当前非狭窄工作区对应的回归连接通道进行穿越,直至返回至基站;其中,所述回归连接通道的确认方法包括:获取机器人所在非狭窄工作区对应的区域级别值LA,将当前非狭窄工作区连接的通道级别值为LP的连接通道作为回归连接通道,LP=LA-1。
判断机器人当前所在工作区域是否为初始工作区的方法具有多种,例如:在初始工作区中设置特征信号点(例如在该点处盘绕的边界线、在该点处设置的RFID标签等),通过对特征信号点的检测判断。类似地,可在不同的非狭窄工作区域和狭窄通道中、或非狭窄工作区域与狭窄通道的交界处设置不用的特征信号点,通过对这些不用特征信号点的检测,机器人即可准确判断处于哪个非狭窄工作区域内和/或穿过哪个狭窄通道。本发明较佳实施方式中,获取与初始工作区相连的连接通道被机器人穿越的穿越次数值T,当穿越次数值T为偶数时,确认机器人当前所在工作区域为初始工作区;其中,初始工作状态下,所述穿越次数值T为0;与初始工作区相连的任一连接通道被机器人穿越后,所述穿越次数值T加1;当机器人回归至基站时,所述穿越次数值T清零。
接续图3所示,初始状态下,机器人处于初始工作区A内,对应狭窄通道P AB和狭窄通道P AC,其穿越次数值T=0,以机器人穿越通道P AB进入区域B为例,当穿越P AB进入区域B后,所述穿越次数加1变为T=0+1=1,当所述机器人自区域B通过穿越通道P AB返回至区域A,或在到达区域C后通过通道P AC返回至区域A后,所述穿越次数再加1变为T=1+1=2。
需要说明的是,对于穿越次数值T的累计,仅需累计机器人在不同级别非狭窄工作区之间穿越时的计数,而无需累计机器人在同级别非狭窄工作区之间穿越时的计数。例如:当机器人在通道P DE往复运行时,由于区域D和区域E为处于同级别的非狭窄工作区,如此,该种状态下,对应于P DE的穿越次数值保持不变。
在本实施例中,由于仅有使机器人返回至区域A的控制是重要的,所以仅 计算针对与区域A直接连接的狭窄通道的穿越次数值。在其他的实施方式中,也可对针对与其他区域直接连接的狭窄通道的穿越次数值进行计算。特别地,对于图3所示的地形中存在至少两个分别安装在不同非狭窄工作区域内的基站,可根据上述方法使机器人选择回归至最近的基站或指定的基站。例如,区域A和区域F中各自设有一基站,则LA A=LA F=0,LA B=LA C=LA D=1,LA E=2,LP AB=LP AC=LP BF=LP DF=0,LP CD=1,LP CE=LP DE=2。如果主动关闭禁用任一非狭窄工作区域中的基站,或在某一原本没有设置基站的非狭窄工作区域内设置基站,则机器人重新对各非狭窄工作区域和狭窄通道的级别值进行调整。
本发明在具体实现过程中,工作区域的形状变化多样,在上述方法基础上,以一些特殊示例进行说明。
结合图4A所示,所述工作区域包括第一狭窄通道P AB以及由第一狭窄通道P AB分隔而形成的第一非狭窄工作区A和第二非狭窄工作区B,所述第一非狭窄工作区A为初始工作区。
结合图4B所示,所述方法还包括:S11、机器人工作过程中,获取第一狭窄通道被机器人穿越的第一穿越次数值,其中,机器人每穿越一次第一狭窄通道,累加穿越第一狭窄通道的第一穿越次数值,当所述机器人回归基站时,所述第一穿越次数值清零;
S12、根据所述第一穿越次数值确认机器人当前所处的工作位置;
S13、根据机器人的当前工作位置规划机器人回归的最短行走路径。
本发明较佳实施方式中,所述步骤S12具体包括:当所述第一穿越次数值为奇数时,确认所述机器人处于第一非狭窄工作区;当所述第一穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区。
所述步骤S13具体包括:当所述机器人处于第一非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入第一狭窄通道,则在第一狭窄通道的当前边界线上驱动机器人旋转方向以使其进入当前第一狭窄通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机 器人旋转方向以使其按照预设的沿线行走方向回归基站;
当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一狭窄通道,则驱动所述机器人穿越第一狭窄通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站。
结合图4A所示,该具体示例中,对机器人预设的沿线行走方向为箭头D1所示方向,即机器人沿巡线路径逆时针行走,第一穿越次数值T AB的初始值为0,机器人沿D1方向从基站进入区域A、或沿边界线行走至出发点后转向进入区域A或区域B开始作业,机器人每穿越一次第一狭窄通道P AB,则T AB2=T AB1+1,T AB1表示穿越第一狭窄通道之前的第一穿越次数值,T AB2表示穿越第一狭窄通道之后的第一穿越次数值。
该具体示例中,当所述机器人处于第一非狭窄工作区A并在回归基站过程中进入第一狭窄通道P AB,则驱动机器人逆时针旋转90°进入第一狭窄通道P AB的另一侧的边界线上,再逆时针旋转90°后沿巡线路径回归基站。
