WO2020103167A1 - 投影装置及其光源和设备 - Google Patents

投影装置及其光源和设备

Info

Publication number
WO2020103167A1
WO2020103167A1 PCT/CN2018/117344 CN2018117344W WO2020103167A1 WO 2020103167 A1 WO2020103167 A1 WO 2020103167A1 CN 2018117344 W CN2018117344 W CN 2018117344W WO 2020103167 A1 WO2020103167 A1 WO 2020103167A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lattice
emitting units
projection device
less
Prior art date
Application number
PCT/CN2018/117344
Other languages
English (en)
French (fr)
Inventor
田浦延
Original Assignee
深圳阜时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳阜时科技有限公司 filed Critical 深圳阜时科技有限公司
Priority to CN201880002354.6A priority Critical patent/CN109643053B/zh
Priority to PCT/CN2018/117344 priority patent/WO2020103167A1/zh
Publication of WO2020103167A1 publication Critical patent/WO2020103167A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the present application relates to the field of optics, in particular to a projection device and its light source and equipment.
  • the purpose of this application is to provide a projection device and its light source and equipment that can be used for object feature recognition.
  • An aspect of the present application provides a projection device including a semiconductor substrate; a light source, the light source includes a plurality of light emitting units for emitting light beams disposed on the semiconductor substrate, and a lattice formed by the plurality of light emitting units
  • the set correlation coefficient is greater than or equal to 0.3 and less than 1, and the lattice set can be divided into a plurality of lattice subsets, and the correlation coefficient of at least one of the lattice subsets is less than 0.2; the optical component is used to emit the light The beam emitted by the unit is copied into multiple beams.
  • the number of light-emitting units corresponding to each lattice subset is not less than 9, or the number of light-emitting units corresponding to each lattice subset accounts for not less than 10% of the total number of light-emitting units.
  • the correlation coefficient between the lattice subsets is greater than 0.3, wherein the correlation evaluation between the lattice subsets includes translating, rotating, or mirroring the lattice subsets with other lattice subsets Perform correlation coefficient calculation, or translate or rotate the lattice sub-set with other lattice sub-sets, or perform correlation coefficient calculation on the lattice sub-set obtained after mirroring.
  • the plurality of light-emitting units share a semiconductor substrate, or the plurality of light-emitting units are provided on a plurality of semiconductor substrates.
  • the light emitting unit includes one or more of VCSEL, LED, or LD.
  • the optical component includes a diffractive optical element and / or a lens, and the lens is a collimating lens.
  • the projection device further includes a driving circuit, and the driving circuit provides a working current required by the light emitting unit.
  • An aspect of the present application also provides a light source, which includes a plurality of light-emitting units disposed on a semiconductor substrate for emitting light beams, and the lattice set formed by the light-emitting units can be divided into a plurality of lattice sub-sets.
  • the correlation coefficient between sets is greater than or equal to 0.3 and less than 1, and the number of light-emitting units corresponding to each lattice subset is not less than 9 or the proportion of the number of light-emitting units corresponding to each lattice subset to the total number of light-emitting units is not less than 10%, the correlation coefficient of at least one of the lattice subsets is less than 0.2.
  • An aspect of the present application also provides an apparatus including a projection device and a receiving device, the projection device projecting a light beam having a speckle pattern onto an external object, and at least a portion of the light beam reflected by the external object is reflected by the receiving device
  • the projection device includes a plurality of light-emitting units, the two-dimensional patterns corresponding to the plurality of light-emitting units have correlation, and the two-dimensional pattern may be divided into a plurality of sub-two-dimensional patterns with correlation, the sub The two-dimensional pattern corresponds to no less than nine light-emitting units, at least one of the sub two-dimensional patterns does not have a correlation, and the projection device can project a light beam having a plurality of spot patterns corresponding to the two-dimensional pattern of the light-emitting units to the outside On the object, at least part of the light beam reflected by the external object is received by the receiving device.
  • An aspect of the present application also provides a projection device, including a substrate; a light source, the light source includes a plurality of light-emitting units disposed on the substrate for emitting light beams, and the plurality of light-emitting units form a lattice set
  • the correlation coefficient is greater than or equal to 0.3, and the correlation coefficient of at least some of the lattice subsets formed by the light-emitting units is less than 0.2; the optical component is used to copy the light beam emitted by the light-emitting element into multiple light beams.
  • the substrate is a semiconductor substrate, and the plurality of light-emitting units share a semiconductor substrate or are distributed on a plurality of semiconductor substrates.
  • the number of light emitting units corresponding to the lattice subset is not less than 10% of the total number of light emitting units, or the number of light emitting units corresponding to the lattice subset is not less than 9; the light emission corresponding to the lattice set The total number of units is not less than 50.
  • the correlation of the lattice set or lattice subset is calculated in a two-dimensional planar coordinate system, and the coordinate system is a polar coordinate system or a rectangular coordinate system.
  • the projection device further includes a driving circuit, and the driving circuit provides a working current required by the light emitting unit.
  • the light emitting element includes one or more of VCSEL, LED, or LD.
  • the optical component includes a diffractive optical element and / or a lens.
  • the correlation coefficient between the lattice subset and the lattice set in the lattice set is greater than or equal to 0.3, and the correlation coefficient is 1 if there is no lattice subset in the lattice set.
  • the substrate is one of a semiconductor substrate, a glass substrate, and a metal substrate.
  • An aspect of the present application further provides a light source, including a plurality of light emitting units disposed on the semiconductor substrate for emitting light beams, and a correlation coefficient of a lattice set formed by the plurality of light emitting units is greater than or equal to 0.3, The correlation coefficient of at least part of the lattice subsets formed by the light-emitting units is less than 0.2.
  • An aspect of the present application also provides an apparatus including a projection device and a receiving device, the projection device projecting a light beam having a speckle pattern onto an external object, and at least part of the light beam reflected by the external object is reflected by the receiving device
  • the projection device includes a plurality of light-emitting units, and the two-dimensional patterns corresponding to the plurality of light-emitting units have correlation, and the two-dimensional pattern may be divided into a plurality of sub-two-dimensional patterns with correlation, The two-dimensional pattern corresponds to no less than nine light-emitting units, at least one of the sub two-dimensional patterns does not have a correlation, and the projection device can project a light beam having a plurality of spot patterns corresponding to the two-dimensional pattern of the light-emitting units to the outside On the object, at least part of the light beam reflected by the external object is received by the receiving device.
  • the device further includes a processor, and the processor may obtain two-dimensional information and / or depth information of the object according to the light beam received by the receiving device.
  • An aspect of the present invention also provides a projection device, including a substrate; a light source, the light source includes a plurality of light-emitting units disposed on the substrate for emitting light beams, the plurality of light-emitting units form a lattice set
  • the correlation coefficient is greater than or equal to 0.3 and less than 0.6, and the correlation coefficient of at least part of the lattice subset formed by the light-emitting unit is less than 0.2; the optical component is used to copy the light beam emitted by the light-emitting element into multiple light beams.
  • An aspect of the present invention also provides a projection device, including a substrate; a light source, the light source includes a plurality of light-emitting units disposed on the substrate for emitting light beams, the plurality of light-emitting units form a lattice set
  • the correlation coefficient is greater than or equal to 0.3 and less than 0.5, and the correlation coefficient of at least part of the lattice subset formed by the light-emitting unit is less than 0.2; the optical component is used to copy the light beam emitted by the light-emitting element into multiple light beams.
  • An aspect of the present invention also provides a projection device, including a substrate; a light source, the light source includes a plurality of light-emitting units disposed on the substrate for emitting light beams, the plurality of light-emitting units form a lattice set
  • the correlation coefficient is greater than or equal to 0.3 and less than 0.4, and the correlation coefficient of at least part of the lattice subset formed by the light-emitting unit is less than 0.2; the optical component is used to copy the light beam emitted by the light-emitting element into multiple light beams.
  • the projection device and its light source and equipment of the present application can be used for object feature recognition and have a better user experience.
  • FIG. 1 is a schematic diagram of an embodiment of a projection device of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of a projection device of the present application.
  • FIG. 3 is a schematic diagram of a schematic illustration of the correlation coefficient of this application.
  • FIG. 4 is a schematic diagram of an embodiment of a projection device of the present application.
  • FIG. 5 is a schematic diagram of an embodiment of a projection device of the present application.
  • FIG. 6 is a schematic diagram of an embodiment of a projection device of the present application.
  • FIG. 7 is a schematic diagram of an embodiment of a projection device of the present application.
  • FIG. 10 is a schematic diagram of an embodiment of a projection device of the present application.
  • FIG. 11 is a schematic diagram of a speckle pattern formed by the projection device of FIG. 10;
  • FIG. 12 is a schematic diagram of an embodiment of the device of the present application.
  • the projection device 10 includes a light source 20 and an optical component 30.
  • the light source 20 emits a light beam to the optical component 30, and the light beam can be irradiated on an external object after being optimized by the optical component 30, such as a human face.
  • the light beam may be infrared light.
  • the light beam emitted by the light source 20 may be one or more of visible light, ultraviolet light, electromagnetic waves, sound waves, and ultrasonic waves.
  • At least one receiving device cooperates with the projection device 10 to receive the light beam that is at least partially reflected by the external object, so as to obtain depth information of the external object.
