WO2020103663A1 - 通信方法、装置、设备、系统及存储介质 - Google Patents

通信方法、装置、设备、系统及存储介质

Info

Publication number
WO2020103663A1
WO2020103663A1 PCT/CN2019/114568 CN2019114568W WO2020103663A1 WO 2020103663 A1 WO2020103663 A1 WO 2020103663A1 CN 2019114568 W CN2019114568 W CN 2019114568W WO 2020103663 A1 WO2020103663 A1 WO 2020103663A1
Authority
WO
WIPO (PCT)
Prior art keywords
time parameter
time
parameter set
parameter sets
target
Prior art date
Application number
PCT/CN2019/114568
Other languages
English (en)
French (fr)
Inventor
马蕊香
李胜钰
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19887335.8A priority Critical patent/EP3873016B1/en
Publication of WO2020103663A1 publication Critical patent/WO2020103663A1/zh
Priority to US17/325,330 priority patent/US20210273750A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method, device, device, system, and storage medium.
  • the terminal device receives the downlink data carried in the Physical Downlink Shared Channel (PDSCH), and according to the result of the data decoding, it will feed back through the Hybrid Automatic Repeat Request (HARQ).
  • the response message that is, the data reception is successful, feedback ACK (Acknowledgement), data reception failure feedback NACK (No Acknowledgement), to the network device.
  • the timing relationship is satisfied from when the terminal device receives downlink data to when the terminal device feeds back ACK / NACK to the network device.
  • the feedback delay needs to be reduced, that is, the user can feedback the corresponding ACK / NACK as soon as possible after receiving the data, and it is proposed to reduce the length of the time unit corresponding to the feedback information, for example, the time unit of the feedback information Change to 1 / 2slot as the unit, or symbol as the unit.
  • the time unit corresponding to some feedback information will still remain in units of slots, so that the length of the time unit corresponding to the feedback information may not be exactly the same, and at this time, the HARQ_ACK codebook cannot be generated.
  • Embodiments of the present application provide a communication method, device, device, system, and storage medium, so that when the length of a time unit corresponding to a time parameter set is different, the terminal device can effectively generate a codebook.
  • an embodiment of the present application provides a communication method, including: a terminal device determining at least one target time parameter set according to N time parameter sets, and sending a codebook at a first time, the codebook included in M targets Response information corresponding to the downlink information received at least one target time of the time, the M target times are determined according to the first time and at least one target time parameter set, at least two time parameter sets of the N time parameter sets The length of the corresponding time unit is different.
  • Each time parameter set includes at least one time parameter. The time parameter is used to instruct the terminal device to receive the first downlink information and feed back the first response information corresponding to the first downlink information to the network device.
  • the number of time units between intervals where M is a positive integer and N is a positive integer greater than or equal to 2. Furthermore, when at least two of the N time parameter sets correspond to different time unit lengths, the terminal device can effectively generate a codebook, and at the same time, the network device can effectively analyze the codebook to ensure that the network device Consistent understanding of the codebook with the terminal equipment, so as to ensure the effectiveness of communication and improve resource utilization.
  • each of the N time parameter sets corresponds to a Downlink Control Information (DCI) format, and at least two of the N time parameter sets have different DCI formats.
  • the terminal device determining at least one target time parameter set according to the N time parameter sets may include the following manners:
  • the terminal device determines one of the N time parameter sets as the target time parameter set. For example, the terminal device uses, as the target time parameter set, a time parameter set in which the length of the corresponding time unit in the N time parameter sets satisfies a preset value and / or the corresponding DCI format satisfies a preset DCI format.
  • the terminal device takes the time parameter set obtained by taking the intersection or the union of the N time parameter sets as the target time parameter set.
  • the terminal device converts the time unit length corresponding to each time parameter set in the N time parameter sets into a target time unit length to obtain the converted N time parameter sets; and converts the converted N time parameters
  • the set is taken as an intersection or a union to obtain a combined time parameter set, and the combined time parameter set is used as the target time parameter set.
  • the target time unit length may be the greatest common divisor of the time unit length corresponding to each time parameter set in the N time parameter sets.
  • the terminal device takes the intersection or union of the corresponding time parameter sets in the same DCI format among the N time parameter sets to obtain at least two combined time parameter sets.
  • the time unit length corresponding to each time parameter set in at least one time parameter set corresponding to the same DCI format in the N time parameter sets is converted into the target time unit length to obtain the conversion corresponding to each DCI format
  • the target time unit length may be the greatest common divisor of the time unit length corresponding to each time parameter set in the at least one time parameter set corresponding to the same DCI format.
  • the terminal device uses, as the target time parameter, a time parameter set in which the length of the corresponding time unit in the at least two combined time parameter sets satisfies the preset value and / or the corresponding DCI format satisfies the preset DCI format set.
  • Manner 4 The terminal device uses each of the N time parameter sets as the target time parameter set to obtain N target time parameter sets.
  • the terminal device determines the M target times according to the first time and the target time parameter set, which may include: according to each of the first time and the N target time parameter sets A target time parameter set, determining a time set corresponding to each target time parameter set, and obtaining N time sets; and taking the intersection or union of the N time sets to obtain the M target times.
  • the terminal device can determine the target time parameter set according to the above-mentioned various methods, thereby enriching the method in which the terminal device determines at least one target time parameter set according to the N time parameter sets, which can satisfy a variety of different Application scenarios.
  • the terminal device may obtain N time parameter sets in the following manner, for example, the terminal device receives the first configuration information sent by the network device, and obtains N time parameter sets according to the first configuration information, where the first The configuration information indicates the N time parameter sets.
  • the terminal device receives the second configuration information sent by the network device, and obtains N time parameter sets according to N1 time parameter sets and N2 time parameter sets, where the second configuration information is used to indicate N1 time parameter sets,
  • the N2 time parameter sets are predefined.
  • the N time parameter sets include N1 time parameter sets and N2 time parameter sets.
  • the sum of N1 and N2 is N, and both N1 and N2 are positive integers. In this way, the terminal device can obtain the same N time parameter sets as the network device according to the first configuration information or the second configuration information sent by the network device, thereby ensuring the consistency of the network device and the terminal device with respect to the N time parameter sets.
  • the first time when the terminal device determines to send the codebook may be that the terminal device receives the second downlink information sent by the network device, and the terminal device may determine the first time according to the second downlink information, where the first The second downlink information is used to indicate the first time.
  • an embodiment of the present application provides a communication method, including: a network device receives a codebook sent by a terminal device at a first time, where the codebook includes downlink information received at least one target time among M target times Corresponding response information, M is a positive integer, and the M target times are determined by the network device according to the first time and at least one target time parameter set, and the at least one target time parameter set is determined by the network device according to the N time parameter sets , N is a positive integer greater than or equal to 2, at least two of the N time parameter sets correspond to different time unit lengths, each time parameter set includes at least one time parameter, and the time parameter is used to instruct the network device to send the first The number of time units between a downlink message and the first response message corresponding to the first downlink message received from the terminal device.
  • the network device can effectively parse the codebook to ensure that the network device and the terminal device have a consistent understanding of the codebook , So that the network device determines whether the downlink information corresponding to the response information is successfully transmitted, thereby ensuring the effectiveness of communication and improving the utilization rate of resources.
  • each of the N time parameter sets corresponds to a DCI format, and at least two of the N time parameter sets correspond to different DCI formats.
  • the at least one target time parameter set is one of the N time parameter sets.
  • the target time parameter set is a time parameter set in which the length of the corresponding time unit in the N time parameter sets satisfies the preset value and / or the corresponding DCI format satisfies the preset DCI format.
  • the at least one target time parameter set is a time parameter set obtained by taking an intersection or a union of the N time parameter sets.
  • the at least one target time parameter set is to convert the time unit length corresponding to each time parameter set in the N time parameter sets into a target time unit length, obtain the converted N time parameter sets, and convert the A set of time parameters obtained by taking the intersection or union of the N time parameter sets of.
  • the target time unit length may be the greatest common divisor of the time unit length corresponding to each time parameter set in the N time parameter sets.
  • the at least one target time parameter set is at least two merged time parameter sets obtained after taking intersections or unions of time parameter sets corresponding to the same DCI format among the N time parameter sets A collection of time parameters.
  • the length of the time unit corresponding to each time parameter set in at least one time parameter set corresponding to the same DCI format in the N time parameter sets is converted into the target time unit length to obtain the conversion corresponding to each DCI format
  • the at least one converted time parameter set corresponding to each DCI format is intersected or uniond to obtain a combined one time parameter set corresponding to each DC format and then obtain at least Two combined time parameter sets, and one of the obtained at least two combined time parameter sets is used as the target time parameter set.
  • the target time unit length may be the greatest common divisor of the time unit length corresponding to each time parameter set in the at least one time parameter set corresponding to the same DCI format.
  • the at least one target time parameter set is N target time parameter sets, and each target time parameter set in the N target time parameter sets is each time parameter set in the N time parameter sets.
  • M target times are obtained by taking intersection or union of N time sets, the N time sets are based on each of the first time and the N target time parameter sets The target time parameter set is determined.
  • the method by which the network device determines at least one target time parameter set according to the N time parameter sets is the same as the terminal device, thereby ensuring that the network device and the terminal device have a consistent understanding of the codebook.
  • the network device also determines N time parameter sets, and sends first configuration information to the terminal device, so that the terminal device obtains N time parameter sets according to the first configuration information, thereby ensuring that the network device and the terminal device Consistency of N time parameter sets, where the first configuration information is used to indicate N time parameter sets;
  • the network device determines the N time parameter sets, and sends second configuration information to the terminal device, so that the terminal device obtains N time parameter sets according to the first configuration information, thereby ensuring that the network device and the terminal device Consistency of time parameter sets, where the second configuration information is used to indicate N1 time parameter sets.
  • the N time parameter sets include N1 time parameter sets and N2 time parameter sets.
  • N2 time parameter sets are predefined , The sum of N1 and N2 is N, and N1 and N2 are both positive integers.
  • the network device before receiving the codebook at the first time, the network device also sends second downlink information to the terminal device, so that the network device determines the first time according to the second downlink information, thereby ensuring that the network device and the terminal device Consistency over time, where the second downlink information is used to indicate the first time.
  • an embodiment of the present application provides a communication device, which may be a terminal device or a component of a terminal device (for example, an integrated circuit, a chip, etc.), and the communication device may implement the The function corresponding to each step in the involved method, the function may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the device includes a processor configured to support the device to perform the corresponding function in the method related to the first aspect described above.
  • the device may also include a memory for coupling with the processor, which stores necessary program instructions and data of the device.
  • the device further includes a transceiver, and the transceiver is used to support communication between the device and other network elements.
  • the transceiver may be an independent receiver, an independent transmitter or a transceiver with integrated transceiver function.
  • the communication device device includes: a processing unit and a transceiver unit; wherein, the processing unit is configured to determine at least one target time parameter set according to N time parameter sets, where N is greater than or equal to A positive integer of 2, at least two of the N time parameter sets correspond to different time unit lengths, and each time parameter set includes at least one time parameter, and the time parameter is used to instruct to receive the first downlink The number of time units between the information and the first response information corresponding to the feedback of the first downlink information; a transceiver unit for sending a codebook at the first time, where the codebook is included in M targets The response information corresponding to the downlink information received at least one target time in the time, the M target times are determined according to the first time and the at least one target time parameter set, and the M is a positive integer.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a network device or a component of a network device (for example, an integrated circuit, a chip, etc.).
  • the communication device may implement the The function corresponding to each step in the involved method, the function may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the device includes a processor configured to support the device to perform the corresponding function in the method according to the second aspect.
  • the device may also include a memory for coupling with the processor, which stores necessary program instructions and data of the device.
  • the device further includes a transceiver, and the transceiver is used to support communication between the device and other network elements.
  • the transceiver may be an independent receiver, an independent transmitter or a transceiver with integrated transceiver function.
  • the communication device includes: a transceiver unit configured to receive a codebook at a first time, where the codebook includes downlink information received by at least one target time of M target times Response information, M is a positive integer, the M target times are determined according to the first time and at least one target time parameter set, the at least one target time parameter set is determined according to N time parameter sets, N is greater than or equal to A positive integer of 2, at least two of the N time parameter sets correspond to different time unit lengths.
  • Each time parameter set includes at least one time parameter, and the time parameter is used to instruct the transceiver unit to send the first downlink information and The number of time units in the interval between receiving the first response information corresponding to the first downlink information.
  • an embodiment of the present application provides a communication device.
  • the communication device includes: a processor and a transceiver, and the processor and the transceiver are used to implement any one of the first aspect or the second aspect. Item communication method.
  • an embodiment of the present application provides an apparatus that exists in the form of a chip product.
  • the structure of the apparatus includes a processor and a memory.
  • the memory is used to couple with the processor and store necessary program instructions of the apparatus.
  • the processor is used to execute the program instructions stored in the memory, so that the apparatus performs the function of the terminal device in the above method.
  • an embodiment of the present application provides an apparatus that exists in the form of a chip product.
  • the structure of the apparatus includes a processor and a memory.
  • the memory is used to couple with the processor and store necessary program instructions of the apparatus.
  • the processor is used to execute the program instructions stored in the memory, so that the apparatus performs the function of the network device in the above method.
  • an embodiment of the present application provides a computer storage medium, where the storage medium includes computer instructions, and when the instructions are executed by a computer, the computer is implemented as described in any one of the first and second aspects The communication method mentioned.
  • an embodiment of the present application provides a computer program product, where the program product includes a computer program, the computer program is stored in a readable storage medium, and at least one processor of a communication device may select from the readable storage medium After reading the computer program, the at least one processor executes the computer program to cause the communication device to implement the communication method according to any one of the first aspect or the second aspect.
  • an embodiment of the present application provides a communication system.
  • the system includes the foregoing terminal device and network device.
  • the communication method, device, device, system and storage medium provided in the embodiments of the present application determine at least one target time parameter set according to N time parameter sets by the terminal device, and at least two time parameter sets among the N time parameter sets The length of the corresponding time unit is different, and each time parameter set includes at least one time parameter, the time parameter is used to instruct the terminal device to receive the first downlink information and the terminal device feeds back the first response corresponding to the first downlink information to the network device The number of time units between information intervals. Then, the terminal device determines M target times according to the first time and the at least one target time parameter set, and corresponds to the downlink information received according to at least one target time of the M target times.
  • the terminal device Generates a codebook, and then the terminal device sends the codebook to the network device at the first time.
  • the network device parses the codebook, and determines whether the downlink information corresponding to the response information is successfully transmitted according to the response information included in the codebook. That is, in the embodiment of the present application, when at least two of the N time parameter sets correspond to different time unit lengths, the terminal device can effectively generate a codebook, and at the same time, the network device can effectively parse the codebook. Ensure that the network equipment and terminal equipment have a consistent understanding of the codebook, thereby ensuring the effectiveness of communication and improving resource utilization.
  • FIG. 1 is a schematic diagram of a communication system involved in an embodiment of this application.
  • Figure 2 is a schematic diagram of the feedback of the response information
  • 3 is a schematic diagram of determining time according to a first time and a set of time parameters
  • FIG. 4 is a schematic diagram of determining PDSCH timing involved in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of determining a slot where a PDCCH may exist according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of PDCCH timing determination according to an embodiment of the present application.
  • 9 and 10 are schematic diagrams of one way to determine the target time
  • 11 and 12 are schematic diagrams of another way to determine the target time
  • 13 is a schematic diagram of another way to determine the target time
  • 16 is a schematic diagram of one way to determine the target time
  • 17 is a schematic diagram of another way to determine the target time
  • 21 is a schematic structural diagram of a communication device according to an embodiment of this application.
  • FIG. 22 is a schematic structural diagram of a terminal device according to an embodiment of this application.
  • FIG. 23 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • 24 is a schematic structural diagram of a communication device according to an embodiment of this application.
  • 25 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • 26 is a schematic structural diagram of a network device according to an embodiment of this application.
  • FIG. 27 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • 29 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • high-layer signaling may refer to signaling sent by a high-level protocol layer, and the high-level protocol layer is at least one protocol layer above the physical layer.
  • the high-level protocol layer may specifically include at least one of the following protocol layers: a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol (packet data convergence) protocol (PDCP) layer, radio resource control (radio resource control (RRC) layer and non-access layer (NAS).
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • NAS non-access layer
  • the codebook refers to the codebook generated by the response information corresponding to the downlink information, such as the HARQ-ACK codebook (HARQ-ACK codebock), where the response information may be a reception success message ACK or a reception failure message NACK.
  • the downlink information may be a physical downlink shared channel (PDSCH) carrying downlink data, or a physical downlink control channel (PDCCH), or deactivated semi-persistent scheduling (Semi-Persistent Scheduling, SPS) ) Of the PDSCH downlink control channel (PDCCH).
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • SPS deactivated semi-persistent scheduling
  • the indication information sent by the network device may be carried in DCI, or carried in higher layer signaling.
  • the time unit refers to a period of time domain resources used to carry information.
  • a time unit may include one or more consecutive transmission time intervals (TTI) or one or more time slots (slot) or one or more time domain symbols (symbol), or one or more Mini-slot.
  • TTI transmission time interval
  • slot time slots
  • symbol time domain symbols
  • Mini-slot time domain symbols
  • a slot includes 14 time domain symbols
  • a slot includes 12 time domain symbols.
  • the number of time domain symbols contained in a mini-slot is less than the number of symbols contained in a slot.
  • Different time units are used to carry different data packets or different copies of the same data packet (or called duplicate versions).
  • the resources described in the embodiments of the present application are transmission resources, including time-domain resources and frequency-domain resources, and can be used to carry data or signaling during an uplink communication process or a downlink communication process.
  • “transmit / transmission” in the embodiments of the present application refers to two-way transmission, including sending and / or receiving operations.
  • “transmission” in the embodiments of the present application includes sending data, receiving data, or sending data and receiving data.
  • the data transmission here includes uplink and / or downlink data transmission.
  • the data may include channels and / or signals, uplink data transmission is uplink channel and / or uplink signal transmission, and downlink data transmission is downlink channel and / or downlink signal transmission.
  • the service (service) appearing in the embodiment of the present application refers to a communication service obtained by the terminal device from the network side, including a control plane service and / or a data plane service, such as a voice service and a data traffic service.
  • the sending or receiving of services includes the sending or receiving of service-related data or signaling.
  • B corresponding to A indicates that B is associated with A.
  • B can be determined according to A.
  • determining B based on A does not mean determining B based on A alone, and B may also be determined based on A and / or other information.
  • the words “first” and “second” are used to distinguish the same or similar items that have substantially the same functions and functions. Those skilled in the art may understand that the words “first” and “second” do not limit the number and execution order, and the words “first” and “second” do not necessarily mean different.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application. As shown in FIG. 1, the communication system includes a network device and a terminal device, where,