结合图5A所示,在图4A所示示例基础上,所述工作区域还包括第非狭窄工作区C,以及连接第二非狭窄工作区B和第三非狭窄工作区C的第二狭窄通道P BC
结合图5B所示,在图4B所示方法基础上加以改进,所述方法具体包括:
S21、机器人工作过程中,获取第一狭窄通道被机器人穿越的第一穿越次数值以及获取第二狭窄通道被机器人穿越的第二穿越次数值,其中,机器人每穿越一次第一狭窄通道,累加穿越第一狭窄通道的第一穿越次数值,每穿越一次第二狭窄通道,累加穿越第二狭窄通道的第二穿越次数值,当所述机器人回归基站时,所述第一穿越次数值和第二穿越次数值均清零。
S22、根据所述第一穿越次数值以及第二穿越次数值确认机器人当前所处的工作位置。
S23、根据机器人的当前工作位置规划机器人回归的最短行走路径。
本发明较佳实施方式中,所述步骤S22具体包括:当所述第一穿越次数值和所述第二穿越次数值同为偶数时,确认所述机器人处于第一非狭窄工作区;当所述第一穿越次数值为奇数,第二穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区;当所述第一穿越次数值以及第二穿越次数值同为奇数时,确认所述机器人处于第三非狭窄工作区;当所述第一穿越次数值为偶数,第二穿越次数值为奇数时,对机器人的当前位置进行报错处理。
所述步骤S23具体包括:当所述机器人处于第一非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入第一狭窄通道,则在第一狭窄通道的当前边界线上驱动机器人旋转方向以使其进入当前第一狭窄通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;
当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一狭窄通道,则驱动所述机器人穿越第一狭窄通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;若回归过程中进入第二狭窄通道,则在第二狭窄通道的当前边界线上驱动机器人旋转方向以使其进入当前第二狭窄通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;
当所述机器人处于第三非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第二狭窄通道,则驱动所述机器人穿越第二狭窄通道进入第二非狭窄工作区,并按照所述机器人处于第二非狭窄工作区时的方式回归基站;当接收到机器人的当前位置报错时,则直接驱动所述机器人按照预设的沿线行走方向回归基站。
本发明较佳实施方式中,当狭窄通道的数量大于1时,可通过多种方式区分不同的狭窄通道;本发明具体实施方式中,通过狭窄通道的长度和/或宽度区分不同的狭窄通道;或在每个狭窄通道内设置不同的特征信号点以区分不同的 狭窄通道。
结合图5A所示,该具体示例中,对机器人预设的沿线行走方向为箭头D1所示方向,即机器人沿巡线路径逆时针行走,第一穿越次数值T AB及第二穿越次数值T BC的初始值均为0,机器人沿D1方向从基站进入区域A、或沿边界线行走至出发点后转向进入区域A或区域B或区域C开始作业,机器人每穿越一次第一狭窄通道P AB,则T AB2=T AB1+1,每穿越一第二狭窄通道P BC,则T BC2=T BC1+1,T AB1表示穿越第一狭窄通道之前的第一穿越次数值,T AB2表示穿越第一狭窄通道之后的第一穿越次数值,T BC1表示穿越第二狭窄通道之前的第二穿越次数值,T BC2表示穿越第二次狭窄通道之后的第二穿越次数值。
结合图6A所示,在图4A所示示例基础上,所述工作区域还包括第三非狭窄工作区C,以及连接第一非狭窄工作区A和第三非狭窄工作区C的第三狭窄通道P AC
结合图6B所示,在图4B所示方法基础上加以改进,所述方法具体包括:
S31、机器人工作过程中,获取第一狭窄通道被机器人穿越的第一穿越次数值以及获取第三狭窄通道被机器人穿越的第三穿越次数值,其中,机器人每穿越一次第一狭窄通道,累加穿越第一狭窄通道的第一穿越次数值,每穿越一次第三狭窄通道,累加穿越第三狭窄通道的第三穿越次数值,当所述机器人回归基站时,所述第一穿越次数值和第三穿越次数值均清零。
S32、根据所述第一穿越次数值以及第三穿越次数值确认机器人当前所处的工作位置。
S33、根据机器人的当前工作位置规划机器人回归的最短行走路径。
本发明较佳实施方式中,所述步骤S32具体包括:当所述第一穿越次数值和所述第二穿越次数值同为偶数时,确认所述机器人处于第一非狭窄工作区;当所述第一穿越次数值为奇数,第二穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区;当所述第一穿越次数值为偶数,第二穿越次数值为奇数时,确认所述机器人处于第三非狭窄工作区;当所述第一穿越次数值以及第二 穿越次数值同为奇数时,对机器人的当前位置进行报错处理。
