WO2020100826A1 - 架橋型人工核酸alna - Google Patents

架橋型人工核酸alna Download PDF

Info

Publication number
WO2020100826A1
WO2020100826A1 PCT/JP2019/044182 JP2019044182W WO2020100826A1 WO 2020100826 A1 WO2020100826 A1 WO 2020100826A1 JP 2019044182 W JP2019044182 W JP 2019044182W WO 2020100826 A1 WO2020100826 A1 WO 2020100826A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
methyl
compound
oxa
azabicyclo
Prior art date
Application number
PCT/JP2019/044182
Other languages
English (en)
French (fr)
Inventor
浩昭 澤本
新司 熊谷
古川 博之
荒木 友
雅之 宇津木
聡 小比賀
Original Assignee
田辺三菱製薬株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP23191049.8A priority Critical patent/EP4275690A3/en
Priority to AU2019381386A priority patent/AU2019381386A1/en
Priority to CA3119580A priority patent/CA3119580A1/en
Priority to SG11202104901VA priority patent/SG11202104901VA/en
Application filed by 田辺三菱製薬株式会社, 国立大学法人大阪大学 filed Critical 田辺三菱製薬株式会社
Priority to US17/292,963 priority patent/US20220002336A1/en
Priority to BR112021009168-8A priority patent/BR112021009168A2/pt
Priority to JP2020555685A priority patent/JP7356448B2/ja
Priority to CN201980074116.0A priority patent/CN112996522A/zh
Priority to EP23191048.0A priority patent/EP4275689A3/en
Priority to MX2021005537A priority patent/MX2021005537A/es
Priority to EP19885739.3A priority patent/EP3881851A4/en
Priority to KR1020217017322A priority patent/KR20210090659A/ko
Publication of WO2020100826A1 publication Critical patent/WO2020100826A1/ja
Priority to PH12021551082A priority patent/PH12021551082A1/en
Priority to IL283103A priority patent/IL283103A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to an amino LNA monomer and an oligomer containing the same.
  • the antisense method regulates the function of disease-related RNA by externally introducing an oligonucleotide (antisense strand) complementary to disease-related mRNA or untranslated RNA to form a double strand.
  • an oligonucleotide antisense strand
  • it is a method of treating or preventing a disease.
  • Non-Patent Document 1 2′-amino LNA (Locked nucleic acid) (hereinafter referred to as “ALNA”) developed by Wengel et al. In 1998 (Patent Document 1 and Non-Patent Document 1) is diversified by modifying the substituent from the 2 ′ position.
  • ALNA 2′-amino LNA
  • Non-Patent Document 12 Although the tissue distribution has been reported (Non-Patent Document 12), it is insufficient in terms of pharmacological activity and has not been applied to pharmaceuticals so far.
  • Patent Document 5 We applied the efficient synthesis method of GuNA found above (Patent Document 5 and Non-Patent Document 13) to synthesize a wide variety of new ALNA derivatives, and to conduct a screening specialized in pharmacological activity evaluation.
  • the present invention has been completed by widely carrying out the present invention and found a new artificial nucleic acid having excellent in vitro and in vivo pharmacological activity as compared with the existing ALNA.
  • the present invention relates to a novel crosslinked artificial nucleic acid, and an oligomer containing the same as a monomer.
  • the inventors of the present invention found a novel 2'-amino LNA and a salt thereof and an oligomer containing the same as a monomer, and completed the present invention.
  • A is an aromatic group;
  • M is one substituent selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aromatic group optionally substituted with one or more substituents. It is a substituted, sulfonyl group. ] Or a salt thereof. (Hereinafter, the compound represented by the formula (I) or a salt thereof is referred to as “the compound of the present invention”).
  • [2] B is adenylyl which may have one or more protecting groups, guanynyl which may have one or more protecting groups, cytosinyl which may have one or more protecting groups, one The compound according to [1], or a salt thereof, which is 5-methylcytosinyl optionally having the above protecting groups or urasilyl optionally having one or more protecting groups.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom; The compound according to [1] or [2], wherein m is 1, or a salt thereof.
  • X is a group represented by formula (II-1); and R 7 and R 8 are each independently a hydrogen atom, a C 1-6 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents.
  • R 7 and R 8 are each independently a hydrogen atom, or a C 1-3 alkyl group optionally substituted with one or more substituents, or a salt thereof.
  • [7] The compound according to [5], or a salt thereof, in which one of R 7 and R 8 is a hydrogen atom and the other is an isopropyl group.
  • X is a group represented by the formula (II-2); and A is a 5- or 6-membered heteroaryl group containing one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which may be substituted with one or more substituents.
  • A contains 2 or 3 heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom.
  • a 5- or 6-membered heteroaryl group wherein the substituents are each independently a C 1-3 alkyl group optionally substituted with one or more halogen atoms, a halogen atom, and one or more
  • the 5- or 6-membered heteroaryl group is selected from the group consisting of a triazolyl group, an oxadiazolyl group, a thiadiazolyl group, a pyrimidinyl group, and a pyrazinyl group, which may be substituted with one or more substituents.
  • X is a group represented by the formula (II-3); and M is substituted with one substituent selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aryl group optionally substituted with one or more substituents.
  • M is substituted with one substituent selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aryl group optionally substituted with one or more substituents.
  • M is a sulfonyl group substituted with one substituent selected from the group consisting of a methyl group and a phenyl group.
  • R 6 is a hydrogen atom or a DMTr group
  • R 5 is a hydrogen atom or —P (O (CH 2 ) 2 CN) (N (iPr) 2 ).
  • An oligonucleotide compound having one or more nucleosides represented by: or a salt thereof (hereinafter, the compound represented by formula (I ′) or a salt thereof is referred to as “the oligonucleotide compound of the present invention”).
  • B is adenylyl which may have one or more protecting groups, guanynyl which may have one or more protecting groups, cytosinyl which may have one or more protecting groups, one The oligonucleotide compound according to [18], or a salt thereof, which is 5-methylcytosinyl optionally having the above protecting groups or urasilyl optionally having one or more protecting groups.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom;
  • (Urea-type compound) X is a group represented by the formula (II′-1); and R 7 and R 8 are each independently a hydrogen atom, a C 1-6 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents.
  • Aryl type compound is a group represented by the formula (II′-2); and A is a 5- or 6-membered heteroaryl group containing one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which may be substituted with one or more substituents.
  • the oligonucleotide compound according to any one of [18] to [20], or a salt thereof.
  • A contains 2 or 3 heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom.
  • a 5- or 6-membered heteroaryl group wherein the substituents are each independently a C 1-3 alkyl group optionally substituted with one or more halogen atoms, a halogen atom, and one or more
  • the 5- or 6-membered heteroaryl group is selected from the group consisting of a triazolyl group, an oxadiazolyl group, a thiadiazolyl group, a pyrimidinyl group, and a pyrazinyl group, which may be substituted with one or more substituents.
  • X is a group of formula (II′-3); and M is substituted with one substituent selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aryl group optionally substituted with one or more substituents.
  • a novel 2'-amino LNA (hereinafter abbreviated as ALNA) and an oligomer containing these ALNAs as monomers (hereinafter abbreviated as ALNA oligomer) can be produced.
  • the ALNA oligomer of the present invention has a function inhibition of target microRNA in vitro and a strong target gene knockdown activity, and when administered to a living body, in many organs (for example, muscle). Since it has a strong target gene knockdown activity, it can be expected to be used as a novel nucleic acid drug.
  • C 1-6 alkyl group which may be substituted with one or more substituents means a carbon number of 1 to 6 (C 1-6 ), preferably a carbon number of 1 to 4 ( C 1-4 ), more preferably any linear alkyl group having 1 to 3 carbon atoms (C 1-3 ), any branched alkyl group having 3 or 6 carbon atoms having the same or different branched chains, carbon It includes any cyclic alkyl group having 3 to 6 carbon atoms and combinations thereof having 4 to 6 carbon atoms.
  • an arbitrary linear alkyl group having 1 to 6 carbon atoms include methyl, ethyl, normal (abbreviated as “n”) propyl, iso (abbreviated as “i”) propyl, n-butyl, n- Pentyl, n-hexyl and the like can be mentioned, and specific examples of the branched chain alkyl group having 3 to 6 carbon atoms having the same or different branched chains include i-propyl, i-butyl, tert (“t Abbreviated as “.”)-Butyl, sec (abbreviated as “s”)-butyl, neopentyl, isopentyl, and the like, and as the optional cyclic alkyl group having 3 to 6 carbon atoms, 3-6 membered monocyclic cyclo Alkyl groups are preferred and specific examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl,
  • substituents examples include a hydroxyl group, a halogen atom, a nitro group, a cyano group, a C 1-6 alkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, a C 1-6 alkoxy group, an aryl group and aryl.
  • an amino group optionally substituted with one or more C 1-3 alkyl groups, an oxo group, a thioxo group, and a C 1-6 alkyl group optionally substituted with one or more halogen atoms
  • One or more (or preferably 1 to 3) groups selected from the group consisting of the same or different are mentioned, but groups not affected by the reaction conditions of the oligomerization are preferable.
  • C 1-3 alkyl group optionally substituted with one or more halogen atoms means the above-mentioned term “C 1-6 optionally substituted with one or more substituents”.
  • alkyl group is meant methyl, ethyl, n-propyl, or i-propyl optionally substituted with one or more halogen atoms.
  • Specific examples include perfluoroalkyl (eg, trifluoromethyl, pentafluoroethyl, heptafluoropropyl) and the like.
  • C 2-6 alkenyl which may be substituted with one or more substituents means C 2-6 (C 2-6 ), preferably C 2-6 (C 2). -4 ), more preferably any linear alkenyl group having 2 to 3 carbon atoms (C 2-3 ), any branched alkenyl group having 3 or 6 carbon atoms having the same or different branched chains, and 3 carbon atoms. To any cyclic alkenyl group of 6 to 6 and combinations thereof having 4 to 6 carbon atoms.
  • specific examples of the arbitrary linear alkenyl group having 2 to 6 carbon atoms include ethenyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2- Examples thereof include a pentenyl group, a 3-pentenyl group, a 4-pentenyl group, and a 1-hexenyl group.
  • Specific examples of the branched alkenyl group having 3 to 6 carbon atoms having the same or different branched chains include isopropenyl.
  • a 3-6 membered monocyclic cycloalkenyl group is preferable, and specific examples thereof include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group and the like.
  • Examples include, but are not limited to:
  • Examples of the substituent include a hydroxyl group, a halogen atom, a nitro group, a cyano group, a C 1-6 alkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, a C 1-6 alkoxy group, an aryl group and aryl.
  • an amino group optionally substituted with one or more C 1-3 alkyl groups, an oxo group, a thioxo group, and a C 1-6 alkyl group optionally substituted with one or more halogen atoms
  • One or more (or preferably 1 to 3) groups selected from the group consisting of the same or different are mentioned, but groups not affected by the reaction conditions of the oligomerization are preferable.
  • C 2-6 alkynyl optionally substituted with one or more substituents means C 2-6 (C 2-6 ), preferably C 2-4 (C 2 -4 ), more preferably any linear alkynyl group having 2 to 3 carbon atoms (C 2-3 ), any branched alkynyl group having 3 or 6 carbon atoms having the same or different branched chains, carbon number It includes any cyclic alkynyl group of 3 to 6 and combinations thereof having 4 to 6 carbon atoms.
  • an arbitrary linear alkynyl group having 2 to 6 carbon atoms include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2- Examples thereof include a pentynyl group, a 3-pentynyl group, a 4-pentynyl group, a 1-hexynyl group, and specific examples of the branched alkynyl group having 3 to 6 carbon atoms having the same or different branched chains include isopropynyl.
  • a 3-6 membered monocyclic cycloalkynyl group is preferable, and specific examples thereof include a cyclobutynyl group, a cyclopentynyl group, a cyclohexynyl group and the like. , But not limited to these.
  • substituents examples include a hydroxyl group, a halogen atom, a nitro group, a cyano group, a C 1-6 alkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group, a C 1-6 alkoxy group, an aryl group and aryl.
  • an amino group optionally substituted with one or more C 1-3 alkyl groups, an oxo group, a thioxo group, and a C 1-6 alkyl group optionally substituted with one or more halogen atoms
  • One or more (or preferably 1 to 3) groups selected from the group consisting of the same or different are mentioned, but groups not affected by the reaction conditions of the oligomerization are preferable.
  • aromatic group optionally substituted with one or more substituents is meant to include both aryl groups and heteroaryl groups.
  • Each of the aryl group and the heteroaryl group may be independently substituted with one or more substituents.
  • substituents include a hydroxyl group, a halogen atom, a nitro group, a cyano group, a C 1-6 alkyl group which may be substituted with one or more substituents, and a C 1-6 alkyl group which may be substituted with one or more substituents.
  • C 2-6 alkenyl group C 2-6 alkynyl group optionally substituted with one or more substituents, hydroxyl group, C 1-6 alkoxy group, aryloxy group, one or more C 1-3 alkyl
  • One or more or 1 to 1 or more selected from the group consisting of an amino group optionally substituted with a group, a C 1-6 alkyl group optionally substituted with one or more halogen atoms, and an aryl group; 3 groups are preferable), preferably a C 1-6 alkyl group optionally substituted with one or more substituents, and optionally substituted with one or more C 1-3 alkyl groups.
  • Examples thereof include a good amino group and a halogen atom, and more preferable examples include a trifluoromethyl group, a dimethylamino group, a chloro atom and the like. Groups that are not affected by the oligomerization reaction conditions are preferred.
  • aryl group refers to a functional group or substituent derived from an aromatic hydrocarbon, including those having a plurality of rings, and specifically, an aromatic hydrocarbon group to a hydrogen atom. Except for one, it means a monovalent group having 6 to 14 carbon atoms and consisting of one or more 5-membered and / or 6-membered rings, preferably 5-membered or 6-membered aryl. Specific examples of the aryl group include phenyl, indenyl, naphthyl, phenanthrenyl, anthracenyl and the like.
  • examples of the substituent of the aryl group include a hydroxyl group, a halogen atom, a nitro group, a cyano group, a C 1-6 alkyl group which may be substituted with one or more substituents, and one or more substituents.
  • Examples of trifluoromethyl group, dimethylamino group, chloro atom and the like are preferable, but a group which is not affected by the reaction conditions for oligomerization is preferable.
  • Specific examples of the aryl group which may be substituted with one or more substituents include 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, 2,6-dichlorophenyl, 2-bromophenyl, 4-methoxyphenyl, 4-chloro-2-nitrophenyl, 4 -Nitrophenyl, 2-nitrophenyl, 2,4-dinitrophenyl, 2-trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 2-dimethyl
  • heteroaryl group includes one or more 5-membered rings and / or one or more heteroatoms (eg, nitrogen atom, oxygen atom, and / or sulfur atom) in the ring structure. It means a monovalent group obtained by removing one hydrogen atom from any heteroaromatic compound having 6 to 12 carbon atoms, and preferably a 5-membered or 6-membered heteroaryl.
  • heteroaryl group is selected from a pyrrolyl group, a furyl group, a thienyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, or a thiadiazolyl group.
  • a 6-membered ring heteroaryl group selected from a pyridyl group, a pyridazinyl group, a pyrimidinyl group, or a pyrazinyl group, preferably a triazolyl group, an oxadiazolyl group, a thiadiazolyl group, a pyrimidinyl group, or Examples thereof include a pyrazinyl group.
  • substituent of the heteroaryl group include a hydroxyl group, a halogen atom, a nitro group, a cyano group, a C 1-6 alkyl group which may be substituted with one or more substituents, and one or more substituents.
  • One or more (or preferably 1 to 3) same or different groups selected from the group consisting of an amino group which may be substituted with the above C 1-3 alkyl group and an aryl group are mentioned, and preferably And a C 1-6 alkyl group optionally substituted with one or more substituents, an amino group optionally substituted with one or more C 1-3 alkyl groups, and a halogen atom, and more preferred.
  • Examples of trifluoromethyl group, dimethylamino group, chloro atom and the like are preferable, but a group which is not affected by the reaction conditions for oligomerization is preferable.
