WO2020103453A1 - 一种热固性聚合物增材制造装置及方法 - Google Patents

一种热固性聚合物增材制造装置及方法

Info

Publication number
WO2020103453A1
WO2020103453A1 PCT/CN2019/093191 CN2019093191W WO2020103453A1 WO 2020103453 A1 WO2020103453 A1 WO 2020103453A1 CN 2019093191 W CN2019093191 W CN 2019093191W WO 2020103453 A1 WO2020103453 A1 WO 2020103453A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
heating
thermosetting polymer
plate
polymer additive
Prior art date
Application number
PCT/CN2019/093191
Other languages
English (en)
French (fr)
Inventor
边慧光
张伟
江瑞
晁宇琦
蔡宁
汪传生
范文超
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2020103453A1 publication Critical patent/WO2020103453A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention relates to the field of additive manufacturing equipment, in particular to a thermosetting polymer additive manufacturing device and method.
  • thermosetting polymer generally forms a prepolymer first during production.
  • the potential functional groups in the thermosetting polymer continue to react and cross-link the structure to solidify. This transformation is irreversible and can only be molded once and then heated. It cannot be melted and plasticized, nor is it soluble in solvents; additive manufacturing (AM) technology refers to a scientific and technological system based on the discrete-stacking principle, which is driven by the three-dimensional data of parts and directly manufactures parts.
  • additive manufacturing technology uses materials to gradually accumulate Compared with the traditional material removal-cutting technology, the technology of manufacturing solid parts is a bottom-up manufacturing method. Based on different classification principles and understanding methods, additive manufacturing technology also includes rapid prototyping and rapid prototyping. , Rapid manufacturing or 3D printing and other titles, the connotation is still deepening, and the extension is also expanding.
  • the existing patent application number 201521123587.1 discloses an additive manufacturing device, which includes a ray generating device and a forming chamber.
  • the ray generating device is located above the forming chamber.
  • the ray generating device is used to generate rays of molten powder material in the forming chamber.
  • It also includes a powder receiving box and a powder box.
  • the powder receiving box is located at the lower exit of the powder box.
  • a heat generating device is installed in the powder receiving box.
  • This patent uses the powder receiving box to pretreat the powder material and heat the powder material to a predetermined level. The temperature removes the moisture, and the powder material does not occupy extra time during the dehumidification pretreatment process, and does not reduce the efficiency of the additive manufacturing.
  • the existing additive manufacturing device also has the following defects when producing thermosetting polymers:
  • Each working unit of the additive manufacturing device is in an independent state, and the raw material coating parameters during polymer production cannot be controlled, resulting in low preparation efficiency and increased product manufacturing costs.
  • the present invention provides a thermosetting polymer additive manufacturing device and method, which can effectively solve the problems raised by the background technology.
  • thermosetting polymer additive manufacturing device includes a molding connection base, and a latex atomization spray mechanism installed above the molding connection base, and a horizontal connection seat is provided parallel to the lower surface of the latex atomization spray mechanism.
  • a heating vulcanization mechanism and a forming coating mechanism are arranged in parallel on the horizontal connection seat, and the heating vulcanization mechanism is provided between the latex atomizing spray mechanism and the forming coating mechanism;
  • the latex atomization spraying mechanism includes a heating and evaporation shell, and a mist nozzle fixedly arranged on the upper end of the heating and evaporation shell.
  • a feeding pipe is provided on one side of the mist nozzle, and the feeding pipe is connected with a latex feeding cylinder.
  • the other side of the mist nozzle is provided with a gas delivery pipe, the gas delivery pipe is connected with a booster air pump, and the supply pipe is provided with a short emulsion dispersion tube on a part of the outer surface of the mist nozzle, the emulsion is dispersed
  • a quadrangular fan blade is provided inside the end of the short tube, and a part of the outer surface of the gas pipeline in the mist nozzle is sleeved with a booster step tube, and the nozzle of the booster step tube is located at the nozzle of the emulsion dispersion short tube Directly above;
  • the inner surface of the heating and evaporation shell is provided with a wrapper panel having the same shape as the mist nozzle, and there is a vacuum environment between the wrapper panel and the heating and evaporation shell.
  • the inner surface of the wrapper panel is provided with several groups of uniformly distributed and Heating resistance wires parallel to each other.
  • the molding coating mechanism includes a reagent container mounted on the horizontal connection base, and a laminating roller disposed below the reagent container, and both ends of the laminating roller are mounted on the reagents through rotating bearings Between the front and back plates of the containing box, the lower side of the reagent containing box is also provided with a discharge arc panel concentric with the circular surface of the laminating roller.
  • the discharge arc panel includes an oriented semi-arc plate fixed above the interior of the reagent container, and a rotating arc plate hinged below the interior of the reagent container, between the rotating arc plate and the oriented semi-arc plate It is connected by a porous elastic plate.
  • the inner surface of the reagent container is provided with a manual rotating rod hinged with a rotating arc plate.
  • the manual rotating rod is provided with a rotating handle through the reagent container.
  • the heating and vulcanization mechanism includes a frame storage plate fixedly installed on a horizontal connection base, and an infrared heating tube installed between the front and rear sides of the frame storage plate, and a reflection is provided on the inner side of the frame storage plate Plate, and the four peripheral edges of the frame storage plate are provided with light-shielding sheets.
  • the upper surface of the forming connection base is also provided with an up-down lifting mechanism and a left-right reciprocating mechanism.
  • the up-down lifting mechanism includes a plurality of pushing cylinders evenly mounted on the forming connecting base.
  • the left-right reciprocating mechanism includes a connection with the pushing cylinder Upper and lower bearing plates, and a hollow installation slot provided inside the upper and lower bearing plates, the upper surface of the upper and lower bearing plates is provided with a trapezoidal slide plate, and the upper and lower bearing plates are also provided with left and right reciprocating plates on the upper surface.
  • the lower surface of the reciprocating plate is provided with a running groove plate sleeved on the trapezoidal slide plate, and a limit chucking plate moving along the hollow mounting groove is provided below the running trough plate, and the left and right sides of the limit chucking plate are connected
  • a transmission chain and a servo motor transmission group for driving the transmission chain is provided in the hollow installation slot.
  • the forming connection base is also provided with a plurality of evenly distributed limit guide bars, and the upper and lower bearing plates are provided with limit perforations that work with the limit guide bars.
  • thermosetting polymer additive also includes the following steps:
  • Step 100 Latex spraying, spraying the latex liquid by atomizing the high-pressure gas in the mist nozzle, changing the form of the raw material into latex particles;
  • Step 200 Dry the latex particles and dehydrate the sprayed latex particles by heating and evaporating the shell.
  • the dehydrated latex particles are sprayed to the forming platform to form a latex film layer;
  • Step 300 heating and vulcanization, using an intelligent numerical control mechanism to move the forming platform up and down and reciprocate left and right, and at the same time, the infrared heating lamp heats and vulcanizes the latex film layer;
  • Step 400 The extruded layer is reinforced, and the forming platform is moved upward, and the cross-linking agent is coated with a laminating roller, and the latex film layer and the cross-linking agent are rolled and consolidated at the same time;