所述步骤S33具体包括:当所述机器人处于第一非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入狭窄通道,所述狭窄通道包括第一狭窄通道或第二狭窄通道,则在当前狭窄通道的当前边界线上驱动机器人旋转方向以使其进入当前狭窄通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;
当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一狭窄通道,则驱动所述机器人穿越第一狭窄通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;
当所述机器人处于第三非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第三狭窄通道,则驱动所述机器人穿越第三狭窄通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;
当接收到机器人的当前位置报错时,则直接驱动所述机器人按照预设的沿线行走方向回归基站。
结合图6A所示,该具体示例中,对机器人预设的沿线行走方向为箭头D1所示方向,即机器人沿巡线路径逆时针行走,第一穿越次数值T AB及第三穿越次数值T AC的初始值均为0,机器人沿D1方向从基站进入区域A、或沿边界线行走至出发点后转向进入区域A或区域B或区域C开始作业,机器人每穿越一次第一狭窄通道P AB,则T AB2=T AB1+1,每穿越一次第三狭窄通道P AC,则T AC2=T AC1+1,T AB1表示穿越第一狭窄通道之前的第一穿越次数值,T AB2表示穿越第一狭窄通道之后的第一穿越次数值,T AC1表示穿越第二狭窄通道之前的第二穿越次数值,T AC2表示穿越第三狭窄通道之后的第三穿越次数值。
结合图7所示,本发明一实施方式,提供一实现上述控制方法的机器人系 统,其包括:区域划分模块100、获取模块200、处理规划模块300以及信号发射模块400。
区域划分模块100用于驱动机器人执行巡线模式,记录整个工作区域内的狭窄通道以及由狭窄通道分隔而形成的非狭窄工作区,设置基站的非狭窄工作区为初始工作区。
本发明一较佳实施方式中,基站通过信号发射模块400沿巡线路径发射脉冲编码信号,以在所述巡线路径附近产生电磁信号;所述巡线路径为机器人所在工作区域的边界线形成的闭合回路;
为机器人至少配置一巡线模式和一工作模式;巡线模式下,驱动所述机器人沿巡线路径的延伸方向行走过程中,根据机器人实际接收到的电磁信号的变化确认巡线路径上狭窄通道的位置。
获取模块200用于在巡线模式下,获取各个非狭窄工作区对应的区域级别值以及各个狭窄通道对应的通道级别值;任一非狭窄工作区的区域级别值与当前非狭窄工作区到初始工作区之间连接路径中包含的最少的狭窄通道的数量呈正相关关系,初始工作区的区域级别值最小;任一狭窄通道的通道级别值等于与当前狭窄通道直接相连的非狭窄区域的最小的区域级别值。
处理规划模块300用于根据机器人当前所在非狭窄工作区域的区域级别值以及当前非狭窄工作区域相连接的各个狭窄通道对应的通道级别值选择机器人回归的行走路径。
与现有技术相比,本发明的机器人回归基站的方法以及机器人系统,通过获取各个非狭窄工作区对应的区域级别值以及各个狭窄通道对应的通道级别值,可以快速定位机器人所处的区域,并根据其所处位置规划回归路线;特别是当机器人处于具有狭窄通道的工作区域工作且处于回归基站的过程中,够缩短回归路径,提高机器人的工作效率。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统中模块的具体工作过程,可以参考前述方法实施方式中的对应过程,在 此不再赘述。
在本申请所提供的几个实施方式中,应该理解到,所揭露的系统,系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施方式仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,系统或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以2个或2个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机系统(可以是个人计算机,服务器,或者网络系统等)或处理器(processor)执行本申请各个实施方式所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或 者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围。

Claims (17)

  1. 一种机器人控制方法,其特征在于,所述方法包括:
