WO2020103308A1 - 用于电平移位电路的过流保护控制电路 - Google Patents

用于电平移位电路的过流保护控制电路

Info

Publication number
WO2020103308A1
WO2020103308A1 PCT/CN2019/070203 CN2019070203W WO2020103308A1 WO 2020103308 A1 WO2020103308 A1 WO 2020103308A1 CN 2019070203 W CN2019070203 W CN 2019070203W WO 2020103308 A1 WO2020103308 A1 WO 2020103308A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
current
output value
comparator
circuit
Prior art date
Application number
PCT/CN2019/070203
Other languages
English (en)
French (fr)
Inventor
李文芳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020103308A1 publication Critical patent/WO2020103308A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the invention relates to the technical field of liquid crystal panels, in particular to an overcurrent protection control circuit for a level shift circuit.
  • An active matrix liquid crystal display is currently the most commonly used display device.
  • the active matrix liquid crystal display device includes a plurality of pixels, and each pixel has a thin film transistor (Thin Film Transistor (TFT), the gate of the TFT is connected to the scanning line extending in the horizontal direction, the drain of the TFT is connected to the data line extending in the vertical direction, and the source of the TFT is connected to the corresponding pixel electrode.
  • TFT Thin Film Transistor
  • the liquid crystal display panels of various types of active matrix liquid crystal display devices adopt GOA architecture (Gate Drive On Array) is to integrate the gate driver (Gate Drive IC) on the thin film transistor array (Array) substrate to realize the progressive scan to drive the liquid crystal panel.
  • GOA architecture Gate Drive On Array
  • the use of the GOA architecture can reduce the process steps, reduce costs, improve the integration of the liquid crystal display panel, and help to achieve The ultra-narrow bezel and thin profile of the panel.
  • using the GOA architecture will cause an additional level shift chip (Level Shift IC) on the circuit driver board (PCBA) to boost the low voltage drive signal to the high voltage drive signal to drive the TFT in the LCD panel to work.
  • Level Shift IC level shift chip
  • Existing level shift circuits for GOA architecture liquid crystal display panels usually include: a timing controller (TCON) provided on the circuit drive board PCBA, which is used to generate and send start signals, timing signals, etc. Signal; a level shift chip provided on the circuit drive board PCBA, the level shift chip is used to raise the voltage of the start signal and timing signal sent by the timing controller.
  • TCON timing controller
  • level shift chip provided on the circuit drive board PCBA, the level shift chip is used to raise the voltage of the start signal and timing signal sent by the timing controller.
  • the start signal and timing signal boosted by the level shift chip drive the TFT in the GOA architecture liquid crystal display panel.
  • the level shift circuit is provided with an over current protection circuit (Over Current Protection, OCP) to prevent short circuit between clock signals caused by floating particles in the GOA structure LCD panel. It will increase, the corresponding trace will also generate heat, the temperature of the pixel unit will increase, and the polarizer may also melt.
  • OCP Over Current Protection
  • the power management integrated circuit (Power Management IC) terminal or the level shift circuit terminal is usually used for overcurrent protection.
  • the power management integrated circuit side is mainly for the overcurrent protection of the voltage of the gate driver turning on the TFT (high level signal VGH) and the voltage of the gate driver turning off the TFT (low level signal VGL), and the level shift circuit side It is mainly for real-time detection of the current size for each channel. When a large current occurs, the output of the level shift circuit is directly turned off to protect the entire liquid crystal display panel.
  • the over-current protection circuit of the currently known power management integrated circuit is not accurate enough, and may not be able to protect some micro-short-circuit areas.
  • the level shift circuit protects the entire channel in real time.
  • the output signal CK will generate a large current from small to large or from large to small during rapid startup. Although it does not affect the display of the liquid crystal display panel, it will trigger the overcurrent protection circuit by mistake .
  • An object of the present invention is to provide an overcurrent protection control circuit for a level shift circuit, which can determine whether the detected large current is due to a stable large current caused by a short circuit of a liquid crystal display panel wiring or due to a fast switching
  • the large current generated by the device effectively avoids false triggering of the overcurrent protection circuit, and further guarantees the safety and reliability of the entire liquid crystal display device.
  • the present invention provides an overcurrent protection control circuit for a level shift circuit, wherein the overcurrent protection circuit includes: a first logic unit, a second logic unit, a third logic unit, and a fourth logic Unit and a fifth logic unit; the first logic unit is used to receive a first detection current and a first reference current, and perform a logical operation on the first detection current and the first reference current to generate a The first output value is output; the second logic unit is used to receive the first output value, a first error current and a second error signal, and to the first output value and the first error current Performing logical operations to generate and output a second output value, and performing logical operations on the first output value and the second error current to generate a third output value; the third logic unit is used to receive a first output value Two detection currents and a second reference current, and performing a logical operation on the second detection current and the second reference current to generate a fourth output value and output; the fourth logic unit is used to receive the first A second output value, the third output value and the fourth output value
  • the first logic unit includes a first subtractor and a first latch
  • the second logic unit includes a first adder and a second subtractor
  • the The third logic unit includes a third subtractor
  • the fourth logic unit includes a first comparator and a second comparator
  • the fifth logic unit includes an AND circuit;
  • the first subtractor The first input receives a first detection current, the second input of the first subtractor receives a first reference current, and the output of the first subtractor is electrically connected to the first latch,
  • the first subtractor is used to output the difference between the first detection current and the first reference current as a first output value to the first latch;
  • the first latch is used to convert the received
  • the first output value is buffered and output to the first adder and the second subtractor respectively;
  • the first input terminal of the second adder is electrically connected to the output terminal of the first latch ,
  • the second input of the second adder receives a first error current, the output of the second adder is electrically connected to the first comparator, and
  • the output of the first comparator when the second output value is greater than the fourth output value, the output of the first comparator is a high level; when the third output value is greater than the fourth output Value, the output of the second comparator is high; when both the first input terminal and the second input terminal of the AND circuit receive a high level, the output terminal of the AND circuit outputs a high level, And trigger the overcurrent protection circuit.
  • the output of the first comparator when the second detection current is equal to the first detection current, the output of the first comparator is a high level, and the output of the second comparator is a high level.
  • the output of the first comparator when the difference between the first detection current and the second detection current is within a first threshold range, the output of the first comparator is high, The output of the second comparator is a high level.
  • the second reference current is equal to the first reference current.
  • the second error current is equal to the first error current.
  • the first error current is equal to the product of the first reference current and a first error coefficient;
  • the second error current is equal to the second reference current and a second error coefficient The product.
  • the first detection current when the first detection current is greater than the first reference current, it is determined that the first detection current is a large current; when the second detection current is greater than the second At the reference current, it is determined that the second detection current is a large current.
  • the present invention also provides a display panel, which is a display panel adopting the GOA architecture.
  • the display panel includes a level shift circuit, and the level shift circuit includes the above-described Flow protection control circuit.