  • Step 500 Shape-setting and cross-linking, repeating the above-mentioned spraying, drying, vulcanization and layer reinforcement operations according to the number set in the latex film layer, so as to form and cross-link the latex film layers.
  • the heating temperature of the heating and evaporation shell determines the moisture of the latex film layer, and the moisture requirement of the latex film layer is selected according to the vulcanization requirements of the latex particle state.
  • step 400 the rolling pressure of the laminating roller is 10 MPa.
  • the latex raw material is specifically a mixture of natural latex and zinc oxide formulated at a mass ratio of 95: 5.
  • the present invention combines heating and evaporating moisture, high-pressure spraying and mist nozzles, and each working unit cooperates with each other to atomize the raw materials in liquid form to realize the spraying and feeding of gaseous latex, forming a uniform material on the production platform
  • the latex film layer reduces the vulcanization temperature and improves the vulcanization efficiency, thereby improving the production quality of thermosetting polymers
  • FIG. 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic view of the structure of the molded connection base of the present invention.
  • FIG. 3 is a schematic structural view of the heating vulcanization mechanism of the present invention.
  • FIG. 4 is a schematic view of the closing structure of the discharge arc panel of the present invention.
  • FIG. 5 is a schematic view of the opening structure of the discharge arc panel of the present invention.
  • FIG. 6 is a schematic flowchart of the additive manufacturing method of the present invention.
  • 1-Molding connection base 2-Latex atomizing spray mechanism; 3-Horizontal connection seat; 4-Heating vulcanization mechanism; 5-Molding coating mechanism; 6-Up and down lifting mechanism; 7- Left and right reciprocating mechanism;
  • 201-heating evaporation shell 202-mist nozzle; 203-feeding pipe; 204-latex feeding cylinder; 205-gas delivery pipe; 206-pressurized air pump; 207-emulsion dispersion short pipe; 208-quartet fan blade; 209- Pressurized stepped tube; 2010- Wrapped panel; 2011- Heating resistance wire;
  • 501-reagent container 502-lamination roller; 503-rotating bearing; 504-discharge arc panel;
  • 701-upper and lower bearing plate 702-hollow installation slot; 703-trapezoidal slide plate; 704-left and right reciprocating plate; 705-traveling groove plate; 706-limiting card board; 707-drive chain; 708-servo motor drive group.
  • the present invention provides a thermosetting polymer additive manufacturing apparatus, including a molding connection base 1, and a latex atomization spray mechanism 2 installed above the molding connection base 1, and the latex atomization spray mechanism 2 is provided with a horizontal connection seat 3 at a parallel position on the lower surface, and a heating vulcanization mechanism 4 and a forming coating mechanism 5 are arranged side by side on the horizontal connection pedestal 3, and the heating vulcanization mechanism 4 is provided at the latex atomizing spray mechanism 2 and Between the forming coating mechanism 5, the latex atomizing spray mechanism 2 atomizes the liquid latex into dispersed latex particles, and the dispersed latex particles are sprayed to the forming connection base 1 to form a latex film layer, and the heating and vulcanizing mechanism 4 uses infrared heating principle to The latex film layer is heated and vulcanized, and then the forming and coating mechanism 5 coats the crosslinking agent, and the crosslinking agent film and the latex film are extruded and shaped by
  • the latex atomizing spray mechanism 2 includes a heating and evaporation shell 201, and a mist gas nozzle 202 fixedly disposed on the upper end inside the heating and evaporation shell 201.
  • a supply pipe 203 is provided on one side of the mist gas nozzle 202, and the supply pipe 203
  • the latex supply cylinder 204 is connected, and the other side of the mist nozzle 202 is provided with a gas delivery pipe 205, the gas delivery pipe 205 is connected with a booster gas pump 206, and the supply pipe 203 is a flow place for liquid raw materials
  • the gas pipeline 205 is a flow place of high-pressure gas.
  • the high-pressure gas is atomized and sprayed in the liquid form in the mist nozzle 202, and the atomized latex particles reciprocate in the positive direction of the Z axis in the mist nozzle 202.
  • a part of the outer surface of the feed pipe 203 in the mist nozzle 202 is sheathed with an emulsion dispersion short tube 207, and the end of the emulsion dispersion short tube 207 is provided with a quadrangular fan blade 208, and the gas transmission pipe 205 is in the mist
  • a part of the outer surface of the nozzle 202 is sleeved with a booster step tube 209, the nozzle of the booster step tube 209 is directly above the nozzle of the emulsion dispersion short tube 207, and the quadrangular fan blade 208 performs the liquid latex once Dispersed, the high-pressure gas is pressurized twice in the compression space of the pressurized step tube 209, so that the high-speed air with a higher flow rate impacts the dispersed latex liquid along the downward direction of the mist nozzle 202, so that the fluid latex is atomized into
  • the granular, quadrangular fan blade 208 can first expand the area of the latex and improve
  • the diameter of the upper end of the mist nozzle 202 is larger than the diameter of the lower end, so the spray speed of the latex particles can be limited, and the atomization of the latex liquid at the upper end of the mist nozzle 202 can be completed.
  • the inner surface of the heating and evaporation shell 201 is provided with a wrapper panel 2010 having the same shape as the mist nozzle 202.
  • the wrapper panel 2010 and the heating and evaporation shell 201 are in a vacuum environment.
  • the inner surface of the wrapper panel 2010 is provided with There are several sets of uniformly distributed and parallel heating resistance wires 2011.
  • the heating and evaporation shell 201 provides a certain amount of heat to the mist nozzle 202 to evaporate the moisture of the latex atomized particles.
  • the latex granular raw material arrives and passes the temperature of 180 °C
  • the coated panel 2010 is dehydrated, and then sprayed onto the forming connection base 11 to form a latex film layer.
  • all the heating resistance wires 2011 are independently connected in parallel. When the heating temperature needs to be changed, the number of heating resistance wires 2011 can be reduced or increased to complete the reduction or increase of the heating temperature.
  • the heating and evaporating water, high pressure spray and mist nozzle work together to atomize the liquid form of the raw material, and realize the gaseous latex spraying and feeding method to form a uniform material on the production platform
  • the latex film layer reduces the vulcanization temperature and improves the vulcanization efficiency, thereby improving the production quality of thermosetting polymers.
  • the next heating and vulcanizing and rolling forming operations are required. Since the positions of the heating and vulcanizing mechanism 4 and the forming and coating mechanism 5 are generally unchanged, the mold platform 1 needs to be moved upward , To reduce the operating distance of vulcanization and rolling, so as shown in FIG. 2, the upper surface of the forming connection base 1 is also provided with an up and down lifting mechanism 6 and a left and right reciprocating mechanism 7.
  • the up and down lifting mechanism 6 moves the latex film layer to Below the heating and vulcanizing mechanism 4, the left and right reciprocating mechanism 7 controls the platform of the latex film layer to reciprocate within the heating range of the infrared heating lamp, so that the infrared heating lamp heats and vulcanizes the latex film layer;
  • the up-and-down lifting mechanism 6 continues to push the vulcanized latex film layer up, contact and squeeze with the forming and coating mechanism 5, and the left and right reciprocating mechanism 7 controls the latex film layer to reciprocate within the rolling range of the pressing wheel so that the pressing wheel
  • the layers are rolled and consolidated, and the working principles of the up and down lifting mechanism 6 and the left and right reciprocating mechanism 7 are as follows.
  • the up-and-down lifting mechanism 6 includes a plurality of pushing cylinders 601 evenly installed on the forming connection base 1.
  • the pushing cylinder 601 is used to push the left and right reciprocating mechanism 7 to move up and down, which is convenient for vulcanization and extrusion molding operations.