  • the light source 20 includes a plurality of light-emitting units 21, and the arrangement and distribution of the plurality of light-emitting units 21 can also be referred to as an array of light-emitting units 21.
  • the light emitting unit 21 may include one or more of LED (Light Emitting Diode), VCSEL (Vertical Cavity Surface Emitting Laser), or LD (Laser Diode).
  • the projection device 10 further includes a substrate 22, and the plurality of light emitting units 21 are disposed on the substrate 22.
  • the light emitting units 21 are distributed on the substrate 22 in a two-dimensional pattern with a certain correlation.
  • the optical component 30 is disposed on the cushion layer of the substrate 22, and the optical component 30 is disposed facing the plurality of light emitting units 21 of the light source 20.
  • the substrate 22 is a semiconductor substrate.
  • the substrate 22 may also be a glass substrate, a metal substrate, etc.
  • the substrate 22 may also be referred to as a substrate or a base.
  • the plurality of light-emitting units 21 share a substrate, or are distributed on different substrates.
  • the projection device 10 further includes a driving circuit, and the driving circuit is used to provide an operating current to the light emitting unit 21.
  • the optical component 30 includes a diffractive optical element (DOE, Diffraction, Optical Element).
  • the optical assembly 30 may further include a lens or a lens group disposed between the diffractive optical element and the light source 20.
  • the optical component 30 may be used to split the light beam emitted by the light emitting unit 21, that is, to replicate and expand the incident light beam into multiple light beams.
  • the light beam emitted by the light emitting unit 21 is copied into a plurality of light beams after passing through the optical component 30.
  • the optical component 30 includes a diffractive optical element 31 and a lens 32.
  • the lens 32 may be a convex lens or a concave lens, and may be used to converge or diverge a light beam.
  • the diffractive optical element 31 is used to copy and project multiple light beams emitted by the light source 30.
  • the two-dimensional pattern formed by the distribution of the light-emitting units 21 is called a lattice set, and the two-dimensional pattern corresponding to some of the light-emitting units 21 is called a lattice subset, and the two-dimensional pattern corresponding to the light-emitting units 21 other than the lattice subset is " The complement of the lattice subset "or the complement.
  • the lattice set usually includes two or more lattice subsets.
  • a light spot formed by a light beam emitted by the light-emitting unit 21 on a certain plane in space is called a “light spot”, and a plurality of the light spots have substantially the same two-dimensional pattern as the corresponding light-emitting units 21 distributed and formed Two-dimensional pattern.
  • the correlation of the lattice set is high.
  • the correlation coefficient of the lattice set is greater than or equal to 0.3.
  • the lattice set may be divided into a plurality of lattice subsets, at least one of the lattice subsets has a low correlation, for example, a correlation coefficient of at least one of the lattice subsets is less than 0.2. It should be noted that the above division of the lattice sub-sets does not need to be unique.
  • the lattice set may have multiple divisions, so that different lattice sub-sets may be obtained. In some other embodiments of the present application, the correlation coefficient of the lattice set is greater than or equal to 0.3 and less than 1.
  • the correlation coefficient of the lattice set is greater than or equal to 0.3 and less than 0.4.
  • the correlation coefficient of the lattice set is greater than or equal to 0.3 and less than 0.5.
  • the correlation coefficient of the lattice set is greater than or equal to 0.3 and less than 0.6.
  • the number of light-emitting units 21 included in the at least one lattice subset with a correlation coefficient less than 0.2 is not less than 10% of the number of all light-emitting units 21.
  • the number of light-emitting units 21 included in the at least one lattice subset with a correlation coefficient less than 0.2 is not less than nine.
  • a two-dimensional pattern ie, lattice set or lattice Set
  • W is a positive integer
  • the area is a rectangular array, where each rectangle is called a block, and each block corresponds to two values of 0 or 1, wherein the block corresponding to the light-emitting unit 21 corresponds to a value of 1.
  • the corresponding value of the block without the light-emitting unit 21 is 0.
  • the value of the block in the i-th column and the j-th row is R (i, j) (1 ⁇ i, j ⁇ n).
  • the correlation coefficient f of the two-dimensional pattern corresponding to the light emitting unit 21 in the rectangular array R can be obtained.
  • the correlation coefficient f of a lattice set or lattice subset can be calculated using the following formula:
  • H, W, N, and n are positive integers, 0 ⁇ i ⁇ W, 0 ⁇ j ⁇ H.
  • R 0 sub-region that meets predetermined conditions
  • N the number of sub-regions with f n ⁇ thr (for example, 0.3);
  • R ′ n the result of R n after T transformation
  • T transformation operators such as translation, rotation and mirroring
  • H the number of rows in the sub-region R 0 or R n (0 ⁇ n ⁇ N, N is a positive integer);
  • W the number of columns in the sub-region R 0 or R n (0 ⁇ n ⁇ N, N is a positive integer);
  • the T transform may include, but is not limited to, one or several transforms among shift, rotation, and mirror symmetry in a two-dimensional plane.
  • the traversal in the above definition of R n can be understood here as moving the sub-region corresponding to R 0 in any direction in the entire region by a distance not less than the size of the light-emitting unit 21 itself.
  • R 0 is a sub-region that satisfies a preset condition
  • the threshold of the correlation coefficient of the preset condition is 0.3. In other embodiments of the present application, the preset condition may have other settings.
  • the predetermined condition satisfied by R 0 may be, for example, but not limited to, the number of corresponding light-emitting units 21 in the area R 0 is not less than 10% of the number of all light-emitting units 21.
  • the predetermined condition that R 0 satisfies may also be that the number of corresponding light-emitting units 21 in the area is not less than 9.
  • the predetermined conditions satisfied by R 0 may also have different settings, for example, the number of corresponding light-emitting units 21 may have different values, or the ratio of the number of light-emitting units 21 to the total number of light-emitting units 21 may also be different.
  • the sub-region Rn when the region S corresponds to the lattice set, the sub-region Rn satisfies the condition that the number of internal corresponding light-emitting elements is not less than 9; when the region S corresponds to the lattice subset, the sub-region Rn satisfies the condition The number of corresponding internal light-emitting elements is not less than 3.
  • Rn is a sub-region corresponding to f n ⁇ 0.3.
  • Rn may also have different settings, for example, a sub-region corresponding to f ⁇ 0.5.
  • the corresponding region and / or sub-region when 0 ⁇ f ⁇ 0.3, the corresponding region and / or sub-region (lattice set or lattice sub-set) has low correlation or no correlation. When f ⁇ 0.3, the corresponding area and / or sub-area have obvious correlation.
  • the above parameters S, R 0 , Rn, etc. are all relative to their calculated objects.
  • the full area S is the area where the two-dimensional pattern formed by all the light-emitting units 21 is located; for the lattice subset, the full area S is the two-dimensional corresponding to the light-emitting units 21 in the lattice sub-set The area where the pattern is located.
  • FIG. 3 is an example of the correlation coefficient of the lattice set in the present application.
  • the lattice set is located in the area S of 8 columns x 10 rows.
  • the upper part of the matrix of 8 columns x 5 rows is selected as the sub-region R0.
  • Part of the matrix with 8 columns and 5 rows is the sub-region R1, the number of the light-emitting units corresponding to the sub-region R0 is 13 and the number of the 21 light-emitting units in the sub-region R1 is 10.
  • the corresponding values of each block of the sub-regions R0 and R1 are as follows:
  • the lattice set is located in the area S of 8 columns x 10 rows, and the upper part of the matrix of 8 columns x 5 rows is selected as the sub-region R0, and the lower part of the matrix of 8 columns x 5 rows is the sub
  • the number of light-emitting units corresponding to the region R1, the sub-regions R0 and R1 is 13 each.
  • the above-mentioned calculation method may not necessarily be used, or the above calculation method may not necessarily use a rectangular array as a block formation method, for example Blocks can be triangles, circles, polygons or irregular graphics.
  • the above formula can also be simplified or complicated.
  • the different rectangular arrays in the above correlation description may include two different two-dimensional patterns, or may represent part and all of a two-dimensional pattern.
  • the correlation calculation may also use other formulas or algorithms, or establish other coordinate systems, such as a polar coordinate system.
  • a matrix, a regular polygon grid, or its pattern after translation in a two-dimensional space has a relatively high correlation.
  • the set of two-dimensional patterns obtained by copying the two-dimensional patterns multiple times has a high correlation.
  • the correlation of the lattice set or lattice subset can be evaluated by the following method:
  • the sub-region R0 that satisfies the predetermined condition is, for example but not limited to: the number of light-emitting units 21 included in the sub-region R0 accounts for the number of light-emitting units 21 in the region S The proportion of the total number is not less than 10%, or the number of light-emitting units 21 included in the sub-region R0 is not less than nine.
  • the pattern of region S has no correlation
  • the pattern of the region S has a correlation.
  • the correlation of the lattice set or lattice subset can be evaluated by the following method:
  • the sub-region satisfying the predetermined condition is defined as R0; wherein, the sub-region R0 satisfying the predetermined condition is, for example but not limited to, the number of light-emitting units 21 included in the sub-region R0 is not less than 10 of the total number of light-emitting units 21 in the region S %, Or the number of light-emitting units 21 included in the sub-region R0 is not less than 9.
  • the sub-region R1 is obtained by rotating the sub-region R0 by a certain angle; wherein, R1 can be obtained by rotating R0 in the plane where the corresponding two-dimensional pattern is located.
  • the pattern of region S has no correlation
  • the pattern of region S has a correlation.
  • the same or substantially the same pattern can be understood as considering the position of the light emitting unit 21 in the pattern as one point, and 30% or more of the points in the pattern of the two sub-regions coincide.
  • considering that the light-emitting unit 21 itself has a certain size when the patterns of the two sub-regions are compared, other points within a circle with a certain point as the center and a predetermined length as the radius are considered to coincide with the point .
  • the correlation of the lattice set or lattice subset can be evaluated by the following method:
  • the sub-region satisfying the predetermined condition is defined as R0; wherein, the sub-region R0 satisfying the predetermined condition is, for example but not limited to, the number of the light-emitting units 21 included in the sub-region R0 is not less than 10% of the number of the light-emitting units 21 in the region S Or, the number of light-emitting units 21 included in the sub-region R0 is not less than 9.
