WO2020103087A1 - 一种太阳能电池板的加工方法 - Google Patents

一种太阳能电池板的加工方法

Info

Publication number
WO2020103087A1
WO2020103087A1 PCT/CN2018/116971 CN2018116971W WO2020103087A1 WO 2020103087 A1 WO2020103087 A1 WO 2020103087A1 CN 2018116971 W CN2018116971 W CN 2018116971W WO 2020103087 A1 WO2020103087 A1 WO 2020103087A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell panel
processing
solar
layer
Prior art date
Application number
PCT/CN2018/116971
Other languages
English (en)
French (fr)
Inventor
李柏葳
Original Assignee
扬州兴龙电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扬州兴龙电器有限公司 filed Critical 扬州兴龙电器有限公司
Publication of WO2020103087A1 publication Critical patent/WO2020103087A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of solar cell panels, and in particular to a processing method of solar cell panels.
  • the solar panel is the core part of the solar power generation system. Its role is to convert the solar radiation capacity into electrical energy and store it. Therefore, the quality and cost of the solar panel directly determine the quality and cost of the entire power generation system.
  • the traditional solar panel production mainly has the following shortcomings, including: (1) the thickness of the solar panel is thick, the product is prone to air bubbles, and the product scrap rate is high; (2) the back film has oxidation resistance, moisture resistance and air insulation Poor performance and certain safety risks; (3) Complex processing technology and high production cost. Therefore, it is necessary to improve the existing processing methods of solar panels, improve the quality of solar panels, and reduce production costs.
  • the present invention provides a method for processing solar cell panels, which can optimize the processing process and improve the processing quality of the solar cell panel.
  • a method for processing a solar cell panel of the present invention includes the following steps:
  • Assembling operations providing a light-transmitting substrate, a back film, and multiple large wafers, laying multiple large wafers side by side on the surface of the light-transmitting substrate and connecting them in series through conductive paper to form a solar cell in turn
  • An anode lead is provided at the first end of the battery, a cathode lead is provided at the end of the solar cell, and the back film is laid on the side of the solar cell facing away from the light-transmitting substrate to form a solar cell panel assembly;
  • the laminated solar panel assembly body is laminated by a laminator.
  • the lamination temperature is 100 °C -160 °C
  • the lamination time is 5min-10min
  • the lamination vacuum is 100pa-15pa
  • the lamination pressure is 0.1Mpa-1.2Mpa;
  • the assembly work includes installing a frame on the laminated solar panel assembly and installing a junction box on the back of the solar panel assembly.
  • a battery that is electrically connected to the solar cell is installed in the junction box.
  • the beneficial effect of the present invention lies in that: by laying a back film on the back of the solar cell, it can ensure that the solar cell panel prepared after processing has good permeability resistance, avoids the entry of moisture and moisture, and thereby prolongs the service life of the solar cell panel; lamination The temperature is 100 °C -160 °C, and the lamination time is 5min-10min, which can avoid the phenomenon of coking due to excessive temperature or long time.
  • lamination vacuum degree 100pa-15pa, the solar panel can be assembled into the body The air is drawn out to prevent the air in the solar panel assembly from being damaged when heated by the air during the heating and curing process, thus ensuring the quality of the final product and avoiding bubbles on the surface of the solar panel after molding.
  • a further improvement of the solar cell panel processing method of the present invention is that, in the step of providing a plurality of cut wafers, the edges of the cut wafers are smoothed. Ensure that the wafer has a good visual sense, at the same time avoid scratching the staff during the assembly process, and improve processing safety.
  • a further improvement of the solar cell panel processing method of the present invention is that the back film includes a three-layer structure from inside to outside, the outer layer is a weather-resistant layer, the middle layer is a PET polyester layer, and the inner layer is an EVA layer.
  • the weathering layer includes the following parts by weight of each component: 45-60 parts of polytetrafluoroethylene, 6-10 parts of hexafluoropropylene, 10-20 parts of epoxy resin, 4-8 parts of curing agent, and 12-22 parts of solvent.
  • the back film has good weather resistance, tensile strength and oxidation resistance.
  • a further improvement of the method for processing a solar cell panel of the present invention is that before the step of providing the back film, the method further includes the step of preparing a back film;
  • the preparation of the back film includes steps:
  • the EVA layer raw material, the PET polyester layer raw material and the weather-resistant layer are compression-molded to generate a back film.