  • Specific examples of the heteroaryl group which may be substituted with one or more substituents include 1,2,4-triazolyl group, 1,5-dimethyl-1,2,4-triazolyl group, 1,2, 4-oxadiazolyl group, 5-methyl-1,2,4-oxadiazol-3-yl group, 1,2,4-thiadiazolyl group, 3-methyl-1,2,4-thiadiazol-5-yl group, 1,3-pyrimidinyl group, 1,5-pyrimidinyl group, 4-trifluoromethyl-1,5-pyrimidinyl group, 4-dimethylamino-2,4-pyrimidinyl group, 3-dimethylamino-2,4-pyrimidinyl group , 3-chloro-1,5-pyrimidinyl group, and 1,4-pyridazinyl group,
  • heteroaryl group includes a 5-membered or 6-membered heteroaryl which may be substituted with one or more substituents defined in the above-mentioned “heteroaryl group”.
  • hetero atoms including at least two nitrogen atoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, which may be substituted with one or more substituents
  • the "including 5- or 6-membered heteroaryl group” is a triazolyl group, an oxadiazolyl group, a thiadiazolyl group or a pyrimidinyl group which may be substituted with one or more substituents defined in the above-mentioned "heteroaryl group”.
  • pyridazinyl group is a triazolyl group, an oxadiazolyl group, a thiadiazolyl group or a pyrimidinyl group which may be substituted with one or more substituents defined in the above-mentioned "heteroaryl group”.
  • a “sulfonyl group substituted with one substituent” means a sulfonyl (S (O) 2 ) group substituted with one such substituent.
  • the C 1-6 alkyl group optionally substituted with one or more substituents, or the aromatic group optionally substituted with one or more substituents are respectively as defined above, Specific examples thereof include a methyl group, a trifluoromethyl group, a phenyl group, a 4-methylphenyl group, and the like, and a methyl group and a phenyl group are preferable.
  • C 1-6 alkoxy group means a monovalent group C 1-6 alkyl is bonded to an oxygen atom, it means a C 1-6 alkyl -O group. Specific examples include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a t-butoxy group, an s-butoxy group, and a 3-methylbutoxy group. Not limited.
  • aryloxy group means a monovalent group in which aryl is bonded to an oxygen atom. Specific examples thereof include, but are not limited to, a phenoxy group, a p-tolyloxy group and the like.
  • amino group optionally substituted with one or more C 1-3 alkyl groups means that one or more hydrogen atoms on the amino group are substituted with C 1-3 alkyl groups.
  • halogen includes, for example, a fluorine atom (fluoro), a chlorine atom (chloro), a bromine atom (bromo), or an iodine atom (iodo), and a fluorine atom or a chlorine atom. Is preferred.
  • the intermediate compound, the raw material compound, or the like has a functional group (for example, a hydroxyl group, an amino group, a carboxyl group, etc.), Theodora W. Greene, Peter G. M. Wuts, Protective According to the method described in Groups in Organic Synthesis "4th. Ed., John Wiley & Sons, Inc., 1999, by protecting with a protecting group usually used in synthetic organic chemistry, and removing the protecting group after the reaction.
  • the desired compound can be obtained.
  • the protecting group include the protecting groups usually used in the synthetic organic chemistry described in the same book, and the protecting groups for each functional group are described below.
  • protecting group described in “hydroxyl protecting group”, “amino protecting group”, “phosphate protecting group” and “mercapto protecting group” means a nucleic acid. There is no particular limitation as long as it can stably protect the amino group, hydroxyl group, phosphoric acid group or mercapto group during synthesis. Specifically, it refers to a protective group that is stable under acidic or neutral conditions and can be cleaved by a chemical method such as hydrogenolysis, hydrolysis, electrolysis, and photolysis.
  • Examples of such a protecting group include an alkyl group having 1 to 6 carbon atoms; an alkenyl group having 2 to 6 carbon atoms; an alkynyl group having 2 to 6 carbon atoms; an acyl group; a tetrahydropyranyl group or a tetrahydrothiopyranyl group.
  • the “hydroxyl protecting group” refers to a protecting group usually used in synthetic organic chemistry (particularly, nucleic acid synthesis), and examples thereof include an aliphatic acyl group; an aromatic acyl group; an optionally substituted aminocarbonyl group; Optionally alkoxycarbonyl group; aliphatic sulfonyl group; aromatic sulfonyl group; methyl group substituted with 1 to 3 aryl groups; alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, halogen atom And / or a methyl group substituted with 1 to 3 aryl groups substituted with a cyano group; or a silyl group.
  • benzyl (Bn), 4,4′-dimethoxytrityl (DMTr), 4-methoxytrityl, triphenylmethyl, 2-naphthylmethyl, diphenylaminocarbonyl (DPC), cyanoethoxycarbonyl, tetrahydropyranyl, Trimethylsilyl, triethylsilyl, triisopropylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, triphenylsilyl, 4-methoxybenzyl (p-methoxybenzyl), 3,4-dimethoxybenzyl, 2,6-dimethoxybenzyl, Examples thereof include, but are not limited to, p-phenylbenzyl, methanesulfonyl, trifluoromethanesulfonyl, methoxymethyl, benzoyl (Bz), phenoxyacetyl, acetyl and
  • benzyl (Bn), 4,4′-dimethoxytrityl (DMTr), t-butyldimethylsilyl, t-butyldiphenylsilyl, trimethylsilyl (TMS), diphenylaminocarbonyl (DPC), methanesulfonyl, trifluoromethanesulfonyl are preferable.
  • 4,4′-Dimethoxytrityl (DMTr) is more preferred.
  • the term “optionally substituted phosphoric acid group” means phosphoric acid, phosphorous acid, or hypophosphorous acid which may have a substituent (including a protective group). Include. For example, it includes a phosphate group represented by the formula: -P (R P1 ) R P2 , wherein R P1 and R P2 are each independently a hydroxyl group, a hydroxyl group protected by a protective group for nucleic acid synthesis, Mercapto group, mercapto group protected by protective group for nucleic acid synthesis, amino group, alkoxy group having 1 to 5 carbon atoms, alkylthio group having 1 to 6 carbon atoms, cyanoalkoxy group having 1 to 6 carbon atoms, or 1 carbon atom To 6 represent an amino group substituted with an alkyl group.
  • R P1 is an alkyl group having 1 to 5 carbon atoms and a cyanoalkyl group having 1 to 6 carbon atoms
  • R P2a is an alkyl group having 1 to 6 carbon atoms
  • specific examples of the “phosphoramidite group” It is mentioned a group represented by the formula -P (O (CH 2) 2 CN) (N (iPr) 2) groups represented by or formula -P, (OCH 3) (N (iPr) 2) is However, the present invention is not limited to these.
  • a group represented by the formula —P (O (CH 2 ) 2 CN) (N (iPr) 2 ) is preferable.
  • iPr represents an isopropyl group.
  • the term “optionally substituted phosphate group” may form a chiral auxiliary group containing phosphorus.
  • Specific examples of the chiral auxiliary group containing phosphorus include non-patent literature N.Oka et al., J. AM. CHEM. SOC. 2008, 130, 16031 and the optically active bicyclic oxazaphosphoridine, and non-patent literature. Examples include, but are not limited to, optically active 2-thio-1,3,2-oxathiaphophorane containing a pentavalent phosphorus atom described in K. W. Knouse et al., Science 10.1126 / science.aau3369 (2016). Not done.
  • amino group-protecting group refers to a protecting group usually used in synthetic organic chemistry (particularly, nucleic acid synthesis), and includes, for example, aliphatic acyl group; aromatic acyl group; optionally substituted alkoxycarbonyl group; Examples thereof include a methyl group substituted with 3 aryl groups; a methyl group substituted with 1 to 3 aryl groups substituted with a halogen atom and / or a cyano group.
  • acetyl (Ac), phenoxyacetyl (Pac), t-butylphenoxyacetyl (Tac), p-isopropylphenoxyacetyl (iPr-Pac), trifluoroacetyl, propionyl, isobutyryl, benzoyl (Bz), methoxy.
  • Phosphate group-protecting group refers to a protecting group usually used in synthetic organic chemistry (particularly, nucleic acid synthesis), and includes, for example, an alkyl group having 1 to 6 carbon atoms and / or a cyano group having 1 carbon atoms.
  • an alkyl group having 1 to 6 carbon atoms and / or a cyano group having 1 carbon atoms to 6 alkyl groups; aralkyl groups; aralkyl groups substituted with nitro groups and / or aryl groups substituted with halogen atoms; alkyl groups having 1 to 6 carbon atoms, aryl groups substituted with halogen atoms, or nitro groups.
  • the “protecting group for mercapto group” refers to a protecting group usually used in synthetic organic chemistry (particularly, nucleic acid synthesis), and examples thereof include an aliphatic acyl group or an aromatic acyl group and a benzoyl group (Bz). It is not limited to these.
  • the term "leaving group” refers to a portion of a substrate molecule that has an electron pair when it is cleaved by cleavage in heterolysis during the reaction, such as a halogen atom (e.g., fluorine). Atom, chlorine atom, bromine atom, iodine atom) and “a leaving group of a hydroxyl group”.
  • Examples of the leaving group of the hydroxyl group include a sulfonyloxy group (eg, paratoluenesulfonyloxy group, mesyloxy group, trifluoromethanesulfonyloxy group, etc.), an acyloxy group (preferably a saturated or unsaturated acyloxy group having 1 to 8 carbon atoms).
  • a sulfonyloxy group eg, paratoluenesulfonyloxy group, mesyloxy group, trifluoromethanesulfonyloxy group, etc.
  • an acyloxy group preferably a saturated or unsaturated acyloxy group having 1 to 8 carbon atoms.
  • R L in the formula is an aryl group which may be substituted with an alkyl group (preferable total carbon number is 6 to 8, A phenyl group, a p-tolyl group, etc.), an aryloxy group optionally substituted with an alkyl group (preferably having a total carbon number of 6 to 8, for example, a phenoxy group, a p-tolyloxy group, etc.), an aralkyl group (preferable total group).
  • C7-C9 such as benzyl group
  • arylalkenyl groups such as 8 or 9, such as cinnamyl group
  • aralkyloxy groups such as benzyloxy
  • an alkoxy group a linear or branched alkoxy group having 1 to 8 carbon atoms, such as methoxy, ethoxy, t-butoxy, etc.
  • Specific examples include iodo, bromo, chloro, fluoro, mesyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy, ethanesulfonyloxy, 2,2,2-trifluoro-ethanesulfonyloxy, propanesulfonyloxy, iso-propane.
  • examples of the term “acyl group” include aliphatic acyl group and aromatic acyl group.
  • examples of the aliphatic acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, pentanoyl group, pivaloyl group, valeryl group, isovaleryl group, octanoyl group, nonanoyl group, decanoyl group, 3-methylnonanoyl group, 8-methylnonanoyl group, 3-ethyloctanoyl group, 3,7-dimethyloctanoyl group, undecanoyl group, dodecanoyl group, tridecanoyl group, tetradecanoyl group, pentadecanoyl group, hexadecanoyl group, 1-methylpentadecanoyl group, 14-methylpentadecanoyl group, 13,13-
  • aromatic acyl group examples include arylcarbonyl groups such as benzoyl group, ⁇ -naphthoyl group and ⁇ -naphthoyl group; halogenoarylcarbonyl groups such as 2-bromobenzoyl group and 4-chlorobenzoyl group; 2 An arylcarbonyl group substituted with an alkyl group having 1 to 6 carbon atoms such as 4,4,6-trimethylbenzoyl group and a 4-toluoyl group; substituted with an alkoxy group having 1 to 6 carbon atoms such as a 4-anisoyl group Arylcarbonyl group; carboxylated arylcarbonyl group such as 2-carboxybenzoyl group, 3-carboxybenzoyl group, 4-carboxybenzoyl group; nitrated arylcarbonyl group such as 4-nitrobenzoyl group, 2-nitrobenzoyl group A carbonylated arylcarbonyl group substituted with an alk
  • aralkyl group is substituted with an aromatic hydrocarbon group (for example, a 6-14 membered monocyclic, bicyclic or tricyclic aromatic hydrocarbon group can be mentioned). Further, it means an alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and more preferably 1 to 3 carbon atoms. Specific examples include, but are not limited to, benzyl, phenethyl, 1-naphthylmethyl, 2-naphthylmethyl and the like.
  • sil group examples include trimethylsilyl group, triethylsilyl group, isopropyldimethylsilyl group, t-butyldimethylsilyl group, methyldiisopropylsilyl group, methyldi-t-butylsilyl group, triisopropylsilyl group.
  • a silyl group substituted with an alkyl group having 1 to 6 carbon atoms such as: t-butyldiphenylsilyl group, diphenylmethylsilyl group, butyldiphenylbutylsilyl group, diphenylisopropylsilyl group, phenyldiisopropylsilyl group
  • Examples thereof include, but are not limited to, a silyl group substituted with three alkyl groups having 1 to 6 carbon atoms and a triphenylsilyl group substituted with two aryl groups.
  • ⁇ -form refers to the direction in which the base portion of a nucleic acid substituted at the 1′-position of a ribose site of a nucleic acid is substituted and the 5′-side chain substituted at the 4′-position of ribose of a nucleic acid is substituted. It has a stereochemistry in which the directions of substitution are the same.
  • cross-linked artificial nucleic acid 2 ', 4'-LNA it is used for the direction of substitution of the base portion of the nucleic acid substituted at the 1'position of the ribose site of the nucleic acid and for the crosslink substituted at the ribose 4'position of the nucleic acid
  • a compound having a steric configuration in which the direction in which the 5 ′ side chain is substituted is the same direction.
  • ⁇ -selective means that ⁇ -form can be selectively obtained.
  • base portion of nucleic acid in the term “base portion of nucleic acid optionally substituted with one or more substituents” means a base portion of a natural nucleic acid and a base portion of a non-natural nucleic acid.
  • an aromatic heterocyclic group for example, a monocyclic group, a bicyclic group, a tricyclic group and the like. It should be apparent to one of ordinary skill in the art that the base moieties of various nucleic acids that have previously been considered “non-natural” are subsequently found in nature.
  • “nucleobase” includes not only the known purine and pyrimidine heterocycles, but also heterocyclic analogs and tautomers thereof.
  • the base portion of the nucleic acid include adenine, guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo-N 6 -methyladenine, 7-deazaxanthine, 7-deazaguanine, N 4 , N 4 -Ethanocytosine, N 6 , N 6 -Ethano-2,6-diaminopurine, 5-Methylcytosine, 5- (C 3 -C 6 ) -Alkynylcytosine, 5-Fluorocytosine, 5-Bromouracil, Pseudoiso cytosine, 2-hydroxy-5-methyl-4-triazolopyridine, isocytosine, isoguanine, inosine, N 6 - allyl purine, N 6 - Ashirupurin, N 6 - benzylpurine, N 6 - Haropurin,
  • nucleic acids examples include adenine, guanine, 2,6-diaminopurine, thymine, 2-thiothymine, cytosine, 5-methylcytosine, uracil, 5-fluorocytosine, xanthine, 6-aminopurine, 2-amino.
  • Purines, 6-chloro-2-amino-purines, and 6-chloropurines are mentioned, and particularly preferred nucleobase moieties include, for example, adenine, guanine, cytosine, 5-methylcytosine, thymine or uracil.
  • the base portion of these nucleic acids may be substituted with one or more substituents, and the substituents include a hydroxyl group, a C 1-6 alkoxy group, a melamine group, and a C 1-6 alkylthio group. group, an amino group, an amino group substituted with an alkyl group of C 1-6, alkyl group of C 1-6, alkynyl group of C 1-6 and, oxo group, thioxo group, and a halogen atom.
  • Functional oxygen, sulfur and nitrogen groups on the base moiety can be protected and / or deprotected if necessary or desired.
  • Suitable protecting groups are well known to those skilled in the art, and include, for example, the above-mentioned hydroxyl protecting group, amino protecting group, diphenylaminocarbonyl group, silyl group (eg trimethylsilyl group, dimethylhexylsilyl group).
  • t-butyldimethylsilyl group, and t-butyldiphenylsilyl group trityl group, alkyl group, acyl group (eg, acetyl group, propionyl group, isobutyryl group, benzoyl group (Bz), phenoxyacetyl group (Pac)) ), Alkoxycarbonyl group (eg, t-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz), diphenylaminocarbonyl group (DPC), cyanoethoxycarbonyl group (Ceoc)), sulfonyl group (eg, methanesulfonyl group) , And a p-toluenesulfonyl group), a dimethylaminomethylenyl group, and the like, but are not limited thereto.
  • acyl group eg, acetyl group, propionyl group
  • artificial nucleic acid includes an artificial nucleoside, an artificial nucleotide (in this specification, one nucleoside or nucleotide may be described as a monomer), or an artificial oligonucleotide.