  • the left-right reciprocating mechanism 7 includes an upper and lower bearing plate 701 connected to the pushing cylinder 601, and a hollow mounting groove 702 provided inside the upper and lower bearing plate 701, and a trapezoidal sliding plate 703 is provided on the upper surface of the upper and lower bearing plate 701.
  • the upper surface of the bearing plate 701 is also provided with a left and right reciprocating plate 704, and a lower surface of the left and right reciprocating plate 704 is provided with a trough groove plate 705 sleeved on the trapezoidal slide plate 703.
  • a limiting clamping plate 706 for moving the hollow mounting slot 702 is connected to the left and right sides of the limiting clamping plate 706 with a transmission chain 707, and a servo motor driving group 708 for driving the driving chain 707 is provided in the hollow mounting slot 702.
  • the servo motor drive group 708 drives the drive chain 707 to rotate forward or reverse, thereby driving the left and right reciprocating plates 704 to circulate left and right on the upper and lower load plates 701, thereby achieving full vulcanization of the latex particle layer.
  • the trough plate 705 moves at the upper limit of the trapezoidal sliding plate 703, which can improve the stability of the left and right reciprocating plates 704 when moving, and the trapezoidal sliding plate 703 can prevent the left and right reciprocating plates 704 from rotating in other directions To improve the stability of the left and right reciprocating plates 704 during the rolling action.
  • the latex particles sprayed by the mist nozzle 202 are specifically gathered on the left and right reciprocating plates 704 to form a thin layer of glue particles.
  • the forming connection base 1 is also provided with a plurality of evenly distributed limit guide rods 602, and the upper and lower bearing plates 701 are provided with limit perforations 603 that work with the limit guide rods 602, and the limit guide rods 602 can be increased The stability of the upper and lower bearing plates 701 when moving.
  • thermosetting polymer additive manufacturing device in this embodiment further includes an intelligent control unit, which mainly controls the movement of the cylinder 601 by the up and down lifting mechanism 6 according to the time flow, and also controls the left and right reciprocation
  • the servo motor drive group 708 of mechanism 7 works.
  • the heating and vulcanizing mechanism 4 includes a frame storage plate 401 fixedly mounted on the horizontal connection base 3, and an infrared heating tube 402 installed between the front and back sides of the frame storage plate 401
  • a reflective plate 403 is provided on the inner side of the frame storage plate 401
  • light shielding sheets 404 are provided on all four sides of the frame storage plate 401.
  • the infrared heating tube 402 mainly heats and vulcanizes the latex film layer, and the reflective plate 403
  • the light-shielding sheet 404 concentrates the wide-angle infrared radiation under the frame storage plate 401, thereby improving the utilization of infrared radiation and increasing the working efficiency of vulcanization.
  • the molding and coating mechanism 5 includes a reagent container 501 mounted on the horizontal connection base 3 and a lamination roller 502 provided below the reagent container 501 side. Both ends of the roller 502 are installed between the front and rear plates of the reagent container 501 through the rotation bearing 503, and a discharge arc concentric with the circular surface of the laminating roller 502 is also provided below the side of the reagent container 501 In the shape of the panel 504, the latex film layer reciprocates within the rolling range of the laminating roller 502, so that the laminating roller 502 performs rolling reinforcement of the latex film layer.
  • the discharge arc panel 504 includes an orientation semi-arc plate 5041 fixed above the interior of the reagent container 501, and a rotating arc plate 5042 hinged below the interior of the reagent container 501, the rotating arc plate 5042 and the orientation half
  • the arc plates 5041 are connected by a porous elastic plate 5043.
  • the inner surface of the reagent container 501 is provided with a manual rotating rod 5044 hinged with the rotating arc plate 5042.
  • the manual rotary rod 5044 passes through the reagent container 501 and is rotated Handle 5045.
  • the forming coating mechanism 5 When the forming coating mechanism 5 is not in operation, the reagent container 501 is in a sealed state, and the cross-linking agent in the reagent container 501 will not be omitted to avoid material waste; the forming coating mechanism 5 rotates the handle 5045 when it is working, The rotating arc plate 5042 is rotated by the rotating handle 5045, the porous elastic plate 5043 is stretched between the rotating arc plate 5042 and the oriented semi-arc plate 5041, and the crosslinking agent overflows from the porous elastic plate 5043, thereby laminating During the extrusion work of the roller 502, a cross-linking agent is provided.
  • the crosslinking agent in the reagent container 501 is applied between the adjacent latex film layers following the lamination of the laminating roller 502, so that the latex film layer Inter-forming crosslinking, according to the set number of latex film layers, repeating the operations of spraying, drying, vulcanization and layer reinforcement, applying a crosslinking agent between adjacent latex film layers through a laminating roller, and constant force
  • the application of roller compaction makes it vulcanized and cross-linked, which enhances the reinforcement effect and realizes the preparation of thermosetting polymers.
  • the reagent container 501 contains a cross-linking agent.
  • the cross-linking agent is also called a bridging agent. It is an important part of the polyhydrocarbon photoresist. Photochemical curing depends on the cross-linking agent with double photosensitive functional groups to participate in the reaction. After the cross-linking agent is exposed to light, it generates double radicals. It interacts with the polyhydrocarbon resin to form bridge bonds between the polymer molecular chains. As an insoluble substance with a three-dimensional structure, the cross-linking agent is mainly used in polymer materials (rubber and thermosetting resin).
  • the molecular structure of the polymer material is like a long line, when it is not cross-linked, the strength is low, it is easy to break, and there is no elasticity.
  • the role of the cross-linking agent is to generate chemical bonds between the linear molecules to make the linear molecules mutually. Connected together to form a network structure, which improves the strength and elasticity of rubber or thermosetting resin.
  • thermosetting polymer additive in order to describe the working process of the thermosetting polymer additive manufacturing device more visually, the present invention also provides a manufacturing method of the thermosetting polymer additive, which specifically includes the following steps:
  • Step 100 Latex spraying, spraying the latex liquid with high-pressure gas in the mist nozzle to transform the form of the raw material into latex granules.
  • the latex raw material is specifically natural latex and zinc oxide with a mass ratio of 95: 5 The mixture of materials.
  • Step 200 Dry the latex particles and dehydrate the sprayed latex particles by heating and evaporating the shell, and the dehydrated latex particles are sprayed to the forming platform to form a latex film layer.
  • the heating temperature of the evaporation shell determines the moisture of the latex film layer, and the moisture requirement of the latex film layer is selected according to the vulcanization requirements of the latex particle state.
  • Step 300 heating and vulcanization, using an intelligent numerical control mechanism to move the forming platform up and down and reciprocate left and right, and at the same time, the infrared heating lamp heats and vulcanizes the latex film layer;
  • Step 400 Reinforce the extrusion layer, move up the forming platform, apply the cross-linking agent with the laminating roller, and at the same time roll and strengthen the latex film layer and the cross-linking agent.
  • the laminating pressure when the laminating roller works is 10MPa, which means that the forming platform is controlled to move up until the pressure between the forming platform and the laminating roller is 0MPa.
  • Step 500 Shape-setting and cross-linking, repeating the above-mentioned spraying, drying, vulcanization and layer reinforcement operations according to the number set in the latex film layer, so as to form and cross-link the latex film layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