  • the advantage of the present invention is that the overcurrent protection control circuit for the level shift circuit of the present invention can judge whether the detected large current is a stable large current caused by a short circuit of the liquid crystal display panel wiring, or is caused by a switch machine.
  • the generated large current changes effectively avoiding false triggering of the overcurrent protection circuit, and further guarantees the safety and reliability of the entire liquid crystal display device.
  • FIG. 1 is a circuit connection schematic diagram of an overcurrent protection control circuit for a level shift circuit in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a display panel in an embodiment of the present invention.
  • the display panel includes an overcurrent protection control circuit for a level shift circuit.
  • Embodiments of the present invention provide an overcurrent protection circuit and a display panel for a level shift circuit. Each will be described in detail below.
  • the overcurrent protection circuit for a level shift circuit includes: a first logic unit, a second logic unit, a third logic unit, a fourth logic unit and a fifth logic unit (in the figure Not shown).
  • the first logic unit, the second logic unit, the third logic unit, the fourth logic unit, and the fifth logic unit may be composed of circuits including logic devices.
  • the logic devices include but are not limited to: analog logic devices and digital logic devices. Wherein, the analog logic device is used to process analog electrical signals, including but not limited to: comparators, AND gates, OR gates, etc .; the digital logic device is used to process devices represented by pulse signals and digital signals, which Including but not limited to: flip-flops, gates, latches, selectors, etc.
  • the first logic unit is used to receive a first detection current and a first reference current, and perform a logical operation on the first detection current and the first reference current to generate a first output value and output;
  • the second logic unit is configured to receive the first output value, a first error current and a second error signal, and perform a logical operation on the first output value and the first error current to generate a second output And output values, and perform a logical operation on the first output value and the second error current to generate a third output value;
  • the third logic unit is used to receive a second detection current and a second reference current, And perform a logical operation on the second detection current and the second reference current to generate a fourth output value and output;
  • the fourth logic unit is used to receive the second output value, the third output value and The fourth output value, and logically judge the second output value and the fourth output value, generate and output a first judgment result, and perform the third output value and the fourth output value Logical judgment, generate and output a second judgment result;
  • the fifth logic unit
  • the overcurrent protection control circuit 100 for a level shift circuit includes a first logic unit, a second logic unit, a third logic unit, a fourth logic unit and a fifth logic unit (not shown) ).
  • the first logic unit includes a first subtractor 110 and a first latch 120
  • the second logic unit includes a first adder 130 and a second subtractor 150
  • the third logic The unit includes a third subtractor 170
  • the fourth logic unit includes a first comparator 140 and a second comparator 160
  • the fifth logic unit includes an AND circuit 180.
  • the first input terminal of the first subtractor 110 receives a first detection current I detection 1
  • the second input terminal of the first subtractor 110 receives a first reference current I reference 1
  • the first An output terminal of a subtractor 110 is electrically connected to the first latch 120
  • the first subtractor 110 is used for detecting the first detection current I detection 1 and the first reference current I reference 1
  • the difference is output to the first latch 120 as the first output value TP1.
  • the first detection current I detection 1 is greater than the first reference current I reference 1 , it is determined that the first detection current I detection 1 is a large current.
  • the first detection current I detection 1 is less than the first reference current I reference 1 , it will not trigger subsequent operations of electronic devices such as subtractors, adders, and comparators.
  • the setting of the first reference current I reference 1 is used to indicate that when the first detection current I detection 1 is greater than the first reference current I reference 1 , the first detection current I detection 1 is a large current ( It is set to be a large current caused by a short circuit trigger).
  • the first detection current I detection 1 is a normal current or a small current.
  • the first latch 120 is used to buffer the received first output value TP1 and output to the first adder 130 and the second subtractor 150, respectively. For example, if the first output value TP1 is a current of 9 amperes, the first latch 120 outputs a current of 9 amperes.
  • the first latch 120 can maintain a time difference between the first detection current and the second detection current (for example, the time difference is 2 milliseconds), thereby further ensuring the reliability of the entire detection.
  • the first input terminal of the second adder is electrically connected to the output terminal of the first latch 120, the second input terminal of the second adder receives a first error current I error 1 ,
  • the output terminal of the second adder is electrically connected to the first comparator 140, and the second adder is used to take the sum of the first output value TP1 and the first error current I error 1 as the second output
  • the value TP2 is output to the first comparator 140.
  • the first error current I error 1 is equal to the product of the first reference current I reference 1 and a first error coefficient.
  • the first error current I error 1 is a very small error current value.
  • the first input terminal of the second subtractor 150 is electrically connected to the output terminal of the first latch 120, and the second input terminal of the second subtractor 150 receives a second error current I error 2 ,
  • the output end of the second subtractor 150 is electrically connected to the second comparator 160, and the second subtractor 150 is used to divide the first output value TP1 from the second error current I error 2
  • the difference is output to the second comparator 160 as the third output value TP3.
  • the second error current I error 2 is equal to the product of the second reference current and a second error coefficient.
  • the second error current I error 2 is a very small error current value.
  • the second error current I error 2 is equal to the first error current I error 1 .
  • the second error current I error 2 may not be equal to the first error current I error 1 .
  • the second reference current is set equal to the first reference current I reference 1.
  • the second reference current may not be equal to the first reference current.
  • the first input terminal of the third subtractor 170 receives a second detection current I detection 2
  • the second input terminal of the third subtractor 170 receives a second reference current I reference 2
  • the third subtractor output terminal 170 are electrically connected to the first comparator 140 and second comparator 160
  • the difference of the reference 2 is output as the fourth output value TP4 to the first comparator 140 and the second comparator 160, respectively; wherein, the received second detection current I detection 2 is the first received
  • the detection current I is detected 1 and obtained after a predetermined period of time.
  • the preset time period may be, for example, 1 millisecond, but is not limited thereto.
  • the setting of the second reference current I reference 2 is used to indicate that when the second detection current I detection 2 is greater than the second reference current I reference 2 , the second detection current I detection 2 is a large current, When the second detection current I detection 2 is smaller than the second reference current I reference 2 , the second detection current I detection 2 is a normal current or a small current.
  • the first input of the first comparator 140 receives the second output value TP2, the second input of the first comparator 140 receives the fourth output value TP4, and the The output terminal is electrically connected to the first input terminal of the AND circuit 180, and the first comparator 140 is used to compare the second output value TP2 with the fourth output value TP4, and compare the The result is output to the AND circuit 180 as the first comparison value A.
  • the first input terminal of the second comparator 160 receives the fourth output value TP4, the second input terminal of the second comparator 160 receives the third output value TP3, the second comparator 160
  • the output terminal is electrically connected to the second input terminal of the AND circuit 180.
