WO2020103265A1 - 生命体的检测方法及装置 - Google Patents

生命体的检测方法及装置

Info

Publication number
WO2020103265A1
WO2020103265A1 PCT/CN2018/122672 CN2018122672W WO2020103265A1 WO 2020103265 A1 WO2020103265 A1 WO 2020103265A1 CN 2018122672 W CN2018122672 W CN 2018122672W WO 2020103265 A1 WO2020103265 A1 WO 2020103265A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
living body
detected
wave signal
Prior art date
Application number
PCT/CN2018/122672
Other languages
English (en)
French (fr)
Inventor
陈智
陈志勇
水建忠
于东亮
Original Assignee
中科传启(苏州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科传启(苏州)科技有限公司 filed Critical 中科传启(苏州)科技有限公司
Publication of WO2020103265A1 publication Critical patent/WO2020103265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00

Definitions

  • the invention relates to the technical field of ultrasound, and particularly relates to a method and a device for detecting a living body.
  • infrared detection is the use of infrared thermal effect and photoelectric effect, that is, the incident infrared radiation signal is converted into an electrical signal output, and then the output electrical signal is used to detect living organisms; video detection is through real-time collection of video images in the detection area, Then use the collected video images to detect living bodies; radar detection is to use electromagnetic waves to detect, that is, to find living bodies and determine their spatial positions by radio methods.
  • the viewing angle is limited by its installation position, and there is a certain dead angle; and when the ambient temperature exceeds the body temperature of the living body, it may also be impossible to judge or misjudge; Video capture devices also have monitoring dead angles, resulting in low detection accuracy; radar detection is mostly used to detect moving living bodies. When the living body is at rest, it may fail to detect.
  • embodiments of the present invention provide a method and device for detecting a living body to solve the problem of low detection accuracy of existing living bodies.
  • an embodiment of the present invention provides a method for detecting a living body, including:
  • the method for detecting a living body provided by an embodiment of the present invention, wherein, if there is a living body in the target to be detected, the vital signs of the living body (for example, pulse, heartbeat, or breathing, etc.) modulate the detection wave signal.
  • the reflected wave signal that is reflected back will carry the vital sign signals of the living body, and then use the detected wave signal to perform signal processing on the reflected wave signal and estimate the target position.
  • the obtained spatial position information includes vital sign signals.
  • the position information can detect whether there is a living body in the target to be detected.
  • This method uses the modulation of the vital signs to the detection wave signal to detect the existence of a living body, as long as the living body in the target to be detected can be detected by this method, without being affected by the specific body of the living body in the target to be detected
  • the limitation of position or motion state greatly improves the accuracy of detection.
  • the performing signal processing on each of the reflected wave signals based on the detection wave signal to obtain a target signal includes:
  • the received reflected wave signal will be delayed, and the phase of the reflected wave signal is being killed Modulated by the periodic movement of the sign signal. Therefore, by multiplying the reflected wave signal by the detection wave signal, this phase modulation can be demodulated, so that the target signal can be used to facilitate the subsequent detection of the living body using the target signal.
  • the target orientation estimation is performed on all the target signals to obtain spatial orientation information, including:
  • Beam synthesis is performed based on the time difference and the target signal to obtain the spatial orientation information.
  • the received reflected wave signal will be delayed, and will reach each transducer in the device The distances are different, so using the calculated time difference between each reflected wave signal and the first transmitted wave signal during beam synthesis can ensure the accuracy of beam synthesis and provide a basis for subsequent detection of living organisms.
  • the time difference is calculated using the following formula:
  • i 1, 2, ..., N;
  • ⁇ i is the time difference between the i-th reflected wave signal and the first said reflected wave signal
  • N is the number of said reflected wave signals
  • d is the spacing of the array that reflects the detected wave signals
  • ⁇ Is the glancing angle of the reflected wave signal received by the array
  • c is the propagation speed of the detection wave signal.
  • P ( ⁇ , r) is the beam output power
  • s i (t) is the target signal corresponding to the i-th reflected wave signal
  • r 0 is the preset distance
  • x (t) is the vital sign signal.
  • the method for detecting a living body carries the vital sign signal x (t) in the change of the target azimuth beam output power over time, and the presence of the living body can be detected by using the spatial azimuth information and the beam output power.
  • the detecting whether the living body exists in the target space to be detected based on the spatial orientation information includes:
  • the beam output power is less than the first threshold, it is determined that the living body does not exist in the target space to be detected.
  • the detecting whether the living body exists in the target space to be detected based on the spatial orientation information includes: :
  • the method for detecting a living body improves the accuracy of detection by tracking the position where a living body may exist when the beam output power is greater than or equal to the first threshold, and using the tracking signal .
  • the detecting the living body based on the tracking signal includes:
  • the method for detecting a living body provided by an embodiment of the present invention can recover the vital sign signal by filtering the tracking signal and performing power spectrum analysis, and then extract the frequency of the vital sign signal to compare with the second threshold value. Determine whether there is a living body.
  • the detection wave signal is an ultrasonic signal.
  • an embodiment of the present invention also provides a living body detection device, including:
  • a transmitting device configured to transmit at least one detection wave signal to the target space to be detected
  • the receiving device is used to receive multiple reflected wave signals reflected back;
  • a memory and a processor and the memory, the processor, and the receiving device are communicatively connected to each other, and the processor is used to perform signal processing on each of the reflected wave signals based on the detected wave signal;
  • the target signal is used to estimate the target orientation to obtain spatial orientation information; based on the spatial orientation information, it is detected whether the living body exists in the target space to be detected.
  • the vital signs of the living body for example, pulse, heartbeat, breathing, etc.
  • the reflected wave signal will carry the vital signs of the living body, and then use the detected wave signal to process the reflected wave signal and estimate the target position.
  • the obtained spatial position information includes the vital sign signal. Through the spatial position information It can detect whether there is a living body in the target to be detected.
  • the device can detect whether there is a living body by using the vital sign signal to modulate the detection wave signal. As long as the living body in the target to be detected can be detected by this method, it is not affected by the specific body of the living body in the target to be detected. The limitation of position or motion state greatly improves the accuracy of detection.
  • the transmitting device includes an ultrasound transducer array; and / or, the receiving device includes an ultrasound transducer array.
  • FIG. 1 is a flowchart of a method for detecting a living body according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for detecting a living body according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for detecting a living body according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a beam synthesis result when there is no living body according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a beam synthesis result when there is a living body according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a hardware structure of an apparatus for detecting a living body provided by an embodiment of the present invention.
  • the detection device for a living body in the embodiment of the present invention includes: a transmitting device, a receiving device, a memory, and a processor, and the memory, the processor, and the receiving device are communicatively connected to each other.
  • the transmitting device is used to transmit at least one detection wave signal to the target to be detected; the receiving device is used to receive multiple reflected wave signals reflected back; the processor is used to process the multiple reflected wave signals received by the receiving device To detect the existence of a living body; the memory is used to store application programs.
  • the target to be detected may be a vehicle, an indoor or other target that needs to be detected by a living body, and so on.
  • the detection method of the living body may be the detection of the living body in the confined space, that is, the detection of the life left in the car, the detection of the elderly living alone in the room, the detection of the life left in the washing machine, and so on.
  • the device for detecting a living body may perform real-time detection on whether a target to be detected exists in a living body, or may perform detection according to requirements, and so on.
  • the life body detection device provided in the embodiment of the present invention may be installed in a vehicle, and may detect life bodies left in the vehicle when the vehicle is stopped and the door is closed to prevent accidents.
  • an embodiment of a method for detecting a living body is provided. It should be noted that although the logic sequence is shown in the flowchart, in some cases, it may be executed in an order different from here The steps shown or described.