  • the processing technology of the back film in the present invention is simple and the processing cost is low.
  • a further improvement of the solar cell panel processing method of the present invention is that the back film includes insulating plastic and insulating paper layered and laid in sequence.
  • a further improvement of the solar cell panel processing method of the present invention includes the steps of laminating the qualified solar cell panel assembly by a laminator:
  • the air in the assembled body of the solar cell panel can be exhausted to further ensure the quality of the solar cell panel after processing and molding.
  • a further improvement of the method for processing a solar cell panel of the present invention is that, in the step of assembling, an adhesive layer is provided between the large wafer and the light-transmitting substrate for bonding the large wafer and the Transparent substrate.
  • the adhesive layer is used to realize the sealed connection between the large wafer and the transparent substrate.
  • a further improvement of the solar cell panel processing method of the present invention is that the light transmittance of the light-transmitting substrate is greater than 92%. By setting the transmittance of sunlight through the light-transmitting substrate, the power generation efficiency of the solar panel is guaranteed.
  • a further improvement of the method for processing a solar cell panel of the present invention is that the wafer is selected from a single crystal silicon wafer or a polycrystalline silicon wafer.
  • a further improvement of the method for processing a solar cell panel of the present invention is that the light-transmitting substrate is made of tempered glass.
  • FIG. 1 is a flowchart of a method for processing a solar cell panel of the present invention.
  • the present invention provides a method for processing a solar cell panel, including the following steps:
  • Step 101 Provide multiple diced wafers
  • Step 102 arrange a plurality of wafers side by side in sequence, and perform welding processing on the adjacent two wafers to form a strip-shaped large wafer;
  • Step 103 Assembling operation, providing a transparent substrate, a back film and multiple large wafers, laying multiple large wafers side by side on the surface of the transparent substrate and sequentially connecting in series through conductive paper to form a solar cell, which is provided at the head end of the solar cell
  • the anode lead is provided with a cathode lead at the end of the solar cell, and the back film is laid on the side of the solar cell facing away from the transparent substrate to form a solar cell panel assembly;
  • Step 104 Testing operation, lighting the solar panel assembly, testing the power, current and voltage of the solar panel assembly to check whether the power, current and voltage of the solar panel assembly are qualified;
  • Step 105 Laminate the solar panel assembly after passing inspection with a laminator.
  • the lamination temperature is 100 °C -160 °C
  • the lamination time is 5min-10min
  • the lamination vacuum is 100pa-15pa.
  • the pressure is 0.1Mpa-1.2Mpa;
  • Step 106 Assembly operations include installing a frame on the laminated solar panel assembly and installing a junction box on the back of the solar panel assembly.
  • the junction box is installed with a battery electrically connected to the solar cell.
  • step of laminating the qualified solar cell panel assembly with a laminator includes the steps of:
  • Step 201 Place the assembled solar panel on the laminator
  • Step 202 Pre-press and pre-heat the assembled solar panel
  • Step 203 Perform a vacuuming operation to evacuate the air in the assembled body of the solar panel to keep the vacuum degree within the range of 100pa-15pa;
  • Step 204 heating the solar panel assembly, and simultaneously performing inflation and pressurization operations to complete the lamination and curing of the solar panel assembly;
  • Step 205 After cooling, remove the assembled solar cell panel assembly.
  • the purpose of pre-pressing and pre-heating is to exhaust the air between each component in each assembly of the solar panel assembly and in each component to prevent the air in the components in the later heating and inflation pressurization operations Punch out the damaged solar panel assembly to reduce the scrap rate; specifically, the preload pressure is 0.1MPa-0.3MPa, the preload time is 1min-2min, and the preheating temperature is 100 °C -120 °C; (2) and existing Compared with the technology, the inflation pressure (lamination) process has higher lamination efficiency, and at the same time ensures that the solar panel assembly is uniformly stressed throughout the lamination process, thereby ensuring the quality of lamination; (3) in step 204 The time of inflation and pressure operation is 4min-8min, the pressure (lamination) pressure is 0.3MPa-1.2MPa, and the heating temperature is 120 ° C-160 ° C.
  • step 101 the edge of the cut wafer is smoothed.
  • the wafer edge is smoothed to avoid scratching the staff during the assembly process, and after smoothing, the accuracy of the wafer assembly position can be ensured and the visual sense is better.