  • the second comparator 160 is used to compare the fourth output value TP4 with the third output value TP3, and compare the The result is output to the AND circuit 180 as the second comparison value B.
  • the first input of the AND circuit 180 receives the first comparison value A
  • the second input of the AND circuit 180 receives the second comparison value B
  • the output of the AND circuit 180 Is connected to an external overcurrent protection circuit
  • the AND circuit 180 is used to compare the first comparison value A and the second comparison value B, and determine whether to trigger the overcurrent according to the comparison result Current protection circuit.
  • the first comparator 140 when the second output value TP2 is greater than the fourth output value TP4, the first comparator 140 outputs a high level. When the second output value TP2 is smaller than the fourth output value TP4, the first comparator 140 outputs a low level.
  • the second comparator 160 When the third output value TP3 is greater than the fourth output value TP4, the second comparator 160 outputs a high level. When the third output value TP3 is greater than the fourth output value TP4, the second comparator 160 outputs a low level.
  • the output terminal of the AND circuit 180 When both the first input terminal and the second input terminal of the AND circuit 180 receive a high level, the output terminal of the AND circuit 180 outputs a high level, and the overcurrent protection circuit is triggered. That is, when the first comparison value A received by the first input terminal of the AND circuit 180 and the second comparison value B received by the second input terminal of the AND circuit 180 are both high power Normally, the output of the AND circuit 180 is high level, and the overcurrent protection circuit is triggered. That is, when any one of the first comparison value A or the second comparison value B is a low level, the output of the AND circuit 180 is a low level, and the overcurrent protection circuit is not triggered.
  • the second detection current I detection 2 when the second detection current I detection 2 is equal to the first detection current I detection 1 , the first comparator 140 outputs a high level, and the second comparator 160 outputs It is also high. Therefore, the output terminal of the AND circuit 180 outputs a high level, and triggers the overcurrent protection circuit. That is, the first detection current I detected 1 detected for the first time is a large current, and after a preset period of time, the second detection current I detected 2 detected for the second time is still a large current, and The first detection current I detection 1 detected once is the same, indicating that the detected large current is a constant large current. The constant large current is caused by a short circuit in the wiring inside the display panel. Therefore, it is necessary to trigger overcurrent protection measures.
  • the first comparator 140 when the difference between the first detection current I detection 1 and the second detection current I detection 2 is within a first threshold range, the first comparator 140 outputs a high level, The output of the second comparator 160 is a high level, wherein the first threshold range is 15% of the first reference current I reference 1 (equivalent to the second reference current I reference 2 ). Therefore, the output terminal of the AND circuit 180 outputs a high level, and triggers the overcurrent protection circuit.
  • the first detection current I detected 1 detected for the first time is a large current
  • the second detection current I detected 2 detected for the second time is still a large current
  • the The first detection current I detection 1 detected for the first time is approximately the same or close to the same, indicating that the detected large current is an approximately constant large current.
  • the large current which is approximately constant, is caused by a short circuit in the wiring inside the display panel. Therefore, it is necessary to trigger overcurrent protection measures.
  • the second detection current I detection 2 is not equal to the first detection current I detection 1 , and the difference between the first detection current I detection 1 and the second detection current I detection 2 exceeds all
  • the first threshold range for example, 15% of the first reference current I reference 1
  • one of the output of the first comparator 140 and the second comparator 160 is high, and the other output is low level. Therefore, the output terminal of the AND circuit 180 outputs a low level, and does not trigger the overcurrent protection circuit.
  • the first detection current I detection 1 detected for the first time is a large current
  • the second detection current I detection 2 detected for the second time may be a small current
  • the first The second detection current I detection 2 detected twice is a large current and is different from or different from the first detection current I detection 1 detected for the first time, indicating that the detected large current is a changing large current
  • the changing large current may be caused by fast switching on and off, so there is no need to trigger overcurrent protection.
  • a first input terminal of the first subtracter 110 receives a first current of 10 amps detected current I 1 is detected, a second input receives a reference current of 1 amp, the output of the first subtractor 110 outputs 9 amps, As the first output value TP1, it is transmitted to the first latch 120.
  • the first latch 120 receives the first output value TP1 of 9 amperes and latches, and still outputs a current of 9 amperes, and transmits it as the first output value TP1 to the first adder 130 and the second subtractor 150, respectively .
  • the first input terminal of the first adder 130 receives the first output value TP1 of 9 amperes, and the second input terminal receives the first error current I error 1 of 0.1 amperes, then the output of the first adder 130 The terminal outputs a current of 9.1 amps as the second output value TP2, and transmits it to the first comparator 140.
  • the first input terminal of the second subtractor 150 receives a first output value TP1 of 9 amperes, and the second input terminal receives a second error current I error 2 of 0.1 amperes, then the output of the second subtractor 150 The terminal outputs a current of 8.9 amps as the third output value TP3, and transmits it to the second comparator 160.
  • the first input terminal of the third subtractor 170 receives a second detection current I detection 2 of 10 amps, the second detection current I detection 2 is obtained 3 seconds after the first detection current I detection 1 is obtained of.
  • the output terminal of the third subtractor 170 outputs a current of 9 amperes and transmits it as the fourth output value TP4, respectively To the first comparator 140 and the second comparator 160.
  • the first input terminal of the first comparator 140 receives the second output value TP2 of 9.1 amperes, and the second input terminal receives the fourth output value TP4 of 9 amperes, then the output terminal of the first comparator 140 outputs a high Level.
  • the output terminal of the second comparator 160 When the first input terminal of the second comparator 160 receives the fourth output value TP4 of 9 amperes, and the second input terminal receives the third output value TP3 of 8.9 amperes, the output terminal of the second comparator 160 outputs a high Level.
  • both the first input terminal and the second input terminal of the AND circuit 180 receive a high level, the output terminal of the AND circuit 180 also outputs a high level, thereby triggering an overcurrent protection circuit.
  • the overcurrent protection control circuit 100 for the level shift circuit it can be seen that when the first detection current I detection 1 and the second detection current I detection 2 are equal, it indicates that the detected When the current is a constant current, and the first detection current I detection 1 is greater than a first reference current I reference 1 (used to determine whether it is a large current), it is determined that the constant large current is caused by a short circuit in the trace, not because It is generated by quickly switching on and off, thereby effectively avoiding false triggering of the overcurrent protection circuit, and further ensuring the safety and reliability of the entire liquid crystal display device.
  • a first reference current I reference 1 used to determine whether it is a large current
  • the present invention also provides a display panel 200.
  • the display panel 200 is a display panel adopting a GOA architecture.
  • the display panel 200 includes a level shift circuit.
  • the level shift circuit includes the above The overcurrent protection control circuit 100 of the level shift circuit will not be repeated here.
  • the advantage of the present invention is that the overcurrent protection control circuit 100 for a level shift circuit of the present invention can determine whether the detected large current is due to a stable large current caused by a short circuit of the liquid crystal display panel wiring or due to a switch The generated large current changes effectively avoiding false triggering of the overcurrent protection circuit, and further guarantees the safety and reliability of the entire liquid crystal display device.

