WO2020103146A1 - 一种供电控制方法和装置 - Google Patents

一种供电控制方法和装置

Info

Publication number
WO2020103146A1
WO2020103146A1 PCT/CN2018/117258 CN2018117258W WO2020103146A1 WO 2020103146 A1 WO2020103146 A1 WO 2020103146A1 CN 2018117258 W CN2018117258 W CN 2018117258W WO 2020103146 A1 WO2020103146 A1 WO 2020103146A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
load
dcdc converter
signal
output
Prior art date
Application number
PCT/CN2018/117258
Other languages
English (en)
French (fr)
Inventor
谢强
陈亮
黄晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/117258 priority Critical patent/WO2020103146A1/zh
Priority to CN201880097493.1A priority patent/CN112714999A/zh
Publication of WO2020103146A1 publication Critical patent/WO2020103146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • SOC Mobile phone system-on-chip
  • DCDC direct current to direct current
  • Embodiments of the present application provide a power supply control method and device, which can improve the efficiency of a multi-phase DCDC converter.
  • the first aspect of the embodiments of the present application provides a power supply control method, which is applied to a multi-phase DC-to-DC DCDC converter.
  • the method includes: collecting load parameters of the DCDC converter; and selecting and outputting multi-phase pulses according to the load parameters Frequency modulation PFM signal or multi-phase pulse width modulation PWM signal. Based on this solution, it is possible to select and output the multi-phase PFM signal or the multi-phase PWM signal based on the load parameters, thereby improving the efficiency of the multi-phase DCDC converter.
  • the selection of outputting the multi-phase pulse frequency modulation PFM signal or the multi-phase pulse width modulation PWM signal according to the load parameter includes: comparing the load parameter with a reference value, Based on the result of the comparison, the above-mentioned multi-phase PFM signal or the above-mentioned multi-phase PWM signal is selectively output. Based on this solution, the multi-phase PFM signal or the multi-phase PWM signal can be selected and output according to the comparison result of the load parameter and the reference value.
  • the working mode of the DCDC converter includes a light load mode, a medium load mode, and a heavy load mode
  • the above method further includes: according to the above load The parameters determine the working mode of the DCDC converter; if the working mode of the DCDC converter is light load mode or medium load mode, select to output the above multiphase PFM signal; if the working mode of the DCDC converter is heavy load mode, select to output the above Multiphase PWM signal.
  • the operating mode of the DCDC converter can be determined based on the load parameters, and the output signal can be selected based on the operating mode of the DCDC converter, and the multi-phase PFM signal can be output in the mid-load mode and the light-load mode, thereby improving the multi-phase DCDC
  • the load parameter includes a load current
  • the load parameter is compared with a reference value
  • the multiphase PFM is selectively output
  • the signal or the above-mentioned multi-phase PWM signal includes: comparing the load current with a first reference value, and if the load current of the DCDC converter is less than the first reference value, selecting to output a multi-phase PFM signal; if the DCDC conversion The load current of the converter is greater than or equal to the first reference value, and the multi-phase PWM signal is selectively output. Based on this solution, by comparing the load current with the first reference value and selecting the output signal, when the load current is less than the first reference value, the efficiency of the multi-phase DCDC converter can be improved by outputting the multi-phase PFM signal.
  • the load parameter includes a load power
  • the load parameter is compared with a reference value
  • the multiphase PFM is selectively output
  • the signal or the multi-phase PWM signal includes: comparing the load power with a second reference value, and if the load power of the DCDC converter is less than the second reference value, selectively outputting the multi-phase PFM signal; if the DCDC converter The load power of is greater than or equal to the second reference value, and selects to output the multi-phase PWM signal.
  • the second reference value P N, P N U N ⁇ I ref
  • U N for the above mentioned heterophasic DCDC converter I ref is the preset reference voltage
  • I ref N ⁇ x N ⁇ I 0
  • I 0 is the reference load current
  • the reference load current is the single-phase PFM signal used to control the above multi-phase DCDC converter
  • the load current corresponding to the highest efficiency at the output voltage, x N is a real number greater than 0 and less than 1. Based on this solution, the second reference value can be obtained according to the reference load current.
  • the above-mentioned multi-phase DCDC converter is an N-phase DCDC converter, N ⁇ 2 and an integer, the above-mentioned selection outputs the multi-phase PFM signal
  • the method includes: selectively outputting the N-phase PFM signal; wherein, the phase difference of each phase of the N-phase PFM signal is X °, and X ° is equal to 360 ° divided by N. Based on this solution, the output voltage of the above-mentioned multi-phase DCDC converter is controlled by an N-phase PFM signal having a phase difference of X °, thereby enabling multi-phase PFM control of the multi-phase DCDC converter.
  • the multi-phase DCDC converter includes a BUCK circuit, a BOOST circuit, or a BUCK-BOOST circuit. Based on this solution, various power supply circuits can be controlled.
  • a DC-DC converter is provided.
  • the DCDC converter is used to supply power to a load.
  • the DCDC converter includes a control circuit (101), a modulation signal source (102), and a voltage conversion circuit (103), the control circuit (101) is used to collect load parameters and control the modulation signal source (102) to output a multi-phase pulse width modulated PWM signal or a multi-phase pulse to the voltage conversion circuit (103) according to the load parameters Frequency modulation PMF signal.
  • the modulation signal source (102) includes a multi-phase PFM signal source and a multi-phase PWM signal source, and the control circuit (101) is specifically configured to control the above according to the load parameter
  • the modulation signal source (102) selects the multi-phase PFM signal source to output the PFM signal, or selects the multi-phase PWM signal source to output the PWM signal.
  • the above-mentioned control circuit (101) is specifically used to compare the above-mentioned load parameter with a reference value, and control the above-mentioned signal according to the result of the comparison
  • the source (102) outputs the multiphase PFM signal or the multiphase PWM signal.
  • the working mode of the DCDC converter includes a light load mode, an intermediate load mode, and a heavy load mode.
  • the above control circuit (101) also It is used to determine the working mode of the DCDC converter as light load mode, medium load mode, or heavy load mode according to the load parameters; if the work mode of the DCDC converter is light load mode or medium load mode, select to output the above Phase PFM signal; if the working mode of the DCDC converter is the heavy load mode, select to output the above-mentioned multi-phase PWM signal.
  • the load parameter includes the load current
  • the above control circuit (101) is specifically used to compare the above load current with the first reference value, if When the load current is less than the first reference value, control the modulation signal source (102) to select the multiphase PFM signal source to output the multiphase PFM signal; if the load current is greater than or equal to the first reference value, control the modulation signal source (102 ) Select the above multi-phase PWM signal source to output a multi-phase PWM signal.
  • the load parameter includes the load power
  • the above control circuit (101) is specifically used to compare the above load power with the second reference value. If the power is less than the second reference value, control the modulation signal source (102) to select the multiphase PFM signal source to output the multiphase PFM signal; if the load power is greater than or equal to the second preset value, control the modulation signal source (102 ) Select the above multi-phase PWM signal source to output a multi-phase PWM signal.
  • the above DCDC converter is an N-phase DCDC converter, N ⁇ 2 and an integer
  • the above control circuit (101) is specifically used for
  • the above modulation signal source (102) is controlled to output an N-phase PFM signal; wherein, the phase of each phase PFM signal in the N-phase PFM signal differs by X °, which is equal to 360 ° divided by N.
  • the voltage conversion circuit (103) includes a BUCK circuit, a BOOST circuit, or a BUCK-BOOST circuit.
  • an electronic device includes the DCDC converter described in the second aspect.
  • a power supply control device exists in the form of a chip product, and the structure of the device includes the DCDC converter described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a multi-phase DCDC converter provided by an embodiment of the present application.
  • FIG. 2 is an equivalent circuit diagram of a multi-phase DCDC circuit provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a power supply control method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of pulses of a PWM signal source and a PFM signal source provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a load current when outputting a single-phase PFM signal and a 2-phase PFM signal according to an embodiment of the present application;
  • FIG. 6 is a schematic diagram of the control effect of a power supply control method provided by the prior art
  • FIG. 7 is a pulse schematic diagram of a two-phase PFM signal provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of control effects of a power supply control method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an inductor current when a 2-phase PWM signal and a 2-phase PFM signal are output according to an embodiment of the present application;
  • FIG. 10 is a schematic structural diagram of a multi-phase DCDC converter provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a 2-phase DCDC converter provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another DCDC converter provided by an embodiment of the present application.