  • the pattern of region S has no correlation
  • the pattern of region S has a correlation.
  • the lattice set corresponding to the two-dimensional pattern formed by the light-emitting unit 21 may be divided into a plurality of lattice sub-sets, at least one of the lattice sub-sets may be one of translation, symmetry, and rotation or After several transformations, the correlation coefficient with the lattice set is greater than or equal to 0.3, and the correlation between at least one lattice subset is less than 0.2.
  • the lattice set corresponding to the two-dimensional pattern formed by the light-emitting unit 21 may be divided into a plurality of lattice sub-sets, wherein at least one lattice sub-set and other subsets are in translation, symmetry, and rotation.
  • the correlation coefficient of the lattice subset obtained after one or several transformations of is greater than or equal to 0.3, and the correlation of at least one lattice subset itself is less than 0.2.
  • the correlation between the two lattice subsets can be evaluated using the following method:
  • the corresponding regions of the two lattice subsets that need to calculate the correlation are R1 and R2, and the range of the subregion R1 is less than or equal to the range of the subregion R2; in the embodiment, the range of the subregion can be understood as rectangular coordinates The minimum rectangular area that can completely accommodate the sub-region in the system. In other embodiments of the present invention, the range of the sub-region may also have different definitions and understandings as needed, and all belong to the protection scope of the present invention.
  • R1 is traversed in any direction within the range of R2. If there is no sub-region with the same or substantially the same pattern as R1 in any direction in R2 (a partial region in the sub-region is called a sub-sub-region), then the sub-region R1 The pattern of R2 is not relevant;
  • the patterns of sub-regions R1 and R2 have correlation.
  • the correlation evaluation between the lattice subsets includes correlating the lattice subsets with other lattice subsets through one or more transformations of translation, symmetry, and rotation. Calculate the correlation coefficient, or calculate the correlation coefficient between the lattice sub-set and other lattice sub-sets through one or more transformations of translation, symmetry, and rotation.
  • the region corresponding to the lattice subset and its corresponding light-emitting unit 21 satisfies the conditions of open collection and connectivity in a two-dimensional space, and is a convex region.
  • the area is sometimes referred to as a closed area. If at least one neighborhood exists for every point in the lattice subset, all of them are included, then the lattice subset is called an open set. If any two points in the lattice subset can be connected by a polyline that completely belongs to the lattice subset, the lattice subset is said to be connected.
  • the correlation coefficient of a two-dimensional pattern if the correlation is more obvious, for example, the correlation coefficient is greater than or equal to 0.3, the specification or claims of this application may sometimes refer to it as having correlation; If the correlation is low, for example, the correlation coefficient is less than 0.2, the specification or claims of this application may sometimes say that it has no correlation. It should be understood that when the specification or claims of this application mention that there is no correlation, it does not necessarily mean that the correlation coefficient of the two-dimensional pattern or lattice subset is 0.
  • FIGS. 3 to 10 of the drawings of this specification the small circles represent the location of the light emitting unit 21, and the peripheral boxes represent the semiconductor substrate.
  • some dotted lines or dividing lines appear in the drawings. These lines are used only To illustrate the embodiments of the present application, they do not necessarily exist in practice.
  • the lattice set of the two-dimensional pattern formed by the plurality of light-emitting units 21 may be divided into six lattice subsets with the same or substantially the same pattern (rectangle as shown by dotted lines) ,
  • the correlation coefficient of the lattice set is greater than or equal to 0.3, and the correlation coefficient of the six lattice subsets is less than 0.2.
  • the lattice set of the two-dimensional pattern formed by the plurality of light-emitting units 21 can be divided into 4 lattice sub-sets (such as 2x2 squares divided by dotted lines), of which 3
  • the lattice subset has substantially the same two-dimensional pattern, and the other lattice subset has the different two-dimensional pattern.
  • the lattice set has correlation, and the correlation coefficient is greater than 0.3 and less than 1; three of the lattice subsets have no correlation, and the correlation coefficient is less than 0.2.
  • the lattice set of the two-dimensional pattern formed by the plurality of light-emitting units 21 can be divided into 4 lattice sub-sets (such as 2x2 squares divided by dotted lines), of which 3
  • the lattice subset has substantially the same two-dimensional pattern, and the other lattice subset has the different two-dimensional pattern.
  • the lattice set has correlation, and one in the lattice subset has no correlation.
  • the dot matrix set corresponding to the plurality of light emitting units 21 has related sub-regions R0 and R1, and the patterns of the sub-regions R0 and R1 are basically the same, but the dots
  • the number of light-emitting units 21 in the array set is 113, and the number of light-emitting units 21 corresponding to the sub-regions R0 and R1 is 24.
  • the lattice set of the two-dimensional pattern formed by the plurality of light-emitting units 21 may be divided into two lattice subsets with substantially the same two-dimensional pattern (such as 2x1 divided by dotted lines) Squares), the correlation of the lattice set is greater than 0.3, and the correlation of the subset of lattices is less than 0.2.
  • Each lattice subset corresponds to a two-dimensional pattern formed by 60 light-emitting units 21 and having no correlation.
  • FIG. 11 is a speckle pattern formed by the light beam emitted from the array of the light-emitting units 21 shown in FIG. 10 after being copied and projected by the optical component 30, wherein each small circle represents a light spot.
  • the optical assembly 30 includes a diffractive optical element that replicates the array formed by the light emitting units 21 according to a 3x3 matrix, each small matrix box and the plurality of light emitting units 21 corresponds to the two-dimensional pattern formed.
  • the image processor can obtain the corresponding depth coordinate of the spot by calculating the local displacement corresponding to the beam of each spot and using triangulation to obtain the external object ’s In-depth information.
  • the lattice subset may have a matrix or grid arrangement, or may not be arranged according to a matrix or grid, for example, it may be randomly or pseudo-randomly distributed.
  • the shape of the lattice subset may be rectangular, circular, or other suitable shapes.
  • the multiple light emitting units 21 are integrated on a semiconductor substrate.
  • the light source includes a VCSEL array chip, which may be a bare chip or a packaged chip.
  • the size of the VCSEL array chip may be 3 mm * 3 mm or 5 mm * 5 mm, and the number of the light-emitting units 12 may be tens to hundreds.
  • the above data is only for illustrative purposes, and is not a limitation of the embodiments of the present application.
  • the light emitting unit 21 can also be integrated on a glass substrate, a metal substrate, etc., and the VCSEL array can be manufactured in different sizes as needed.
  • the light emitting unit The number of 21 may also be different.
  • the present application also discloses a light source, which includes a plurality of light emitting units provided on a substrate, and the light emitting units may be light emitting elements, such as LEDs, VCSELs, or LDs.
  • the light-emitting units form a lattice set with correlation, and the lattice set has at least one subset of lattices without correlation.
  • the present application also discloses a device.
  • An embodiment of the device includes the above-mentioned projection device 10 or light source of the present application.
  • the device is, for example but not limited to, a mobile phone, a tablet computer, a notebook computer, a monitoring device, a vehicle-mounted device, and a smart home device And other devices with 3D object recognition.
  • the device 100 includes a projection device 101, a receiving device 102, and a main body 103 that houses the projection device 101 and the receiving device 102.
  • the projection device 101 projects a light beam having a speckle pattern onto an external object, and at least part of the light beam reflected by the external object is received by the receiving device 102.
  • the projection device 101 and the projection device 10 have substantially the same structure.
  • the projection device 101 includes a plurality of light-emitting units, and the two-dimensional patterns corresponding to the plurality of light-emitting units have correlations, and the two-dimensional patterns may be divided into a plurality of sub-two-dimensional patterns with correlations, the sub-two The one-dimensional pattern corresponds to no less than nine light-emitting units, and at least one of the sub two-dimensional patterns has no correlation.
  • the projection device 101 can project a light beam having a plurality of spot patterns corresponding to the two-dimensional pattern of the light emitting unit onto an external object.
  • the main body 103 further includes a processor, and the processor may acquire two-dimensional information and / or depth information of the object according to the light beam received by the receiving device 102.
  • the processor can obtain the depth information of the object by calculating the local displacement corresponding to the beam of each spot and using triangulation to obtain the corresponding depth coordinate at the spot.
  • the light beam may be infrared light, ultraviolet light or visible light.
  • the receiving device 102 includes an infrared sensor, and the projection device 101 includes multiple VCSELs.
  • the main body further includes a processor, and the processor may obtain depth information of the object according to the received infrared light.
  • the main body 103 further includes a display screen and a camera, the display screen may be used to display a picture, and the camera may be used to take a picture or video.
  • the device 100 uses structured light to acquire depth information of an object, and performs three-dimensional feature recognition or three-dimensional image rendering of the object.
  • the device 100 includes two or more receiving devices 102, and according to the light beams received by the two or more receiving devices 102, the device 100 may be drawn according to the principle of binocular imaging The three-dimensional image of the object and the depth information of the obtained object.
  • the projection device 10 and the device 100 may also be used for two-dimensional image rendering or two-dimensional object feature recognition.
  • the projection apparatus and device of the present application can obtain the depth information of the object and draw the three-dimensional image of the object, which has a better user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种投影装置(10),包括半导体基板(22);光源(20),光源(20)包括多个设置在半导体基板(22)上的用于发射光束的发光单元(21),多个发光单元(21)形成的点阵集合相关性系数大于或等于0.3且小于1,且点阵集合可划分为多个点阵子集,至少一个点阵子集的相关性系数小于0.2;光学组件(30),用于将发光单元(21)发射的光束复制成多个光束。本投影装置(10)及其光源(20)和设备(100)具有较好的用户体验。