一种热固性聚合物增材制造装置,包括成型连接底座和乳胶雾化喷射机构,乳胶雾化喷射机构设有水平连接座,水平连接座上并列设有加热硫化机构和成型涂覆机构,乳胶雾化喷射机构包括加热蒸发外壳和雾气喷嘴,雾气喷嘴的一侧设有供料管道和乳胶供料筒,雾气喷嘴的另一侧设有输气管道和增压气泵,供料管道的末端套设有乳液分散短管,乳液分散短管的末端内部设有四棱扇叶,输气管道的末端套设有增压阶梯管,加热蒸发外壳的内表面设有裹敷面板,裹敷面板的内表面设有若干组加热电阻丝;本方案结构简单,制备效率高,环保节能,利用雾化喷射原理形成均匀乳胶薄膜层,降低硫化温度,提高硫化效率,进而提高了热固性聚合物的生产质量。

Description

一种热固性聚合物增材制造装置及方法 技术领域
本发明涉及增材制造设备领域,具体为一种热固性聚合物增材制造装置及方法。
背景技术
热固性聚合物(Thermosetting Polymer)在制作时一般先形成预聚物,成型时,经加热使其中潜在的官能团继续反应成交联结构而固化,这种转变时不可逆的,只能成型一次,再加热时不能熔融塑化,也不溶于溶剂;增材制造(Additive Manufacturing,AM)技术是指基于离散-堆积原理,由零件三维数据驱动直接制造零件的科学技术体系,增材制造技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除-切削加工技术,是一种自下而上的制造方法,基于不同的分类原则和理解方式,增材制造技术还有快速原型、快速成形、快速制造或3D打印等多种称谓,其内涵仍在不断深化,外延也不断扩展。
现有专利申请号201521123587。1公开的一种增材制造装置,包括射线发生装置和成形室,射线发生装置位于成形室的上方,射线发生装置用以产生熔化粉末材料的射线,在成形室中还包括粉末接收盒和粉箱,粉末接收盒位于粉箱的下方出口处,在粉末接收盒内安装有发热装置,此专利利用粉末接收盒可对粉末材料进行预处理,将粉末材料加热至预定温度去除水分,粉末材料在除湿预处理过程中不占用额外的时间,不会降低增材制造的效率。
结合上述案例和现有技术,现有的增材制造装置在生产热固性聚合物时,还存在以下缺陷:
(1)没有对液态原料增加雾化喷射的装置,导致液态原料直接在制作平板上铺设,增加原料硫化的时间,降低硫化加强功能步骤的时间;
(2)增材制造装置的各工作单位之间为相互独立状态,无法控制聚合物制作时的原料涂覆参数,导致制备效率低,增加产品的制造成本。
发明内容
为了克服现有技术方案的不足,本发明提供一种热固性聚合物增材制造装置及方法,能有效的解决背景技术提出的问题。
本发明解决其技术问题所采用的技术方案是:
一种热固性聚合物增材制造装置,包括成型连接底座,以及安装在成型连接底座上方的乳胶雾化喷射机构,与所述乳胶雾化喷射机构的下表面平行位置设有水平连接座,所述水平连接座上并列设有加热硫化机构和成型涂覆机构,并且所述加热硫化机构设置在乳胶雾化喷射机构与成型涂覆机构之间;
所述乳胶雾化喷射机构包括加热蒸发外壳,以及固定设置在加热蒸发外壳内部上端的雾气喷嘴,所述雾气喷嘴的一侧设有供料管道,所述供料管道连接有乳胶供料筒,所述雾气喷嘴的另一侧设有输气管道,所述输气管道连接有增压气泵,所述供料管道在雾气喷嘴内的部分外表面套设有乳液分散短管,所述乳液分散短管的末端内部设有四棱扇叶,所述输气管道在雾气喷嘴内的部分外表面套设有增压阶梯管,所述增压阶梯管的管口处于乳液分散短管的管口正上方;
所述加热蒸发外壳的内表面设有与雾气喷嘴形状相同的裹敷面板,所述裹敷面板与加热蒸发外壳之间为真空环境,所述裹敷面板的内表面设有若干组均匀分布且相互平行的加热电阻丝。
进一步地,所述成型涂覆机构包括安装在水平连接座上的试剂盛装盒,以及设置在试剂盛装盒侧下方的层压辊轮,所述层压辊轮的两端通过转动轴承安装在试剂盛装盒的前后两侧板之间,所述试剂盛装盒的侧下方还设有与层压辊轮圆形面同心的出料弧形面板。
进一步地,所述出料弧形面板包括固定在试剂盛装盒内部上方的定向半弧板,以及铰接在试剂盛装盒内部下方的转动弧形板,所述转动弧形板与定向半弧板之间通过多孔弹性板连接,所述试剂盛装盒内表面设有与转动弧形板铰接的手动转杆,所述手动转杆穿过试剂盛装盒设有转动把手。
进一步地,所述加热硫化机构包括固定安装在水平连接座上的方框置物板,以及安装在方框置物板前后两侧面之间的红外加热管,所述方框置物板的内侧设有反射板,并且所述方框置物板的四个周边均设有遮光片。
进一步地,所述成型连接底座的上表面还设有上下升降机构和左右往复机构,所述上下升降机构包括若干均匀安装在成型连接底座上的推动气缸,所述左右往复机构包括与推动气缸连接的上下承载板,以及设置在所述上下承载板内部的中空安装槽,所述上下承载板的上表面架设有梯形滑板,所述上下承载板的上表面还设有左右往复板,所述左右往复板的下表面设有套设在梯形滑板上的穿行槽板,所述穿行槽板的下方设有沿着中空安装槽移动的限位卡板,所述限位卡板的左右两侧连接有传动链条,所述中空安装槽内设有用于驱动传动链条的伺服电机传动组。
进一步地,所述成型连接底座上还设有若干均匀分布的限位导杆,所述上下承载板上设有与限位导杆匹配工作的限位穿孔。
另外本发明还提供一种热固性聚合物增材的制造方法,具体包括如下步骤:
步骤100、乳胶喷射,利用雾气喷嘴内的高压气体雾化喷射乳胶液体,将原料的形态转变为乳胶颗粒状;
步骤200、干燥乳胶颗粒,利用加热蒸发外壳对喷射中的乳胶颗粒进行脱水,脱水后的乳胶颗粒喷射到成型平台形成乳胶薄膜层;
步骤300、加热硫化,利用智能数控机构将成型平台上移和左右往复移动,同时红外加热灯对乳胶薄膜层进行加热硫化;
步骤400、挤压层加固,在此上移成型平台,利用层压辊轮涂覆交联剂,同时将乳胶薄膜层和交联剂碾压加固;
步骤500、定型交联,根据乳胶薄膜层设定的数量,重复上述喷射、干燥、硫化和层加固操作,使乳胶薄膜层之间成型交联。