  • An embodiment of the present application provides a power supply control method, which can be applied to a multi-phase DCDC converter for converting a high-voltage DC power supply to a low-voltage DC power supply, or for converting a low-voltage DC power supply to a high-voltage DC power supply power supply.
  • the multi-phase DCDC converter may include a buck circuit (asynchronous rectified buck circuit or synchronous rectified buck circuit), a BOOST circuit, or a buck-boost circuit, which is not limited in the embodiments of the present application, where the buck circuit Buck, the BOOST circuit is used for boosting, and the BUCK-BOOST circuit is used for boosting and bucking (both boosting and bucking can be used).
  • the voltage conversion circuit in the DCDC converter is an asynchronous rectification buck circuit as an example for description.
  • FIG. 1 it is a schematic structural diagram of a multi-phase DCDC converter.
  • the switch tube P may use PMOS or NMOS, which is not limited in the embodiment of the present application, and only the switch tube is used as the PMOS tube in FIG.
  • R in FIG. 1 represents the load of the multi-phase DCDC converter.
  • the load of the multi-phase DCDC converter may be a circuit module with a specific function. Without limitation, only R is used as an example for description here.
  • FIG. 1 is only an exemplary description. In practical applications, a multi-phase DCDC converter may include more or fewer components than those shown in FIG. 1. The structure shown in FIG. 1 does not provide much more than the embodiments provided in this application. The phase DCDC converter constitutes no restrictions.
  • inventions of the present application provide a The power supply control method can improve the mid-load efficiency of the multiphase DCDC converter.
  • the power supply control method provided in the embodiment of the present application may include steps S301-S302.
  • the load parameter may include load current or load power.
  • the embodiment of the present application does not limit what specific load parameter is taken.
  • the load parameter is used as the load current or load power for exemplary description. It can be understood that the load parameter may include any parameter that can divide different operation modes of the DCDC converter.
  • the working modes of the DCDC converter may include a light load mode, a medium load mode, and a heavy load mode, and the light load mode, the medium load mode, and the heavy load mode may be determined according to the load parameters of the DCDC converter; light load mode It means that the load parameter of the DCDC converter is less than the first preset threshold, the medium load mode means that the load parameter of the DCDC converter is greater than or equal to the first preset threshold and less than the second preset threshold, and the heavy load mode means the DCDC converter The load parameter of is greater than or equal to the second preset threshold.
  • the specific values of the first preset threshold and the second preset threshold are related to the circuit structure of the multi-phase DCDC converter and the specific parameters of the components in the circuit, which is not limited in the embodiments of the present application. It can be understood that the first preset threshold and the second preset threshold may include multiple values, and when the load parameters are different, the values of the first preset threshold and the second preset threshold are different.
  • the above step S302 may include: determining the operating mode of the DCDC converter to be a light load mode, an intermediate load mode, or a heavy load mode according to the load parameters; selecting to output a multi-phase PFM signal based on the operating mode of the DCDC converter or Multiphase PWM signal.
  • a multi-phase PFM signal is selected for output; if the operating mode of the DCDC converter is a heavy load mode, a multi-phase PWM signal is selected for output. It can be understood that the multi-phase PFM signal or the multi-phase PWM signal is used to control the output voltage of the DCDC converter.
  • the second preset threshold may include a preset value A. If the load current is less than the preset value A, the working mode of the DCDC converter is the light load mode or the medium load mode, based on The working mode selects to output the multi-phase PFM signal; if the load current is greater than the preset value A, the working mode of the DCDC converter is the heavy-load mode, and the multi-phase PWM signal is selected to be output based on the working mode.
  • the second preset threshold may include a preset value B.
  • the operating mode of the DCDC converter is the light load mode or the intermediate load mode, based on the operating mode selection Multi-phase PFM signal is output; if the load power is greater than the preset value B, the working mode of the DCDC converter is the heavy-load mode, and the multi-phase PWM signal is selected and output based on the working mode.
  • the frequency of the modulation signal of the pulse frequency modulation PFM signal is variable, and can vary with the amplitude of the input signal, but its duty ratio is unchanged; while the modulation signal frequency of the pulse width modulation PWM signal Not variable, variable duty cycle.
  • the embodiment of the present application can choose to output the multi-phase PFM signal to control the output voltage of the multi-phase DCDC converter, which can effectively improve the efficiency of the multi-phase DCDC converter .
  • the output voltage of the multiphase DCDC converter is controlled by the multiphase PFM signal and the output voltage of the multiphase DCDC converter is controlled by the single phase PFM signal.
  • the load current of the 2-phase DCDC converter using the 2-phase PFM signal is superimposed, which is the same as the load current using the single-phase PFM signal.
  • the load current of the two signals is the same.
  • the multi-phase PFM signal when the medium-load mode or the light-load mode is selected, the multi-phase PFM signal is selected to be output, and when the heavy-load mode is selected, the multi-phase PWM signal is selected to be output, which can be considered as a combination of the medium-load mode and the light-load mode as a Mode, while the heavy load mode is used as another mode alone, and the output voltage of the multiphase PFM signal is selected to control the output voltage of the DCDC converter in the medium load mode or the light load mode, so that there is no need to perform between the medium load mode and the light load mode
  • the switching of the control method can reduce the complexity of the control circuit.
  • the above step S302 may include: comparing the load parameter with the reference value, and based on the comparison result, selecting to output the multi-phase PFM signal or the multi-phase PWM signal.
  • the above step S302 may include: comparing the load current with the first reference value, if the load current of the DCDC converter is less than the first reference value, select to output a multi-phase PFM signal; if DCDC The load current of the converter is greater than or equal to the first reference value, and the multi-phase PWM signal is selectively output.
  • the solid curve is the schematic diagram of the power supply efficiency when the output voltage of the DCDC converter is controlled by using a single-phase PFM signal
  • the dashed curve is the control voltage of the DCDC converter when using a single-phase PWM signal
  • Schematic diagram of the power supply efficiency of FIG. 6 when the load current of the multi-phase DCDC converter is low, due to the large switching loss, the power supply efficiency using the single-phase PFM signal is higher than that using the single-phase PWM signal.
  • the line is the area where the efficiency of the single-phase PFM signal is optimized compared to the single-phase PWM signal.
  • the load current corresponding to the highest efficiency point when the single-phase PFM signal is used for power supply in FIG. 6 is the reference load current I 0 .
  • the switching loss accounts for a large amount, so the efficiency of outputting the single-phase PFM signal is higher than that of the single-phase PWM signal.
  • the load current corresponding to the highest efficiency point is I 0
  • the 2-phase DCDC converter outputs the 2-phase PFM signal
  • the corresponding load current at the highest efficiency point is 2 ⁇ I 0
  • 3-phase DCDC conversion When the 3-phase PFM signal is output, the load current corresponding to the highest efficiency point is 3 ⁇ I 0 , and so on.
  • x N has a relationship with the model of the switch tube, the type of inductance, the output voltage of the multi-phase DCDC converter, etc. In practical applications, the value of x N can be estimated through the above parameters.
  • the above multi-phase DCDC converter is an N-phase DCDC converter, N ⁇ 2, one of the N-phase PFM signal or the N-phase PWM signal can be selected based on the comparison result to control the output voltage of the N-phase DCDC converter In the N-phase PFM signal, each phase PFM signal is used to control one-phase DCDC converter to turn on or off.
  • the phase difference of each phase PFM signal in the N-phase PFM signal is X °, which is equal to 360 ° divided by N.
  • the phase of each phase PFM signal in the 2-phase PFM signal differs by 180 °
  • the phase of each phase PFM signal in the 3-phase PFM signal differs by 120 °, and so on.
  • the phase of each phase PFM signal in the 2-phase PFM signal differs by 180 °. If the load current of the 2-phase BUCK circuit is less than the first reference value, the 2-phase PFM signal is selected to be output. The phase of the PFM signal of each phase differs by 180 °.
  • PFM1 in FIG. 7 is used to control one DCDC converter in the 2-phase DCDC converter, and PFM2 is used to control the other DCDC converter in the 2-phase DCDC converter.
  • the above step S302 may include: comparing the load power with the second reference value, if the load power of the DCDC converter is less than the second reference value, select to output the multi-phase PFM signal; The load power of the DCDC converter is greater than or equal to the second reference value, and selects to output the multi-phase PWM signal.