  • step 102 when performing soldering processing on the wafer, the adjacent solder joints are dislocated.
  • the dislocation of the solder joints is improved to avoid short-circuiting of the electrodes after welding, and the yield is improved.
  • step 103 an adhesive layer is provided between the large wafer and the light-transmitting substrate for bonding the large wafer and the light-transmitting substrate.
  • the sealing connection between the large wafer and the light-transmitting substrate is achieved through the adhesive layer, and the curing between the large wafer and the light-transmitting substrate is achieved in the later lamination step.
  • the light transmittance of the light-transmitting substrate is greater than 92%. In this embodiment, by selecting a light-transmitting substrate with better light transmittance, the power generation efficiency of the solar cell panel can be ensured and the pass rate can be improved.
  • a single crystal silicon wafer or a polycrystalline silicon wafer is used for the wafer; a tempered glass is used for the transparent substrate.
  • the back film includes a three-layer structure from inside to outside, the outer layer is a weather-resistant layer, the middle layer is a PET polyester layer, the inner layer is an EVA layer, the weather-resistant layer includes the following parts by weight of each component: polytetrafluoroethylene 45-60 , 6-10 parts of hexafluoropropylene, 10-20 parts of epoxy resin, 4-8 parts of curing agent and 12-22 parts of solvent.
  • polytetrafluoroethylene and hexafluoropropylene to the raw materials of the weathering layer, it can be ensured that the prepared weathering layer has good chemical resistance, good resilience, and good compatibility with the PET polyester layer
  • the adhesiveness of the PET film can ensure that the back film has good resistance to breakdown. Compared with the back film of the prior art, its resistance to breakdown is improved by about 80%, which ensures the safety of the solar panel when it is used. .
  • the method further includes the steps of preparing a back film; wherein, preparing the back film includes the steps of:
  • Step 301 Prepare a weather-resistant layer, add polytetrafluoroethylene, hexafluoropropylene, epoxy resin and curing agent to the solvent and continuously stir. After stirring evenly, pour it into the mold for molding operation;
  • Step 302 Provide raw material of PET polyester layer
  • Step 303 Provide the raw material of the EVA layer
  • Step 304 Compress the EVA layer raw material, PET polyester layer raw material and weather-resistant molding to generate a back film.
  • the back film is not prone to wrinkling during the lamination process, and has good flame retardancy and environmental protection. Compared with the ordinary back film in the prior art, it has better permeability resistance and can effectively avoid moisture 1. Moisture enters the solar cell, thereby extending the service life of the solar panel.
  • the back film includes insulating plastic and insulating paper layered in sequence.
  • insulating plastic and insulating paper By providing insulating plastic and insulating paper on the back of the wafer, water vapor and moisture can be prevented from entering the solar cell panel, and at the same time play an insulating role, improving the safety of the solar cell panel during use.
  • the insulating plastic and the insulating paper are provided with perforations for the anode lead and the cathode lead to be aligned, and the positions of the perforations are sealed.
  • an aluminum alloy frame is used for edge-sealing treatment of the laminated solar panel assembly; wherein, in the edge-sealing process, the surroundings of the solar panel assembly need to be sealed; Sealing ring or sealant.
  • the large wafer includes a positive electrode and a negative electrode.
  • the positive electrodes and the negative electrodes of the adjacent two large wafers are arranged in opposite directions, specifically arranged at 180 °; in this embodiment, The positive and negative electrodes are arranged in opposite directions, which facilitates the series connection between adjacent large wafers through conductive paper, reduces the amount of conductive paper used, and reduces processing costs.
  • the storage of electrical energy is achieved through the battery.
  • the processed solar panel has good permeability resistance, effectively avoids the entry of water vapor and moisture, thereby extending the service life of the solar panel.
  • the air in the solar panel assembly body can be prevented from being damaged by the heat and rushing out to cause damage to the solar panel assembly body, and the finished solar panel quality is guaranteed after processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池板的加工方法。包括以下步骤:提供切割好的多块晶片(101),将多块晶片依次并排布设,并进行焊接处理(102),然后拼装作业,将多块大晶片并排铺设于透光基板的表面并通过导电纸依次串联联接形成太阳能电池,于太阳能电池的首端设置阳极引线,于太阳能电池的末端设置阴极引线,将背膜铺设于太阳能电池的背向透光基板的一侧,形成太阳能电池板拼装体(103),对太阳能电池板拼装体进行打光,对太阳能电池板拼装体的功率、电流和电压进行测试(104),通过层压机对检验合格后的太阳能电池板拼装体进行层压作业(105),最后进行组装作业(106)。采用上述太阳能电池板的加工方法,可以简化加工工序,提高太阳能电池板的加工质量。

