WO2020103639A1 - 一种两级调整的波形回放角差实时补偿方法 - Google Patents

一种两级调整的波形回放角差实时补偿方法

Info

Publication number
WO2020103639A1
WO2020103639A1 PCT/CN2019/113111 CN2019113111W WO2020103639A1 WO 2020103639 A1 WO2020103639 A1 WO 2020103639A1 CN 2019113111 W CN2019113111 W CN 2019113111W WO 2020103639 A1 WO2020103639 A1 WO 2020103639A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
ofst
angle difference
grained
coarse
Prior art date
Application number
PCT/CN2019/113111
Other languages
English (en)
French (fr)
Inventor
邓士伟
傅萌
苗青
倪淏
冯燕钧
何朝伟
Original Assignee
江苏智臻能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏智臻能源科技有限公司 filed Critical 江苏智臻能源科技有限公司
Publication of WO2020103639A1 publication Critical patent/WO2020103639A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the invention belongs to the field of electric power research, in particular to a real-time compensation method for two-level adjusted waveform playback angle difference.
  • Waveform playback that is, the process of playing back voltage and current waveform files into analog quantities
  • the angle difference that is, the phase angle difference between the analog quantities between different phase sequences
  • the current technology is difficult to avoid the angle difference during the hardware acquisition, software generation and hardware playback of the waveform file.
  • phase angle mismatch between phases there is generally a problem of phase angle mismatch between phases.
  • scholars around the world have carried out many effective researches and explorations on the compensation of angle differences, including hardware and software. It is fixed and not easy to adjust; software compensation also has complex interpolation calculations, which have high accuracy and large amount of calculation. It is difficult to meet the real-time requirements and the offset compensation accuracy is not high.
  • the purpose of the present invention is to provide a real-time compensation method of waveform playback angle difference based on two-level adjustment in view of the problems and deficiencies in the prior art.
  • a real-time compensation method for waveform playback angle difference based on two-level adjustment includes the following steps:
  • Step 1 Enter the angle difference compensation value
  • Step 2 Classify the angle difference compensation value input in Step 1; derive two levels of coarse-grained processing and fine-grained processing;
  • Step 3 Determine whether the coarse-grained processing parameter is non-zero, if not, go to step 4; if not, go to step 5;
  • Step 4 Perform coarse-grained compensation processing
  • Step 5 Determine whether the fine-grained processing parameters are non-zero, if not, go to step 6; if not, go to step 7;
  • Step 6 Perform fine-grained compensation processing
  • Step 7 Output the analog point after compensation.
  • step 2 the two-stage process of coarse-grained processing and fine-grained processing in step 2 is as follows:
  • Step 2-1 Divide the input angle difference compensation value into coarse-grained processing and fine-grained processing, and use the formula to calculate the compensation point parameters:
  • OFST cmpst represents the compensation point parameter
  • Sample cyc represents the number of weekly wave sampling points
  • represents the input value of the angle difference compensation
  • Step 2-2 Take the integer part of OFST cmpst OFST int as the coarse-grained processing parameter for coarse-grained processing, and take the fractional part of OFST cmpst as the fine-grained processing parameter OFST fra for fine-grained processing.
  • step 3 is:
  • step 4 is:
  • step 5 is:
  • step 6 is:
  • the invention provides a real-time compensation method for the waveform playback angle difference based on two-level adjustment.
  • the multi-phase voltage and current playback are calculated through the input and classification of the angle difference compensation value and the image processing. And the calculation accuracy is high, which can be directly used in the power waveform playback device, which provides support for the research of power science.
  • Figure 2 is a waveform effect diagram of the present invention before compensation
  • Figure 3 is a waveform effect diagram of the present invention after compensation.
  • a real-time compensation method for two-level adjusted waveform playback angle difference of the present invention includes the following steps:
  • Step 1 Enter the angle difference compensation value
  • Step 2 Classify the input angle difference compensation value
  • Step 2-1 Divide the input angle difference compensation value into coarse-grained processing and fine-grained processing, and use the formula to calculate the compensation point parameters:
  • OFST cmpst represents the compensation point parameter
  • Sample cyc represents the number of weekly wave sampling points
  • represents the input value of the angle difference compensation
  • Step 2-2 Take the integer part of OFST cmpst OFST int as the coarse-grained processing parameter for coarse-grained processing, and take the fractional part of OFST cmpst as the fine-grained processing parameter OFST fra for fine-grained processing.
  • Step 3 Determine whether the coarse-grained processing parameter OFST int is non-zero. If it is not 0, go to step 4. If it is not 0, skip step 4 and go to step 5;
  • Step 4 Determine whether the OFST fra is positive or negative. If it is positive, when reading the waveform points of the two phases, the first phase lags the second phase OFST int points. If it is negative, the first phase leads the second phase OFST read int points;
  • Step 5 Determine whether the fine-grained processing parameter OFST fra is non-zero. If it is not 0, go to step 6. If it is not 0, skip step 6 and go to step 7;
  • Step 7 Output the analog point after compensation.
  • Step 1 According to the waveform before compensation, as shown in Figure 2, enter the angle difference compensation value -4.8.
  • Step 2 According to the input angle difference compensation value, the input angle difference compensation value is classified into two levels: coarse-grained processing and fine-grained processing. It includes the following steps:
  • Step 2-2 Take the integer part of the compensation point parameter as the coarse-grained processing parameter for coarse-grained processing, and take the fractional part of the compensation point parameter as the fine-grained processing parameter for fine-grained processing.
  • Step 3 Determine whether the coarse-grained processing parameter is 0. If it is 0, skip step 4 and execute step 5. If it is not 0, continue to step 4.
  • Step 4 Determine whether the fine-grained processing parameters are positive or negative. If it is positive, when reading the waveform points of the two phases, the first phase lags behind the second phase coarse-grained processing parameters. Coarse-grained processing parameters are read in points.
  • Step 5 Determine whether the fine-grained processing parameter is 0. If it is 0, skip step 6 and execute step 7. If it is not 0, continue to step 6.
  • Step 7 Correspondingly output the compensated two-phase analog value to the playback device for playback, as shown in Figure 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