  • a network device is a device in a wireless network, such as a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller (RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (eg, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (access point, AP), etc.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, which is not limited herein.
  • Terminal device It can be a wireless terminal device or a wired terminal device.
  • the wireless terminal device can refer to a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water surface Onboard (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, and industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), transportation security (transportation)
  • the wireless terminal equipment in safety, the wireless terminal equipment in smart city (smart city), the wireless terminal equipment in smart home (smart home), etc. are not limited here. It can be understood that, in the embodiments of the present application, the terminal device may also be referred to as user equipment (UE).
  • UE user equipment
  • the communication system shown in FIG. 1 may be a 2G, 3G, 4G, 5G communication system or a next generation communication system, such as a global mobile communication system (Global System for Mobil ecommunications, GSM), and code division multiple access (Code Division Multiple Access (CDMA) system, Time Division Multiple Access (Time Division Multiple Access, TDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access Wireless, WCDMA), Frequency Division Multiple Access (Frequency Division Division Multiple Addressing, FDMA) system , Orthogonal Frequency-Division Multiple Access (OFDMA) system, single carrier FDMA (SC-FDMA) system, General Packet Radio Service (General Packet Radio Service, GPRS) system, Long Term Evolution (Long Term Evolution, LTE) system, new radio (NR) communication system, etc.
  • GSM Global System for Mobil ecommunications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • the network device and the terminal device may communicate through a licensed spectrum (licensed spectrum), or may use an unlicensed spectrum (unlicensed spectrum) to communicate, and may also communicate through a licensed spectrum and an unlicensed spectrum.
  • Network devices and terminal devices can communicate through the spectrum below 6GHz, can also communicate through the spectrum above 6GHz, and can also use the spectrum below 6GHz and the spectrum above 6GHz to communicate at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • the terminal device and the network device can perform service transmission, and the services involved in the embodiments of the present application may include, but are not limited to, enhanced mobile broadband (enhanced Mobile Broadband, eMBB) service, ultra-reliable low-latency communication (Ultra -Reliable and Low-Latency Communication (URLLC) services and massive machine type communication (massive Machine Type Communication, mMTC) services, etc.
  • enhanced mobile broadband enhanced Mobile Broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC massive machine type communication
  • typical URLLC services include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and haptic interaction applications such as remote repair and remote surgery. These application scenarios are delayed in reliability and time. Regarding stricter requirements.
  • the terminal device may receive downlink information from the network device and feed back response information corresponding to the downlink information to the network device.
  • the specific process may include:
  • the terminal device receives the downlink information from the network device, decodes the downlink information, and feeds back the response information to the network device according to the decoding result. For example, if the downlink information is successfully received, the terminal device is fed back a successful reception message, such as ACK. If the reception of downlink information fails, the network device is fed back a reception failure message, such as NACK. The network device determines whether the downlink information is successfully received according to the response information fed back by the terminal device. For example, if the response information is ACK, it means that the terminal device successfully received the downlink information. The network device does not need to send the downlink information to the terminal device again. If the response information is NACK indicates that the terminal device did not successfully receive the downlink information. At this time, the network device may re-send the downlink information to the terminal device to improve the reliability of downlink information transmission.
  • ACK successful reception message
  • NACK reception failure message
  • the terminal device can feed back response information of multiple downlink information in one feedback.
  • the terminal device first determines a time parameter set, for example, time parameter set A.
  • the time parameter set A corresponds to a time unit length, and the time unit length may be a slot.
  • the time parameter set A includes at least one time parameter.
  • the time parameter is used to instruct the terminal device to receive the first downlink information from the network device and the terminal device feeds back the first response information corresponding to the first downlink information to the network device.
  • the number of slots in the interval For example, as shown in FIG. 2, the terminal device receives the first downlink information from the network device at the downlink time unit slot. If the time parameter is 4, the terminal device can send the network device at the uplink time unit slot + 4 to the network device Sending response information corresponding to the first downlink information.
  • the terminal device After determining the time parameter set A, the terminal device determines Q times according to the first time and time parameter set A for sending the response information, and Q is a positive integer. For example, as shown in FIG. 3, assume that the time unit corresponding to the first time is sloti, and the time parameter set A is ⁇ 0,1,2,3,4 ⁇ .
  • the above-mentioned first time may be indicated by the network device to the terminal device through the indication information, or may be predefined, for example, specified in a protocol.
  • the indication information may be carried in DCI or high-layer signaling.
  • the terminal device After the terminal device determines Q times according to the first time and the time parameter set A, it may determine the downlink information received at each time in the Q times, and then determine the response information corresponding to each downlink information. Next, based on these response information, the codebook is determined. That is, the codebook includes response information corresponding to the downlink information received at least one of Q times.
  • the codebook type may be a semi-static codebook or a dynamic codebook. For different codebook types, it determines Q times and the process of generating the codebook is different.
  • the specific codebook type used by the terminal device is configured by the network device.
  • the process of generating the codebook may include:
  • the terminal device determines a time parameter set A, then according to the first time and the time parameter set A, the position of the downlink information for sending the response information at the first time is determined, and then Q times are determined.
  • the network device sends configuration information to the terminal device.
  • the configuration information is a time-domain resource table.
  • the table can contain up to 16 lines. Each line indicates the start symbol S and the number of symbols L of a time-domain resource. S is used to express The starting symbol position of the time-domain resource occupied by data in a slot, and L represents the number of time-domain symbols occupied by data in a slot.
  • slot i-4 includes 14 symbols, of which time-domain resource 1 is ⁇ symbol 1, symbol 2 ⁇ , and time-domain resource 2 is ⁇ symbol 2 , Symbol 3, symbol 4, symbol 5 ⁇ , time domain resource 3 is ⁇ symbol 6, symbol 7 ⁇ , time domain resource 4 is ⁇ symbol 8, symbol 9, symbol 10, symbol 11 ⁇ .
  • the terminal device will determine that there are multiple PDSCH opportunities (occasion).
  • the terminal device determines that the time domain resource with the highest end symbol in the time domain is the first time domain resource, and then determines the time domain resource that overlaps with the first time domain resource in the time domain, and these overlapping time domain resources Determine a PDSCH occupation, and then use the time domain resource with the end symbol in the time domain as the first time domain resource in the remaining time domain resources. According to the previous method, continue to determine the next PDSCH occupation, and then obtain Multiple PDSCH occupations. As shown in FIG. 4, time-domain resource 1 and time-domain resource 2 overlap. Therefore, time-domain resource 1 and time-domain resource 2 are determined to be a PDSCH occupation, and then time-domain resource 3 is regarded as the first time-domain resource.
  • the time domain resource 3 is determined as a PDSCH, and then the time domain resource 4 is regarded as the first time domain resource. Since there is no resource overlapping with the time domain resource 4, the time domain resource 4 Determined as a PDSCH occupation. In this way, three possible PDSCH occasions can be obtained, assuming that each PDSCH occasion corresponds to 1-bit response information, so that the slot i-4 needs to feed back 3-bit response information in total. Assuming that the terminal device receives downlink information on the time domain resource 3 of slot i-4, and the feedback information corresponding to the downlink information is fed back in slot i-4, then the time domain resource 3 corresponds to the 3 bit response information in slot i-4.
  • the second bit if the decoding of the downlink information is successful, the second bit in the response information corresponding to slot i-4 is determined as ACK, and if the decoding fails, the second bit in the response information corresponding to slot i-4 is determined as NACK.
  • the corresponding feedback information of other time-domain resources also generates response information according to the same method, and then forms the response information corresponding to slot i-4.
  • response information corresponding to each of the Q times can be obtained, and then, these response information bits are concatenated to generate a codebook and sent to the network device.
  • the process of generating the codebook may include:
  • the time unit where the PDCCH is located is determined according to the set of K0, where K0 refers to the number of time units from the PDCCH to the corresponding PDSCH interval.
  • the network device sends configuration information to the terminal device.
  • the configuration information is a time domain resource table.
  • the table contains up to 16 rows, and each row indicates a value of K0. Assuming that all values of K0 are ⁇ 0,1,2 ⁇ , then count down from each slot in the downlink time unit slot i-4, slot i-3, slot i-2, slot i-1, and slot i 0, 1, and 2 slots, to determine the slots that may exist in the PDCCH corresponding to the downlink information that may send the corresponding response information at the first time.
  • Counting 0, 1, and 2 slots from the downstream time unit slot i-4, determine the possible PDCCH slots are slot i-4, slot i-5, slot i-6; from the downlink time
  • the unit slot i-3 counts 0, 1, and 2 slots forward, and determines the possible slots of the PDCCH as slot i-3, slot i-4, slot i-5; counts 0 from the downlink time unit slot i-2 , 1, 2 slots, determine the possible slots of the PDCCH as slot i-2, slot i-3, slot i-4; count the 0, 1, 2 slots from the downstream time unit slot i-1 to determine the PDCCH
  • the possible slots are slot i-1, slot i-2, slot i-3; count 0, 1, and 2 slots from the downstream time unit slot i to determine that the possible slot of the PDCCH is slot i, slot i- 1.
  • 7 slots that may exist in the PDCCH corresponding to the downlink information that may send the corresponding response information at the first time include: slot i, slot i-1, slot i-2, slot i-3, slot i -4, slot i-5, slot i-6.
  • a time 1 of the Q times is used as an example, and other times can be referred to. It is assumed that the downlink time unit corresponding to this time 1 is slot-4 in FIG. 3.
  • the terminal device will determine the PDCCH occupation according to the indication information sent by the network device.
  • the indication information of the network device will indicate a 14-bit bitmap, corresponding to 14 symbols in a slot, used to indicate the specific PDCCH occupation position.
  • the 14-bit bitmap configured by the network device is 01000001000000. Assuming that 1 indicates that the corresponding symbol is PDCCH, as shown in FIG. 6, the bitmap indicates that symbol 1 and symbol 7 in a slot are corresponding PDCCH occasions. According to this method, a possible PDCCH corresponding to Q times can be determined.
  • the downlink data or the response corresponding to the SPS release needs to be sent at the first time information.
  • the response information that may need to be sent in the first time is determined, and then all the feedback information is concatenated to generate a codebook and sent to the network device.
  • the terminal device after the terminal device generates the codebook in the above manner, the terminal device sends the codebook to the network device.
  • the network device can receive the codebook at the first time.
  • the network device After receiving the codebook, the network device parses the codebook to obtain the response information included in the codebook. Next, the downlink information corresponding to the response information is determined according to the response information, that is, the response information of which downlink information is determined by the response information, so that the network device determines whether to retransmit the corresponding downlink information according to the response information of the downlink information. For example, if the response information is ACK, the terminal device receives the downlink information corresponding to the response information, and the network device does not need to resend the downlink information. If the response information is NACK, the terminal device fails to receive the downlink information corresponding to the response information, and the network device The downlink information can be resent.
  • the response information is ACK
  • NACK the terminal device fails to receive the downlink information corresponding to the response information, and the network device The downlink information can be resent.
  • the network device determines Q times according to the first time and the time parameter set A.
  • the response information included in the codebook can be determined as the response information corresponding to the received downlink information at Q times.
  • the process for the network device to determine Q times according to the time parameter set A and the first time is the same as that of the terminal device, and will not be repeated here.
  • the transmission delay due to the URLLC service is relatively low.
  • the length of the time unit corresponding to the time parameter set is one slot
  • the terminal device waits for multiple slots, it can send feedback information corresponding to the downlink information.
  • the terminal device only It can wait until all the information that needs to be fed back in the feedback slot generates a codebook before it can be sent to the network device, resulting in a transmission delay that cannot meet the needs of low-latency services such as URLLC.
  • the time unit length corresponding to the time parameter set can be reduced by taking, for example, changing the time unit length corresponding to the time parameter set from slot to 1 / 2slot, or symbol.
  • N time parameter sets there may be N time parameter sets, N is greater than or equal to 2, and some time parameters in the N time parameter sets
  • the length of the time unit corresponding to the set is the same as the length of the previous time unit, for example, it is still a slot, and the length of the time unit corresponding to some time parameter sets becomes smaller, for example, it becomes a 1/2 slot.
  • at least two of the N time parameter sets have different time unit lengths.
  • the present application provides a communication method, device, device, system, and storage medium, which can accurately determine when at least two of the N time parameter sets correspond to different time unit lengths Codebook.
  • FIG. 7 is a flowchart of a communication method provided by an embodiment of the present application. As shown in FIG. 7, the method of the embodiment of the present application may include:
  • the terminal device determines at least one target time parameter set according to the N time parameter sets.
  • N is a positive integer greater than or equal to 2, and at least two time parameter sets of the N time parameter sets have different time unit lengths.
  • N is 3, and the three time parameter sets are respectively denoted as time parameter set a, time parameter set b, and time parameter set c.
  • these three time parameter sets have two time units corresponding to the time parameter set
  • the length is different, for example, the length of the time unit corresponding to the time parameter set a and the time parameter set b is not the same, or the time unit length corresponding to the time parameter set a and the time parameter set c is not the same, or the time parameter set b and the time parameter
  • the length of the time unit corresponding to set c is different.
  • the lengths of the time units corresponding to the three time parameter sets are different, that is, the lengths of the time units corresponding to the time parameter set a, time parameter set b, and time parameter set c are different.
  • Each time parameter set in the above time parameter sets includes at least one time parameter, and the time parameter is used to indicate a time unit between the interval between receiving the first downlink information and the first response information corresponding to the feedback of the first downlink information.
  • the length of the time unit corresponding to the interval is the length of the time unit corresponding to the set of time parameters where the time parameter is located.
  • each of the N time parameter sets corresponds to a DCI format, and at least two of the N time parameter sets have different DCI formats.
  • N is 2, assuming that the DCI format corresponding to the first time parameter set is the first DCI format.
  • the first DCI format may be DCI format1_0, or may be called full feedback DCI (fallback DCI), which can be used in Radio Resource Control (Radio Resource Control, RRC) establishment or data scheduling during RRC reconfiguration;
  • the DCI format corresponding to the second time parameter set is the second DCI format, which can be DCI format1_1, used for Perform data scheduling after RRC is established.
  • RRC Radio Resource Control
  • the terminal device sends the codebook at the first time.
  • the codebook includes response information corresponding to the downlink information received at least one target time among the M target times, the M target times are determined according to the first time and the at least one target time parameter set , M is a positive integer.
  • the terminal device determines at least one target time parameter set according to step S101, and determines, according to the determined at least one target time parameter set, the time when the downlink information that may send the response information at the first time is located, that is, the target time.
  • the terminal device After determining the M target times, the terminal device generates a codebook, and the codebook includes response information corresponding to the downlink information received at least one target time among the M target times.
  • the codebook type may be a semi-static codebook or a dynamic codebook.
  • the process of generating a codebook is different.
  • the specific codebook type used by the terminal device is configured by the network device.
  • the network device receives the codebook at the first time.
  • the network device After receiving the codebook, the network device parses the codebook to obtain the response information included in the codebook. Next, the downlink information corresponding to the response information is determined according to the response information, that is, the response information of which downlink information is determined by the response information, so that the network device determines whether to retransmit the corresponding downlink information according to the response information of the downlink information. For example, if the response information is ACK, the terminal device receives the downlink information corresponding to the response information, and the network device does not need to resend the downlink information. If the response information is NACK, the terminal device fails to receive the downlink information corresponding to the response information, and the network device The downlink information can be resent.
  • the response information is ACK
  • NACK the terminal device fails to receive the downlink information corresponding to the response information, and the network device The downlink information can be resent.
  • the network device after receiving the codebook, the network device needs to determine the target time parameter set, and determine M target times according to the first time and the target time parameter set. In this way, it can be determined which of the M target times the response information included in the codebook corresponds to the response information of the downlink information received at the target time.
  • the specific process of determining the target time parameter set by the network device and determining the M target times according to the target time parameter set and the first time is the same as that of the terminal device, and will not be repeated here.
  • the terminal device determines at least one target time parameter set according to N time parameter sets. At least two time parameter sets in the N time parameter sets have different time unit lengths, and each time The parameter set includes at least one time parameter.
  • the time parameter is used to indicate the number of time units between the terminal device receiving the first downlink information and the terminal device feeding back the first response information corresponding to the first downlink information to the network device.
  • the terminal device determines M target times according to the first time and the at least one target time parameter set, and generates a codebook according to the response information corresponding to the downlink information received at least one target time among the M target times, and then, The terminal device sends the codebook to the network device at the first time.
  • the network device After receiving the codebook, the network device parses the codebook, and determines whether the downlink information corresponding to the response information is successfully transmitted according to the response information included in the codebook. That is, in the embodiment of the present application, when at least two of the N time parameter sets correspond to different time unit lengths, the terminal device can effectively generate a codebook, and at the same time, the network device can effectively parse the codebook. Ensure that the network equipment and terminal equipment have a consistent understanding of the codebook, thereby ensuring the effectiveness of communication and improving resource utilization.
  • FIG. 8 is a flowchart of a communication method provided by an embodiment of the present application. Based on the foregoing embodiment, as shown in FIG. 8, the method of the embodiment of the present application includes:
  • the terminal device determines a target time parameter set according to the N time parameter sets.
  • the terminal device may determine the one target time parameter set according to any one of the following ways. It can be understood that the following manners are merely examples, and do not constitute any limitation on the present application. In addition, it can be understood that the process of determining at least one target time parameter set by the network device is the same as that of the terminal device.
  • the terminal device is used as an example, and the network device may refer to it without further description.
  • Manner 1 The terminal device determines one of the N time parameter sets as the target time parameter set.
  • the terminal device determines one of the time parameter sets from the N time parameter sets as the target time parameter set according to a predefined definition.
  • the terminal device uses a time parameter set corresponding to a preset time value and / or a corresponding DCI format satisfying a preset DCI format in the N time parameter sets as the target time parameter set.
  • the pre-defined target time parameter set is a time parameter set whose length of the corresponding time unit in the N time parameter sets satisfies the preset value.
  • N 3, that is, there are 3 time parameter sets, of which time parameter set 1 is ⁇ 0, 1, 2, 3, 4 ⁇ , the corresponding time unit length is one slot, and time parameter set 2 is ⁇ 4, 5, 6 ⁇ , the corresponding time unit length is a 1/2 slot, the time parameter set 3 is ⁇ 1, 3, 5 ⁇ , and the corresponding time unit length is a 2 slot.
  • the determined target time parameter set is the time parameter set 1 is ⁇ 0, 1, 2, 3, 4 ⁇
  • the determined target time parameter set is time parameter set 2 as ⁇ 4, 5, 6 ⁇
  • pre-set the target time parameter set to be the time parameter set with the largest time unit length among the N time parameter sets then the determined target time parameter set is time parameter set 3 as ⁇ 1, 3, 5 ⁇ , Or preset the target time parameter set as the time parameter set with the smallest length of the corresponding time unit among the N time parameter sets, then the determined target time parameter set is time parameter set 2 ⁇ 4, 5, 6 ⁇ .
  • the pre-defined target time parameter set is a time parameter set in which the corresponding DCI format in the N time parameter sets satisfies the preset DCI format.
  • N 3, that is, there are 3 time parameter sets, where time parameter set 1 is ⁇ 0, 1, 2, 3, 4 ⁇ , the corresponding DCI format is the first DCI format, and time parameter set 2 is ⁇ 4, 5, 6 ⁇ , the corresponding DCI format is the second DCI format, the time parameter set 3 is ⁇ 1, 3, 5 ⁇ , and the corresponding DCI format is the first DCI format.
  • the target time parameter set is defined as a set of N time parameter sets in which the corresponding DCI format is a time parameter set in the second DCI format
  • the determined target time parameter set is time parameter set 3 as ⁇ 1, 3, 5 ⁇ .