Abstract

一种用于电平移位电路的过流保护控制电路(100),其能够判断出所检测到的大电流是由于液晶显示面板(200)走线短路所引起的稳定大电流,还是由于快速开关机所产生的一变化大电流,从而有效地避免误触发过流保护电路,进一步保障整个液晶显示装置的安全性和可靠性。

Description

用于电平移位电路的过流保护控制电路 技术领域
本发明涉及液晶面板技术领域,尤其涉及一种用于电平移位电路的过流保护控制电路。
背景技术
主动矩阵式液晶显示装置(Active Matrix Liquid Crystal Display,AMLCD)是目前最常用的显示装置,所述主动矩阵式液晶显示装置包含多个像素,每个像素具有一个薄膜晶体管(Thin Film Transistor,TFT),该TFT的栅极连接至沿水平方向延伸的扫描线,该TFT的漏极连接至沿垂直方向延伸的数据线,而该TFT的源极连接至对应的像素电极。如果在水平方向的某一扫描线上施加足够的正电压,则会使得连接在该条扫描线上的所有TFT打开,将数据线上所加载的数据信号电压写入像素电极中,从而显示画面。
—种类型的主动矩阵式液晶显示装置的液晶显示面板采用GOA架构(Gate Drive On Array)即将栅极驱动器(Gate Drive IC)整合在薄膜晶体管阵列(Array)基板上,以实现逐行扫描对液晶面板进行驱动。相比于传统的通过COMS制程将集成电路(Integrated Circuit,IC)制作在液晶显示面板外的驱动方法,采用GOA架构可减少制程工序,降低成本,提高液晶显示面板的集成度,并有利于实现面板的超窄边框及薄型化。但采用GOA架构会使电路驱动板(PCBA)上多出一颗电平移位芯片(Level Shift IC),将低压驱动信号升压至高压驱动信号,以驱动液晶面板中的TFT进行工作。
现有的用于GOA架构液晶显示面板的电平移位电路通常包括:一设于电路驱动板PCBA上的时序控制器(TCON),该时序控制器用于产生和发送起始信号、时序信号等控制信号;一设于电路驱动板PCBA上的电平移位芯片,该电平移位芯片用于提升由时序控制器发送来的起始信号、时序信号的电压。经电平移位芯片升压后的起始信号、时序信号对GOA架构液晶显示面板中的TFT进行驱动。
另外,所述电平移位电路通过设置有一过流保护电路(Over Current Protection, OCP),以防止GOA架构液晶显示面板内的浮游尘粒(particle)导致时钟信号之间发生短路,随之,电流会增大,相应的走线也发热,像素单元温度升高,偏光片也可能会熔掉。
为了防止上述情况的发生,通常利用电源管理集成电路(Power Management IC)端或电平移位电路端进行过流保护。其中,电源管理集成电路端主要是针对栅极驱动器开启TFT的电压(高电平信号VGH)和栅极驱动器关闭TFT的电压(低电平信号VGL)进行过流保护,而电平移位电路端主要是针对每个通道进行实时侦测电流大小,当发生大电流时,直接关闭电平移位电路的输出,以保护整个液晶显示面板。
技术问题
然而,目前已知的电源管理集成电路的过流保护电路其精度不够,可能无法对一些微短路的区域起到保护作用。电平移位电路对整个通道进行实时保护。然而由于液晶显示面板设计的原因,因此在快速开机时,输出信号CK会产生由小变大或由大变小的大电流,尽管不影响液晶显示面板的显示,但是会误触发过流保护电路。
故,需要提供一种新的用于电平移位电路的过流保护控制电路。
技术解决方案
本发明的目的在于,提供一种用于电平移位电路的过流保护控制电路,其能够判断出所检测到的大电流是由于液晶显示面板走线短路所引起的稳定大电流,还是由于快速开关机所产生的一变化大电流,从而有效地避免误触发过流保护电路,进一步保障整个液晶显示装置的安全性和可靠性。
本发明提供了一种用于电平移位电路的过流保护控制电路,其中所述过流保护电路包括:一第一逻辑单元、一第二逻辑单元、一第三逻辑单元、一第四逻辑单元和一第五逻辑单元;所述第一逻辑单元用于接收一第一检测电流和一第一基准电流,并对所述第一检测电流和所述第一基准电流进行逻辑运算,生成一第一输出值并输出;所述第二逻辑单元用于接收所述第一输出值、一第一误差电流和一第二误差信号,并且对所述第一输出值和所述第一误差电流进行逻辑运算,生成一第二输出值并输出,以及对所述第一输出值和所述第二误差电流进行逻辑运算,生成一第三输出值;所述第三逻辑单元用于接收一第二检测电流和一第二基准电流,并且对所述第二检测电流和所述第二基准电流进行逻辑运算,生成一第四输出值并输出;所述第四逻辑单元用于接收所述第二输出值、所述第三输出值和所述第四输出值,并且对所述第二输出值和所述第四输出值进行逻辑判断,生成一第一判断结果并输出,以及对所述第三输出值和所述第四输出值进行逻辑判断,生成一第二判断结果并输出;所述第五逻辑单元用于接收所述第一判断结果和所述第二判断结果,并且根据所述第一判断结果和所述第二判断结果生成一最终判断结果,以判断是否触发所述过流保护电路。
在本发明的一实施例中,所述第一逻辑单元包括一第一减法器和一第一锁存器,所述第二逻辑单元包括一第一加法器和一第二减法器,所述第三逻辑单元包括一第三减法器,所述第四逻辑单包括为一第一比较器和一第二比较器,所述第五逻辑单元包括一与门电路;所述第一减法器的第一输入端接收一第一检测电流,所述第一减法器的第二输入端接收一第一基准电流,所述第一减法器的输出端电性连接至所述第一锁存器,所述第一减法器用于将所述第一检测电流与所述第一基准电流之差作为第一输出值输出至所述第一锁存器;所述第一锁存器用于将接收到的所述第一输出值缓存并分别输出至所述第一加法器和所述第二减法器;所述第二加法器的第一输入端电性连接至所述第一锁存器的输出端,所述第二加法器的第二输入端接收一第一误差电流,所述第二加法器的输出端电性连接至所述第一比较器,所述第二加法器用于将所述第一输出值与所述第一误差电流之和作为第二输出值输出至所述第一比较器;所述第二减法器的第一输入端电性连接至所述第一锁存器的输出端,所述第二减法器的第二输入端接收一第二误差电流,所述第二减法器的输出端电性连接至所述第二比较器,所述第二减法器用于将所述第一输出值与所述第二误差电流之差作为一第三输出值输出至所述第二比较器;所述第三减法器的第一输入端接收一第二检测电流,所述第三减法器的第二输入端接收一第二基准电流,所述第三减法器的输出端分别电性连接至所述第一比较器和所述第二比较器,所述第三减法器用于将所述第二检测电流与所述第二基准电流之差作为一第四输出值分别输出至所述第一比较器和所述第二比较器;其中,所述第二检测电流是在接收到所述第一检测电流并间隔一预设时间段之后获得的;所述第一比较器的第一输入端接收所述第二输出值,所述第一比较器的第二输入端接收所述第四输出值,所述第一比较器的输出端电性连接至所述与门电路的第一输入端,所述第一比较器用于将所述第二输出值与所述第四输出值进行比较,并且将比较的结果作为一第一比较值输出至所述与门电路;所述第二比较器的第一输入端接收所述第四输出值,所述第二比较器的第二输入端接收所述第三输出值,所述第二比较器的输出端电性连接至所述与门电路的第二输入端,所述第二比较器用于将所述第四输出值与所述第三输出值进行比较,并且将比较的结果作为一第二比较值输出至所述与门电路;所述与门电路的第一输入端接收所述第一比较值,所述与门电路的第二输入端接收所述第二比较值,所述与门电路的输出端电性连接至一外部的过流保护电路,所述与门电路用于将所述第一比较值和所述第二比较值进行比较,并且根据比较的结果以判断是否触发所述过流保护电路。
在本发明的一实施例中,当所述第二输出值大于所述第四输出值时,所述第一比较器输出为高电平;当所述第三输出值大于所述第四输出值时,所述第二比较器输出为高电平;当所述与门电路的第一输入端和第二输入端均接收到高电平时,所述与门电路输出端输出高电平,并且触发所述过流保护电路。
在本发明的一实施例中,当所述第二检测电流等于所述第一检测电流时,所述第一比较器输出为高电平,所述第二比较器输出为高电平。
在本发明的一实施例中,当所述第一检测电流与所述第二检测电流之间的差值在一第一阈值范围之内时,所述第一比较器输出为高电平,所述第二比较器输出为高电平。