Description

一种太阳能电池板的加工方法 技术领域
本发明涉及太阳能电池板领域,具体来说涉及一种太阳能电池板的加工方法。
背景技术
太阳能电池板是太阳能发电系统中的核心部分,其作用是将太阳的辐射能力转换为电能存储起来,因此太阳能电池板的质量和成本直接决定整个发电系统的质量和成本。传统太阳能电池板生产主要存在以下缺点,具体包括:(1)太阳能电池板的厚度较厚,产品容易产生气泡,产品报废率较高;(2)背膜抗氧化性、抗潮湿性和空气隔绝性能不佳,具有一定的安全隐患;(3)加工工艺复杂,生产成本较高。因此有必要对现有太阳能电池板加工方法进行改进,提高太阳能电池板的质量,降低生产成本。
发明内容
鉴于上述情况,本发明提供了一种太阳能电池板的加工方法,可以优化加工工艺,提高太阳能电池板的加工质量。
为实现上述目的,本发明一种太阳能电池板的加工方法,包括以下步骤:
提供切割好的多块晶片;
将多块所述晶片依次并排布设,并对相邻二所述晶片进行焊接处理,形成条状大晶片;
拼装作业,提供透光基板、背膜和多块所述大晶片,将多块所述大晶片并排铺设于所述透光基板的表面并通过导电纸依次串联联接形成太阳能电池,于所述太阳能电池的首端设置阳极引线,于所述太阳能电池的末端设置阴极引线,将所述背膜铺设于所述太阳能电池的背向所述透光基板的一侧,形成太阳能电池板拼装体;
检测作业,对所述太阳能电池板拼装体进行打光,对太阳能电池板拼装体的功率、电流和电压进行测试,检测太阳能电池板拼装体的功率、电 流和电压是否合格;
通过层压机对检验合格后的太阳能电池板拼装体进行层压作业,层压温度为100℃-160℃,层压时间为5min-10min,层压真空度为100pa-15pa,层压压力为0.1Mpa-1.2Mpa;
组装作业,包括对层压后的太阳能电池板拼装体安装边框以及在太阳能电池板拼装体的背面安装集线盒,集线盒中安装有电联接于太阳能电池的蓄电池。
本发明的有益效果在于:通过太阳能电池背面铺设背膜,可以保证加工制备后的太阳能电池板具有较好的抗渗透性,避免水汽、湿气进入,进而延长太阳能电池板的使用寿命;层压温度为100℃-160℃,层压时间为5min-10min,可以避免因温度过高或时间过长而发生焦化现象,通过设置层压真空度为100pa-15pa,可以将太阳能电池板拼装体中空气抽出,避免加热固化过程中发生太阳能电池板拼装体中的空气受热冲出时损坏太阳能电池板拼装体,继而保证最终成品的质量,避免成型后的太阳能电池板表面出现气泡。
本发明一种太阳能电池板的加工方法的进一步改进在于,于提供切割好的多个晶片步骤中,对切割好的所述晶片的边缘进行平滑处理。保证晶片具有较好的视觉感,同时避免拼装过程中划伤工作人员,提高加工安全性。
本发明一种太阳能电池板的加工方法的进一步改进在于,所述背膜包括自内向外的三层结构,外层为耐候层,中间层为PET聚酯层,内层为EVA层,所述耐候层包括以下重量份的各组分:聚四氟乙烯45-60份、六氟丙烯6-10份、环氧树脂10-20份、固化剂4-8份和溶剂12-22份。背膜具有较好的耐候性、耐拉伸强度和抗氧化性。
本发明一种太阳能电池板的加工方法的更进一步改进在于,于提供所述背膜步骤前还包括步骤,制备背膜;
制备背膜包括步骤:
制备耐候层,将聚四氟乙烯、六氟丙烯、环氧树脂和固化剂添加至溶剂中并不断搅拌,待搅拌均匀后倒入模具中进行模压成型作业;
提供PET聚酯层原材;
提供EVA层原材;
将所述EVA层原材、所述PET聚酯层原材和所述耐候层模压成型, 生成背膜。
与现有技术中的背膜相比,本发明中背膜的加工工艺简单,加工成本低。
本发明一种太阳能电池板的加工方法的进一步改进在于,所述背膜包括依次层叠铺设的绝缘塑料和绝缘纸。
本发明一种太阳能电池板的加工方法的进一步改进在于,于通过层压机对合格后的太阳能电池板拼装体进行层压作业步骤中包括步骤:
将太阳能电池板拼装体放置于层压机;
对所述太阳能电池板拼装体进行预压和预热处理;