Description

投影装置及其光源和设备 技术领域
本申请涉及光学领域,尤其涉及一种投影装置及其光源和设备。
背景技术
随着技术进步和人们生活水平提高,包括手机,平板电脑等在内的电子设备具有更多的新功能,例如:面部识别解锁,籍此获得更好的用户体验。为了实现上述功能,设备需要能够获取对象的二维或三维信息以实现对象特征识别。
申请内容
本申请的目的是提供一种可用于对象特征识别的投影装置及其光源和设备。
本申请的一个方面提供了一种投影装置,包括半导体基板;光源,所述光源包括多个设置在所述半导体基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合相关性系数大于或等于0.3且小于1,且所述点阵集合可划分为多个点阵子集,至少一个所述点阵子集的相关性系数小于0.2;光学组件,用于将所述发光单元发射的光束复制成多个光束。
可选的,每一点阵子集对应的发光单元个数不小于9个,或者每一点阵子集对应的发光单元个数占所述发光单元全部数量比例不小于10%。
可选的,所述点阵子集之间相关性系数大于0.3,其中,所述点阵子集之间的相关性评价包括将所述点阵子集平移,或旋转,或镜像之后与其他点阵子集进行相关性系数计算,或将所述点阵子集与其他点阵子集平移,或旋转,或镜像之后得到的点阵子集进行相关性系数计算。
可选的,所述多个发光单元共用一个半导体基板,或者所述多个发光单元设置在多个半导体基板上。
可选的,所述发光单元包括VCSEL,或LED,或LD中的一种或几种。
可选的,所述光学组件包括衍射光学元件和/或透镜,所述透镜为准直透镜。
可选的,所述投影装置还包括驱动电路,所述驱动电路提供所述发光单元所需工作电流。
本申请的一个方面还提供一种光源,包括多个设置在半导体基板上的用于发射光束的发光单元,所述发光单元形成的点阵集合可划分为多个点阵子集,所诉点阵子集合间的相关性系数大于或等于0.3且小于1,且每一点阵子集对应的发光单元个数不小于9个或者每一点阵子集对应的发光单元个数占所述发光单元全部数量比例不小于10%,至少一个所述点阵子集的相关性系数小于0.2。
本申请的一个方面还提供了一种设备,所述设备包括投影装置和接收装置,所述投影装置投影具有斑点图案的光束到外部对象上,外部对象反射的至少部分光束并被所述接收装置接收,所述投影装置包括多个发光单元,所述多个发光单元对应的二维图案具有相关性,且所述二维图案可划分为多个具有相关性的子二维图案,所述子二维图案对应不少于9个发光单元,至少一个所述子二维图案不具有相关性,所述投影装置能够投影具有多个对应所述发光单元的二维图案的斑点图案的光束到外部对象上,外部对象反射的至少部分光束被所述接收装置接收。
本申请的一个方面还提供一种投影装置,包括基板;光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;光学组件,用于将所述发光元件发射的光束复制成多个光束。
可选的,所述基板为半导体基板,所述多个发光单元共用一个半导体基板或分布在多个半导体基板上。
可选的,所述点阵子集对应的发光单元数量不小于所述发光单元全部数量的10%,或者所述点阵子集对应的发光单元数量不小于9个;所述点阵集合对应的发光单元全部数量不小于50个。
可选的,所述点阵集合或点阵子集的相关性在二维平面坐标系中计算,所述坐标系为极坐标系或直角坐标系。
可选的,所述投影装置还包括驱动电路,所述驱动电路提供所述发光单元所需工作电流。
可选的,所述发光元件包括VCSEL,或LED,或LD中的一种或几种。
可选的,所述光学组件包括衍射光学元件和/或透镜。
可选的,所述点阵集合中存在点阵子集与所述点阵集合相关性系数大于或 等于0.3,所述点阵集合中不存在点阵子集的相关性系数为1。
可选的,所述基板为半导体基板,玻璃基板,金属基板中的一种。
本申请的一个方面还提供一种光源,包括多个设置在所述半导体基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2。
本申请的一个方面还提供一种设备,,所述设备包括投影装置和接收装置,所述投影装置投影具有斑点图案的光束到外部对象上,外部对象反射的至少部分光束并被所述接收装置接收,所述投影装置包括多个发光单元,所述多个发光单元对应的二维图案具有相关性,且所述二维图案可划分为多个具有相关性的子二维图案,所述子二维图案对应不少于9个发光单元,至少一个所述子二维图案不具有相关性,所述投影装置能够投影具有多个对应所述发光单元的二维图案的斑点图案的光束到外部对象上,外部对象反射的至少部分光束被所述接收装置接收。
可选的,所述设备还包括处理器,所述处理器可以根据接收装置接收到的光束获取对象的二维信息和/或深度信息。
本发明的一个方面还提供一种投影装置,包括基板;光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3且小于0.6,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;光学组件,用于将所述发光元件发射的光束复制成多个光束。
本发明的一个方面还提供一种投影装置,包括基板;光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3且小于0.5,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;光学组件,用于将所述发光元件发射的光束复制成多个光束。
本发明的一个方面还提供一种投影装置,包括基板;光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3且小于0.4,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;光学组件,用于将所述发光元件发射的光束复制成多个光束。
相较于现有技术,本申请投影装置及其光源和设备能够用于对象特征识别,具有较好的用户体验。
附图说明
图1是本申请投影装置的一个实施例的示意图;
图2是本申请投影装置的一个实施例的示意图;
图3是本申请相关性系数一个示意性说明的示意图;
图4是本申请投影装置的一个实施例的示意图;
图5是本申请投影装置的一个实施例的示意图;
图6是本申请投影装置的一个实施例的示意图;
图7是本申请投影装置的一个实施例的示意图;
图8是本申请相关性系数的一个示意性说明的示意图;
图9是本申请相关性系数的一个示意性说明的示意图;
图10是本申请投影装置的一个实施例的示意图;
图11是是图10的投影装置投影形成的斑点图案示意图;
图12是本申请设备的一个实施例的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,本申请的一个方面公开一种投影装置,投影装置10包括光源20和光学组件30。所述光源20发射光束到所述光学组件30,所述光束经所述光学组件30优化处理后可照射到外部对象上,例如照射到人脸上。本实施例中,所述光束可以是红外光。本申请其他实施例中,所述光源20发射的光束可以是可见光,紫外光,电磁波,声波,超声波中的一种或多种。
一般地还有至少一个接收装置配合所述投影装置10,用于接收至少部分被外部对象反射的所述光束,从而获取外部对象的深度信息。
所述光源20包括多个发光单元21,所述多个发光单元21的排列分布又可称 为发光单元21的阵列。所述发光单元21可以包括LED(Light Emitting Diode),VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔面发射激光器)或LD(Laser Diode)中的一种或几种。
本申请的一些实施例中,所述投影装置10还包括基板(substrate)22,所述多个发光单元21设置在所述基板22上。所述发光单元21呈具有一定相关性的二维图案分布在所述基板22上。所述光学组件30设置在所述基板22的垫层上,所述光学组件30正对所述光源20的多个发光单元21设置。本实施例中,所述基板22是半导体基板。本申请其他实施例中,所述基板22还可以是玻璃基板,金属基板等,所述基板22又可称为衬底,基底等。本申请其他或变更实施例中,所述多个发光单元21共用一个基板,或者分布在不同基板上。本申请的其他或变更实施例中,所述投影装置10还包括驱动电路,所述驱动电路用于给所述发光单元21提供工作电流。
本实施例中,所述光学组件30包括衍射光学元件(DOE,Diffraction Optical Element)。本申请其他的实施例中,所述光学组件30还可以包括设置在衍射光学元件和光源20之间的透镜或透镜组。所述光学组件30可用于将所述发光单元21发射的光束进行分束处理,即将入射光束复制并扩展成多个光束。所述发光单元21发射的光束经所述光学组件30后复制成多个光束。将每个发光单元21看作点光源,其所发射光束被所述光学组件30复制成多个光斑,那么所述光学组件30可以将所述多个发光单元21具有的二维图案复制成由光斑组成的多个对应的图案。请参阅图2,本申请的一个变更实施例中,所述光学组件30包括衍射光学元件31和透镜32。所述透镜32可以是凸透镜或者凹透镜,可以用于汇聚或发散光束。所述衍射光学元件31用于将光源30发射的多个光束复制并投影。
将所述发光单元21的分布形成的二维图案称为点阵集合,其中部分发光单元21对应的二维图案称为点阵子集,点阵子集以外的发光单元21对应的二维图案为“所述点阵子集的补集”或补集。所述点阵集合通常包括两个或两个以上的点阵子集。将所述发光单元21发射的光束在空间某一个平面上形成的光斑称为“光点”,多个所述光点具有和其所对应的多个发光单元21分布形成的二维图案基本一致的二维图案。