进一步地,在步骤200中,所述加热蒸发外壳的加热温度决定乳胶薄膜层的水分,所述乳胶薄膜层的水分要求根据乳胶颗粒状态的硫化要求选取。
进一步地,在步骤400中,所述层压辊轮的碾压压力为10MPa。
进一步地,在步骤100中,所述乳胶原料具体为天然胶乳和氧化锌以95:5的质量比调配的混合物料。
与现有技术相比,本发明的有益效果是:
(1)本发明将加热蒸发水分、高压喷射和雾气喷嘴结合工作,各工作单位相互配合工作,将液态形式的原料雾化,实现气态乳胶喷淋供料的方式,在制作平台上形成材质均匀乳胶薄膜层,降低硫化温度,提高硫化效率,进而提高了热固性聚合物的生产质量;
(2)本发明在利用辊轮挤压乳胶薄膜层时,同时涂抹交联剂,并施加一定压力的碾压作用,使乳胶薄膜层与交联剂层进行硫化交联,增强加固效果,结构简单,制备效率高,环保节能。
附图说明
图1为本发明的整体结构示意图;
图2为本发明的成型连接底座结构示意图;
图3为本发明的加热硫化机构结构示意图;
图4为本发明的出料弧形面板闭合结构示意图;
图5为本发明的出料弧形面板张开结构示意图;
图6为本发明的增材制造方法流程示意图。
图中标号:
1-成型连接底座;2-乳胶雾化喷射机构;3-水平连接座;4-加热硫化机构;5-成型涂覆机构;6-上下升降机构;7-左右往复机构;
201-加热蒸发外壳;202-雾气喷嘴;203-供料管道;204-乳胶供料筒;205-输气管道;206-增压气泵;207-乳液分散短管;208-四棱扇叶;209-增压阶梯管;2010-裹敷面板;2011-加热电阻丝;
401-方框置物板;402-红外加热管;403-反射板;404-弧形延伸反射罩;405-遮光片;
501-试剂盛装盒;502-层压辊轮;503-转动轴承;504-出料弧形面板;
5041-定向半弧板;5042-转动弧形板;5043-多孔弹性板;5044-手动转杆;5045-转动把手;
601-推动气缸;602-限位导杆;603-限位穿孔;
701-上下承载板;702-中空安装槽;703-梯形滑板;704-左右往复板;705-穿行槽板;706-限位卡板;707-传动链条;708-伺服电机传动组。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供了一种热固性聚合物增材制造装置,包括成型连接底座1,以及安装在成型连接底座1上方的乳胶雾化喷射机构2,与所述乳胶雾化喷射机构2的下表面平行位置设有水平连接座3,所述水平连接座3上并列设有加热硫化机构4和成型涂覆机构5,并且所述加热硫化机构4设置在乳胶雾化喷射机构2与成型涂覆机构5之间,所述乳胶雾化喷射机构2将 液体状的乳胶雾化成分散乳胶颗粒,分散乳胶颗粒喷射到成型连接底座1形成乳胶薄膜层,加热硫化机构4利用红外加热原理对乳胶薄膜层进行加热硫化,然后成型涂覆机构5涂覆交联剂,并且通过挤压的方式将交联剂薄膜与乳胶薄膜进行挤压定型。
所述乳胶雾化喷射机构2包括加热蒸发外壳201,以及固定设置在加热蒸发外壳201内部上端的雾气喷嘴202,所述雾气喷嘴202的一侧设有供料管道203,所述供料管道203连接有乳胶供料筒204,所述雾气喷嘴202的另一侧设有输气管道205,所述输气管道205连接有增压气泵206,所述供料管道203是液态状原料的流动场所,输气管道205是高压气体的流动场所,高压气体在雾气喷嘴202内,将液态形式的原料进行雾化喷射,雾化的乳胶颗粒在雾气喷嘴202内沿着Z轴正方向往复移动。
所述供料管道203在雾气喷嘴202内的部分外表面套设有乳液分散短管207,所述乳液分散短管207的末端内部设有四棱扇叶208,所述输气管道205在雾气喷嘴202内的部分外表面套设有增压阶梯管209,所述增压阶梯管209的管口处于乳液分散短管207的管口正上方,四棱扇叶208将液体状的乳胶进行一次分散,高压气体在增压阶梯管209的压缩空间内进行二次增压,从而流速更大高压空气对分散的乳胶液体,沿着雾气喷嘴202向下的方向进行高压冲击,使得流体乳胶雾化成颗粒状,四棱扇叶208可首先将乳胶的面积扩大,提高高压空气的雾化效率。
需要补充说明的是,所述雾气喷嘴202的上端直径比下端直径大,因此可限制乳胶颗粒的喷射速度,保证乳胶液体在雾气喷嘴202的上端即可完成雾化作用。
所述加热蒸发外壳201的内表面设有与雾气喷嘴202形状相同的裹敷面板2010,所述裹敷面板2010与加热蒸发外壳201之间为真空环境,所述裹敷面板2010的内表面设有若干组均匀分布且相互平行的加热电阻丝2011,加热 蒸发外壳201为雾气喷嘴202提供一定的热量,对乳胶雾化颗粒进行水分蒸发操作,乳胶颗粒状的原料到达并经过温度为180℃的裹敷面板2010段脱水,然后喷射到成型连接底座11上形成乳胶薄膜层。
在这里需要说明的是,所有加热电阻丝2011均为独立并联连接,当需要改变加热温度时,减少或者增加加热电阻丝2011的工作数量,即可完成加热温度的降低或者升高。
在乳胶雾化喷射机构2工作的过程中,将加热蒸发水分、高压喷射和雾气喷嘴配合工作,将液态形式的原料雾化,实现气态乳胶喷淋供料的方式,在制作平台上形成材质均匀乳胶薄膜层,降低硫化温度,提高硫化效率,进而提高了热固性聚合物的生产质量。
在成型连接底座11喷射形成乳胶薄膜层后,需要进行下一步的加热硫化和碾压成型操作,由于加热硫化机构4和成型涂覆机构5的位置一般不变,因此造成型平台1需要向上移动,减小硫化和碾压的操作距离,因此如图2所示,所述成型连接底座1的上表面还设有上下升降机构6和左右往复机构7,上下升降机构6将乳胶薄膜层移动至加热硫化机构4的下方,左右往复机构7控制乳胶薄膜层平台在在红外加热灯的加热范围内往复移动,以便红外加热灯对乳胶薄膜层进行加热硫化;
上下升降机构6继续推动硫化后的乳胶薄膜层上移,与成型涂覆机构5接触挤压,左右往复机构7控制乳胶薄膜层在压轮的碾压范围内往复移动,以便压轮对乳胶薄膜层进行碾压加固,上下升降机构6和左右往复机构7的工作原理如下所述。
