WO2020103354A1 - 一种挂车夹角的测量方法、装置及车辆 - Google Patents

一种挂车夹角的测量方法、装置及车辆

Info

Publication number
WO2020103354A1
WO2020103354A1 PCT/CN2019/077074 CN2019077074W WO2020103354A1 WO 2020103354 A1 WO2020103354 A1 WO 2020103354A1 CN 2019077074 W CN2019077074 W CN 2019077074W WO 2020103354 A1 WO2020103354 A1 WO 2020103354A1
Authority
WO
WIPO (PCT)
Prior art keywords
trailer
lidar
angle
laser
tractor
Prior art date
Application number
PCT/CN2019/077074
Other languages
English (en)
French (fr)
Inventor
金宇和
李一鸣
吴楠
Original Assignee
北京图森智途科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京图森智途科技有限公司 filed Critical 北京图森智途科技有限公司
Priority to AU2019382367A priority Critical patent/AU2019382367A1/en
Priority to EP19887255.8A priority patent/EP3885796B1/en
Publication of WO2020103354A1 publication Critical patent/WO2020103354A1/zh
Priority to US17/325,151 priority patent/US12044523B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains

Definitions

  • the present application relates to the technical field of vehicles, and in particular to a method, device and vehicle for measuring the angle of a trailer.
  • semi-trailers vehicles with tractors and trailers
  • container trucks are increasingly used.
  • semi-trailer can improve the comprehensive economic benefits of road transportation compared with a single truck.
  • the angle of the trailer (the semi-trailer shown in Figure 1) From the top view of the trailer, the angle between the trailer refers to the angle ⁇ between the central axis of the tractor 11 and the central axis of the trailer 12) as the basis of automatic driving planning and control points has become the focus of research.
  • the current method of measuring the trailer angle can only be measured when the trailer angle is relatively small. For scenes with a large trailer angle (for example, the trailer angle is greater than ⁇ 40 °), it is difficult to obtain an accurate trailer angle angle. Therefore, how to realize a method for measuring the angle of the trailer with a simple structure and a fast and accurate method is called a problem to be solved urgently.
  • the embodiments of the present application provide a method, a device, and a vehicle for measuring the angle of a trailer, so as to realize a method for measuring the angle of a trailer with a simple structure, quickly and accurately.
  • a method for measuring the angle of a trailer, applied to a semi-trailer, the semi-trailer includes a tractor and a trailer; at least two laser radars are provided on both sides of the rear of the tractor; at the front of the trailer A reflection plate having a reflection surface is fixedly arranged, and the reflection surface faces the lidar;
  • the method for measuring the angle of the trailer includes:
  • a measuring device for the angle of a trailer which is applied to a semi-trailer.
  • the semi-trailer includes a tractor and a trailer; at least two laser radars are provided on both sides of the tail of the tractor;
  • the front part is fixedly provided with a reflecting plate with a reflecting surface, the reflecting surface faces the lidar;
  • the device is in communication with the lidar;
  • the device includes a memory, a processor, and is stored on the memory and can be on the processor
  • a computer program that is running, and when the processor executes the computer program, the above-described trailer angle measurement process is implemented.
  • the process includes: controlling the laser radars respectively provided on both sides of the tail of the tractor to emit laser light, so that the reflection
  • the board reflects the laser light emitted by the lidar through the reflecting surface; controls each lidar to receive the corresponding laser point cloud reflected by the reflecting plate; calculates the trailer clip according to the corresponding laser point cloud received by each lidar angle.
  • a vehicle includes the above-mentioned measuring device for the angle of the trailer, as well as a tractor and a trailer; at least one laser radar is respectively provided on both sides of the tail of the tractor; a reflection surface is fixedly arranged on the front of the trailer Of the reflector, the reflecting surface faces the lidar; the measuring device for the angle of the trailer is in communication with the lidar; the measuring device for the angle of the trailer includes a memory, a processor and stored on the memory and can A computer program running on a processor, which implements the measurement process of the angle of the trailer when the processor executes the computer program.
  • the reflecting plate reflects the laser light emitted by the lidar through the reflecting surface; controls each lidar to respectively receive the corresponding laser point cloud reflected by the reflecting plate; and calculates according to the corresponding laser point cloud received by each lidar Trailer angle.
  • the method, device and vehicle for measuring the angle of the trailer provided by the embodiments of the present application adopt at least one lidar on each side of the rear of the tractor, so that in the scene where the angle of the trailer is large, the reflector moves to When the side of the tractor is towed, the laser light emitted by the lidar on at least one side can still hit the reflecting surface of the reflecting plate, so that it can be used to measure the angle of the trailer.
  • the present application uses the corresponding laser point clouds received by each laser radar to calculate the angle of the trailer. The accuracy of the results is greatly improved.
  • Figure 1 is a schematic diagram of the angle of the trailer
  • FIG. 2 is a flowchart 1 of a method for measuring a trailer included angle provided by an embodiment of the present application
  • FIG. 3 is a bottom view of the semi-trailer structure in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a working scene when only one lidar is provided at the rear of the tractor in the embodiment of the present application;
  • FIG. 5 is a schematic diagram of a working scene when a lidar is provided on both sides of the tail of the tractor in the embodiment of the present application;
  • FIG. 6 is a schematic diagram 1 of the distribution of lidars provided on both sides of the tail of the tractor in the embodiment of the present application;
  • FIG. 7 is a second schematic diagram of the distribution of lidars provided on both sides of the tail of the tractor in the embodiment of the present application.
  • FIG. 8 is a flowchart 2 of a method for measuring a trailer included angle provided by an embodiment of the present application
  • FIG. 9 is a schematic diagram of the movement range of the reflective plate surrounding the tractor along with the trailer in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a lidar coordinate system established in an embodiment of this application.
  • 11 is a schematic diagram of the longest straight line segment in the lidar coordinate system established in the embodiment of the present application.
  • FIG. 12 is a schematic diagram of curves of angle data to be processed in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a vehicle in an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a rear region of a tractor in an embodiment of the present application.
  • Point cloud In reverse engineering, the point data collection of the appearance surface of an object obtained by a measuring instrument is called a point cloud.