本申请的所述实施例中,所述点阵集合的相关性较高,例如,所述点阵集 合的相关性系数大于或等于0.3。所述点阵集合可划分为多个点阵子集,至少一个所述点阵子集的相关性较低,例如至少一个所述点阵子集的相关性系数小于0.2。需要说明的是,上述关于点阵子集的划分并不需要是唯一的,所述点阵集合可以有多种划分,从而可以得到不同的点阵子集。本申请的另一些实施例中,所述点阵集合的相关性系数大于或等于0.3且小于1。
本申请的另一些实施例中,所述点阵集合的相关性系数大于或等于0.3且小于0.4。
本申请的另一些实施例中,所述点阵集合的相关性系数大于或等于0.3且小于0.5。
本申请的另一些实施例中,所述点阵集合的相关性系数大于或等于0.3且小于0.6。
本申请的另一些实施例中,所述至少一个相关性系数小于0.2的点阵子集中包括的发光单元21数量不小于所有发光单元21数量的10%。
本申请的另一些实施例中,所述至少一个相关性系数小于0.2的点阵子集中包括的发光单元21数量不小于9个。
为方便描述和清楚理解,通过建立二维平面坐标系,例如X轴-Y轴的直角坐标系,可以使得所述多个发光单元21形成的一个二维图案(即:点阵集合或点阵子集)位于一个W列*H行(W,H为正整数)的区域中。
本实施例中,所述区域为矩形阵列,其中每个矩形称为一个区块,所述每个区块对应0或1两种数值,其中具有所述发光单元21的区块对应数值为1,不具有所述发光单元21的区块对应数值为0。其中,第i列、第j行的区块的值为R(i,j)(1≤i,j≤n)。
对所述区域进行相关性计算,可以得到位于所述矩形阵列R中的发光单元21对应的二维图案的相关性系数f。
本实施例中,一个点阵集合或点阵子集的相关性系数f可采用下述公式计算:
Figure PCTCN2018117344-appb-000001
Figure PCTCN2018117344-appb-000002
Figure PCTCN2018117344-appb-000003
P={R 0,R 1,…,R N}
Figure PCTCN2018117344-appb-000004
R′ n=T(R n)
Figure PCTCN2018117344-appb-000005
Figure PCTCN2018117344-appb-000006
公式中H、W、N、n为正整数,0≤i≤W,0≤j≤H。
其中:
a:有效点数比例;
Figure PCTCN2018117344-appb-000007
平均相关系数;
P:区域R n(0≤n≤N)的集合;
S:包括二维图案的全区域;
|·|:统计区域集合内有效点数(不重复)的运算符;
R 0:满足预定条件的子区域;
R n:将R 0对应的子区域在全区域S中遍历得到的与R 0的相关性系数f n大于或等于预定阈值thr的子区域为R n(0<n≤N,N为正整数),例如:当thr=0.3时,f n≥0.3;
N:f n≥thr(例如0.3)的子区域个数;
R′ n:R n经过T变换后的结果;
f n:R n和R 0之间的相关性系数;
T:平移、旋转、镜像等变换运算符;
H:子区域R 0或R n(0<n≤N,N为正整数)的行数;
W:子区域R 0或R n(0<n≤N,N为正整数)的列数;
所述T变换可包括但不限于二维平面内的移位、旋转、镜像对称中的一种或几种变换。本实施例中,对子区域R n不做变换,即R′ n=R n。本实施例中, 上述R n定义中的遍历,在这里可以理解为将R 0对应的子区域在全区域中的任意方向上移动不小于发光单元21自身尺寸大小的距离。此外,因为子区域之间或存在重叠情形,故需要统计有效点数及其比例。上述公式中,R 0为满足预设条件的子区域,R 0遍历整个发光单元21对应的全区域S并计算所述子区域R 0与整个全区域S除了R 0以外的其他部分的相关系数,假设存在N个与R 0之间的相关系数大于或等于预设相关性系数阈值的子区域,分别表示为R 1,…,R N,则全区域S内与子区域R 0之间的相关系数大于或等于预设相关系数阈值的所有子区域集合P={R 0,R 1,…,R N},所述集合P中的子区域之间具有相关性。本实施例中,所述预设条件的相关性系数阈值为0.3。本申请其他实施例中,所述预设条件可以具有其他设置。
需要说明的是,本申请并不以此为限,上述参数、公式和定义均是示例性说明,选择部分或全部参数、公式或定义,或者这些参数、公式或定义的部分或全部的组合作为相关性系数计算方法,均属于本申请的范围。本领域技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变形,都属于本申请保护的范围。
本实施例中,R 0满足的预定条件可以是,例如但不限于,区域R 0内对应的发光单元21的个数不小于全部发光单元21的数量的10%。本申请另一些实施例中,R 0满足的预定条件还可以是其区域内对应的发光单元21的个数不少于9个。本申请其他实施例中,R 0满足的预定条件还可以具有不同设置,例如对应的发光单元21数量可以具有不同数值,或者发光单元21数量占全部发光单元21数量的比例也可以不同。
此外,本申请的一些实施例中,当区域S对应点阵集合时,子区域Rn满足条件为内部对应发光元件数量不少于9个;当区域S对应点阵子集时,子区域Rn满足条件为内部对应发光元件数量不少于3个。
本实施例中,Rn为f n≥0.3对应的子区域,本申请其他或变更实施例中,Rn还可以具有不同设置,例如对应f≥0.5的子区域。
本实施例中,当0≤f<0.3时,对应区域和/或子区域(点阵集合或点阵子集)相关性较低或不具有相关性。当f≥0.3时,对应区域和/或子区域具有明显的相关性。上述参数S,R 0,Rn等都是相对其所计算的对象而言的。例如,对于点阵集合来说,全区域S就是所有发光单元21形成的二维图案所在区域; 对于点阵子集来说,全区域S就是所述点阵子集内的发光单元21对应的二维图案所在区域。
请参阅图3,是本申请对于点阵集合相关性系数的一个举例说明,所述点阵集合位于8列x10行的区域S中,选取上部分8列x5行的矩阵为子区域R0,下部分8列x5行的矩阵为子区域R1,子区域R0对应发光单元21个数均为13个,子区域R1发光单元21个数为10个。此时,所述子区域R0和R1的每个区块对应取值如下:
R0(1,1)=0 R0(2,1)=0 R0(3,1)=0 R0(4,1)=1 R0(5,1)=1 R0(6,1)=0 R0(7,1)=0 R0(8,1)=0
R0(1,2)=0 R0(2,2)=1 R0(3,2)=0 R0(4,2)=1 R0(5,2)=0 R0(6,2)=0 R0(7,2)=0 R0(8,2)=1
R0(1,3)=0 R0(2,3)=0 R0(3,3)=1 R0(4,3)=0 R0(5,3)=0 R0(6,3)=1 R0(7,3)=1 R0(8,3)=0
R0(1,4)=1 R0(2,4)=0 R0(3,4)=0 R0(4,4)=0 R0(5,4)=1 R0(6,4)=1 R0(7,4)=0 R0(8,4)=1
R0(1,5)=0 R0(2,5)=0 R0(3,5)=1 R0(4,5)=0 R0(5,5)=0 R0(6,5)=0 R0(7,5)=0 R0(8,5)=0
R1(1,1)=0 R1(2,1)=0 R1(3,1)=0 R0(4,1)=0 R0(5,1)=0 R0(6,1)=0 R0(7,1)=0 R0(8,1)=0
R1(1,2)=0 R1(2,2)=0 R1(3,2)=0 R0(4,2)=0 R0(5,2)=0 R0(6,2)=0 R0(7,2)=0 R0(8,2)=0
R1(1,3)=0 R1(2,3)=0 R1(3,3)=0 R0(4,3)=0 R0(5,3)=0 R0(6,3)=1 R0(7,3)=1 R0(8,3)=1
R1(1,4)=0 R1(2,4)=0 R1(3,4)=0 R0(4,4)=0 R0(5,4)=0 R0(6,4)=1 R0(7,4)=1 R0(8,4)=1
R1(1,5)=0 R1(2,5)=0 R1(3,5)=0 R0(4,5)=0 R0(5,5)=1 R0(6,5)=1 R0(7,5)=1 R0(8,5)=1
此时,a=1,R1’=R1,H=5,W=8,
Figure PCTCN2018117344-appb-000008
按照上述公式,所述点阵集合的相关性系数f=f1≈0.75/8.11≈0.09,因此所述点阵集合相关性系数小于0.2,因此所述区域S对应的点阵集合不具有相关性。
请参阅图4,本申请的一个实施例中,点阵集合位于8列x10行的区域S中,选取上部分8列x5行的矩阵为子区域R0,下部分8列x5行的矩阵为子区域R1,子区域R0和R1对应发光单元21个数均为13个。此时,按照上述公式,a=1,R1’=R1,H=5,W=8,所述点阵集合的相关性系数f=f1≈0.7,因此所述点阵集合相关性系数大于0.3,可以说所述区域S对应的点阵集合具有相关性,而所述子区域R0和R1对应的图案内部相关性系数小于0.2,R0和R1对应的点阵子集不具有相关性。
需要说明的是,本申请并不以此为限,本申请其他或变更实施例中,不一定采用上述举例的计算方法,或者上述计算方法中不一定采用矩形阵列作为区块的形成方式,例如区块可以为三角形,圆形,多边形或者不规则图形。上述公式还可以进行简化或复杂化。上述相关性描述中不同的矩形阵列可以包括两 个不同的二维图案,也可以分别代表一个二维图案中的部分和全部。本领域技术人员应当理解,本申请上述实施例仅为示例性说明,凡是发光单元21形成的二维图案具有相关性的技术方案均属于本申请涵盖范围,为本申请说明书所公开且被本申请权利要求保护。