  • the load power of the multi-phase DCDC converter is the product of the load voltage and the load current, and the load voltage of the multi-phase DCDC converter fluctuates above and below the preset output voltage, in this implementation, according to the load power and the second
  • the comparison of the reference value may be the same as the result of the comparison between the load current and the first reference value in the previous implementation.
  • the inductor current peak value of each phase can be controlled to be equal, the inductor current rise time of each phase can be equal, and each phase The fall time of the inductor current is equal to ensure that the load current is evenly distributed in each phase.
  • the efficiency diagram when the output voltage of the multi-phase DCDC converter is controlled using one of the multi-phase PFM signal or the multi-phase PWM signal As shown in FIG. 8, based on the comparison result, the efficiency diagram when the output voltage of the multi-phase DCDC converter is controlled using one of the multi-phase PFM signal or the multi-phase PWM signal.
  • the solid black curve is the output 2-phase PFM Schematic diagram of the efficiency of the signal.
  • the black dotted curve is the efficiency diagram when the single-phase PWM signal is output.
  • the black dot-dash curve is the efficiency diagram when the 2-phase PWM signal is output.
  • the load current in FIG. 8 is less than the first reference value.
  • the 2-phase PFM signal is more efficient than the single-phase PWM signal and the two-phase PWM signal.
  • the multi-phase DCDC converter uses a multi-phase PFM signal (for example, a 2-phase PFM when the load current is less than the first reference value, or when the DCDC converter's operating mode is medium load mode or light load mode )
  • a multi-phase PFM signal for example, a 2-phase PFM when the load current is less than the first reference value, or when the DCDC converter's operating mode is medium load mode or light load mode
  • the efficiency is greatly improved.
  • the second preset threshold value that distinguishes the medium and light load mode (intermediate load mode or light load mode) and the heavy load mode is the same as the first reference value for example.
  • the division The second preset threshold of the medium and light load mode may be different from the reference value (the first reference value or the second reference value).
  • FIG. 9 it is a schematic diagram of the inductor current waveform of each phase when the DCDC converter works in the mid-load mode and outputs the 2-phase PWM signal and the 2-phase PFM signal.
  • the inductor current corresponding to each phase of the PWM signal is continuous, and as shown in (b) of FIG. 9 It is shown that due to the low switching frequency of the PFM signal, the inductor current of the two phases of the 2-phase PFM signal is intermittent, and the starting point of the inductor current corresponding to the PFM signal of each phase is 0, which is the same as the output of the 2-phase PWM signal.
  • the switching frequency of the output 2-phase PFM signal is lower, which can effectively utilize the energy stored in the energy storage element and improve the efficiency of the multi-phase DCDC converter in the mid-load mode.
  • a comparator in the circuit of the multi-phase DCDC converter, can be used to compare the load current with the first reference value, or a comparator can be used to compare the load power with the second reference value, thereby generating a corresponding Control signal to select and output multi-phase PWM signal or multi-phase PFM signal.
  • a comparator taking the comparison between the load current and the first reference value, and the voltage conversion circuit in the multi-phase DCDC converter as a 2-phase BUCK circuit as an example, as shown in FIG.
  • FIG. 10 is an implementation manner of the foregoing power supply control method of the present application. In actual applications, it may include more or fewer components than those shown in FIG. 10.
  • PFM1 and PFM2 can be turned on alternately when the output of the comparator is low, the phase of PFM1 and PFM2 alternately turned on is 180 ° different, and each phase can be turned on Ton for a fixed time.
  • PFM1 and PFM2 can be turned on alternately when the output of the comparator is low.
  • the phase of PFM1 and PFM2 alternately turned on is 180 ° different.
  • the multiphase PFM The embodiments of the present application do not limit the specific implementation manners, and are merely exemplary descriptions.
  • the power supply control method in the embodiments of the present application is applicable to a variety of multi-phase DCDC converters, including multi-phase DCDC with capacitor-based Switchcap, BOOST, BUCK, BUCK-BOOST DCDC with inductors, etc.
  • the specific structure of the multi-phase DCDC converter is not limited.
  • An embodiment of the present application provides a power supply control method, by collecting load parameters of a DCDC converter, and selecting and outputting multi-phase PFM signals or multi-phase PWM signals according to the load parameters.
  • the embodiments of the present application can control the output voltage of the multi-phase DCDC converter by selecting the output multi-phase PFM signal when the load current or the load power is less than the reference value, which can improve the mid-load efficiency of the multi-phase DCDC converter and merge Load mode and light load mode reduce the complexity of the control circuit.
  • An embodiment of the present application further provides a DCDC converter, which is used to supply power to a load.
  • the DCDC converter may include a control circuit (101), a modulation signal source (102), and a voltage conversion circuit (103), where,
  • the modulation signal source (102) includes a multi-phase PFM signal source and a multi-phase PWM signal source, and the control circuit (101) is specifically configured to control the modulation signal source (102) to select the multi-phase signal according to the load parameter
  • the phase PFM signal source outputs the PFM signal, or, the multiphase PWM signal source is selected to output the PWM signal.
  • multi-phase PFM signal source and the multi-phase PWM signal source in the embodiment of the present application may be the same modulated signal source or different modulated signal sources, which is not limited in the embodiment of the present application.
  • the control circuit (101) is specifically used to compare the load parameter with a reference value, and according to the comparison result, control the signal source (102) to output the multi-phase PFM signal or the multi-phase PWM signal .
  • the operating modes of the DCDC converter include a light load mode, a medium load mode, and a heavy load mode
  • the control circuit (101) is further used to determine the operation of the DCDC converter according to the load parameters
  • the mode is light load mode, medium load mode, or heavy load mode; if the operating mode of the DCDC converter is light load mode or intermediate load mode, select to output the multi-phase PFM signal; if the DCDC converter works
  • the mode is the overload mode, and the multi-phase PWM signal is selectively output.
  • the load parameter includes a load current
  • the control circuit (101) is specifically used to compare the load current with a first reference value. If the load current is less than the first reference value, control The modulation signal source (102) selects the multiphase PFM signal source to output the multiphase PFM signal; if the load current is greater than or equal to the first reference value, controls the modulation signal source (102) to select the selected The multi-phase PWM signal source outputs the multi-phase PWM signal.
  • the control circuit (101) can collect the load current and compare the collected load current with the first reference value through a comparator.
  • the voltage conversion circuit is a multi-phase BUCK circuit as Examples. It can be understood that the two input terminals of the comparator may be respectively the load current and the first reference value, or may be the load power and the second reference value, respectively. In actual applications, they can be selected as needed.
  • the DCDC converter shown in FIG. 13 is only an example of the embodiment of the present application, and does not constitute any limitation on the specific circuit structure of the DCDC converter provided by the embodiment of the present application.
  • the load parameter includes load power
  • the control circuit (101) is specifically used to compare the load power with the second reference value. If the load power is less than the second reference value, the control The modulation signal source (102) selects the multiphase PFM signal source to output the multiphase PFM signal; if the load power is greater than or equal to the second preset value, controls the modulation signal source (102) to select the selected The multi-phase PWM signal source outputs the multi-phase PWM signal.
  • the control circuit (101) is specifically used to control the modulation signal source (102) to output an N-phase PFM signal; wherein, The phase of each phase PFM signal in the N-phase PFM signal differs by X °, and X ° is equal to 360 ° divided by N.
  • the voltage conversion circuit (103) includes a BUCK circuit (synchronous rectification and non-synchronous rectification BUCK circuit), a BOOST circuit, or a BUCK-BOOST circuit.
  • BUCK circuit synchronous rectification and non-synchronous rectification BUCK circuit
  • BOOST circuit a BOOST circuit
  • BUCK-BOOST circuit a BUCK-BOOST circuit
  • the DCDC converter provided by the embodiment of the present application collects load parameters and controls the modulation signal source (102) to output a multi-phase pulse width modulation PWM signal or a multi-phase pulse frequency modulation PMF signal to the voltage conversion circuit (103) according to the load parameters.
  • the output multi-phase PFM signal is selected to provide a control signal to the voltage conversion circuit, which can improve At the same time as the efficiency of the DCDC converter, by combining the mid-load mode and the light-load mode, the complexity of the control circuit is reduced.
  • Computer-readable media includes computer storage media and communication media, where communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例公开了一种供电控制方法和装置,涉及通信技术领域,解决了现有技术中多相DCDC转换器效率较低的问题。具体方案为:采集多相直流变直流DCDC转换器的负载参数;根据负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号。