  • FIG. 1 is a flowchart of a method for detecting a living body according to an embodiment of the present invention. As shown in FIG. 1, the process It includes the following steps:
  • S11 Transmit at least one detection wave signal to the target space to be detected.
  • the transmitting device transmits at least one detection wave signal to the target space to be detected.
  • the detection wave signal may be an ultrasonic signal or other types of detection wave signals.
  • each detection wave signal transmitted by the transmitting device is a single frequency wave.
  • Each detection wave signal is reflected back to the receiving device after contacting a living body or other objects, that is, the receiving device receives a plurality of reflected wave signals reflected back.
  • the transmitting device and the receiving device can be integrated (that is, the same device can both emit a detection wave signal and can receive the reflected wave signal reflected back), or can be set separately (that is, the transmitting device and the receiving device are independent Set up to achieve the corresponding functions respectively).
  • S13 Perform signal processing on each reflected wave signal based on the detected wave signal to obtain a target signal.
  • the signal processing may be demodulation or Hilbert transform.
  • Demodulation is the process of recovering a message from a modulated signal that carries a message. Since the vital sign signal modulates the detection wave signal so that the reflected wave signal carries the vital sign signal, the vital sign signal can be decomposed by using the detection wave signal to demodulate the reflected wave signal.
  • S14 Perform target orientation estimation on all target signals to obtain spatial orientation information.
  • the processor performs target orientation estimation on all target signals (where each reflected wave signal corresponds to a target signal), that is, synthesizes all target signals into one spatial orientation information. Since each target signal corresponds to the reflected wave signal modulated by the vital sign signal, the spatial orientation information obtained by estimating the target orientation of the target signal can reflect the detected vital sign signal to a great extent.
  • S15 Detect whether a living body exists in the target space to be detected based on the spatial orientation information.
  • the processor After the processor obtains the spatial orientation information, it can use the power of the spatial orientation information to detect the vital body, or it can extract the frequency of the vital signs reflected by the power change of the spatial orientation information to detect the vital signs, or a combination of the above (Eg, power, frequency), etc. Regardless of the synthesis method, the vital position signals are carried in the spatial orientation information, so the spatial orientation information can be used to detect the vital body.
  • the method for detecting a living body provided in this embodiment, wherein, if there is a living body in the target to be detected, the vital signs of the living body (for example, pulse, heartbeat, breathing, etc.) modulate the detection wave signal and reflect The returned reflected wave signal will carry the vital signs of the living body, and then use the detected wave signal to process the reflected wave signal and estimate the target position.
  • the obtained spatial position information includes the vital sign signal. Information can detect whether there is a living body in the target space to be detected.
  • This method uses the modulation of the vital signs to the detection wave signal to detect the existence of a living body, as long as the living body in the target to be detected can be detected by this method, without being affected by the specific body of the living body in the target to be detected
  • the limitation of position or motion state greatly improves the accuracy of detection.
  • FIG. 2 is a flowchart of a method for detecting a living body according to an embodiment of the present invention. As shown in FIG. 2, The process includes the following steps:
  • At least one detection wave signal transmitted by the transmitting device to the target space to be detected is a single frequency wave.
  • Each detection wave signal can be expressed by the following formula:
  • f c is the frequency of the detected wave signal.
  • x (t) can be used to represent the vital signs of a living body.
  • the distance between the transmitting device and the living body is r 0 , then each detection wave signal is transmitted from the transmitting device, modulated by the vital sign signal, and reflected back to the receiving device.
  • the distance traveled from one transmission to the received signal wave is expressed by the following formula:
  • i-th reflected wave signal R i (t) can be expressed by the following formula:
  • a is the amplitude of the reflected wave signal
  • c is the propagation speed of the detection wave signal.
  • the time difference can be calculated by recording the reception time of each reflected wave signal, and the recorded time can also be used to calculate the time difference; the time difference can also be calculated by other methods and so on.
  • the transmitting device and the receiving device are arrays formed by a plurality of elements, each element emits a detection wave signal and receives a detection wave signal; since each detection wave signal may exist between the transmission and the reflection back to the array element Time difference, therefore, taking the time when the array element receives the first reflected wave signal as the starting point, the meaning of the time difference is described as follows:
  • ⁇ 2 is the time difference between the second reflected wave signal received by the array element and the first reflected wave signal received
  • ⁇ 3 is the time difference between the third reflected wave signal received by the array element and the first reflected wave signal received
  • ⁇ N is the time difference between the Nth reflected wave signal received by the array element and the 1st reflected wave signal received.
  • S23 Perform signal processing on each reflected wave signal based on the detected wave signal to obtain a target signal.
  • the signal processing in this embodiment is demodulation. It can be seen from equation (3) that the reflected wave signal is very similar to the detected wave signal. Since there may be a certain distance between the living body and the transmitting device, the received reflected wave signal will be delayed, and the phase of the reflected wave signal is modulated by the periodic motion of the vital sign signal. Therefore, using the detected wave signal for IQ demodulation on the basis of the reflected wave signal, this phase modulation can be demodulated. Specifically, it includes the following steps:
  • S231 Multiply the detected wave signal and the reflected wave signal to obtain a product signal.
  • the processor After the processor obtains the product signal, after low-pass filtering the product signal to remove some high-frequency component signals, the in-phase component I i (t) in the target signal can be obtained.
  • the reflected wave signal with a 90 ° phase shift is multiplied by the detection wave signal, and low-pass filtering, to obtain the target quadrature component signals Q i (t).
  • I i (t) and Q i (t) signal composed of complex to form the target signal s i (t).
  • the target signal corresponding to each reflected wave signal R i (t) can be expressed as s i (t), that is, s i (t) is the target signal corresponding to the i-th reflected wave signal R i (t), which can be adopted as follows The formula says:
  • low-pass filtering may be performed again to obtain a zero-IF signal. Since only low-frequency signals are included after IQ demodulation, subsequent downsampling can be performed during beam synthesis to reduce the amount of calculation.
  • S24 Perform target orientation estimation on all target signals to obtain spatial orientation information.
  • the processor performs target orientation estimation on all target signals (where each reflected wave signal corresponds to a target signal), that is, synthesizes all target signals into one spatial orientation information.
  • the target position estimation in this embodiment is beam synthesis. It includes the following steps:
  • the transmitting device and the receiving device are arrays of elements formed by multiple elements, and the distance between each element is equal to d; before calculating the time difference, the reflected wave signal received by each element can be traversed
  • the grazing angle ⁇ is used for subsequent calculations; it can also be considered that the reflected wave signals received by each array element are approximately parallel, so the grazing angles ⁇ of the reflected wave signals received by each array element in the array are all equal.
  • the time difference between the receiving device receiving each reflected wave signal and receiving the first reflected wave signal can be calculated using the following formula:
  • i 1, 2, ..., N; (6)
  • ⁇ i is the time difference between the i-th reflected wave signal and the first reflected wave signal; N is the number of the reflected wave signal; d is the spacing of the array that emits the detection wave signal; ⁇ is the array The glancing angle of the received reflected wave signal; c is the propagation speed of the detected wave signal.
  • S242 Perform beam synthesis based on the time difference and the target signal to obtain spatial orientation information.
  • the processor uses the time difference and the target signal to calculate the beam output power (also referred to as the output power of the spatial azimuth information), and can use the following formula for beam synthesis:
  • P ( ⁇ , r) is the beam output power
  • s i (t) is the target signal corresponding to the i-th reflected wave signal
  • r 0 is the preset distance
  • x (t) is the vital sign signal.
  • S25 Detect whether a living body exists in the target space to be detected based on the spatial orientation information.
  • the processor uses the beam output power to compare with the first threshold, and when the beam output power is less than the first threshold, detects that there is no living body in the target space to be detected.
  • the beam output power is greater than or equal to the first threshold, it can be considered that there is a living body in the target space to be detected; the detection of the living body can also be performed again to improve the accuracy of the detection.