进行抽真空作业,将所述太阳能电池板拼装体中的空气抽出,使得真空度保持在100pa-15pa范围内;
对所述太阳能电池板拼装体进行加热,同时进行充气加压作业,完成太阳能电池板拼装体的层压和固化;
冷却后,取出成型后的太阳能电池板拼装体。
采用上述加工方法,可以将太阳能电池板拼装体中的空气排尽,进一步保证加工成型后太阳能电池板的质量。
本发明一种太阳能电池板的加工方法的进一步改进在于,于拼装作业步骤中,在所述大晶片与所述透光基板之间设置粘接层,用于粘合所述大晶片和所述透光基板。利用粘接层实现大晶片和透光基板之间的密封连接。
本发明一种太阳能电池板的加工方法的更进一步改进在于,所述透光基板的透光率大于92%。通过设定透光基板太阳光的透过率,保证太阳能电池板的发电效率。
本发明一种太阳能电池板的加工方法的更进一步改进在于,所述晶片选用单晶硅晶片或多晶硅晶片。
本发明一种太阳能电池板的加工方法的进一步改进在于,所述透光基板选用钢化玻璃。
附图说明
图1是本发明一种太阳能电池板的加工方法的流程图。
具体实施方式
为利于对本发明的了解,以下结合附图及实施例进行说明。
请参阅图1,本发明提供了一种太阳能电池板的加工方法,包括以下步骤:
步骤101:提供切割好的多块晶片;
步骤102:将多块晶片依次并排布设,并对相邻二晶片进行焊接处理,形成条状大晶片;
步骤103:拼装作业,提供透光基板、背膜和多块大晶片,将多块大晶片并排铺设于透光基板的表面并通过导电纸依次串联联接形成太阳能电池,于太阳能电池的首端设置阳极引线,于太阳能电池的末端设置阴极引线,将背膜铺设于太阳能电池的背向透光基板的一侧,形成太阳能电池板拼装体;
步骤104:检测作业,对太阳能电池板拼装体进行打光,对太阳能电池板拼装体的功率、电流和电压进行测试,检测太阳能电池板拼装体的功率、电流和电压是否合格;
步骤105:通过层压机对检验合格后的太阳能电池板拼装体进行层压作业,层压温度为100℃-160℃,层压时间为5min-10min,层压真空度为100pa-15pa,层压压力为0.1Mpa-1.2Mpa;
步骤106:组装作业,包括对层压后的太阳能电池板拼装体安装边框以及在太阳能电池板拼装体的背面安装集线盒,集线盒中安装有电联接于太阳能电池的蓄电池。
本实施例中,(1)通过在太阳能电池的背面铺设背膜,可以保证加工后的太阳能电池板具有良好的抗渗透性,有效避免水汽、湿气进入,进而延长太阳能电池板的使用寿命;(2)通过将层压温度设置为100℃-160℃以及将层压时间设置为5min-10min,可以避免因温度过高或时间过长导致太阳能电池板拼装体中的组件发生焦化;(3)通过将太阳能电池板拼装体中的空气抽出,保证层压真空度控制在为100pa-15pa,避免太阳能电池板拼装体中的空气(包括气泡)因受热冲出,而对太阳能电池板拼装体造成损伤,继而保证加工后成品的质量;(4)加工工序简单,加工成本较低;(5)层压机选用LYL-C 36*22型号的层压机。
进一步的,于通过层压机对合格后的太阳能电池板拼装体进行层压作业步骤中包括步骤:
步骤201:将太阳能电池板拼装体放置于层压机;
步骤202:对太阳能电池板拼装体进行预压和预热处理;
步骤203:进行抽真空作业,将太阳能电池板拼装体中的空气抽出,使得真空度保持在100pa-15pa范围内;
步骤204:对太阳能电池板拼装体进行加热,同时进行充气加压作业,完成太阳能电池板拼装体的层压和固化;
步骤205:冷却后,取出成型后的太阳能电池板拼装体。
本实施例中,(1)预压和预热处理的目的在于,将太阳能电池板拼装体中各组件之间及各组件中的空气排出,防止后期加热和充气加压作业中组件中的空气冲出损坏太阳能电池板拼装体,降低废品率;具体的,预压压力为0.1MPa-0.3MPa,预压时间为1min-2min,预热温度为100℃-120℃;(2)与现有技术相比,充气加压(层压)工艺具有较高的层压效率,同时保证层压过程中太阳能电池板拼装体各处均匀受力,进而保证层压的质量;(3)步骤204中,充气加压作业的时间为4min-8min,加压(层压)压力为0.3MPa-1.2MPa,加热温度为120℃-160℃。