  • AOI Area of Interest Filter, an area of interest filter, that is, when filtering point cloud data, only point cloud data of a specific area of interest is retained.
  • RANSAC Random Sample Consensus, a random sampling consistency algorithm, is an algorithm that calculates the mathematical model parameters of data based on a set of sample data sets containing abnormal data and obtains effective sample data.
  • an embodiment of the present application provides a method for measuring the angle of a trailer, which is applied to a semi-trailer 20 shown in FIG. 3 (FIG. 3 is a lower view of the semi-trailer 20).
  • the semi-trailer 20 includes traction
  • the vehicle 201 and the trailer 202, the tractor 201 and the trailer 202 are connected by a rotating shaft 205, so that the trailer 202 can rotate relative to the tractor 201;
  • at least one lidar 203 is provided on both sides of the rear of the tractor 201 (such as left and right sides) (For example, one lidar, two lidars, or more lidars may be installed on the left and right sides.
  • the front of the is fixedly provided with a reflecting plate 204 having a reflecting surface facing the lidar 203.
  • the method for measuring the angle of the trailer includes:
  • Step 301 Control the laser radars provided on both sides of the rear of the tractor to emit laser light, so that the reflection plate reflects the laser light emitted by the laser radar through the reflection surface.
  • Step 302 Control each lidar to respectively receive the corresponding laser point cloud reflected by the reflection plate.
  • Step 303 Calculate the trailer angle based on the corresponding laser point clouds received by each lidar.
  • the lidar considering that only one lidar 203 is provided at the rear of the tractor 201 (generally located in the middle of the tail of the tractor, the lidar generally uses a single-line lidar) or the reflector 204
  • the reflecting surface emits laser light, and the angle of the trailer can also be generally measured through the one lidar 203.
  • the reflecting plate 204 may have moved to the side of the tractor 201, and the laser light emitted by the single lidar 203 can no longer hit the reflecting surface of the reflecting plate 204. Causes the measurement of the trailer angle to fail.
  • the present application adopts at least one lidar 203 (for example, one lidar, two lidars or There are many lidars. Due to the limitation of FIG. 5, only the lidars on the left and right sides are shown.)
  • the reflecting plate 204 moves to the side of the tractor 201, at least one of the lidars
  • the emitted laser light can still hit the reflecting surface of the reflecting plate 204, so that it can be used to measure the angle of the trailer.
  • the present application uses the corresponding laser point clouds received by each laser radar to calculate the angle of the trailer. The accuracy of the results is greatly improved.
  • the distribution of the lidar in the tail of the tractor 201 may be one lidar on each side 203 (FIG. 6), or two lidars 203 (FIG. 7) each, but not limited to this, without considering cost, even more lidars can be installed on the left and right sides.
  • the embodiment of the present application provides a method for measuring the angle of the trailer, which is applied to the above shown in FIG. 3
  • the semi-trailer 20 has been described above and will not be repeated here.
  • the method includes:
  • Step 401 Control the laser radars provided on both sides of the rear of the tractor to emit laser light, so that the reflection plate reflects the laser light emitted by the laser radar through the reflection surface.
  • the reflection plate can be selected from steel plates, but it is not limited to this.
  • lidar involved in the embodiments of the present application may generally use single-line lidar, but it is not limited to this, for example, multi-line lidar may also be used, such as 4-line, 8-line, 16-line, 32-line, and 64-line lasers. Radar, etc.
  • Step 402 Control each lidar to respectively receive the corresponding laser point cloud reflected by the reflecting plate.
  • the sampling frequency of each lidar can be 10 Hz, but it is not limited to this.
  • the lidar has its own corresponding logo when it emits laser light outwards, so that it can ensure that the lidar only receives the corresponding laser point cloud when receiving the laser point cloud reflected by the reflection plate, and does not receive other lidars. Corresponding laser point cloud.
  • the collection time of each lidar is preferably different to avoid two or more at the same collection time The initial trailer angles are together and are difficult to distinguish.
  • Step 403 Perform a region-of-interest filtering on each corresponding laser point cloud received by each lidar to obtain a laser point cloud within a preset area.
  • the preset area range is determined according to the movement range of the reflecting plate with the trailer around the tractor. For example, the following methods can be used:
  • a first distance L1 and a second distance L2 are preset according to the movement range of the reflector around the tractor along with the trailer; wherein, the second distance L2 is greater than the first distance L1.
  • the reason for this setting is that the reflector is generally in an annular area as the trailer moves around the tractor, so the first distance L1 and the second distance L2 are set in advance, with the rotation axis O as the center, to The first distance L1 and the second distance L2 are radii, and the preset area range S can be obtained.
  • Step 404 Perform noise filtering on the laser point cloud within the preset area to obtain a noise-filtered laser point cloud corresponding to each lidar.
  • noise filtering can be used to filter outliers, thereby obtaining a more accurate laser point cloud.
  • Step 405 Use the random sampling consistency algorithm to filter the laser point clouds corresponding to each laser radar to obtain a straight line segment formed by one or more laser point clouds corresponding to each laser radar, and form a straight line formed by one or more laser point clouds The longest straight line segment corresponding to each lidar is determined in the segment.
  • the noise-filtered laser point cloud corresponding to each lidar does not necessarily contain only the laser point cloud reflected by the reflector, it may also contain laser points reflected from other positions (such as the protrusions on the left and right sides of the reflector) Cloud, so you need to obtain a straight line segment formed by one or more laser point clouds corresponding to each lidar through a random sampling consistency algorithm, and determine the longest straight line segment corresponding to each lidar from the straight line segments formed by one or more laser point clouds .
  • Step 406 Under the lidar coordinate system, determine the straight line equation of each longest straight line segment and the number of points of the laser point cloud constituting each longest straight line segment.
  • Step 407 Calculate the initial trailer angle corresponding to each lidar according to the straight line equation of each longest straight line segment.
  • the lidar coordinate system is established, and the position information of the laser point cloud of the lidar is based on the lidar coordinate system.