  • the method for detecting a living body provided in this embodiment may have a certain distance between the living body and the device receiving the transmitted wave signal, and the received reflected wave signal may be delayed and The distance to each transducer is different. Therefore, when performing beam synthesis, the calculated time difference between each reflected wave signal and the first transmitted wave signal can ensure the accuracy of beam synthesis.
  • FIG. 3 is a flowchart of a method for detecting a living body according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • the detection wave signal is an ultrasonic signal.
  • the transmitting device is an ultrasound transducer array
  • the receiving device is an ultrasound transducer array. Due to the radial movement of vital signs (breathing, heartbeat, etc.) of the living body relative to the detection wave signal, the reflected wave signal reflected back will have a frequency shift (also called micro-Doppler phenomenon, the frequency generated The shift is called the Doppler frequency), and then beam synthesis is used to detect the living body.
  • the i-th reflected wave signal R i (t) reflected back can be expressed by the following formula:
  • S33 Perform signal processing on each reflected wave signal based on the detected wave signal to obtain a target signal.
  • the processor samples ADC of the reflected wave signal before demodulating.
  • Demodulation can include the following steps:
  • S331 Multiply the detected wave signal and the reflected wave signal to obtain a product signal.
  • S231 in the embodiment shown in FIG. 2, which will not be repeated here.
  • S332 Perform low-pass filtering on the product signal to obtain the target signal. For details, please refer to S232 in the embodiment shown in FIG. 2, which will not be repeated here.
  • S34 Perform target orientation estimation on all target signals to obtain spatial orientation information. For details, please refer to S24 in the embodiment shown in FIG. 2, which will not be repeated here.
  • S35 Detect whether a living body exists in the target space to be detected based on the spatial orientation information.
  • S351 Determine whether the beam output power is less than the first threshold.
  • the processor uses the beam output power to compare with the first threshold, and when the beam output power is less than the first threshold, executes S352; otherwise, executes S353.
  • the processor uses the beam output power P ( ⁇ , r) to determine the spatial position ( ⁇ 0 , r 0 ) of the living body, including spatial orientation information and spatial distance.
  • FIG. 4 shows a schematic diagram of spatial orientation information when there is no living body
  • FIG. 5 shows a schematic diagram of spatial orientation information when there is a living body.
  • the transmitting device After determining the position of the living body, track the change of the beam output power P ( ⁇ 0 , r 0 ) with time A (t) at that position. For example, after determining the position of a living body, you can adjust the transmitting device to transmit multiple ultrasonic signals to the position, and then perform beam synthesis to track the beam output power corresponding to the position in real time, and use the beam output power tracked in real time to calculate the position The change of the beam output power at time A (t) at that time is the tracking signal.
  • S355 Detect whether a living body exists in the target space to be detected based on the tracking signal.
  • the processor After the processor obtains the tracking signal, it performs power spectrum analysis on the tracking signal to extract the vital signs signal. Specifically, it includes the following steps:
  • the power spectrum represents the relationship between the power of the filtered signal and the frequency, and the vital signs can be obtained by performing power spectrum analysis on the filtered signal.
  • the processor can detect whether there is a vital body by comparing whether the frequency of the vital sign signal is greater than the second threshold.
  • the detection method for the living body detects that there may be a living body in the target space to be detected; Tracking, extracting vital signs signals to detect the vital body again, improving the accuracy of detection; in addition, this embodiment uses the frequency shift caused by the micro-Doppler effect generated by the micro-motion of the human body (breathing, heartbeat) to perform beamforming , The amplitude of the beam formation is related to the frequency of breathing and heartbeat, so as to carry out vital body detection, ensuring the accuracy of the detection.
  • the living body detection device may include a transmitting device 61, a receiving device 62, a processor 63, and a memory 64; the memory 64, the processing The device 63 and the receiving device 62 are communicatively connected to each other.
  • the memory 64, the processor 63, the receiving device 62, and the transmitting device 61 may be connected through a bus or in other ways. In FIG. 6, a connection through a bus is used as an example.
  • the transmitting device 61 is used to transmit at least one detection wave signal to the target space to be detected; the receiving device 62 is used to receive a plurality of reflected wave signals reflected back; and the processor 63 is used to pair based on the detected wave signal Perform signal processing on each of the reflected wave signals to obtain a target signal; perform target orientation estimation on all the target signals to obtain spatial orientation information; and detect whether the living body exists in the target space to be detected based on the spatial orientation information.
  • the transmitting device 61 includes an ultrasound transducer array
  • the receiving device 62 includes an ultrasound transducer array.
  • the arrangement of the array elements in the ultrasonic transducer array can be specifically set according to the actual situation, which is not limited herein.
  • the transmitting device 61 and the receiving device 62 are integrated, that is, the same ultrasonic transducer array is used to transmit multiple detection wave signals and receive multiple reflected wave signals reflected back; or, transmit one detection wave signal and receive Multiple reflected wave signals reflected back.
  • the memory 64 may be a high-speed RAM memory (Random Access Memory, volatile random access memory), or a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the memory 64 may optionally be at least one storage device located away from the processor 63.
  • the application program is stored in the memory 64, and the processor 63 calls the program code stored in the memory 64 for performing the following operations:
  • the product signal is low-pass filtered to obtain the target signal.
  • the processor 63 calls the program code in the memory 64, and is also used to perform the following operations:
  • Beam synthesis is performed based on the time difference and the target signal to obtain the spatial orientation information.
  • the processor 63 calls the program code in the memory 64, and is also used to perform the following operations:
  • i 1, 2, ..., N;
  • ⁇ i is the time difference between the i-th reflected wave signal and the first said reflected wave signal
  • N is the number of said reflected wave signals
  • d is the spacing of the array that reflects the detected wave signals
  • ⁇ Is the glancing angle of the reflected wave signal received by the array
  • c is the propagation speed of the detection wave signal.
  • the processor 63 calls the program code in the memory 64, and is also used to perform the following operations:
  • P ( ⁇ , r) is the beam output power
  • s i (t) is the target signal corresponding to the i-th reflected wave signal
  • r 0 is the preset distance
  • x (t) is the vital sign signal.
  • the processor 63 calls the program code in the memory 64, and is also used to perform the following operations:
  • the beam output power is less than the first threshold, it is determined that there is no living body in the target space to be detected.
  • the processor 63 calls the program code in the memory 64, and is also used to perform the following operations:
  • the beam output power is used to determine the position of the living body
  • the processor 63 calls the program code in the memory 64, and is also used to perform the following operations:
  • the frequency of the vital sign signal is greater than the second threshold, it is determined that there is a vital body in the target space to be detected.
  • the memory 64 may include volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory may also include non-volatile memory (English: non-volatile) memory), such as flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid-state hard disk (English: solid-state drive, abbreviation: SSD); memory 64 may also include Memory combination.
  • volatile memory English: volatile memory
  • RAM random access memory
  • flash memory English: flash memory
  • hard disk English: hard disk drive, abbreviation: HDD
  • solid-state hard disk English: solid-state drive, abbreviation: SSD
  • memory 64 may also include Memory combination.
  • the processor 63 may be a central processing unit (English: central processing unit, abbreviation: CPU), a network processor (English: network processor, abbreviation: NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor 63 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (English: application-specific integrated circuit, abbreviation: ASIC), a programmable logic device (English: programmable logic device, abbreviation: PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field programmable logic gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array) logic, abbreviation: GAL) or any combination thereof.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random storage memory (Random Access Memory, RAM), a flash memory (Flash), a hard disk (Hard) Disk, Drive, abbreviation: HDD) or Solid-State Drive (SSD), etc .; the storage medium may also include a combination of the aforementioned types of memory.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random storage memory (Random Access Memory, RAM), a flash memory (Flash), a hard disk (Hard) Disk, Drive, abbreviation: HDD) or Solid-State Drive (SSD), etc .; the storage medium may also include a combination of the aforementioned types of memory.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种生命体的检测方法及装置,其中方法包括:向待检测目标发射至少一个检测波信号(S11);接收反射回的多个反射波信号(S12);基于检测波信号对各个反射波信号进行信号处理,以得到目标信号(S13);对所有目标信号进行目标方位估计,以得到空间方位信息(S14);基于空间方位信息检测生命体(S15)。若在待检测目标中存在生命体时,生命体的生命体征(例如,脉搏,心跳或呼吸等等)会对检测波信号进行调制,在反射回的反射波信号中会携带有生命体的生命体征信号,只要是待检测目标中存在生命体都能够通过该方法检测出,而不受生命体在待检测目标中的具体位置或运动状态的限制,极大地提高了检测的准确性。