  • the predefined target time parameter set is a time parameter set in which the length of the corresponding time unit in the N time parameter sets satisfies the preset value and the DCI format satisfies the preset DCI format.
  • N 3, that is, there are 3 time parameter sets, where time parameter set 1 is ⁇ 0, 1, 2, 3, 4 ⁇ , the corresponding time unit length is one slot, and the corresponding DCI format is A DCI format, the time parameter set 2 is ⁇ 4, 5, 6 ⁇ , the corresponding time unit length is a 1/2 slot, the corresponding DCI format is the second DCI format, and the time parameter set 3 is ⁇ 1, 3, 5 ⁇ , The corresponding time unit length is one 2slot, and the corresponding DCI format is the first DCI format.
  • the target time parameter set is pre-defined as the corresponding time unit length in the N time parameter sets is 1/2 slot, and the DCI format is a time parameter set in the second DCI format, then the determined target time parameter set is the time parameter set 2 is ⁇ 4, 5, 6 ⁇ .
  • the terminal device may also determine one of the time parameter sets from the N time parameter sets as the target time parameter set according to the instruction information of the network device.
  • the network device itself determines the time parameter set 1 as the target time parameter set from the N time parameter sets, and sends indication information to the terminal device.
  • the indication information is used to instruct the terminal device to use the time parameters in the N time parameter sets.
  • Set 1 is the target time parameter set.
  • the indication information is carried in higher layer signaling.
  • N 2
  • the target time parameter set is the first The time parameter set corresponding to the second DCI format. If blind detection of DCI in the second format is not configured, the target parameter set is the time parameter set corresponding to the first DCI format.
  • Manner 2 The terminal device takes the time parameter set obtained by taking the intersection or the union of the N time parameter sets as the target time parameter set.
  • the two time parameter sets are intersected or merged into a time parameter set, and the combined time parameter set is used as the target time parameter set.
  • the terminal device converts the time unit length corresponding to each time parameter set in the N time parameter sets into the target time unit length to obtain the converted N time parameter sets; the converted N time parameter sets are taken Intersect or take a union to obtain a merged time parameter set, and use the merged time parameter set as the target time parameter set.
  • the length of the time unit corresponding to the two time parameter sets is different, the length of the time unit corresponding to the two time parameter sets is converted to the same length, that is, each time parameter set in the two time parameter sets is converted to The corresponding time unit length is the time parameter set of the target time unit length.
  • the two time parameter sets are time parameter set 1 and time parameter set 2, where time parameter set 1 is ⁇ 1,2,3,4 ⁇ , the corresponding time unit length is slot, and time parameter set 2 is ⁇ 0,1,2,3 ⁇ , the corresponding time unit length is 1/2 slot, so you need to convert the time unit length corresponding to time parameter set 1 from slot to 1/2 slot, you can get the time unit length of 1/2 slot
  • the time parameter set 1 is ⁇ 1,2,3,4,5,6,7,8 ⁇ , or the time parameter set 1 with a time unit length of 1/2 slot is ⁇ 2,4,6,8 ⁇ .
  • the time parameter set is used as the target time parameter set.
  • the time unit length corresponding to the time parameter set 1 ⁇ 1,2,3,4 ⁇ is converted into a time parameter set ⁇ 1,2,3,4,5,6,7,8 with a time unit length of 1/2 slot ⁇ , Take the union of the time parameter set 2 ⁇ 1,2,3,4 ⁇ with a time unit length of 1/2 slot to obtain a combined time parameter set of ⁇ 0,1,2,3,4,5 , 6,7,8 ⁇ , using ⁇ 0,1,2,3,4,5,6,7,8 ⁇ as the target time parameter set, the corresponding time unit length is 1/2 slot.
  • the time unit length corresponding to the time parameter set 1 ⁇ 1,2,3,4 ⁇ is converted into a time parameter set ⁇ 1,2,3,4,5,6,7,8 with a time unit length of 1/2 slot ⁇ , Take the intersection with the time parameter set 2 ⁇ 1,2,3,4 ⁇ with a time unit length of 1/2 slot to obtain a merged time parameter set as ⁇ 1,2,3 ⁇ , and set the ⁇ 1, 2,3 ⁇ as the target time parameter set, the corresponding time unit length is 1/2 slot.
  • the time unit length is Take the intersection of the time parameter set 2 ⁇ 1,2,3,4 ⁇ of 1 / 2slot, and obtain the merged time parameter set as ⁇ 2 ⁇ , using this ⁇ 2 ⁇ as the target time parameter set, and the corresponding time unit length It is 1/2 slot.
  • the target time unit length may be the greatest common divisor of the time unit length corresponding to each time parameter set in the N time parameter sets. For example, if N is 2, the time unit length corresponding to time parameter set 1 is slot, and the time unit length corresponding to time parameter set 2 is 1/2 slot, then the maximum convention of the time unit length corresponding to time parameter set 1 and time parameter set 2 is The number is 1/2 slot. Therefore, the length of the time unit corresponding to the time parameter set 1 and the time parameter set 2 can be converted to 1/2 slot.
  • Method 3 The terminal device takes the intersection or union of the corresponding time parameter sets in the same DCI format among the N time parameter sets to obtain at least two combined time parameter sets; the at least two combined time parameter sets A set of time parameters is used as the target time parameter set.
  • taking the intersection or union of the time parameter sets corresponding to the same DCI format in the N time parameter sets to obtain at least two combined time parameter sets may be: first of all, the N DC time parameter sets have the same DCI format The length of the time unit corresponding to each time parameter set in the corresponding at least one time parameter set is converted to the target time unit length to obtain at least one converted time parameter set corresponding to each DCI format, and the corresponding The converted at least one time parameter set is taken to be an intersection or a union to obtain a combined one time parameter set corresponding to each DC format, and then to obtain at least two combined time parameter sets.
  • the target time unit length may be the greatest common divisor of the time unit length corresponding to each time parameter set in the at least one time parameter set corresponding to the same DCI format.
  • the target time unit length may be the greatest common divisor of the time unit length corresponding to each time parameter set in the at least one time parameter set corresponding to the same DCI format.
  • the terminal device using one of the at least two combined time parameter sets obtained above as the target time parameter set may be: the terminal device combines the at least two combined time parameter sets A time parameter set in which the corresponding time unit length meets a preset value and / or the corresponding DCI format meets a preset DCI format is used as the target time parameter set.
  • N 4 time parameter sets are time parameter set 3, time parameter set 4, time parameter set 5, and time parameter set 6, respectively, where DCI format corresponding to time parameter set 3 and time parameter set 4 It is the first DCI format, and the DCI format corresponding to the time parameter set 5 and the time parameter set 6 is the second DCI format.
  • DCI format corresponding to time parameter set 3 and time parameter set 4 It is the first DCI format
  • the DCI format corresponding to the time parameter set 5 and the time parameter set 6 is the second DCI format.
  • Take intersection or union of time parameter set 3 and time parameter set 4 if the time unit lengths corresponding to time parameter set 3 and time parameter set 4 are not the same, convert to time units of the same length, and then take intersection or union
  • the process can be described with reference to the second way, which will not be repeated here, and a time parameter set 7 is obtained.
  • one of the time parameter sets in the time parameter set 7 and the time parameter set 8 is used as the target time parameter set, for example, a time parameter in which the length of the corresponding time unit in the time parameter set 7 and the time parameter set 8 satisfies the preset value
  • the set is used as the target time parameter set, or a time parameter set whose corresponding DCI format in the time parameter set 7 and time parameter set 8 meets the preset DCI format is used as the target time parameter set, or, the time parameter set 7 and the time parameter A set of time parameters corresponding to the length of the time unit in set 8 satisfying the preset value and the DCI format satisfying the preset DCI format is used as the target time parameter set.
  • the terminal device determines M target times according to the determined target time parameter set and the first time.
  • M is a positive integer.
  • M target times may be determined according to the determined target time parameter set and the first time.
  • the uplink time unit corresponding to the first time is the n-th 1/2 slot
  • the time unit corresponding to the target time is slot.
  • the target time parameter set determined above is ⁇ 0,1,2,3 ⁇
  • the length of the corresponding time unit, that is, the granularity is 1/2 slot, as shown in Figure 9, from the nth 1/2 slot in the downward direction Count 0, 1, 2, and 3 1/2 slots respectively to obtain 1/2 slots labeled n, n-1, n-2, and n-3, as shown in Figure 9, where 1/2 slots and 1/2 slots n + 1 forms a complete slot, 1 / 2slot n-1 and 1 / 2slot n-2 form a complete slot, 1 / 2slot n-3 and 1 / 2slot n-4 form a complete slot, therefore,
  • the time corresponding to the three slots is regarded as M target times.
  • the target time parameter set determined above is ⁇ 0,1,2,3,4,5,6,7,8 ⁇
  • the length of the corresponding time unit is 1 / 2slot, as shown in FIG. 10, Count 0,1,2,3,4,5,6,7,8 1 / 2slots forward from the nth 1 / 2slot in the downlink to get the downlink time units 1 / 2slot, 1 / 2slot-1 , 1 / 2slot-2, 1 / 2slot-3, 1 / 2slot-4, 1 / 2slot-5, 1 / 2slot-6, 1 / 2slot-7, 1 / 2slot-8,
  • the time unit that occupies half of the slot is complemented by a complete slot.
  • 1/2 slot and 1/2 slot form a complete slot. Therefore, the downlink time unit 1/2 slot + 1, 1/2 slot, n, 1 / 2slot-1, 1 / 2slot-2, 1 / 2slot-3, 1 / 2slot-4, 1 / 2slot-5, 1 / 2slot-6, 1 / 2slot-7, 1
  • the time corresponding to the 5 slots where / 2slot n-8 is located is taken as the target time.
  • the uplink time unit corresponding to the first time is the n-th 1/2 slot
  • the time unit corresponding to the target time is 1/2 slot.
  • the set of target time parameters determined above is ⁇ 0,1,2,3 ⁇
  • the length of the corresponding time unit, that is, the granularity is 1/2 slot, as shown in Figure 11, from the nth 1/2 slot in the downward direction Count 0, 1, 2, and 3 1/2 slots respectively to obtain 1/2 slots labeled n, n-1, n-2, and n-3, and obtain downlink time units labeled n, n-1, and n- 2.
  • the time corresponding to 1/2 slot of n-3 is taken as M target times, and 4 target times are obtained.
  • the target time parameter set determined above is ⁇ 0,1,2,3,4,5,6,7,8 ⁇
  • the corresponding time unit is 1/2 slot, as shown in FIG. 12, from the n 1 / 2slots count forward 0,1,2,3,4,5,6,7,8 1 / 2slots respectively to obtain downlink time units 1 / 2slot, 1 / 2slotn-1, 1 / 2slot n-2, 1/2 slot n-3, 1/2 slot n-4, 1/2 slot n-5, 1/2 slot n-6, 1/2 slot n-7, 1/2 slot n-8
  • the time corresponding to the unit is taken as the target time.
  • the uplink time unit corresponding to the first time is the n-th 1/2 slot
  • the time unit corresponding to the target time is 1/2 slot.
  • the target time parameter set 1 determined above is ⁇ 0,1,2,3 ⁇
  • the length of the corresponding time unit, that is, the granularity is slot, as shown in FIG. 13, count 0 from the nth slot in the downlink.
  • 1, 2, and 3 slots that is, count 0, 2, 4, and 6 1/2 slots from the nth slot in the downlink, respectively, and obtain the numbers n, n-2, n-4, and n-6.
  • the time corresponding to the 1/2 slot marked n, n-2, n-4, n-6 in the downlink time unit is taken as M target times, and 4 target times are obtained.
  • the uplink time unit corresponding to the first time is the n-th 1/2 slot
  • the time unit corresponding to the target time is slot.
  • the target time parameter set 1 determined above is ⁇ 0,1,2,3 ⁇
  • the corresponding time unit length, that is, the granularity is slot, as shown in FIG.
  • the downlink time unit 1 / 2slot n 1/2 slot n-1, 1/2 slot n-2, 1/2 slot n-3, 1/2 slot n-4, 1/2 slot n-5, 1/2 slot n-6, will occupy half of the slot time
  • the unit complement is a complete slot, for example, 1 / 2slot and 1 / 2slot + 1 form a complete slot, therefore, the downlink time unit 1 / 2slot + 1, 1 / 2slot, 1 / 2slotn-1
  • the time corresponding to the 4 slots where 1 / 2slot-2, 1 / 2slot-3, 1 / 2slot-4, 1 / 2slot-5, 1 / 2slot-6 are located is the target time.
  • the terminal device sends the codebook at the first time.
  • the terminal device After determining the M target times in the manner described in S202 above, the terminal device generates a codebook according to the response information corresponding to the downlink information received at at least one target time of the M target times, for example, the codebook Including response information corresponding to the downlink information received at least one target time among the M target times. Then, at the first time, the generated codebook is sent to the network device.
  • the network device receives the codebook at the first time.
  • the network device After receiving the codebook from the terminal device at the first time, the network device determines a target time parameter set, and determines M target times according to the first time and a target time parameter set. In this way, it can be determined that the response information included in the codebook is the response information corresponding to the downlink information received at the target time of the M target times, and then determine at which target time the M target time successfully received the downlink information and which target time was not successfully received Downstream information.
  • the specific process of determining a target time parameter set by the network device and determining M target times according to the target time parameter set and the first time is the same as that of the terminal device, and will not be repeated here.
  • the terminal device determines a target time parameter set according to the N time parameter sets, and determines M target times according to the determined target time parameter set and the first time, thereby achieving the target time Accurate determination.
  • FIG. 15 is a flowchart of a communication method provided by an embodiment of the present application. Based on the foregoing embodiment, as shown in FIG. 15, the method of the embodiment of the present application includes:
  • the terminal device determines N target time parameter sets according to the N time parameter sets.
  • the terminal device uses each time parameter set in the N time parameter sets as a target time parameter set to obtain N target time parameter sets.
  • time parameter set 1 is ⁇ 1,2,3,4 ⁇
  • time parameter set 2 is ⁇ 0,1,2,3 ⁇
  • the corresponding time unit length is 1/2 slot
  • the process for the network device to determine at least one target time parameter set is the same as the terminal device.
  • the terminal device is used as an example, and the network device may refer to it, and details are not described here.
  • the terminal device determines M target times according to the determined N target time parameter sets and the first time.
  • the terminal device determines, according to the first time and each target time parameter set of the N target time parameter sets, the corresponding Time set, to obtain N time sets; take the N time sets to intersection or union to obtain the M target times.
  • the method of determining the time set corresponding to each target time parameter set reference may be made to the method of determining M target times according to the first time and a target parameter set in S202, and the determined time set consisting of the M target times is the The time set corresponding to the target time parameter set.
  • M target times are determined as downlink time units 1 / 2slot + 1, 1 / 2slot, 1 / 2slot-1, 1 / 2slot-2, 1 / 2slot-3, 5 slots where 1 / 2slot-4, 1 / 2slot-5, 1 / 2slot-6, 1 / 2slot-7, 1 / 2slot-8 are located, then these 5 slots are the target time parameters The set of time corresponding to the set.
  • the two time parameter sets are time parameter set 1 and time parameter set 2, respectively, where time parameter set 1 is ⁇ 1,2,3,4 ⁇ , and the corresponding time unit length is slot
  • the time parameter set 2 is ⁇ 0,1,2,3 ⁇ , and the corresponding time unit length is 1/2 slot
  • the first time is the time corresponding to 1/2 slot number n.
  • the time unit length corresponding to the time parameter set 1 is converted to 1/2 slot, and the converted time parameter set 1 is obtained as ⁇ 1,2,3,4,5,6, 7,8 ⁇ .
  • time set 3 and the time set 4 are taken into union, and the combined time set 5 is numbered ⁇ n, n-1, n-2, n-3, n-4, n-5, n-6 , n-7, n-8 ⁇ 1/2 slot, M target times are times corresponding to all time units in time set 5, that is, the number of time units corresponding to M target times is n, n-1, n -2, n-3, n-4, n-5, n-6, n-7, 1/2 slot of the n-8; or, as shown in FIG.
  • the merged time set 5 is a 1/2 slot numbered ⁇ n-1, n-2, n-3 ⁇ , and the M target times are the times corresponding to all time units in the time set 5, ie, M target times
  • the corresponding time unit numbers are 1/2 slots of n-1, n-2, n-3.
  • the length of the time unit corresponding to the time parameter set 1 is converted to 1/2 slot, and the converted time parameter set 1 is obtained as ⁇ 2,4,6,8 ⁇ , and then the method of determining M target time units Similar to the above, no more details.
  • the terminal device sends the codebook at the first time.
  • the terminal device After determining the M target times in the manner described in S302 above, the terminal device generates a codebook according to the response information corresponding to the downlink information received at at least one target time of the M target times, for example, the codebook Including response information corresponding to the downlink information received at least one target time among the M target times. Then, at the first time, the generated codebook is sent to the network device.
  • the network device receives the codebook at the first time.
  • the network device After receiving the codebook from the terminal device at the first time, the network device determines N target time parameter sets, and determines M target times according to the first time and the N target time parameter sets. In this way, it can be determined that the response information included in the codebook is the response information corresponding to the downlink information received at the target time of the M target times, and then determine at which target time the M target time successfully received the downlink information and which target time was not successfully received Downstream information.
  • the specific process of determining N target time parameter sets by the network device and determining M target times according to the N target time parameter sets and the first time is the same as that of the terminal device, and will not be repeated here.
  • the terminal device determines N target time parameter sets according to N time parameter sets, and determines M target times according to the determined N target time parameter sets and the first time, and then realizes Accurate determination of target time.
  • FIG. 18 is a flowchart of a communication method provided by an embodiment of the present application. Based on the foregoing embodiment, as shown in FIG. 18, the method of the embodiment of the present application includes:
  • the terminal device determines at least one target time parameter set according to the N time parameter sets.
  • the terminal device may determine at least one target time parameter set according to the above S201 method or S301 method, and the specific process may refer to the above S201 or S301, which will not be repeated here.
  • the network device sends second downlink information to the terminal device.
  • the second downlink information is used to indicate the first time.
  • the terminal device determines the first time according to the second downlink information.
  • the terminal device After receiving the second downlink information, the terminal device determines a k value according to the second downlink information, and the terminal device sends the response information corresponding to the first downlink information to the network device to satisfy the n + k timing relationship.
  • n represents the time unit in which the terminal device receives the first downlink information
  • the second downlink information may be carried in the DCI.
  • the DCI indicates a time parameter in the time parameter set as k to the terminal device.
  • the time parameter set may be configured by the network device or may be pre-defined, that is, the protocol specifies of.
  • the protocol specifies a time parameter set 1 as ⁇ 1 , 2,3,4,5,6,7,8 ⁇ , when scheduling downlink information in the first DCI format, one value in the time parameter set 1 can be used as k.
  • the network device is configured with a time parameter set.
  • a value in the time parameter set 2 may be indicated as k.
  • the terminal device may determine the first time according to the received second downlink information.
  • the terminal device determines M target times according to at least one target time parameter set and the first time.
  • the terminal device may determine M target times according to the above S202 method or S302 method, that is, when S401 uses the above method S201 in the embodiment of the present application to determine a target time parameter set, then S404 adopts The method of S202 determines M target times; when S401 of the application embodiment adopts the method of S301 described above to determine N target time parameter sets, then S404 uses the method of S302 to determine M target times.
  • S202 uses the above S202 or S302 method
  • the terminal device sends the codebook at the first time.
  • the terminal device After determining the M target times according to the above S404, the terminal device generates a codebook according to the response information corresponding to the downlink information received from at least one target time of the M target times, for example, the codebook is included in the M target times Response information corresponding to the downlink information received at least one target time. Then, at the first time, the generated codebook is sent to the network device.
  • the network device receives the codebook at the first time.
  • the network device After receiving the codebook from the terminal device at the first time, the network device determines a target time parameter set, and determines M target times according to the first time and a target time parameter set. In this way, it can be determined that the response information included in the codebook is the response information corresponding to the downlink information received at the target time of the M target times, and then determine at which target time the M target time successfully received the downlink information and which target time was not successfully received Downstream information.
  • the specific process of determining a target time parameter set by the network device and determining M target times according to the target time parameter set and the first time is the same as that of the terminal device, and will not be repeated here.
  • the terminal device before determining the M target times according to at least one target time parameter set and the first time, the terminal device first receives second downlink information from the network device, and the second downlink information is used to indicate the first At a time, in this way, the terminal device can determine the first time according to the second downlink information, and then accurately determine M target times according to the first time and at least one target parameter set.
  • FIG. 19 is a flowchart of a communication method provided by an embodiment of the present application. Based on the foregoing embodiment, as shown in FIG. 19, the method of the embodiment of the present application includes:
  • the terminal device obtains N time parameter sets.
  • the terminal device before determining at least one target time parameter set according to the N time parameter sets, the terminal device first needs to obtain the N time parameter sets.
  • the manner in which the terminal device obtains the N time parameter sets includes but is not limited to the following examples.
  • the network device determines N time parameter sets, and then, the network device sends first configuration information to the terminal device, where the first configuration information indicates the N time parameter sets, and then, the terminal device The first configuration information is to obtain the N time parameter sets.
  • the N time parameter sets are all configured by the network device.
  • the network device itself determines N time parameter sets.
  • the network The device sends first configuration information to the terminal device, where the first configuration information is used to indicate the N time parameter sets determined by the network device.
  • the first configuration information may be carried in DCI, or carried in higher layer signaling.
  • the network device determines N time parameter sets.
  • the N time parameter sets include N1 time parameter sets and N2 time parameter sets, the N2 time parameter sets are predefined, and the sum of N1 and N2 is the N, the N1 And the N2 are both positive integers.
  • the N1 time parameter set is determined by the network device itself, for example, it can be determined according to scheduling requirements, etc. This embodiment of the present application does not limit this.
  • the network device sends second configuration information to the terminal device, where the second configuration information is used to indicate the N1 time parameter sets.
  • the terminal device obtains the N time parameter sets according to N1 time parameter sets and N2 time parameter sets.
  • N1 time parameter sets among N time parameter sets are determined by the network device, and N2 time parameter sets are predefined.
  • the network device determines N1 time parameter sets by itself, and determines N2 time parameter sets according to a predefined rule, and then obtains N time parameter sets.
  • the network device notifies the N1 time parameter sets determined by itself to the terminal device, that is, the network device sends the second configuration information to the terminal device,
  • the second configuration information is used to indicate the N1 time parameter sets determined by the network device.
  • the second configuration information may be carried in DCI, or carried in higher layer signaling.