一种两级调整的波形回放角差实时补偿方法,包括如下步骤:步骤1:输入角差补偿值;步骤2:对步骤1输入的角差补偿值进行分级;得出粗粒度处理及细粒度处理两级;步骤3:判断粗粒度处理参数是否非0,若非0,执行步骤4;若不非0,执行步骤5;步骤4:进行粗粒度补偿处理;步骤5:判断细粒度处理参数是否非0,若非0,执行步骤6;若不非0,执行步骤7;步骤6:进行细粒度补偿处理;步骤7:输出补偿后模拟量点。该方法通过对角差补偿值的输入、分级以及对图像的处理计算出多相电压、电流的回放,解决了相角不匹配的问题,计算高效且计算精度高,可直接用于电力波形回放装置。

Description

一种两级调整的波形回放角差实时补偿方法 技术领域
本发明属于电力研究领域,具体为一种两级调整的波形回放角差实时补偿方法。
背景技术
波形回放,即将记录电压、电流的波形文件回放为模拟量的过程,是一种重要的电力科学研究方式。角差,即不同相序间的模拟量间的相角差值,当前技术在波形文件的硬件采集、软件生成及硬件回放过程中均难以避免角差的产生。对于多相电压、电流的回放,则普遍存在相间的相角不匹配问题,目前,各地学者对角差的补偿开展了很多有效的研究和探索,包括硬件与软件方面,其中硬件补偿的补偿值固定且不易调整;软件补偿又有复杂插值计算,既精度较高,计算量大,难以不满足实时性要求、偏移量补偿精度不高等问题。
技术问题
本发明目的在于针对现有技术中存在的问题与不足,提供一种基于两级调整的波形回放角差实时补偿方法。
技术解决方案
为达成上述目的,本发明所采用的技术方案如下:
一种基于两级调整的波形回放角差实时补偿方法,包括如下步骤:
步骤1:输入角差补偿值;
步骤2:对步骤1输入的角差补偿值进行分级;得出粗粒度处理及细粒度处理两级;
步骤3:判断粗粒度处理参数是否非0,若非0,执行步骤4;若不非0,执行步骤5;
步骤4:进行粗粒度补偿处理;
步骤5:判断细粒度处理参数是否非0,若非0,执行步骤6;若不非0,执行步骤7;
步骤6:进行细粒度补偿处理;
步骤7:输出补偿后模拟量点。
更进一步的,所述步骤2中得出粗粒度处理及细粒度处理两级的过程为:
步骤2-1:将输入的角差补偿值分为粗粒度处理及细粒度处理两级,利用公式计算出补偿点参数:
OFST cmpst =( Sample cyc× α)/360,
上式中, OFST cmpst 表示补偿点参数, Sample cyc表示每周波采样点数, α表示角差补偿输入值;
步骤2-2:取 OFST cmpst 整数部分 OFST int 作为粗粒度处理参数进行粗粒度处理,取 OFST cmpst 小数部分作为细粒度处理参数 OFST fra 进行细粒度处理。
更进一步的,所述步骤3判断过程为:
判断粗粒度处理参数 OFST int 是否非0,若非0,则执行步骤4,若不非0,则跳过步骤4,执行步骤5,
更进一步的,所述步骤4中粗粒度补偿处理过程为:
判断 OFST fra 正负,若为正,则读取两相的波形点时,第一相落后第二相 OFST int 个点读取,若为负,则第一相超前第二相 OFST int 个点读取。
更进一步的,所述步骤5判断过程为:
判断细粒度处理参数 OFST fra 是否非0,若非0,则执行步骤6,若不非0,则跳过步骤6,执行步骤7。
更进一步的,所述步骤6细粒度补偿处理过程为:
判断 OFST fra 正负,若为正,则依据公式 Value=(y1-y0)* OFST fra+y0 分别取第二相当前点y0与相邻后一点y1,计算出补偿后的第二相当前点对应值Value;若为负,则依据公式 Value=(y1-y0)* OFST fra+y1 分别取第二相当前点y1与相邻前一点y0,计算出补偿后的第二相当前点对应值Value。
有益效果