Description

生命体的检测方法及装置 技术领域
本发明涉及超声波技术领域,具体涉及生命体的检测方法及装置。
背景技术
现有技术中,在需要对某一区域内是否存在生命体(包括人或动物)检测时,一般是通过红外传感器、视频采集装置、雷达探测等方法。其中,红外探测是利用红外热效应和光电效应,即将入射的红外辐射信号转变成电信号输出,再利用输出的电信号进行生命体的检测;视频探测,是通过实时采集检测区域内的视频图像,再利用采集到的视频图像进行生命体的检测;雷达探测,是利用电磁波进行探测,即用无线电的方法发现生命体并测定它们的空间位置。
然而,上述探测方法中,红外传感器来探测生命体时,视角均受到其安装位置的限制,存在一定的死角;且当环境温度超过生命体体温时,也可能出现无法判断或错判的情况;视频采集装置同样也存在监控死角,导致检测准确度不高;雷达探测,多用于检测运动的生命体,当生命体处于静止状态时,可能出现漏检的情况。
发明内容
有鉴于此,本发明实施例提供了一种生命体的检测方法及装置,以解决现有生命体的检测准确性较低的问题。
根据第一方面,本发明实施例提供了一种生命体的检测方法,包括:
向待检测目标空间发射至少一个检测波信号;
接收反射回的多个反射波信号;
基于所述检测波信号对各个所述反射波信号进行信号处理,以得到目标信号;
对所有所述目标信号进行目标方位估计,以得到空间方位信息;
基于所述空间方位信息检测所述待检测目标空间是否存在生命体。
本发明实施例提供的生命体的检测方法,其中,若在待检测目标中存在生 命体时,生命体的生命体征(例如,脉搏,心跳或呼吸等等)会对检测波信号进行调制,在反射回的反射波信号中会携带有生命体的生命体征信号,再利用检测波信号对反射波信号进行信号处理以及目标方位估计,所得到的空间方位信息中包括有生命体征信号,通过该空间方位信息即可检测出待检测目标是否存在生命体。该方法利用生命体征信号对检测波信号的调制即可检测出是否存在生命体,只要是待检测目标中存在生命体都能够通过该方法检测出,而不受生命体在待检测目标中的具体位置或运动状态的限制,极大地提高了检测的准确性。
结合第一方面,在第一方面第一实施方式中,所述基于所述检测波信号,对各个所述反射波信号进行信号处理,以得到目标信号,包括:
将所述检测波信号与所述反射波信号相乘以得到乘积信号;
对所述乘积信号进行低通滤波以得到所述目标信号。
本发明实施例提供的生命体的检测方法,由于生命体与发射检测波信号的装置之间可能具有一定的距离,所接收的反射波信号会有延时,且反射波信号的相位在被生命体征信号的周期运动所调制。因此,将给反射波信号乘上检测波信号,这个相位调制就能够被解调,从而能够目标信号,以便于后续利用该目标信号进行生命体的检测。
结合第一方面第一实施方式,在第一方面第二实施方式中,所述对所有所述目标信号进行目标方位估计,以得到空间方位信息,包括:
计算接收各个所述反射波信号与接收第一个所述反射波信号之间的时间差;
基于所述时间差以及所述目标信号进行波束合成,以得到所述空间方位信息。
本发明实施例提供的生命体的检测方法,由于生命体与接受反射波信号的装置之间可能具有一定的距离,所接收的反射波信号会有延时,且到装置内的各个换能器的距离不同,因此在进行波束合成时利用计算出的各个反射波信号与第一个发射波信号之间的时间差,能够保证波束合成的准确性,为后续生命体的检测提供了基础。
结合第一方面第二实施方式,在第一方面第三实施方式中,采用如下公式计算所述时间差:
Figure PCTCN2018122672-appb-000001
其中,i=1,2,……,N;
式中,τ i为第i个反射波信号与第一个所述反射波信号之间的时间差;N为所述反射波信号的数量;d为反射所述检测波信号的阵列的间距;θ为阵列接收到的所述反射波信号的掠射角;c为所述检测波信号的传播速度。
结合第一方面第三实施方式,在第一方面第四实施方式中,采用如下公式进行波束合成:
Figure PCTCN2018122672-appb-000002
其中,
Figure PCTCN2018122672-appb-000003
2r(t)=2r 0+2x(t);
式中,P(θ,r)为波束输出功率;s i(t)为第i个反射波信号对应的目标信号;r 0为预设距离;x(t)为生命体征信号。
本发明实施例提供的生命体的检测方法,在目标方位波束输出功率随时时间的变化中携带有生命体征信号x(t),利用空间方位信息和波束输出功率即可检测出是否存在生命体。
结合第一方面第四实施方式,在第一方面第五实施方式中,所述基于所述空间方位信息检测待检测目标空间是否存在所述生命体,包括:
当所述波束输出功率小于第一阈值时,确定所述待检测目标空间不存在所述生命体。
结合第一方面第四实施方式或第一方面第五实施方式,在第一方面第六实施方式中,所述基于所述空间方位信息检测所述待检测目标空间是否存在所述生命体,包括:
当所述波束输出功率大于或等于第一阈值时,利用所述波束输出功率确定所述生命体的位置;
跟踪所述位置对应的波束输出功率以得到跟踪信号;
基于所述跟踪信号检测待检测目标空间是否存在所述生命体。
本发明实施例提供的生命体的检测方法,通过在波束输出功率大于或等于第一阈值时,对可能存在生命体的位置进行跟踪,利用跟踪信号再次进行生命 体检测,提高了检测的准确性。
结合第一方面第六实施方式,在第一方面第七实施方式中,所述基于所述跟踪信号检测所述生命体,包括:
对所述跟踪信号进行滤波以得到滤波信号;
对所述滤波信号进行功率谱分析,以得到所述生命体征信号;
当所述生命体征信号的频率大于第二阈值时,确定所述待检测目标空间存在所述生命体。
本发明实施例提供的生命体的检测方法,通过对跟踪信号滤波后进行功率谱分析,即可恢复出生命体征信号,再提取出生命体征信号的频率与第二阈值进行比较,利用检测结果可以确定是否存在生命体。
结合第一方面,或第一方面任一实施方式,在第一方面第八实施方式中,所述检测波信号为超声波信号。
根据第二方面,本发明实施例还提供了一种生命体的检测装置,包括:
发射装置,用于向待检测目标空间发射至少一个检测波信号;
接收装置,用于接收反射回的多个反射波信号;
存储器和处理器,所述存储器、所述处理器与所述接收装置之间互相通信连接,所述处理器用于基于所述检测波信号对各个所述反射波信号进行信号处理;对所有所述目标信号进行目标方位估计,以得到空间方位信息;基于所述空间方位信息检测所述待检测目标空间是否存在所述生命体。
本发明实施例提供的生命体的检测装置,若在待检测目标中存在生命体时,生命体的生命体征(例如,脉搏,心跳或呼吸等等)会对检测波信号进行调制,在反射回的反射波信号中会携带有生命体的生命体征信号,再利用检测波信号对反射波信号进行信号处理以及目标方位估计,所得到的空间方位信息中包括有生命体征信号,通过该空间方位信息即可检测出待检测目标是否存在生命体。该装置利用生命体征信号对检测波信号的调制即可检测出是否存在生命体,只要是待检测目标中存在生命体都能够通过该方法检测出,而不受生命体在待检测目标中的具体位置或运动状态的限制,极大地提高了检测的准确性。
结合第二方面,在第二方面第一实施方式中,所述发射装置包括超声换能 器阵列;和/或,所述接收装置包括超声换能器阵列。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的生命体的检测方法的流程图;
图2是根据本发明实施例的生命体的检测方法的流程图;
图3是根据本发明实施例的生命体的检测方法的流程图;
图4是根据本发明实施例的无生命体时的波束合成结果的示意图;
图5是根据本发明实施例的有生命体时的波束合成结果的示意图;
图6是本发明实施例提供生命体的检测装置的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中的生命体的检测装置包括:发射装置、接收装置、存储器以及处理器,所述存储器、处理器与所述接收装置之间互相通信连接。
其中,发射装置用于向待检测目标发射至少一个检测波信号;接收装置,用于接收反射回的多个反射波信号;所述处理器用于对接收装置所接收的多个反射波信号进行处理,以检测是否存在生命体;所述存储器用于存储应用程序。
此外,待检测目标可以是车辆、室内或其他需要进行生命体检测的目标等等。例如,该生命体的检测方法可以是对密闭空间内的生命体检测,即车内遗留生命的检测、室内独居老人的检测、洗衣机内遗留生命的检测等等。该生命体的检测装置可以是对待检测目标是否存在生命体进行实时检测,也可以是根据需求进行检测等等。
作为一个具体应用实例,本发明实施例中提供的生命体的检测装置可以安装在车辆中,可以在车辆停止且车门关闭时,对车辆内遗留生命体进行检测,以防止意外的发生。