进一步的,于步骤101中,对切割好的所述晶片的边缘进行平滑处理。本实施例中,通过对晶片边缘进行平滑处理,避免拼装过程中划伤工作人员,同时平滑处理后可以保证晶片拼装位置的准确性,具有较好的视觉感。
进一步的,于步骤102中,在对晶片进行焊接处理时,相邻焊点之间错位设置。本实施例中,提高将焊点错位设置,避免焊接后出现电极短路现象,提高成品率。
进一步的,于步骤103中,在大晶片与透光基板之间设置粘接层,用于粘合大晶片和透光基板。本实施例中,通过粘接层实现大晶片和透光基板之间的密封连接,并在后期层压步骤中实现大晶片和透光基板之间的固化。
进一步的,透光基板的透光率大于92%。本实施例中,通过选择透光率较好的透光基板,可以保证太阳能电池板的发电效率,提高合格率。
本发明中,晶片选用单晶硅晶片或多晶硅晶片;透光基板选用钢化玻璃。
实施例一:
背膜包括自内向外的三层结构,外层为耐候层,中间层为PET聚酯层,内层为EVA层,耐候层包括以下重量份的各组分:聚四氟乙烯45-60份、六氟丙烯6-10份、环氧树脂10-20份、固化剂4-8份和溶剂12-22份。本实施例中,通过在耐候层原材料中添加聚四氟乙烯和六氟丙烯,可以保证 制备好的耐候层具有较好的耐化学性、良好的回弹性以及与PET聚酯层之间较好的粘合性;通过设置PET聚酯层,可以保证背膜具有良好的抗击穿性,与现有技术背膜相比其抗击穿性能提高了约80%,保证太阳能电池板使用时的安全性。
进一步的,于提供所述背膜步骤前还包括步骤,制备背膜;其中,制备背膜包括步骤:
步骤301:制备耐候层,将聚四氟乙烯、六氟丙烯、环氧树脂和固化剂添加至溶剂中并不断搅拌,待搅拌均匀后倒入模具中进行模压成型作业;
步骤302:提供PET聚酯层原材;
步骤303:提供EVA层原材;
步骤304:将EVA层原材、PET聚酯层原材和耐候模压成型,生成背膜。
本实施例中,层压成型过程背膜不容易出现褶皱现象,同时具有良好的阻燃性和环保性,与现有技术中普通背膜相比具有更好的抗渗透性,能够有效避免水汽、湿气进入太阳能电池中,进而延长太阳能电池板的使用寿命。
实施例二:
背膜包括依次层叠铺设的绝缘塑料和绝缘纸。通过在晶片的背面设置绝缘塑料和绝缘纸,可以阻止水汽、湿气进入太阳能电池板中,同时起到绝缘作用,提高太阳能电池板使用过程中的安全性。具体的,绝缘塑料和绝缘纸上对位开设有供阳极引线和阴极引线穿设的穿孔,穿孔位置处经过密封处理。
本发明中,于组装作业步骤中,选用铝合金边框对层压后的太阳能电池板拼装体进行封边处理;其中,封边处理中,需要对太阳能电池板拼装体四周做密封处理;具体采用密封圈或密封胶。
本发明中,大晶片包括一正极和一负极,于拼装步骤中,相邻二大晶片的正极和负极布设方向相反,具体呈180°布设;本实施例中,通过将相邻二大晶片的正极和负极布设方向相反,便于通过导电纸实现相邻大晶片之间的串联连接,减少导电纸使用量,降低加工成本。
本发明中,通过蓄电池实现对电能的存储。
本发明一太阳能电池板的加工方法的有益效果包括:
1.加工后的太阳能电池板具有良好的抗渗透性,有效避免水汽、湿气 进入,进而延长太阳能电池板的使用寿命。
2.通过将太阳能电池板拼装体中的空气抽出,可以避免太阳能电池板拼装体中的空气因受热冲出对太阳能电池板拼装体造成损伤,保证了加工后太阳能电池板成品的质量。
3.简化了加工工艺,降低了加工成本。
以上仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
需要说明的是,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容的能涵盖的范围内。