上下升降机构6包括若干均匀安装在成型连接底座1上的推动气缸601,推动气缸601用于推动左右往复机构7上下移动,便于硫化作用和挤压成型操作。
左右往复机构7包括与推动气缸601连接的上下承载板701,以及设置在 所述上下承载板701内部的中空安装槽702,所述上下承载板701的上表面架设有梯形滑板703,所述上下承载板701的上表面还设有左右往复板704,所述左右往复板704的下表面设有套设在梯形滑板703上的穿行槽板705,所述穿行槽板705的下方设有沿着中空安装槽702移动的限位卡板706,所述限位卡板706的左右两侧连接有传动链条707,所述中空安装槽702内设有用于驱动传动链条707的伺服电机传动组708。
伺服电机传动组708驱动传动链条707正向或者反向旋转,从而带动左右往复板704在上下承载板701上左右循环移动,从而实现对乳胶颗粒层的全面硫化。
左右往复板704在进行左右循环移动时,穿行槽板705在梯形滑板703上限位移动,可提高左右往复板704移动时的稳定性,同时梯形滑板703可避免左右往复板704发生其他方向的转动,提高左右往复板704在碾压作用时的稳定性。
需要补充说明的是,本实施方式中,雾气喷嘴202喷射的乳胶颗粒具体在左右往复板704上聚集,形成涂胶颗粒薄层。
所述成型连接底座1上还设有若干均匀分布的限位导杆602,所述上下承载板701上设有与限位导杆602匹配工作的限位穿孔603,限位导杆602可增加上下承载板701在移动时的稳定性。
进一步补充说明的是,本实施方式中的热固性聚合物增材制造装置还包括智能控制单元,所述智能控制单元主要按照时间流程,控制上下升降机构6的推动气缸601工作,同时也控制左右往复机构7的伺服电机传动组708工作。
如图3所示,在本实施方式中,加热硫化机构4包括固定安装在水平连接座3上的方框置物板401,以及安装在方框置物板401前后两侧面之间的红外加热管402,所述方框置物板401的内侧设有反射板403,并且所述框置物 板401的四个周边均设有遮光片404,红外加热管402主要对乳胶薄膜层进行加热硫化,反射板403和遮光片404将广角的红外辐射集中在方框置物板401的下方,从而提高红外辐射的利用率,增加硫化的工作效率。
如图4和图5所示,所述成型涂覆机构5包括安装在水平连接座3上的试剂盛装盒501,以及设置在试剂盛装盒501侧下方的层压辊轮502,所述层压辊轮502的两端通过转动轴承503安装在试剂盛装盒501的前后两侧板之间,所述试剂盛装盒501的侧下方还设有与层压辊轮502圆形面同心的出料弧形面板504,乳胶薄膜层在层压辊轮502的碾压范围内往复移动,以便层压辊轮502对乳胶薄膜层进行碾压加固。
所述出料弧形面板504包括固定在试剂盛装盒501内部上方的定向半弧板5041,以及铰接在试剂盛装盒501内部下方的转动弧形板5042,所述转动弧形板5042与定向半弧板5041之间通过多孔弹性板5043连接,所述试剂盛装盒501内表面设有与转动弧形板5042铰接的手动转杆5044,所述手动转杆5044穿过试剂盛装盒501设有转动把手5045。
成型涂覆机构5在不工作的时候,试剂盛装盒501为密封状态,试剂盛装盒501内的交联剂不会遗漏,避免材料浪费;成型涂覆机构5在工作时,旋转转动把手5045,转动弧形板5042在转动把手5045的带动下转动,多孔弹性板5043在转动弧形板5042与定向半弧板5041之间拉伸,交联剂从多孔弹性板5043内溢出,从而在层压辊轮502挤压工作过程中,提供交联剂。
由于层压辊轮502在转动过程中经过试剂盛装盒501,试剂盛装盒501中的交联剂跟随层压辊轮502的碾压涂抹在相邻的乳胶薄膜层之间,使乳胶薄膜层之间成型交联,根据设定的乳胶薄膜层的数量,反复进行喷射、干燥、硫化和层加固的操作,通过层压辊轮在相邻的乳胶薄膜层之间涂抹交联剂,并且定力施加碾压使其进行硫化交联,增强了加固效果,实现热固性聚合物的制备。
需要补充说明的是,试剂盛装盒501内盛放有交联剂,交联剂又称作架桥剂,是聚烃类光致抗蚀剂的重要组成部分,这种光致抗蚀剂的光化学固化作用,依赖于带有双感光性官能团的交联剂参加反应,交联剂曝光后产生双自由基,它和聚烃类树脂相作用,在聚合物分子链之间形成桥键,变为三维结构的不溶性物质,交联剂主要用在高分子材料(橡胶与热固性树脂)中。因为高分子材料的分子结构就像一条条长的线,没交联时强度低,易拉断,且没有弹性,交联剂的作用就是在线型的分子之间产生化学键,使线型分子相互连在一起,形成网状结构,这样提高橡胶或者热固性树脂的强度和弹性。
另外如图6所示,为了更加形象化的描述热固性聚合物增材制造装置的工作过程,本发明还提供热固性聚合物增材的制造方法,具体包括如下步骤:
步骤100、乳胶喷射,利用雾气喷嘴内的高压气体雾化喷射乳胶液体,将原料的形态转变为乳胶颗粒状,在本步骤中,乳胶原料具体为天然胶乳和氧化锌以95:5的质量比调配的混合物料。
步骤200、干燥乳胶颗粒,利用加热蒸发外壳对喷射中的乳胶颗粒进行脱水,脱水后的乳胶颗粒喷射到成型平台形成乳胶薄膜层。
在所述步骤200中,加热蒸发外壳的加热温度决定乳胶薄膜层的水分,所述乳胶薄膜层的水分要求根据乳胶颗粒状态的硫化要求选取。
步骤300、加热硫化,利用智能数控机构将成型平台上移和左右往复移动,同时红外加热灯对乳胶薄膜层进行加热硫化;
步骤400、挤压层加固,在此上移成型平台,利用层压辊轮涂覆交联剂,同时将乳胶薄膜层和交联剂碾压加固,层压辊轮工作时的碾压压力为10MPa,也就是控制成型平台上移,直至成型平台与层压辊轮之间的压力为0MPa。
步骤500、定型交联,根据乳胶薄膜层设定的数量,重复上述喷射、干燥、硫化和层加固操作,使乳胶薄膜层之间成型交联。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节, 而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (10)