在本发明的一实施例中,所述第二基准电流等于所述第一基准电流。
在本发明的一实施例中,所述第二误差电流等于所述第一误差电流。
在本发明的一实施例中,所述第一误差电流等于所述第一基准电流与一第一误差系数之乘积;所述第二误差电流等于所述第二基准电流与一第二误差系数之乘积。
在本发明的一实施例中,当所述第一检测电流大于所述第一基准电流时,判断出所述第一检测电流为一大电流;当所述第二检测电流大于所述第二基准电流时,判断出所述第二检测电流为一大电流。
另外,本发明还提供一种显示面板,所述显示面板为采用GOA架构的显示面板,所述显示面板包括一电平移位电路,所述电平移位电路包括上述用于电平移位电路的过流保护控制电路。
有益效果
本发明的优点在于,本发明所述用于电平移位电路的过流保护控制电路能够判断出所检测到的大电流是由于液晶显示面板走线短路所引起的稳定大电流,还是由于开关机所产生的一变化大电流,从而有效地避免误触发过流保护电路,进一步保障整个液晶显示装置的安全性和可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的用于电平移位电路的过流保护控制电路的电路连接示意图。
图2是本发明一实施例中的显示面板的示意图,所述显示面板包括用于电平移位电路的过流保护控制电路。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书以及上述附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解,这样描述的对象在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
在本专利文档中,下文论述的附图以及用来描述本发明公开的原理的各实施例仅用于说明,而不应解释为限制本发明公开的范围。所属领域的技术人员将理解,本发明的原理可在任何适当布置的系统中实施。将详细说明示例性实施方式,在附图中示出了这些实施方式的实例。此外,将参考附图详细描述根据示例性实施例的终端。附图中的相同附图标号指代相同的元件。
本发明说明书中使用的术语仅用来描述特定实施方式,而并不意图显示本发明的概念。除非上下文中有明确不同的意义,否则,以单数形式使用的表达涵盖复数形式的表达。在本发明说明书中,应理解,诸如“包括”、“具有”以及“含有”等术语意图说明存在本发明说明书中揭示的特征、数字、步骤、动作或其组合的可能性,而并不意图排除可存在或可添加一个或多个其他特征、数字、步骤、动作或其组合的可能性。附图中的相同参考标号指代相同部分。
本发明实施例提供一种用于电平移位电路的过流保护电路及显示面板。以下将分别进行详细说明。
本发明所述的用于电平移位电路的过流保护电路包括:一第一逻辑单元、一第二逻辑单元、一第三逻辑单元、一第四逻辑单元和一第五逻辑单元(图中未示)。
所述第一逻辑单元、所述第二逻辑单元、所述第三逻辑单元、所述第四逻辑单元、所述第五逻辑单元可以由包括逻辑器件的电路组成。所述逻辑器件包括但不限于:模拟逻辑器件和数字逻辑器件。其中,所述模拟逻辑器件用于处理模拟电信号的器件,其包括但不限于:比较器、与门、或门等;所述数字逻辑器件用于处理由脉冲信号表示数字信号的器件,其包括但不限于:触发器、门电路、锁存器、选择器等。
其中,所述第一逻辑单元用于接收一第一检测电流和第一基准电流,并对所述第一检测电流和所述第一基准电流进行逻辑运算,生成第一输出值并输出;所述第二逻辑单元用于接收所述第一输出值、一第一误差电流和一第二误差信号,并且对所述第一输出值和所述第一误差电流进行逻辑运算,生成第二输出值并输出,以及对所述第一输出值和所述第二误差电流进行逻辑运算,生成第三输出值;所述第三逻辑单元用于接收一第二检测电流和一第二基准电流,并且对所述第二检测电流和所述第二基准电流进行逻辑运算,生成第四输出值并输出;所述第四逻辑单元用于接收所述第二输出值、所述第三输出值和所述第四输出值,并且对所述第二输出值和所述第四输出值进行逻辑判断,生成第一判断结果并输出,以及对所述第三输出值和所述第四输出值进行逻辑判断,生成第二判断结果并输出;所述第五逻辑单元用于接收第一判断结果和第二判断结果,并且根据第一判断结果和第二判断结果生成一最终判断结果,以判断是否触发所述过流保护电路。
参考图1,本发明一实施例中的用于电平移位电路的过流保护控制电路的电路连接示意图。所述用于电平移位电路的过流保护控制电路100,包括第一逻辑单元、一第二逻辑单元、一第三逻辑单元、一第四逻辑单元和一第五逻辑单元(图中未示)。
在本实施例中,所述第一逻辑单元包括一第一减法器110和一第一锁存器120,第二逻辑单元包括一第一加法器130和一第二减法器150,第三逻辑单元包括一第三减法器170,第四逻辑单元包括一第一比较器140和一第二比较器160,第五逻辑单元包括一与门电路180。
具体地,所述第一减法器110的第一输入端接收一第一检测电流I 检测 1,所述第一减法器110的第二输入端接收一第一基准电流I 基准 1,所述第一减法器110的输出端电性连接至所述第一锁存器120,所述第一减法器110用于将所述第一检测电流I 检测 1与所述第一基准电流I 基准 1之差作为第一输出值TP1输出至所述第一锁存器120。在本实施例中,当所述第一检测电流I 检测 1大于所述第一基准电流I 基准 1时,判断出所述第一检测电流I 检测 1为一大电流。也就是说,如果第一检测电流I 检测 1小于第一基准电流I 基准 1,则不会触发后继的减法器、加法器、比较器等电子器件的操作。另外,所述第一基准电流I 基准 1的设置用于表示当第一检测电流I 检测 1大于所述第一基准电流I 基准 1时,则所述第一检测电流I 检测 1为大电流(设定为因短路触发所引起的大电流),当第一检测电流I 检测 1小于所述第一基准电流I 基准 1时,则所述第一检测电流I 检测 1为正常电流或小电流。
所述第一锁存器120用于将接收到的所述第一输出值TP1缓存并分别输出至所述第一加法器130和所述第二减法器150。例如,所述第一输出值TP1为9安培的电流,则第一锁存器120输出9安培的电流。第一锁存器120能够使第一检测电流与第二检测电流之间保持一时间差(例如时间差为2毫秒),从而进一步保障整个检测的可靠性。
所述第二加法器的第一输入端电性连接至所述第一锁存器120的输出端,所述第二加法器的第二输入端接收一第一误差电流I 误差 1,所述第二加法器的输出端电性连接至所述第一比较器140,所述第二加法器用于将所述第一输出值TP1与所述第一误差电流I 误差 1之和作为第二输出值TP2输出至所述第一比较器140。其中,所述第一误差电流I 误差 1等于所述第一基准电流I 基准 1与一第一误差系数之乘积。所述第一误差电流I 误差 1为一很小的误差电流值。例如,第一基准电流I 基准 1为1安培,第一检测电流I 检测 1为10安培,则第一误差电流I 误差 1等于1*0.15=0.1安培,其中0.15为第一误差系数。
所述第二减法器150的第一输入端电性连接至所述第一锁存器120的输出端,所述第二减法器150的第二输入端接收一第二误差电流I 误差 2,所述第二减法器150的输出端电性连接至所述第二比较器160,所述第二减法器150用于将所述第一输出值TP1与所述第二误差电流I 误差 2之差作为第三输出值TP3输出至所述第二比较器160。其中,所述第二误差电流I 误差 2等于所述第二基准电流与一第二误差系数之乘积。所述第二误差电流I 误差 2为一很小的误差电流值。例如,第二基准电流为1安培,则第二误差电流I 误差 2等于1*0.1=0.1安培,其中0.1为第二误差系数。在本实施例中,所述第二误差电流I 误差 2等于所述第一误差电流I 误差 1。在其他部分实施例中,所述第二误差电流I 误差 2可以不等于所述第一误差电流I 误差 1。另外,将所述第二基准电流设定等于所述第一基准电流I 基准 1,当然在其他实施例中,所述第二基准电流可以与所述第一基准电流不相等。