  • These artificial nucleic acids are not natural nucleic acids, and are nucleic acids that can be produced only artificially. Examples of these artificial nucleic acids include those in which the nucleobase moiety has an unnatural base, those in which the sugar moiety has a modified sugar, and / or those in which the phosphate moiety has an unnatural phosphate group.
  • the sugar moiety has an unnatural sugar, and particularly has an (deoxy) ribose having 2'-position and 4'-position carbon atoms cross-linked.
  • the term "artificial oligonucleotide” means two or more "artificial nucleotides" which are the same or different and are bound by a phosphodiester bond, a thiophosphodiester bond or the like, and preferably from 2 to 100 , More preferably 5 to 50, most preferably 10 to 30 artificial nucleotides bound thereto, or those forming a double strand with their complementary strands.
  • an oligonucleotide in which two or more nucleotides are bound may be described as an oligomer.
  • B is a base moiety of a nucleic acid which may be substituted with one or more substituents;
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, or a C 1-6 alkyl group optionally substituted with one or more substituents;
  • R 5 and R 6 are each independently a hydrogen atom, a protecting group for a hydroxyl group, or an optionally substituted phosphate group;
  • m is 1 or 2;
  • X is the following formula (II-1), (II-2), or (II-3): Is a group represented by Symbols shown in formula (II-1), (II-2), or (II-3): Represents the point of attachment to the 2'-amino group;
  • R 7 and R 8 are each independently a hydrogen atom, a C 1-6 alkyl group optionally substituted with one or more substituents, and a C 2-6 alkenyl optional
  • A is an aromatic group;
  • M is one substituent selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aromatic group optionally substituted with one or more substituents. It is a substituted, sulfonyl group. ] Or a salt thereof, I will provide a.
  • the compound represented by the general formula (I) or a salt thereof has the general formula Ia: It is preferable that it is the compound represented by these or its salt (In formula, R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 >, R ⁇ 4 >, R ⁇ 5 >, R ⁇ 6> , B, X and m are synonymous with General formula (I). is there.).
  • ring B in formula (I) has adenylyl, which may have one or more protecting groups, guanynyl, which may have one or more protecting groups, has one or more protecting groups.
  • a compound of formula (I) or a salt thereof, which is optionally substituted cytocinyl, 5-methylcytosinyl optionally having one or more protecting groups, or urasilyl optionally having one or more protecting groups. provide.
  • ring B in formula (I) is 5-methylcytosinyl optionally having one or more protecting groups or a 5-urasilyl group optionally having one or more protecting groups,
  • a compound of formula (I) or a salt thereof is provided.
  • R 6 is a hydrogen atom or a DMTr group
  • an R 5 is a hydrogen atom or a -P (O (CH 2) 2 CN) (N (iPr) 2)
  • R 6 is a DMTr group
  • R 5 is -P (O (CH 2) 2 CN) (N (iPr) 2), represented by the formula (I) Or a salt thereof.
  • X is a group of formula (II-1); and R 7 and R 8 are each independently a hydrogen atom, a C 1-6 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents. And a compound of formula (I) or a salt thereof.
  • X is a group of formula (II-1); and R 7 and R 8 are each independently a hydrogen atom, a C 1-3 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents. And a compound of formula (I) or a salt thereof.
  • X is a group of formula (II-1); and there is provided a compound represented by formula (I) or a salt thereof, wherein R 7 and R 8 are each independently a hydrogen atom, a methyl group, an isopropyl group, or a phenyl group.
  • X is a group of formula (II-1); and The combination of R 7 and R 8, the combination R 7 and R 8 are both hydrogen atoms, combinations R 7 and R 8 are both methyl groups, an R 7 is a hydrogen atom and R 8 is a methyl group
  • X is a group of formula (II-1); and The combination of R 7 and R 8, a combination combinations R 7 and R 8 are both hydrogen atoms, R 7 and R 8 are both methyl groups, a one hydrogen atom of R 7 and R 8, the other A combination which is a methyl group, a combination where one of R 7 and R 8 is a hydrogen atom and the other is an isopropyl group, or a combination where one of R 7 and R 8 is a hydrogen atom and the other is a phenyl group, There is provided a compound of formula (I) or salt thereof.
  • X is a group of formula (II-1); and there is provided a compound represented by formula (I) or a salt thereof, wherein one of R 7 and R 8 is a hydrogen atom and the other is a methyl group.
  • X is a group of formula (II-1); and there is provided a compound represented by formula (I) or a salt thereof, wherein one of R 7 and R 8 is a hydrogen atom and the other is an isopropyl group.
  • X is a group of formula (II-2); and A is a 5- or 6-membered heteroaryl group which contains one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, and which may be substituted with one or more substituents.
  • A is a 5- or 6-membered heteroaryl group which contains one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, and which may be substituted with one or more substituents.
  • X is a group of formula (II-2); and 5 or 6 in which A contains 2 or 3 heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom
  • A contains 2 or 3 heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom
  • a compound of formula (I) or a salt thereof which is a heteroaryl group having a member ring.
  • X is a group of formula (II-2); and 5 or 5 in which A contains one or more heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom; A 6-membered heteroaryl group, wherein the substituents are each independently a C 1-3 alkyl group optionally substituted with one or more halogen atoms, a halogen atom, and one or more C 1 A compound represented by the formula (I) or a salt thereof selected from the group consisting of an amino group optionally substituted with an -3 alkyl group is provided.
  • X is a group of formula (II-2); and 5 or 5 in which A contains one or more heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom; A 6-membered heteroaryl group, wherein the substituents are each independently a C 1-3 alkyl group optionally substituted with one or more halogen atoms, a halogen atom, and one or more C 1 A compound represented by the formula (I) or a salt thereof selected from the group consisting of an amino group optionally substituted with an -3 alkyl group is provided.
  • X is a group of formula (II-2); and A 5- or 6-membered heteroaryl group as A is selected from the group consisting of a triazolyl group, an oxadiazolyl group, a thiadiazolyl group, a pyrimidinyl group, and a pyrazinyl group, which may be substituted with one or more substituents, There is provided a compound of formula (I) or a salt thereof.
  • X is a group of formula (II-2); and A compound represented by the formula (I) in which the triazolyl group which may be substituted with one or more substituents as A is a 1,5-dimethyl-1,2,4-triazol-3-yl group, or Provide the salt.
  • X is a group of formula (II-2); and A compound represented by the formula (I) in which the oxadiazolyl group which may be substituted with one or more substituents as A is a 5-methyl-1,2,4-oxadiazol-3-yl group, or Provide the salt.
  • X is a group of formula (II-2); and A compound represented by the formula (I) or a salt thereof, wherein the thiadiazolyl group optionally substituted with one or more substituents as A is a 3-methyl-1,2,4-thiadiazol-5-yl group I will provide a.
  • X is a group of formula (II-3); and M is substituted with one substituent selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aryl group optionally substituted with one or more substituents
  • substituents selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aryl group optionally substituted with one or more substituents
  • X is a group of formula (II-3); and M is substituted with one substituent selected from the group consisting of a methyl group optionally substituted with one or more substituents, and a phenyl group optionally substituted with one or more substituents, There is provided a compound of formula (I) or a salt thereof, which is a sulfonyl group.
  • X is a group of formula (II-3); and there is provided a compound represented by formula (I) or a salt thereof, wherein M is a sulfonyl group substituted with one substituent selected from the group consisting of a methyl group and a phenyl group.
  • one or more compounds selected from the group consisting of the compounds shown below or a salt thereof are provided.
  • Oligonucleotide According to one embodiment of the compound represented by the general formula (I ′) , General formula (I '): [In the formula, B is a base moiety of a nucleic acid which may be substituted with one or more substituents; R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, or a C 1-6 alkyl group optionally substituted with one or more substituents; m is 1 or 2; X is the following formula (II′-1), (II′-2), or (II′-3): Is a group represented by Symbols described in formula (II′-1), (II′-2), or (II′-3): Represents the point of attachment to the 2'-amino group; A is an aromatic group, which is optionally substituted with one or more substituents and contains one or more heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur atoms; M is one substituent selected from the group consisting of a C 1-6 al
  • ring B in formula (I ′) comprises adenynyl optionally having one or more protecting groups, guanynyl optionally having one or more protecting groups, one or more protecting groups.
  • ring B in formula (I ′) is 5-methylcytosinyl optionally having one or more protecting groups or a 5-urasilyl group optionally having one or more protecting groups.
  • An oligonucleotide compound represented by formula (I ′) or a salt thereof is provided.
  • a compound or salt thereof is provided.
  • Examples thereof include compounds in which X in the formula (I ′) is a group represented by the formula (II′-1) (hereinafter, also referred to as “urea type compound” in the present specification).
  • X is a group represented by the formula (II′-1); and R 7 and R 8 are each independently a hydrogen atom, a C 1-6 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents. It is a base.
  • R 7 and R 8 are each independently a hydrogen atom, a C 1-6 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents. It is a base.
  • an oligonucleotide compound represented by the formula (I ′) or a salt thereof is provided.
  • X is a group of formula (II′-1); and R 7 and R 8 are each independently a hydrogen atom, a C 1-6 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents.
  • the oligonucleotide compound of formula (I ′) or a salt thereof is provided.
  • X is a group of formula (II′-1); and R 7 and R 8 are each independently a hydrogen atom, a C 1-3 alkyl group optionally substituted with one or more substituents, or an aromatic group optionally substituted with one or more substituents.
  • An oligonucleotide compound of formula (I ′) or a salt thereof is provided.
  • X is a group of formula (II′-1); and there is provided an oligonucleotide compound represented by the formula (I ′) or a salt thereof, wherein R 7 and R 8 are each independently a hydrogen atom, a methyl group, an isopropyl group, or a phenyl group.
  • X is a group of formula (II′-1); and The combination of R 7 and R 8, the combination R 7 and R 8 are both hydrogen atoms, combinations R 7 and R 8 are both methyl groups, an R 7 is a hydrogen atom and R 8 is a methyl group
  • X is a group of formula (II′-1); and The combination of R 7 and R 8, a combination combinations R 7 and R 8 are both hydrogen atoms, R 7 and R 8 are both methyl groups, a one hydrogen atom of R 7 and R 8, the other A combination which is a methyl group, a combination where one of R 7 and R 8 is a hydrogen atom and the other is an isopropyl group, or a combination where one of R 7 and R 8 is a hydrogen atom and the other is a phenyl group, There is provided an oligonucleotide compound of formula (I ′) or a salt thereof.
  • X is a group of formula (II′-1); and there is provided an oligonucleotide compound represented by formula (I ′), or a salt thereof, wherein one of R 7 and R 8 is a hydrogen atom and the other is a methyl group.
  • X is a group of formula (II′-1); and there is provided an oligonucleotide compound represented by the formula (I ′), or a salt thereof, wherein one of R 7 and R 8 is a hydrogen atom and the other is an isopropyl group.
  • X is a group of formula (II′-2); and A is a 5- or 6-membered heteroaryl group containing one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which may be substituted with one or more substituents.
  • A is a 5- or 6-membered heteroaryl group containing one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom, which may be substituted with one or more substituents.
  • X is a group of formula (II′-2); and 5 or 6 in which A contains 2 or 3 heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom
  • A contains 2 or 3 heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom
  • an oligonucleotide compound represented by the formula (I ′) which is a heteroaryl group having a member ring, or a salt thereof.
  • X is a group of formula (II′-2); and 5 or 5 in which A contains one or more heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom; A 6-membered heteroaryl group, wherein the substituents are each independently a C 1-3 alkyl group optionally substituted with one or more halogen atoms, a halogen atom, and one or more C 1
  • X is a group of formula (II′-2); and 5 or 5 in which A contains one or more heteroatoms, which may be substituted with one or more substituents, including at least two nitrogen atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom; A 6-membered heteroaryl group, wherein the substituents are each independently a C 1-3 alkyl group optionally substituted with one or more halogen atoms, a halogen atom, and one or more C 1
  • X is a group of formula (II′-2); and A 5- or 6-membered heteroaryl group as A is selected from the group consisting of a triazolyl group, an oxadiazolyl group, a thiadiazolyl group, a pyrimidinyl group, and a pyrazinyl group, which may be substituted with one or more substituents, There is provided an oligonucleotide compound represented by formula (I ′) or a salt thereof.
  • X is a group of formula (II′-2); and An oligo represented by formula (I ′) in which the triazole group which may be substituted with one or more substituents as A is a 1,5-dimethyl-1,2,4-triazol-3-yl group A nucleotide compound or a salt thereof is provided.
  • X is a group of formula (II′-2); and An oligo according to formula (I ′), wherein the oxadiazolyl group optionally substituted by one or more substituents as A is a 5-methyl-1,2,4-oxadiazol-3-yl group.
  • a nucleotide compound or a salt thereof is provided.
  • X is a group of formula (II′-2); and The oligonucleotide compound represented by the formula (I ′), wherein the thiadiazolyl group optionally substituted with one or more substituents as A is a 3-methyl-1,2,4-thiadiazol-5-yl group. Or provide the salt.
  • X is a group of formula (II′-3); and M is substituted with one substituent selected from the group consisting of a C 1-6 alkyl group optionally substituted with one or more substituents and an aryl group optionally substituted with one or more substituents
  • the present invention provides an oligonucleotide compound represented by the formula (I ′), which is a sulfonyl group, or a salt thereof.
  • X is a group of formula (II′-3); and M is substituted with one substituent selected from the group consisting of a methyl group optionally substituted with one or more substituents, and a phenyl group optionally substituted with one or more substituents,
  • oligonucleotide compound represented by formula (I ′) which is a sulfonyl group, or a salt thereof.
  • X is a group of formula (II′-3); and there is provided an oligonucleotide compound represented by the formula (I ′), or a salt thereof, wherein M is a sulfonyl group substituted with one substituent selected from the group consisting of a methyl group and a phenyl group.
  • X is a group of formula (II′-3); and there is provided an oligonucleotide compound represented by the formula (I ′), or a salt thereof, wherein M is a sulfonyl group substituted with one substituent selected from the group consisting of a methyl group and a phenyl group.
  • the oligonucleotide or a salt thereof is a combination of two or more of the nucleotides, preferably 2 to 100 nucleotides, and preferably 5 to 50 nucleotides. It is more preferable, and most preferable is one having 10 to 30 artificial nucleotides bound thereto, or one having a double strand formed with a complementary strand thereof.
  • the “salt” in the term “salt of compound” means an alkali metal salt such as sodium salt, potassium salt, lithium salt, calcium salt, alkaline earth metal salt such as magnesium salt, aluminum salt, Metal salts such as iron salts, zinc salts, copper salts, nickel salts and cobalt salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts, Ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, hexylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzyl -Amine salts such as phenethylamine salts
  • each of the compounds of general formula (I) described herein includes the enantiomeric or diastereomeric forms or mixtures thereof.
  • the configuration of the sugar moiety in the structure of each compound includes ⁇ -form and ⁇ -form, and the ⁇ -form is preferable.
  • the compound represented by the general formula (I) is obtained in the form of diastereomer or enantiomer, they are used in a conventional method well known in the field of organic synthesis (eg, sugar synthesis), such as chromatography or fractional crystallization. Etc. can be separated.
  • Each compound represented by the general formula I described in the present specification is labeled with an isotope (eg, 3 H, 13 C, 14 C, 15 N, 18 F, 32 P, 35 S, 125 I, etc.) and the like.
  • an isotope eg, 3 H, 13 C, 14 C, 15 N, 18 F, 32 P, 35 S, 125 I, etc.
  • Compounds and deuterium converters eg, 3 H, 13 C, 14 C, 15 N, 18 F, 32 P, 35 S, 125 I, etc.
  • oligonucleotides and analogs thereof described herein are generally used in the technical field of pharmaceutical preparation such as excipients, binders, preservatives, oxidative stabilizers, disintegrants, lubricants, corrigents and the like.
  • An auxiliary agent can be added to the preparation for parenteral administration or liposome preparation.
  • a pharmaceutical carrier commonly used in the technical field can be blended to prepare a topical preparation such as a solution, a cream or an ointment.
  • the manufacturing method of the compound of this invention is described.
  • the optically active substance having the absolute configuration should be the optically active substance as the starting material, or the isomers formed in the intermediate stage of the synthesis should be separated. Can also be manufactured by.
  • ⁇ -selective transglycosylation proceeds efficiently, and the obtained compound represented by the general formula I selectively obtains a desired ⁇ -form. be able to.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof can be produced by the following methods, but is not limited thereto.
  • the raw material compounds if no specific production method thereof is mentioned, commercially available compounds can be used, or they can be produced according to a known method or a method analogous thereto.