根据本发明实施例,提供了一种生命体的检测方法实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中提供了一种生命体的检测方法,可用于生命体的检测装置中,图1是根据本发明实施例的生命体的检测方法的流程图,如图1所示,该流程包括如下步骤:
S11,向待检测目标空间发射至少一个检测波信号。
发射装置向待检测目标空间发射至少一个检测波信号,该检测波信号可以是超声波信号,也可以是其他类型的检测波信号。例如,发射装置所发射的每个检测波信号为单频波。
S12,接收反射回的多个反射波信号。
各个检测波信号在接触生命体或其他物体之后反射回接收装置,即接收装置接收到反射回的多个反射波信号。其中,发射装置与接收装置可以是一体的(即,同一个装置既可以发射检测波信号,又可以接受反射回的反射波信号),也可以是分开设置的(即,发射装置与接收装置独立设置,分别实现对应的功能)。
S13,基于检测波信号对各个反射波信号进行信号处理,以得到目标信号。
其中,信号处理可以是解调,也可以是希尔伯特变换。解调是从携带消息的已调信号中恢复消息的过程。由于生命体征信号会对检测波信号进行调制,从而使得反射波信号中携带有生命体征信号,因此利用检测波信号对反射波信号进行解调即可分解出生命体征信号。
S14,对所有目标信号进行目标方位估计,以得到空间方位信息。
处理器对所有目标信号(其中,每个反射波信号对应于一个目标信号)进行目标方位估计,即,将所有目标信号合成为一个空间方位信息。由于每个目标信号对应于被生命体征信号所调制的反射波信号,因此,通过对目标信号进 行目标方位估计后得到的空间方位信息能够极大程度地反应出所检测到的生命体征信号。
S15,基于空间方位信息检测待检测目标空间是否存在生命体。
处理器在得到空间方位信息之后,可以利用空间方位信息的功率进行生命体的检测,也可以提取空间方位信息的功率变化所反映的生命体征的频率进行生命体征的检测,也可以是上述的组合(例如,功率、频率)等等。不论采用合成方式,由于在空间方位信息中携带有生命体征信号,因此利用该空间方位信息即可进行生命体的检测。
本实施例提供的生命体的检测方法,其中,若在待检测目标中存在生命体时,生命体的生命体征(例如,脉搏,心跳或呼吸等等)会对检测波信号进行调制,在反射回的反射波信号中会携带有生命体的生命体征信号,再利用检测波信号对反射波信号进行信号处理以及目标方位估计,所得到的空间方位信息中包括有生命体征信号,通过该空间方位信息即可检测出待检测目标空间是否存在生命体。该方法利用生命体征信号对检测波信号的调制即可检测出是否存在生命体,只要是待检测目标中存在生命体都能够通过该方法检测出,而不受生命体在待检测目标中的具体位置或运动状态的限制,极大地提高了检测的准确性。
在本实施例中还提供了一种生命体的检测方法,可用于生命体的检测装置中,图2是根据本发明实施例的生命体的检测方法的流程图,如图2所示,该流程包括如下步骤:
S21,向待检测目标空间发射至少一个检测波信号。
其中,发射装置向待检测目标空间发射的至少一个检测波信号均为单频波。每个检测波信号可以采用如下公式表示:
T(t)=cos(2πf ct)    (1)
其中,f c为检测波信号的频率。
其余详细请参见图1所示实施例的S11,在此不再赘述。
S22,接收反射回的多个反射波信号。
其中,可以采用x(t)表示生命体的生命体征信号。发射装置与生命体之间的间距为r 0,那么各个检测波信号从发射装置发射,被生命体征信号调制后反射 回接收装置,一次发射到接收信号波经过的距离采用如下公式表示:
2r(t)=2r 0+2x(t)              (2)
此外,第i个反射波信号R i(t)可以采用如下公式表示:
Figure PCTCN2018122672-appb-000004
其中,a为所述反射波信号的幅度;τ i为接收装置接收到第i个发射波信号与第一个反射波信号之间的时间差,i=2,…,N,N为反射波信号的数量;c为所述检测波信号的传播速度。
关于上述时间差,可以通过记录各个反射波信号的接收时间,利用记录的时间计算时间差;也可以通过其他方式计算时间差等等。
例如,发射装置以及接收装置为多个阵元形成的阵列,每个阵元发射一个检测波信号,接收一个检测波信号;由于各个检测波信号从发射到反射回阵元之间可能会存在一定的时间差,因此,以阵元接收第一个反射波信号的时间为起点,那么时间差的含义描述如下:
τ 2为阵元接收到第2个反射波信号与接收到第1个反射波信号之间的时间差;
τ 3为阵元接收到第3个反射波信号与接收到第1个反射波信号之间的时间差;
……;
τ N为阵元接收到第N个反射波信号与接收到第1个反射波信号之间的时间差。
S23,基于检测波信号对各个反射波信号进行信号处理,以得到目标信号。
其中,本实施例中的信号处理为解调。从式(3)中可以看出反射波信号与检测波信号非常相似。由于生命体与发射装置之间可能具有一定的距离,所接收的反射波信号会有延时,且反射波信号的相位在被生命体征信号的周期运动所调制。因此,在反射波信号的基础上利用检测波信号进行IQ解调,这个相位调制就可以被解调。具体地,包括以下步骤:
S231,将检测波信号与反射波信号相乘以得到乘积信号。
结合式(1)与式(4),利用R i(t)×T(t),以得到乘积信号f i(t);具体地,
Figure PCTCN2018122672-appb-000005
再将式(2)代入式(3)中,即可得到乘积信号,在该乘积信号中携带有生命体征信号x(t),即利用检测波信号与反射波信号相乘,后续即可提取出反射波信号中的生命体征信号。
S232,对乘积信号进行低通滤波以得到目标信号。
处理器在得到乘积信号之后,对乘积信号进行低通滤波将一些高频分量信号去除之后,可以得到目标信号中的同相分量I i(t)。
此外,将反射波信号与移相90°的检测波信号进行相乘,并进行低通滤波后,即可得到目标信号中的正交分量Q i(t)。
最后,将I i(t)以及Q i(t)组成复信号,即可形成目标信号s i(t)。其中,各个反射波信号R i(t)对应的目标信号可以表示为s i(t),即s i(t)为第i个反射波信号R i(t)对应的目标信号,可以采用如下公式表示:
Figure PCTCN2018122672-appb-000006
可选地,在IQ解调之后,可以再次进行低通滤波,得到零中频信号。由于在IQ解调之后只含有低频信号,因此后续在进行波束合成时可以进行降采样以减小运算量。
S24,对所有目标信号进行目标方位估计,以得到空间方位信息。
处理器对所有目标信号(其中,每个反射波信号对应于一个目标信号)进行目标方位估计,即将所有目标信号合成为一个空间方位信息。其中,本实施例中的目标方位估计为波束合成。具体包括以下步骤:
S241,计算接收各个反射波信号与接收第一个反射波信号之间的时间差。
其中,发射装置以及接收装置为多个阵元形成的阵元阵列,每个阵元之间的间距相等,均为d;在计算时间差之前,可以先遍历每个阵元接收到的反射波信号的掠射角θ,用于后续的计算;也可以认为每个阵元接收到的反射波信号近似认为是平行的,因此阵列中每个阵元接收到的反射波信号的掠射角θ均相等。
发射装置接收各个反射波信号与接受第一个反射波信号之间的时间差可以采用如下公式计算:
Figure PCTCN2018122672-appb-000007
其中,i=1,2,……,N;    (6)
式中,τ i为第i个反射波信号与第一个反射波信号之间的时间差;N为所述反射波信号的数量;d为发射所述检测波信号的阵列的间距;θ为阵列接收到的所述反射波信号的掠射角;c为所述检测波信号的传播速度。
S242,基于时间差以及目标信号进行波束合成,以得到空间方位信息。
处理器在计算出时间差之后,利用时间差以及目标信号计算出波束输出功率(也可称之为空间方位信息的输出功率),可以采用如下公式进行波束合成:
Figure PCTCN2018122672-appb-000008
其中,
Figure PCTCN2018122672-appb-000009
2r(t)=2r 0+2x(t);
式中,P(θ,r)为波束输出功率;s i(t)为第i个反射波信号对应的目标信号;r 0为预设距离;x(t)为生命体征信号。
S25,基于空间方位信息检测待检测目标空间是否存在生命体。
处理器在计算得到波束输出功率之后,利用波束输出功率与第一阈值进行比较,当波束输出功率小于第一阈值时,检测待检测目标空间不存在生命体。