  • the terminal device can determine N1 time parameter sets according to the second configuration information sent by the network device, and determine N2 time parameter sets according to the predefined rules, and then combine N1 time parameter sets with N2 time parameter sets , That is, adding up N1 time parameter sets and N2 time parameter sets to obtain N time parameter sets.
  • N1 is 2 and N2 is 3, and the obtained N time parameter sets are 5 time parameter sets.
  • the terminal device can obtain N time parameter sets according to the first method described in the first example or the second method described in the second example, thereby ensuring that the network device and the terminal device are consistent about the N time parameter sets Sex.
  • the terminal device determines at least one target time parameter set according to the N time parameter sets.
  • the terminal device may determine at least one target time parameter set according to the above S201 method or S301 method, and the specific process may refer to the above S201 or S301, which will not be repeated here.
  • the terminal device sends the codebook to the network device at the first time.
  • the terminal device After obtaining at least one target time parameter set according to the above steps, the terminal device determines M target times according to the at least one target time parameter set and the first time.
  • M target times For the specific process, refer to the above S202 method or S302 method to determine M target times, That is, when S502 of the present application adopts the method of S201 to determine a target time parameter set, then S503 adopts the method of S202 to determine M target times; when S502 of the application adopts the method of S301, When there are N target time parameter sets, then in S503, the M target times are determined in the manner of the above S302.
  • the response information corresponding to the downlink information received at least one target time among the M target times is included in the codebook and sent to the network device.
  • the network device receives the codebook at the first time.
  • the network device After receiving the codebook from the terminal device at the first time, the network device determines a target time parameter set, and determines M target times according to the first time and a target time parameter set. In this way, it can be determined that the response information included in the codebook is the response information corresponding to the downlink information received at the target time of the M target times, and then determine at which target time the M target time successfully received the downlink information and which target time was not successfully received Downstream information.
  • the specific process of determining a target time parameter set by the network device and determining M target times according to the target time parameter set and the first time is the same as that of the terminal device, and will not be repeated here.
  • the network device determines N time parameter sets and sends the first configuration information or the second configuration information to the terminal device. In this way, the terminal device can obtain the N time parameter sets, thereby ensuring the consistency of the network device and the terminal device with respect to the N time parameter sets.
  • FIG. 20 is a flowchart of a communication method provided by an embodiment of the present application. Based on the foregoing embodiment, as shown in FIG. 20, the method of the embodiment of the present application includes:
  • the network device sends configuration information to the terminal device.
  • the configuration information may be first configuration information used to indicate N time parameter sets, or second configuration information used to indicate N1 time parameter sets.
  • the terminal device obtains N time parameter sets according to the configuration information sent by the network device.
  • N time parameter sets are obtained according to the first example, and if the configuration information in the above S601 is the second configuration information, then According to the second example, N time parameter sets are obtained.
  • N time parameter sets are obtained.
  • the terminal device determines at least one target time parameter set according to the N time parameter sets.
  • the terminal device may determine at least one target time parameter set according to the above S201 method or S301 method, and the specific process may refer to the above S201 or S301, which will not be repeated here.
  • the network device sends second downlink information to the terminal device.
  • the second downlink information is used to indicate the first time.
  • the terminal device determines the first time according to the second downlink information.
  • the above S604 and S605 may be performed before the above S601 and S602, or may be performed after the above S601 and S602, which is not limited in the embodiment of the present application.
  • the terminal device determines M target times according to at least one target time parameter set and the first time.
  • the terminal device determines the downlink information received at each target time among the M target times.
  • the terminal device determines response information corresponding to the downlink information received at each target time among the M target times.
  • the terminal device generates a codebook according to the response information corresponding to at least one target time among the M target times.
  • the terminal device sends the codebook to the network device at the first time.
  • the network device After receiving the codebook, the network device determines at least one target time parameter set according to the N time parameter sets.
  • the process for the network device to determine at least one target time parameter set according to the N time parameter sets is the same as the process for the terminal device to determine at least one target time parameter set according to the N time parameter sets, and details are not described herein again.
  • the network device determines M target times according to at least one target time parameter set and the first time.
  • the process for the network device to determine the M target times according to the at least one target time parameter set and the first time is the same as the process for the terminal device to determine the M target times at least one target time parameter set and the first time.
  • the network device determines whether the downlink information corresponding to the M target times is successfully received according to the M target times and the codebook.
  • the network device After receiving the codebook, the network device determines at least one target time parameter set according to the N time parameter sets, and determines M target times according to the determined at least one target time parameter set and the first time. Next, the codebook is analyzed, and according to the response information carried in the codebook, it is determined whether the downlink information corresponding to the M target times is successfully received, so as to improve the reliability of downlink information transmission.
  • the network device sends first configuration information or second configuration information to the terminal device, and the terminal device obtains N time parameter sets according to the first configuration information or the second configuration information, and then, according to the N A set of time parameters to determine at least one target time parameter.
  • the network device sends second downlink information to the terminal device, and the terminal device determines the first time according to the second downlink information. Then, the terminal device determines M target times according to the first time and at least one target parameter set, and Time to send codebook to network equipment.
  • the network device After receiving the codebook at the first time, the network device also determines at least one target time parameter set based on the N time parameter sets, and determines M target times based on the at least one target time parameter set and the first time, and then determines The response information and the codebook of the downlink information corresponding to the target time determine whether the downlink information corresponding to the M target times is successfully received. That is, in the embodiment of the present application, when at least two of the N time parameter sets correspond to different time unit lengths, the terminal device can effectively generate a codebook, and at the same time, the network device can effectively parse the codebook. Ensure that the network equipment and terminal equipment have a consistent understanding of the codebook, thereby ensuring the effectiveness of communication and improving resource utilization.
  • the communication device 500 described in this embodiment may be the terminal device (or a component that can be used for the terminal device) or a network device (or a component that can be used for the network device) mentioned in the foregoing method embodiments.
  • the communication device may be used to implement the method corresponding to the terminal device or the network device described in the above method embodiments. For details, refer to the description in the above method embodiments.
  • the communication device 500 may include one or more processors 501, and the processor 501 may also be referred to as a processing unit, which may implement certain control or processing functions.
  • the processor 501 may be a general-purpose processor or a dedicated processor. For example, it may be a baseband processor or a central processor.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices, execute software programs, and process data of software programs.
  • the processor 501 may also store instructions 503 or data (for example, intermediate data).
  • the instruction 503 may be executed by the processor, so that the communication device 500 executes the method corresponding to the terminal device or the network device described in the above method embodiments.
  • the communication device 500 may include a circuit that can implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the communication device 500 may include one or more memories 502 on which instructions 504 may be stored, and the instructions may be executed on the processor, so that the communication device 500 performs the above method implementation The method described in the example.
  • processor 501 and the memory 502 may be set separately, or may be integrated together.
  • the communication device 500 may further include a transceiver 505 and / or an antenna 506.
  • the processor 501 may be referred to as a processing unit, and controls a communication device (for example, a terminal device or a network device).
  • the transceiver 505 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device.
  • the processor 501 may determine at least one target time parameter set based on N time parameter sets, where, The N is a positive integer greater than or equal to 2, at least two of the N time parameter sets correspond to different time unit lengths, and each time parameter set includes at least one time parameter, and the time parameter is used to Indicating the number of time units between the interval between receiving the first downlink information and the first response information corresponding to the feedback of the first downlink information; the transceiver 505 sends the codebook at the first time, where the codebook is included in Response information corresponding to the received downlink information in at least one target time of M target times, the M target times are determined according to the first time and the at least one target time parameter set, and M is a positive integer .
  • the transceiver 505 may receive the codebook at the first time, and the codebook includes at least one of the M target times Response information corresponding to the downlink information received at the target time, the M is a positive integer, the M target times are determined according to the first time and at least one target time parameter set, the at least one target time parameter set It is determined according to N time parameter sets, where N is a positive integer greater than or equal to 2, at least two of the N time parameter sets correspond to different time unit lengths, and each time parameter set includes at least A time parameter, the time parameter is used to indicate the number of time units between the interval between sending the first downlink information and receiving the first response information corresponding to the first downlink information.
  • the processor 501 and the transceiver 505 described in this application can be implemented in integrated circuits (IC), analog ICs, radio frequency integrated circuits (radio frequency integrated circuits (RFIC), mixed-signal ICs, application-specific integrated circuits) circuit, ASIC), printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuits
  • analog ICs analog ICs
  • radio frequency integrated circuits radio frequency integrated circuits (RFIC), mixed-signal ICs, application-specific integrated circuits) circuit
  • ASIC application-specific integrated circuits
  • PCB printed circuit board
  • the processor 501 and the transceiver 505 can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor (PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS positive channel metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device 500 is described by taking a terminal or a network device as an example, the scope of the communication device described in this application is not limited to the above-mentioned terminal device or the above-mentioned network device, and the structure of the communication device may be Not limited by Figure 21.
  • the communication device may be used to execute the technical solutions of the terminal device (or network device) in the above method embodiments, and the implementation principles and technical effects are similar, and are not repeated here.
  • the terminal device 600 may implement the functions performed by the terminal device in the above method embodiments, and the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the structure of the terminal device 600 includes a processor 601, a transceiver 602, and a memory 603, and the processor 601 is configured to support the terminal device 600 to perform the corresponding function in the foregoing method.
  • the transceiver 602 is used to support communication between the terminal device 600 and other terminal devices or network devices.
  • the terminal device 600 may further include a memory 603 for coupling with the processor 601, which stores necessary program instructions and data of the terminal device 600.
  • the processor 601 can read the program instructions and data in the memory 603, interpret and execute the program instructions, and process the data of the program instructions.
  • the processor 601 performs baseband processing on the data to be transmitted, and outputs a baseband signal to the transceiver 602.
  • the transceiver 602 performs radio frequency processing on the baseband signal, and then transmits the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the transceiver 602 receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 601.
  • the processor 601 converts the baseband signal into data and performs the data deal with.
  • FIG. 22 only shows one memory 603 and one processor 601.
  • the memory 603 may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the terminal device in the embodiments of the present application may be used to execute the technical solutions of the terminal devices in the foregoing method embodiments, and the implementation principles and technical effects are similar, and will not be repeated here.
  • the device 700 exists in the form of a chip product.
  • the structure of the device includes a processor 701 and a memory 702.
  • the memory 702 is used to couple with the processor 701.
  • the memory 702 stores necessary program instructions and data of the device.
  • the device 701 is used to execute the program instructions stored in the memory 702, so that the apparatus executes the function of the terminal device in the above method embodiment.
  • the apparatus in the embodiments of the present application may be used to execute the technical solutions of the terminal devices in the foregoing method embodiments, and the implementation principles and technical effects are similar, and will not be repeated here.
  • the communication device may be a terminal device or a component of a terminal device (for example, an integrated circuit, a chip, etc.).
  • the communication device 800 may include: a processing unit 801 and a transceiver unit 802;
  • the processing unit 801 is configured to determine at least one target time parameter set according to N time parameter sets, where N is a positive integer greater than or equal to 2, and at least two time parameter sets in the N time parameter sets correspond to The length of the time unit is different, and each time parameter set includes at least one time parameter, and the time parameter is used to indicate the time interval between receiving the first downlink information and feeding back the first response information corresponding to the first downlink information
  • N is a positive integer greater than or equal to 2
  • the transceiver unit 802 is configured to send a codebook at a first time, wherein the codebook includes response information corresponding to the downlink information received at least one target time among the M target times.
  • the M target times are based on Determined by the first time and the at least one target time parameter set, M is a positive integer.
  • each of the N time parameter sets corresponds to a DCI format, and at least two of the N time parameter sets correspond to different DCI formats.
  • the foregoing processing unit 801 is specifically configured to determine one of the time parameter sets from the N time parameter sets as the target time parameter set.
  • the above processing unit 801 has a time parameter set for the corresponding time unit length of the N time parameter sets satisfying a preset value and / or corresponding DCI format satisfying a preset DCI format as the Set of target time parameters.
  • the above processing unit 801 has a time parameter set obtained by taking the intersection or union of the N time parameter sets as the target time parameter set.
  • the above processing unit 801 is configured to take an intersection or a union of time parameter sets corresponding to the DCI format in the N time parameter sets that are the same to obtain at least two merged time parameter sets; and One of the at least two combined time parameter sets is used as the target time parameter set.
  • the above-mentioned processing unit 801 is configured to use each time parameter set in the N time parameter sets as the target time parameter set to obtain N target time parameter sets; and according to the first time And each target time parameter set in the N target time parameter sets, determine a time set corresponding to each target time parameter set, and obtain N time sets; intersect or merge the N time sets Set to obtain the M target times.
  • the communication device may be used to execute the technical solutions of the terminal devices in the above method embodiments, and the implementation principles and technical effects are similar, and are not repeated here.
  • FIG. 25 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device of the embodiment of the present application further includes: an obtaining unit 803;
  • the transceiver unit 802 is further configured to receive first configuration information, where the first configuration information indicates the N time parameter sets;
  • the obtaining unit 803 is configured to obtain the N time parameter sets according to the first configuration information
  • the transceiver unit 802 is further configured to receive second configuration information, where the second configuration information is used to indicate N1 time parameter sets;
  • the obtaining unit 803 is configured to obtain the N time parameter sets according to the N1 time parameter sets and N2 time parameter sets, where the N2 time parameter sets are predefined and the N number
  • the time parameter set includes the N1 time parameter set and the N2 time parameter set.
  • the sum of the N1 and the N2 is the N, and the N1 and the N2 are both positive integers.
  • the communication device in the embodiments of the present application may be used to execute the technical solutions of the terminal devices in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and are not described here again.
  • FIG. 26 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 900 may implement the functions performed by the network device in the above method embodiments, and the functions may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the structure of the network device 900 includes a processor 901 and a communication interface 902, and the processor 901 is configured to support the network device 900 to perform the corresponding function in the above method.
  • the communication interface 902 is used to support communication between the network device 900 and other network elements.
  • the network device 900 may further include a memory 903 for coupling with the processor 901, which stores necessary program instructions and data of the network device 900.
  • FIG. 26 only shows one memory 903 and one processor 901.
  • the memory 903 may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the network device in the embodiments of the present application may be used to execute the technical solutions of the network devices in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and are not repeated here.
  • FIG. 27 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the device 100 exists in the form of a chip product.
  • the structure of the device includes a processor 110 and a memory 120.
  • the memory 120 is used to couple with the processor 110.
  • the memory 120 stores necessary program instructions and data of the device.
  • the device 110 is used to execute the program instructions stored in the memory 120, so that the device performs the function of the network device in the above method embodiment.
  • the apparatus according to the embodiments of the present application may be used to execute the technical solutions of the network devices in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and are not described here again.
  • FIG. 28 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be a network device or a component of a network device (for example, an integrated circuit, a chip, etc.).
  • the communication device 200 may include a transceiver unit 210.
  • the transceiver unit 210 may implement the method on the network device side.
  • the above-mentioned transceiver unit 210 is configured to receive a codebook at a first time, the codebook includes response information corresponding to at least one target time of the downlink information received at the target time among the M target times, where M is a positive integer and the M Each target time is determined according to the first time and at least one target time parameter set.
  • the at least one target time parameter set is determined according to N time parameter sets, where N is a positive integer greater than or equal to 2.
  • the lengths of time units corresponding to at least two time parameter sets in the N time parameter sets are different, and each time parameter set includes at least one time parameter, and the time parameter is used to indicate sending the first downlink information and receiving the first The number of time units in the interval between the first response information corresponding to a piece of downlink information.
  • each of the N time parameter sets corresponds to a DCI format, and at least two of the N time parameter sets correspond to different DCI formats.
  • the at least one target time parameter set is one of the N time parameter sets.
  • the target time parameter set is a time parameter set in which the length of the corresponding time unit in the N time parameter sets satisfies a preset value and / or the corresponding DCI format satisfies the preset DCI format.
  • the at least one target time parameter set is a time parameter set obtained by taking an intersection or a union of the N time parameter sets.
  • the at least one target time parameter set is at least two merged time parameter sets obtained after taking intersections or unions of time parameter sets corresponding to the same DCI format among the N time parameter sets A collection of time parameters.
  • the at least one target time parameter set is N target time parameter sets, that is, each target time parameter set in the N target time parameter sets is each time parameter set in the N time parameter sets;
  • the M target times are obtained by taking the intersection or union of N time sets, and the N time sets are based on the first time and each target time parameter set in the N target time parameter sets definite.
  • the communication device in the embodiments of the present application may be used to execute the technical solutions of the network devices in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and are not described here again.
  • FIG. 29 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device of the embodiment of the present application further includes: a processing unit 220;
  • the processing unit 220 is used to determine N time parameter sets,
  • the transceiver unit 210 is further configured to send first configuration information, where the first configuration information is used to indicate the N time parameter sets;
  • the processing unit 220 is configured to determine the N time parameter sets, where the N time parameter sets include N1 time parameter sets and N2 time parameter sets, and the N2 time parameter sets are predefined , The sum of N1 and N2 is N, and both N1 and N2 are positive integers;
  • the transceiver unit 210 is further configured to send second configuration information, where the second configuration information is used to indicate the N1 time parameter sets.
  • the communication device in the embodiments of the present application may be used to execute the technical solutions of the network devices in the foregoing method embodiments.
  • the implementation principles and technical effects are similar, and are not described here again.
  • the communication system 300 of the embodiment of the present application includes the terminal device 310 and the network device 320 described above.
  • the terminal device 310 may be used to implement the functions of the terminal device in the above method embodiment
  • the network device 320 may be used to implement the functions of the network device side in the above method embodiment.
  • the implementation principles and technical effects are similar. Repeat again.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)) or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备、系统及存储介质,该方法包括:终端设备根据N个时间参数集合,确定至少一个目标时间参数集合,该N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,终端设备根据第一时间和至少一个目标时间参数集合确定M个目标时间,并根据M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,生成码本,并在第一时间向网络设备发送该码本。网络设备根据该码本所包括的响应信息,确定该响应信息对应的下行信息是否传输成功。这样,当N个时间参数集合中有至少两个时间参数集合所对应的时间单元长度不同时,保证网络设备和终端设备对于码本有一致的理解。