  • THF Tetrahydrofuran DMSO: Dimethyl sulfoxide
  • MsCl Methanesulfonyl chloride
  • DMAP N, N-Dimethyl-4-aminopyridine iPr 2 NEt
  • DIPEA N, N-Diisopropylethylamine
  • BSA N, O-bis (trimethylsilyl) acetamide
  • TMSOTf Trifluoromethanesulfonic acid trimethylsilyl
  • TBSOTf t-butyldimethylsilyl trifluoromethanesulfonic acid
  • Bn benzyl
  • TMS trimethylsilyl
  • TBDPS tert-butyldiphenylsilyl Ac: acetyl MOE: methoxyethyl CH 2 Cl 2 : dichloroethane MeCN: acetonitrile
  • DMTr 4,4 '-Dimethoxytrityl
  • Starting compound 1 (which can be produced, for example, according to the production method described in WO 2017/047816), which is a sugar compound, is used as a starting material, and as a R 5 group in the general formula (I) by a known method.
  • An intermediate compound 2 is produced by introducing a hydroxyl-protecting group.
  • the nucleobase moiety (represented by the abbreviation B) in the starting compound 1 is subjected to a nucleobase exchange reaction with another optionally protected nucleobase moiety (represented by the abbreviation B ′), and at the same time, a hydroxyl-protecting group is formed. Introduced to produce intermediate compound 2.
  • the protective group for the present hydroxyl group can be carried out under reaction conditions well known in synthetic organic chemistry (for example, nucleic acid synthesis) depending on the type of the protective group.
  • a silyl-type protecting group for example, TMS
  • a silylating agent for example, BSA, hexamethyldisilazane, TMS chloride
  • a Lewis acid eg, TMSOTf, TBSOTf, tin chloride
  • the silylating agent can be used in an amount of about 1 to about 20 molar equivalents and the Lewis acid can be used in a catalytic amount (about 0.05 molar equivalents) to 2 molar equivalents based on the reaction substrate.
  • Any solvent may be used as long as it does not affect the reaction, and suitable solvents (for example, ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, hydrocarbons such as benzene and toluene, It can be carried out in acetonitrile, water or a mixed solvent thereof.
  • the reaction temperature is suitably 0 ° C. to high temperature, especially room temperature to about 60 ° C.
  • a nucleobase exchange reaction transglycosylation reaction
  • a pyrimidine base moiety of a nucleobase such as thymine (T) or uracil (U) is replaced with another optionally protected nucleobase moiety (eg, adenine (A)).
  • A adenine
  • G Guanine
  • U uracil
  • T thymine
  • T cytosine
  • Me C 5-methylcytosine
  • the base exchange reaction can be carried out in the presence of a Lewis acid (eg TMSOTf, TBSOTf), and the reaction can be promoted by reacting with a silylating agent.
  • Examples of the sulfonamidation reagent used in the sulfonamidation reaction include alkynylsulfonyl halide reagents (for example, methanesulfonyl chloride (MsCl)), alkylsulfonic anhydrides (for example, methanesulfonic anhydride), aromatic sulfonyl halide reagents ( For example, benzene sulfonyl chloride), or aromatic sulfonic acid anhydride (for example, benzene sulfonic acid anhydride) can be mentioned, and it can be used in the presence of a base (for example, triethylamine, DIPEA).
  • a base for example, triethylamine, DIPEA
  • the sulfonamidating reagent can be used at about equimolar to some excess equimolar (eg, about 1.0 molar equivalent) relative to the reaction substrate.
  • Any solvent may be used as long as it does not affect the reaction, and suitable solvents (ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, hydrocarbons such as benzene and toluene, acetonitrile, It can be carried out in water or a mixed solvent thereof).
  • the reaction temperature is preferably -25 ° C to room temperature, more preferably 0 ° C to room temperature.
  • the protecting group for the hydroxyl group introduced in step 1 is deprotected by a known method to produce the intermediate compound 4.
  • This deprotection reaction can be carried out under suitable reaction conditions (eg, reagent etc.) depending on the type of protecting group.
  • suitable reaction conditions eg, reagent etc.
  • R PRO hydroxyl protecting group
  • the hydroxyl protecting group is a silyl type protecting group (eg, TMS)
  • acidic conditions eg, acetic acid-THF-water
  • a fluoride ion donating reagent eg, , TBAF
  • Any solvent may be used as long as it does not affect the reaction, and it may be carried out in an appropriate solvent (for example, ethers such as THF, halogenated hydrocarbons such as dichloromethane, water or a mixed solvent thereof). it can.
  • the reaction temperature is -25 ° C to 100 ° C, preferably 0 ° C to 50 ° C.
  • the phosphoramidite forming reagent can be used in an amount of 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents (eg, 3 molar equivalents) relative to the reaction substrate. Any solvent may be used as long as it does not affect the reaction, and the reaction is carried out in an appropriate solvent (ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, acetonitrile, or a mixed solvent thereof). can do.
  • the reaction temperature is -25 ° C to 60 ° C, preferably 0 ° C to room temperature.
  • the substituent on the ring of the nucleobase is appropriately modified (eg, benzoylation or acetylation of the amino substituent of the cytosine ring). You may.
  • steps (1) to (4) a plurality of steps (for example, step (1) and step (2), and step (2) and step (3)) may be continuously performed. Good.
  • a pyrimidine base moiety of a nucleobase such as thymine (T) or uracil (U) is separated from another optionally protected nucleobase moiety (eg, adenine) by a known method.
  • A guanine
  • G uracil
  • T thymine
  • T cytosine
  • MeC 5-methylcytosine
  • the base exchange reaction can be carried out in the presence of a Lewis acid (eg TMSOTf, TBSOTf), and the reaction can be promoted by reacting with a silylating agent (eg BSA).
  • the introduction of the protective group for the hydroxyl group can be carried out under the reaction conditions well known in the synthetic organic chemistry (for example, nucleic acid synthesis) depending on the kind of the protective group.
  • a silyl-type protecting group for example, TMS
  • a silylating agent for example, BSA, hexamethyldisilazane, TMS chloride
  • a Lewis acid eg, TMSOTf, TBSOTf, tin chloride
  • the silylating agent can be used in an amount of about 1 to about 20 molar equivalents and the Lewis acid can be used in a catalytic amount (about 0.05 molar equivalents) to 2 molar equivalents based on the reaction substrate.
  • Any solvent may be used as long as it does not affect the reaction, and suitable solvents (for example, ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, hydrocarbons such as benzene and toluene, It can be carried out in acetonitrile, water or a mixed solvent thereof.
  • the reaction temperature is suitably 0 ° C. to high temperature, especially room temperature to about 60 ° C.
  • urea is formed on the imino nitrogen atom.
  • Intermediate compound 6 are prepared.
  • the urea forming reagent used in the urea formation reaction include an isocyanate, an N-alkylcarbamoyl halide reagent (eg, N-methylcarbamoyl chloride) or an N, N-dialkylcarbamoyl halide reagent (eg, N, N-dimethylcarbamoyl chloride).
  • the urea forming reagent can be used in about equimolar to some excess equimolar (eg, about 1.0 molar equivalent) relative to the reaction substrate. Any solvent that does not affect the reaction may be used, and it should be carried out in a suitable solvent (ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, or a mixed solvent thereof). You can The reaction temperature is preferably -25 ° C to room temperature, more preferably 0 ° C to room temperature.
  • Step 3 when a hydroxyl group-protecting group is introduced in Step 1 above, by using the intermediate compound 6 as a starting material and deprotecting the introduced hydroxyl-group-protecting group by a known method, Intermediate compound 7 is prepared.
  • This deprotection reaction can be carried out under appropriate reaction conditions (for example, reagent etc.) depending on the kind of the protecting group, as in the step 3 of the above reaction scheme 1.
  • the hydroxyl protecting group (abbreviation R PRO ) is a silyl type protecting group (eg, TMS), hydrolysis under acidic conditions (eg, acetic acid-THF-water) or a fluoride ion donating reagent (eg, , TBAF).
  • Any solvent may be used as long as it does not affect the reaction, and it may be carried out in an appropriate solvent (for example, ethers such as THF, halogenated hydrocarbons such as dichloromethane, water or a mixed solvent thereof). it can.
  • the reaction temperature is -25 ° C to 100 ° C, preferably 0 ° C to 50 ° C.
  • the intermediate compound 6 or the intermediate compound 7 is used as a starting material to form a phosphoramidite by a known method, and a desired urea series (for example, methylurea series, And isopropylurea series).
  • a desired urea series for example, methylurea series, And isopropylurea series.
  • the phosphoramidite-forming reagent include 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite, which can be used in the presence of a base (eg, triethylamine, DIPEA).
  • the phosphoramidite forming reagent can be used in an amount of 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents (eg, 3 molar equivalents) relative to the reaction substrate. Any solvent may be used as long as it does not affect the reaction, and the reaction is carried out in an appropriate solvent (ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, acetonitrile, or a mixed solvent thereof). can do.
  • the reaction temperature is -25 ° C to 60 ° C, preferably 0 ° C to room temperature.
  • steps (1) to (4) a plurality of steps (for example, steps (1) and (2), steps (2) and (3), and steps (1) to ( 3)) may be continuously performed.
  • the substituent on the ring of the nucleobase is appropriately modified (eg, benzoylation or acetylation of the amino substituent of the cytosine ring). You may.
  • the nucleobase moiety (represented by abbreviation B) in the starting compound 1 is subjected to the same procedure as in step 1 of the above reaction scheme 1.
  • the arylation reaction may be performed.
  • a pyrimidine base moiety of a nucleobase such as thymine (T) or uracil (U) is converted into another optionally protected nucleobase moiety (eg, adenine) by a known method.
  • A guanine (G), uracil (U), thymine (T), cytosine (C), or 5-methylcytosine ( MeC )
  • the base exchange reaction can be carried out in the presence of a Lewis acid (eg TMSOTf, TBSOTf), and the reaction can be promoted by reacting with a silylating agent (eg BSA).
  • a Lewis acid eg TMSOTf, TBSOTf
  • BSA silylating agent
  • the introduction of the protective group for the hydroxyl group can be carried out under the reaction conditions well known in the synthetic organic chemistry (for example, nucleic acid synthesis) depending on the kind of the protective group.
  • a silyl-type protecting group for example, TMS
  • a silylating agent for example, BSA, hexamethyldisilazane, TMS chloride
  • a Lewis acid eg, TMSOTf, TBSOTf, tin chloride
  • the silylating agent can be used in an amount of about 1 to about 20 molar equivalents and the Lewis acid can be used in a catalytic amount (about 0.05 molar equivalents) to 2 molar equivalents based on the reaction substrate.
  • Any solvent may be used as long as it does not affect the reaction, and suitable solvents (for example, ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, hydrocarbons such as benzene and toluene, It can be carried out in acetonitrile, water or a mixed solvent thereof.
  • suitable solvents for example, ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, hydrocarbons such as benzene and toluene, It can be carried out in acetonitrile, water or a mixed solvent thereof.
  • the reaction temperature is suitably 0 ° C. to high temperature, especially room temperature to about 60 ° C.
  • the arylating reagent used in the aromatization reaction includes a desired aryl halide compound (for example, chloropyrimidine, dichloropyrimidine, fluoropyrazine, chlorotriazole, chlorooxadiazole, or chlorothiadiazole), and a base (for example, , DIPEA).
  • a desired aryl halide compound for example, chloropyrimidine, dichloropyrimidine, fluoropyrazine, chlorotriazole, chlorooxadiazole, or chlorothiadiazole
  • a base for example, , DIPEA
  • the arylating reagent can be used in an amount of about 1 to about 10 molar equivalents, preferably about 1 to about 5 molar equivalents (eg, about 3 molar equivalents) relative to the reaction substrate.
  • Any solvent may be used as long as it does not affect the reaction, and suitable solvents (ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane and chloroform, aprotic polar solvents such as DMSO, or those It can be carried out in a mixed solvent or the like).
  • the reaction temperature suitably proceeds from room temperature to high temperature, particularly at high temperature (for example, 120 to 130 ° C.).
  • the intermediate compound 9 or the intermediate compound 8 is used as a starting material to form a phosphoramidite by a known method to obtain a desired aryl group (for example, aromatic group).
  • a desired aryl group for example, aromatic group
  • heteroaryl series of the compound of the present invention.
  • the phosphoramidite-forming reagent include 2-cyanoethyl-N, N-diisopropylchlorophosphoramidite, which can be used in the presence of a base (eg, triethylamine, DIPEA).
  • the phosphoramidite forming reagent can be used in an amount of 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents (eg, 3 molar equivalents) relative to the reaction substrate. Any solvent may be used as long as it does not affect the reaction, and the reaction is carried out in an appropriate solvent (ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, acetonitrile, or a mixed solvent thereof). can do.
  • the reaction temperature is -25 ° C to 60 ° C, preferably 0 ° C to room temperature.
  • a plurality of steps may be continuously performed.
  • the substituent on the ring of the nucleobase is appropriately modified (eg, benzoylation or acetylation of the amino substituent of the cytosine ring) at any stage before the step 1 to the step 3 described above.
  • the substituent on the aromatic ring of the introduced aryl group may be modified (eg, conversion of a chloro group to an amino group), or both of these modifications may be performed. ..
  • reaction scheme 4 (Another manufacturing method for nucleic acid base exchange) Instead of the nucleobase exchange reaction described in step 1, a series of reactions shown in the following reaction scheme 4 may be used to partially return the nucleobase. Such a series of reactions can be carried out according to the method described in the literature (for example, CH Kim et al., J. Med. Chem. 1987, 30, 862.). Reaction scheme 4
  • an acetylating reagent eg, acetic anhydride
  • a base eg, pyridine
  • a catalytic amount of DMAP may be added as a reaction activation reagent.
  • the acetylating reagent can be used in about 1 to 3 molar equivalents (eg, about 1.5 molar equivalents) relative to the reaction substrate.
  • reaction temperature suitably proceeds from 0 ° C to a high temperature (for example, room temperature).
  • Any solvent may be used as long as it does not affect the reaction, and the reaction is carried out in an appropriate solvent (ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, acetonitrile, or a mixed solvent thereof).
  • ethers such as THF, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, acetonitrile, or a mixed solvent thereof.
  • the reaction temperature is preferably -25 ° C to room temperature, more preferably 0 ° C to room temperature.
  • a base for example, aqueous ammonia
  • a base for example, aqueous ammonia
  • Aqueous ammonia for example, 28% aqueous ammonia
  • Any solvent may be used as long as it does not affect the reaction, and the reaction can be carried out in a suitable solvent (ethers such as THF, acetonitrile, or a mixed solvent thereof).
  • the reaction temperature is suitably 0 ° C. to room temperature, especially room temperature.
  • the substituent on the ring of the nucleobase is appropriately modified (for example, benzoylation or acetylation of the amino substituent of the cytosine ring) or the introduced aryl Modification of the substituents on the aromatic ring of a group (eg conversion of a chloro group to an amino group) followed by phosphoramidization to give the desired aryl series (eg aromatic series and heteroaryl series).
  • the compounds of the present invention are prepared.
  • a thiourea-forming reagent for example, 1,1-thiocarbonyldiimidazole
  • aqueous ammonia to prepare an intermediate compound D thioureaized on an imino nitrogen atom.
  • the thiourea-forming reagent can be used in an amount of about 1 to 5 molar equivalents, especially about 2 molar equivalents, relative to the reaction substrate. Any solvent that does not affect the reaction may be used, and the reaction can be carried out in a suitable solvent (ethers such as THF).
  • the reaction temperature suitably proceeds from 0 ° C. to room temperature (for example, room temperature).
  • the intermediate compound D is used as a starting material and reacted with a methylating reagent (eg, methyl iodide) to produce an S-methylated and carboimidized intermediate compound E.
  • a methylating reagent eg, methyl iodide
  • the methylating reagent can be used in about 1 to 5 molar equivalents, especially 3 molar equivalents, relative to the reaction substrate. Any solvent that does not affect the reaction may be used, and the reaction can be carried out in a suitable solvent (ethers such as THF).
  • the reaction temperature suitably proceeds from 0 ° C. to room temperature (for example, room temperature).
  • Process F Further, by using the intermediate compound E as a starting material and reacting it with an acetylating reagent (for example, acetic anhydride) in the presence of a base (for example, pyridine), an intermediate compound in which a carboimide group and a hydroxyl group are acylated Manufacture F.
  • an acetylating reagent for example, acetic anhydride
  • a base for example, pyridine
  • a catalytic amount of DMAP may be added as a reaction activation reagent.