所述第三减法器170的第一输入端接收一第二检测电流I 检测 2,所述第三减法器170的第二输入端接收一第二基准电流I 基准 2,所述第三减法器170的输出端分别电性连接至所述第一比较器140和第二比较器160,所述第三减法器170用于将所述第二检测电流I 检测 2与所述第二基准电流I 基准 2之差作为第四输出值TP4分别输出至所述第一比较器140和所述第二比较器160;其中,所接收到的第二检测电流I 检测 2是在所接收到的第一检测电流I 检测 1并间隔一预设时间段之后获得的。所述预设时间段可以例如为1毫秒,但不限于此。另外,所述第二基准电流I 基准 2的设置用于表示当第二检测电流I 检测 2大于所述第二基准电流I 基准 2时,则所述第二检测电流I 检测 2为大电流,当第二检测电流I 检测 2小于所述第二基准电流I 基准 2时,则所述第二检测电流I 检测 2为正常电流或小电流。
所述第一比较器140的第一输入端接收所述第二输出值TP2,所述第一比较器140的第二输入端接收所述第四输出值TP4,所述第一比较器140的输出端电性连接至所述与门电路180的第一输入端,所述第一比较器140用于将所述第二输出值TP2与所述第四输出值TP4进行比较,并且将比较的结果作为第一比较值A输出至所述与门电路180。
所述第二比较器160的第一输入端接收所述第四输出值TP4,所述第二比较器160的第二输入端接收所述第三输出值TP3,所述第二比较器160的输出端电性连接至所述与门电路180的第二输入端,所述第二比较器160用于将所述第四输出值TP4与所述第三输出值TP3进行比较,并且将比较的结果作为第二比较值B输出至所述与门电路180。
所述与门电路180的第一输入端接收所述第一比较值A,所述与门电路180的第二输入端接收所述第二比较值B,所述与门电路180的输出端电性连接至一外部的过流保护电路,所述与门电路180用于将所述第一比较值A和所述第二比较值B进行比较,并且根据比较的结果以判断是否触发所述过流保护电路。
在本实施例中,当所述第二输出值TP2大于所述第四输出值TP4时,所述第一比较器140输出为高电平。当所述第二输出值TP2小于所述第四输出值TP4时,则所述第一比较器140输出为低电平。
当所述第三输出值TP3大于所述第四输出值TP4时,所述第二比较器160输出为高电平。当所述第三输出值TP3大于所述第四输出值TP4时,所述第二比较器160输出为低电平。
当所述与门电路180的第一输入端和第二输入端均接收到高电平时,所述与门电路180输出端输出高电平,并且触发所述过流保护电路。也就是说,当所述与门电路180的第一输入端所接收到的第一比较值A和所述与门电路180的第二输入端所接收到的第二比较值B均为高电平时,则所述与门电路180输出为高电平,则触发过流保护电路。亦即,当第一比较值A或第二比较值B中任一个为低电平,则所述与门电路180输出为低电平,则不触发过流保护电路。
在本实施例中,当所述第二检测电流I 检测 2等于所述第一检测电流I 检测 1时,所述第一比较器140输出为高电平,并且所述第二比较器160输出也为高电平。于是,所述与门电路180的输出端输出高电平,并触发所述过流保护电路。亦即,第一次检测到的第一检测电流I 检测 1为大电流,在经过一预设时间段后,第二次检测到的第二检测电流I 检测 2仍然是大电流,且与第一次检测的第一检测电流I 检测 1相同,表明检测到的大电流为一恒定大电流。而该恒定的大电流正是由于显示面板内部的走线发生短路所引起的。因此,有必要触发过流保护措施。
或者,当所述第一检测电流I 检测 1与所述第二检测电流I 检测 2之间的差值在一第一阈值范围之内时,所述第一比较器140输出为高电平,所述第二比较器160输出为高电平,其中第一阈值范围为第一基准电流I 基准 1(等同于第二基准电流I 基准 2)的15%。于是,所述与门电路180的输出端输出高电平,并触发所述过流保护电路。也就是说,第一次检测到的第一检测电流I 检测 1为大电流,在经过一预设时间段后,第二次检测到的第二检测电流I 检测 2仍然是大电流,且与第一次检测的第一检测电流I 检测 1近似相同或接近相同,表明检测到的大电流为一近似恒定的大电流。而该近似恒定的大电流正是由于显示面板内部的走线发生短路所引起的。因此,有必要触发过流保护措施。
当然,当所述第二检测电流I 检测 2不等于所述第一检测电流I 检测 1,且该第一检测电流I 检测 1与所述第二检测电流I 检测 2之间的差值超出所述第一阈值范围(例如第一基准电流I 基准 1的15%)时,则所述第一比较器140和所述第二比较器160其中一个输出为高电平,另一个输出为低电平。于是,所述与门电路180的输出端输出低电平,并不触发所述过流保护电路。也就是说,第一次检测到的第一检测电流I 检测 1为大电流,在经过一预设时间段后,第二次检测到的第二检测电流I 检测 2可能是小电流,或者第二次检测到的第二检测电流I 检测 2为大电流且与第一次检测的第一检测电流I 检测 1不相同或相差较大,表明检测到的大电流为一变化的大电流,而变化的大电流可能是由于快速开关机所引起的,因此,无需触发过流保护。
以下通过一具体实施例来说明用于电平移位电路的过流保护控制电路100的工作过程。
设定第一检测电流I 检测 1为10安培,第一基准电流I 基准 1为1安培,第一误差电流I 误差 1为0.1安培,第二基准电流I 基准 2为1安培,第二误差电路为0.1安培,第二检测电流I 检测 2为10安培。
第一减法器110的第一输入端接收到10安培的第一检测电流I 检测 1,第二输入端接收到1安培的基准电流,则第一减法器110的输出端输出9安培的电流,作为第一输出值TP1,传送至第一锁存器120。第一锁存器120接收到9安培的第一输出值TP1进行锁存,并仍然输出9安培的电流,并作为第一输出值TP1,分别传送至第一加法器130和第二减法器150。
所述第一加法器130的第一输入端接收到9安培的第一输出值TP1,第二输入端接收到0.1安培的第一误差电流I 误差 1,则所述第一加法器130的输出端输出9.1安培的电流,作为第二输出值TP2,并传送至第一比较器140。
所述第二减法器150的第一输入端接收到9安培的第一输出值TP1,第二输入端接收到0.1安培的第二误差电流I 误差 2,则所述第二减法器150的输出端输出8.9安培的电流,作为第三输出值TP3,并传送至第二比较器160。
所述第三减法器170的第一输入端接收到10安培的第二检测电流I 检测 2,所述第二检测电流I 检测 2是在获得第一检测电流I 检测 1之后的3秒时获得的。所述第三减法器170的第二输入端接收到1安培的第二基准电流I 基准 2,则第三减法器170的输出端输出9安培的电流,并作为第四输出值TP4,分别传送至第一比较器140和第二比较器160。
所述第一比较器140的第一输入端接收到9.1安培的第二输出值TP2,第二输入端接收到9安培的第四输出值TP4,则第一比较器140的输出端输出一高电平。
所述第二比较器160的第一输入端接收到9安培的第四输出值TP4,第二输入端接收到8.9安培的第三输出值TP3,则第二比较器160的输出端输出一高电平。
所述与门电路180的第一输入端和第二输入端均接收到高电平,则所述与门电路180的输出端也输出高电平,从而触发过流保护电路。
根据上述的用于电平移位电路的过流保护控制电路100的工作过程的描述,可以看出,当第一检测电流I 检测 1和第二检测电流I 检测 2相等时,即表明检测到的电流为恒定电流时,且第一检测电流I 检测 1大于一第一基准电流I 基准 1(用于判断是否为大电流),则判断出恒定的大电流是由于走线短路所引起,并非因快速开关机而产生的,从而有效地避免误触发过流保护电路,进一步保障整个液晶显示装置的安全性和可靠性。
参见图2,本发明还提供一种显示面板200,所述显示面板200为采用GOA架构的显示面板,所述显示面板200包括一电平移位电路,所述电平移位电路包括上述用于电平移位电路的过流保护控制电路100,在此不再赘述。
本发明的优点在于,本发明所述用于电平移位电路的过流保护控制电路100能够判断出所检测到的大电流是由于液晶显示面板走线短路所引起的稳定大电流,还是由于开关机所产生的一变化大电流,从而有效地避免误触发过流保护电路,进一步保障整个液晶显示装置的安全性和可靠性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (10)