本发明一种基于两级调整的波形回放角差实时补偿方法,通过对角差补偿值的输入、分级以及对图像的处理计算出多相电压、电流的回放,该方法灵活可变、计算高效且计算精度高,可直接用于电力波形回放装置,为电力科学研究提供了支持。
附图说明
图1为本发明相角差补偿流程图;
    图2为本发明补偿前波形效果图;
    图3为本发明补偿后波形效果图。
本发明的实施方式
为了使相关人员更了解本发明的技术内容,现将具体实施例与所附图式结合,说明如下。
如图1所示,本发明一种两级调整的波形回放角差实时补偿方法包括以下步骤:
步骤1:输入角差补偿值;
步骤2:对输入的角差补偿值进行分级;
步骤2-1:将输入的角差补偿值分为粗粒度处理及细粒度处理两级,利用公式计算出补偿点参数:
OFST cmpst =( Sample cyc× α)/360,
上式中, OFST cmpst 表示补偿点参数, Sample cyc表示每周波采样点数, α表示角差补偿输入值;
步骤2-2:取 OFST cmpst 整数部分 OFST int 作为粗粒度处理参数进行粗粒度处理,取 OFST cmpst 小数部分作为细粒度处理参数 OFST fra 进行细粒度处理。
步骤3:判断粗粒度处理参数 OFST int 是否非0,若非0,则执行步骤4,若不非0,则跳过步骤4,执行步骤5;
步骤4:判断 OFST fra 正负,若为正,则读取两相的波形点时,第一相落后第二相 OFST int 个点读取,若为负,则第一相超前第二相 OFST int 个点读取;
步骤5:判断细粒度处理参数 OFST fra 是否非0,若非0,则执行步骤6,若不非0,则跳过步骤6,执行步骤7;
步骤6:进行细粒度补偿处理;判断 OFST fra 正负,若为正,则依据公式 Value=(y1-y0)* OFST fra+y0 分别取第二相当前点y0与相邻后一点y1,计算出补偿后的第二相当前点对应值Value;若为负,则依据公式 Value=(y1-y0)* OFST fra+y1 分别取第二相当前点y1与相邻前一点y0,计算出补偿后的第二相当前点对应值Value
步骤7:输出补偿后模拟量点。
以下将结合一段电压220V,电流30A,频率5KHz的波形和附图详细说明本发明的技术方案。
步骤1:根据补偿前波形,如图2所示 ,输入角差补偿值-4.8。
步骤2:依据输入的角差补偿值,对输入的角差补偿值进行分级,分为粗粒度处理及细粒度处理两级。具体包括如下步骤:
步骤2-1:依据公式 OFST cmpst =( Sample cyc× α)/360计算出补偿点参数。
步骤2-2:取补偿点参数整数部分作为粗粒度处理参数进行粗粒度处理,取补偿点参数小数部分作为细粒度处理参数进行细粒度处理。
步骤3:判断粗粒度处理参数是否为0,若为0,则跳过步骤4,执行步骤5,若不为0,则继续步骤4。
步骤4:判断细粒度处理参数正负,若为正,则读取两相的波形点时,第一相落后第二相粗粒度处理参数个点读取,否正第一相超前第二相粗粒度处理参数个点读取。
步骤5:判断细粒度处理参数是否为0,若为0,则跳过步骤6,执行步骤7,若不为0,则继续步骤6。
步骤6:判断细粒度处理参数正负,若为正,则依据公式 Value=(y1-y0)* OFST fra+y0 分别取第二相当前点y0与相邻后一点y1,计算出补偿后的第二相当前点对应值Value;若为负,则依据公式 Value=(y1-y0)* OFST fra+y1 分别取第二相当前点y1与相邻前一点y0,计算出补偿后的第二相当前点对应值Value。
步骤7:依次将补偿后的两相模拟量值对应输出到回放设备进行回放,如图3所示。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (6)