Description

一种供电控制方法和装置 技术领域
本申请实施例涉及供电技术领域,尤其涉及一种供电控制方法和装置。
背景技术
手机系统级芯片(system on chip,SOC)一般采用多相直流变直流(Direct Current Direct Current,DCDC)的供电方案,同时,SOC核的应用场景大部分是中轻负载,因此整个系统,对多相DCDC的中轻载效率的要求也越来越高。
现有技术中的一种供电控制方法,是在多相DCDC转换器工作在中载模式和重载模式时,采用多相脉冲宽度调制(Pulse Width Modulation,PWM)信号控制多相DCDC转换器的输出电压,在多相DCDC转换器工作在轻载模式时,采用单相脉冲频率调制(Pulse frequency modulation,PFM)信号控制多相DCDC转换器的输出电压。但是,该控制方法在多相DCDC转换器工作在中载模式时,由于多相PWM信号的开关频率较高,开关损耗较大,因此导致多相DCDC转换器的中载效率较低。
发明内容
本申请实施例提供一种供电控制方法和装置,能够提高多相DCDC转换器的效率。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种供电控制方法,应用于多相直流变直流DCDC转换器,该方法包括:采集该DCDC转换器的负载参数;根据该负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号。基于本方案,能够基于负载参数选择输出多相PFM信号或者多相PWM信号,从而提升多相DCDC转换器的效率。
结合第一方面,在一种可能的实现方式中,上述根据该负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号,包括:将该负载参数与参考值进行比较,基于比较的结果,选择输出上述多相PFM信号或者上述多相PWM信号。基于本方案,能够根据负载参数与参考值的比较结果选择输出多相PFM信号或者多相PWM信号。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述DCDC转换器的工作模式包括轻载模式、中载模式,以及重载模式,上述方法还包括:根据上述负载参数确定DCDC转换器的工作模式;若该DCDC转换器的工作模式为轻载模式或中载模式,选择输出上述多相PFM信号;若该DCDC转换器的工作模式为重载模式,选择输出上述多相PWM信号。基于本方案,能够基于负载参数确定DCDC转换器的工作模式,并基于DCDC转换器的工作模式选择输出信号,并在中载模式和轻载模式时输出多相PFM信号,从而提升了多相DCDC转换器的中载效率,而且通过合并中载模式和轻载模式,进一步降低了控制电路的复杂度。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述负载参 数包括负载电流,上述将该负载参数与参考值进行比较,基于比较的结果,选择输出上述多相PFM信号或者上述多相PWM信号,包括:将负载电流与第一参考值进行比较,若所述DCDC转换器的负载电流小于所述第一参考值,选择输出多相PFM信号;若所述DCDC转换器的负载电流大于或等于所述第一参考值,选择输出多相PWM信号。基于本方案,通过将负载电流与第一参考值进行比较,选择输出信号,能够在负载电流小于第一参考值时,通过输出多相PFM信号提升多相DCDC转换器的效率。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该第一参考值为I N,I N=N×x N×I 0,其中,N为所述多相DCDC转换器的相数,I 0为参考负载电流,该参考负载电流为采用单相PFM信号控制上述多相DCDC转换器的输出电压时的最高效率对应的负载电流,x N为大于0小于1的实数。基于本方案,能够根据参考负载电流获取第一参考值。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述负载参数包括负载功率,上述将该负载参数与参考值进行比较,基于比较的结果,选择输出上述多相PFM信号或者上述多相PWM信号,包括:将上述负载功率与第二参考值进行比较,若上述DCDC转换器的负载功率小于该第二参考值,选择输出上述多相PFM信号;若上述DCDC转换器的负载功率大于或等于该第二参考值,选择输出多相PWM信号。基于本方案,通过将负载功率与第二参考值进行比较,选择输出信号,能够在负载功率小于第二参考值时,通过输出多相PFM信号提升多相DCDC转换器的效率。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第二参考值为P N,P N=U N×I ref,其中,U N为上述多相DCDC转换器的预设输出电压,I ref为预设基准电流,I ref=N×x N×I 0,I 0为参考负载电流,该参考负载电流为采用单相PFM信号控制上述多相DCDC转换器的输出电压时的最高效率对应的负载电流,x N为大于0小于1的实数。基于本方案,能够根据参考负载电流获取第二参考值。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,若上述多相DCDC转换器为N相DCDC转换器,N≥2且为整数,上述选择输出多相PFM信号,包括:选择输出N相PFM信号;其中,该N相PFM信号中每相PFM信号的相位相差X°,X°等于360°除以N。基于本方案,通过相位相差X°的N相PFM信号控制上述多相DCDC转换器的输出电压,能够实现多相DCDC转换器的多相PFM控制。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该多相DCDC转换器包括BUCK电路、BOOST电路或BUCK-BOOST电路。基于本方案,能够对多种供电电路进行控制。
本申请实施例的第二方面,提供一种直流变直流DCDC转换器,该DCDC转换器用于给负载供电,该DCDC转换器包括控制电路(101),调制信号源(102),以及电压转换电路(103),该控制电路(101),用于采集负载参数,并根据该负载参数控制上述调制信号源(102)向上述电压转换电路(103)输出多相脉冲宽度调制PWM信号或者多相脉冲频率调制PMF信号。
结合第二方面,在一种可能的实现方式中,上述调制信号源(102)包括多相PFM信号源和多相PWM信号源,上述控制电路(101),具体用于根据上述负载参数控制上述调制信号源(102)选择多相PFM信号源输出PFM信号,或者,选择多相PWM 信号源输出PWM信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述控制电路(101),具体用于将上述负载参数与参考值进行比较,并根据比较的结果,控制上述信号源(102)输出上述多相PFM信号或者上述多相PWM信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述DCDC转换器的工作模式包括轻载模式、中载模式,以及重载模式,上述控制电路(101),还用于根据所述负载参数,确定DCDC转换器的工作模式为轻载模式、中载模式,或重载模式;若该DCDC转换器的工作模式为轻载模式或中载模式,选择输出上述多相PFM信号;若该DCDC转换器的工作模式为重载模式,选择输出上述多相PWM信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,负载参数包括负载电流,上述控制电路(101),具体用于比较上述负载电流和第一参考值,若所述负载电流小于该第一参考值,控制上述调制信号源(102)选择上述多相PFM信号源输出多相PFM信号;若上述负载电流大于或等于该第一参考值,控制上述调制信号源(102)选择上述多相PWM信号源输出多相PWM信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一参考值为I N,I N=N×x N×I 0,其中,N为上述多相DCDC转换器的相数,I 0为参考负载电流,该参考负载电流为上述调制信号源(102)输出单相PFM信号时的最高效率对应的负载电流,x N为大于0小于1的实数。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,负载参数包括负载功率,上述控制电路(101),具体用于比较上述负载功率和第二参考值,若上述负载功率小于该第二参考值,控制上述调制信号源(102)选择上述多相PFM信号源输出多相PFM信号;若上述负载功率大于或等于该第二预设值,控制上述调制信号源(102)选择上述多相PWM信号源输出多相PWM信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第二参考值为P N,P N=U N×I ref,其中,U N为预设输出电压,I ref为预设基准电流,I ref=N×x N×I 0,I 0为参考负载电流,该参考负载电流为所述调制信号源(102)输出单相PFM信号时的最高效率对应的负载电流,x N为大于0小于1的实数。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,若上述DCDC转换器为N相DCDC转换器,N≥2且为整数,上述控制电路(101),具体用于控制上述调制信号源(102)输出N相PFM信号;其中,该N相PFM信号中每相PFM信号的相位相差X°,X°等于360°除以N。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述电压转换电路(103)包括BUCK电路、BOOST电路或BUCK-BOOST电路。