    S01:获取各个非狭窄工作区对应的区域级别值以及各个连接通道对应的通道级别值;任一非狭窄工作区的区域级别值与当前非狭窄工作区到初始工作区之间连接路径中包含的最少的连接通道的数量呈正相关关系,初始工作区的区域级别值最小;任一连接通的通道级别值等于与当前连接通道直接相连的非狭窄工作区的最小的区域级别值;设置基站的非狭窄工作区为初始工作区;
    S02:根据机器人当前所在非狭窄工作区的区域级别值以及当前非狭窄工作区相连接的各个连接通道对应的通道级别值选择机器人的回归路径。
  2. 根据权利要求1所述的机器人控制方法,其特征在于,所述步骤S01之前还包括以下步骤:驱动机器人执行巡线模式,记录整个工作区域内的连接通道以及由连接通道分隔而形成的非狭窄工作区的位置。
  3. 根据权利要求2所述的机器人控制方法,其特征在于,
    所述方法还包括:沿巡线路径发射信号,以在所述巡线路径附近产生电磁信号;所述巡线路径为机器人所在工作区域的边界线形成的闭合回路;
    驱动所述机器人沿巡线路径的延伸方向行走过程中,根据机器人实际接收到的电磁信号的变化确认巡线路径上狭窄通道的位置。
  4. 根据权利要求1所述的机器人控制方法,其特征在于,步骤S02具体包括:
    判断机器人当前所在工作区域是否为初始工作区,若是,则驱动机器人直接沿初始工作区的巡线路径返回至基站;若否,则驱动机器人沿当前非狭窄工作区的巡线路径行走,并搜索当前非狭窄工作区对应的回归连接通道进行穿越,直至返回至基站;
    其中,所述回归连接通道的确认方法包括:
    获取机器人所在非狭窄工作区对应的区域级别值LA,将当前非狭窄工作区连接的通道级别值为LP的连接通道作为回归连接通道,LP=LA-1。
  5. 根据权利要求4所述的机器人控制方法,其特征在于,“判断机器人当前所在工作区域是否为初始工作区”具体包括:
    获取与初始工作区相连的连接通道被机器人穿越的穿越次数值,当穿越次数值为偶数时,确认机器人当前所在工作区域为初始工作区;
    其中,初始工作状态下,所述穿越次数值为0;
    与初始工作区相连的任一连接通道被机器人穿越后,所述穿越次数值加1;
    当机器人回归至基站时,所述穿越次数值清零。
  6. 根据权利要求4所述的机器人控制方法,其特征在于,所述工作区域包括第一连接通道以及由第一连接通道分隔而形成的第一非狭窄工作区和第二非狭窄工作区,所述第一非狭窄工作区为初始工作区;
    所述方法还包括:
    机器人工作过程中,获取第一连接通道被机器人穿越的第一穿越次数值,其中,机器人每穿越一次第一连接通道,累加穿越第一连接通道的第一穿越次数值,当所述机器人回归基站时,所述第一穿越次数值清零;
    根据所述第一穿越次数值确认机器人当前所处的工作位置;
    根据机器人的当前工作位置规划机器人回归的最短行走路径。
  7. 根据权利要求6所述的机器人控制方法,其特征在于,“根据所述第一穿越次数值确认机器人当前所处的工作位置”具体包括:
    当所述第一穿越次数值为奇数时,确认所述机器人处于第一非狭窄工作区;
    当所述第一穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区。
  8. 根据权利要求6或7所述的机器人控制方法,其特征在于,“根据机器人的当前工作位置规划机器人回归的最短行走路径”具体包括:
    当所述机器人处于第一非狭窄工作区时,
    驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入第一连接通道,则在第一连接通道的当前边界线上驱动机器人旋转方向以使其进入当前第一连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时, 再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;
    当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一连接通道,则驱动所述机器人穿越第一连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站。
  9. 根据权利要求6所述的机器人控制方法,其特征在于,所述工作区域还包括第三非狭窄工作区,以及连接第二非狭窄工作区和第三非狭窄工作区的第二连接通道;
    所述方法还包括:机器人工作过程中,获取第二连接通道被机器人穿越的第二穿越次数值,其中,机器人每穿越一次第二连接通道,累加穿越第二连接通道的第二穿越次数值,当所述机器人回归基站时,所述第二穿越次数值清零;
    根据所述第一穿越次数值以及第二穿越次数值确认机器人当前所处的工作位置;
    根据机器人的当前工作位置规划机器人回归的最短行走路径。
  10. 根据权利要求9所述的机器人控制方法,其特征在于,“根据所述第一穿越次数值以及第二穿越次数值确认机器人当前所处的工作位置”具体包括:
    当所述第一穿越次数值和所述第二穿越次数值同为偶数时,确认所述机器人处于第一非狭窄工作区;