  1. 一种基于两级调整的波形回放角差实时补偿方法,其特征在于,包括如下步骤:
    步骤1:输入角差补偿值;
    步骤2:对步骤1输入的角差补偿值进行分级;得出粗粒度处理及细粒度处理两级;
    步骤3:判断粗粒度处理参数是否非0,若非0,执行步骤4;若不非0,执行步骤5;
    步骤4:进行粗粒度补偿处理;
    步骤5:判断细粒度处理参数是否非0,若非0,执行步骤6;若不非0,执行步骤7;
    步骤6:进行细粒度补偿处理;
    步骤7:输出补偿后模拟量点。
  2. 根据权利要求1所述的一种基于两级调整的波形回放角差实时补偿方法,其特征在于,所述步骤2中得出粗粒度处理及细粒度处理两级的过程为:
    步骤2-1:将输入的角差补偿值分为粗粒度处理及细粒度处理两级,利用公式计算出补偿点参数:
    OFST cmpst =( Sample cyc× α)/360,
    上式中, OFST cmpst 表示补偿点参数, Sample cyc表示每周波采样点数, α表示角差补偿输入值;
    步骤2-2:取 OFST cmpst 整数部分 OFST int 作为粗粒度处理参数进行粗粒度处理,取 OFST cmpst 小数部分作为细粒度处理参数 OFST fra 进行细粒度处理。
  3. 根据权利要求1所述的一种基于两级调整的波形回放角差实时补偿方法,其特征在于,所述步骤3判断过程为:
    判断粗粒度处理参数 OFST int 是否非0,若非0,则执行步骤4,若不非0,则跳过步骤4,执行步骤5。
  4. 根据权利要求1所述的一种基于两级调整的波形回放角差实时补偿方法,其特征在于,所述步骤4中粗粒度补偿处理过程为:
    判断 OFST fra 正负,若为正,则读取两相的波形点时,第一相落后第二相 OFST int 个点读取,若为负,则第一相超前第二相 OFST int 个点读取。
  5. 根据权利要求1所述的一种基于两级调整的波形回放角差实时补偿方法,其特征在于,所述步骤5判断过程为:
    判断细粒度处理参数 OFST fra 是否非0,若非0,则执行步骤6,若不非0,则跳过步骤6,执行步骤7。
  6. 根据权利要求1所述的一种基于两级调整的波形回放角差实时补偿方法,其特征在于,所述步骤6细粒度补偿处理过程为:
    判断 OFST fra 正负,若为正,则依据公式 Value=(y1-y0)* OFST fra+y0 ,分别取第二相当前点y0与相邻后一点y1,计算出补偿后的第二相当前点对应值Value;若为负,则依据公式 Value=(y1-y0)* OFST fra+y1 ;分别取第二相当前点y1与相邻前一点y0,计算出补偿后的第二相当前点对应值Value。
PCT/CN2019/113111 2018-11-23 2019-10-24 一种两级调整的波形回放角差实时补偿方法 WO2020103639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811406838.5 2018-11-23
CN201811406838.5A CN109655774B (zh) 2018-11-23 2018-11-23 一种两级调整的波形回放角差实时补偿方法