  • the lidar coordinate system shown in FIG. 10 can be established. However, it is not limited to this. In the establishment of the lidar coordinate system, other directions can be selected as the x-axis, and a direction perpendicular to the x-axis in the horizontal plane is the y-axis, which will not be listed here.
  • step 406 under the lidar coordinate system, the straight line equations of each longest straight line segment and the number of points of the laser point cloud constituting each longest straight line segment are determined, and in step 407, according to each longest The straight line equation of the straight line segment is calculated to obtain the initial trailer angle corresponding to each lidar, which can be achieved by the following methods: fitting the straight line segment according to the received laser point cloud, and fitting the longest straight segment according to the longest straight segment The straight line equation of the segment; an inverse trigonometric function (generally arc tangent or inverse cotangent) is calculated for the slope of the straight line equation to obtain the initial angle of the box, as shown in Figure 11.
  • an inverse trigonometric function generally arc tangent or inverse cotangent
  • Step 408 Screen the initial trailer angle corresponding to each lidar according to the preset judgment conditions.
  • this step 408 can be implemented in the following two ways, and of course, it can also be implemented by combining the two ways:
  • the initial trailer angle corresponding to the lidar with the laser point cloud of the longest straight line segment with a number of points less than the preset point threshold value is eliminated, and the laser point cloud with the longest straight line segment with a number of points greater than or equal to the preset point threshold value corresponds to the lidar Initial trailer angle.
  • the point number of the laser point cloud of the longest straight line segment is less than the preset point threshold, it means that the longest straight line segment is fitted from fewer laser point clouds. If the longest straight line segment is obtained, the initial trailer included angle is very inaccurate and should be eliminated.
  • the initial period corresponding to the current period of the lidar is eliminated.
  • the deviation angle between the initial trailer angle corresponding to the current period of lidar and the trailer period included in the previous period obtained by Kalman filtering is less than or equal to the preset deviation angle threshold, then the current period corresponding to the lidar angle The initial trailer angle is retained.
  • the change of the trailer angle will not be too large, so if the initial trailer angle corresponding to The deviation angle value of the trailer angle in the previous cycle obtained by the Kalman filtering process is greater than the preset deviation angle threshold, then the initial trailer angle corresponding to the lidar of the current cycle is determined to be invalid data and should be eliminated.
  • Step 409 Arrange the initial trailer angles corresponding to the selected lidars at the collection time in the current cycle to form angle data to be processed.
  • the lidar measurement period is 0.1s.
  • the abscissa is the time corresponding to the initial trailer angle.
  • the coordinate is the angle of the initial trailer angle, and the entire ordinate data constitutes the angle data to be processed.
  • Step 410 Perform Kalman filter processing according to the angle data to be processed to obtain the trailer angle of the current cycle.
  • the reason for the Kalman filter processing here is that due to the manufacturing error of the reflective plate, the reflective plate itself cannot be guaranteed to be absolutely flat, and the lidar itself also has observation errors, so that there is a certain error in the calculated initial trailer angle.
  • the phenomenon is that when the vehicle is stationary, the angle will also jump from plus or minus 1 ° to 2 °.
  • the Kalman filter processing can perform noise reduction processing on the initial trailer angle arranged with the acquisition time in the angle data to be processed, and the initial trailer angle and the simplified kinematic model of the angle change are merged to obtain a smooth
  • the output results can not only ensure that the error of the measurement data of the trailer angle under static conditions is within ⁇ 0.5 °, but also ensure that the measurement data can change in real time when the trailer angle changes rapidly, avoiding obvious delays.
  • step 410 it may return to step 401 to measure the angle of the trailer in the next cycle.
  • an embodiment of the present application provides a measuring device for a trailer included angle, which includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the computer program to implement the above diagram 2 or the method corresponding to Figure 8.
  • embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method corresponding to FIG. 2 or FIG. 8 described above is implemented.
  • an embodiment of the present application further provides a vehicle 50 including the above-described trailer angle measuring device 501, and a tractor 201 and a trailer 202 (the trailer 202 involved in the present application may carry a container , Or not carrying a container); at least one lidar 203 is provided on both sides of the rear of the tractor 201; a reflective plate 204 with a reflective surface is fixedly provided on the front of the trailer 202, and the reflective surface 204 Facing the lidar 203; the measuring device 501 of the trailer included angle is in communication with the lidar 203.
  • both sides of the rear portion of the tractor 201 are fixedly connected to each lidar 203 through a first fastener.
  • the first fastener may be a first support beam 206 fixed to the beam at the rear of the tractor 201, and the lidar 203 is fixed to the side of the first support beam facing away from the tractor 201 and facing
  • the reflection plate 204 emits laser light.
  • the method, device and vehicle for measuring the angle of the trailer provided by the embodiments of the present application adopt at least one lidar on each side of the rear of the tractor, so that in the scene where the angle of the trailer is large, the reflector moves to When the side of the tractor is towed, the laser light emitted by the lidar on at least one side can still hit the reflecting surface of the reflecting plate, so that it can be used to measure the angle of the trailer.
  • the present application uses the corresponding laser point clouds received by each laser radar to calculate the angle of the trailer. The accuracy of the results is greatly improved.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage media including but not limited to disk storage and optical storage, etc.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种挂车夹角的测量方法、装置及车辆,应用于包括牵引车(201)和挂车(202)的半挂车(20);在牵引车(201)的尾部两侧分别设置有至少一个激光雷达(203);在挂车(202)的前部固定设置有具有反射面的反射板(204),反射面朝向激光雷达(203);测量方法包括:控制牵引车(201)的尾部两侧分别设置的激光雷达(203)发射激光,使得反射板(204)通过反射面反射激光雷达(203)发射的激光(301);控制各激光雷达(203)分别接收反射板(204)反射的各自对应的激光点云(302);根据各激光雷达(203)接收到的各自对应的激光点云进行计算得到挂车夹角(303)。本方法和装置可以扩大挂车夹角的测量范围,即使在挂车夹角较大的场景下,也可以实现挂车夹角的测量;另外采用多个激光雷达的激光点云进行计算,结果准确度得到了提高。