    当所述第一穿越次数值为奇数,第二穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区;
    当所述第一穿越次数值以及第二穿越次数值同为奇数时,确认所述机器人处于第三非狭窄工作区;
    当所述第一穿越次数值为偶数,第二穿越次数值为奇数时,对机器人的当前位置进行报错处理。
  11. 根据权利要求9或10所述的机器人控制方法,其特征在于,“根据机器人的当前工作位置规划机器人回归的最短行走路径”具体包括:
    当所述机器人处于第一非狭窄工作区时,
    驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入第一连接通道,则在第一连接通道的当前边界线上驱动机器人旋转方向以使其进入当前第一连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;
    当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一连接通道,则驱动所述机器人穿越第一连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;若回归过程中进入第二连接通道,则在第二连接通道的当前边界线上驱动机器人旋转方向以使其进入当前第二连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;
    当所述机器人处于第三非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第二连接通道,则驱动所述机器人穿越第二连接通道进入第二非狭窄工作区,并按照所述机器人处于第二非狭窄工作区时的方式回归基站;
    当接收到机器人的当前位置报错时,则直接驱动所述机器人按照预设的沿线行走方向回归基站。
  12. 根据权利要求6所述的机器人控制方法,其特征在于,所述工作区域还包括第三非狭窄工作区,以及连接第一非狭窄工作区和第三非狭窄工作区的第三连接通道;
    所述方法还包括:机器人工作过程中,获取第三连接通道被机器人穿越的第三穿越次数值,其中,机器人每穿越一次第三连接通道,累加穿越第三连接通道的第三穿越次数值,当所述机器人回归基站时,所述第三穿越次数值清零;
    根据所述第一穿越次数值以及第三穿越次数值确认机器人当前所处的工作位置;
    根据机器人的当前工作位置规划机器人回归的最短行走路径。
  13. 根据权利要求12所述的机器人控制方法,其特征在于,“根据所述第一穿越次数值以及第三穿越次数值确认机器人当前所处的工作位置”具体包括:
    当所述第一穿越次数值和所述第二穿越次数值同为偶数时,确认所述机器人处于第一非狭窄工作区;
    当所述第一穿越次数值为奇数,第二穿越次数值为偶数时,确认所述机器人处于第二非狭窄工作区;
    当所述第一穿越次数值为偶数,第二穿越次数值为奇数时,确认所述机器人处于第三非狭窄工作区;
    当所述第一穿越次数值以及第二穿越次数值同为奇数时,对机器人的当前位置进行报错处理。
  14. 根据权利要求12或13所述的机器人控制方法,其特征在于,“根据机器人的当前工作位置规划机器人回归的最短行走路径”具体包括:
    当所述机器人处于第一非狭窄工作区时,
    驱动所述机器人按照预设的沿线行走方向回归基站,若回归过程中进入连接通道,所述连接通道包括第一连接通道或第二连接通道,则在当前连接通道的当前边界线上驱动机器人旋转方向以使其进入当前连接通道的另一侧的边界线上,当机器人到达另一侧的边界线上时,再次驱动机器人旋转方向以使其按照预设的沿线行走方向回归基站;
    当所述机器人处于第二非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第一连接通道,则驱动所述机器人穿越第一连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作区时的方式回归基站;
    当所述机器人处于第三非狭窄工作区时,驱动所述机器人按照预设的沿线行走方向回归基站;若回归过程中进入第三连接通道,则驱动所述机器人穿越第三连接通道进入第一非狭窄工作区,并按照所述机器人处于第一非狭窄工作 区时的方式回归基站;
    当接收到机器人的当前位置报错时,则直接驱动所述机器人按照预设的沿线行走方向回归基站。
  15. 根据权利要求1所述的机器人控制方法,其特征在于,所述方法还包括:
    通过连接通道的长度和/或宽度区分不同的连接通道;
    或在每个连接通道内设置不同的特征信号点以区分不同的连接通道。
  16. 一种机器人系统,其特征在于,所述系统包括:
    区域划分模块,用于记录整个工作区域内的连接通道以及由连接通道分隔而形成的非狭窄工作区,设置基站的非狭窄工作区为初始工作区;