Publications (1)

Publication Number Publication Date
WO2020103639A1 true WO2020103639A1 (zh) 2020-05-28

Family

ID=66112179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113111 WO2020103639A1 (zh) 2018-11-23 2019-10-24 一种两级调整的波形回放角差实时补偿方法

Country Status (2)

Country Link
CN (1) CN109655774B (zh)
WO (1) WO2020103639A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655774B (zh) * 2018-11-23 2020-11-13 江苏智臻能源科技有限公司 一种两级调整的波形回放角差实时补偿方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751241A (zh) * 2001-08-28 2006-03-22 模拟设备公司 用于在电子能仪表中相位补偿的方法和仪器
CN101217524A (zh) * 2007-12-26 2008-07-09 北京创毅视讯科技有限公司 一种信道解码装置及方法
CN101345886A (zh) * 2008-09-03 2009-01-14 华为技术有限公司 一种相位误差校正的方法和设备
CN102006399A (zh) * 2009-09-03 2011-04-06 华晶科技股份有限公司 消除图像噪声的方法,以及使用该方法的装置
US7940667B1 (en) * 2006-09-13 2011-05-10 Pmc-Sierra Us, Inc. Delay measurements and calibration methods and apparatus for distributed wireless systems
CN102231907A (zh) * 2011-06-27 2011-11-02 中兴通讯股份有限公司 传输系统中的时钟同步方法和装置
US8564345B2 (en) * 2011-04-01 2013-10-22 Intel Corporation Digitally controlled delay lines with fine grain and coarse grain delay elements, and methods and systems to adjust in fine grain increments
CN104360303A (zh) * 2014-11-04 2015-02-18 江阴长仪集团有限公司 一种基于智能电能表的随电压波动自校准误差效验方法
CN108169700A (zh) * 2017-12-29 2018-06-15 诺仪器(中国)有限公司 电流传感器的角差校准系统及方法
CN108632963B (zh) * 2018-05-08 2019-04-02 北京理工大学 一种基于多媒体传感器的变粒度特征采样方法
CN109655774A (zh) * 2018-11-23 2019-04-19 江苏智臻能源科技有限公司 一种两级调整的波形回放角差实时补偿方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865996B (zh) * 2010-05-19 2013-03-27 北京航空航天大学 一种用于机载激光雷达俯仰角偏差实时补偿的方法与装置
CN103023290B (zh) * 2011-09-23 2015-11-25 台达电子企业管理(上海)有限公司 中压变频驱动系统与总谐波失真补偿控制方法
CN103001181B (zh) * 2012-11-19 2014-12-10 山东电力集团公司电力科学研究院 解决变压器差动保护在功率转移时误动作的方法
KR101419874B1 (ko) * 2012-12-07 2014-07-15 충북대학교 산학협력단 조작자관점 기반 이동체의 원격조작 시스템 및 방법
CN108717142A (zh) * 2018-05-31 2018-10-30 南京协澳智能控制系统有限公司 一种带相角补偿功能的数字式同步检查继电器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751241A (zh) * 2001-08-28 2006-03-22 模拟设备公司 用于在电子能仪表中相位补偿的方法和仪器
US7940667B1 (en) * 2006-09-13 2011-05-10 Pmc-Sierra Us, Inc. Delay measurements and calibration methods and apparatus for distributed wireless systems
CN101217524A (zh) * 2007-12-26 2008-07-09 北京创毅视讯科技有限公司 一种信道解码装置及方法
CN101345886A (zh) * 2008-09-03 2009-01-14 华为技术有限公司 一种相位误差校正的方法和设备
CN102006399A (zh) * 2009-09-03 2011-04-06 华晶科技股份有限公司 消除图像噪声的方法,以及使用该方法的装置
US8564345B2 (en) * 2011-04-01 2013-10-22 Intel Corporation Digitally controlled delay lines with fine grain and coarse grain delay elements, and methods and systems to adjust in fine grain increments
CN102231907A (zh) * 2011-06-27 2011-11-02 中兴通讯股份有限公司 传输系统中的时钟同步方法和装置
CN104360303A (zh) * 2014-11-04 2015-02-18 江阴长仪集团有限公司 一种基于智能电能表的随电压波动自校准误差效验方法
CN108169700A (zh) * 2017-12-29 2018-06-15 诺仪器(中国)有限公司 电流传感器的角差校准系统及方法
CN108632963B (zh) * 2018-05-08 2019-04-02 北京理工大学 一种基于多媒体传感器的变粒度特征采样方法
CN109655774A (zh) * 2018-11-23 2019-04-19 江苏智臻能源科技有限公司 一种两级调整的波形回放角差实时补偿方法