  • the acetylating reagent can be used in about 1 to 5 molar equivalents (eg, about 3 molar equivalents) relative to the reaction substrate.
  • reaction temperature suitably proceeds from 0 ° C to a high temperature (for example, room temperature).
  • the intermediate compound F is used as a starting material, and a ring closure reaction with methylhydrazine produces an intermediate compound G in which a 1,2,4-triazole ring is formed.
  • Methylhydrazine can be used in excess molar equivalents (about 5 to 20 molar equivalents (eg, about 10 molar equivalents)) relative to the reaction substrate. Any solvent may be used as long as it does not affect the reaction, and it can be carried out in an appropriate solvent (alcohol solvent such as ethanol).
  • the reaction temperature suitably proceeds from 0 ° C to a high temperature (for example, room temperature).
  • the substituents on the ring of the nucleobase are appropriately modified (eg, benzoylation of amino substituents on the cytosine ring) or the introduced aryl group Modification of a substituent on an aromatic ring (for example, conversion of a chloro group to an amino group), followed by phosphoramidization to obtain a desired aryl system (for example, aromatic system and heteroaryl system) of the present invention.
  • the compound is prepared.
  • the compound of the present invention or a salt thereof can be used as a monomer starting material for producing an oligonucleotide.
  • the oligonucleotide can be synthesized by performing an oligomerization reaction using the compound represented by the general formula (I) or a salt thereof, and then deprotecting the amino-protecting group and the hydroxyl-protecting group if necessary. .
  • the oligomerization reaction is not particularly limited as long as it is a method generally known in synthetic chemistry (particularly nucleic acid synthesis), but can be carried out by, for example, the phosphoramidite phosphoramidite method.
  • the phosphoramidite method can be carried out according to a method similar to the method described in WO 2014/046212 A1, for example.
  • the method for producing the oligonucleotide represented by the general formula (I ′) includes the following steps: a) After conducting an oligomerization reaction using the compound represented by the general formula (I) or a salt thereof, the amino protecting group and the hydroxyl protecting group are deprotected if necessary.
  • the method for producing the compound represented by the general formula (I) or a salt thereof may include at least one of the following steps described in the present specification.
  • a process for producing the compound of the present invention or a salt thereof For example, a step of producing a compound represented by the general formula (I ′) or a salt thereof by subjecting the compound represented by the intermediate compound 4, 7 or 9 or a salt thereof to a phosphoramidite reaction.
  • DDTT ((dimethylamino-methylidene) amino) -3H-1,2,4-dithiazaolin-3-thione) or Beaucage reagent (3H-1,2-benzodithiol- 3-one-1,1-dioxide)
  • Beaucage reagent (3H-1,2-benzodithiol- 3-one-1,1-dioxide)
  • Example 4 Compound 2Td 3-[[(1R, 4R, 6R, 7S) -4-[[bis (4-methoxyphenyl) -phenyl-methoxy] methyl] -6- (5-methyl-2,4-dioxo-pyrimidine-1- Yl) -2-Methylsulfonyl-5-oxa-2-azabicyclo [2.2.1] heptane-7-yl] oxy- (diisopropylamino) phosphanyl] oxypropanenitrile (Compound 1 of the invention) A solution of compound 2Tc (2.47 g, 3.80 mmol) in dichloromethane (12.5 mL) under ice cooling, DIPEA (2.00 mL, 12.0 mmol), 2-cyanoethyl N, N, N ′, N′-diisopropyl.
  • Chlorophosphoramidite (2.10 mL, 9.40 mmol) was added and the mixture was stirred at room temperature for 5 hours. Under ice-cooling, 5% aqueous sodium hydrogen carbonate solution (15 mL) and dichloromethane (10 mL) were added, and the mixture was stirred at room temperature and then extracted with dichloromethane. The aqueous layer was extracted with dichloromethane (10 mL), and the organic layers of dichloromethane were combined and mixed.
  • methanesulfonyl chloride (0.193 mL, 2.488 mmol) was added thereto under ice cooling, and the mixture was stirred for 1 hour.
  • Methylene chloride (30 mL) and saturated aqueous sodium hydrogen carbonate solution (30 mL) were added to the reaction mixture under ice cooling, and the mixture was stirred and the layers were separated. The organic layer was washed with saturated saline (30 mL) and then dried over sodium sulfate.
  • THF (88 mL) was added to the residue to form a solution
  • TBAF (1M THF solution, 21.1 mL, 21.1 mmol) was added under ice cooling, and the mixture was stirred under ice cooling for 30 minutes. It was diluted with ethyl acetate (80 mL), saturated aqueous ammonium chloride solution (50 mL) and water (50 mL) were added, and the mixture was stirred at room temperature. The layers were separated, the organic layer was washed with saturated brine (50 mL), and then passed through a phase separator to remove the solvent.
  • the mixed solution was ice-cooled, benzenesulfonyl chloride (0.21 mL, 1.6 mmol) was added, and the mixture was stirred under ice-cooling for 4 hours.
  • a 5% aqueous potassium carbonate solution (20 mL) was added to the reaction solution, and the mixture was stirred and extracted with dichloromethane (5 mL).
  • the aqueous layer was mixed with dichloromethane (5 mL), extracted, and the organic layers of dichloromethane were combined and mixed.
  • Benzoic acid anhydride (0.51 g, 2.27 mmol) and methanol (0.01 mL, 0.25 mmol) were added to the tetrahydrofuran (5 mL) mixed solution at room temperature, and the mixture was stirred at 70 ° C. for an outer bath for 4 hours.
  • THF (90 mL) was added to the residue to form a solution
  • TBAF (1M THF solution, 4.54 mL, 4.54 mmol) was added under ice cooling, and the mixture was stirred under ice cooling for 20 minutes. It was diluted with ethyl acetate (100 mL), saturated aqueous ammonium chloride solution (50 mL) and water (50 mL) were added, and the mixture was stirred at room temperature for 5 min. The layers were separated, and the organic layer was passed through a phase separator to remove the solvent.
  • N, N-dimethylformamide (1 mL, 12.9 mmol) was added and the mixture was stirred for 4 hours.
  • 2-Fluoropyrimidine (0.66 mL, 10.5 mmol) was added thereto, and the mixture was further stirred at 100 ° C. for 2 hours.
  • 2-Fluoropyrimidine (0.22 mL, 3.5 mmol) and DIPEA (1.6 mL, 9.3 mmol) were added thereto again, and the mixture was stirred at 100 ° C. for 2 hours.
  • N, N-Dimethylformamide dimethylacetal (2.3 mL, 17.0 mmol) was added to the reaction solution, and the mixture was stirred at room temperature.
  • the obtained residue was dissolved in ethyl acetate (250 mL) and toluene (250 mL) was added.
  • the solvent was distilled off under reduced pressure of about 300 mL (precipitation of solid matter), diisopropyl ether (IPE) (50 mL) was added to the obtained suspension, and the mixture was stirred at room temperature for 30 minutes.
  • IPE diisopropyl ether
  • reaction solution was added to a mixed solution of aqueous sodium hydrogen carbonate (prepared from saturated aqueous sodium hydrogen carbonate (400 mL) and water (400 mL)) and chloroform (1400 mL) with stirring. After stirring for a while, the organic layer was separated and dried over anhydrous sodium sulfate. The mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure and then azeotroped with toluene to obtain Compound 14Gb (26.9 g, yield 82%).
  • MS (ESI): m / z 670 [M + H] +
  • Acetic anhydride (5.08 mL, 53.8 mmol) and DMAP (219 mg, 1.79 mmol) were added to a solution of the obtained residue in pyridine (65 mL), and the mixture was stirred at room temperature for 3 hours.
  • Ethyl acetate 400 mL
  • saturated aqueous sodium hydrogen carbonate 200 mL
  • the organic layer was separated. The organic layer was washed with water (300 mL) and saturated saline (100 mL) and then dried over anhydrous sodium sulfate.
  • ALNA [Ms] -mC can also be synthesized by converting the nucleobase portion of ALNA [Ms] -T nucleoside as follows. Synthesis of compound 2Cf
  • 1,2,4-triazole (30.36 g, 0.439 mol) was added to the reaction solution, and the mixture was stirred at 0 ° C for 15 minutes, then phosphorus oxychloride (4.44 mL, 0.028 mol) was added and the mixture was stirred at 0 ° C. The mixture was stirred for 15 minutes, warmed to room temperature and stirred for 2 hours. The reaction mixture was concentrated under reduced pressure, ethyl acetate (200 mL) and water (100 mL) were added, and the layers were separated. The organic layer was washed twice with sodium carbonate (100 mL), dried over sodium sulfate, and concentrated under reduced pressure to give crude product 2Cd (11.8 g).
  • ALNA [Ms] -mC nucleoside can also be synthesized as follows. Synthesis of compound 2Cj
  • Example 133 Synthesis of Compound 2Ch 1-[(1R, 3R, 4R, 7S) -7-Benzyloxy-1- (benzyloxymethyl) -5-methylsulfonyl-2-oxa-5-azabicyclo [2.2.1 ] Heptan-3-yl] -5-methyl-4- (1,2,4-triazol-1-yl) pyrimidin-2-one 2Cg (3.0 g, 5.6 mmol) as in Example 129 Compound 2Ch (3.4 g) was obtained as a crude product.
  • ALNA [Ms] -G can synthesize a monomer in which the guanine moiety is protected with a dimethylaminomethylenyl group as follows.
  • a monomer having this protection mode is used for oligomer synthesis, it becomes possible to control the production of by-products that can occur when oligomer synthesis is performed using 2Gd in which the 6-position of guanine is DPC protected. ..
  • ALNA [Ms] -G can synthesize a monomer in which the guanine moiety is protected only by the isobutyroyl group as follows.
  • a monomer having this protection mode is used for oligomer synthesis, it becomes possible to control the production of by-products that can occur when oligomer synthesis is performed using 2Gd in which the 6-position of guanine is DPC protected. ..
  • the ALNA [Ms] -G monomer in which the guanine moiety is protected only by the isobutyroyl group can be directly synthesized from compound 1a by transglycosylation as follows.
  • Compound 2Gh can also be synthesized from compound 2Gb as follows.
  • Example 145 Synthesis and Purification of Oligonucleotide Analogs (in vitro) Using the various amidites (Compounds 1 to 44 of the present invention) obtained in the above Examples, the oligonucleotide analog compounds shown in Tables 1 to 4 below were subjected to DNA / RNA automatic oligonucleotide synthesizer ns-8II (stock). (Manufactured by Gene Design Co., Ltd.) on the 0.2 or 1.0 ⁇ mol scale using a CPG or polystyrene carrier. All the amidites were adjusted to a 0.1 M acetonitrile solution, the coupling time for the unnatural nucleoside was 10 minutes, and the other steps were performed under standard conditions of ns-8II.
  • Activator 42 Sigma-Aldrich was used as an activator, and Sulfurizing Reagent II (Gren Research Corporation) was used for thiolation.
  • the synthesized oligonucleotide was cleaved from the carrier and deprotected at the base portion by adding a 28% aqueous ammonia solution and reacting at 60-65 ° C. for 8 hours. After concentrating and distilling off ammonia, reverse phase HPLC purification was carried out.
  • Example 146 Synthesis and purification of oligonucleotide analogs (in vivo) Using the various amidites (Compounds 1 to 44 of the present invention) obtained in the above Examples, the oligonucleotide analog compounds shown in Table 5 below were subjected to DNA / RNA oligonucleotide automatic synthesizer AKTA oligopilot plus 10 (GE Health). (Care Japan Co., Ltd.) on a 20 ⁇ mol scale using a polystyrene carrier. The DNA amidite was adjusted to 0.1M and the non-natural amidite was adjusted to a 0.05M acetonitrile solution, and the coupling recycling time in the non-natural nucleoside was 20 minutes.
  • AKTA oligopilot plus 10 GE Health
  • Desalting column mobile phase Solution A: H 2 O Solution B: H 2 O Columns used: GE HiPrep 26/10 Desalting Flow rate: 10 ml / min Column temperature: room temperature
  • T (X) represents each artificial nucleic acid species having thymine) and a sense strand, that is, a DNA strand having a sequence complementary to the antisense strand (wherein the sequence is agcaaaaaacgc (SEQ ID NO: 6), Lowercase letters indicate each nucleobase of DNA), RNA strands with complementary sequences (where the sequence indicates AGCAAAAAACGC (SEQ ID NO: 7), uppercase letters indicate each nucleobase of RNA), and a single base mismatch 3 RNA strands having complementary sequences of species (where the sequence is AGCAAANAACGC (SEQ ID NO: 8), the capital letters are RNA nucleobases, N is uracil (U), guanine (G), cytosine (C), respectively)
  • Each of (shown) was subjected to an annealing treatment to form a double strand, and then the double strand forming ability of the oligonucleotide was examined by measuring the Tm value,
  • a sample solution (150 ⁇ L) containing 100 mmol / L of sodium chloride aqueous solution, 10 mmol / L of sodium phosphate buffer (pH 7.4), 4 ⁇ mol / L of antisense strand, and 4 ⁇ mol / L of sense strand was heated to 95 ° C. After that, it was cooled to room temperature over 4 hours.
  • a nitrogen stream is passed through the cell chamber of the spectrophotometer (JASCO, V-730, PAC-743R) to prevent condensation, the sample solution is gradually cooled to 10 ° C, and the sample solution is kept at 10 ° C for 1 minute before measurement. Started.
  • the temperature was raised to 80 ° C. at a rate of 0.5 ° C./min, and the absorbance at 260 nm was measured every 0.5 ° C.
  • a cell with a lid was used in order to prevent a change in concentration due to temperature rise. The results are shown in Table 6.
  • the antisense strand containing various artificial nucleic acids has the same or higher sense strand binding ability as compared with the antisense strand containing natural DNA or ALNA [Me] which is a known ALNA, and It had a mismatch selection ability.
  • Example 147 In vitro SR-B1 knockdown activity test Hepa 1c1c7 cells were seeded at 2.5 ⁇ 10 3 cells per well and cultured for 24 hours, after which various modified antisense oligonucleic acids having complementary sequences to SRB1 were terminated. It was added at concentrations of 100, 20, and 4 nmol / L, and quantitative PCR was performed 48 hours later. The same conditions were performed in 3 wells.
  • the inhibition rate of SRB1 expression when an antisense compound was added was shown as a percentage based on the amount ratio of SRB1 to GAPDH in the negative control. The results are shown in Table 7.
  • SRB1 knockdown activity was shown at 100 nM of Gymnosis of the antisense oligonucleotide containing each artificial nucleic acid with two sequence patterns of 3-10-3 and 2-10-2 was shown.
  • the two arrangement patterns are as follows.
  • T (X) and C (X) indicate each artificial nucleic acid species having thymine and artificial nucleic acid species having 5-methylcytosine, and all phosphate bonds are It is phosphorothioate.
  • ALNA [Ms], ALNA [ipU], ALNA [2Pym], ALNA [Prz], ALNA [Trz], ALNA [Oxz] are compared with ALNA [Me] which is a known ALNA. And had a strong in vitro target gene knockdown activity.
  • Example 148 In vitro miRNA-21 inhibitory activity test 3.0 ⁇ 10 6 cells / ml of HEK293 cells were seeded in a 10 cm dish, and the cells were cultured overnight in a CO 2 incubator. Next day, using FuGENE HD Transfection Reagent, transfect cells with 10 ⁇ g of the reporter plasmid cloned with the complementary sequence of miR-21 at the multiple cloning site of psiCHECK-2 vector (Promega), and culture it in a CO 2 incubator for about 24 hours. did. The cells were collected, 2.0 ⁇ 10 4 cells / well of cells were replated on a 96-well plate, and miR-21 inhibitors introduced with each artificial nucleic acid were added.
  • the ratio in the cells introduced with the psiCHECK-2 vector was set as the inhibition rate of 100%, and the ratio of the cells introduced with the psiCHECK-2 vector in which the miR-21 complementary sequence was cloned was set as the inhibition rate of 0%.
  • the inhibition rate was calculated and the inhibitory activity was determined. The results are shown in Table 8.
  • a (m) C (X) atC (X) agtC (X) tgaT (X) aagC (X) tA (m) (same as SEQ ID NO: 4 in Table 4 above)
  • a (m) is 2'-MOE adenosine
  • lowercase letters are DNA nucleobases
  • T (X) and C (X) are thymine-containing artificial nucleic acid species, and 5-methyl, respectively. It represents an artificial nucleic acid species with cytosine, where all phosphate bonds are phosphorothioate.