    获取模块,用于获取各个非狭窄工作区对应的区域级别值以及各个狭窄通道对应的通道级别值;任一非狭窄工作区的区域级别值与当前非狭窄工作区到初始工作区之间连接路径中包含的最少的狭窄通道的数量呈正相关关系,初始工作区的区域级别值最小;任一狭窄通道的通道级别值等于与当前狭窄通道直接相连的非狭窄区域的最小的区域级别值;
    处理规划模块,用于根据机器人当前所在非狭窄工作区域的区域级别值以及当前非狭窄工作区域相连接的各个连接通道对应的通道级别值选择机器人回归的行走路径。
  17. 根据权利要求16所述的机器人系统,其特征在于,所述系统还包括:信号发射模块,用于沿巡线路径发射脉冲编码信号,以在所述巡线路径上产生电磁信号;所述巡线路径为机器人所在工作区域的边界线形成的闭合回路;
    所述区域划分模块还用于驱动所述机器人沿巡线路径的延伸方向行走过程中,记录机器人实际接收到电磁信号的强度,根据实际产生的电磁信号的强度以及机器人实际接收到的电磁信号的强度。
PCT/CN2019/115099 2018-11-23 2019-11-01 机器人控制方法以及机器人系统 WO2020103675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811410351.4A CN111308994B (zh) 2018-11-23 2018-11-23 机器人控制方法以及机器人系统
CN201811410351.4 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103675A1 true WO2020103675A1 (zh) 2020-05-28

Family

ID=70774546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115099 WO2020103675A1 (zh) 2018-11-23 2019-11-01 机器人控制方法以及机器人系统

Country Status (2)

Country Link
CN (1) CN111308994B (zh)
WO (1) WO2020103675A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543802B (zh) * 2020-11-24 2023-08-15 追觅创新科技(苏州)有限公司 可通行区域的探索方法、装置、存储介质及电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615138A (zh) * 2015-01-14 2015-05-13 上海物景智能科技有限公司 一种划分移动机器人室内区域动态覆盖方法及其装置
JP5931685B2 (ja) * 2012-10-12 2016-06-08 日本電信電話株式会社 ロボット協調搬送計画装置、方法、プログラム
CN105739504A (zh) * 2016-04-13 2016-07-06 上海物景智能科技有限公司 一种机器人工作区域的排序方法及排序系统
CN107050860A (zh) * 2017-04-24 2017-08-18 网易(杭州)网络有限公司 地图生成的方法、装置、存储介质和处理器
CN108121331A (zh) * 2016-11-26 2018-06-05 沈阳新松机器人自动化股份有限公司 一种自主清扫路径规划方法及装置
CN108267752A (zh) * 2016-12-15 2018-07-10 苏州宝时得电动工具有限公司 自移动设备的工作区域的分区方法、装置和电子设备
CN108345298A (zh) * 2017-01-25 2018-07-31 苏州宝时得电动工具有限公司 一种自移动设备及其控制方法和自动工作系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10240344A (ja) * 1997-02-26 1998-09-11 Fujitsu General Ltd 床清掃ロボットの制御方法
JP2017047519A (ja) * 2015-09-04 2017-03-09 Rapyuta Robotics株式会社 クラウドロボティクスシステム、情報処理装置、プログラム、並びに、クラウドロボティクスシステムにおけるロボットの制御または支援方法
CN107493797B (zh) * 2016-06-14 2020-03-27 苏州宝时得电动工具有限公司 位置识别系统
CN205692049U (zh) * 2016-06-24 2016-11-16 桑斌修 一种无边界线的割草机器人
CN108335302B (zh) * 2018-01-26 2021-10-08 上海思岚科技有限公司 一种区域分割方法及装置