Also Published As

Publication number Publication date
CN109655774B (zh) 2020-11-13
CN109655774A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
CN106501574B (zh) 一种有源电力滤波器谐波电流检测方法
Guo et al. A model predictive control method for grid-connected power converters without AC voltage sensors
CN105429484B (zh) 基于任意周期延时的pwm整流器预测功率控制方法及系统
CN109752584B (zh) 一种周期信号有效值测量方法
Balouji et al. Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and interharmonics of EAF currents
CN113131479A (zh) 一种脉冲宽度调制产生的超高次谐波预测方法及系统
CN114123346B (zh) 一种正序旋转坐标系下通用型dff-sai锁相方法
Yan et al. A new geometric vector optimization of predictive direct power control
WO2020103639A1 (zh) 一种两级调整的波形回放角差实时补偿方法
KR102130514B1 (ko) 단상 계통연계 인버터를 위한 고조파 보상 장치 및 방법
CN108092523A (zh) 基于三重傅里叶级数的超稀疏矩阵变换器谐波计算方法
CN114400910A (zh) 基于矢量提前筛选的电流源型变换器多步预测控制方法
CN106483375B (zh) 一种多频率分次谐波检测方法
CN113315126A (zh) 一种有源电力滤波器指定次谐波抑制二次采样方法及系统
CN107528463A (zh) 一种单相pwm整流器的网侧电流控制方法及装置
McGrath et al. Improved power converter line synchronisation using an adaptive Discrete Fourier Transform (DFT)
Firouzjah et al. A predictive current control method for shunt active filter with windowing based wavelet transform in harmonic detection
CN111200287B (zh) 一种指定谐波电流注入装置及其谐波电流的给定方法
Mohanty et al. Comparison of empirical mode decomposition and wavelet transform for power quality assessment in FPGA
CN105811419A (zh) 一种精确抑制电网谐波的控制方法
JPH10178741A (ja) パワーラインコンディショナ
CN114487555B (zh) 一种新型电力系统并网同步信息快速检测装置及检测方法
CN110308326A (zh) 一种可提高开环测相算法抗噪性能的方法
Hu et al. Improved predictive current control of grid-connected DC-AC converters under unbalanced grid voltage conditions
Khan et al. A robust harmonic compensation technique for the single phase grid connected inverters under the distorted grid voltage conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886277

Country of ref document: EP

Kind code of ref document: A1