本申请实施例的第三方面,提供一种电子设备,该电子设备包括上述第二方面所述的DCDC转换器。
本申请实施例的第四方面,提供了一种供电控制装置,该装置以芯片的产品形态存在,该装置的结构中包括上述第二方面所述的DCDC转换器。
附图说明
图1为本申请实施例提供的一种多相DCDC转换器的结构示意图;
图2为本申请实施例提供的一种多相DCDC电路的等效电路图;
图3为本申请实施例提供的一种供电控制方法的流程图;
图4为本申请实施例提供的一种PWM信号源和PFM信号源的脉冲示意图;
图5为本申请实施例提供的一种输出单相PFM信号和2相PFM信号时的负载电流示意图;
图6为现有技术提供的一种供电控制方法的控制效果示意图;
图7为本申请实施例提供的一种两相PFM信号的脉冲示意图;
图8为本申请实施例提供的一种供电控制方法的控制效果示意图;
图9为本申请实施例提供的一种输出2相PWM信号和2相PFM信号时的电感电流示意图;
图10为本申请实施例提供的一种多相DCDC转换器的结构示意图;
图11为本申请实施例提供的一种2相DCDC转换器的结构示意图;
图12为本申请实施例提供的一种DCDC转换器的结构示意图;
图13为本申请实施例提供的另一种DCDC转换器的结构示意图。
具体实施方式
本申请实施例提供一种供电控制方法,该方法可以应用于多相DCDC转换器,该多相DCDC转换器用于将高压直流电源转换为低压直流电源,或者用于将低压直流电源转换为高压直流电源。例如,该多相DCDC转换器可以包括BUCK电路(非同步整流BUCK电路或同步整流BUCK电路)、BOOST电路或BUCK-BOOST电路,本申请实施例对此并不进行限定,其中,BUCK电路用于降压,BOOST电路用于升压,BUCK-BOOST电路用于升降压(既可以升压也可以降压),本申请实施例对于多相DCDC转换器中的DCDC转换器的具体电路结构并不进行限定,下面仅以DCDC转换器中的电压转换电路为非同步整流BUCK电路为例进行说明。
示例性的,如图1所示,为一种多相DCDC转换器的结构示意图,该多相DCDC转换器中包括2相BUCK电路,其中,每相BUCK电路均包括一个开关管P、电感L、以及二极管D,开关管P的驱动电压可以为PWM信号,信号周期为Ts,信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy=Ton/Ts。
当开关管P导通时,储能电感L被充磁,流经电感的电流线性增加,同时给电容C充电,给负载R提供能量,其等效电路如图2中的(a)所示。当开关管P关断时,储能电感L通过续流二极管放电,电感电流线性减少,输出电压靠输出滤波电容C放电以及减小的电感电流维持,其等效电路如图2中的(b)所示。需要说明的是,开关管P可以采用PMOS或者NMOS,本申请实施例对此并不进行限定,图1中仅以开关管为PMOS管进行示例性说明。图1中的R表示多相DCDC转换器的负载,实际应用中,多相DCDC转换器的负载可以为一个具体功能的电路模块,本本申请实施例对于多相DCDC转换器的负载的具体形式并不进行限定,在此仅以R进行示例性说明。
可理解的是,图1仅为示例性说明,实际应用中,多相DCDC转换器可以包括比图1所示更多或者更少的部件,图1所示结构不对本申请实施例提供的多相DCDC转换器构成任何限制。
为了解决现有技术中多相DCDC转换器工作在中载模式时,由于采用多相PWM 模式开关频率较高,开关损耗较大,导致中载效率较低的问题,本申请实施例提供一种供电控制方法,能够提高多相DCDC转换器的中载效率。
结合图1、图2,如图3所示,本申请实施例提供的供电控制方法可以包括步骤S301-S302。
S301、采集DCDC转换器的负载参数。
示例性的,该负载参数可以包括负载电流或者负载功率,本申请实施例对负载参数具体取何参数并不进行限定,在此仅是以负载参数为负载电流或负载功率进行示例性说明。可以理解的,该负载参数可以包括能够划分DCDC转换器不同工作模式的任何参数。
示例性的,上述DCDC转换器的工作模式可以包括轻载模式、中载模式和重载模式,该轻载模式、中载模式以及重载模式可以根据DCDC转换器的负载参数确定;轻载模式是指DCDC转换器的负载参数小于第一预设阈值,中载模式是指DCDC转换器的负载参数大于或等于第一预设阈值且小于第二预设阈值,重载模式是指DCDC转换器的负载参数大于或等于第二预设阈值。该第一预设阈值和第二预设阈值的具体取值与多相DCDC转换器的电路结构以及电路中元器件的具体参数有关,本申请实施例对此并不进行限定。可以理解的,该第一预设阈值和第二预设阈值可以包括多个数值,负载参数不同时,第一预设阈值和第二预设阈值的取值不同。
S302、根据负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号。
一种实现方式中,上述步骤S302可以包括:根据负载参数确定DCDC转换器的工作模式为轻载模式、中载模式,或重载模式;基于DCDC转换器的工作模式选择输出多相PFM信号或者多相PWM信号。
示例性的,若DCDC转换器的工作模式为轻载模式或中载模式,选择输出多相PFM信号;若DCDC转换器的工作模式为重载模式,选择输出多相PWM信号。可以理解的,该多相PFM信号或者多相PWM信号用于控制DCDC转换器的输出电压。
示例性的,当负载参数为负载电流时,上述第二预设阈值可以包括预设值A,若负载电流小于预设值A,DCDC转换器的工作模式为轻载模式或中载模式,基于该工作模式选择输出多相PFM信号;若负载电流大于预设值A,DCDC转换器的工作模式为重载模式,基于该工作模式选择输出多相PWM信号。当负载参数为负载功率时,该第二预设阈值可以包括预设值B,若负载功率小于预设值B,DCDC转换器的工作模式为轻载模式或中载模式,基于该工作模式选择输出多相PFM信号;若负载功率大于预设值B,DCDC转换器的工作模式为重载模式,基于该工作模式选择输出多相PWM信号。
示例性的,如图4所示,脉冲频率调制PFM信号的调制信号的频率可变,可以随输入信号幅值而变化,但其占空比不变;而脉冲宽度调制PWM信号的调制信号频率不可变,占空比可变。与PWM信号相比,由于PFM信号控制多相DCDC的输出电压时,可以在输出电压达到设定电压以上时就会停止动作,因此消耗的电流就会变得很小,消耗电流的减少可改进低负荷时的效率,因此本申请实施例在负载电流小于第一参考值时,可以选择输出多相PFM信号控制多相DCDC转换器的输出电压,能够有 效的提升多相DCDC转换器工作的效率。
需要说明的是,DCDC转换器工作在轻载模式时,采用多相PFM信号控制多相DCDC转换器的输出电压与采用单相PFM信号控制多相DCDC转换器的输出电压,对于负载而言,流过负载上的电流是相同的,如图5所示,2相DCDC转换器采用2相PFM信号的负载电流叠加起来,与采用单相PFM信号的负载电流相同,对于负载而言,采用这两种信号的负载电流是相同的。而本申请实施例在中载模式或轻载模式时,选择输出多相PFM信号,在重载模式时,选择输出多相PWM信号,可以认为是将中载模式和轻载模式合并作为一种模式,而重载模式单独作为另一种模式,并在中载模式或轻载模式时选择输出多相PFM信号控制DCDC转换器的输出电压,从而无需在中载模式和轻载模式之间进行控制方式的切换,能够降低控制电路的复杂度。
另一种实现方式中,上述步骤S302可以包括:将负载参数与参考值进行比较,基于比较的结果,选择输出多相PFM信号或者多相PWM信号。
示例性的,若负载参数为负载电流,上述步骤S302可以包括:将负载电流与第一参考值进行比较,若DCDC转换器的负载电流小于第一参考值,选择输出多相PFM信号;若DCDC转换器的负载电流大于或等于第一参考值,选择输出多相PWM信号。
示例性的,该第一参考值可以为I N=N×x N×I 0,N为多相DCDC转换器的相数,I N为第一参考值,I 0为参考负载电流,该参考负载电流为采用单相PFM信号控制多相DCDC转换器的输出电压时的最高效率对应的负载电流,x N为大于0小于1的实数。
如图6所示的供电控制方案的效率示意图,实曲线为采用单相PFM信号控制DCDC转换器的输出电压时的供电效率示意图,虚曲线为采用单相PWM信号控制DCDC转换器的输出电压时的供电效率示意图,图6中,多相DCDC转换器的负载电流较低时,由于开关损耗占比较大,采用单相PFM信号较采用单相PWM信号的供电效率高,图6中的斜实线为单相PFM信号较单相PWM信号的效率优化区域,图6中采用单相PFM信号供电时的最高效率点对应的负载电流为参考负载电流I 0
可以理解的,在多相DCDC转换器的负载电流较小,选择输出单相PFM信号控制系统的输出电压时,由于开关损耗占比较大,所以输出单相PFM信号较输出单相PWM信号的效率高,该单相PFM工作时对应效率最高点的负载电流是I 0,那么2相DCDC转换器输出2相PFM信号时,对应的效率最高点的负载电流是2×I 0,3相DCDC转换器输出3相PFM信号时,对应的效率最高点的负载电流是3×I 0,以此类推。
需要说明的是,上述x N的取值与开关管的型号、电感类型、多相DCDC转换器的输出电压等均有关系,实际应用中,可以通过上述参数估计x N的取值。
示例性的,若上述多相DCDC转换器为N相DCDC转换器,N≥2,可以基于比较的结果,选择N相PFM信号或者N相PWM信号中的一个控制N相DCDC转换器的输出电压,该N相PFM信号中的每一相PFM信号用于控制一相DCDC转换器打开或关闭。
可以理解的,上述N相PFM信号与单相PFM信号相比,该N相PFM信号中每相PFM信号的相位相差X°,该X°等于360°除以N。例如,2相PFM信号中每相PFM信号的相位相差180°,3相PFM信号中每相PFM信号的相位相差120°,以此类推。