Description

一种挂车夹角的测量方法、装置及车辆
本申请要求在2018年11月20日提交中国专利局、申请号为201811381350.1、申请名称为“一种挂车夹角的测量方法、装置及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,尤其涉及一种挂车夹角的测量方法、装置及车辆。
背景技术
目前,随着物流运输行业的发展,集装箱卡车等带有牵引车和挂车的车辆(以下简称半挂车)的应用越来越广泛。半挂车作为一种重型的交通运输工具,相比单体式卡车,半挂车更能够提高公路运输的综合经济效益,而随着自动驾驶技术的发展,挂车夹角(如图1所示的半挂车的上视图,挂车夹角是指牵引车11中轴线和挂车12中轴线之间的夹角α)作为自动驾驶规划和控制点基础成为了研究的重点。
当前的挂车夹角的测量方法仅仅能在挂车夹角比较小的情况下进行测量,对于挂车夹角较大的场景(例如,挂车夹角大于±40°)时,则难以得到准确的挂车夹角。因此,如何实现一种结构简单、快速准确测量挂车夹角的方法称为了一个亟待解决的问题。
发明内容
本申请的实施例提供一种挂车夹角的测量方法、装置及车辆,以实现一种结构简单、快速准确测量挂车夹角的方法。
为达到上述目的,本申请采用如下技术方案:
一种挂车夹角的测量方法,应用于一种半挂车,所述半挂车包括牵引车和挂车;在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;
所述挂车夹角的测量方法,包括:
控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;
控制各激光雷达分别接收反射板反射的各自对应的激光点云;
根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
一种挂车夹角的测量装置,该装置应用于一种半挂车,所述半挂车包括牵引车和挂车;在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;该装置与所述激光雷达通信连接;该装置包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的挂车夹角的测量处理,该处理包括:控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;控制各激光雷达分别接收反射板反射的各自对应的激光点云;根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现挂车夹角的测量处理,该处理应用于一种半挂车,所述半挂车包括牵引车和挂车;在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;该处理包括:控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;控制各激光雷达分别接收反射板反射的各自对应的激光点云;根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
一种车辆,包括上述的挂车夹角的测量装置,以及牵引车和挂车;在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;所述挂车夹角的测量装置与所述激光雷达通信连接;所述挂车夹角的测量装置包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现挂车夹角的测量处理,该处理包括:控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;控制各激光雷达分别接收反射板反射的各自对应的激光点云;根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
本申请实施例提供的一种挂车夹角的测量方法、装置及车辆,采用在牵引车的尾部两侧分别设置至少一个激光雷达,这样,在挂车夹角较大的场景下,反射板移动到了牵引车的侧面时,至少其中一侧的激光雷达发射的激光依然可以射到反射板的反射面上,从而能够被用于挂车夹角的测量。另外,本申请采用根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角,而不是采用单一的激光雷达的激光点云进行计算,其结果准确度大大提高。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本申请的技术方案做进一步的详细描述。
附图说明
附图用来提供对本申请的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请,并不构成对本申请的限制。显而易见地,下面描述中的附图仅仅是本申请一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为挂车夹角的示意图;
图2为本申请实施例提供的一种挂车夹角的测量方法的流程图一;
图3为本申请实施例中的半挂车结构的下视图;
图4为本申请实施例中牵引车的尾部若仅设置一个激光雷达时的工作场景示意图;
图5为本申请实施例中牵引车的尾部两侧分别设置一个激光雷达时的工作场景示意图;
图6为本申请实施例中的牵引车的尾部两侧设置激光雷达的分布示意图一;
图7为本申请实施例中的牵引车的尾部两侧设置激光雷达的分布示意图二;
图8为本申请实施例提供的一种挂车夹角的测量方法的流程图二;
图9为本申请实施例中的反射板随着挂车围绕牵引车的活动范围示意图;
图10为本申请实施例中所建立的一种激光雷达坐标系示意图;
图11为本申请实施例中所建立的激光雷达坐标系下的最长直线段的示意图;
图12为本申请实施例中的待处理角度数据的曲线示意图;
图13为本申请实施例中的车辆的结构示意图;
图14为本申请实施例中的牵引车的尾部区域的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使本领域的技术人员更加了解本申请,下面对本申请实施例中所涉及的部分技术术语进行解释说明:
点云:在逆向工程中通过测量仪器得到的物体外观表面的点数据集合称为点云。
AOI:Area of Interest Filter,感兴趣区域滤波器,即对点云数据进行滤波时,只保留特定感兴趣区域的点云数据。
RANSAC:Random Sample Consensus,随机抽样一致性算法,是根据一组包含异常数据 的样本数据集,计算出数据的数学模型参数,得到有效样本数据的算法。