Claims (10)

  1. 一种太阳能电池板的加工方法,其特征在于,包括以下步骤:
    提供切割好的多块晶片;
    将多块所述晶片依次并排布设,并对相邻二所述晶片进行焊接处理,形成条状大晶片;
    拼装作业,提供透光基板、背膜和多块所述大晶片,将多块所述大晶片并排铺设于所述透光基板的表面并通过导电纸依次串联联接形成太阳能电池,于所述太阳能电池的首端设置阳极引线,于所述太阳能电池的末端设置阴极引线,将所述背膜铺设于所述太阳能电池的背向所述透光基板的一侧,形成太阳能电池板拼装体;
    检测作业,对所述太阳能电池板拼装体进行打光,对太阳能电池板拼装体的功率、电流和电压进行测试,检测太阳能电池板拼装体的功率、电流和电压是否合格;
    通过层压机对检验合格后的太阳能电池板拼装体进行层压作业,层压温度为100℃-160℃,层压时间为5min-10min,层压真空度为100pa-15pa,层压压力为0.1Mpa-1.2Mpa;
    组装作业,包括对层压后的太阳能电池板拼装体安装边框以及在太阳能电池板拼装体的背面安装集线盒,集线盒中安装有电联接于太阳能电池的蓄电池。
  2. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于:于提供切割好的多个晶片步骤中,对切割好的所述晶片的边缘进行平滑处理。
  3. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于:所述背膜包括自内向外的三层结构,外层为耐候层,中间层为PET聚酯层,内层为EVA层,所述耐候层包括以下重量份的各组分:聚四氟乙烯45-60份、六氟丙烯6-10份、环氧树脂10-20份、固化剂4-8份和溶剂12-22份。
  4. 根据权利要求3所述的一种太阳能电池板的加工方法,其特征在于,于提供所述背膜步骤前还包括步骤,制备背膜;
    制备背膜包括步骤:
    制备耐候层,将聚四氟乙烯、六氟丙烯、环氧树脂和固化剂添加至溶剂中并不断搅拌,待搅拌均匀后倒入模具中进行模压成型作业;
    提供PET聚酯层原材;
    提供EVA层原材;
    将所述EVA层原材、所述PET聚酯层原材和所述耐候层模压成型,生成背膜。
  5. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于:所述背膜包括依次层叠铺设的绝缘塑料和绝缘纸。
  6. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于,于通过层压机对合格后的太阳能电池板拼装体进行层压作业步骤中包括步骤:
    将太阳能电池板拼装体放置于层压机;
    对所述太阳能电池板拼装体进行预压和预热处理;
    进行抽真空作业,将所述太阳能电池板拼装体中的空气抽出,使得真空度保持在100pa-15pa范围内;
    对所述太阳能电池板拼装体进行加热,同时进行充气加压作业,完成太阳能电池板拼装体的层压和固化;
    冷却后,取出成型后的太阳能电池板拼装体。
  7. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于:于拼装作业步骤中,在所述大晶片与所述透光基板之间设置粘接层,用于粘合所述大晶片和所述透光基板。
  8. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于:所述透光基板的透光率大于92%。
  9. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于:所述晶片选用单晶硅晶片或多晶硅晶片。
  10. 根据权利要求1所述的一种太阳能电池板的加工方法,其特征在于:所述透光基板选用钢化玻璃。
PCT/CN2018/116971 2018-11-20 2018-11-22 一种太阳能电池板的加工方法 WO2020103087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811386363.8 2018-11-20
CN201811386363.8A CN109545875B (zh) 2018-11-20 2018-11-20 一种太阳能电池板的加工方法