  1. 一种热固性聚合物增材制造装置,其特征在于:包括成型连接底座(1),以及安装在成型连接底座(1)上方的乳胶雾化喷射机构(2),与所述乳胶雾化喷射机构(2)的下表面平行位置设有水平连接座(3),所述水平连接座(3)上并列设有加热硫化机构(4)和成型涂覆机构(5),并且所述加热硫化机构(5)设置在乳胶雾化喷射机构(2)与成型涂覆机构(5)之间;
    所述乳胶雾化喷射机构(2)包括加热蒸发外壳(201),以及固定设置在加热蒸发外壳(201)内部上端的雾气喷嘴(202),所述雾气喷嘴(202)的一侧设有供料管道(203),所述供料管道(203)连接有乳胶供料筒(204),所述雾气喷嘴(202)的另一侧设有输气管道(205),所述输气管道(205)连接有增压气泵(206),所述供料管道(203)在雾气喷嘴(202)内的部分外表面套设有乳液分散短管(207),所述乳液分散短管(207)的末端内部设有四棱扇叶(208),所述输气管道(205)在雾气喷嘴(202)内的部分外表面套设有增压阶梯管(209),所述增压阶梯管(209)的管口处于乳液分散短管(207)的管口正上方;
    所述加热蒸发外壳(201)的内表面设有与雾气喷嘴(202)形状相同的裹敷面板(2010),所述裹敷面板(2010)与加热蒸发外壳(201)之间为真空环境,所述裹敷面板(2010)的内表面设有若干组均匀分布且相互平行的加热电阻丝(2011)。
  2. 根据权利要求1所述的一种热固性聚合物增材制造装置,其特征在于:所述成型涂覆机构(5)包括安装在水平连接座(3)上的试剂盛装盒(501),以及设置在试剂盛装盒(501)侧下方的层压辊轮(502),所述层压辊轮(502)的两端通过转动轴承(503)安装在试剂盛装盒(501)的前后两侧板之间,所述试剂盛装盒(501)的侧下方还设有与层压辊轮(502)圆形面同心的出料弧形面板(504)。
  3. 根据权利要求2所述的一种热固性聚合物增材制造装置,其特征在于:所述出料弧形面板(504)包括固定在试剂盛装盒(501)内部上方的定向半弧板(5041),以及铰接在试剂盛装盒(501)内部下方的转动弧形板(5042),所述转动弧形板(5042)与定向半弧板(5041)之间通过多孔弹性板(5043)连接,所述试剂盛装盒(501)内表面设有与转动弧形板(5042)铰接的手动转杆(5044),所述手动转杆(5044)穿过试剂盛装盒(501)设有转动把手(5045)。
  4. 根据权利要求1所述的一种热固性聚合物增材制造装置,其特征在于:所述加热硫化机构(4)包括固定安装在水平连接座(3)上的方框置物板(401),以及安装在方框置物板(401)前后两侧面之间的红外加热管(402),所述方框置物板(401)的内侧设有反射板(403),并且所述框置物板(401)的四个周边均设有遮光片(404)。
  5. 根据权利要求1所述的一种热固性聚合物增材制造装置,其特征在于:所述成型连接底座(1)的上表面还设有上下升降机构(6)和左右往复机构(7),所述上下升降机构(6)包括若干均匀安装在成型连接底座(1)上的推动气缸(601),所述左右往复机构(7)包括与推动气缸(601)连接的上下承载板(701),以及设置在所述上下承载板(701)内部的中空安装槽(702),所述上下承载板(701)的上表面架设有梯形滑板(703),所述上下承载板(701)的上表面还设有左右往复板(704),所述左右往复板(704)的下表面设有套设在梯形滑板(703)上的穿行槽板(705),所述穿行槽板(705)的下方设有沿着中空安装槽(702)移动的限位卡板(706),所述限位卡板(706)的左右两侧连接有传动链条(707),所述中空安装槽(702)内设有用于驱动传动链条(707)的伺服电机传动组(708)。
  6. 根据权利要求5所述的一种热固性聚合物增材制造装置,其特征在于: 所述成型连接底座(1)上还设有若干均匀分布的限位导杆(602),所述上下承载板(701)上设有与限位导杆(602)匹配工作的限位穿孔(603)。
  7. 一种热固性聚合物增材的制造方法,其特征在于,具体包括如下步骤:
    步骤100、乳胶喷射,利用雾气喷嘴内的高压气体雾化喷射乳胶液体,将原料的形态转变为乳胶颗粒状;
    步骤200、干燥乳胶颗粒,利用加热蒸发外壳对喷射中的乳胶颗粒进行脱水,脱水后的乳胶颗粒喷射到成型平台形成乳胶薄膜层;
    步骤300、加热硫化,利用智能数控机构将成型平台上移和左右往复移动,同时红外加热灯对乳胶薄膜层进行加热硫化;
    步骤400、挤压层加固,在此上移成型平台,利用层压辊轮涂覆交联剂,同时将乳胶薄膜层和交联剂碾压加固;
    步骤500、定型交联,根据乳胶薄膜层设定的数量,重复上述喷射、干燥、硫化和层加固操作,使乳胶薄膜层之间成型交联。
  8. 根据权利要求7所述的一种热固性聚合物增材的制造方法,其特征在于,在步骤200中,所述加热蒸发外壳的加热温度决定乳胶薄膜层的水分,所述乳胶薄膜层的水分要求根据乳胶颗粒状态的硫化要求选取。
  9. 根据权利要求7所述的一种热固性聚合物增材的制造方法,其特征在于,在步骤400中,所述层压辊轮的碾压压力为10MPa。
  10. 根据权利要求7所述的一种热固性聚合物增材的制造方法,其特征在于,在步骤100中,所述乳胶原料具体为天然胶乳和氧化锌以95:5的质量比调配的混合物料。
PCT/CN2019/093191 2018-11-20 2019-06-27 一种热固性聚合物增材制造装置及方法 WO2020103453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811383447.6A CN109333999B (zh) 2018-11-20 2018-11-20 一种热固性聚合物增材制造装置及方法
CN201811383447.6 2018-11-20