如图2所示,本申请实施例提供一种挂车夹角的测量方法,应用于如图3(图3为半挂车20的下视图)所示的一种半挂车20,半挂车20包括牵引车201和挂车202,牵引车201和挂车202通过转轴205连接,使得挂车202相对于牵引车201可以转动;在牵引车201的尾部两侧(如左右两侧)分别设置有至少一个激光雷达203(例如可以是左右两侧分别设置一个激光雷达,两个激光雷达或者更多的激光雷达,此处由于图3的限制,仅展示了左右两侧分别设置一个激光雷达的情况);在挂车202的前部固定设置有具有反射面的反射板204,该反射面朝向激光雷达203。
该挂车夹角的测量方法,包括:
步骤301、控制牵引车的尾部两侧分别设置的激光雷达发射激光,使得反射板通过反射面反射激光雷达发射的激光。
步骤302、控制各激光雷达分别接收反射板反射的各自对应的激光点云。
步骤303、根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
此处,如图4所示,考虑到在牵引车201的尾部仅设置一个激光雷达203(一般设置在牵引车的尾部的中间位置,激光雷达一般采用单线激光雷达)也可以向反射板204的反射面发射激光,通过该一个激光雷达203一般也能够完成挂车夹角的测量。但是,对于挂车夹角较大的场景,如图4所示,反射板204可能已经移动到了牵引车201的侧面,单一的激光雷达203发射的激光已经无法射到反射板204的反射面上,造成挂车夹角的测量失败。
而如图5所示,本申请采用在牵引车201的尾部两侧(如左右两侧)分别设置至少一个激光雷达203(例如可以是左右两侧分别设置一个激光雷达,两个激光雷达或者更多的激光雷达,此处由于图5的限制,仅展示了左右两侧分别设置一个激光雷达的情况),这样,在反射板204移动到了牵引车201的侧面时,至少其中一侧的激光雷达发射的激光依然可以射到反射板204的反射面上,从而能够被用于挂车夹角的测量。另外,本申请采用根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角,而不是采用单一的激光雷达的激光点云进行计算,其结果准确度大大提高。
此处,为了表明牵引车201的尾部两侧分别设置至少一个激光雷达203,如图6和图7所示,激光雷达在牵引车201的尾部的分布方式可以为左右两侧各有一个激光雷达203(图6),或者各有两个激光雷达203(图7),但不仅局限于此,在不考虑成本的情况下,甚至还可以在左右两侧设置更多的激光雷达。
为了使本领域的技术人员更加了解本申请,下面列举一个更为详细的实施例,如图8所示,本申请实施例提供一种挂车夹角的测量方法,应用于上述如图3所示的半挂车20,该半挂车20的结构在上述已有描述,此处不再赘述。该方法包括:
步骤401、控制牵引车的尾部两侧分别设置的激光雷达发射激光,使得反射板通过反射面反射激光雷达发射的激光。
一般情况下,为了便于车辆环境的应用以及反射需求,反射板可以选用钢制板,但不仅局限于此。
另外,本申请实施例中所涉及的激光雷达一般可以采用单线激光雷达,但不仅局限于此,例如还可以采用多线激光雷达,如4线、8线、16线、32线、64线激光雷达等。
步骤402、控制各激光雷达分别接收反射板反射的各自对应的激光点云。
一般情况下,各激光雷达的采样频率可以为10Hz,但不仅局限于此。另外,激光雷达在向外发射激光时带有自身对应的标识,从而可以保证激光雷达在接收反射板反射的激光点云时,仅接收自身对应的激光点云,而不会接收到其他激光雷达对应的激光点云。另外,为了使得后续步骤409中各激光雷达各自对应的初始挂车夹角以当前周期中的采集时刻进行排列,各激光雷达的采集时刻优选不相同,以避免在同一采集时刻两个或更多的初始挂车夹角在一起,难以分辨。
步骤403、对各激光雷达分别接收到的各自对应的激光点云进行感兴趣区域滤波,得到预设区域范围内的激光点云。
其中,该预设区域范围是根据反射板随着挂车围绕牵引车的活动范围确定的。例如可以采用如下方式:
如图9所示,根据反射板随着挂车围绕牵引车的活动范围预先设置一个第一距离L1和第二距离L2;其中,第二距离L2大于第一距离L1。以用于连接牵引车和挂车的转轴O为圆心,以第一距离L1和第二距离L2为半径,在激光扫描平面(同一束激光扫描一周所形成的平面即为激光扫描平面)上得到第一圆区域和第二圆区域。将第一圆区域之外和第二圆区域之内的区域范围确定为预设区域范围S。如此设置的原因是反射板一般在随着挂车围绕牵引车的活动中,会始终处于一个圆环状区域内,因此预先设置第一距离L1和第二距离L2,并以转轴O为圆心,以第一距离L1和第二距离L2为半径,即可得到该预设区域范围S。
步骤404、对预设区域范围内的激光点云进行噪点滤波,得到各激光雷达对应的噪点滤波后的激光点云。
此处,采用噪点滤波可以将离群的点滤除,从而得到更为准确的激光点云。
步骤405、对各激光雷达对应的噪点滤波后的激光点云采用随机抽样一致性算法得到各激光雷达对应的一至多条激光点云形成的直线段,并从一至多条激光点云形成的直线段中确定各激光雷达对应的最长直线段。
由于各激光雷达对应的噪点滤波后的激光点云中并不一定仅包含反射板反射的激光点云,还有可能包含其他位置(如反射板左右两侧的凸起等位置)反射的激光点云,因此需要 通过随机抽样一致性算法得到各激光雷达对应的一至多条激光点云形成的直线段,并从一至多条激光点云形成的直线段中确定各激光雷达对应的最长直线段。
步骤406、在激光雷达坐标系下,确定各最长直线段的直线方程和构成各最长直线段的激光点云的点数。
步骤407、根据各最长直线段的直线方程计算得到各激光雷达对应的初始挂车夹角。
本申请实施例中,在安装好激光雷达之后,建立激光雷达坐标系,激光雷达的激光点云的位置信息均基于该激光雷达坐标系中,如可建立如图10所示的激光雷达坐标系,但不仅局限于此,在激光雷达的坐标系建立中,还可以选择其他方向作为x轴,在水平面的一个与x轴垂直的方向为y轴,此处不再一一列举。
在一个示例中,该步骤406中,在激光雷达坐标系下,确定各最长直线段的直线方程和构成各最长直线段的激光点云的点数,以及该步骤407中,根据各最长直线段的直线方程计算得到各激光雷达对应的初始挂车夹角,具体可通过以下方式实现:根据接收到的激光点云拟合得到直线段,并根据各最长直线段拟合得到最长直线段的直线方程;对该直线方程的斜率进行反三角函数(一般为反正切或者反余切)计算得到初始挂箱夹角,如图11所示。
步骤408、根据预先设置的判断条件对各激光雷达各自对应的初始挂车夹角进行筛选。
此处,该步骤408可以采用如下两种方式实现,当然也可以通过该两种方式结合来实现:
方式一:
判断各最长直线段的激光点云的点数是否小于预先设置的点数阈值。
将最长直线段的激光点云的点数小于预先设置的点数阈值的激光雷达对应的初始挂车夹角剔除,保留最长直线段的激光点云的点数大于等于预先设置的点数阈值的激光雷达对应的初始挂车夹角。