本申请其他或变更实施例中,相关性计算也可以采用其他公式或算法,或者设立其他坐标系,如:极坐标系。一般地,矩阵,正多边形网格,或者其在二维空间平移后的图案是具有较高相关性的。此外,可以理解的,将二维图案的进行多次复制后得到的二维图案的集合具有较高的相关性。
本申请另一实施例中,对于点阵集合或点阵子集的相关性可采用下述方法进行评价:
定义需要计算相关性的点阵集合或点阵子集对应区域为S;
定义一任意选取的满足预定条件的子区域为R0;其中,满足预定条件的子区域R0例如但不限于:所述子区域R0内包含的发光单元21数量占所述区域S内发光单元21数量总数的比例不小于10%,或者所述子区域R0内包含的发光单元21数量不少于9个。
若沿任意方向上不存在与R0的图案相同或基本相同的子区域,则区域S的图案不具有相关性;
若沿任意方向上至少存在与R0的图案相同或基本相同的子区域,则区域S的图案具有相关性。
本申请另一实施例中,对于点阵集合或点阵子集的相关性可采用下述方法进行评价:
定义需要计算相关性的点阵集合或点阵子集对应区域为S;
定义满足预定条件的子区域为R0;其中,满足预定条件的子区域R0例如但不限于:所述子区域R0内包含的发光单元21数量不小于所述区域S内发光单元21全部数量的10%,或者所述子区域R0内包含的发光单元21数量不少于9个。
将所述子区域R0旋转一定角度后得到子区域R1;其中,R1可以通过R0在其对应二维图案所在平面内旋转得到。
若沿任意方向上不存在与R0或R1的图案相同或基本相同的子区域,则区域S的图案不具有相关性;
若沿任意方向上至少存在与R0或R1的图案相同或基本相同的子区域,则区 域S的图案具有相关性。
图案相同或基本相同可以理解为将发光单元21的位置在图案中看作一个点,2个子区域的图案中的30%或以上的点重合。本申请另一些实施例中,考虑到发光单元21本身具有一定大小,在2个子区域的图案进行比较时,以某一点为圆心、预定长度为半径的圆内的其他点被认为和该点重合。
本申请另一实施例中,对于点阵集合或点阵子集的相关性可采用下述方法进行评价:
定义需要计算相关性的点阵集合或点阵子集对应区域为S;
定义满足预定条件的子区域为R0;其中,满足预定条件的子区域R0例如但不限于:所述子区域R0内包含的发光单元21数量不小于所述区域S内发光单元21数量的10%,或者所述子区域R0内包含的发光单元21数量不少于9个。
将所述子区域R0镜像对称得到子区域R1;
若沿任意方向上不存在与R0或R1的图案相同或基本相同的子区域,则区域S的图案不具有相关性;
若沿任意方向上至少存在与R0或R1的图案相同或基本相同的子区域,则区域S的图案具有相关性。
本申请的另一实施例中,所述发光单元21形成的二维图案对应的点阵集合可划分为多个点阵子集,其中至少一个点阵子集通过平移、对称、旋转中的一种或几种变换后和所述点阵集合的相关性系数大于或等于0.3,且至少一个点阵子集自身的相关性小于0.2。
本申请的另一实施例中,所述发光单元21形成的二维图案对应的点阵集合可划分为多个点阵子集,其中至少一个点阵子集与其他子集通过平移、对称、旋转中的一种或几种变换后得到的点阵子集的相关性系数大于或等于0.3,且至少一个点阵子集自身的相关性小于0.2。
本申请另一实施例中,对于两个点阵子集之间的相关性可采用下述方法进行评价:
定义需要计算相互相关性的两个点阵子集对应区域为R1和R2,且子区域R1的范围小于或等于子区域R2的范围;所述实施例中,子区域的范围的可以理解为直角坐标系中能够完全容纳所述子区域的最小矩形面积,本发明其他实施例中,子区域的范围还可根据需要具有不同的定义和理解,都属于本发明保护 范围。
将R1在R2范围内任意方向进行遍历,若R2沿任意方向上不存在与R1的图案相同或基本相同的子子区域(子区域内的部分区域称为子子区域),则子区域R1、R2的图案不具有相关性;
若R2沿任意方向上至少存在与R1的图案相同或基本相同的子子区域,则子区域R1、R2的图案具有相关性。
本发明其他或变更实施例中,所述点阵子集之间的相关性评价包括将所述点阵子集通过平移、对称、旋转中的一种或几种变换之后与其他点阵子集的进行相关性系数计算,或将所述点阵子集与其他点阵子集通过平移、对称、旋转中的一种或几种变换之后得到的点阵子集进行相关性系数计算。
通常但不是必须的,点阵子集及其对应的发光单元21所对应的区域在二维空间中满足开集和连通的条件,且为凸区域。在某些实施例中,所述区域有时也指代闭区域。若点阵子集中每一个点至少存在一个邻域全部包含于内,则称该点阵子集为开集。若点阵子集中任何两点,都可用完全属于该点阵子集的一条折线连接起来,则称该点阵子集是连通的。
需要说明的是,本申请或者其他技术资料中可能出现其他用于描述上述情形的词语,例如但不限于:散斑,或图案,或二维图案,或子二维图案,或结构光图案等,本领域技术人员应当理解为等同本申请的点阵集合或点阵子集。
为了便于描述和理解,当谈及某个二维图案的相关性时,如果其相关性较为明显,例如相关性系数大于或等于0.3,本申请说明书或权利要求书有时也称其具有相关性;如果其相关性较低,例如相关性系数小于0.2,本申请说明书或权利要求书有时也称其不具有相关性。应当理解的是,本申请说明书或权利要求书提及不具有相关性时并不一定代表所述二维图案或点阵子集相关性系数为0。
本申请说明书附图的图3至图10中,小圆圈代表发光单元21所在位置,外围方框代表半导体基板,为了便于描述和理解,附图中出现了一些虚线或分隔线,这些线仅用于说明本申请实施例,并不一定实际存在。
请参阅图5,本申请的一个实施例中,所述多个发光单元21形成的二维图案的点阵集合可划分为6个图案相同或基本相同的点阵子集(如虚线所示矩形),所述点阵集合相关性系数大于或等于0.3,所述6个点阵子集自身的相关性系数小于0.2。
请参阅图6,本申请的一个实施例中,所述多个发光单元21形成的二维图案的点阵集合可划分为4个点阵子集(如虚线划分的2x2方格),其中3个点阵子集具有基本相同的二维图案,另一点阵子集具有不相同的二维图案。所述点阵集合具有相关性,相关性系数大于0.3且小于1;所述点阵子集中的3个不具有相关性,相关性系数小于0.2。
请参阅图7,本申请的一个实施例中,所述多个发光单元21形成的二维图案的点阵集合可划分为4个点阵子集(如虚线划分的2x2方格),其中3个点阵子集具有基本相同的二维图案,另一点阵子集具有不相同的二维图案。所述点阵集合具有相关性,所述点阵子集中的1个不具有相关性。
请参阅图8,本申请的一个实施例中,所述多个发光单元21对应的点阵集合具有相关的子区域R0和R1,所述子区域R0和R1的图案基本相同,但是所述点阵集合的发光单元21数量共有113个,子区域R0和R1对应的发光单元21数量共有24个,有效点数比例为24/116=0.21(四舍五入,下同),其相关性系数f=af1<0.3,因此该点阵集合相关性系数小于0.3。
可以理解的是,扩大子区域R0的大小可能增大有效点数比例a,但是相应的也降低了R0和R1的相关性系数f1,从而最终点阵集合的相关性系数f大小仍然小于0.3。请参阅图9,子区域R0和R1相较图7中对应具有更多的发光单元21,有效点数比例为40/116=0.34,然而子区域R0和R1的相关性系数f1较小,导致整个点阵集合的相关性系数f小于0.3。
请参阅图10,本申请的一个实施例中,所述多个发光单元21形成的二维图案的点阵集合可划分为2个具有基本相同二维图案的点阵子集(如虚线划分的2x1方格),所述点阵集合的相关性大于0.3,所述点阵子集的相关性小于0.2。其中,每个点阵子集对应60个发光单元21形成的不具有相关性的二维图案。
请参阅图11,是图10所示发光单元21的阵列所发射光束经光学组件30复制和投影后形成的散斑图案,其中每一个小圆圈代表一个光点。在所述实施例中,所述光学组件30包括衍射光学元件,所述衍射光学元件将所述发光单元21形成的阵列按照3x3矩阵进行复制,每个小矩阵方框和所述多个发光单元21形成的二维图案相对应。
所述斑点图案照射到外部对象上,并被接收装置接收后,图像处理器能够通过计算每个斑点的光束对应的局部位移并利用三角测量得到该斑点处对应的 深度坐标,从而获取外部对象的深度信息。
本申请上述及其他变更实施例中,所述点阵子集可以具有矩阵或网格排列,也可以不按照矩阵或网格排列,例如可以是随机或伪随机分布。点阵子集的形状可以是矩形,圆形或者其他符合条件的形状。
本实施例中,所述多个发光单元21是集成半导体基板上。所述光源包括VCSEL阵列芯片,其可以是裸片,也可以是封装后的芯片。所述VCSEL阵列芯片尺寸大小可以是3mm*3mm或者5mm*5mm,其包括发光单元12的数量可为几十到几百。上述数据仅为举例性说明,并非对本申请实施例的限定,所述发光单元21还可集成在玻璃基板上、金属基板上等等,所述VCSEL阵列可以根据需要制造不同尺寸,所述发光单元21数量也可具有不同。本领域技术人员可以理解,在不必付出创造性劳动的对于上述技术方案的替换、改变等,均属于本申请保护范畴。
本申请的还公开一种光源,其包括多个设置在基板上的发光单元,所述发光单元可以是发光元件,例如LED,VCSEL或LD。所述发光单元形成具有相关性的点阵集合,所述点阵集合具有至少一个不具有相关性的点阵子集。
本申请还公开一种设备,所述设备的一个实施例中包括上述本申请投影装置10或光源,所述设备例如但不限于手机,平板电脑,笔记本电脑,监控设备,车载设备,智能家居设备等具有3D对象识别功能的设备。