  • ALNA [mU], ALNA [ipU], ALNA [dmU], ALNA [Trz], and ALNA [Oxz] are stronger than the known ALNA ALNA [Me]. It had microRNA inhibitory activity in vitro.
  • Example 149 In vivo MALAT1 knockdown activity test 6-week-old C57BL / 6J mice (male, Charles River Japan) with antisense oligonucleotides targeting MALAT1 (10 mg / kg, and 50 mg / kg) at 10 mg / mL. It was prepared in PBS so that it would be 5 mL / kg, diluted with PBS and administered by tail vein. Seventy-two hours later, blood was collected from the abdominal vena cava of the mouse under anesthesia with isoflurane (Japanese Pharmacopoeia Pfizer Co., Ltd.) and killed by exsanguination.
  • RNA Tissue Kit was added to the frozen tissue and disrupted using a multi-beads shocker, and RNA was purified according to the protocol described in the kit. The RT reaction and subsequent reactions were performed in duplicate, and the amount of RNA per reaction was 50 to 500 ng.
  • the inhibition rate of Malat1 expression was shown as a percentage based on the ratio of Malat1 to GAPDH in the vehicle group.
  • the standard error was calculated based on the value of each individual obtained by averaging duplicates. The results are shown in Tables 9 and 10.
  • ALNA [Me] As is clear from Tables 9 and 10, compared to ALNA [Me], which is a known ALNA, ALNA [Ms] has many organs (liver, kidney, skeletal muscle, lung, heart, stomach, jejunum, testis). , Fat) had a strong target gene knockdown activity. Further, ALNA [2Pym] had a stronger target gene knockdown activity in specific organs (heart, jejunum, testis, adipose) as compared with ALNA [Me] which is a known ALNA. ALNA [ipU] has the same target gene knockdown effect in the liver as ALNA [Me], but it is much stronger than ALNA [Me] in lung and spleen. Had an action.
  • antisense oligos containing ALNA [ipU] can be expected to have an action on immune cells which are considered to have low transferability with ordinary nucleic acid drugs.
  • ALNA [ipU] can be expected to have strong drug effects on the lungs and immune system while reducing toxicity in the liver.
  • Example 150 MALAT1 knockdown activity test in central tissues, liver and kidney by intracerebroventricular administration Seven-week-old C57BL / 6J (male, Charles River Japan) stereotaxic apparatus under isoflurane (Pfizer Inc.) anesthesia
  • the scalp was incised while lying on a heat-insulating mat to expose the skull.
  • the left upper ventricle 1.0 mm to the left of the bregma, 0.4 mm posterior
  • a 2 mm skull was drilled with an electric dental drill, a 27 gauge needle was inserted into the left ventricle (1.0 mm left of bregma, 0.4 mm posterior, 2.3 mm deep) and attached to the needle.
  • the antisense oligo targeting MALAT1 (5 ⁇ g / 10 ⁇ L / head), which was adjusted to 5 ⁇ g / 10 ⁇ L with physiological saline using the microinfusion pump described above, was administered once at a flow rate of 2 ⁇ L / min for 5 minutes. After that, the hole of the skull was closed with medical cement Harbor (Mutsu Chemical Co., Ltd.), the incision was sutured, and gentacin ointment 0.1% (Takada Pharmaceutical Co., Ltd.) was applied to prevent infection. Blood was collected from the abdominal vena cava of the mouse under the following conditions and lethal to exsanguination.
  • Plasma Matrices (RBM-2000S, Bio Research Center Co., Ltd.) The olfactory bulb, cerebral cortex, hippocampus, striatum, and cerebellum were removed from the slice after thin sectioning to a thickness of about 2 mm from the midline to the left brain side.
  • the spinal cord was divided at T13 as a boundary, and two parts were collected from the brain side of T13 (hereinafter, proximal spinal cord) and from T13 to L5 (hereinafter, distal spinal cord).
  • proximal spinal cord and from T13 to L5 (hereinafter, distal spinal cord).
  • distal spinal cord was immersed in RNA later (Invitrogen) and stored at -30 ° C.
  • Organs and QIAzol Lysis Reagent (QIAGEN) were added to the tube, disrupted using a multi-bead shocker, and chloroform (pure chemistry) was added and mixed.
  • An aqueous layer was collected from this mixture by centrifuge separation, and the aqueous layer was collected from this aqueous layer as described in the RNeasy 96 Universal Tissue Kit (QIAGEN) kit.
  • the sequences of the antisense oligonucleotides used are as follows.
  • G (X) T (X) T (X) cactgaatG (X) C (X) (same as SEQ ID NO: 5 in Table 5 above)
  • lowercase letters represent respective nucleobases of DNA
  • T (X), C (X) and G (X) respectively represent thymine-containing artificial nucleic acid species, 5-methylcytosine-containing artificial nucleic acid species, and It represents an artificial nucleic acid species with guanosine, where all phosphate bonds are phosphorothioates.
  • ALNA [Ms], ALNA [mU], and ALNA [Oxz] have strong target gene knockdown activity in each central tissue as compared with the known ALNA ALNA [Me]. Had.
  • the amino-bridged artificial nucleic acid (ALNA) of the present invention can be used for producing a novel artificial nucleic acid oligomer. Further, the oligomer containing the amino-bridged artificial nucleic acid of the present invention has a strong target gene knockdown activity in a specific organ and can be used as a nucleic acid drug.
  • SEQ ID NOs: 1-6 show DNA oligonucleotides.
  • SEQ ID NOs: 7-8 show RNA oligonucleotides.

Abstract

本発明は、新規な架橋型人工核酸、およびそれをモノマーとして含むオリゴマーを提供する。本発明は、より具体的には、一般式(I)(式中の各記号は明細書中に定義する通りである)で示される化合物またはその塩;および、一般式(I')(式中の各記号は明細書中に定義する通りである)で示されるオリゴヌクレオチド化合物またはその塩を提供する。

Description

架橋型人工核酸ALNA
 本発明は、アミノLNAのモノマー、およびそれを含むオリゴマーに関する。
核酸医薬による疾患の治療法として、アンチセンス法、アンチジーン法、アプタマーを用いる方法、siRNAを用いる方法などがある。このうち、アンチセンス法は、疾病に関わるmRNAや非翻訳RNAと相補的なオリゴヌクレオチド(アンチセンス鎖)を外部から導入し、二重鎖を形成させることにより、疾病に関わるRNAの機能を調整し、疾患の治療や予防を行う手法である。
 こうした核酸医薬の素材として、種々の人工核酸が開発されているが、全身投与後の肝臓や腎臓といった核酸医薬が蓄積しやすい臓器での毒性回避や、十分な薬効の発現といった課題が残されており、いまだ切り札となるべき分子が存在していない。1998年にWengelらにより開発された2’-aminoLNA(Locked nucleic acid)(以下、「ALNA」と表記)(特許文献1、および非特許文献1)は、2’位からの置換基修飾により多様な人工核酸の合成が可能であり、アルキル、アシルを中心に、これまでに多くのALNA誘導体が合成され(特許文献2~4、および非特許文献2~11)、全身投与後の特徴的な組織分布が報告されてはいるものの(非特許文献12)、薬理活性の面で不十分であり、これまで医薬品への応用はされてこなかった。
 我々は、先に見出したGuNAの効率的合成法を応用して(特許文献5、および非特許文献13)、さらなる多種多様な新規ALNA誘導体の合成を行うとともに、薬理活性評価に特化したスクリーニングを広く実施することにより、既存のALNAと比較して優れたIn vitro、及びIn vivo薬理活性を有する新規人工核酸を見出し、本発明を完成させた。
国際公開第99/014226号 国際公開第2013/013068号 国際公開第2014/124952号 国際公開第2016/128583号 国際公開第2017/047816号
S.K. Singhら、J. Org. Chem. 1998年, 63巻, 6078-6079頁 M. D. Sorensenら、Chem. Commun. 2003年, 2130頁 B. R. Babuら、Chem. Commun. 2005年, 13巻, 1705-1707頁 T. Bryldら、Nucleosides, Nucleotides & Nucleic Acids 2007年, 26巻, 1645-1647頁 M. Kalekら、J. Am. Chem. Soc. 2007年, 129巻, 9392-9400頁. T. Umemotoら、Org. Biomol. Chem. 2009年, 7巻, 1793-1797頁 M. W. Johannsenら、Org. Biomol. Chem. 2011年, 9巻, 243-252頁 A. S. Jφrgensenら、Chem. Commun. 2013年, 49巻, 10751-10753頁 I. K. Astakhovaら、Acc. Chem. Res. 2014年, 47巻, 1768-1777頁 C. Louら、Chem. Commun. 2015年, 51巻, 4024-4027頁 A. Riesら、J. Org. Chem. 2016年, 81巻, 10845-10856頁 K. Fluiterら、Chem. Bio. Chem. 2005年, 6巻, 1104-1109頁 H. Sawamotoら、Org. Lett. 2018年, 20巻, 1928-1931頁
 本発明は、新規な架橋型人工核酸、並びにそれをモノマーとして含むオリゴマーに関する。
 前記課題を解決するために本発明者等は鋭意研究の結果、下記に示す通り、新規な2’-アミノLNAおよびその塩、並びにそれをモノマーとして含むオリゴマーを見出し、本発明を完成した。
 すなわち、本発明は、以下の項〔1〕~〔33]に関するものであるが、これらに限定されるものではない。
項〔1〕 一般式(I):
Figure JPOXMLDOC01-appb-C000007
[式中、
 Bは、1つ以上の置換基で置換されていてもよい核酸の塩基部分であり;
 R、R、RおよびRは各々独立して、水素原子、または1つ以上の置換基で置換されていてもよいC1-6アルキル基であり;
 RおよびRは各々独立して、水素原子、水酸基の保護基、または置換されてもよいリン酸基であり;
 mは、1または2であり;
 Xは、下記式(II-1)、(II-2)、または(II-3):
Figure JPOXMLDOC01-appb-C000008
で示される基であり;
 式(II-1)、(II-2)、または(II-3)中に記載の記号:
Figure JPOXMLDOC01-appb-C000009
は、2’-アミノ基との結合点を示し;
 RおよびRは各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、1つ以上の置換基で置換されてもよいC2-6アルケニル基、1つ以上の置換基で置換されてもよいC2-6アルキニル基、または1つ以上の置換基で置換されていてもよい芳香族基であり;
 Aは芳香族基であり;
 Mは、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよい芳香族基からなる群から選ばれる1つの置換基で置換された、スルホニル基である。]
で示される化合物、またはその塩。
(以下、式(I)で示される化合物またはその塩を、「本発明化合物」と呼称する)。
[2] Bが、1つ以上の保護基を有してもよいアデニニル、1つ以上の保護基を有してもよいグアニニル、1つ以上の保護基を有してもよいシトシニル、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有してもよいウラシリルである、[1]記載の化合物、またはその塩。
[3] R、R、RおよびRが各々独立して、水素原子であり;
 mが、1である、[1]または[2]に記載の化合物、またはその塩。
[4] Xが、式(II-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、[1]~[3]のいずれか1つに記載の化合物、またはその塩。
[5] RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-3アルキル基である、[4]に記載の化合物、またはその塩。
[6] RおよびRの一方が水素原子であり、他方がメチル基である、[5]に記載の化合物、またはその塩。
[7] RおよびRの一方が水素原子であり、他方がイソプロピル基である、[5]に記載の化合物、またはその塩。
[8] Xが、式(II-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基である、[1]~[3]のいずれか1つに記載の化合物、またはその塩。
[9] Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた2または3つのヘテロ原子を含む5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、[8]記載の化合物、またはその塩。
[10] 5または6員環のヘテロアリール基が、1つ以上の置換基で置換されていてもよい、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、およびピラジニル基からなる群から選ばれる、[9]記載の化合物、またはその塩。
[11] 1つ以上の置換基で置換されていてもよいトリアゾリル基が、1,5-ジメチル-1,2,4-トリアゾール-3-イル基である、[10]記載の化合物、またはその塩。
[12] 1つ以上の置換基で置換されていてもよいオキサジアゾリル基が、5-メチル-1,2,4-オキサジアゾール-3-イル基である、[10]記載の化合物、またはその塩。
[13] 1つ以上の置換基で置換されていてもよいチアジアゾリル基が、3-メチル-1,2,4-チアジアゾール-5-イル基である、[10]記載の化合物、またはその塩。
[14] Xが、式(II-3)で示される基であり;そして、
 Mが、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよいアリール基からなる群から選ばれる1つの置換基で置換されたスルホニル基である、[1]~[3]のいずれか1つに記載の化合物、またはその塩。
[15] Mが、メチル基およびフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、[14]記載の化合物、またはその塩。
[16] Rが水素原子またはDMTr基であり、そしてRが水素原子または-P(O(CH)CN)(N(iPr))である、[1]~[15]のいずれか1つに記載の化合物、またはその塩。
[17] 以下の化合物:
 3-[[(1R,4R,6R,7S)-4-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-6-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-メチルスルホニル-5-オキサ-2-アザビシクロ[2.2.1]ヘプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物1);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物2);
 [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物3);
 N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-プリン-6-イル]ベンズアミド(本発明化合物4);