此处,若最长直线段的激光点云的点数小于预先设置的点数阈值,则说明最长直线段是由较少的激光点云拟合而成的,若仅通过少数的激光点云拟合得到最长直线段,则得到的初始挂车夹角十分不准确,应被剔除。
方式二:
在当前周期非第一周期时,判断当前周期的各激光雷达各自对应的初始挂车夹角与进行卡尔曼滤波处理得到的上一周期的挂车夹角的偏差角度值是否大于预先设置的偏差角度阈值。
若当前周期的激光雷达对应的初始挂车夹角与进行卡尔曼滤波处理得到的上一周期的挂车夹角的偏差角度值大于预先设置的偏差角度阈值,则将当前周期的该激光雷达对应的初始挂车夹角剔除。
若当前周期的激光雷达对应的初始挂车夹角与进行卡尔曼滤波处理得到的上一周期的挂 车夹角的偏差角度值小于等于预先设置的偏差角度阈值,则将当前周期的该激光雷达对应的初始挂车夹角保留。
此处,由于两个相邻周期(一般仅相差0.1秒)之间相差的时长较短,因此挂车夹角的变化不会过大,因此若当前周期的激光雷达对应的初始挂车夹角与进行卡尔曼滤波处理得到的上一周期的挂车夹角的偏差角度值大于预先设置的偏差角度阈值,则确定当前周期的激光雷达对应的初始挂车夹角为无效数据,应被剔除。
步骤409、将进行筛选后的各激光雷达各自对应的初始挂车夹角以当前周期中的采集时刻进行排列,形成待处理角度数据。
例如,以激光雷达在牵引车的尾部的左右两侧各有一个激光雷达为例,激光雷达的测量周期为0.1s,则如图12所示,横坐标为初始挂车夹角对应的时刻,纵坐标为初始挂车夹角的角度,整个纵坐标数据构成了待处理角度数据。
步骤410、根据待处理角度数据进行卡尔曼滤波处理,得到当前周期的挂车夹角。
此处进行卡尔曼滤波处理的原因是由于反射板的制作误差,反射板本身并不能保证是绝对平整,而且激光雷达自身也有观测误差,使得计算得到的初始挂车夹角存在一定误差,表现出来的现象为在车辆静止时,夹角也会有正负1°至2°的跳跃。为了解决这个问题,卡尔曼滤波处理能够对待处理角度数据中随着采集时刻排列的初始挂车夹角进行降噪处理,将初始挂车夹角和夹角变化的简易运动学模型融合起来得到一个平顺的输出结果,不仅能够确保在静止状态下测量挂车夹角测量数据的误差在正负0.5°以内,而且还能够确保在挂车夹角急速变化时测量数据可以相应的实时变化,避免明显的延迟。
在上述步骤410之后,可以返回步骤401进行下一周期的挂车夹角测量。
另外,本申请实施例提供一种挂车夹角的测量装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述图2或图8所对应的方法。
另外,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述图2或图8所对应的方法。
此外,如图13所示,本申请实施例还提供一种车辆50,包括上述的挂车夹角的测量装置501,以及牵引车201和挂车202(本申请所涉及的挂车202上可以携带有集装箱,或者未携带集装箱);在所述牵引车201的尾部两侧分别设置有至少一个激光雷达203;在所述挂车202的前部固定设置有具有反射面的反射板204,所述反射面204朝向所述激光雷达203;所述挂车夹角的测量装置501与所述激光雷达203通信连接。
进一步的,如图14所示,该牵引车201的尾部两侧通过第一紧固件与各激光雷达203固定连接。另外,该第一紧固件可以为第一支撑梁206,该第一支撑梁206固定于牵引车201 尾部的横梁,激光雷达203固定于第一支撑梁背离牵引车201的一侧、且朝向反射板204发射激光。
本申请实施例提供的一种挂车夹角的测量方法、装置及车辆,采用在牵引车的尾部两侧分别设置至少一个激光雷达,这样,在挂车夹角较大的场景下,反射板移动到了牵引车的侧面时,至少其中一侧的激光雷达发射的激光依然可以射到反射板的反射面上,从而能够被用于挂车夹角的测量。另外,本申请采用根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角,而不是采用单一的激光雷达的激光点云进行计算,其结果准确度大大提高。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,对本领域普通技术人员而言,能够理解本申请的方法和装置的全部或者任何步骤或者部件可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件固件、软件或者他们的组合加以实现,这是本领域普通技术人员在阅读了本申请的说明的情况下运用它们的基本编程技能就能实现的。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制 造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的上述实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括上述实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种挂车夹角的测量方法,其特征在于,应用于一种半挂车,所述半挂车包括牵引车和挂车;在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;
    所述挂车夹角的测量方法,包括:
    控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;
    控制各激光雷达分别接收反射板反射的各自对应的激光点云;
    根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
  2. 根据权利要求1所述的方法,其特征在于,在控制各激光雷达分别接收反射板反射的各自对应的激光点云之后,包括:
    对各激光雷达分别接收到的各自对应的激光点云进行预处理,得到各激光雷达各自对应的初始挂车夹角;
    根据预先设置的判断条件对各激光雷达各自对应的初始挂车夹角进行筛选。
  3. 根据权利要求2所述的方法,其特征在于,所述根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角,包括:
    将进行筛选后的各激光雷达各自对应的初始挂车夹角以当前周期中的采集时刻进行排列,形成待处理角度数据;
    根据所述待处理角度数据进行卡尔曼滤波处理,得到当前周期的挂车夹角。
  4. 根据权利要求3所述的方法,其特征在于,所述对各激光雷达分别接收到的各自对应的激光点云进行预处理,得到各激光雷达各自对应的初始挂车夹角,包括:
    对各激光雷达分别接收到的各自对应的激光点云进行感兴趣区域滤波,得到预设区域范围内的激光点云;所述预设区域范围是根据反射板随着挂车围绕牵引车的活动范围确定的;