例如,如图7所示,2相PFM信号中每相PFM信号的相位相差180°,若2相BUCK电路的负载电流小于第一参考值,选择输出2相PFM信号,该2相PFM信号中每相PFM信号的相位相差180°,图7中的PFM1用于控制2相DCDC转换器中的一个DCDC转换器,PFM2用于控制2相DCDC转换器中的另一个DCDC转换器。
示例性的,若上述负载参数为负载功率,上述步骤S302可以包括:将负载功率与第二参考值进行比较,若DCDC转换器的负载功率小于第二参考值,选择输出多相PFM信号;若DCDC转换器的负载功率大于或等于第二参考值,选择输出多相PWM信号。
示例性的,该第二参考值为P N,P N=U N×I ref,其中,U N为多相DCDC转换器的预设输出电压,I ref为预设基准电流,I ref=N×x N×I 0,N为多相DCDC转换器的相数,I 0为参考负载电流,该参考负载电流为采用单相PFM信号控制多相DCDC转换器的输出电压时的最高效率对应的负载电流,x N为大于0小于1的实数。
可以理解的,由于多相DCDC转换器负载功率为负载电压与负载电流的乘积,而多相DCDC转换器的负载电压在预设输出电压的上下波动,因此该实现方式中根据负载功率与第二参考值的比较,与前一实现方式中根据负载电流和第一参考值比较的结果可以相同。
需要说明的是,本申请实施例采用N相PFM模式控制多相DCDC转换器的输出电压时,可以通过控制每一相的电感电流峰值相等、每一相电感电流上升的时间相等、每一相电感电流下降时间相等,以保障负载电流平均分配到每一相中。
如图8所示,为基于比较结果,采用多相PFM信号或者多相PWM信号中的一个控制多相DCDC转换器的输出电压时的效率示意图,图8中,黑色实曲线为输出2相PFM信号时的效率示意图,黑色虚曲线为输出单相PWM信号时的效率示意图,黑色点划曲线为输出2相PWM信号时的效率示意图,很显然,图8中在负载电流小于第一参考值的情况下,或者DCDC转换器的工作模式为中载模式或轻载模式的情况下,选择2相PFM信号较选择单相PWM信号以及两相PWM信号的效率高,图8中的斜实线区域为效率优化区域,因此,多相DCDC转换器在负载电流小于第一参考值时,或者DCDC转换器的工作模式为中载模式或轻载模式时,采用多相PFM信号(例如,2相PFM)较采用多相PWM信号(例如,2相PWM)的效率有很大的提升。需要说明的是,图8中仅以区分中轻载模式(中载模式或轻载模式)和重载模式的第二预设阈值与第一参考值相同为例进行说明,实际应用中,划分中轻载模式的第二预设阈值可以和参考值(第一参考值或第二参考值)不同。
如图9所示,分别为DCDC转换器工作在中载模式时,输出2相PWM信号和输出2相PFM信号时每一相的电感电流的波形示意图。如图9中的(a)所示,由于PWM信号的开关频率较高,输出2相PWM信号时,每一相PWM信号对应的电感电流是连续的,而如图9中的(b)所示,由于PFM信号的开关频率较低,2相PFM信号的2个相位的电感电流是断续的,每一相PFM信号对应的电感电流的起始点都是0,与输出2相PWM信号相比,输出2相PFM信号的开关频率较低,能够有效的将储能元件中存储的能量利用,提高多相DCDC转换器在中载模式时的效率。
示例性的,多相DCDC转换器的电路中可以采用一个比较器来对负载电流和第一参考值进行比较,或者采用个一个比较器来对负载功率和第二参考值进行比较,进而 产生相应的控制信号来选择输出多相PWM信号或者多相PFM信号。示例性的,以比较负载电流和第一参考值、多相DCDC转换器中的电压转换电路为2相BUCK电路为例进行说明,如图10所示,若负载电流小于第一参考值,比较器的输出为低电平,选择2相PFM信号向2相BUCK电路提供控制信号;若负载电流大于或等于第一参考值(重载模式),比较器的输出为高电平,选择2相PWM信号向2相BUCK电路提供控制信号。可以理解的,图10为本申请上述供电控制方法的一种实现方式,实际应用中,可以包括比图10所示的更多或更少的部件。
进一步的,如图11所示,在一种实现方式中,可以通过检测比较器的输出为低电平时,交替开启PFM1和PFM2,PFM1和PFM2交替开启的相位相差180°,每一相可以开启固定的时间Ton。在另一种实现方式中,可以通过检测比较器的输出为低电平时,交替开启PFM1和PFM2,PFM1和PFM2交替开启的相位相差180°,每一相的负载电流达到设定值时,关闭该多相PFM。本申请实施例对于具体的实现方式并不进行限定,在此仅是示例性说明。
可以理解的,本申请实施例中的供电控制方法适用于多种多相DCDC转换器,包括多相依靠电容实现的Switch cap的DCDC,依靠电感实现的BOOST、BUCK、BUCK-BOOST的DCDC等电路,本申请实施例对于多相DCDC转换器的具体结构并不进行限定。
本申请实施例提供一种供电控制方法,通过采集DCDC转换器的负载参数,并根据负载参数选择输出多相PFM信号或者多相PWM信号。本申请实施例通过在负载电流或负载功率小于参考值时,选择输出多相PFM信号控制多相DCDC转换器的输出电压,能够在提升多相DCDC转换器的中载效率的同时,通过合并中载模式和轻载模式,降低了控制电路的复杂度。
本申请实施例还提供一种DCDC转换器,该DCDC转换器用于给负载供电,如图12所示,该DCDC转换器可以包括控制电路(101),调制信号源(102),以及电压转换电路(103),其中,
控制电路(101),用于采集负载参数,并根据所述负载参数控制所述调制信号源(102)向所述电压转换电路(103)输出多相脉冲宽度调制PWM信号或者多相脉冲频率调制PMF信号。
所述调制信号源(102)包括多相PFM信号源和多相PWM信号源,所述控制电路(101),具体用于根据所述负载参数控制所述调制信号源(102)选择所述多相PFM信号源输出PFM信号,或者,选择所述多相PWM信号源输出所述PWM信号。
需要说明的是,本申请实施例中的多相PFM信号源与多相PWM信号源可以为同一个调制信号源,也可以不同的调制信号源,本申请实施例对此并不进行限定。
所述控制电路(101),具体用于将所述负载参数与参考值进行比较,并根据比较的结果,控制所述信号源(102)输出所述多相PFM信号或者所述多相PWM信号。
示例性的,上述DCDC转换器的工作模式包括轻载模式、中载模式,以及重载模式,所述控制电路(101),还用于根据所述负载参数,确定所述DCDC转换器的工作模式为轻载模式、中载模式,或重载模式;若所述DCDC转换器的工作模式为轻载模式或中载模式,选择输出所述多相PFM信号;若所述DCDC转换器的工作模式为 重载模式,选择输出所述多相PWM信号。
一种实现方式中,所述负载参数包括负载电流,所述控制电路(101),具体用于比较所述负载电流和第一参考值,若所述负载电流小于所述第一参考值,控制所述调制信号源(102)选择所述多相PFM信号源输出所述多相PFM信号;若所述负载电流大于或等于所述第一参考值,控制所述调制信号源(102)选择所述多相PWM信号源输出所述多相PWM信号。所述第一参考值为I N,I N=N×x N×I 0,其中,N为所述多相DCDC转换器的相数,I 0为参考负载电流,所述参考负载电流为所述调制信号源(102)输出单相PFM信号时的最高效率对应的负载电流,x N为大于0小于1的实数。
示例性的,如图13所示,控制电路(101)可以采集负载电流,并通过比较器比较该采集的负载电流和第一参考值,图13中仅以电压转换电路为多相BUCK电路为例进行说明。可以理解的,比较器的两个输入端可以分别为负载电流和第一参考值,也可以分别为负载功率和第二参考值,实际应用中,可以根据需要进行选择。需要说明的是,图13所示的DCDC转换器仅为本申请实施例的一个示例,并不对本申请实施例提供的DCDC转换器的具体电路结构构成任何限制。
另一种实现方式中,负载参数包括负载功率,所述控制电路(101),具体用于比较所述负载功率和第二参考值,若所述负载功率小于所述第二参考值,控制所述调制信号源(102)选择所述多相PFM信号源输出所述多相PFM信号;若所述负载功率大于或等于所述第二预设值,控制所述调制信号源(102)选择所述多相PWM信号源输出所述多相PWM信号。所述第二参考值为P N,P N=U N×I ref,其中,U N为所述多相DCDC转换器的预设输出电压,I ref为预设基准电流,I ref=N×x N×I 0,I 0为参考负载电流,所述参考负载电流为所述调制信号源(102)输出单相PFM信号时的最高效率对应的负载电流,x N为大于0小于1的实数。
若所述多相DCDC转换器为N相DCDC转换器,N≥2且为整数,所述控制电路(101),具体用于控制所述调制信号源(102)输出N相PFM信号;其中,所述N相PFM信号中每相PFM信号的相位相差X°,X°等于360°除以N。
示例性的,所述电压转换电路(103)包括BUCK电路(同步整流和非同步整流BUCK电路)、BOOST电路或BUCK-BOOST电路。
本申请实施例提供的DCDC转换器,通过采集负载参数,并根据负载参数控制调制信号源(102)向电压转换电路(103)输出多相脉冲宽度调制PWM信号或者多相脉冲频率调制PMF信号。本申请实施例通过DCDC转换器工作在请在模式或中载模式时,或者,负载电流或负载功率小于参考值时,选择输出多相PFM信号向电压转换电路提供控制信号,能够在提升多相DCDC转换器的效率的同时,通过合并中载模式和轻载模式,降低了控制电路的复杂度。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (20)