请参阅图12,本申请的一个实施例中,设备100包括投影装置101、接收装置102和收容所述投影装置101和接收装置102的主体103。所述投影装置101投影具有斑点图案的光束到外部对象上,外部对象反射的至少部分光束被所述接收装置102接收。所述投影装置101和投影装置10具有大致相同的结构。所述投影装置101包括多个发光单元,所述多个发光单元对应的二维图案具有相关性,且所述二维图案可划分为多个具有相关性的子二维图案,所述子二维图案对应不少于9个发光单元,至少一个所述子二维图案不具有相关性。所述投影装置101能够投影具有多个对应所述发光单元的二维图案的斑点图案的光束到外部对象上。
所述主体103还包括处理器,所述处理器可以根据接收装置102接收到的光束获取对象的二维信息和/或深度信息。例如,处理器能够通过计算每个斑点的光束对应的局部位移并利用三角测量得到该斑点处对应的深度坐标,从而获取 对象的深度信息。
所述光束可以是红外光,紫外光或可见光。本实施例中以红外光为例,所述接收装置102包括红外传感器,所述投影装置101包括多个VCSEL。所述主体还包括处理器,所述处理器可以根据接收到的红外光获取对象的深度信息。一些实施例中,所述主体103还包括显示屏和摄像头,所述显示屏可用于显示画面,所述摄像头可用于拍照或摄像。
本实施例中,所述设备100利用结构光获取对象的深度信息,进行对象的三维特征识别或三维图像绘制。本申请的另一些实施例中,所述设备100包括二个或者多个接收装置102,根据所述二个或多个接收装置102接收到的光束,所述设备100可以根据双目成像原理绘制对象的三维图像和获取对象的深度信息。
本申请的另一些实施例中,所述投影装置10和设备100还可以用作二维图像绘制或者二维对象特征识别。
相较于现有技术,本申请投影装置和设备能够获取对象深度信息,绘制对象三维图像,具有较好的用户体验。
本申请的描述中提供了许多不同的实施方式或例子用来实现本申请。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。需要说明的是,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。本申请说明书和权利要求书中关于“多个”的描述包括2个和2个以上的情形。还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“连接”等应做广义理解,例如,可以是固定设置,也可以是可拆卸设置,或一体地设置。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。权利要求书中所使用的术语不应理解为将申请限制于本说明书中所公开的特定实施例。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种投影装置,包括:
    半导体基板;
    光源,所述光源包括多个设置在所述半导体基板上的用于发射光束的发光单元,所述多个发光单元对应的点阵集合可划分为多个点阵子集,所述点阵子集合间的相关性系数大于或等于0.3且小于1,且至少一个所述点阵子集的相关性系数小于0.2;
    光学组件,用于将所述发光单元发射的光束复制成多个光束。
  2. 根据权利要求1所述的投影装置,其特征在于,每一点阵子集对应的发光单元个数不小于9个或者每一点阵子集对应的发光单元个数占所述发光单元全部数量比例不小于10%。
  3. 根据权利要求1所述的投影装置,其特征在于,所述点阵子集之间的相关性评价包括将所述点阵子集通过平移、对称、旋转中的一种或几种变换之后与其他点阵子集的进行相关性系数计算,或将所述点阵子集与其他点阵子集通过平移、对称、旋转中的一种或几种变换之后得到的点阵子集进行相关性系数计算。
  4. 根据权利要求1所述的投影装置,其特征在于,所述多个发光单元共用一个半导体基板,或者所述多个发光单元设置在多个半导体基板上。
  5. 根据权利要求1所述的投影装置,其特征在于,所述发光单元包括VCSEL,或LED,或LD中的一种或几种。
  6. 根据权利要求1所述的投影装置,其特征在于,所述光学组件包括衍射光学元件和/或透镜,所述透镜为准直透镜。
  7. 根据权利要求1所述的投影装置,其特征在于,所述投影装置还包括驱动电路,所述驱动电路提供所述发光单元所需工作电流。
  8. 一种光源,包括多个设置在半导体基板上的用于发射光束的发光单元,所述发光单元形成的点阵集合可划分为多个点阵子集,所诉点阵子集合间的相关性系数大于或等于0.3且小于1,且每一点阵子集对应的发光单元个数不小于9个或者每一点阵子集对应的发光单元个数占所述发光单元全部数量比例不小于10%,至少一个所述点阵子集的相关性系数小于0.2。
  9. 一种设备,所述设备包括投影装置和接收装置,所述投影装置投影具有斑点图案的光束到外部对象上,外部对象反射的至少部分光束并被所述接收装 置接收,所述投影装置包括多个发光元件,所述多个发光元件对应的二维图案具有相关性,且所述二维图案可划分出至少一个不具有相关性的子二维图案,所述子二维图案对应不少于9个发光单元,所述投影装置能够投影具有多个对应所述发光元件的二维图案的斑点图案的光束到外部对象上,外部对象反射的至少部分光束被所述接收装置接收。
  10. 一种投影装置,包括:
    基板;
    光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;
    光学组件,用于将所述发光元件发射的光束复制成多个光束。
  11. 根据权利要求10所述的投影装置,其特征在于,所述基板为半导体基板,所述多个发光单元共用一个半导体基板或分布在多个半导体基板上。
  12. 根据权利要求10所述的投影装置,其特征在于,所述点阵子集对应的发光单元数量不小于所述发光单元全部数量的10%,或者所述点阵子集对应的发光单元数量不小于9个;所述点阵集合对应的发光单元全部数量不小于50个。
  13. 根据权利要求10所述的投影装置,其特征在于,所述点阵集合或点阵子集的相关性在二维平面坐标系中计算,所述坐标系为极坐标系或直角坐标系。
  14. 根据权利要求10所述的投影装置,其特征在于,所述投影装置还包括驱动电路,所述驱动电路提供所述发光单元所需工作电流。
  15. 根据权利要求10所述的投影装置,其特征在于,所述发光元件包括VCSEL,或LED,或LD中的一种或几种。
  16. 根据权利要求10所述的投影装置,其特征在于,所述光学组件包括衍射光学元件和/或透镜。
  17. 根据权利要求10所述的投影装置,其特征在于,所述点阵集合中存在点阵子集与所述点阵集合相关性系数大于或等于0.3,所述点阵集合中不存在点阵子集的相关性系数为1。
  18. 根据权利要求10所述的投影装置,其特征在于,所述基板为半导体基板,玻璃基板,金属基板中的一种。
  19. 一种光源,包括多个设置在所述半导体基板上的用于发射光束的发光 单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2。
  20. 一种设备,所述设备包括投影装置和接收装置,所述投影装置投影具有斑点图案的光束到外部对象上,外部对象反射的至少部分光束并被所述接收装置接收,所述投影装置包括多个发光单元,所述多个发光单元对应的二维图案具有相关性,且所述二维图案可划分为多个具有相关性的子二维图案,所述子二维图案对应不少于9个发光单元,至少一个所述子二维图案不具有相关性,所述投影装置能够投影具有多个对应所述发光单元的二维图案的斑点图案的光束到外部对象上,外部对象反射的至少部分光束被所述接收装置接收。
  21. 根据权利要求20所述的设备,其特征在于,所述设备还包括处理器,所述处理器可以根据接收装置接收到的光束获取对象的二维信息和/或深度信息。
  22. 一种投影装置,包括:
    基板;
    光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3且小于0.6,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;
    光学组件,用于将所述发光元件发射的光束复制成多个光束。
  23. 一种投影装置,包括:
    基板;
    光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3且小于0.5,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;
    光学组件,用于将所述发光元件发射的光束复制成多个光束。
  24. 一种投影装置,包括:
    基板;
    光源,所述光源包括多个设置在所述基板上的用于发射光束的发光单元,所述多个发光单元形成的点阵集合的相关性系数大于或等于0.3且小于0.4,至少部分所述发光单元形成的点阵子集的相关性系数小于0.2;
    光学组件,用于将所述发光元件发射的光束复制成多个光束。
PCT/CN2018/117344 2018-11-24 2018-11-24 投影装置及其光源和设备 WO2020103167A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880002354.6A CN109643053B (zh) 2018-11-24 2018-11-24 投影装置及其光源和设备
PCT/CN2018/117344 WO2020103167A1 (zh) 2018-11-24 2018-11-24 投影装置及其光源和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117344 WO2020103167A1 (zh) 2018-11-24 2018-11-24 投影装置及其光源和设备