 3-[[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロニルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物5);
 N-[1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル)オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物6);
 (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物7);
 (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物8);
 [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(メチルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物9);
 (1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物10);
 (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物11);
 (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物12);
 [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(イソプロピルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物13);
 (1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物14);
 (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物15);
 (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物16);
 3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物17);
 1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物18);
 N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-6-ホルムアミジン(本発明化合物19);
 N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド(本発明化合物20);
 3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物21);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物22);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物23);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアンエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物24);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物25);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-4-イル]ベンズアミド(本発明化合物26));
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[6-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミン)ホスファニル]オキシプロパンニトリル(本発明化合物27);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[(6-ジメチルアミノ)ピリミジン-4-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物28);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)オキシプロパンニトリル(本発明化合物29);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物30);
 3-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物31);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物32);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物33);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物34);
 N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-ホルムアミジン(本発明化合物35);
 N-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド(本発明化合物36);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物37);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物38);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物39);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物40);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4―イル]ジヒドロピリミジン-2-オン(本発明化合物41)
 N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-N,N-ジメチルホルムアミジン(本発明化合物42);
 N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド(本発明化合物43);および
 N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド(本発明化合物44)、
からなる群から選ばれる化合物。
(オリゴヌクレオチド)
[18] 一般式(I’):
Figure JPOXMLDOC01-appb-C000010
[式中、
 Bは、1つ以上の置換基で置換されていてもよい核酸の塩基部分であり;
 R、R、RおよびRは各々独立して、水素原子、または1つ以上の置換基で置換されていてもよいC1-6アルキル基であり;
 mは、1または2であり;
 Xは、下記式(II’-1)、(II’-2)、または(II’-3):
Figure JPOXMLDOC01-appb-C000011
で示される基であり;
 式(II’-1)、(II’-2)、または(II’-3)中に記載の記号:
Figure JPOXMLDOC01-appb-C000012
は2’-アミノ基との結合点を示し;
 Aは、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、芳香族基であり;
 Mは、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよい芳香族基からなる群から選ばれる1つの置換基で置換された、スルホニル基である。]
で示されるヌクレオシドを1つ以上有しているオリゴヌクレオチド化合物、またはその塩
(以下、式(I’)で示される化合物またはその塩を、「本発明オリゴヌクレオチド化合物」と呼称する)。
[19] Bが、1つ以上の保護基を有してもよいアデニニル、1つ以上の保護基を有してもよいグアニニル、1つ以上の保護基を有してもよいシトシニル、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有してもよいウラシリルである、[18]記載のオリゴヌクレオチド化合物、またはその塩。
[20] R、R、RおよびRが各々独立して、水素原子であり;
 mが、1である、[18]または[19]に記載のオリゴヌクレオチド化合物、またはその塩。
[21](ウレア型化合物)
 Xが、式(II’-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、[18]~[20]のいずれか1つに記載のオリゴヌクレオチド化合物、またはその塩。
[22] RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-3アルキル基である、[21]に記載のオリゴヌクレオチド化合物、またはその塩。
[23] RおよびRの一方が水素原子であり、他方がメチル基である、[22]に記載のオリゴヌクレオチド化合物、またはその塩。
[24] RおよびRの一方が水素原子であり、他方がイソプロピル基である、[23]に記載のオリゴヌクレオチド化合物、またはその塩。
[25](アリール型化合物)
 Xが、式(II’-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基である、[18]~[20]のいずれか1つに記載のオリゴヌクレオチド化合物、またはその塩。
[26] Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた2または3つのヘテロ原子を含む5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、[25]記載のオリゴヌクレオチド化合物、またはその塩。
[27] 5または6員環のヘテロアリール基が、1つ以上の置換基で置換されていてもよい、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、およびピラジニル基からなる群から選ばれる、[26]記載のオリゴヌクレオチド化合物、またはその塩。
[28] 1つ以上の置換基で置換されていてもよいトリアゾリル基が、1,5-ジメチル-1,2,4-トリアゾール-3-イル基である、[27]記載のオリゴヌクレオチド化合物、またはその塩。
[29] 1つ以上の置換基で置換されていてもよいオキサジアゾリル基が、5-メチル-1,2,4-オキサジアゾール-3-イル基である、[27]記載のオリゴヌクレオチド化合物、またはその塩。
[30] 1つ以上の置換基で置換されていてもよいチアジアゾリル基が、3-メチル-1,2,4-チアジアゾール-5-イル基である、[27]記載のオリゴヌクレオチド化合物、またはその塩。
[31](スルホンアミド型化合物)
 Xが、式(II’-3)で示される基であり;そして、
 Mが、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよいアリール基からなる群から選ばれる1つの置換基で置換されたスルホニル基である、[18]~[20]のいずれか1つに記載のオリゴヌクレオチド化合物、またはその塩。
[32] Mが、メチル基およびフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、[18]~[31]のいずれか1つに記載の化合物、またはその塩。
[33] ヌクレオチド間のリン酸結合の少なくとも1つ以上が、ホスホロチオエート結合である、硫黄化された[18]~[32]のいずれか1つに記載のオリゴヌクレオチド、またはその塩。
 本発明により、新規な2’-アミノLNA(以下、ALNAと略す)、およびこれらALNAをモノマーとして含むオリゴマー(以下ALNAオリゴマーと略す)を製造することができる。本発明のALNAオリゴマーは、In vitroで標的マイクロRNAの機能阻害や、強力な標的遺伝子ノックダウン活性を有しており、また、生体に投与した場合には多くの臓器(例えば、筋肉など)において強力な標的遺伝子ノックダウン活性を有しており、よって、新規な核酸医薬としての使用が期待できる。
 以下に、本発明をさらに詳細に説明する。なお、本明細書において引用された全ての刊行物は、参照として本明細書に組み込まれる。
(定義)
 まず、本明細書中で用いられる用語を定義する。
 本明細書において、用語「1つ以上の置換基で置換されていてもよいC1-6アルキル基」とは、炭素数1から6(C1-6)、好ましくは炭素数1から4(C1-4)、より好ましくは炭素数1から3(C1-3)の任意の直鎖アルキル基、同一のまたは異なる分岐鎖を有する炭素数3から6の任意の分岐鎖アルキル基、炭素数3から6の任意の環状アルキル基、および炭素数4から6のこれらの組み合わせを包含する。例えば、炭素数1から6の任意の直鎖アルキル基の具体例としては、メチル、エチル、ノルマル(「n」と略す)プロピル、イソ(「i」と略す)プロピル、n-ブチル、n-ペンチル、n-ヘキシルなどが挙げられ、同一のまたは異なる分枝鎖を有する炭素数3から6の任意の分枝鎖アルキル基の具体例としては、i-プロピル、i-ブチル、tert(「t」と略す)-ブチル、sec(「s」と略す)-ブチル、ネオペンチル、イソペンチルなどが挙げられ、そして、炭素数3から6の任意の環状アルキル基としては、3-6員単環式シクロアルキル基が好ましく、具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられるが、これらに限定されない。置換基の例としては、水酸基、ハロゲン原子、ニトロ基、シアノ基、C1-6アルキル基、C2-6アルケニル基、C2-6アルキニル基、C1-6アルコキシ基、アリール基、アリールオキシ基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、オキソ基、チオキソ基、および1つ以上のハロゲン原子で置換されていてもよいC1-6アルキル基からなる群から選ばれる同一または異なる1つ以上(または1~3個が好ましい)の基が挙げられるが、オリゴマー化の反応条件によって影響を受けない基が好ましい。
 本明細書において、用語「1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基」とは、前記用語「1つ以上の置換基で置換されていてもよいC1-6アルキル基」に定義する、1つ以上のハロゲン原子で置換されていてもよい、メチル、エチル、n-プロピル、またはi-プロピルを意味する。具体例としては、ペルフルオロアルキル(例えば、トリフルオロメチル、ペンタフルオロエチル、へプタフルオロプロピル)等が挙げられる。
 本明細書において、用語「1つ以上の置換基で置換されてもよいC2-6アルケニル」とは、炭素数2から6(C2-6)、好ましくは炭素数2から4(C2-4)、より好ましくは炭素数2から3(C2-3)の任意の直鎖アルケニル基、同一または異なる分枝鎖を有する炭素数3から6任意の分枝鎖アルケニル基、炭素数3から6の任意の環状アルケニル基、および炭素数4から6のこれらの組み合わせを包含する。例えば、炭素数2から6の任意の直鎖アルケニル基の具体例としては、エテニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基などが挙げられ、同一のまたは異なる分岐鎖を有する炭素数3から6の任意の分岐鎖アルケニル基の具体例としては、イソプロペニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-メチル-2-ブテニル基などが挙げられ、そして炭素数3から6の任意の環状アルケニル基としては、3-6員単環式シクロアルケニル基が好ましく、具体例としては、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられるが、これらに限定されない。置換基の例としては、水酸基、ハロゲン原子、ニトロ基、シアノ基、C1-6アルキル基、C2-6アルケニル基、C2-6アルキニル基、C1-6アルコキシ基、アリール基、アリールオキシ基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、オキソ基、チオキソ基、および1つ以上のハロゲン原子で置換されていてもよいC1-6アルキル基からなる群から選ばれる同一または異なる1つ以上(または1~3個が好ましい)の基が挙げられるが、オリゴマー化の反応条件によって影響を受けない基が好ましい。
 本明細書において、用語「1つ以上の置換基で置換されてもよいC2-6アルキニル」とは、炭素数2から6(C2-6)、好ましくは炭素数2から4(C2-4)、より好ましくは炭素数2から3(C2-3)の任意の直鎖アルキニル基、同一または異なる分枝鎖を有する炭素数3から6の任意の分枝鎖アルキニル基、炭素数3から6の任意の環状アルキニル基、および炭素数4から6のこれらの組み合わせを包含する。例えば、炭素数2から6の任意の直鎖アルキニル基の具体例としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基などが挙げられ、同一のまたは異なる分岐鎖を有する炭素数3から6の任意の分岐鎖アルキニル基の具体例としては、イソプロピニル基、1-メチル-1-プロピニル基、1-メチル-2-プロピニル基、2-メチル-1-プロピニル基、2-メチル-2-プロピニル基、1-メチル-2-ブチニル基などが挙げられ、そして炭素数3から6の任意の環状アルキニル基としては、3-6員単環式シクロアルキニル基が好ましく、具体例としては、シクロブチニル基、シクロペンチニル基、シクロヘキシニル基などが挙げられるが、これらに限定されない。置換基の例としては、水酸基、ハロゲン原子、ニトロ基、シアノ基、C1-6アルキル基、C2-6アルケニル基、C2-6アルキニル基、C1-6アルコキシ基、アリール基、アリールオキシ基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、オキソ基、チオキソ基、および1つ以上のハロゲン原子で置換されていてもよいC1-6アルキル基からなる群から選ばれる同一または異なる1つ以上(または1~3個が好ましい)の基が挙げられるが、オリゴマー化の反応条件によって影響を受けない基が好ましい。
 本明細書において、用語「1つ以上の置換基で置換されていてもよい芳香族基」とは、アリール基およびヘテロアリール基の両方を包含することを意味する。当該アリール基およびヘテロアリール基は各々独立して、1つ以上の置換基で置換されていてもよい。置換基の例としては、水酸基、ハロゲン原子、ニトロ基、シアノ基、1つ以上の置換基で置換されていてもよいC1-6アルキル基、1つ以上の置換基で置換されていてもよいC2-6アルケニル基、1つ以上の置換基で置換されていてもよいC2-6アルキニル基、水酸基、C1-6アルコキシ基、アリールオキシ基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、1つ以上のハロゲン原子で置換されていてもよいC1-6アルキル基、およびアリール基からなる群から選ばれる同一または異なる1つ以上(または1~3個が好ましい)の基が挙げられ、好ましくは、1つ以上の置換基で置換されていてもよいC1-6アルキル基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、およびハロゲン原子が挙げられ、より好ましくは、トリフルオロメチル基、ジメチルアミノ基、およびクロロ原子等が挙げられる。オリゴマー化の反応条件によって影響を受けない基が好ましい。
 本明細書において、用語「アリール基」とは、芳香族炭化水素から誘導された官能基または置換基であり、複数の環からなるものも含み、具体的には芳香族炭化水素基から水素原子1個を除いた、1つ以上の5員環および/または6員環からなる炭素数6から14の1価の基を意味し、好ましくは5員環または6員環のアリールが挙げられる。アリール基の具体例としては、フェニル、インデニル、ナフチル、フェナンスレニル、アントラセニルなどが挙げられる。また、アリール基の置換基の例としては、水酸基、ハロゲン原子、ニトロ基、シアノ基、1つ以上の置換基で置換されていてもよいC1-6アルキル基、1つ以上の置換基で置換されていてもよいC2-6アルケニル基、1つ以上の置換基で置換されていてもよいC2-6アルキニル基、C1-6アルコキシ基、アリールオキシ基、アミノ基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、、およびアリール基からなる群から選ばれる同一または異なる1つ以上(または1~3個が好ましい)の基が挙げられ、好ましくは、1つ以上の置換基で置換されていてもよいC1-6アルキル基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、およびハロゲン原子が挙げられ、より好ましくは、トリフルオロメチル基、ジメチルアミノ基、およびクロロ原子等が挙げられるが、オリゴマー化の反応条件によって影響を受けない基が好ましい。
 1つ以上の置換基で置換されていてもよいアリール基の具体例としては、2-メチルフェニル、3-メチルフェニル、4-メチルフェニル、2,6-ジメチルフェニル、2,4-ジメチルフェニル、2-クロロフェニル、3-クロロフェニル、4-クロロフェニル、2,4-ジクロロフェニル、2,5-ジクロロフェニル、2,6-ジクロロフェニル、2-ブロモフェニル、4-メトキシフェニル、4-クロロ-2-ニトロフェニル、4-ニトロフェニル、2-ニトロフェニル、2,4-ジニトロフェニル、2-トリフルオロメチルフェニル、3-トリフルオロメチルフェニル、4-トリフルオロメチルフェニル、2-ジメチルアミノフェニル、3-ジメチルアミノフェニル、4-ジメチルアミノフェニル、ビフェニルなどが挙げられる。