  1. 一种用于电平移位电路的过流保护控制电路,其中所述过流保护电路包括:一第一逻辑单元、一第二逻辑单元、一第三逻辑单元、一第四逻辑单元和一第五逻辑单元;
    所述第一逻辑单元用于接收一第一检测电流和一第一基准电流,并对所述第一检测电流和所述第一基准电流进行逻辑运算,生成一第一输出值并输出;
    所述第二逻辑单元用于接收所述第一输出值、一第一误差电流和一第二误差信号,并且对所述第一输出值和所述第一误差电流进行逻辑运算,生成一第二输出值并输出,以及对所述第一输出值和所述第二误差电流进行逻辑运算,生成一第三输出值;
    所述第三逻辑单元用于接收一第二检测电流和一第二基准电流,并且对所述第二检测电流和所述第二基准电流进行逻辑运算,生成一第四输出值并输出;
    所述第四逻辑单元用于接收所述第二输出值、所述第三输出值和所述第四输出值,并且对所述第二输出值和所述第四输出值进行逻辑判断,生成一第一判断结果并输出,以及对所述第三输出值和所述第四输出值进行逻辑判断,生成一第二判断结果并输出;
    所述第五逻辑单元用于接收所述第一判断结果和所述第二判断结果,并且根据所述第一判断结果和所述第二判断结果生成一最终判断结果,以判断是否触发所述过流保护电路。
  2. 根据权利要求1所述用于电平移位电路的过流保护控制电路,其中所述第一逻辑单元包括一第一减法器和一第一锁存器,所述第二逻辑单元包括一第一加法器和一第二减法器,所述第三逻辑单元包括一第三减法器,所述第四逻辑单包括为一第一比较器和一第二比较器,所述第五逻辑单元包括一与门电路;
    所述第一减法器的第一输入端接收一第一检测电流,所述第一减法器的第二输入端接收一第一基准电流,所述第一减法器的输出端电性连接至所述第一锁存器,所述第一减法器用于将所述第一检测电流与所述第一基准电流之差作为一第一输出值输出至所述第一锁存器;
    所述第一锁存器用于将接收到的所述第一输出值缓存并分别输出至所述第一加法器和所述第二减法器;
    所述第二加法器的第一输入端电性连接至所述第一锁存器的输出端,所述第二加法器的第二输入端接收一第一误差电流,所述第二加法器的输出端电性连接至所述第一比较器,所述第二加法器用于将所述第一输出值与所述第一误差电流之和作为一第二输出值输出至所述第一比较器;
    所述第二减法器的第一输入端电性连接至所述第一锁存器的输出端,所述第二减法器的第二输入端接收一第二误差电流,所述第二减法器的输出端电性连接至所述第二比较器,所述第二减法器用于将所述第一输出值与所述第二误差电流之差作为一第三输出值输出至所述第二比较器;
    所述第三减法器的第一输入端接收一第二检测电流,所述第三减法器的第二输入端接收一第二基准电流,所述第三减法器的输出端分别电性连接至所述第一比较器和所述第二比较器,所述第三减法器用于将所述第二检测电流与所述第二基准电流之差作为一第四输出值分别输出至所述第一比较器和所述第二比较器;其中,所述第二检测电流是在接收到所述第一检测电流并间隔一预设时间段之后获得的;
    所述第一比较器的第一输入端接收所述第二输出值,所述第一比较器的第二输入端接收所述第四输出值,所述第一比较器的输出端电性连接至所述与门电路的第一输入端,所述第一比较器用于将所述第二输出值与所述第四输出值进行比较,并且将比较的结果作为一第一比较值输出至所述与门电路;
    所述第二比较器的第一输入端接收所述第四输出值,所述第二比较器的第二输入端接收所述第三输出值,所述第二比较器的输出端电性连接至所述与门电路的第二输入端,所述第二比较器用于将所述第四输出值与所述第三输出值进行比较,并且将比较的结果作为一第二比较值输出至所述与门电路;
    所述与门电路的第一输入端接收所述第一比较值,所述与门电路的第二输入端接收所述第二比较值,所述与门电路的输出端电性连接至一外部的过流保护电路,所述与门电路用于将所述第一比较值和所述第二比较值进行比较,并且根据比较的结果以判断是否触发所述过流保护电路。
  3. 根据权利要求2所述用于电平移位电路的过流保护控制电路,其中当所述第二输出值大于所述第四输出值时,所述第一比较器输出为高电平;当所述第三输出值大于所述第四输出值时,所述第二比较器输出为高电平;当所述与门电路的第一输入端和第二输入端均接收到高电平时,所述与门电路输出端输出高电平,并且触发所述过流保护电路。
  4. 根据权利要求3所述用于电平移位电路的过流保护控制电路,其中当所述第二检测电流等于所述第一检测电流时,所述第一比较器输出为高电平,所述第二比较器输出为高电平。
  5. 根据权利要求3所述用于电平移位电路的过流保护控制电路,其中当所述第一检测电流与所述第二检测电流之间的差值在一第一阈值范围之内时,所述第一比较器输出为高电平,所述第二比较器输出为高电平。
  6. 根据权利要求2所述用于电平移位电路的过流保护控制电路,其中所述第二基准电流等于所述第一基准电流。
  7. 根据权利要求2所述用于电平移位电路的过流保护控制电路,其中所述第二误差电流等于所述第一误差电流。
  8. 根据权利要求2所述用于电平移位电路的过流保护控制电路,其中所述第一误差电流等于所述第一基准电流与一第一误差系数之乘积;所述第二误差电流等于所述第二基准电流与一第二误差系数之乘积。
  9. 根据权利要求2所述用于电平移位电路的过流保护控制电路,其中当所述第一检测电流大于所述第一基准电流时,判断出所述第一检测电流为一大电流;当所述第二检测电流大于所述第二基准电流时,判断出所述第二检测电流为一大电流。
  10. 一种显示面板,其中所述显示面板为采用GOA架构的显示面板,所述显示面板包括一电平移位电路,所述电平移位电路包括权利要求1至9项任一所述的用于电平移位电路的过流保护控制电路。
PCT/CN2019/070203 2018-11-22 2019-01-03 用于电平移位电路的过流保护控制电路 WO2020103308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811401077.4 2018-11-22
CN201811401077.4A CN109346019B (zh) 2018-11-22 2018-11-22 用于电平移位电路的过流保护控制电路