    对所述预设区域范围内的激光点云进行噪点滤波,得到各激光雷达对应的噪点滤波后的激光点云;
    对各激光雷达对应的所述噪点滤波后的激光点云采用随机抽样一致性算法得到各激光雷达对应的一至多条激光点云形成的直线段,并从所述一至多条激光点云形成的直线段中确定各激光雷达对应的最长直线段;
    在激光雷达坐标系下,确定各最长直线段的直线方程和构成各最长直线段的激光点云的点数;
    根据各最长直线段的直线方程计算得到各激光雷达对应的初始挂车夹角。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    根据反射板随着挂车围绕牵引车的活动范围预先设置一个第一距离和第二距离;其中,所述第二距离大于所述第一距离;
    以用于连接牵引车和挂车的转轴为圆心,以所述第一距离和第二距离为半径,在激光扫描平面上得到第一圆区域和第二圆区域;
    将所述第一圆区域之外和第二圆区域之内的区域范围确定为所述预设区域范围。
  6. 根据权利要求4所述的方法,其特征在于,所述根据预先设置的判断条件对各激光雷达各自对应的初始挂车夹角进行筛选,包括:
    判断各最长直线段的激光点云的点数是否小于预先设置的点数阈值;
    将最长直线段的激光点云的点数小于所述预先设置的点数阈值的激光雷达对应的初始挂车夹角剔除,保留最长直线段的激光点云的点数大于等于所述预先设置的点数阈值的激光雷达对应的初始挂车夹角。
  7. 根据权利要求4所述的方法,其特征在于,所述根据预先设置的判断条件对各激光雷达各自对应的初始挂车夹角进行筛选,包括:
    在当前周期非第一周期时,判断当前周期的各激光雷达各自对应的初始挂车夹角与进行卡尔曼滤波处理得到的上一周期的挂车夹角的偏差角度值是否大于预先设置的偏差角度阈值;
    若当前周期的激光雷达对应的初始挂车夹角与进行卡尔曼滤波处理得到的上一周期的挂车夹角的偏差角度值大于预先设置的偏差角度阈值,则将当前周期的该激光雷达对应的初始挂车夹角剔除;
    若当前周期的激光雷达对应的初始挂车夹角与进行卡尔曼滤波处理得到的上一周期的挂车夹角的偏差角度值小于等于预先设置的偏差角度阈值,则将当前周期的该激光雷达对应的初始挂车夹角保留。
  8. 一种挂车夹角的测量装置,其特征在于,该装置应用于一种半挂车,所述半挂车包括牵引车和挂车;在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;该装置与所述激光雷达通信连接;该装置包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现挂车夹角的测量处理,该处理包括:控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;控制各激光雷达分别接收反射板反射的各自对应的激光点云;根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现挂车夹角的测量处理,该处理应用于一种半挂车,所述半挂车包括牵引车和挂车; 在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;该处理包括:
    控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;
    控制各激光雷达分别接收反射板反射的各自对应的激光点云;
    根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
  10. 一种车辆,其特征在于,包括挂车夹角的测量装置,以及牵引车和挂车;在所述牵引车的尾部两侧分别设置有至少一个激光雷达;在所述挂车的前部固定设置有具有反射面的反射板,所述反射面朝向所述激光雷达;所述挂车夹角的测量装置与所述激光雷达通信连接;
    所述挂车夹角的测量装置包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现挂车夹角的测量处理,该处理包括:控制所述牵引车的尾部两侧分别设置的激光雷达发射激光,使得所述反射板通过所述反射面反射所述激光雷达发射的激光;控制各激光雷达分别接收反射板反射的各自对应的激光点云;根据各激光雷达接收到的各自对应的激光点云进行计算得到挂车夹角。
  11. 根据权利要求10所述的车辆,其特征在于,所述牵引车的尾部两侧通过第一紧固件与各激光雷达固定连接。
  12. 根据权利要求11所述的车辆,其特征在于,所述第一紧固件为第一支撑梁,所述第一支撑梁固定于所述牵引车尾部的横梁,所述激光雷达固定于所述第一支撑梁背离所述牵引车的一侧、且朝向所述反射板发射激光。
PCT/CN2019/077074 2018-11-20 2019-03-06 一种挂车夹角的测量方法、装置及车辆 WO2020103354A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2019382367A AU2019382367A1 (en) 2018-11-20 2019-03-06 Method and device for measuring trailer included angle, and vehicle
EP19887255.8A EP3885796B1 (en) 2018-11-20 2019-03-06 Method and means for measuring a trailer angle, and corresponding vehicle
US17/325,151 US12044523B2 (en) 2018-11-20 2021-05-19 Method and device for measuring trailer included angle, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811381350.1 2018-11-20
CN201811381350.1A CN111288930A (zh) 2018-11-20 2018-11-20 一种挂车夹角的测量方法、装置及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/325,151 Continuation US12044523B2 (en) 2018-11-20 2021-05-19 Method and device for measuring trailer included angle, and vehicle