Publications (1)

Publication Number Publication Date
WO2020103167A1 true WO2020103167A1 (zh) 2020-05-28

Family

ID=66060190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117344 WO2020103167A1 (zh) 2018-11-24 2018-11-24 投影装置及其光源和设备

Country Status (2)

Country Link
CN (1) CN109643053B (zh)
WO (1) WO2020103167A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566210A (zh) * 2010-11-25 2012-07-11 财团法人工业技术研究院 摄影投影装置与发光感测模块
CN107589623A (zh) * 2017-09-19 2018-01-16 深圳奥比中光科技有限公司 高密度的结构光投影仪
CN206908092U (zh) * 2017-05-15 2018-01-19 深圳奥比中光科技有限公司 Vcsel阵列光源、激光投影装置及3d成像设备
CN107748475A (zh) * 2017-11-06 2018-03-02 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法
CN108490635A (zh) * 2018-03-23 2018-09-04 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108594454A (zh) * 2018-03-23 2018-09-28 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10979687B2 (en) * 2017-04-03 2021-04-13 Sony Corporation Using super imposition to render a 3D depth map
CN209570791U (zh) * 2018-11-24 2019-11-01 深圳阜时科技有限公司 投影装置及其光源和设备
CN209690705U (zh) * 2018-11-24 2019-11-26 深圳阜时科技有限公司 投影装置及其光源和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566210A (zh) * 2010-11-25 2012-07-11 财团法人工业技术研究院 摄影投影装置与发光感测模块
CN206908092U (zh) * 2017-05-15 2018-01-19 深圳奥比中光科技有限公司 Vcsel阵列光源、激光投影装置及3d成像设备
CN107589623A (zh) * 2017-09-19 2018-01-16 深圳奥比中光科技有限公司 高密度的结构光投影仪
CN107748475A (zh) * 2017-11-06 2018-03-02 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法
CN108490635A (zh) * 2018-03-23 2018-09-04 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108594454A (zh) * 2018-03-23 2018-09-28 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机

Also Published As

Publication number Publication date
CN109643053B (zh) 2021-06-29
CN109643053A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US20220057645A1 (en) Structured light projection module, depth camera, and method for manufacturing structured light projection module
CN107561837B (zh) 重叠图案投影仪
TWI700508B (zh) 用於距離感測的設備、方法及電腦可讀取儲存裝置
JP6386194B2 (ja) ステレオカメラと構造化光とを使用したヘッドマウントディスプレイでの深度マッピング
US11455746B2 (en) System and methods for extrinsic calibration of cameras and diffractive optical elements
WO2018201585A1 (zh) 用于3d成像的激光阵列
US8384997B2 (en) Optical pattern projection
CN110476148B (zh) 用于提供多视图内容的显示系统和方法
US20130088575A1 (en) Method and apparatus for obtaining depth information using optical pattern
KR20200054326A (ko) 경도 그리드 패턴을 사용한 거리 측정
CN107148595B (zh) 一种用于反射器显示器的入射角优化的方法
US20200240611A1 (en) Methods and Systems for Freeform Irradiance Tailoring for Light Fields
KR20220026422A (ko) 카메라 캘리브레이션 장치 및 이의 동작 방법
WO2020103167A1 (zh) 投影装置及其光源和设备
US10119679B2 (en) Freeform optical surface for producing sharp-edged irradiance patterns
CN209962077U (zh) 投影装置及其光源和设备
CN209570791U (zh) 投影装置及其光源和设备
CN209690703U (zh) 投影装置及其光源和设备
CN209690705U (zh) 投影装置及其光源和设备
JP7273249B2 (ja) 3次元センサモジュールのためのドットプロジェクタの設計および作製
TW202009444A (zh) 三維掃描系統
CN209690706U (zh) 投影装置及其光源和设备
US20220228857A1 (en) Projecting a structured light pattern from an apparatus having an oled display screen
JP6417696B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
CN109471324B (zh) 投影装置及其设备和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940983

Country of ref document: EP

Kind code of ref document: A1