Description

通信方法、装置、设备、系统及存储介质
本申请要求于2018年11月23日提交中国专利局、申请号为201811410218.9、申请名称为“通信方法、装置、设备、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备、系统及存储介质。
背景技术
在通信过程中,终端设备接收到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中承载的下行数据后,会根据数据译码的结果,通过混合自动重复请求(Hybrid Automatic Repeat Request,HARQ)反馈响应消息,即:数据接收成功,反馈ACK(Acknowledgement),数据接收失败反馈NACK(No Acknowledgement),给网络设备。从终端设备接受到下行数据到终端设备向网络设备反馈ACK/NACK之间满足定时关系。
随着对时延要求的提高,反馈时延需要降低,即用户接收到数据之后能够尽快的反馈对应的ACK/NACK,提出了要降低反馈信息对应的时间单元长度,例如将反馈信息的时间单元改为以1/2slot为单位,或者是以符号为单位。
但是,为了保证后向兼容,会有部分反馈信息对应的时间单元仍然保持以slot为单位,这样会存在反馈信息对应的时间单元长度不完全相同,此时,将无法生成HARQ_ACK码本。
发明内容
本申请实施例提供一种通信方法、装置、设备、系统及存储介质,以实现当时间参数集合对应的时间单元长度不同时,终端设备可以有效生成码本。
第一方面,本申请实施例提供一种通信方法,包括:终端设备根据N个时间参数集合,确定至少一个目标时间参数集合,并在第一时间发送码本,该码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,该M个目标时间是根据第一时间和至少一个目标时间参数集合确定的,该N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,该时间参数用于指示终端设备接收第一下行信息与向网络设备反馈该第一下行信息对应的第一响应信息之间间隔的时间单元的个数,其中,M为正整数,N为大于等于2的正整数。进而实现,当N个时间参数集合中有至少两个时间参数集合所对应的时间单元长度不同时,终端设备可以有效生成码本,同时,网络设备可以对该码本进行有 效解析,保证网络设备和终端设备对于码本有一致的理解,从而保证通信的有效性,提高资源的利用率。
可选的,上述N个时间参数集合中每个时间参数集合对应一种下行控制信息(Downlink Control Information,DCI)格式,N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。在此基础上,终端设备根据N个时间参数集合,确定至少一个目标时间参数集合可以包括如下方式:
方式一,终端设备从所述N个时间参数集合中确定其中一个时间参数集合作为所述目标时间参数集合。例如,终端设备将所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
方式二,终端设备将所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合,作为所述目标时间参数集合。可选的,终端设备将所述N个时间参数集合中每个时间参数集合对应的时间单元长度转换成目标时间单元长度,获得转换后的N个时间参数集合;将转换后的N个时间参数集合取交集或取并集,获得合并后的一个时间参数集合,将该合并后的一个时间参数集合作为目标时间参数集合。可选的,目标时间单元长度可以是N个时间参数集合中各时间参数集合对应的时间单元长度的最大公约数。
方式三,终端设备将N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集,获得至少两个合并后的时间参数集合。可选的,将N个时间参数集合中同一个DCI格式对应的至少一个时间参数集合中的每个时间参数集合所对应的时间单元长度转换为目标时间单元长度,获得每个DCI格式对应的转换后的至少一个时间参数集合,将每个DCI格式对应的转换后的至少一个时间参数集合进行取交集或取并集,获得每个DCI格式对应的合并后的一个时间参数集合,进而获得至少两个合并后的时间参数集合。可选的,该目标时间单元长度可以是所述同一个DCI格式对应的至少一个时间参数集合中每个时间参数集合对应的时间单元长度的最大公约数。
接着,将上述获得的至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间参数集合。可选的,终端设备将上述至少两个合并后的时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
方式四,终端设备将所述N个时间参数集合中的每个时间参数集合作为所述目标时间参数集合,获得N个目标时间参数集合。
此时,上述终端设备根据所述第一时间和所述目标时间参数集合,确定所述M个目标时间,可以包括:根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合,确定所述每个目标时间参数集合对应的时间集合,获得N个时间集合;并将所述N个时间集合取交集或者取并集,获得所述M个目标时间。
本申请实施例提供的通信方法,终端设备可以根据如上多种方式确定目标时间参数集合,进而丰富了终端设备根据N个时间参数集合,确定至少一个目标时间参数集合的方式,可以满足多种不同的应用场景。
可选的,终端设备可以通过如下方式获取N个时间参数集合,例如,终端设备接 收网络设备发送的第一配置信息,并根据该第一配置信息,获得N个时间参数集合,其中该第一配置信息指示所述N个时间参数集合。或者,终端设备接收网络设备发送的第二配置信息,并根据N1个时间参数集合和N2个时间参数集合,获得N个时间参数集合,其中该第二配置信息用于指示N1个时间参数集合,N2个时间参数集合为预先定义的,N个时间参数集合包括N1个时间参数集合和N2个时间参数集合,N1与N2之和为N,N1和N2均为正整数。这样,终端设备可以根据网络设备发送的第一配置信息或第二配制信息获得与网络设备相同的N个时间参数集合,进而保证了网络设备和终端设备关于N个时间参数集合的一致性。
可选的,终端设备确定发送码本的第一时间可以是,终端设备接收网络设备发送的第二下行信息,终端设备可以根据所述第二下行信息,确定所述第一时间,其中该第二下行信息用于指示第一时间。
第二方面,本申请实施例提供一种通信方法,包括:网络设备在第一时间接收终端设备发送的码本,其中,该码本包括M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,M为正整数,该M个目标时间为网络设备根据第一时间和至少一个目标时间参数集合确定的,该至少一个目标时间参数集合为网络设备根据N个时间参数集合确定的,N为大于等于2的正整数,N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,时间参数用于指示网络设备发送第一下行信息与从终端设备接收该第一下行信息对应的第一响应信息之间间隔的时间单元的个数。进而实现,当N个时间参数集合中有至少两个时间参数集合所对应的时间单元长度不同时,网络设备可以对该码本进行有效解析,保证网络设备和终端设备对于码本有一致的理解,以使网络设备确定该响应信息对应的下行信息是否传输成功,从而保证通信的有效性,提高资源的利用率。
可选的,上述N个时间参数集合中每个时间参数集合对应一种DCI格式,所述N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。
可选的,上述至少一个目标时间参数集合为所述N个时间参数集合中的一个时间参数集合。例如,目标时间参数集合为所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合。
可选的,上述至少一个目标时间参数集合为所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合。可选的,该至少一个目标时间参数集合为将N个时间参数集合中每个时间参数集合对应的时间单元长度转换成目标时间单元长度,获得转换后的N个时间参数集合,并将转换后的N个时间参数集合取交集或取并集后得到的一个时间参数集合。可选的,该目标时间单元长度可以是N个时间参数集合中各时间参数集合对应的时间单元长度的最大公约数。
可选的,上述至少一个目标时间参数集合为所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集后,所获得的至少两个合并后的时间参数集合中的一个时间参数集合。可选的,将N个时间参数集合中同一个DCI格式对应的至少一个时间参数集合中的每一个时间参数集合所对应的时间单元长度转换为目标时间单元长度,获得每个DCI格式对应的转换后的至少一个时间参数集合,将每个DCI格式对应的转换后的至少一个时间参数集合进行取交集或取并集,获得每个DC I格式 对应的合并后的一个时间参数集合,进而获得至少两个合并后的时间参数集合,并将获得的至少两个合并后的时间参数集合中的一个时间参数集合作为目标时间参数集合。可选的,该目标时间单元长度可以是所述同一个DCI格式对应的至少一个时间参数集合中每个时间参数集合对应的时间单元长度的最大公约数。
可选的,上述至少一个目标时间参数集合为N个目标时间参数集合,所述N个目标时间参数集合中的每个目标时间参数集合为所述N个时间参数集合中的每个时间参数集合;对应的,M个目标时间为N个时间集合进行取交集或者取并集后获得的,所述N个时间集合为根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合确定的。
需要说明的是,网络设备根据N个时间参数集合确定至少一个目标时间参数集合的方法与终端设备相同,进而保证了网络设备和终端设备对于码本有一致的理解。
可选的,网络设备还确定N个时间参数集合,并向终端设备发送第一配置信息,以使终端设备根据该第一配置信息获得N个时间参数集合,进而保证了网络设备与终端设备关于N个时间参数集合的一致性,其中,该第一配置信息用于指示N个时间参数集合;
或者,网络设备确定述N个时间参数集合,并向终端设备发送第二配置信息,以使终端设备根据该第一配置信息获得N个时间参数集合,进而保证了网络设备与终端设备关于N个时间参数集合的一致性,其中该第二配置信息用于指示N1个时间参数集合,该N个时间参数集合包括N1个时间参数集合和N2个时间参数集合,N2个时间参数集合为预先定义的,N1与N2之和为N,N1和N2均为正整数。
可选的,网络设备在第一时间接收码本之前,还向终端设备发送第二下行信息,以使网络设备根据该第二下行信息确定第一时间,进而保证了网络设备与终端设备关于第一时间的一致性,其中,该第二下行信息用于指示第一时间。
第三方面,本申请实施例提供一种通信装置,该通信装置可以为终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等),该通信装置可以实现上述第一方面所涉及的方法中各个步骤所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法中相应的功能。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。可选的,该装置还包括收发器,该收发器用于支持该装置与其它网元之间的通信。其中,所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
在一种可能的设计中,该通信设备装置包括:处理单元和收发单元;其中,处理单元,用于根据N个时间参数集合,确定至少一个目标时间参数集合,其中,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示接收第一下行信息与反馈所述第一下行信息对应的第一响应信息之间间隔的时间单元 的个数;收发单元,用于在第一时间发送码本,其中,所述码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M个目标时间为根据所述第一时间和所述至少一个目标时间参数集合确定的,所述M为正整数。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等),该通信装置可以实现上述第二方面所涉及的方法中各个步骤所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法中相应的功能。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。可选的,该装置还包括收发器,该收发器用于支持该装置与其它网元之间的通信。其中,所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
在一种可能的设计中,该通信设备包括:收发单元,该收发单元用于在第一时间接收码本,其中,该码本包括M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,M为正整数,该M个目标时间为根据第一时间和至少一个目标时间参数集合确定的,该至少一个目标时间参数集合为根据N个时间参数集合确定的,N为大于等于2的正整数,N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,时间参数用于指示收发单元发送第一下行信息与接收第一下行信息对应的第一响应信息之间间隔的时间单元的个数。
第五方面,本申请实施例提供了一种通信设备,该通信设备包括:处理器和收发器,所述处理器和所述收发器用于执行实现如第一方面或如第二方面中任一项所述的通信方法。
第六方面,本申请实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中终端设备的功能。
第七方面,本申请实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中网络设备的功能。
第八方面,本申请实施例提供了一种计算机存储介质,所述存储介质包括计算机指令,当所述指令被计算机执行时,使得所述计算机实现如第一方面和第二方面任一项所述的通信方法。
第九方面,本申请实施例提供一种计算机程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施第一方面或第二方面任一所述的通信方法。
第十方面,本申请实施例提供了一种通信系统,所述系统包括上述终端设备和网络设备。
本申请实施例提供的通信方法、装置、设备、系统及存储介质,通过终端设备根据N个时间参数集合,确定至少一个目标时间参数集合,该N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,该时间参数用于指示终端设备接收第一下行信息与终端设备向网络设备反馈该第一下行信息对应的第一响应信息之间间隔的时间单元的个数,接着,终端设备根据第一时间和上述至少一个目标时间参数集合确定M个目标时间,并根据M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,生成码本,然后,终端设备在第一时间向网络设备发送该码本。网络设备接收到该码本后,解析该码本,并根据该码本所包括的响应信息,确定该响应信息对应的下行信息是否传输成功。即本申请实施例,当N个时间参数集合中有至少两个时间参数集合所对应的时间单元长度不同时,终端设备可以有效生成码本,同时,网络设备可以对该码本进行有效解析,保证网络设备和终端设备对于码本有一致的理解,从而保证通信的有效性,提高资源的利用率。
附图说明
图1为本申请实施例涉及的通信系统的示意图;
图2为响应信息的反馈示意图;
图3为根据第一时间和时间参数集合确定时间的示意图;
图4为本申请实施例涉及的确定PDSCH时机的示意图;
图5为本申请实施例涉及的确定PDCCH可能存在的slot的示意图;
图6为本申请实施例涉及的确定PDCCH时机的示意图;
图7为本申请实施例提供的一种通信方法的流程图
图8为本申请实施例提供的一种通信方法的流程图;
图9和图10为确定目标时间的一种方式的示意图;
图11和图12为确定目标时间的另一种方式的示意图;
图13为确定目标时间的又一种方式的示意图;
图14为确定目标时间的再一种方式的示意图;
图15为本申请实施例提供的一种通信方法的流程图;
图16为确定目标时间的一种方式的示意图;
图17为确定目标时间的另一种方式的示意图;
图18为本申请实施例提供的一种通信方法的流程图;
图19为本申请实施例提供的一种通信方法的流程图;
图20为本申请实施例提供的一种通信方法的流程图;
图21为本申请实施例提供的一种通信设备的结构示意图;
图22为本申请实施例提供的一种终端设备的结构示意图;
图23为本申请实施例提供的一种装置的结构示意图;
图24为本申请实施例提供的一种通信装置的结构示意图;
图25为本申请实施例提供的一种通信装置的结构示意图;
图26为本申请实施例提供的一种网络设备的结构示意图;
图27为本申请实施例提供的一种装置的结构示意图;
图28为本申请实施例提供的一种通信装置的结构示意图;
图29为本申请实施例提供的一种通信装置的结构示意图;
图30为本申请实施例提供的一种通信系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
为了便于理解本申请的实施例,首先对本申请实施例涉及到的相关概念进行如下简单介绍:
在本申请实施例中,高层信令可以是指高层协议层发出的信令,高层协议层为物理层以上的至少一个协议层。其中,高层协议层具体可以包括以下协议层中的至少一个:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)。
在本申请实施例中,码本是指下行信息对应的响应信息所生成的码本,例如HARQ-ACK码本(HARQ-ACK codebock),其中响应信息可以为接收成功消息ACK,或者接收失败消息NACK。下行信息可以为承载下行数据的物理下行共享信道(Physical downlink shared channel,PDSCH),或者为物理下行控制信道(Physical downlink control channel,PDCCH),或者是去激活半持续调度(Semi-Persistent Scheduling,SPS)的PDSCH的下行控制信道(PDCCH)。
在本申请实施例中,网路设备发送的指示信息可以承载在DCI中,或者承载在高层信令中。
本申请实施例中,时间单元是指用于承载信息的一段时域资源。例如,一个时间单元可以包括连续的一个或多个传输时间间隔(transmission time interval,TTI)或者一个或多个时隙(slot)或者一个或多个时域符号(symbol),或者一个或者多个迷你时隙(mini-slot)。其中,一个slot包括14个时域符号,或者一个slot包括12个时域符号。一个mini-slot包含的时域符号个数小于一个slot包含的符号个数。不同时间单元用于承载不同数据包或同一数据包的不同副本(或称为重复版本)。
本申请实施例中所述的资源为传输资源,包括时域资源以及频域资源,可以用于在上行通信过程或者下行通信过程中承载数据或信令。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。
本申请实施例中出现的业务(service)是指终端设备从网络侧获取的通信服务,包括控制面业务和/或数据面业务,例如语音业务、数据流量业务等。业务的发送或接 收包括业务相关的数据(data)或信令(signaling)的发送或接收。
应理解,在本申请实施例中,“与A对应的B”表示B与A相关联。在一种实现方式中,可以根据A确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
图1为本申请实施例涉及的通信系统的示意图,如图1所示,通信系统包括网络设备和终端设备,其中,
网络设备,是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备,在此并不限定。
终端设备:可以是无线终端设备也可以是有线终端设备,无线终端设备可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等,在此不作限定。可以理解的是,本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)。
图1所示的通信系统可以是,2G,3G,4G,5G通信系统或下一代(next generation)通信系统,例如全球移动通信系统(Global System for Mobil ecommunications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS) 系统,长期演进(Long Term Evolution,LTE)系统,新空口(new radio,NR)通信系统等等。
本申请实施例中,网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6GHz以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
如图1所示,终端设备与网络设备可以进行业务传输,其中,本申请实施例涉及的业务可以包括但不限于增强型移动宽带(enhanced Mobile Broadband,eMBB)业务、超可靠低延迟通信(Ultra-Reliable and Low-Latency Communication,URLLC)业务和海量机器类型通信(massive Machine Type Communication,mMTC)业务等。其中,典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些应用场景在可靠性及时延方面提出了更加严格的需求。
在终端设备与网络设备在进行业务传输的过程中,终端设备可以从网络设备处接收下行信息,并向网络设备反馈该下行信息对应的响应信息,具体过程可以包括:
终端设备从网络设备处接收下行信息,对下行信息进行译码,并根据译码结果,向网络设备反馈响应信息,例如,下行信息接收成功,则向网络设备反馈接收成功消息,如ACK,若下行信息接收失败,则向网络设备反馈接收失败消息,如NACK。网络设备根据终端设备反馈的响应信息确定下行信息是否接收成功,例如,若响应信息为ACK,则表示终端设备成功接收该下行信息,网络设备无需重新向终端设备再次发送下行信息,若响应信息为NACK,则表示终端设备没有成功接收到该下行信息,此时,网络设备可以重新向终端设备发送该下行信息,以提高下行信息发送的可靠性。
为了节约上行资源,终端设备在一次反馈中可以反馈多个下行信息的响应信息。这样,终端设备向网络设备反馈响应信息之前,首先确定一个时间参数集合,例如为时间参数集合A,该时间参数集合A对应一个时间单元长度,该时间单元长度可以为一个slot。时间参数集合A中包括至少一个时间参数,该时间参数用于指示终端设备从网络设备处接收第一下行信息与终端设备向网络设备反馈该第一下行信息对应的第一响应信息之间间隔的slot个数。例如,如图2所示,终端设备在下行时间单元slot n处接收到来自网络设备的第一下行信息,若时间参数为4,则终端设备可以在上行时间单元slot n+4向网络设备发送该第一下行信息对应的响应信息。
终端设备在确定完时间参数集合A后,会根据发送响应信息的第一时间和时间参数集合A,确定出Q个时间,Q为正整数。例如,图3所示,假设第一时间对应的时间单元为slot i,时间参数集合A为{0,1,2,3,4},从下行时间单元slot i开始,按照时间参数集合A中的各时间参数,从下行时间单元slot i向前数对应的时间参数,可以确定5个时间单元分别为:slot i-4、slot i-3、slot i-2、slot i-1和slot i,其中,slot i-4、slot i-3、slot i-2、slot i-1和slot i上接收到的下行信息对应的响应信息会在第一时间对应的上行时间单元slot i上反馈,因此,可以确定出5个时间,Q=5,该5个时间分别 为下行时间单元slot i-4、slot i-3、slot i-2、slot i-1和slot i对应的接收时间。
其中,上述第一时间可以是网络设备通过指示信息指示给终端设备的,也可以是预定义的,例如协议规定的。其中指示信息可以承载在DCI中,或者是承载在高层信令中。
终端设备根据第一时间和时间参数集合A确定出Q个时间之后,可以确定在Q个时间中每个时间接收到的下行信息,进而确定每个下行信息对应的响应信息。接着,根据这些响应信息,确定码本。即该码本包括在Q个时间中至少一个时间接收到的下行信息对应的响应信息。
接着,在第一时间发送上述码本。
其中,码本类型可以是半静态码本或动态码本,针对不同的码本类型,其确定Q个时间,以及生成码本的过程不同。终端设备具体采用哪种码本类型由网络设备配置。
如果终端设备被配置为半静态码本,生成码本的过程可以包括:
例如,终端设备确定了一个时间参数集合A,则根据第一时间和时间参数集合A,确定在第一时间发送响应信息的下行信息的位置,进而确定Q个时间。
以Q个时间中的一个时间1为例,其他时间参照即可,假设该时间1对应的下行时间单元为图3中的slot i-4。
网络设备给终端设备发送配置信息,该配置信息是一个时域资源表格,该表格最多可以包含16行,每一行指示了一个时域资源的开始符号S和符号个数L,S是用于表述数据在一个slot中所占的时域资源的开始符号位置,L表示数据在一个slot中所占的时域符号的个数。
假设,终端设备被配置了4行表格,对应4个时域资源,slot i-4包括14个符号,其中,时域资源1为{符号1,符号2},时域资源2为{符号2、符号3、符号4,符号5},时域资源3为{符号6、符号7},时域资源4为{符号8、符号9、符号10,符号11}。如图4所示,在slot i-4中,终端设备会确定有多个PDSCH时机(occasion)。具体是,终端设备确定时域上结束符号最靠前的时域资源为第一个时域资源,然后确定时域上和第一个时域资源重叠的时域资源,这些重叠的时域资源确定为一个PDSCH occasion,之后将剩余的时域资源中在结束符号在时域上最靠前的时域资源作为第一个时域资源,按照前面的方法,继续确定下一个PDSCH occasion,进而获得多个PDSCH occasion。如图4所示,时域资源1和时域资源2有重叠,因此,将时域资源1和时域资源2确定为一个PDSCH occasion,之后时域资源3当做第一个时域资源,由于没有时域资源和时域资源3重叠,则时域资源3确定为一个PDSCH occasion,然后时域资源4当做第一个时域资源,由于没有资源和时域资源4重叠,则将时域资源4确定为一个PDSCH occasion。这样,可以获得3个可能的PDSCH occasion,假设每个PDSCH occasion对应1bit的响应信息,这样该slot i-4共需要反馈3bit响应信息。假设终端设备在slot i-4的时域资源3上接收到下行信息,该下行信息对应的反馈信息在slot i-4反馈,则该时域资源3对应slot i-4的3bit响应信息中的第2bit,如果该下行信息译码成功,则将slot i-4对应的响应信息中的第2bit确定为ACK,如果译码失败则将slot i-4对应的响应信息中的第2bit确定为NACK,其他时域资源的对应的反馈信息也按照相同的方法生成响应信息,进而形成slot i-4对应的响应信息。
参照上述方法,可以获得Q个时间中每个时间对应的响应信息,接着,将这些响应信息比特串联,生成码本,发送给网络设备。
如果终端设备被配置为动态码本,生成码本的过程可以包括:
例如,终端设备确定了一个时间参数集合A,根据第一时间和时间参数集合A,确定所有可能在第一时间发送响应信息的下行信息的位置。例如,图3所示,假设第一时间对应时间单元为slot i,时间参数集合A为{0,1,2,3,4},从下行时间单元slot i开始,按照时间参数集合A中的各时间参数,从下行的slot i向前数对应的时间参数,可以确定5个下行时间单元分别为:slot i-4、slot i-3、slot i-2、slot i-1和slot i,其中,slot i-4、slot i-3、slot i-2、slot i-1和slot i上接收到的下行信息对应的响应信息均可能在第一时间对应的上行时间单元slot i上反馈,因此,可以确定出5个时间,即Q=5。
然后,根据K0的集合,确定PDCCH所在的时间单元,K0是指从PDCCH到对应的PDSCH间隔的时间单元的个数。网络设备给终端设备发送配置信息,该配置信息是一个时域资源表格,该表格最多包含16行,每一行都指示了一个K0的值。假设K0的所有值为{0,1,2},则从下行时间单元slot i-4、slot i-3、slot i-2、slot i-1和slot i中的每个slot分别往前数0、1、2个slot,确定出可能在第一时间发送对应的响应信息的下行信息对应的PDCCH可能存在的slot。如图5所示:从下行时间单元slot i-4往前数0、1、2个slot,确定PDCCH可能所在的slot为slot i-4、slot i-5、slot i-6;从下行时间单元slot i-3往前数0、1、2个slot,确定PDCCH可能所在的slot为slot i-3、slot i-4、slot i-5;从下行时间单元slot i-2往前数0、1、2个slot,确定PDCCH可能所在的slot为slot i-2、slot i-3、slot i-4;从下行时间单元slot i-1往前数0、1、2个slot,确定PDCCH可能所在的slot为slot i-1、slot i-2、slot i-3;从下行时间单元slot i往前数0、1、2个slot,确定PDCCH可能所在的slot为slot i、slot i-1、slot i-2。因此,可以确定出7个可能在第一时间发送对应的响应信息的下行信息对应的PDCCH可能存在的slot,包括:slot i、slot i-1、slot i-2、slot i-3、slot i-4、slot i-5、slot i-6。