此外,可选地当波束输出功率大于或等于第一阈值时,可以认为待检测目标空间存在生命体;也可以再次进行生命体的检测,以提高检测的准确性。
与图1所示实施例相比,本实施例提供的生命体的检测方法,由于生命体与接收发射波信号的装置之间可能具有一定的距离,所接收的反射波信号会有延时且到各个换能器的距离不同,因此在进行波束合成时利用计算出的各个反射波信号与第一个发射波信号之间的时间差,能够保证波束合成的准确性。
在本实施例中还提供了一种生命体的检测方法,可用于生命体的检测装置中,其中,本实施例是利用人体的微动(呼吸、心跳)产生的微多普勒效应进行生命体的检测;此外,该方法可以用于车内遗留生命体的检测。图3是根据本发明实施例的生命体的检测方法的流程图,如图3所示,该流程包括如下步骤:
S31,向待检测目标空间发射至少一个检测波信号。
其中,检测波信号为超声波信号。发射装置为超声换能器阵列,接收装置为超声换能器阵列。由于生命体的生命体征信号(呼吸、心跳等等)相对于检测波信号存在径向运动,那么在反射回的反射波信号会发生频移(也可称为微多普勒现象,产生的频移量称为多普勒频率),后续再利用波束合成进行生命体的检测。
S32,接收反射回的多个反射波信号。
请参考式(3),反射回的第i个反射波信号R i(t)可以采用如下公式表示:
Figure PCTCN2018122672-appb-000010
其余详细请参见图2所示实施例的S22,在此不再赘述。
S33,基于检测波信号对各个反射波信号进行信号处理,以得到目标信号。
处理器先对反射波信号进行ADC采样之后,再进行解调。解调可以包括如下步骤:
S331,将检测波信号与反射波信号相乘以得到乘积信号。详细请参见图2所示实施例的S231,在此不再赘述。
S332,对乘积信号进行低通滤波以得到目标信号。详细请参见图2所示实施例的S232,在此不再赘述。
S34,对所有目标信号进行目标方位估计,以得到空间方位信息。详细请参见图2所示实施例的S24,在此不再赘述。
S35,基于空间方位信息检测待检测目标空间是否存在生命体。
S351,判断波束输出功率是否小于第一阈值。
处理器在计算得到波束输出功率之后,利用波束输出功率与第一阈值进行比较,当波束输出功率小于第一阈值时,执行S352;否则,执行S353。
S352,确定待检测目标空间不存在生命体。
S353,利用波束输出功率确定生命体的位置。
处理器在判断出波束输出功率大于或等于第一阈值时,利用波束输出功率P(θ,r)确定生命体的空间位置(θ 0,r 0),包括空间方位信息以及空间距离。例如, 图4示出了不存在生命体时空间方位信息的示意图,图5示出了存在生命体时空间方位信息的示意图。
S354,跟踪位置对应的波束输出功率以得到跟踪信号。
在确定出生命体的位置之后,跟踪该位置处波束输出功率P(θ 0,r 0)随时间的变化A(t)。例如,在确定出生命体的位置之后,可以调整发射装置向该位置发射多个超声波信号,然后再进行波束合成实时跟踪该位置对应的波束输出功率,利用实时跟踪出的波束输出功率计算该位置处的波束输出功率随时间的变化A(t),即得到跟踪信号。
S355,基于跟踪信号检测待检测目标空间是否存在生命体。
处理器在得到跟踪信号之后,对跟踪信号进行功率谱分析,即可提取出生命体征信号。具体地,包括以下步骤:
(1)对跟踪信号进行滤波以得到滤波信号。
(2)对滤波信号进行功率谱分析,以得到生命体征信号。
功率谱表示了滤波信号的功率随着频率的变化关系,通过对滤波信号进行功率谱分析即可得到生命体征信号。
在恢复出生命体征信号x(t)之后,可以进行降采样然后FFT变换,可以获得生命体征信号的频谱。处理器通过比较生命体征信号的频率是否大于第二阈值即可检测是否存在生命体。
(3)当生命体征信号的频率大于第二阈值时,确定待检测目标空间存在生命体。
(4)当生命体征信号的频率小于或等于第二阈值时,确定待检测目标空间不存在生命体。
与图2所示实施例相比,本实施例提供的生命体的检测方法,在波束输出功率与第一阈值比较之后,检测出待检测目标空间可能存在生命体;再对可能的生命体进行跟踪,提取出生命体征信号再次进行生命体的检测,提高了检测的准确性;此外,本实施例利用人体的微动(呼吸、心跳)产生的微多普勒效应导致的频移进行波束形成,波束形成的幅度与呼吸、心跳的频率相关,从而进行生命体检测,保证了检测的准确性。
本发明实施例还提供了一种生命体检测装置,如图6所示,该生命体检测装置可以包括发射装置61、接收装置62、处理器63和存储器64;所述存储器64、所述处理器63与所述接收装置62之间互相通信连接。此外,上述的可以存储器64、处理器63、接收装置62以及发射装置61通过总线或者其他方式连接,图6中以通过总线连接为例。
其中,发射装置61,用于向待检测目标空间发射至少一个检测波信号;接收装置62,用于接收反射回的多个反射波信号;所述处理器63用于基于所述检测波信号对各个所述反射波信号进行信号处理,以得到目标信号;对所有所述目标信号进行目标方位估计,以得到空间方位信息;基于所述空间方位信息检测待检测目标空间是否存在所述生命体。
可选地,发射装置61包括超声换能器阵列,接收装置62包括超声换能器阵列。其中,超声换能器阵列中阵元的排布可以根据实际情况进行具体设置,在此不做限制。
进一步可选地,发射装置61与接收装置62一体设置,即采用同一超声换能器阵列实现发射多个检测波信号以及接收反射回的多个反射波信号;或者,发射一个检测波信号以及接收反射回的多个反射波信号。
此外,存储器64可以是高速RAM存储器(Random Access Memory,易挥发性随机存取存储器),也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器64可选的还可以是至少一个位于远离前述处理器63的存储装置。其中存储器64中存储应用程序,且处理器63调用存储器64中存储的程序代码,以用于执行以下操作:
将检测波信号与反射波信号相乘以得到乘积信号;
对乘积信号进行低通滤波以得到目标信号。
本发明实施例中,处理器63调用存储器64中的程序代码,还用于执行以下操作:
计算接收各个反射波信号与接收第一个反射波信号之间的时间差;
基于时间差以及目标信号进行波束合成,以得到所述空间方位信息。
本发明实施例中,处理器63调用存储器64中的程序代码,还用于执行以 下操作:
采用如下公式计算时间差:
Figure PCTCN2018122672-appb-000011
其中,i=1,2,……,N;
式中,τ i为第i个反射波信号与第一个所述反射波信号之间的时间差;N为所述反射波信号的数量;d为反射所述检测波信号的阵列的间距;θ为阵列接收到的所述反射波信号的掠射角;c为所述检测波信号的传播速度。
本发明实施例中,处理器63调用存储器64中的程序代码,还用于执行以下操作:
采用如下公式进行波束合成:
Figure PCTCN2018122672-appb-000012
其中,
Figure PCTCN2018122672-appb-000013
2r(t)=2r 0+2x(t);
式中,P(θ,r)为波束输出功率;s i(t)为第i个反射波信号对应的目标信号;r 0为预设距离;x(t)为生命体征信号。
本发明实施例中,处理器63调用存储器64中的程序代码,还用于执行以下操作:
当波束输出功率小于第一阈值时,确定待检测目标空间不存在生命体。
本发明实施例中,处理器63调用存储器64中的程序代码,还用于执行以下操作:
当波束输出功率大于或等于第一阈值时,利用波束输出功率确定所述生命体的位置;
跟踪所述位置对应的波束输出功率以得到跟踪信号;
基于所述跟踪信号检测待检测目标空间是否存在所述生命体。
本发明实施例中,处理器63调用存储器64中的程序代码,还用于执行以下操作:
对跟踪信号进行滤波以得到滤波信号;
对滤波信号进行功率谱分析,以得到生命体征信号;
当生命体征信号的频率大于第二阈值时,确定待检测目标空间存在生命体。
其中,存储器64可以包括易失性存储器(英文:volatile memory),例如 随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器64还可以包括上述种类的存储器的组合。
其中,处理器63可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
其中,处理器63还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离 本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (11)