  1. 一种供电控制方法,其特征在于,应用于多相直流变直流DCDC转换器,所述方法包括:
    采集所述DCDC转换器的负载参数;
    根据所述负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号,包括:
    将所述负载参数与参考值进行比较,基于比较的结果,选择输出所述多相PFM信号或者所述多相PWM信号。
  3. 根据权利要求2所述的方法,其特征在于,所述DCDC转换器的工作模式包括轻载模式、中载模式,以及重载模式,所述方法还包括:
    根据所述负载参数,确定所述DCDC转换器的工作模式为轻载模式、中载模式,或重载模式;若所述DCDC转换器的工作模式为轻载模式或中载模式,选择输出所述多相PFM信号;若所述DCDC转换器的工作模式为重载模式,选择输出所述多相PWM信号。
  4. 根据权利要求1所述的方法,其特征在于,所述负载参数包括负载电流,所述根据所述负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号,包括:
    将所述负载电流与第一参考值进行比较,若所述DCDC转换器的负载电流小于所述第一参考值,选择输出所述多相PFM信号;若所述DCDC转换器的负载电流大于或等于所述第一参考值,选择输出所述多相PWM信号。
  5. 根据权利要求4所述的方法,其特征在于,所述第一参考值为I N,I N=N×x N×I 0,其中,N为所述多相DCDC转换器的相数,I 0为参考负载电流,所述参考负载电流为采用单相PFM信号控制所述多相DCDC转换器的输出电压时的最高效率对应的负载电流,x N为大于0小于1的实数。
  6. 根据权利要求1所述的方法,其特征在于,所述负载参数包括负载功率,所述根据所述负载参数,选择输出多相脉冲频率调制PFM信号或者多相脉冲宽度调制PWM信号,包括:
    将所述负载功率与第二参考值进行比较,若所述DCDC转换器的负载功率小于所述第二参考值,选择输出所述多相PFM信号;若所述DCDC转换器的负载功率大于或等于所述第二参考值,选择输出多相PWM信号。
  7. 根据权利要求6所述的方法,其特征在于,所述第二参考值为P N,P N=U N×I ref,其中,U N为所述多相DCDC转换器的预设输出电压,I ref为预设基准电流,I ref=N×x N×I 0,I 0为参考负载电流,所述参考负载电流为采用单相PFM信号控制所述多相DCDC转换器的输出电压时的最高效率对应的负载电流,x N为大于0小于1的实数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,若所述多相DCDC转换器 为N相DCDC转换器,N≥2且为整数,所述选择输出多相PFM信号,包括:
    选择输出N相PFM信号;其中,所述N相PFM信号中每相PFM信号的相位相差X°,所述X°等于360°除以N。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述多相DCDC转换器包括BUCK电路、BOOST电路或BUCK-BOOST电路。
  10. 一种直流变直流DCDC转换器,用于给负载供电,其特征在于,所述DCDC转换器包括控制电路(101),调制信号源(102),以及电压转换电路(103),
    所述控制电路(101),用于采集负载参数,并根据所述负载参数控制所述调制信号源(102)向所述电压转换电路(103)输出多相脉冲宽度调制PWM信号或者多相脉冲频率调制PMF信号。
  11. 根据权利要求10所述的DCDC转换器,其特征在于,所述调制信号源(102)包括多相PFM信号源和多相PWM信号源,
    所述控制电路(101),具体用于根据所述负载参数控制所述调制信号源(102)选择所述多相PFM信号源输出PFM信号,或者,选择所述多相PWM信号源输出所述PWM信号。
  12. 根据权利要求11所述的DCDC转换器,其特征在于,所述控制电路(101),具体用于将所述负载参数与参考值进行比较,并根据比较的结果,控制所述信号源(102)输出所述多相PFM信号或者所述多相PWM信号。
  13. 根据权利要求12所述的DCDC转换器,其特征在于,所述DCDC转换器的工作模式包括轻载模式、中载模式,以及重载模式,
    所述控制电路(101),还用于根据所述负载参数,确定所述DCDC转换器的工作模式为轻载模式、中载模式,或重载模式;若所述DCDC转换器的工作模式为轻载模式或中载模式,选择输出所述多相PFM信号;若所述DCDC转换器的工作模式为重载模式,选择输出所述多相PWM信号。
  14. 根据权利要求10所述的DCDC转换器,其特征在于,所述负载参数包括负载电流,
    所述控制电路(101),具体用于比较所述负载电流和第一参考值,若所述负载电流小于所述第一参考值,控制所述调制信号源(102)选择所述多相PFM信号源输出所述多相PFM信号;若所述负载电流大于或等于所述第一参考值,控制所述调制信号源(102)选择所述多相PWM信号源输出所述多相PWM信号。
  15. 根据权利要求14所述的DCDC转换器,其特征在于,所述第一参考值为I N,I N=N×x N×I 0,其中,N为所述多相DCDC转换器的相数,I 0为参考负载电流,所述参考负载电流为所述调制信号源(102)输出单相PFM信号时的最高效率对应的负载电流,x N为大于0小于1的实数。
  16. 根据权利要求10所述的DCDC转换器,其特征在于,所述负载参数包括负载功率,
    所述控制电路(101),具体用于比较所述负载功率和第二参考值,若所述负载功率小于所述第二参考值,控制所述调制信号源(102)选择所述多相PFM信号源输出所述多相PFM信号;若所述负载功率大于或等于所述第二预设值,控制所述调制信号 源(102)选择所述多相PWM信号源输出所述多相PWM信号。
  17. 根据权利要求16所述的DCDC转换器,其特征在于,所述第二参考值为P N,P N=U N×I ref,其中,U N为所述多相DCDC转换器的预设输出电压,I ref为预设基准电流,I ref=N×x N×I 0,I 0为参考负载电流,所述参考负载电流为所述调制信号源(102)输出单相PFM信号时的最高效率对应的负载电流,x N为大于0小于1的实数。
  18. 根据权利要求10-17任一项所述的DCDC转换器,其特征在于,若所述DCDC转换器为N相DCDC转换器,N≥2且为整数,
    所述控制电路(101),具体用于控制所述调制信号源(102)输出N相PFM信号;其中,所述N相PFM信号中每相PFM信号的相位相差X°,X°等于360°除以N。
  19. 根据权利要求10-18任一项所述的DCDC转换器,其特征在于,所述电压转换电路(103)包括BUCK电路、BOOST电路或BUCK-BOOST电路。
  20. 一种电子设备,其特征在于,所述电子设备包括如权利要求10-19任一项所述的DCDC转换器。
PCT/CN2018/117258 2018-11-23 2018-11-23 一种供电控制方法和装置 WO2020103146A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/117258 WO2020103146A1 (zh) 2018-11-23 2018-11-23 一种供电控制方法和装置
CN201880097493.1A CN112714999A (zh) 2018-11-23 2018-11-23 一种供电控制方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117258 WO2020103146A1 (zh) 2018-11-23 2018-11-23 一种供电控制方法和装置