Publications (1)

Publication Number Publication Date
WO2020103308A1 true WO2020103308A1 (zh) 2020-05-28

Family

ID=65317187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070203 WO2020103308A1 (zh) 2018-11-22 2019-01-03 用于电平移位电路的过流保护控制电路

Country Status (2)

Country Link
CN (1) CN109346019B (zh)
WO (1) WO2020103308A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120656A (zh) * 2019-05-16 2019-08-13 深圳市华星光电技术有限公司 过电流保护电路及其驱动方法
CN112290505B (zh) * 2020-10-14 2023-02-07 Tcl华星光电技术有限公司 Goa过流保护侦测电路、其保护侦测方法及电子装置
CN114512079A (zh) * 2020-11-16 2022-05-17 群创光电股份有限公司 电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700811A (zh) * 2015-03-27 2015-06-10 友达光电股份有限公司 一种驱动控制电路及其 goa 电路的过流保护方法
CN106058796A (zh) * 2016-07-29 2016-10-26 中国电子科技集团公司第四十研究所 一种程控过流保护电路及实现方法
CN107528285A (zh) * 2017-07-17 2017-12-29 中国科学院合肥物质科学研究院 一种拥有躲脉冲功能的过流保护装置
CN207426661U (zh) * 2017-09-21 2018-05-29 广州金升阳科技有限公司 一种过流保护装置
CN108303581A (zh) * 2018-02-01 2018-07-20 深圳市华星光电技术有限公司 Goa电路及goa电路过流保护侦测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448260B (zh) * 2015-12-29 2017-11-03 深圳市华星光电技术有限公司 一种过流保护电路及液晶显示器
CN106297702B (zh) * 2016-08-31 2018-11-23 深圳市华星光电技术有限公司 液晶显示装置及其过流保护电路
CN106169289B (zh) * 2016-09-27 2019-01-04 深圳市华星光电技术有限公司 一种阵列基板行驱动电路及其过流保护方法、液晶显示器
CN107103888B (zh) * 2017-05-19 2018-09-14 深圳市华星光电技术有限公司 液晶显示面板的时序驱动电路、驱动电路及液晶显示面板
CN107393491B (zh) * 2017-07-18 2018-08-14 深圳市华星光电半导体显示技术有限公司 时钟信号输出电路及液晶显示装置
CN107369416B (zh) * 2017-07-19 2019-05-24 深圳市华星光电半导体显示技术有限公司 液晶显示面板及其信号控制电路
CN107732868A (zh) * 2017-09-21 2018-02-23 广州金升阳科技有限公司 一种过流保护控制方法及过流保护装置
CN107909972A (zh) * 2017-11-15 2018-04-13 深圳市华星光电技术有限公司 过流保护电路及方法
CN108010497A (zh) * 2017-11-27 2018-05-08 深圳市华星光电技术有限公司 一种液晶显示器及其过流保护方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700811A (zh) * 2015-03-27 2015-06-10 友达光电股份有限公司 一种驱动控制电路及其 goa 电路的过流保护方法
CN106058796A (zh) * 2016-07-29 2016-10-26 中国电子科技集团公司第四十研究所 一种程控过流保护电路及实现方法
CN107528285A (zh) * 2017-07-17 2017-12-29 中国科学院合肥物质科学研究院 一种拥有躲脉冲功能的过流保护装置
CN207426661U (zh) * 2017-09-21 2018-05-29 广州金升阳科技有限公司 一种过流保护装置
CN108303581A (zh) * 2018-02-01 2018-07-20 深圳市华星光电技术有限公司 Goa电路及goa电路过流保护侦测方法

Also Published As

Publication number Publication date
CN109346019B (zh) 2020-07-10
CN109346019A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
KR102318058B1 (ko) Goa 회로의 과전류 보호 시스템 및 방법
US10914993B2 (en) Electrostatic protection method, electrostatic protection apparatus, and liquid crystal display
US10325563B2 (en) Circuit and method for eliminating image sticking during power-on and power-off
US9886879B2 (en) Liquid crystal display and method for testing liquid crystal display
KR100910562B1 (ko) 표시 장치의 구동 장치
US20180151142A1 (en) Lcd tv, lcd panel, and short-circuit protection method thereof
KR100968985B1 (ko) 액정 표시 장치 및 그 제어 방법과 휴대 단말기
US10229619B2 (en) Test circuit, test method, display panel and display apparatus
WO2020103308A1 (zh) 用于电平移位电路的过流保护控制电路
US9898944B2 (en) Detecting circuit, detecting method and display device
US7190343B2 (en) Liquid crystal display and driving method thereof
US20140002438A1 (en) Source driver and liquid crystal display device
WO2020103205A1 (zh) 驱动电路和显示面板
EP3285250B1 (en) Drive chip, drive board and test method therefor, and display device
US9030397B2 (en) Gate driver, driving circuit, and LCD
US20210389633A1 (en) Display panel static electricity protection device, display panel static electricity protection method, and display device
WO2020259484A1 (zh) 显示面板的驱动电路、驱动方法和显示装置
US20220051638A1 (en) Charge sharing circuit and charge sharing method for display panel, and display panel
US11308908B2 (en) Liquid crystal display panel and driving method thereof
WO2020103193A1 (zh) 驱动电路和显示面板
WO2018209742A1 (zh) 液晶显示面板的时序驱动电路、驱动电路及液晶显示面板
JP2018180414A (ja) 液晶表示装置
US10726755B2 (en) Driving circuit, control method thereof, display panel and display device
US20190073981A1 (en) Gate driver on array driving circuit and liquid crystal display device having the same
CN109215605B (zh) 驱动电路、驱动装置、显示装置及其驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887574

Country of ref document: EP

Kind code of ref document: A1