接着,确定PDCCH occasion,在此以Q个时间中的一个时间1为例,其他时间参照即可,假设该时间1对应的下行时间单元为图3中的slot i-4。
终端设备会根据网络设备发送指示信息确定PDCCH occasion,网络设备的指示信息会指示一个14bit的bit位图,对应一个slot中的14个符号,用于指示具体的PDCCH occasion的位置。网络设备配置的14bit的位图为01000001000000,假设其中的1指示对应的符号为PDCCH occasion,如图6所示,则该位图指示一个slot中的符号1和符号7为对应的PDCCH occasion。根据这个方法可以确定出Q个时间对应的可能的PDCCH occasion。
如果Q个时间对应的可能的PDCCH occasion中有一个PDCCH occasion中接收到了PDCCH,该PDCCH调度一个下行数据或者该PDCCH指示SPS释放,则在第一时间需要发送该下行数据或者该SPS释放对应的响应信息。根据这个方法,确定可能在第一时间需要发送的响应信息,然后将所有反馈信息串联,生成码本,并发送给网络设备。
在本申请的一个实施方式中,终端设备按上述方式生成码本后,向网络设备发送 所述码本。对应地,网络设备可以在第一时间接收码本。
网络设备接收到该码本后,解析该码本,获得该码本包括的响应信息。接着,根据这些响应信息确定这些响应信息各自对应的下行信息,即确定这些响应信息是哪些下行信息的响应信息,以便网络设备根据下行信息的响应信息,来确定是否重新发送对应的下行信息。例如,响应信息为ACK,说明终端设备接收到该响应信息对应的下行信息,网络设备无需重新发送该下行信息,若响应信息为NACK,说明终端设备接收该响应信息对应的下行信息失败,网络设备可以重新发送该下行信息。
由上述可知,网络设备接收到码本后,根据第一时间和时间参数集合A,确定Q个时间。这样可以确定码本包括的响应信息是Q个时间中哪些时间接收的下行信息对应的响应信息。其中,网络设备根据时间参数集合A和第一时间确定Q个时间的过程与终端设备相同,在此不再赘述。
当终端设备与网络设备传输URLLC业务时,由于URLLC业务传输时延比较低。由上述可知,当时间参数集合对应的时间单元长度为一个slot,当每个下行信息接收后,若终端设备等到多个slot后才能发送该下行信息对应的反馈信息,换句话说,终端设备只能等到在反馈的slot中所有需要反馈的信息一起生成码本才能发送给网络设备,导致传输时延无法满足URLLC等低时延业务的需求。
为了降低反馈时延,使得终端设备接收到下行信息后能够尽快的反馈对应的响应信息,可以通过采取降低时间参数集合对应的时间单元长度,例如将时间参数集合对应的时间单元长度从slot改为1/2slot,或者是符号。
但是为了保证多代通信系统的兼容性,仅仅将时间参数集合对应的时间单元长度变短还不足够,可能会存在N个时间参数集合,N大于等于2,N个时间参数集合中有些时间参数集合对应的时间单元长度与之前的时间单元长度相同,例如仍然为一个slot,有些时间参数集合对应的时间单元长度变小,例如变为一个1/2slot。这样使得上述N个时间参数集合中,至少有两个时间参数集合对应的时间单元长度不同。然而当N个时间参数集合中,至少有两个时间参数集合对应的时间单元长度不同时,需要能够确定合适的码本。
基于上述问题,本申请提供了一种通信方法、装置、设备、系统及存储介质,可以实现当N个时间参数集合中,至少有两个时间参数集合对应的时间单元长度不同时,准确确定出码本。
图7为本申请实施例提供的一种通信方法的流程图,如图7所示,本申请实施例的方法可以包括:
S101、终端设备根据N个时间参数集合,确定至少一个目标时间参数集合。
其中,所述N为大于等于2的正整数,该N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同。例如,N为3,3个时间参数集合分别记为时间参数集合a、时间参数集合b和时间参数集合c,可选的,这3个时间参数集合中有两个时间参数集合对应的时间单元长度不同,例如,时间参数集合a与时间参数集合b对应的时间单元长度不相同,或者,时间参数集合a与时间参数集合c对应的时间单元长度不相同,或者,时间参数集合b与时间参数集合c对应的时间单元长度不相同。可 选的,这3个时间参数集合对应的时间单元长度均不相同,即时间参数集合a、时间参数集合b和时间参数集合c对应的时间单元长度均不相同。
上述个时间参数集合中的每个时间参数集合包括至少一个时间参数,该时间参数用于指示接收第一下行信息与反馈第一下行信息对应的第一响应信息之间间隔的时间单元的个数,参照图2所示。该间隔对应的时间单元长度为该时间参数所在的时间参数集合所对应的时间单元长度。例如:有两个时间参数集合,即N=2,第一个时间参数集合为{1,2,3,4},对应的时间单元长度为一个slot,则第一个时间参数集合中的1,2,3,4分别用于指示接收第一下行信息与反馈第一下行信息对应的第一响应消息之间间隔的slot的个数分别为1,2,3,4;第二个时间参数集合为{0,1,2,3,4},对应的时间长度为2个时域符号,则第二个时间参数集合中的0,1,2,3,4分别用于指示接收第一下行信息与反馈第一下行信息对应的第一响应消息之间分别间隔的2个时域符号的个数分别为0,1,2,3,4个。
可选的,上述N个时间参数集合中每个时间参数集合对应一种DCI格式,该N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。例如,N为2,假设第一个时间参数集合对应的DCI格式为第一DCI格式,该第一DCI格式可以为DCI format1_0,或者可以称作是全反馈DCI(fallback DCI),可以用于在无线资源控制(Radio Resource Control,RRC)建立或者在RRC重配置过程中进行数据调度;第二个时间参数集合对应的DCI格式为第二DCI格式,该第二DCI格式可以为DCI format1_1,用于在RRC建立之后进行数据调度。
S102、终端设备在第一时间发送码本。
其中,所述码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M个目标时间为根据所述第一时间和所述至少一个目标时间参数集合确定的,所述M为正整数。
具体地,终端设备根据步骤S101确定至少一个目标时间参数集合,并根据确定的至少一个目标时间参数集合,来确定可能在第一时间上发送响应信息的下行信息所在的时间,即目标时间。
在确定了M个目标时间后,终端设备生成码本,该码本包括了在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息。其中,码本类型可以是半静态码本或动态码本,针对不同的码本类型,生成码本的过程不同,具体可以参考前面已有技术中确定Q个时间后,生成码本的过程。终端设备具体采用哪种码本类型由网络设备配置。
S103、网络设备在第一时间接收码本。
网络设备接收到该码本后,解析该码本,获得该码本包括的响应信息。接着,根据这些响应信息确定这些响应信息各自对应的下行信息,即确定这些响应信息是哪些下行信息的响应信息,以便网络设备根据下行信息的响应信息,来确定是否重新发送对应的下行信息。例如,响应信息为ACK,说明终端设备接收到该响应信息对应的下行信息,网络设备无需重新发送该下行信息,若响应信息为NACK,说明终端设备接收该响应信息对应的下行信息失败,网络设备可以重新发送该下行信息。
即网络设备接收到码本后,需要确定目标时间参数集合,并根据第一时间和目标 时间参数集合,确定M个目标时间。这样可以确定码本包括的响应信息是M个目标时间中哪些目标时间接收的下行信息对应的响应信息。其中,网络设备确定目标时间参数集合,以及根据目标时间参数集合和第一时间确定M个目标时间的具体过程与终端设备相同,在此不再赘述。
本申请实施例提供的通信方法,终端设备根据N个时间参数集合,确定至少一个目标时间参数集合,该N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,该时间参数用于指示终端设备接收第一下行信息与终端设备向网络设备反馈该第一下行信息对应的第一响应信息之间间隔的时间单元的个数,接着,终端设备根据第一时间和上述至少一个目标时间参数集合确定M个目标时间,并根据M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,生成码本,然后,终端设备在第一时间向网络设备发送该码本。网络设备接收到该码本后,解析该码本,并根据该码本所包括的响应信息,确定该响应信息对应的下行信息是否传输成功。即本申请实施例,当N个时间参数集合中有至少两个时间参数集合所对应的时间单元长度不同时,终端设备可以有效生成码本,同时,网络设备可以对该码本进行有效解析,保证网络设备和终端设备对于码本有一致的理解,从而保证通信的有效性,提高资源的利用率。
图8为本申请实施例提供的一种通信方法的流程图,在上述实施例的基础上,如图8所示,本申请实施例的方法包括:
S201、终端设备根据N个时间参数集合,确定一个目标时间参数集合。
可选的,终端设备可以根据如下任意一种方式确定所述一个目标时间参数集合。可以理解,如下方式仅为举例,不构成对本申请的任何限定。此外,可以理解,网络设备确定至少一个目标时间参数集合的过程与终端设备相同,在此以终端设备为例,网络设备参照即可,不做赘述。
方式一,终端设备从所述N个时间参数集合中确定其中一个时间参数集合作为所述目标时间参数集合。
可选的,终端设备根据预先定义,从N个时间参数集合中确定其中一个时间参数集合作为目标时间参数集合。
例如,终端设备将N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为目标时间参数集合。
示例性的,预先定义目标时间参数集合为N个时间参数集合中对应的时间单元长度满足预设值的一个时间参数集合。举例来说,N=3,即有3个时间参数集合,其中,时间参数集合1为{0,1,2,3,4},对应的时间单元长度为一个slot,时间参数集合2为{4,5,6},对应的时间单元长度为一个1/2slot,时间参数集合3为{1,3,5},对应的时间单元长度为一个2slot。例如,预先设定目标时间参数集合为N个时间参数集合中对应的时间单元长度为slot的时间参数集合,则确定的目标时间参数集合为时间参数集合1为{0,1,2,3,4},或者,预先设定目标时间参数集合为N个时间参数集合中对应的时间单元长度小于slot的时间参数集合,则确定的目标时间参数集合为时间参数集合2为{4,5,6},或者,预先设定目标时间参数集合为N个时间参数 集合中对应的时间单元长度最大的时间参数集合,则确定的目标时间参数集合为时间参数集合3为{1,3,5},或者预先设定目标时间参数集合为N个时间参数集合中对应的时间单元长度最小的时间参数集合,则确定的目标时间参数集合为时间参数集合2{4,5,6}。
示例性的,预先定义目标时间参数集合为N个时间参数集合中对应的DCI格式满足预设DCI格式的一个时间参数集合。举例来说,N=3,即有3个时间参数集合,其中,时间参数集合1为{0,1,2,3,4},对应的DCI格式为第一DCI格式,时间参数集合2为{4,5,6},对应的DCI格式为第二DCI格式,时间参数集合3为{1,3,5},对应的DCI格式为第一DCI格式。例如,预先定义目标时间参数集合为N个时间参数集合中对应的DCI格式为第二DCI格式的一个时间参数集合,则确定的目标时间参数集合为时间参数集合3为{1,3,5}。
示例性的,预先定义目标时间参数集合为N个时间参数集合中对应的时间单元长度满足预设值且DCI格式满足预设DCI格式的一个时间参数集合。举例来说,N=3,即有3个时间参数集合,其中,时间参数集合1为{0,1,2,3,4},对应的时间单元长度为一个slot,对应的DCI格式为第一DCI格式,时间参数集合2为{4,5,6},对应的时间单元长度为一个1/2slot,对应的DCI格式为第二DCI格式,时间参数集合3为{1,3,5},对应的时间单元长度为一个2slot,对应的DCI格式为第一DCI格式。例如,预先定义目标时间参数集合为N个时间参数集合中对应的时间单元长度为1/2slot,且DCI格式为第二DCI格式的一个时间参数集合,则确定的目标时间参数集合为时间参数集合2为{4,5,6}。
可选的,终端设备还可以根据网络设备的指示信息,从N个时间参数集合中确定其中一个时间参数集合作为目标时间参数集合。例如,网络设备自身从N个时间参数集合中确定其中时间参数集合1作为目标时间参数集合,并向终端设备发送指示信息,该指示信息用于指示终端设备将N个时间参数集合中的时间参数集合1作为目标时间参数集合。可选的,该指示信息承载在高层信令中。
可选的,N=2,有2个时间参数集合,分别对应第一DCI格式和第二DCI格式,如果网络设备发送指示信息指示需要盲检测第二格式的DCI,则目标时间参数集合为第二DCI格式对应的时间参数集合,如果没有配置盲检测第二格式的DCI,则目标参数集合为第一DCI格式对应的时间参数集合。
方式二,终端设备将所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合,作为所述目标时间参数集合。
假设N为2,将2个时间参数集合取交集或者取并集后合并为一个时间参数集合,将合并后的时间参数集合作为所述目标时间参数集合。
可选的,终端设备将N个时间参数集合中每个时间参数集合对应的时间单元长度转换成目标时间单元长度,获得转换后的N个时间参数集合;将转换后的N个时间参数集合取交集或取并集,获得合并后的一个时间参数集合,将该合并后的一个时间参数集合作为目标时间参数集合。
该方式中,若2个时间参数集合对应的时间单元长度不相同,则将2个时间参数集合对应的时间单元长度转换为同一个长度,即将2个时间参数集合中每个时间参数 集合转换为对应的时间单元长度为目标时间单元长度的时间参数集合。例如,2个时间参数集合分别为时间参数集合1和时间参数集合2,其中,时间参数集合1为{1,2,3,4},对应的时间单元长度为slot,时间参数集合2为{0,1,2,3},对应的时间单元长度为1/2slot,这样,需要将时间参数集合1对应的时间单元长度从slot转换为1/2slot,可以得到时间单元长度为1/2slot的时间参数集合1为{1,2,3,4,5,6,7,8},或者,得到时间单元长度为1/2slot的时间参数集合1为{2,4,6,8}。
将时间参数集合1和时间参数集合2对应的时间单元长度转换为同一长度后,对2个时间参数集合进行取并集或取交集,获得合并后的一个时间参数集合,将该合并后的一个时间参数集合作为目标时间参数集合。
例如,将时间参数集合1{1,2,3,4}对应的时间单元长度转换为时间单元长度为1/2slot的时间参数集合{1,2,3,4,5,6,7,8}后,与时间单元长度为1/2slot的时间参数集合2{1,2,3,4}取并集,获得合并后的一个时间参数集合为{0,1,2,3,4,5,6,7,8},将该{0,1,2,3,4,5,6,7,8}作为目标时间参数集合,其对应的时间单元长度为1/2slot。或者,将时间参数集合1{1,2,3,4}对应的时间单元长度转换为将时间单元长度为1/2slot的时间参数集合{2,4,6,8}后,与时间单元长度为1/2slot的时间参数集合2{1,2,3,4}取并集,获得合并后的一个时间参数集合为{0,1,2,3,4,6,8},将该{0,1,2,3,4,6,8}作为目标时间参数集合,其对应的时间单元长度为1/2slot。
例如,将时间参数集合1{1,2,3,4}对应的时间单元长度转换为时间单元长度为1/2slot的时间参数集合{1,2,3,4,5,6,7,8}后,与时间单元长度为1/2slot的时间参数集合2{1,2,3,4}取交集,获得合并后的一个时间参数集合为{1,2,3},将该{1,2,3}作为目标时间参数集合,其对应的时间单元长度为1/2slot。或者,将时间参数集合1{1,2,3,4}对应的时间单元长度转换为时间单元长度为1/2slot的时间参数集合{2,4,6,8}后,与时间单元长度为1/2slot的时间参数集合2{1,2,3,4}取交集,获得合并后的一个时间参数集合为{2},将该{2}作为目标时间参数集合,其对应的时间单元长度为1/2slot。
可选的,上述目标时间单元长度可以是N个时间参数集合中各时间参数集合对应的时间单元长度的最大公约数。例如,N为2,时间参数集合1对应的时间单元长度为slot,时间参数集合2对应的时间单元长度为1/2slot,则时间参数集合1和时间参数集合2对应的时间单元长度的最大公约数为1/2slot,因此,可以将时间参数集合1和时间参数集合2对应的时间单元长度转换为1/2slot。
方式三,终端设备将N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集,获得至少两个合并后的时间参数集合;将至少两个合并后的时间参数集合中的一个时间参数集合作为目标时间参数集合。
其中,将N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集,获得至少两个合并后的时间参数集合可以是:首先将N个时间参数集合中同一个DCI格式对应的至少一个时间参数集合中的每个时间参数集合所对应的时间单元长度转换为目标时间单元长度,获得每个DCI格式对应的转换后的至少一个时间参数集合,将每个DCI格式对应的转换后的至少一个时间参数集合进行取交集或取并集,获得每个DC I格式对应的合并后的一个时间参数集合,进而获得至少两个合并后的时间参数集合。可选的,该目标时间单元长度可以是所述同一个DCI格式对应的至少一个 时间参数集合中每个时间参数集合对应的时间单元长度的最大公约数。具体如何将N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集的方式可以参照方式二中将N个时间参数集合取交集或者取并集的方式,不再赘述。
本申请实施例中,终端设备将上述获得的至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间参数集合可以是:终端设备将上述至少两个合并后的时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
举例说明,假设N为4,4个时间参数集合分别为时间参数集合3、时间参数集合4、时间参数集合5和时间参数集合6,其中,时间参数集合3和时间参数集合4对应的DCI格式为第一DCI格式,时间参数集合5和时间参数集合6对应的DCI格式为第二DCI格式。对时间参数集合3和时间参数集合4取交集或并集,若时间参数集合3和时间参数集合4对应的时间单元长度不相同时,转换为同一长度的时间单元后,再取交集或并集,其过程可以参照方式二描述,在此不再赘述,获得一个时间参数集合7。同理,对时间参数集合5和时间参数集合6取交集或并集,获得一个时间参数集合8。接着,将时间参数集合7和时间参数集合8中的一个时间参数集合作为目标时间参数集合,例如,将时间参数集合7和时间参数集合8中对应的时间单元长度满足预设值的一个时间参数集合作为目标时间参数集合,或者,将时间参数集合7和时间参数集合8中对应的DCI格式满足预设DCI格式的一个时间参数集合作为目标时间参数集合,或者,将时间参数集合7和时间参数集合8中对应的时间单元长度满足预设值、且DCI格式满足预设DCI格式的一个时间参数集合作为目标时间参数集合。具体如何选择一个时间参数集合作为目标时间参数集合可以参照方式一种的描述,不再赘述。
S202、终端设备根据确定的一个目标时间参数集合和第一时间,确定M个目标时间。
其中,所述M为正整数。
可选的,在终端设备按照如上方式一至方式三种任一方式确定出一个目标时间参数集合后,可以根据确定出的目标时间参数集合和第一时间,确定M个目标时间。
具体地,假设第一时间对应的上行时间单元为第n个1/2slot,目标时间对应的时间单元是slot。例如上述确定的目标时间参数集合为{0,1,2,3},其对应的时间单元长度即粒度为1/2slot,则如图9所示,从下行的第n个1/2slot向前分别数0、1、2、3个1/2slot,获得标号为n、n-1、n-2、n-3的1/2slot,如图9所示,其中1/2slot n和1/2slot n+1组成一个完整的slot,1/2slot n-1和1/2slot n-2组成一个完整的slot,1/2slot n-3和1/2slot n-4组成一个完整的slot,因此,将该3个slot对应的时间作为M个目标时间。再例如,上述确定的目标时间参数集合为{0,1,2,3,4,5,6,7,8},其对应的时间单元长度即粒度为1/2slot,如图10所示,从下行的第n个1/2slot向前分别数0,1,2,3,4,5,6,7,8个1/2slot,获得下行时间单元1/2slot n、1/2slot n-1、1/2slot n-2、1/2slot n-3、1/2slot n-4、1/2slot n-5、1/2slot n-6、1/2slot n-7、1/2slot n-8,将占一半slot的时间单元补为完整的slot,例如,1/2slot n和1/2slot n+1组成一个完整的slot,因此,将下行时间单元1/2slot n+1、1/2slot n、1/2slot n-1、1/2slot n-2、1/2slot n-3、1/2slot n-4、1/2slot n-5、1/2slot n-6、 1/2slot n-7、1/2slot n-8所在的5个slot对应的时间作为目标时间。
假设,第一时间对应的上行时间单元为第n个1/2slot,目标时间对应的时间单元是1/2slot。例如上述确定的目标时间参数集合为{0,1,2,3},其对应的时间单元长度即粒度为1/2slot,则如图11所示,从下行的第n个1/2slot向前分别数0、1、2、3个1/2slot,获得标号为n、n-1、n-2、n-3的1/2slot,将下行时间单元获得标号为n、n-1、n-2、n-3的1/2slot对应的时间作为M个目标时间,获得4个目标时间。再例如,上述确定的目标时间参数集合为{0,1,2,3,4,5,6,7,8},其对应的时间单元是1/2slot,图12所示,从下行的第n个1/2slot向前分别数0,1,2,3,4,5,6,7,8个1/2slot,获得下行时间单元1/2slot n、1/2slot n-1、1/2slot n-2、1/2slot n-3、1/2slot n-4、1/2slot n-5、1/2slot n-6、1/2slot n-7、1/2slot n-8,将这些下行时间单元对应的时间作为目标时间。
假设,第一时间对应的上行时间单元为第n个1/2slot,目标时间对应的时间单元是1/2slot。例如上述确定的目标时间参数集合1为{0,1,2,3},其对应的时间单元长度即粒度为slot,则如图13所示,从下行的第n个slot向前分别数0、1、2、3个slot,即从下行的第n个slot向前分别数0、2、4、6个1/2slot,获得标号为n、n-2、n-4、n-6的1/2slot,将下行时间单元获得标号为n、n-2、n-4、n-6的1/2slot对应的时间作为M个目标时间,获得4个目标时间。
假设,第一时间对应的上行时间单元为第n个1/2slot,目标时间对应的时间单元是slot。例如上述确定的目标时间参数集合1为{0,1,2,3},其对应的时间单元长度即粒度为slot,则如图14所示,从下行的第n个1/2slot向前分别数0、1、2、3个slot,即从下行的第n个1/2slot向前分别数0,1,2,3,4,5,6个1/2slot,获得下行时间单元1/2slot n、1/2slot n-1、1/2slot n-2、1/2slot n-3、1/2slot n-4、1/2slot n-5、1/2slot n-6,将占一半slot的时间单元补为完整的slot,例如,1/2slot n和1/2slot n+1组成一个完整的slot,因此,将下行时间单元1/2slot n+1、1/2slot n、1/2slot n-1、1/2slot n-2、1/2slot n-3、1/2slot n-4、1/2slot n-5、1/2slot n-6所在的4个slot对应的时间作为目标时间。
S203、终端设备在第一时间发送码本。
可选的,终端设备根据上述S202中描述的方式确定出M个目标时间后,根据M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,生成码本,例如,该码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息。接着,在第一时间,将生成的码本发送给网络设备。
具体生成码本的过程可以参照S102所述,不再赘述。
S204、网络设备在第一时间接收码本。
网络设备在第一时间接收来自终端设备的码本后,确定一个目标时间参数集合,并根据第一时间和一个目标时间参数集合,确定M个目标时间。这样可以确定码本包括的响应信息是M个目标时间中哪些目标时间接收的下行信息对应的响应信息,进而确定M个目标时间在哪些目标时间成功接收到下行信息,哪些目标时间没有成功接收到下行信息。
其中,网络设备确定一个目标时间参数集合,以及根据该目标时间参数集合和第一时间确定M个目标时间的具体过程与终端设备相同,在此不再赘述。
本申请实施例提供的通信方法,终端设备根据N个时间参数集合,确定一个目标 时间参数集合,并根据确定的一个目标时间参数集合和第一时间,确定M个目标时间,进而实现对目标时间的准确确定。
图15为本申请实施例提供的一种通信方法的流程图,在上述实施例的基础上,如图15所示,本申请实施例的方法包括:
S301、终端设备根据N个时间参数集合,确定N个目标时间参数集合。
可选的,在本申请的一个实现方式中,终端设备将N个时间参数集合中的每个时间参数集合作为一个目标时间参数集合,获得N个目标时间参数集合。
举例说明,假设N为2,2个时间参数集合分别为时间参数集合1和时间参数集合2,其中,时间参数集合1为{1,2,3,4},对应的时间单元长度为slot,时间参数集合2为{0,1,2,3},对应的时间单元长度为1/2slot,则确定2个目标时间参数集合分别为时间参数集合1和时间参数集合2。
此外,网络设备确定至少一个目标时间参数集合的过程与终端设备相同,在此以终端设备为例,网络设备参照即可,不做赘述。
S302、终端设备根据确定的N个目标时间参数集合和第一时间,确定M个目标时间。
可选的,在本申请的一个实施方式中,终端设备根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合,确定所述每个目标时间参数集合对应的时间集合,获得N个时间集合;将所述N个时间集合取交集或者取并集,获得所述M个目标时间。
具体地,确定每个目标时间参数集合对应的时间集合的方法可以参照S202中根据第一时间和一个目标参数集合确定M个目标时间的方法,确定出的M个目标时间组成的时间集合就是该目标时间参数集合对应的时间集合。例如,根据一个目标时间参数集合确定M个目标时间为下行时间单元1/2slot n+1、1/2slot n、1/2slot n-1、1/2slot n-2、1/2slot n-3、1/2slot n-4、1/2slot n-5、1/2slot n-6、1/2slot n-7、1/2slot n-8所在的5个slot,则这5个slot就是该目标时间参数集合对应的时间集合。
确定每个目标时间参数集合对应的时间集合,获得N个时间集合;将所述N个时间集合取交集或者取并集,获得所述M个目标时间。
举例说明,假设N为2,2个时间参数集合分别为时间参数集合1和时间参数集合2,其中,时间参数集合1为{1,2,3,4},对应的时间单元长度为slot,时间参数集合2为{0,1,2,3},对应的时间单元长度为1/2slot,则确定2个目标时间参数集合分别为时间参数集合1和时间参数集合2。第一时间为编号为n的1/2slot对应的时间。如图16所示,首先,根据上述方法,将时间参数集合1对应的时间单元长度转换为1/2slot,获得转换后的时间参数集合1为{1,2,3,4,5,6,7,8}。接着,从编号为n的1/2slot向前数1,2,3,4,5,6,7,8个1/2slot,获得时间参数集合1对应的时间集合3为编号为{n-1,n-2,n-3,n-4,n-5,n-6,n-7,n-8}的1/2slot。同理,按照时间参数集合2从编号为n的1/2slot向前数{0,1,2,3}个时间单元,获得时间参数集合2对应的时间集合4为编号为{n,n-1,n-2,n-3}的1/2slot。接着,将时间集合3和时间集合4取并集,得到合并后的时间集合5为编号为{n,n-1,n-2,n-3,n-4,n-5,n-6,n-7,n-8}的1/2slot,M个目标时间为时间集合5 中所有的时间单元对应的时间,即M个目标时间对应的时间单元的编号为n,n-1,n-2,n-3,n-4,n-5,n-6,n-7,n-8的1/2slot;或者,如图17所示,将时间集合3和时间集合4取交集,得到合并后的时间集合5为编号为{n-1,n-2,n-3}的1/2slot,M个目标时间为时间集合5中所有的时间单元对应的时间,即M个目标时间对应的时间单元编号为n-1,n-2,n-3的1/2slot。