  1. 一种生命体的检测方法,其特征在于,包括:
    向待检测目标空间发射至少一个检测波信号;
    接收反射回的多个反射波信号;
    基于所述检测波信号对各个所述反射波信号进行信号处理,以得到目标信号;
    对所有所述目标信号进行目标方位估计,以得到空间方位信息;
    基于所述空间方位信息检测所述待检测目标空间是否存在生命体。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述检测波信号,对各个所述反射波信号进行信号处理,以得到目标信号,包括:
    将所述检测波信号与所述反射波信号相乘以得到乘积信号;
    对所述乘积信号进行低通滤波以得到所述目标信号。
  3. 根据权利要求2所述的方法,其特征在于,所述对所有所述目标信号进行目标方位估计,以得到空间方位信息,包括:
    计算接收各个所述反射波信号与接收第一个所述反射波信号之间的时间差;
    基于所述时间差以及所述目标信号进行波束合成,以得到所述空间方位信息。
  4. 根据权利要求3所述的方法,其特征在于,采用如下公式计算所述时间差:
    Figure PCTCN2018122672-appb-100001
    其中,i=2,3,…,N;
    式中,t i为接收第i个反射波信号与接收第一个所述反射波信号之间的时间差;N为所述反射波信号的数量;d为发射所述检测波信号的阵列的间距;q为阵列接收到的所述反射波信号的掠射角;c为所述检测波信号的传播速度。
  5. 根据权利要求4所述的方法,其特征在于,采用如下公式进行波束合成:
    Figure PCTCN2018122672-appb-100002
    其中,
    Figure PCTCN2018122672-appb-100003
    2r(t)=2r 0+2x(t);
    式中,P(q,r)为波束输出功率;s i(t)为第i个反射波信号对应的目标信号; r 0为预设距离;x(t)为生命体征信号。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述空间方位信息检测待检测目标空间是否存在所述生命体,包括:
    当所述波束输出功率小于第一阈值时,确定所述待检测目标空间不存在所述生命体。
  7. 根据权利要求5或6所述的方法,其特征在于,所述基于所述空间方位信息检测所述待检测目标空间是否存在所述生命体,包括:
    当所述波束输出功率大于或等于第一阈值时,利用所述波束输出功率确定所述生命体的位置;
    跟踪所述位置对应的波束输出功率以得到跟踪信号;
    基于所述跟踪信号检测所述待检测目标空间是否存在所述生命体。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述跟踪信号检测所述生命体,包括:
    对所述跟踪信号进行滤波以得到滤波信号;
    对所述滤波信号进行功率谱分析,以得到所述生命体征信号;
    当所述生命体征信号的频率大于第二阈值时,确定所述待检测目标空间存在所述生命体。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述检测波信号为超声波信号。
  10. 一种生命体的检测装置,其特征在于,包括:
    发射装置,用于向待检测目标空间发射至少一个检测波信号;
    接收装置,用于接收反射回的多个反射波信号;
    存储器和处理器,所述存储器、所述处理器与所述接收装置之间互相通信连接,所述处理器用于基于所述检测波信号对各个所述反射波信号进行信号处理,以得到目标信号;对所有所述目标信号进行目标方位估计,以得到空间方位信息;基于所述空间方位信息检测所述待检测目标空间是否存在所述生命体。
  11. 根据权利要求10所述的生命体的检测装置,其特征在于,所述发射装置包括超声换能器阵列;和/或,所述接收装置包括超声换能器阵列。
PCT/CN2018/122672 2018-11-23 2018-12-21 生命体的检测方法及装置 WO2020103265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811410300.1 2018-11-23
CN201811410300 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103265A1 true WO2020103265A1 (zh) 2020-05-28