Publications (1)

Publication Number Publication Date
WO2020103146A1 true WO2020103146A1 (zh) 2020-05-28

Family

ID=70773278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117258 WO2020103146A1 (zh) 2018-11-23 2018-11-23 一种供电控制方法和装置

Country Status (2)

Country Link
CN (1) CN112714999A (zh)
WO (1) WO2020103146A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189222A (ja) * 1988-01-22 1989-07-28 Matsushita Electric Ind Co Ltd 信号遅延回路
JP2010051114A (ja) * 2008-08-22 2010-03-04 Ricoh Co Ltd スイッチングレギュレータ
CN101931327A (zh) * 2009-06-23 2010-12-29 英特赛尔美国股份有限公司 用于多相降压转换器内pfm/pwm模式转变的系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511195B2 (ja) * 1997-09-03 2004-03-29 株式会社ルネサステクノロジ 電圧変換回路
CN101071981B (zh) * 2006-05-11 2010-09-29 中华映管股份有限公司 升压式直流/直流转换器
KR101176179B1 (ko) * 2007-03-14 2012-08-22 삼성전자주식회사 전압 변환 모드 제어 장치 및 그 제어 방법
US8427123B2 (en) * 2009-07-08 2013-04-23 Microchip Technology Incorporated System, method and apparatus to transition between pulse width modulation and pulse-frequency modulation in a switch mode power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189222A (ja) * 1988-01-22 1989-07-28 Matsushita Electric Ind Co Ltd 信号遅延回路
JP2010051114A (ja) * 2008-08-22 2010-03-04 Ricoh Co Ltd スイッチングレギュレータ
CN101931327A (zh) * 2009-06-23 2010-12-29 英特赛尔美国股份有限公司 用于多相降压转换器内pfm/pwm模式转变的系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI JIANG ET AL: "Strategy and Implementation of Multi-mode Control in Switch-mode Power supply", JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), vol. 48, no. 9, 30 September 2014 (2014-09-30), pages 1580 - 1585, XP055710103, ISSN: 1008-973X, DOI: 10.3785/j.issn.1008-973x.2014.09.006 *
ZHOU, XIANG: "Research on Wide Input Voltage Range DC / DC Converter", MASTER THESIS, 15 June 2014 (2014-06-15), pages 1 - 71, XP009521344, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN112714999A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Jiao et al. Voltage-lift-type switched-inductor cells for enhancing DC–DC boost ability: Principles and integrations in Luo converter
Jang et al. Multiphase buck converters with extended duty cycle
EP3340449A1 (en) Voltage conversion circuit and method, and multi-phase parallel power supply system
Hajiheidari et al. High-step-down DC–DC converter with continuous output current using coupled-inductors
CN102638184A (zh) 一种高效率的交流-直流电压转换电路
Ahmed Modeling and simulation of ac–dc buck-boost converter fed dc motor with uniform PWM technique
KR20190115364A (ko) 단상 및 3상 겸용 충전기
Qian et al. Buck/half-bridge input-series two-stage converter
Shang et al. A ZVS integrated single-input-dual-output DC/DC converter for high step-up applications
Tintu et al. Tapped inductor technology based DC-DC converter
US8331110B2 (en) Switching capacitor—PWM power converter
US7535207B2 (en) Tapped converter
Khatua et al. A non-isolated single-stage 48v-to-1v vrm with a light load efficiency improvement technique
TW202207592A (zh) 控制切換模式電源中的反向電流以實現零電壓切換
Zhang et al. 1MHz LLC resonant DC-DC converter with PWM output regulation capability
Somalinga et al. Modified high-efficiency bidirectional DC–DC converter topology
KR102159570B1 (ko) 컨버터 장치 및 이를 동작시키는 방법
WO2020103146A1 (zh) 一种供电控制方法和装置
CN103731029B (zh) 降压式直流变换器
Chen et al. Integrated dual-output synchronous DC-DC buck converter
Sun et al. A novel ripple controlled modulation for high efficiency DC-DC converters
Singh et al. A Soft Switching Boost DC-DC Converter Based on ZVS for Vehicle to Grid Applications with Enhanced Efficiency
Li et al. Current stress optimization control strategy of the buck topology with the variable frequency/amplitude mode
Zhang et al. H-Bridge DC–DC Converters
Hsu et al. Novel active clamping step-down DC-DC converter with lower voltage stress

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940785

Country of ref document: EP

Kind code of ref document: A1