CN108490945A (zh) * 2018-04-12 2018-09-04 南京苏美达智能技术有限公司 割草机器人判断狭窄区域并自动离开的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931685B2 (ja) * 2012-10-12 2016-06-08 日本電信電話株式会社 ロボット協調搬送計画装置、方法、プログラム
CN104615138A (zh) * 2015-01-14 2015-05-13 上海物景智能科技有限公司 一种划分移动机器人室内区域动态覆盖方法及其装置
CN105739504A (zh) * 2016-04-13 2016-07-06 上海物景智能科技有限公司 一种机器人工作区域的排序方法及排序系统
CN108121331A (zh) * 2016-11-26 2018-06-05 沈阳新松机器人自动化股份有限公司 一种自主清扫路径规划方法及装置
CN108267752A (zh) * 2016-12-15 2018-07-10 苏州宝时得电动工具有限公司 自移动设备的工作区域的分区方法、装置和电子设备
CN108345298A (zh) * 2017-01-25 2018-07-31 苏州宝时得电动工具有限公司 一种自移动设备及其控制方法和自动工作系统
CN107050860A (zh) * 2017-04-24 2017-08-18 网易(杭州)网络有限公司 地图生成的方法、装置、存储介质和处理器

Also Published As

Publication number Publication date
CN111308994A (zh) 2020-06-19
CN111308994B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN107291077B (zh) 自动工作系统,自移动设备及其控制方法
AU2019248256B2 (en) Mobile robot and control method for same
US11126193B2 (en) Automatic beacon position determination
WO2018214977A1 (zh) 移动物体及其定位方法、自动工作系统、存储介质
WO2014071860A1 (zh) 自动工作系统
US20090222160A1 (en) Method and system for coordinated vehicle control with wireless communication
EP1933467A2 (en) Autonomous robot
EP3798781B1 (en) Automatic mower and control method
WO2020103675A1 (zh) 机器人控制方法以及机器人系统
US20220121211A1 (en) Mobile robot and control method therefor
WO2021135248A1 (zh) 遍历方法、系统,机器人及可读存储介质
WO2023125650A1 (zh) 机器人工具的控制方法及机器人工具
CN112904857A (zh) 自动引导车控制方法、装置及自动引导车
CN111123339A (zh) 一种双模式的自行走设备控制方法及自行走设备
CN115933674A (zh) 一种机器人的绕障方法,绕障装置以及存储介质
CN114937258A (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
CN114545948A (zh) 一种割草机器人控制方法、芯片及割草机器人
WO2021031405A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机设备和计算机可读存储介质
EP4293459A1 (en) Intelligent mowing system and intelligent mowing device
WO2023124625A1 (zh) 自移动机器人回归基站的方法、系统及自移动机器人
CN211856914U (zh) 一种双模式的自行走设备
WO2020088461A1 (zh) 行走机器人的控制方法及系统
EP4270136A1 (en) Smart mowing system
WO2023065170A1 (en) Robotic cart
US20230024763A1 (en) Mobile robot system and boundary information generation method for mobile robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887092

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19887092

Country of ref document: EP

Kind code of ref document: A1