或者,根据上述方法,将时间参数集合1对应的时间单元长度转换为1/2slot,获得转换后的时间参数集合1为{2,4,6,8},之后确定M个目标时间单元的方法与上面所述类似,不再赘述。
S303、终端设备在第一时间发送码本。
可选的,终端设备根据上述S302中描述的方式确定出M个目标时间后,根据M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,生成码本,例如,该码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息。接着,在第一时间,将生成的码本发送给网络设备。
具体生成码本的过程可以参照S102所述,不再赘述。
S304、网络设备在第一时间接收码本。
网络设备在第一时间接收来自终端设备的码本后,确定N个目标时间参数集合,并根据第一时间和N个目标时间参数集合,确定M个目标时间。这样可以确定码本包括的响应信息是M个目标时间中哪些目标时间接收的下行信息对应的响应信息,进而确定M个目标时间在哪些目标时间成功接收到下行信息,哪些目标时间没有成功接收到下行信息。
其中,网络设备确定N个目标时间参数集合,以及根据该N个目标时间参数集合和第一时间确定M个目标时间的具体过程与终端设备相同,在此不再赘述。
本申请实施例提供的通信方法,终端设备根据N个时间参数集合,确定N个目标时间参数集合,并根据确定的N个目标时间参数集合和第一时间,确定M个目标时间,进而实现对目标时间的准确确定。
图18为本申请实施例提供的一种通信方法的流程图,在上述实施例的基础上,如图18所示,本申请实施例的方法包括:
S401、终端设备根据N个时间参数集合,确定至少一个目标时间参数集合。
本申请实施例中,终端设备可以根据上述S201方法或S301的方法,确定至少一个目标时间参数集合,其具体过程可以参照上述S201或S301,在此不再赘述。
S402、网络设备向终端设备发送第二下行信息。
其中,该第二下行信息用于指示所述第一时间。
S403、终端设备根据第二下行信息,确定所述第一时间。
终端设备接收到第二下行信息后,根据第二下行信息确定一个k值,终端设备向网络设备发送第一下行信息对应的响应信息之间满足n+k的定时关系。其中,n表示终端设备接收第一下行信息的时间单元,k表示终端设备接收到第一下行信息与终端设备向网络设备反馈该第一下行信息对应的响应信息之间间隔的时间单元的个数。例 如图2所示,终端设备在第n个slot接收到第一下行信息,若第二下行指示k=4,则在第n+4slot上反馈该第一下行信息的响应信息给网络设备。
第二下行信息可以承载在DCI中,例如,DCI指示时间参数集合中的一个时间参数作为k,给终端设备,该时间参数集合可以是网络设备配置的,也可以是预先定义的,即协议规定的。用于下行信息调度的DCI格式可以有多种,例如第一DCI格式和第二DCI格式两种,在一种示例中,针对第一DCI格式,假设协议规定了一个时间参数集合1为{1,2,3,4,5,6,7,8},通过第一DCI格式调度下行信息时,可以通过指示时间参数集合1中的一个值作为k。在另一种示例中,针对第二DCI格式,假设网络设备配置了一个时间参数集合,通过第二DCI格式调度第二下行信息时,可以通过指示时间参数集合2中的一个值,作为k。
这样,终端设备可以根据接收到的第二下行信息,确定第一时间。
S404、终端设备根据至少一个目标时间参数集合和第一时间,确定M个目标时间。
本申请实施例中,终端设备可以根据上述S202方法或S302的方法,确定M个目标时间,即当本申请实施例S401采用如上述S201的方法,确定一个目标时间参数集合时,则该S404采用上述S202的方式,确定M个目标时间;当申请实施例S401采用如上述S301的方法,确定N个目标时间参数集合时,则该S404采用上述S302的方式,确定M个目标时间。其具体过程可以参照上述S202或S302,在此不再赘述。
S405、终端设备在第一时间发送码本。
终端设备根据上述S404,确定出M个目标时间后,根据M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,生成码本,例如,该码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息。接着,在第一时间,将生成的码本发送给网络设备。
具体生成码本的过程可以参照S102所述,不再赘述。
S406、网络设备在第一时间接收码本。
网络设备在第一时间接收来自终端设备的码本后,确定一个目标时间参数集合,并根据第一时间和一个目标时间参数集合,确定M个目标时间。这样可以确定码本包括的响应信息是M个目标时间中哪些目标时间接收的下行信息对应的响应信息,进而确定M个目标时间在哪些目标时间成功接收到下行信息,哪些目标时间没有成功接收到下行信息。
其中,网络设备确定一个目标时间参数集合,以及根据该目标时间参数集合和第一时间确定M个目标时间的具体过程与终端设备相同,在此不再赘述。
本申请实施例提供的通信方法,终端设备根据至少一个目标时间参数集合和第一时间,确定M个目标时间之前,首先接收来自网络设备的第二下行信息,该第二下行信息用于指示第一时间,这样,终端设备可以根据该第二下行信息,确定第一时间,进而根据第一时间和至少一个目标参数集合,准确确定出M个目标时间。
图19为本申请实施例提供的一种通信方法的流程图,在上述实施例的基础上,如图19所示,本申请实施例的方法包括:
S501、终端设备获取N个时间参数集合。
本申请实施例,终端设备在根据N个时间参数集合,确定至少一个目标时间参数集合之前,首先需要获取该N个时间参数集合。其中,终端设备获取该N个时间参数集合的方式包括但不限于如下示例。
第一种示例,网络设备确定N个时间参数集合,接着,网络设备向终端设备发送第一配置信息,其中,该第一配置信息指示所述N个时间参数集合,然后,终端设备根据所述第一配置信息,获得所述N个时间参数集合。
该示例中,N个时间参数集合全部为网络设备配置,例如,网络设备自身确定N个时间参数集合,为了使得终端设备的N个时间参数集合与网络设备的N个时间参数集合一致,则网络设备向终端设备发送第一配置信息,该第一配置信息用于指示网络设备确定的N个时间参数集合。该第一配置信息可以承载在DCI中,或者是承载在高层信令中的。
第二种示例,网络设备确定N个时间参数集合。其中,该N个时间参数集合包括N1个时间参数集合和N2个时间参数集合,所述N2个时间参数集合为预先定义的,所述N1与所述N2之和为所述N,所述N1和所述N2均为正整数。其中,N1个时间参数集合为网络设备自行确定的,例如可以根据调度需求等确定,本申请实施例对此不做限定。接着,网络设备向终端设备发送第二配置信息,该第二配置信息用于指示所述N1个时间参数集合。终端设备根据N1个时间参数集合和N2个时间参数集合,获得所述N个时间参数集合。
即该示例中,N个时间参数集合中N1个时间参数集合为网络设备确定的,N2个时间参数集合为预先定义的。此时,对于网络设备,其自身确定N1个时间参数集合,并根据预先定义的规定,确定N2个时间参数集合,进而获得N个时间参数集合。
为使得终端设备的N个时间参数集合与网络设备的N个时间参数集合一致,则网络设备将自身确定的N1个时间参数集合通知给终端设备,即网络设备向终端设备发送第二配置信息,该第二配置信息用于指示网络设备确定的N1个时间参数集合。该第二配置信息可以承载在DCI中,或者是承载在高层信令中的。
这样,终端设备可以根据网络设备发送的第二配置信息,确定N1个时间参数集合,并根据预先定义的规定,确定N2个时间参数集合,进而将N1个时间参数集合和N2个时间参数集合组合,即将N1个时间参数集合和N2个时间参数集合加起来,获得N个时间参数集合。例如,N1为2,N2为3,获得的N个时间参数集合为5个时间参数集合。
这样,终端设备可以根据上述第一种示例所述的方式一或第二种示例所述的方式二,获得N个时间参数集合,进而保证了网络设备和终端设备关于N个时间参数集合的一致性。
S502、终端设备根据N个时间参数集合,确定至少一个目标时间参数集合。
本申请实施例中,终端设备可以根据上述S201方法或S301的方法,确定至少一个目标时间参数集合,其具体过程可以参照上述S201或S301,在此不再赘述。
S503、终端设备在第一时间向网络设备发送码本。
终端设备根据上述步骤,获得至少一个目标时间参数集合后,根据至少一个目标时间参数集合和第一时间,确定M个目标时间,具体过程参照上述S202方法或S302 的方法,确定M个目标时间,即当本申请实施例S502采用如上述S201的方法,确定一个目标时间参数集合时,则该S503采用上述S202的方式,确定M个目标时间;当申请实施例S502采用如上述S301的方法,确定N个目标时间参数集合时,则该S503采用上述S302的方式,确定M个目标时间。
接着,将在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息包括在码本中,发送给网络设备。
S504、网络设备在第一时间接收码本。
网络设备在第一时间接收来自终端设备的码本后,确定一个目标时间参数集合,并根据第一时间和一个目标时间参数集合,确定M个目标时间。这样可以确定码本包括的响应信息是M个目标时间中哪些目标时间接收的下行信息对应的响应信息,进而确定M个目标时间在哪些目标时间成功接收到下行信息,哪些目标时间没有成功接收到下行信息。
其中,网络设备确定一个目标时间参数集合,以及根据该目标时间参数集合和第一时间确定M个目标时间的具体过程与终端设备相同,在此不再赘述。
本申请实施例提供的通信方法,网络设备确定N个时间参数集合,并向终端设备发送第一配置信息或第二配置信息,这样,终端设备可以根据第一配置信息或第二配置信息获得与N个时间参数集合,进而保证了网络设备和终端设备关于N个时间参数集合的一致性。
图20为本申请实施例提供的一种通信方法的流程图,在上述实施例的基础上,如图20所示,本申请实施例的方法包括:
S601、网络设备向终端设备发送配置信息。
参照上述S501,该配置信息可以是用于指示N个时间参数集合的第一配置信息,或者为用于指示N1个时间参数集合的第二配置信息。
S602、终端设备根据网络设备发送的配置信息,获取N个时间参数集合。
具体可以参照上述S501,例如当上述S601中的配置信息为第一配置信息,则根据第一种示例的方式,获取N个时间参数集合,若上述S601中的配置信息为第二配置信息,则根据第二种示例的方式,获取N个时间参数集合。具体参照上述S501的描述,在此不再赘述。
S603、终端设备根据N个时间参数集合,确定至少一个目标时间参数集合。
本申请实施例中,终端设备可以根据上述S201方法或S301的方法,确定至少一个目标时间参数集合,其具体过程可以参照上述S201或S301,在此不再赘述。
S604、网络设备向终端设备发送第二下行信息。
其中,该第二下行信息用于指示所述第一时间。
S605、终端设备根据第二下行信息,确定所述第一时间。
具体可以参照上述S401和S403的描述,在此不再赘述。
需要说明的是,上述S604与上述S601之间没有先后顺序,即上述S604与S605可以在上述S601与S602之前执行,也可以在上述S601与S602之后执行,本申请实施例对此不做限制。
S606、终端设备根据至少一个目标时间参数集合和第一时间,确定M个目标时间。
具体过程参照上述S202方法或S302的方法,确定M个目标时间,即当本申请实施例S603采用如上述S201的方法,确定一个目标时间参数集合时,则该S606采用上述S202的方式,确定M个目标时间;当申请实施例S603采用如上述S301的方法,确定N个目标时间参数集合时,则该S606采用上述S302的方式,确定M个目标时间。在此不再赘述。
S607、终端设备确定M个目标时间中每个目标时间接收的下行信息。
S608、终端设备确定M个目标时间中每个目标时间接收的下行信息所对应的响应信息。
S609、终端设备根据M个目标时间中至少一个目标时间对应的响应信息,生成码本。
上述S607至S609可以参照图4、图5或图6所示的实施例的描述,在此不再赘述。
S610、终端设备在第一时间向网络设备发送码本。
S611、网络设备接收码本后,根据N个时间参数集合,确定至少一个目标时间参数集合。
其中,网络设备根据N个时间参数集合,确定至少一个目标时间参数集合的过程与终端设备根据N个时间参数集合,确定至少一个目标时间参数集合的过程相同,在此不再赘述。
S612、网络设备根据至少一个目标时间参数集合和第一时间,确定M个目标时间。
其中,网络设备根据至少一个目标时间参数集合和第一时间,确定M个目标时间的过程与终端设备至少一个目标时间参数集合和第一时间,确定M个目标时间的过程相同。具体可以参照上述S606描述,在此不再赘述。
S613、网络设备根据M个目标时间和码本,确定M个目标时间对应的下行信息是否接受成功。
网络设备接收到码本后,根据N个时间参数集合,确定至少一个目标时间参数集合,并根据确定的至少一个目标时间参数集合和第一时间,确定M个目标时间。接着,解析码本,根据码本中携带的响应信息,以确定M个目标时间对应的下行信息是否接受成功,以提高下行信息发送的可靠性。
本申请实施例提供的通信方法,网络设备向终端设备发送第一配置信息或第二配置信息,终端设备根据该第一配置信息或第二配置信息获得N个时间参数集合,接着,根据该N个时间参数集合,确定至少一个目标时间参数。网络设备向终端设备发送第二下行信息,终端设备根据该第二下行信息确定第一时间,接着,终端设备根据该第一时间和至少一个目标参数集合,确定M个目标时间,并在第一时间向网络设备发送码本。网络设备在第一时间接收到码本后,同样根据N个时间参数集合确定至少一个目标时间参数集合,并根据至少一个目标时间参数集合和第一时间,确定M个目标时间,进而根据M个目标时间对应的下行信息的响应信息和码本,确定M个目标时间对应的下行信息是否接受成功。即本申请实施例,当N个时间参数集合中有至少两个时间参数集合所对应的时间单元长度不同时,终端设备可以有效生成码本,同时,网 络设备可以对该码本进行有效解析,保证网络设备和终端设备对于码本有一致的理解,从而保证通信的有效性,提高资源的利用率。
图21为本申请实施例提供的一种通信设备的结构示意图。如图21所示,本实施例所述的通信设备500可以是前述方法实施例中提到的终端设备(或者可用于终端设备的部件)或者网络设备(或者可用于网络设备的部件)。通信设备可用于实现上述方法实施例中描述的对应于终端设备或者网络设备的方法,具体参见上述方法实施例中的说明。
所述通信设备500可以包括一个或多个处理器501,所述处理器501也可以称为处理单元,可以实现一定的控制或者处理功能。所述处理器501可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信设备进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器501也可以存有指令503或者数据(例如中间数据)。其中,所述指令503可以被所述处理器运行,使得所述通信设备500执行上述方法实施例中描述的对应于终端设备或者网络设备的方法。
在又一种可能的设计中,通信设备500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信设备500中可以包括一个或多个存储器502,其上可以存有指令504,所述指令可在所述处理器上被运行,使得所述通信设备500执行上述方法实施例中描述的方法。
可选的,处理器501和存储器502可以单独设置,也可以集成在一起。
可选的,所述通信设备500还可以包括收发器505和/或天线506。所述处理器501可以称为处理单元,对通信设备(例如终端设备或者网络设备)进行控制。所述收发器505可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信设备的收发功能。
在一个设计中,若该通信设备500用于实现对应于上述各实施例中终端设备的操作时,例如,可以由处理器501根据N个时间参数集合,确定至少一个目标时间参数集合,其中,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示接收第一下行信息与反馈所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数;收发器505在第一时间发送码本,其中,该码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M个目标时间为根据所述第一时间和所述至少一个目标时间参数集合确定的,所述M为正整数。
其中,上述收发器505与处理器501的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
另一个设计中,若该通信设备用于实现对应于上述各实施例中网络设备的操作时,例如可以由收发器505在第一时间接收码本,该码本包括M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M为正整数,所述M个目标时间为 根据所述第一时间和至少一个目标时间参数集合确定的,所述至少一个目标时间参数集合为根据N个时间参数集合确定的,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示发送第一下行信息与接收所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数。
其中,上述收发器505与处理器501的具体实现过程可以参见上述各实施例的相关描述,此处不再赘述。
本申请中描述的处理器501和收发器505可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器501和收发器505也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信设备500以终端终端或者网络设备为例来描述,但本申请中描述的通信设备的范围并不限于上述终端设备或上述网络设备,而且通信设备的结构可以不受图21的限制。
本申请实施例的通信设备,可以用于执行上述各方法实施例中终端设备(或网络设备)的技术方案,其实现原理和技术效果类似,此处不再赘述。
图22为本申请实施例提供的一种终端设备的结构示意图。该终端设备600可以实现上述方法实施例中终端设备所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块或单元。
在一种可能的设计中,该终端设备600的结构中包括处理器601、收发器602和存储器603,该处理器601被配置为支持该终端设备600执行上述方法中相应的功能。该收发器602用于支持该终端设备600与其他终端设备或网络设备之间的通信。该终端设备600还可以包括存储器603,该存储器603用于与处理器601耦合,其保存该终端设备600必要的程序指令和数据。
当终端设备600开机后,处理器601可以读取存储器603中的程序指令和数据,解释并执行程序指令,处理程序指令的数据。当发送数据时,处理器601对待发送的数据进行基带处理后,输出基带信号至收发器602,收发器602将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,收发器602通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器601,处理器601将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图22仅示出了一个存储器603和一个处理器601。在实际的终端设备600中,可以存在多个处理器601和多个存储器603。存储器603也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
本申请实施例的终端设备,可以用于执行上述各方法实施例中终端设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图23为本申请实施例提供的一种装置的结构示意图。该装置700以芯片的产品形态存在,该装置的结构中包括处理器701和存储器702,该存储器702用于与处理器701耦合,该存储器702上保存该装置必要的程序指令和数据,该处理器701用于执行存储器702中存储的程序指令,使得该装置执行上述方法实施例中终端设备的功能。
本申请实施例的装置,可以用于执行上述各方法实施例中终端设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图24为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等),如图24所示,该通信装置800可以包括:处理单元801和收发单元802;
处理单元801,用于根据N个时间参数集合,确定至少一个目标时间参数集合,其中,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示接收第一下行信息与反馈所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数;
收发单元802,用于在第一时间发送码本,其中,所述码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M个目标时间为根据所述第一时间和所述至少一个目标时间参数集合确定的,所述M为正整数。
可选的,上述N个时间参数集合中每个时间参数集合对应一种DCI格式,所述N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。
可选的,上述处理单元801,具体用于从所述N个时间参数集合中确定其中一个时间参数集合作为所述目标时间参数集合。
可选的,上述处理单元801,具有用于将所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
可选的,上述处理单元801,具有用于将所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合,作为所述目标时间参数集合。
可选的,上述处理单元801,具有用于将所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集,获得至少两个合并后的时间参数集合;并将所述至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间参数集合。
可选的,上述处理单元801,具有用于将所述N个时间参数集合中的每个时间参数集合作为所述目标时间参数集合,获得N个目标时间参数集合;并根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合,确定所述每个目标时间参数集合对应的时间集合,获得N个时间集合;将所述N个时间集合取交集或者取并集,获得所述M个目标时间。
本申请实施例的通信装置,可以用于执行上述各方法实施例中终端设备的技术方 案,其实现原理和技术效果类似,此处不再赘述。
图25为本申请实施例提供的一种通信装置的结构示意图。在上述实施例的基础上,如图25所示,本申请实施例的通信装置还包括:获取单元803;
所述收发单元802,还用于接收第一配置信息,其中,所述第一配置信息指示所述N个时间参数集合;
所述获取单元803,用于根据所述第一配置信息,获得所述N个时间参数集合;
或者,
所述收发单元802,还用于接收第二配置信息,其中,所述第二配置信息用于指示N1个时间参数集合;
所述获取单元803,用于根据所述N1个时间参数集合和N2个时间参数集合,获得所述N个时间参数集合,其中,所述N2个时间参数集合为预先定义的,所述N个时间参数集合包括所述N1个时间参数集合和所述N2个时间参数集合,所述N1与所述N2之和为所述N,所述N1和所述N2均为正整数。
本申请实施例的通信装置,可以用于执行上述各方法实施例中终端设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图26为本申请实施例提供的一种网络设备的结构示意图。该网络设备900可以实现上述方法实施例中网络设备所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块或单元。
在一种可能的设计中,该网络设备900的结构中包括处理器901和通信接口902,该处理器901被配置为支持该网络设备900执行上述方法中相应的功能。该通信接口902用于支持该网络设备900与其他网元之间的通信。该网络设备900还可以包括存储器903,该存储器903用于与处理器901耦合,其保存该网络设备900必要的程序指令和数据。
本领域技术人员可以理解,为了便于说明,图26仅示出了一个存储器903和一个处理器901。在实际的网设备900中,可以存在多个处理器901和多个存储器903。存储器903也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
本申请实施例的网络设备,可以用于执行上述各方法实施例中网络设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图27为本申请实施例提供的一种装置的结构示意图。该装置100以芯片的产品形态存在,该装置的结构中包括处理器110和存储器120,该存储器120用于与处理器110耦合,该存储器120上保存该装置必要的程序指令和数据,该处理器110用于执行存储器120中存储的程序指令,使得该装置执行上述方法实施例中网络设备的功能。
本申请实施例的装置,可以用于执行上述各方法实施例中网络设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图28为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等),如图28所示,该通信装置200可以包括:收发单元210。
上述收发单元210可以实现上述网络设备侧的方法。例如,上述收发单元210,用于在第一时间接收码本,该码本包括M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M为正整数,所述M个目标时间为根据所述第一时间和至少一个目标时间参数集合确定的,所述至少一个目标时间参数集合为根据N个时间参数集合确定的,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示发送第一下行信息与接收所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数。
可选的,上述N个时间参数集合中每个时间参数集合对应一种DCI格式,所述N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。
可选的,上述至少一个目标时间参数集合为所述N个时间参数集合中的一个时间参数集合。
可选的,上述目标时间参数集合为所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合。
可选的,上述至少一个目标时间参数集合为所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合。
可选的,上述至少一个目标时间参数集合为所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集后,所获得的至少两个合并后的时间参数集合中的一个时间参数集合。
可选的,上述至少一个目标时间参数集合为N个目标时间参数集合,即N个目标时间参数集合中的每个目标时间参数集合为该N个时间参数集合中的每个时间参数集合;
对应的,该M个目标时间为N个时间集合进行取交集或者取并集后获得的,该N个时间集合为根据第一时间和该N个目标时间参数集合中的每个目标时间参数集合确定的。
本申请实施例的通信装置,可以用于执行上述各方法实施例中网络设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图29为本申请实施例提供的一种通信装置的结构示意图。在上述实施例的基础上,如图29所示,本申请实施例的通信装置还包括:处理单元220;
所述处理单元220,用于确定N个时间参数集合,
所述收发单元210,还用于发送第一配置信息,其中,所述第一配置信息用于指示所述N个时间参数集合;
或者,
所述处理单元220,用于确定所述N个时间参数集合,其中,所述N个时间参数集合包括N1个时间参数集合和N2个时间参数集合,所述N2个时间参数集合为预先定义的,所述N1与所述N2之和为所述N,所述N1和所述N2均为正整数;
所述收发单元210,还用于发送第二配置信息,其中,所述第二配置信息用于指示所述N1个时间参数集合。
本申请实施例的通信装置,可以用于执行上述各方法实施例中网络设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图30为本申请实施例提供的一种通信系统的结构示意图。如30所示,本申请实施例的通信系统300包括上述终端设备310和网络设备320。
其中,该终端设备310可以用于实现上述方法实施例中终端设备的功能,该网络设备320可以用于实现上述方法实施例中网络设备侧的功能,其实现原理和技术效果类似,此处不再赘述。
基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。另外,各个方法实施例之间、各个装置实施例之间也可以互相参考,在不同实施例中的相同或对应内容可以互相引用,不做赘述。