Publications (1)

Publication Number Publication Date
WO2020103453A1 true WO2020103453A1 (zh) 2020-05-28

Family

ID=65316623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093191 WO2020103453A1 (zh) 2018-11-20 2019-06-27 一种热固性聚合物增材制造装置及方法

Country Status (2)

Country Link
CN (1) CN109333999B (zh)
WO (1) WO2020103453A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109333999B (zh) * 2018-11-20 2023-12-29 青岛科技大学 一种热固性聚合物增材制造装置及方法
CN109957184B (zh) * 2019-03-21 2021-07-30 青岛科技大学 一种cnt/iir复合材料制备方法及其制备用喷射雾化枪
CN111403112A (zh) * 2020-03-26 2020-07-10 青岛科技大学 一种在高聚物膜材/板材表面形成导电或功能性结构的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB601395A (en) * 1944-08-24 1948-05-05 Int Latex Processes Ltd Products having a pile surface of porous rubber elements and method of producing such products
CN205767525U (zh) * 2016-04-09 2016-12-07 张晓军 一种3d打印喷嘴装置
CN107614244A (zh) * 2015-05-07 2018-01-19 株式会社Lg化学 3d打印机
CN206967983U (zh) * 2017-05-16 2018-02-06 四川建筑职业技术学院 一种3d打印机复合喷头
CN107983952A (zh) * 2017-12-05 2018-05-04 南通金源智能技术有限公司 一种提高镍基高温合金3d打印粉末流动性的方法
CN109333999A (zh) * 2018-11-20 2019-02-15 青岛科技大学 一种热固性聚合物增材制造装置及方法
CN209111522U (zh) * 2018-11-20 2019-07-16 青岛科技大学 一种热固性聚合物增材制造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105313332B (zh) * 2014-06-09 2020-05-05 联合工艺公司 由两部分组成的热固性树脂增材制造系统
CN104890241B (zh) * 2015-06-03 2017-06-06 珠海天威飞马打印耗材有限公司 三维快速成型设备和成型方法
JP6323823B1 (ja) * 2017-07-14 2018-05-16 兵庫県 未加硫ゴム組成物を造形原料とする三次元造形用プリンタ
CN107415246A (zh) * 2017-08-24 2017-12-01 西北工业大学 一种基于航发原理的3d打印头的混料器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB601395A (en) * 1944-08-24 1948-05-05 Int Latex Processes Ltd Products having a pile surface of porous rubber elements and method of producing such products
CN107614244A (zh) * 2015-05-07 2018-01-19 株式会社Lg化学 3d打印机
CN205767525U (zh) * 2016-04-09 2016-12-07 张晓军 一种3d打印喷嘴装置
CN206967983U (zh) * 2017-05-16 2018-02-06 四川建筑职业技术学院 一种3d打印机复合喷头
CN107983952A (zh) * 2017-12-05 2018-05-04 南通金源智能技术有限公司 一种提高镍基高温合金3d打印粉末流动性的方法
CN109333999A (zh) * 2018-11-20 2019-02-15 青岛科技大学 一种热固性聚合物增材制造装置及方法
CN209111522U (zh) * 2018-11-20 2019-07-16 青岛科技大学 一种热固性聚合物增材制造装置

Also Published As

Publication number Publication date
CN109333999A (zh) 2019-02-15
CN109333999B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2020103453A1 (zh) 一种热固性聚合物增材制造装置及方法
CN104162947B (zh) 产生有图案的材料的方法
CN101142033B (zh) 用于固化涂膜的方法和装置
CN103235483B (zh) 大面积纳米图形化的装置和方法
CN110274803A (zh) 可精确调控纳米级厚度薄膜成膜厚度和面积的制膜方法
CN107627601A (zh) 一种用于上置式光源3d打印机的密封增压式浆料池装置
CN110425345A (zh) 一种高强pvc管材及其加工工艺
CN209111522U (zh) 一种热固性聚合物增材制造装置
CN1817618B (zh) 平挤上吹膜泡内在线旋转喷涂工艺及装置
CN108761595A (zh) 一种反光膜uv生产设备
CN109664508B (zh) 一种喷头矩阵式排列3d打印成型装置及方法
CN208213545U (zh) 一种生产夹芯板的涂胶装置
CN207839323U (zh) 一种改进型涂布装置
CN207756414U (zh) 一种pvc膜材的高效涂布装置
CN215940441U (zh) 一种防水面料涂胶装置
CN111976165A (zh) 一种热塑性树脂胶片加工装置
CN210346074U (zh) 一种芳杂环高分子薄膜制备用均热流延机
JP2004121986A (ja) 溶融樹脂の塗布方法および塗布装置
CN114515670B (zh) 一种全自动铝箔贴面纳米喷涂装置及其使用方法
CN110983765A (zh) 一种环保型反光布料及其制备方法
CN211707236U (zh) 一种涂布预热牵引装置
CN115365072B (zh) 一种均匀喷涂的喷涂机
CN220941558U (zh) 一种硫化机自动化生产用连续涂胶烘干装置
CN202021895U (zh) 一种tpu薄膜改色及后处理设备
CN108714537A (zh) 一种uv光固化膜多点式注胶涂布加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886345

Country of ref document: EP

Kind code of ref document: A1