Publications (1)

Publication Number Publication Date
WO2020103087A1 true WO2020103087A1 (zh) 2020-05-28

Family

ID=65850280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116971 WO2020103087A1 (zh) 2018-11-20 2018-11-22 一种太阳能电池板的加工方法

Country Status (2)

Country Link
CN (1) CN109545875B (zh)
WO (1) WO2020103087A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036108A (ja) * 1999-07-23 2001-02-09 Bridgestone Corp 太陽電池
CN101359695A (zh) * 2008-09-02 2009-02-04 中国乐凯胶片集团公司 一种太阳能电池背板
CN104465883A (zh) * 2014-12-23 2015-03-25 常熟高嘉能源科技有限公司 一种多晶硅太阳能组件的生产方法
CN204834648U (zh) * 2015-08-21 2015-12-02 阿特斯(中国)投资有限公司 太阳能电池组件
CN106098837A (zh) * 2016-06-06 2016-11-09 正信光电科技股份有限公司 光伏组件生产工艺
CN107757028A (zh) * 2016-08-16 2018-03-06 E.I.内穆尔杜邦公司 多层膜和光电模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036108A (ja) * 1999-07-23 2001-02-09 Bridgestone Corp 太陽電池
CN101359695A (zh) * 2008-09-02 2009-02-04 中国乐凯胶片集团公司 一种太阳能电池背板
CN104465883A (zh) * 2014-12-23 2015-03-25 常熟高嘉能源科技有限公司 一种多晶硅太阳能组件的生产方法
CN204834648U (zh) * 2015-08-21 2015-12-02 阿特斯(中国)投资有限公司 太阳能电池组件
CN106098837A (zh) * 2016-06-06 2016-11-09 正信光电科技股份有限公司 光伏组件生产工艺
CN107757028A (zh) * 2016-08-16 2018-03-06 E.I.内穆尔杜邦公司 多层膜和光电模块

Also Published As

Publication number Publication date
CN109545875A (zh) 2019-03-29
CN109545875B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
JP2915327B2 (ja) 太陽電池モジュール及びその製造方法
JP2010225801A (ja) 太陽電池モジュールの製造方法
KR20140095554A (ko) 새로운 솔라 모듈, 지지층 스택들 및 그 제조방법들
CN101588149B (zh) 一种柔性可折叠太阳能移动电源及其制造方法
CN104752560A (zh) 一种背接触太阳能电池组件的制作方法
CN103042806A (zh) 双玻璃光伏组件的制造方法
CN102709365A (zh) 一种太阳能电池组件及其制备方法
CN201503867U (zh) 太阳能电池组件封装结构
CN102254975A (zh) 一种柔性薄膜太阳能电池及其封装方法
CN102623553A (zh) 一种太阳能电池组件的制备方法
CN116995109A (zh) 一种低温焊接的背接触光伏组件及其制备方法
CN101635536B (zh) 一种可折叠太阳能移动电源及其制造方法
CN109713993A (zh) 一种太阳能电池板及加工方法
CN106712696A (zh) 一种接线盒集成的太阳能组件
JP2002039631A (ja) 光熱ハイブリッドパネル及びそれを用いたハイブリッドパネル本体及び光熱ハイブリッドパネルの製造方法
CN102157582A (zh) 一种组件生产过程中的封装工艺
CN104701418A (zh) 一种晶硅电池组件的互联方法
CN108899393A (zh) 一种光伏板的涂膜焊接方法
CN211125669U (zh) 一种高可靠性晶体硅太阳能电池封装组件
CN103887356A (zh) 一种轻型太阳能光伏发电组件及其生产工艺中的层叠方法
CN101982886A (zh) 一种pet层压太阳能电池板的制作工艺
WO2020103087A1 (zh) 一种太阳能电池板的加工方法
CN111261785A (zh) 钙钛矿太阳能电池组件及其封装方法
CN107154443A (zh) 一种太阳能电池组件封装结构
CN106558631B (zh) 无主栅双面电池组件及其制作工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940853

Country of ref document: EP

Kind code of ref document: A1