Family

ID=65929299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122672 WO2020103265A1 (zh) 2018-11-23 2018-12-21 生命体的检测方法及装置

Country Status (2)

Country Link
CN (1) CN109581537B (zh)
WO (1) WO2020103265A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103888A1 (zh) * 2018-11-23 2020-05-28 中科传启(苏州)科技有限公司 生命体的检测方法、车内生命体提醒方法及装置
CN110333541A (zh) * 2019-07-09 2019-10-15 中科传启(苏州)科技有限公司 一种生命体检测方法、设备及行车记录仪
CN110333540A (zh) * 2019-07-09 2019-10-15 中科传启(苏州)科技有限公司 一种生命体检测方法、设备及行车记录仪
CN112444800A (zh) * 2020-10-19 2021-03-05 中科传启(苏州)科技有限公司 一种超声测距装置的校正方法
CN113126091A (zh) * 2021-04-29 2021-07-16 兴科迪科技(泰州)有限公司 一种基于电磁波的空间扫描生命体检测系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271444A (ja) * 1998-03-25 1999-10-08 Matsushita Electric Works Ltd 人体検知装置
CN102150061A (zh) * 2008-09-10 2011-08-10 皇家飞利浦电子股份有限公司 用于紧急情况存在检测的系统、装置和方法
CN105718064A (zh) * 2016-01-22 2016-06-29 南京大学 基于超声波的手势识别系统与方法
CN106405542A (zh) * 2016-10-10 2017-02-15 康佳集团股份有限公司 基于连续波的生命特征探测处理方法、系统及生命探测仪
CN106558189A (zh) * 2015-09-29 2017-04-05 中兴通讯股份有限公司 一种求救设备、救援设备及方法
US20170234981A1 (en) * 2016-02-17 2017-08-17 Secure Bubble Ltd Detection of animate presence with an ultrasonic signal
CN107340520A (zh) * 2017-06-27 2017-11-10 电子科技大学 一种井下矿难生命迹象检测与定位系统
DE102017006156A1 (de) * 2017-06-29 2017-12-21 Daimler Ag Lebendobjekterkennung mittels fahrzeugseitiger Ultraschallsensoren für induktive Ladesysteme
CN107664762A (zh) * 2016-07-29 2018-02-06 佳能株式会社 信息处理设备、检测其周围存在的人的方法和存储介质
CN108196257A (zh) * 2018-03-13 2018-06-22 深圳市枫芒科技有限公司 超声波式物体检测装置及检测方法
CN208076713U (zh) * 2017-12-29 2018-11-09 湖南有位智能科技有限公司 立体停车库及其人车误入检测系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008291B (zh) * 2010-10-11 2012-11-14 中国人民解放军第四军医大学 一种可用于多目标探测的单通道基于uwb的雷达式生命探测仪
JP6248367B2 (ja) * 2013-03-29 2017-12-20 Toto株式会社 人体検知センサ
CN103792531B (zh) * 2014-02-21 2017-06-06 重庆大学 基于天线阵的多目标微位移测量方法
CN203811806U (zh) * 2014-02-25 2014-09-03 鲁波涌 一种基于超宽带脉冲雷达的生命探测仪
US10405800B2 (en) * 2016-07-13 2019-09-10 Capsule Technologies, Inc. Methods, systems, and apparatuses for detecting activation of an electronic device
CN106970384A (zh) * 2017-03-28 2017-07-21 上海天本实业有限公司 生命特征显示方法及系统
CN106814358A (zh) * 2017-03-31 2017-06-09 山东省科学院自动化研究所 一种用于超宽带穿墙雷达中多人体目标检测的系统及方法
CN108761450A (zh) * 2018-08-07 2018-11-06 湖南华诺星空电子技术有限公司 一种三维定位的生命探测雷达

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271444A (ja) * 1998-03-25 1999-10-08 Matsushita Electric Works Ltd 人体検知装置
CN102150061A (zh) * 2008-09-10 2011-08-10 皇家飞利浦电子股份有限公司 用于紧急情况存在检测的系统、装置和方法
CN106558189A (zh) * 2015-09-29 2017-04-05 中兴通讯股份有限公司 一种求救设备、救援设备及方法
CN105718064A (zh) * 2016-01-22 2016-06-29 南京大学 基于超声波的手势识别系统与方法
US20170234981A1 (en) * 2016-02-17 2017-08-17 Secure Bubble Ltd Detection of animate presence with an ultrasonic signal
CN107664762A (zh) * 2016-07-29 2018-02-06 佳能株式会社 信息处理设备、检测其周围存在的人的方法和存储介质
CN106405542A (zh) * 2016-10-10 2017-02-15 康佳集团股份有限公司 基于连续波的生命特征探测处理方法、系统及生命探测仪
CN107340520A (zh) * 2017-06-27 2017-11-10 电子科技大学 一种井下矿难生命迹象检测与定位系统
DE102017006156A1 (de) * 2017-06-29 2017-12-21 Daimler Ag Lebendobjekterkennung mittels fahrzeugseitiger Ultraschallsensoren für induktive Ladesysteme
CN208076713U (zh) * 2017-12-29 2018-11-09 湖南有位智能科技有限公司 立体停车库及其人车误入检测系统
CN108196257A (zh) * 2018-03-13 2018-06-22 深圳市枫芒科技有限公司 超声波式物体检测装置及检测方法

Also Published As

Publication number Publication date
CN109581537B (zh) 2020-08-25
CN109581537A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020103265A1 (zh) 生命体的检测方法及装置
CN109532741B (zh) 车内生命体提醒方法、装置及行车记录仪
WO2020103264A1 (zh) 生命体的检测方法及装置
JP6782312B2 (ja) レーダーにおける角度分解能
CN109532742B (zh) 车内生命体提醒方法及装置
JP2006095002A5 (zh)
US9961460B2 (en) Vibration source estimation device, vibration source estimation method, and vibration source estimation program
WO2021077287A1 (zh) 一种检测方法、检测装置以及存储介质
TW200918927A (en) Target detection device and its detection method
JP2018037737A5 (zh)
CN103777178A (zh) 一种同步误差补偿方法、设备及系统
KR101646623B1 (ko) 횡파 속도를 추정하는 방법 및 시스템과 이를 이용한 조직 내 병변 진단 방법 및 시스템
KR101894391B1 (ko) 진단영상 생성장치, 의료영상시스템 및 빔포밍 수행방법
CN110507361B (zh) 剪切波成像方法及系统
KR101582404B1 (ko) Uwb 레이더를 이용하여 목표물의 수를 카운팅 방법 및 장치
CN104814759A (zh) 超声波测定装置以及超声波测定方法
CN105652256B (zh) 一种基于极化信息的高频地波雷达tbd方法
WO2020103888A1 (zh) 生命体的检测方法、车内生命体提醒方法及装置
JP6398689B2 (ja) 信号処理装置、信号処理方法及びプログラム
JP2006329669A (ja) レーダ装置
JP6220717B2 (ja) 物体の移動方位及び速度推定装置及び方法
KR20140064489A (ko) 트랙킹 정보를 이용한 타겟 차량 인식 방법
KR102192761B1 (ko) 타겟 탐지 방법 및 장치
US10480932B2 (en) Automated computation of a dimension of a moving platform
JP5708018B2 (ja) アクティブソーナー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940564

Country of ref document: EP

Kind code of ref document: A1