Publications (1)

Publication Number Publication Date
WO2020103354A1 true WO2020103354A1 (zh) 2020-05-28

Family

ID=70773483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077074 WO2020103354A1 (zh) 2018-11-20 2019-03-06 一种挂车夹角的测量方法、装置及车辆

Country Status (5)

Country Link
US (1) US12044523B2 (zh)
EP (1) EP3885796B1 (zh)
CN (2) CN111288930A (zh)
AU (1) AU2019382367A1 (zh)
WO (1) WO2020103354A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928795A (zh) * 2020-09-04 2020-11-13 浙江省计量科学研究院 一种牵引车、挂车外廓尺寸参数一并式测量方法
EP4098490A1 (en) * 2021-06-02 2022-12-07 Beijing Tusen Zhitu Technology Co., Ltd. Sensor bracket and vehicle

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184417A (zh) * 2018-12-10 2023-05-30 北京图森智途科技有限公司 一种挂车夹角的测量方法、装置及车辆
CN111115300B (zh) * 2020-03-31 2020-06-30 上海驭矩信息科技有限公司 一种自动化集装箱装卸装置及方法
CN112082484A (zh) * 2020-09-11 2020-12-15 武汉理工大学 一种基于单线激光雷达检测工程车车身偏移的装置及方法
CN111830526B (zh) 2020-09-17 2020-12-29 上海驭矩信息科技有限公司 一种基于多线激光数据融合的集装箱定位方法及装置
CN112362055B (zh) * 2020-12-01 2022-12-30 苏州挚途科技有限公司 姿态估计方法、装置和电子设备
CN113063396B (zh) * 2021-03-19 2022-09-27 北京斯年智驾科技有限公司 一种半挂车夹角的检测方法、装置、设备及存储介质
CN113251993B (zh) * 2021-04-08 2022-11-08 杭州飞步科技有限公司 偏转角的检测方法、装置、计算机设备和可读存储介质
CN113917479B (zh) * 2021-09-30 2024-06-25 广州文远知行科技有限公司 一种车辆夹角的计算方法、装置、计算机设备和存储介质
CN114115030B (zh) * 2021-11-19 2024-02-09 杭州豪盛电动车辆有限公司 车辆协同运输方法、设备、系统及计算机可读存储介质
FI130077B (en) * 2021-12-07 2023-01-31 Cargotec Finland Oy EVALUATION OF THE ATTACHMENT ANGLE FOR THE DRIVE UNIT-TRAILER COMBINATION
CN114279452B (zh) * 2021-12-29 2024-04-12 北京斯年智驾科技有限公司 无人集卡挂车姿态检测方法及检测系统
CN116499420B (zh) * 2023-05-23 2023-10-17 清华大学 一种半挂车与牵引车之间的夹角的测量方法及系统
CN117657295B (zh) * 2024-02-02 2024-05-28 盛视科技股份有限公司 拖挂车转向角检测方法及检测系统
CN118330668B (zh) * 2024-06-17 2024-08-13 四川凉山水洛河电力开发有限公司 一种崩塌落石空间运动轨迹提取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053082A (ja) * 2000-05-30 2002-02-19 Isuzu Motors Ltd トレーラ連結角検出装置
US20080186204A1 (en) * 2007-02-02 2008-08-07 Buckley Stephen J Trailer detection system
CN107804226A (zh) * 2016-09-08 2018-03-16 德尔福技术有限公司 拖车车道偏离警告和摇摆警报
CN107976194A (zh) * 2017-11-24 2018-05-01 北京奇虎科技有限公司 环境地图的调整方法及装置
CN108278981A (zh) * 2018-02-11 2018-07-13 北京主线科技有限公司 检测无人驾驶挂车轴偏角的装置及其检测方法
CN108761481A (zh) * 2018-04-09 2018-11-06 北京图森未来科技有限公司 一种挂箱夹角测量系统及测量方法、半挂车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334966A (ja) * 2000-03-24 2001-12-04 Isuzu Motors Ltd トレーラ連結角検出装置
CN105488498B (zh) * 2016-01-15 2019-07-30 武汉中海庭数据技术有限公司 一种基于激光点云的车道边线自动提取方法及系统
US10710585B2 (en) * 2017-09-01 2020-07-14 Ford Global Technologies, Llc Trailer backup assist system with predictive hitch angle functionality
US10871780B2 (en) * 2018-01-30 2020-12-22 Uatc, Llc Intermediate mounting component and sensor system for a Mansfield bar of a cargo trailer
US11200430B2 (en) * 2018-11-05 2021-12-14 Tusimple, Inc. Systems and methods for detecting trailer angle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053082A (ja) * 2000-05-30 2002-02-19 Isuzu Motors Ltd トレーラ連結角検出装置
US20080186204A1 (en) * 2007-02-02 2008-08-07 Buckley Stephen J Trailer detection system
CN107804226A (zh) * 2016-09-08 2018-03-16 德尔福技术有限公司 拖车车道偏离警告和摇摆警报
CN107976194A (zh) * 2017-11-24 2018-05-01 北京奇虎科技有限公司 环境地图的调整方法及装置
CN108278981A (zh) * 2018-02-11 2018-07-13 北京主线科技有限公司 检测无人驾驶挂车轴偏角的装置及其检测方法
CN108761481A (zh) * 2018-04-09 2018-11-06 北京图森未来科技有限公司 一种挂箱夹角测量系统及测量方法、半挂车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3885796A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928795A (zh) * 2020-09-04 2020-11-13 浙江省计量科学研究院 一种牵引车、挂车外廓尺寸参数一并式测量方法
CN111928795B (zh) * 2020-09-04 2021-10-01 浙江省计量科学研究院 一种牵引车、挂车外廓尺寸参数一并式测量方法
EP4098490A1 (en) * 2021-06-02 2022-12-07 Beijing Tusen Zhitu Technology Co., Ltd. Sensor bracket and vehicle

Also Published As

Publication number Publication date
CN111288930A (zh) 2020-06-16
EP3885796A4 (en) 2022-08-10
CN117470134A (zh) 2024-01-30
AU2019382367A1 (en) 2021-07-08
US20210356261A1 (en) 2021-11-18
EP3885796A1 (en) 2021-09-29
EP3885796B1 (en) 2024-07-10
US12044523B2 (en) 2024-07-23

Similar Documents

Publication Publication Date Title
WO2020103354A1 (zh) 一种挂车夹角的测量方法、装置及车辆
JP7553668B2 (ja) トレーラ挟角の測定方法、装置及び車両
US11982747B2 (en) Systems and methods for generating synthetic sensor data
CN113432553B (zh) 一种挂车夹角的测量方法、装置及车辆
JP7045816B2 (ja) 検査ステーションに配置された車両の最外寸法を測定するための方法及びシステム
CN111366901B (zh) 标定车载毫米波雷达方位角度安装偏差的方法及装置
CN109085829B (zh) 一种动静态目标识别方法
JP2018194562A (ja) 道路境界検出方法及び装置
US20200158840A1 (en) Multi-mode multi-sensor calibration
WO2020191978A1 (zh) Sar成像方法及其成像系统
CN112513679A (zh) 一种目标识别的方法和装置
CN111580066A (zh) 转向角度检测方法、装置及系统
CN118050719A (zh) 半挂车的挂车角度测量方法、装置、电子设备及车辆
CN113771839A (zh) 一种自动泊车决策规划方法及系统
WO2022267711A1 (zh) 地面点云分割方法和装置及自动驾驶车辆
CN114399399B (zh) 矿区车辆的卸载停靠方法、装置、计算机设备及存储介质
WO2022217819A1 (zh) 目标速度估计方法、装置以及存储介质
US11887272B2 (en) Method and system for determining a spatial transformation employing partial dimension iterative closest point
CN118665471A (zh) 车辆的控制方法、装置、设备及存储介质
CN114185026A (zh) 一种车载多激光雷达的外参标定方法、装置及电子设备
CN115128620A (zh) 一种确定对象位置的方法、装置及设备
CN114995268A (zh) 一种调整挂车位姿的方法、装置、电子设备及存储介质
CN116106828A (zh) 一种多圆相交定位方法、系统、电子设备及存储介质
JPS60127410A (ja) 車両用障害物検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019887255

Country of ref document: EP

Effective date: 20210621

ENP Entry into the national phase

Ref document number: 2019382367

Country of ref document: AU

Date of ref document: 20190306

Kind code of ref document: A