Claims (62)

  1. 一种通信方法,其特征在于,包括:
    根据N个时间参数集合,确定至少一个目标时间参数集合,其中,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示接收第一下行信息与反馈所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数;
    在第一时间发送码本,其中,所述码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M个目标时间为根据所述第一时间和所述至少一个目标时间参数集合确定的,所述M为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述N个时间参数集合中每个时间参数集合对应一种下行控制信息DCI格式,所述N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。
  3. 根据权利要求2所述的方法,其特征在于,所述根据N个时间参数集合,确定至少一个目标时间参数集合,包括:
    从所述N个时间参数集合中确定其中一个时间参数集合作为所述目标时间参数集合。
  4. 根据权利要求3所述的方法,其特征在于,所述从所述N个时间参数集合中确定其中一个时间参数集合作为所述目标时间参数集合,包括:
    将所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
  5. 根据权利要求2所述的方法,其特征在于,所述根据N个时间参数集合,确定至少一个目标时间参数集合,包括:
    将所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合,作为所述目标时间参数集合。
  6. 根据权利要求5所述的方法,其特征在于,所述将所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合,作为所述目标时间参数集合,包括:
    将所述N个时间参数集合中每个时间参数集合对应的时间单元长度转换成目标时间单元长度,获得转换后的N个时间参数集合;
    将转换后的N个时间参数集合取交集或取并集,获得合并后的一个时间参数集合,将所述合并后的一个时间参数集合作为所述目标时间参数集合。
  7. 根据权利要求6所述的方法,其特征在于,所述目标时间单元长度为所述N个时间参数集合中各时间参数集合对应的时间单元长度的最大公约数。
  8. 根据权利要求2所述的方法,其特征在于,所述根据N个时间参数集合,确定至少一个目标时间参数集合,包括:
    将所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集,获得至少两个合并后的时间参数集合;
    将所述至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间 参数集合。
  9. 根据权利要求8所述的方法,其特征在于,所述将所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集,获得至少两个合并后的时间参数集合,包括:
    将所述N个时间参数集合中同一个DCI格式对应的至少一个时间参数集合中的每个时间参数集合所对应的时间单元长度转换为目标时间单元长度,获得每个DCI格式对应的转换后的至少一个时间参数集合;
    将每个DCI格式对应的转换后的至少一个时间参数集合进行取交集或取并集,获得每个DCI格式对应的合并后的一个时间参数集合,进而获得至少两个合并后的时间参数集合。
  10. 根据权利要求9所述的方法,其特征在于,所述目标时间单元长度为所述同一个DCI格式对应的至少一个时间参数集合中每个时间参数集合对应的时间单元长度的最大公约数。
  11. 根据权利要求9所述的方法,其特征在于,所述将所述至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间参数集合,包括:
    将所述至少两个合并后的时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
  12. 根据权利要求2所述的方法,其特征在于,所述根据N个时间参数集合,确定至少一个目标时间参数集合,包括:
    将所述N个时间参数集合中的每个时间参数集合作为所述目标时间参数集合,获得N个目标时间参数集合;
    根据所述第一时间和所述目标时间参数集合,确定所述M个目标时间,包括:
    根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合,确定所述每个目标时间参数集合对应的时间集合,获得N个时间集合;
    将所述N个时间集合取交集或者取并集,获得所述M个目标时间。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,还包括:
    接收第一配置信息,其中,所述第一配置信息指示所述N个时间参数集合;
    根据所述第一配置信息,获得所述N个时间参数集合;
    或者,
    接收第二配置信息,其中,所述第二配置信息用于指示N1个时间参数集合;
    根据所述N1个时间参数集合和N2个时间参数集合,获得所述N个时间参数集合,其中,所述N2个时间参数集合为预先定义的,所述N个时间参数集合包括所述N1个时间参数集合和所述N2个时间参数集合,所述N1与所述N2之和为所述N,所述N1和所述N2均为正整数。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    接收第二下行信息,其中,所述第二下行信息用于指示所述第一时间;
    根据所述第二下行信息,确定所述第一时间。
  15. 一种通信方法,其特征在于,包括:
    在第一时间接收码本,
    其中,所述码本包括M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M为正整数,所述M个目标时间为根据所述第一时间和至少一个目标时间参数集合确定的,所述至少一个目标时间参数集合为根据N个时间参数集合确定的,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示发送第一下行信息与接收所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数。
  16. 根据权利要求15所述的方法,其特征在于,所述N个时间参数集合中每个时间参数集合对应一种下行控制信息DCI格式,所述N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。
  17. 根据权利要求16所述的方法,其特征在于,所述至少一个目标时间参数集合为所述N个时间参数集合中的一个时间参数集合。
  18. 根据权利要求17所述的方法,其特征在于,所述目标时间参数集合为所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合。
  19. 根据权利要求16所述的方法,其特征在于,所述至少一个目标时间参数集合为所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合。
  20. 根据权利要求19所述的方法,其特征在于,所述至少一个目标时间参数集合为将N个时间参数集合中每个时间参数集合对应的时间单元长度转换成目标时间单元长度,获得转换后的N个时间参数集合,并将转换后的N个时间参数集合取交集或取并集后得到的一个时间参数集合。
  21. 根据权利要求20所述的方法,其特征在于,所述目标时间单元长度为所述N个时间参数集合中各时间参数集合对应的时间单元长度的最大公约数。
  22. 根据权利要求16所述的方法,其特征在于,所述至少一个目标时间参数集合为所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集后,所获得的至少两个合并后的时间参数集合中的一个时间参数集合。
  23. 根据权利要求22所述的方法,其特征在于,所述至少一个目标时间参数集合为对所述N个时间参数集合中同一个DCI格式对应的至少一个时间参数集合中的每一个时间参数集合所对应的时间单元长度转换为目标时间单元长度,获得每个DCI格式对应的转换后的至少一个时间参数集合,对每个DCI格式对应的转换后的至少一个时间参数集合进行取交集或取并集,获得每个DC I格式对应的合并后的一个时间参数集合,将所获得的至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间参数集合。
  24. 根据权利要求23所述的方法,其特征在于,所述目标时间单元长度为所述同一个DCI格式对应的至少一个时间参数集合中每个时间参数集合对应的时间单元长度的最大公约数。
  25. 根据权利要求16所述的方法,其特征在于,所述至少一个目标时间参数集合为N个目标时间参数集合,所述N个目标时间参数集合中的每个目标时间参数集合为 所述N个时间参数集合中的每个时间参数集合;
    所述M个目标时间为N个时间集合进行取交集或者取并集后获得的,所述N个时间集合为根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合确定的。
  26. 根据权利要求15-25任一项所述的方法,其特征在于,还包括:
    确定N个时间参数集合;
    发送第一配置信息,其中,所述第一配置信息用于指示所述N个时间参数集合;
    或者,
    确定所述N个时间参数集合,其中,所述N个时间参数集合包括N1个时间参数集合和N2个时间参数集合,所述N2个时间参数集合为预先定义的,所述N1与所述N2之和为所述N,所述N1和所述N2均为正整数;
    发送第二配置信息,其中,所述第二配置信息用于指示所述N1个时间参数集合。
  27. 根据权利要求15-26任一项所述的方法,其特征在于,在第一时间接收码本之前,所述方法还包括:
    向终端设备发送第二下行信息,其中,所述第二下行信息用于指示所述第一时间。
  28. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    处理单元,用于根据N个时间参数集合,确定至少一个目标时间参数集合,其中,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示接收第一下行信息与反馈所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数;
    收发单元,用于在第一时间发送码本,其中,所述码本包括在M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M个目标时间为根据所述第一时间和所述至少一个目标时间参数集合确定的,所述M为正整数。
  29. 根据权利要求28所述的装置,其特征在于,所述N个时间参数集合中每个时间参数集合对应一种下行控制信息DCI格式,所述N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。
  30. 根据权利要求29所述的装置,其特征在于,所述处理单元,具体用于从所述N个时间参数集合中确定其中一个时间参数集合作为所述目标时间参数集合。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元,具有用于将所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
  32. 根据权利要求29所述的装置,其特征在于,所述处理单元,具有用于将所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合,作为所述目标时间参数集合。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元,具有用于将所述N个时间参数集合中每个时间参数集合对应的时间单元长度转换成目标时间单元长度,获得转换后的N个时间参数集合;将转换后的N个时间参数集合取交集或取并集, 获得合并后的一个时间参数集合,将所述合并后的一个时间参数集合作为所述目标时间参数集合。
  34. 根据权利要求33所述的装置,其特征在于,所述目标时间单元长度为所述N个时间参数集合中各时间参数集合对应的时间单元长度的最大公约数。
  35. 根据权利要求29所述的装置,其特征在于,所述处理单元,具有用于将所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集,获得至少两个合并后的时间参数集合;并将所述至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间参数集合。
  36. 根据权利要求35所述的装置,其特征在于,所述处理单元,具有用于将所述N个时间参数集合中同一个DCI格式对应的至少一个时间参数集合中的每个时间参数集合所对应的时间单元长度转换为目标时间单元长度,获得每个DCI格式对应的转换后的至少一个时间参数集合;将每个DCI格式对应的转换后的至少一个时间参数集合进行取交集或取并集,获得每个DCI格式对应的合并后的一个时间参数集合,进而获得至少两个合并后的时间参数集合。
  37. 根据权利要求36所述的装置,其特征在于,所述目标时间单元长度为所述同一个DCI格式对应的至少一个时间参数集合中每个时间参数集合对应的时间单元长度的最大公约数。
  38. 根据权利要求36所述的装置,其特征在于,所述处理单元,具有用于将所述至少两个合并后的时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合作为所述目标时间参数集合。
  39. 根据权利要求29所述的装置,其特征在于,所述处理单元,具有用于将所述N个时间参数集合中的每个时间参数集合作为所述目标时间参数集合,获得N个目标时间参数集合;并根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合,确定所述每个目标时间参数集合对应的时间集合,获得N个时间集合;将所述N个时间集合取交集或者取并集,获得所述M个目标时间。
  40. 根据权利要求28-39任一项所述的装置,其特征在于,还包括获取单元;
    所述收发单元,还用于接收第一配置信息,其中,所述第一配置信息指示所述N个时间参数集合;
    所述获取单元,用于根据所述第一配置信息,获得所述N个时间参数集合;
    或者,
    所述收发单元,还用于接收第二配置信息,其中,所述第二配置信息用于指示N1个时间参数集合;
    所述获取单元,用于根据所述N1个时间参数集合和N2个时间参数集合,获得所述N个时间参数集合,其中,所述N2个时间参数集合为预先定义的,所述N个时间参数集合包括所述N1个时间参数集合和所述N2个时间参数集合,所述N1与所述N2之和为所述N,所述N1和所述N2均为正整数。
  41. 根据权利要求28-40任一项所述的装置,其特征在于,
    所述收发单元,还用于接收第二下行信息,其中,所述第二下行信息用于指示所述第一时间;
    所述处理单元,还用于根据所述第二下行信息,确定所述第一时间。
  42. 一种通信装置,其特征在于,包括:
    收发单元,用于在第一时间接收码本,
    其中,所述码本包括M个目标时间中至少一个目标时间接收到的下行信息对应的响应信息,所述M为正整数,所述M个目标时间为根据所述第一时间和至少一个目标时间参数集合确定的,所述至少一个目标时间参数集合为根据N个时间参数集合确定的,所述N为大于等于2的正整数,所述N个时间参数集合中至少两个时间参数集合所对应的时间单元长度不同,每个时间参数集合包括至少一个时间参数,所述时间参数用于指示发送第一下行信息与接收所述第一下行信息对应的第一响应信息之间间隔的时间单元的个数。
  43. 根据权利要求42所述的装置,其特征在于,所述N个时间参数集合中每个时间参数集合对应一种下行控制信息DCI格式,所述N个时间参数集合中至少两个时间参数集合对应的DCI格式不同。
  44. 根据权利要求43所述的装置,其特征在于,所述至少一个目标时间参数集合为所述N个时间参数集合中的一个时间参数集合。
  45. 根据权利要求44所述的装置,其特征在于,所述目标时间参数集合为所述N个时间参数集合中对应的时间单元长度满足预设值和/或对应的DCI格式满足预设DCI格式的一个时间参数集合。
  46. 根据权利要求43所述的装置,其特征在于,所述至少一个目标时间参数集合为所述N个时间参数集合取交集或者取并集后得到的一个时间参数集合。
  47. 根据权利要求46所述的装置,其特征在于,所述至少一个目标时间参数集合为将N个时间参数集合中每个时间参数集合对应的时间单元长度转换成目标时间单元长度,获得转换后的N个时间参数集合,并将转换后的N个时间参数集合取交集或取并集后得到的一个时间参数集合。
  48. 根据权利要求47所述的装置,其特征在于,所述目标时间单元长度为所述N个时间参数集合中各时间参数集合对应的时间单元长度的最大公约数。
  49. 根据权利要求43所述的装置,其特征在于,所述至少一个目标时间参数集合为所述N个时间参数集合中对应的DCI格式相同的时间参数集合取交集或者取并集后,所获得的至少两个合并后的时间参数集合中的一个时间参数集合。
  50. 根据权利要求49所述的装置,其特征在于,所述至少一个目标时间参数集合为对所述N个时间参数集合中同一个DCI格式对应的至少一个时间参数集合中的每一个时间参数集合所对应的时间单元长度转换为目标时间单元长度,获得每个DCI格式对应的转换后的至少一个时间参数集合,对每个DCI格式对应的转换后的至少一个时间参数集合进行取交集或取并集,获得每个DC I格式对应的合并后的一个时间参数集合,将所获得的至少两个合并后的时间参数集合中的一个时间参数集合作为所述目标时间参数集合。
  51. 根据权利要求50所述的装置,其特征在于,所述目标时间单元长度为所述同一个DCI格式对应的至少一个时间参数集合中每个时间参数集合对应的时间单元长度 的最大公约数。
  52. 根据权利要求43所述的装置,其特征在于,所述至少一个目标时间参数集合为N个目标时间参数集合,所述N个目标时间参数集合中的每个目标时间参数集合为所述N个时间参数集合中的每个时间参数集合;
    所述M个目标时间为N个时间集合进行取交集或者取并集后获得的,所述N个时间集合为根据所述第一时间和所述N个目标时间参数集合中的每个目标时间参数集合确定的。
  53. 根据权利要求42-52任一项所述的装置,其特征在于,所述装置还包括处理单元;
    所述处理单元,用于确定N个时间参数集合,
    所述收发单元,还用于发送第一配置信息,其中,所述第一配置信息用于指示所述N个时间参数集合;
    或者,
    所述处理单元,用于确定所述N个时间参数集合,其中,所述N个时间参数集合包括N1个时间参数集合和N2个时间参数集合,所述N2个时间参数集合为预先定义的,所述N1与所述N2之和为所述N,所述N1和所述N2均为正整数;
    所述收发单元,还用于发送第二配置信息,其中,所述第二配置信息用于指示所述N1个时间参数集合。
  54. 根据权利要求42-53任一项所述的装置,其特征在于,
    所述收发单元,还用于在第一时间接收码本之前,向终端设备发送第二下行信息,其中,所述第二下行信息用于指示所述第一时间。
  55. 一种通信设备,其特征在于,包括:处理器和收发器,所述处理器和所述收发器用于执行实现如权利要求1至14或如权利要求15至27中任一项权利要求所述的通信方法。
  56. 一种计算机存储介质,其特征在于,所述存储介质包括计算机指令,当所述指令被计算机执行时,使得所述计算机实现如权利要求1至27中任一项权利要求所述的通信方法。
  57. 一种计算机程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施如权利要求1至27中任一项权利要求所述的通信方法。
  58. 一种终端设备,其特征在于,包括处理器和收发器,
    所述收发器用于支持所述终端设备与其他终端设备或网络设备之间的通信;
    所述处理器被配置为支持所述终端设备执行如权利要求1至14中任一项所述的通信方法中终端设备相应的功能。
  59. 一种装置,其特征在于,所述装置以芯片的产品形态存在,所述装置的结构中包括处理器和存储器,所述存储器用于与所述处理器耦合,保存所述装置的程序指令和数据,所述处理器用于执行所述存储器中存储的程序指令,使得所述装置执行如权利要求1至14中任一项所述的通信方法中终端设备的功能。
  60. 一种网络设备,其特征在于,包括处理器和通信接口;
    所述通信接口用于支持所述网络设备与其他网元之间的通信;
    所述处理器被配置为支持所述网络设备执行如权利要求15至27中任一项所述的通信方法中网络设备的相应的功能。
  61. 一种装置,其特征在于,所述装置以芯片的产品形态存在,所述装置的结构中包括处理器和存储器,所述存储器用于与所述处理器耦合,保存所述装置的程序指令和数据,所述处理器用于执行所述存储器中存储的程序指令,使得所述装置执行如权利要求15至27中任一项所述的通信方法中网络设备的相应的功能。
  62. 一种通信系统,其特征在于,所述系统包括如权利要求58所述的终端设备和如权利要求60所述的网络设备。
PCT/CN2019/114568 2018-11-23 2019-10-31 通信方法、装置、设备、系统及存储介质 WO2020103663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19887335.8A EP3873016B1 (en) 2018-11-23 2019-10-31 Optimization of transmission of feedback information from a terminal device to a network device
US17/325,330 US20210273750A1 (en) 2018-11-23 2021-05-20 Communication method, apparatus, device, system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811410218.9 2018-11-23
CN201811410218.9A CN111224754B (zh) 2018-11-23 2018-11-23 通信方法、装置、设备、系统及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/325,330 Continuation US20210273750A1 (en) 2018-11-23 2021-05-20 Communication method, apparatus, device, system, and storage medium

Publications (1)

Publication Number Publication Date
WO2020103663A1 true WO2020103663A1 (zh) 2020-05-28

Family

ID=70774444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114568 WO2020103663A1 (zh) 2018-11-23 2019-10-31 通信方法、装置、设备、系统及存储介质

Country Status (4)

Country Link
US (1) US20210273750A1 (zh)
EP (1) EP3873016B1 (zh)
CN (1) CN111224754B (zh)
WO (1) WO2020103663A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028703A1 (zh) * 2017-08-09 2019-02-14 Oppo广东移动通信有限公司 一种反馈应答信息的长度确定方法及相关产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170214511A1 (en) * 2008-08-26 2017-07-27 Stoic Ventures Llc Method and apparatus for reliable data transmission and reception in data communication
CN108702747A (zh) * 2016-03-31 2018-10-23 华为技术有限公司 信息传输方法及装置
CN108737034A (zh) * 2017-04-13 2018-11-02 华为技术有限公司 发送信息的方法及其装置和接收信息的方法及其装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116710B2 (en) * 2009-06-04 2012-02-14 Telefonaktiebolaget L M Ericsson (Publ) Continuous sequential scatterer estimation
CN103220102B (zh) * 2012-01-21 2016-12-28 华为技术有限公司 控制信令的传输方法和设备
WO2017099461A1 (ko) * 2015-12-07 2017-06-15 엘지전자 주식회사 상향링크 채널 전송 방법 및 사용자기기와, 상향링크 채널 수신 방법 및 기지국
CN107154837B (zh) * 2016-03-03 2018-03-23 上海朗帛通信技术有限公司 一种降低无线通信中的延迟的方法和装置
CN107370534A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 信道状态信息的测量方法及装置
US10342044B2 (en) * 2016-07-25 2019-07-02 Qualcomm Incorporated Latency reduction techniques for LTE transmission in unlicensed spectrum
CN108023719B (zh) * 2016-11-04 2020-01-21 华为技术有限公司 混合自动重传请求harq码本的生成方法及相关设备
CN108289015B (zh) * 2017-01-09 2023-04-07 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
CN108347309B (zh) * 2017-01-25 2020-12-04 华为技术有限公司 反馈信息接收方法、发送方法、装置及系统
CN114301750B (zh) * 2017-03-24 2024-04-09 华为技术有限公司 时间信息的确定方法、网络节点和终端设备
US11246155B2 (en) * 2018-03-27 2022-02-08 Qualcomm Incorporated Acknowledgement feedback in unlicensed new radio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170214511A1 (en) * 2008-08-26 2017-07-27 Stoic Ventures Llc Method and apparatus for reliable data transmission and reception in data communication
CN108702747A (zh) * 2016-03-31 2018-10-23 华为技术有限公司 信息传输方法及装置
CN108737034A (zh) * 2017-04-13 2018-11-02 华为技术有限公司 发送信息的方法及其装置和接收信息的方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3873016A4

Also Published As

Publication number Publication date
EP3873016A1 (en) 2021-09-01
EP3873016A4 (en) 2021-12-22
US20210273750A1 (en) 2021-09-02
EP3873016B1 (en) 2024-01-10
CN111224754A (zh) 2020-06-02
CN111224754B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2019137213A1 (zh) 上行控制信息传输方法和通信装置
US11343030B2 (en) Method for repeated transmission, and terminal device
WO2020199957A1 (zh) 一种重传资源的调度方法及设备
JP6537205B2 (ja) ユーザ機器、ネットワークデバイス、および確認応答情報伝送方法
CN110166179B (zh) 指示方法,网络设备及用户设备
WO2020220253A1 (zh) 一种信息传输方法和通信设备
WO2018081989A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
WO2021043174A1 (zh) 一种通信方法及装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
CN110730513B (zh) 一种通信方法及装置
WO2020025063A1 (zh) 一种通信方法及装置
WO2020191560A1 (zh) 通信方法、装置、设备、系统及存储介质
WO2020103663A1 (zh) 通信方法、装置、设备、系统及存储介质
WO2018201555A1 (zh) 一种资源指示的方法和设备
WO2018072062A1 (zh) 信息传输方法和装置
WO2021062583A1 (zh) 一种上行信息产生方法及其装置
TWI685225B (zh) 通信方法和終端設備
WO2021159539A1 (zh) 一种信道的接收机会确定方法及通信装置
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
JP2019527971A (ja) 情報伝送方法および関連装置
WO2020015617A1 (zh) 一种通信方法及装置
WO2020134450A1 (zh) 信息传输方法及装置
US20180132242A1 (en) Grouping of serving cells with shortened transmission time intervals
WO2018120475A1 (zh) 一种消息应答方法及无线网络设备
EP4311337A1 (en) Method and apparatus for transmitting uplink control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019887335

Country of ref document: EP

Effective date: 20210526