 本明細書において、用語「ヘテロアリール基」とは環構造に1つ以上のヘテロ原子(例えば、窒素原子、酸素原子、および/または硫黄原子)を含む、1つ以上の5員環および/または6員環からなる炭素数5~12の任意の複素芳香族化合物から水素原子1個を除いた1価の基を意味し、好ましくは、5員環または6員環のヘテロアリールが挙げられる。ヘテロアリール基の具体例としては、ピロリル基、フリル基、チエニル基、ピラゾリル基、イミダゾリル基、トリアゾリル基、テトラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、オキサジアゾリル基、またはチアジアゾリル基から選ばれる5員環ヘテロアリール基;および、ピリジル基、ピリダジニル基、ピリミジニル基、またはピラジニル基から選ばれる6員環ヘテロアリール基が挙げられ、好ましくはトリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、またはピラジニル基が挙げられる。また、ヘテロアリール基の置換基の例としては、水酸基、ハロゲン原子、ニトロ基、シアノ基、1つ以上の置換基で置換されていてもよいC1-6アルキル基、1つ以上の置換基で置換されていてもよいC2-6アルケニル基、1つ以上の置換基で置換されていてもよいC2-6アルキニル基、C1-6アルコキシ基、アリールオキシ基、アミノ基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、およびアリール基からなる群から選ばれる同一または異なる1つ以上(または1~3個が好ましい)の基が挙げられ、好ましくは、1つ以上の置換基で置換されていてもよいC1-6アルキル基、1つ以上のC1-3アルキル基で置換されていてもよいアミノ基、およびハロゲン原子が挙げられ、より好ましくは、トリフルオロメチル基、ジメチルアミノ基、およびクロロ原子等が挙げられるが、オリゴマー化の反応条件によって影響を受けない基が好ましい。
 1つ以上の置換基で置換されていてもよいヘテロアリール基の具体例としては、1,2,4-トリアゾリル基、1,5-ジメチル-1,2,4-トリアゾリル基、1,2,4-オキサジアゾリル基、5-メチル-1,2,4-オキサジアゾール-3-イル基、1,2,4-チアジアゾリル基、3-メチル-1,2,4-チアジアゾール-5-イル基、1,3-ピリミジニル基、1,5-ピリミジニル基、4-トリフルオロメチル-1,5-ピリミジニル基、4-ジメチルアミノ-2,4-ピリミジニル基、3-ジメチルアミノ-2,4-ピリミジニル基、3-クロロ-1,5-ピリミジニル基、および1,4-ピリダジニル基が挙げられ、好ましくは、1,5-ジメチル-1,2,4-トリアゾール-3-イル基、1,2,4-オキサジアゾリル基、3-メチル-1,2,4-チアジアゾール-5-イル基、1,5-ピリミジニル基、4-トリフルオロメチル-1,5-ピリミジニル基、4-ジメチルアミノ-2,4-ピリミジニル基、3-ジメチルアミノ-2,4-ピリミジニル基、3-クロロ-1,5-ピリミジニル基、および1,4-ピリダジニル基が挙げられ、より好ましくは、1,5-ジメチル-1,2,4-トリアゾール-3-イル基、1,2,4-オキサジアゾ-ル-3-イル基、および3-メチル-1,2,4-チアジアゾール-5-イル基が挙げられる。
 本明細書において、用語「1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基」とは、前記用語「ヘテロアリール基」に定義する、1つ以上の置換基で置換されていてもよい、5員環または6員環のヘテロアリールが挙げられる。
 本明細書において、用語「1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた2または3つのヘテロ原子を含む5または6員環のヘテロアリール基」とは、前記用語「ヘテロアリール基」に定義する、1つ以上の置換基で置換されていてもよい、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、およびピリダジニル基等を意味する。
 本明細書において、用語「1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよい芳香族基からなる群から選ばれる1つの置換基で置換された、スルホニル基」とは、かかる1つの置換基で置換されたスルホニル(S(O))基を意味する。1つ以上の置換基で置換されていてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基は、それぞれ前記に定義する通りであり、置換基の具体例としては、メチル基、トリフルオロメチル基、フェニル基、および4-メチルフェニル基等が挙げられ、好ましくは、メチル基およびフェニル基が挙げられる。
 本明細書において、用語「C1-6アルコキシ基」とは、C1-6アルキルが酸素原子と結合した1価基をいい、C1-6アルキル-O基を意味する。具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、s-ブトキシ基、および3-メチルブトキシ基などが挙げられるが、これらに限定されない。
 本明細書において、用語「アリールオキシ基」とは、アリールが酸素原子と結合した1価基をいう。具体例としては、フェノキシ基、およびp-トリルオキシ基等が挙げられるが、これらに限定されない。
 本明細書において、用語「1つ以上のC1-3アルキル基で置換されていてもよいアミノ基」とは、アミノ基上の1つ以上の水素原子がC1-3アルキル基で置換されていてもよいアミノ基をいう。具体例としては、メチルアミノ、エチルアミノ、イソプロピルアミノ、ジメチルアミノ、ジエチルアミノ、メチルエチルアミノなどが挙げられるが、これらに限定されない。
 本明細書において、用語「ハロゲン(原子)」としては、例えば、フッ素原子(フルオロ)、塩素原子(クロロ)、臭素原子(ブロモ)、またはヨウ素原子(ヨード)が挙げられ、フッ素原子または塩素原子が好ましい。
 本明細書において、本発明化合物、中間体化合物、原料化合物等に官能基(例えば、水酸基、アミノ基、カルボキシル基等)を有する場合は、Theodora W. Greene, Peter G. M. Wuts, "Protective Groups in Organic Synthesis" 4th. ed., John Wiley & Sons, Inc., 1999に記載の方法に準じて、有機合成化学において通常用いる保護基で保護し、反応後、当該保護基を除去することにより、目的とする化合物を得ることができる。保護基としては、同書に記載された有機合成化学において通常用いる保護基が挙げられ、官能基毎の保護基については、下記に記載する。
 本明細書において、「水酸基の保護基」、「アミノ基の保護基」、「リン酸基の保護基」、「メルカプト基の保護基」内に記載される用語「保護基」とは、核酸合成の際に安定してアミノ基、水酸基、リン酸基またはメルカプト基を保護し得るものであれば、特に制限されない。具体的には、酸性または中性条件で安定であり、加水素分解、加水分解、電気分解、および光分解のような化学的方法により開裂し得る保護基のことをいう。このような保護基としては、例えば、炭素数1から6のアルキル基;炭素数2から6のアルケニル基;炭素数2から6のアルキニル基;アシル基;テトラヒドロピラニル基またはテトラヒドロチオピラニル基;テトラヒドロフラニル基またはテトラヒドロチオフラニル基;シリル基;炭素数1から6のアルコキシ基で置換されたメチル基;炭素数1から6のアルコキシ基で置換された炭素数1から6のアルコキシ基で置換されたメチル基;ハロゲン原子で置換された炭素数1から6のアルコキシ基で置換されたメチル基;炭素数1から6のアルコキシ基で置換されたエチル基;ハロゲン原子で置換されたエチル基;1から3個のアリール基で置換されたメチル基;炭素数1から6のアルキル基、炭素数2から6のアルケニル基、炭素数2から6のアルキニル基、炭素数1から6のアルコキシ基、ハロゲン原子および/またはシアノ基で置換された1から3個のアリール基で置換されたメチル基;炭素数1から6のアルコキシ基で置換されたカルボニル基;ハロゲン原子、炭素数1から6のアルコキシ基および/またはニトロ基で置換されたアリール基;ハロゲン原子および/または炭素数1から6の3個のアルキル基で置換されたシリル基で置換された炭素数1から6のアルコキシ基で置換されたカルボニル基;アルケニルオキシカルボニル基;炭素数1から6のアルコキシ基および/またはニトロ基で置換されたアリール基で置換されてもよいアラルキルオキシカルボニル基;などが挙げられる。
 「水酸基の保護基」としては、有機合成化学(特に、核酸合成)において通常用いる保護基をいい、例えば、脂肪族アシル基;芳香族アシル基;置換されていてよいアミノカルボニル基;置換されていてよいアルコキシカルボニル基;脂肪族スルホニル基;芳香族スルホニル基;1から3個のアリール基で置換されたメチル基;炭素数1から6のアルキル基、炭素数1から6のアルコキシ基、ハロゲン原子および/またはシアノ基で置換された1から3個のアリール基で置換されたメチル基;またはシリル基;が挙げられる。具体例としては、ベンジル(Bn)、4,4'-ジメトキシトリチル(DMTr)、4-メトキシトリチル、トリフェニルメチル、2-ナフチルメチル、ジフェニルアミノカルボニル(DPC)、シアノエトキシカルボニル、テトラヒドロピラニル、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、トリフェニルシリル、4-メトキシベンジル(p-メトキシベンジル)、3,4-ジメトキシベンジル、2,6-ジメトキシベンジル、p-フェニルベンジル、メタンスルホニル、トリフルオロメタンスルホニル、メトキシメチル、ベンゾイル(Bz)、フェノキシアセチル、またはアセチル等が挙げられるが、これらに限定されない。例えば、ベンジル(Bn)、4,4'-ジメトキシトリチル(DMTr)、t-ブチルジメチルシリル、t-ブチルジフェニルシリル、トリメチルシリル(TMS)、ジフェニルアミノカルボニル(DPC)、メタンスルホニル、トリフルオロメタンスルホニルが好ましく、4,4'-ジメトキシトリチル(DMTr)がより好ましい。
 本明細書において、用語「置換されてもよいリン酸基」とは、置換基(これは、保護基を含む)を有していてもよいリン酸、亜リン酸、または次亜リン酸を包含する。例えば、式-P(RP1)RP2で表されるリン酸基を包含し、式中、RP1およびRP2は、それぞれ独立して、水酸基、核酸合成の保護基で保護された水酸基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、アミノ基、炭素数1から5のアルコキシ基、炭素数1から6のアルキルチオ基、炭素数1から6のシアノアルコキシ基、または炭素数1から6のアルキル基で置換されたアミノ基を表す。ここで、上記式中、RP1がORP1aそしてRP2がNRP2aとして表すことができる基は「ホスホロアミダイト基」と呼称され、好ましい例である。RP1aとは炭素数1から5のアルキル基、炭素数1から6のシアノアルキル基であり、RP2aとは炭素数1から6のアルキル基を表し、「ホスホロアミダイト基」の具体例としては、式-P(O(CHCN)(N(iPr))で表される基、または式-P(OCH)(N(iPr))で表される基などが挙げられるが、これらに限定されない。式-P(O(CHCN)(N(iPr))で表される基が好ましい。ここで、iPrはイソプロピル基を表す。
 本明細書において、用語「置換されてもよいリン酸基」は、リンを含むキラル補助基を形成していてもよい。リンを含むキラル補助基の具体例としては、非特許文献 N. Okaら、J. AM. CHEM. SOC. 2008, 130, 16031に記載の光学活性二環式オキサザホスホリジンや、非特許文献 K. W. Knouseら、Science 10.1126/science.aau3369 (2018)に記載の5価リン原子を含む光学活性2-チオ-1,3,2-オキサチアホスフォランなどが挙げられるが、これらに限定されない。
 「アミノ基の保護基」としては、有機合成化学(特に、核酸合成)において通常用いる保護基をいい、例えば、脂肪族アシル基;芳香族アシル基;置換されていてよいアルコキシカルボニル基;1から3個のアリール基で置換されたメチル基;ハロゲン原子および/またはシアノ基で置換された1から3個のアリール基で置換されたメチル基が挙げられる。具体例としては、アセチル(Ac)、フェノキシアセチル(Pac)、t-ブチルフェノキシアセチル(Tac)、p-イソプロピルフェノキシアセチル(iPr-Pac)、トリフルオロアセチル、プロピオニル、イソブチリル、ベンゾイル(Bz)、メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル(Boc)、トリメチルシリルエトキシカルボニル(Teoc)、シアノエトキシカルボニル(Ceoc)、ベンジルオキシカルボニル(Cbz)、アリルオキシカルボニル、9-フルオレニルメトキシカルボニル(Fmoc)、ジメチルアミノメチレニル、2,2,2-トリクロロエトキシカルボニル、t-アミルオキシカルボニル、4-メトキシベンジル、トリフェニルメチル、2-ニトロベンゼンスルホニル、2,4-ジニトロベンゼンスルホニルまたは2-(トリメチルシリル)エトキシメチル等が挙げられるが、これらに限定されない。例えば、イソブチリル、ベンゾイル(Bz)、t-ブトキシカルボニル(Boc)、トリメチルシリルエトキシカルボニル(Teoc)が好ましい。
 「リン酸基の保護基」としては、有機合成化学(特に、核酸合成)において通常用いる保護基をいい、例えば、炭素数1から6のアルキル基および/またはシアノ基で置換された炭素数1から6のアルキル基;アラルキル基;ニトロ基および/またはハロゲン原子で置換されたアリール基で置換されたアラルキル基;炭素数1から6のアルキル基、ハロゲン原子、またはニトロ基で置換されたアリール基;2-シアノエチル基;2,2,2-トリクロロエチル基;ベンジル基;2-クロロフェニル基;または4-クロロフェニル基などが挙げられるが、これらに限定されない。
 「メルカプト基の保護基」としては、有機合成化学(特に、核酸合成)において通常用いる保護基をいい、例えば、脂肪族アシル基または芳香族アシル基、ベンゾイル基(Bz)などが挙げられるが、これらに限定されない。
 本明細書において、用語「脱離基」とは、反応の間にヘテロリシスでの開裂により切断される場合の、電子対を持つ方の基質分子の一部をいい、例えばハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、「水酸基の脱離基」を包含する。水酸基の脱離基の例としては、スルホニルオキシ基(例えば、パラトルエンスルホニルオキシ基、メシルオキシ基、トリフルオロメタンスルホニルオキシ基など)、アシロキシ基(好ましくは炭素数1~8の、飽和もしくは不飽和アシロキシ基であり、例えばR-C(=O)-O-で表され、式中のRはアルキル基で置換されていてもよいアリール基(好ましい総炭素数が6~8であり、例えばフェニル基、p-トリル基など)、アルキル基で置換されていてもよいアリールオキシ基(好ましい総炭素数が6~8であり、例えばフェノキシ基、p-トリルオキシ基など)、アラルキル基(好ましい総炭素数が7~9であり、例えばベンジル基など)、アリールアルケニル基(好ましい総炭素数が8または9であり、例えばシンナミル基など)、アラルキルオキシ基(総炭素数7~15、例えばベンジルオキシ基、9-フルオレニルメチルオキシ基など)、アルコキシ基(炭素数1~8の直鎖状または分岐鎖状のアルコキシ基、たとえばメトキシ、エトキシ、t-ブトキシなど)で表される基が挙げられ、具体例としては、ヨード、ブロモ、クロロ、フルオロ、メシルオキシ、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、エタンスルホニルオキシ、2,2,2-トリフルオロ-エタンスルホニルオキシ、プロパンスルホニルオキシ、イソ-プロパンスルオニルオキシ、ブタンスルホニルオキシ、ノナフルオロブタンスルホニルオキシ、ヘプタフルオロプロパン-1-スルホニルオキシ、ペンタンスルホニルオキシ、ペンタフルオロエタンスルホニルオキシ、ペンタンスルホニルオキシ、シクロペンタンスルホニルオキシ、ヘキサンスルホニルオキシ、シクロヘキサンスルホニルオキシ、o-トルエンスルホニルオキシ、m-トルエンスルホニルオキシ、p-トルエンスルホニルオキシ、ベンゼンスルホニルオキシ、o-ブロモベンゼンスルホニルオキシ、m-ブロモベンゼンスルホニルオキシ、p-ブロモ-ベンゼンスルホニルオキシ、o-ニトロベンゼンスルホニルオキシ、m-ニトロベンゼンスルホニルオキシ、およびp-ニトロベンゼンスルホニルオキシなどが挙げられるが、これらに限定されない。好ましい脱離基の例として、メタンスルホニルオキシ(メシルオキシ;Ms-O-)、トリフルオロメタンスルホニルオキシ、p-トルエンスルホニルオキシが挙げられる。
 本明細書において、用語「アシル基」の例としては、脂肪族アシル基および芳香族アシル基が挙げられる。具体的には、脂肪族アシル基の例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ピバロイル基、バレリル基、イソバレリル基、オクタノイル基、ノナノイル基、デカノイル基、3-メチルノナノイル基、8-メチルノナノイル基、3-エチルオクタノイル基、3,7-ジメチルオクタノイル基、ウンデカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ペンタデカノイル基、ヘキサデカノイル基、1-メチルペンタデカノイル基、14-メチルペンタデカノイル基、13,13-ジメチルテトラデカノイル基、ヘプタデカノイル基、15-メチルヘキサデカノイル基、オクタデカノイル基、1-メチルヘプタデカノイル基、ノナデカノイル基、アイコサノイル基およびヘナイコサノイル基のようなアルキルカルボニル基;フェノキシアセチル(Pac)基のようなアリールオキシアルキルカルボニル基;スクシノイル基、グルタロイル基、アジポイル基のようなカルボキシ化アルキルカルボニル基;クロロアセチル基、ジクロロアセチル基、トリクロロアセチル基、トリフルオロアセチル基のようなハロゲン原子で置換された炭素数1から6のアルキル基で置換されたカルボニル基;メトキシアセチル基のような炭素数1から6のアルコキシアルキルカルボニル基;(E)-2-メチル-2-ブテノイル基のような不飽和アルキルカルボニル基が挙げられる。また、芳香族アシル基の例としては、ベンゾイル基、α-ナフトイル基、β-ナフトイル基のようなアリールカルボニル基;2-ブロモベンゾイル基、4-クロロベンゾイル基のようなハロゲノアリールカルボニル基;2,4,6-トリメチルベンゾイル基、4-トルオイル基のような炭素数1から6のアルキル基で置換されたアリールカルボニル基;4-アニソイル基のような炭素数1から6のアルコキシ基で置換されたアリールカルボニル基;2-カルボキシベンゾイル基、3-カルボキシベンゾイル基、4-カルボキシベンゾイル基のようなカルボキシ化アリールカルボニル基;4-ニトロベンゾイル基、2-ニトロベンゾイル基のようなニトロ化アリールカルボニル基;2-(メトキシカルボニル)ベンゾイル基のような炭素数1から6のアルコキシ基で置換されたカルボニル化アリールカルボニル基;4-フェニルベンゾイル基のようなアリール化アリールカルボニル基などが挙げられるが、これらに限定されない。
 本明細書において、用語「アラルキル基」とは、芳香族炭化水素基(例えば、6~14員の単環式、二環式または三環式の芳香族炭化水素基を挙げられる)で置換された、炭素数1~6、好ましくは炭素数1~4、より好ましくは炭素数1~3のアルキル基をいう。具体例としては、ベンジル、フェネチル、1-ナフチルメチル、および2-ナフチルメチルなどが挙げられるが、これらに限定されない。
 本明細書において、用語「シリル基」の例としては、トリメチルシリル基、トリエチルシリル基、イソプロピルジメチルシリル基、t-ブチルジメチルシリル基、メチルジイソプロピルシリル基、メチルジ-t-ブチルシリル基、トリイソプロピルシリル基のような炭素数1から6のアルキル基で置換されたシリル基;t-ブチルジフェニルシリル基、ジフェニルメチルシリル基、ブチルジフェニルブチルシリル基、ジフェニルイソプロピルシリル基、フェニルジイソプロピルシリル基のような1から2個のアリール基で置換された炭素数1から6の3つのアルキル基で置換されたシリル基、トリフェニルシリル基などが挙げられるが、これらに限定されない。
 本明細書において、用語「β体」とは、核酸のリボース部位の1’位に置換した核酸の塩基部分が置換する方向と、核酸のリボース4’位に置換した5’位側鎖が置換する方向が同一の方向に置換された立体化学を持つものをいう。架橋型人工核酸2’,4’-LNAの場合、核酸のリボース部位の1’位に置換した核酸の塩基部分が置換する方向と、核酸のリボース4’位に置換した架橋には用いられていない5’位側鎖が置換する方向が同一の方向に置換された立体配置を持つ化合物をいう。
 本明細書において、用語「β選択的」とはβ体を選択的に得ることができることをいう。
 本明細書において、用語「1つ以上の置換基で置換されていてもよい核酸の塩基部分」における「核酸の塩基部分」とは、天然の核酸の塩基部分、及び非天然の核酸の塩基部分を含み、芳香族ヘテロ環式基を含み、例えば、単環基、二環基、三環基などを包含する。当該分野の当業者にとって、これまで「非天然」であると考えられてきた様々な核酸の塩基部分がその後に天然において見出されることは、明らかであるべきである。従って、「核酸塩基」とは、公知のプリンおよびピリミジンのヘテロ環だけでなく、そのヘテロ環アナログおよび互変異性体を含む。核酸の塩基部分の具体例としては、アデニン、グアニン、チミン、シトシン、ウラシル、プリン、キサンチン、ジアミノプリン、8-オキソ-N-メチルアデニン、7-デアザキサンチン、7-デアザグアニン、N,N-エタノシトシン、N,N-エタノ-2,6-ジアミノプリン、5-メチルシトシン、5-(C~C)-アルキニルシトシン、5-フルオロシトシン、5-ブロモウラシル、シュードイソシトシン、2-ヒドロキシ-5-メチル-4-トリアゾロピリジン、イソシトシン、イソグアニン、イノシン、N-アリルプリン、N-アシルプリン、N-ベンジルプリン、N-ハロプリン、N-ビニルプリン、N-アセチレン性プリン、N-アシルプリン、N-ヒドロキシアルキルプリン、N-チオアルキルプリン、N-アルキルプリン、N-アルキルピリミジン、N-アシルピリミジン、N-ベンジルプリン、N-ハロピリミジン、N-ビニルピリミジン、N-アセレン性ピリミジン、N-アセチルピリミジン、N-ヒドロキシアルキルピリミジン、N-チオアルキルピリミジン、6-アザピリミジン、6-アザシトシン、2-および/または4-メルカプトピリミジン、ウラシル、C-アルキルピリミジン、C-ベンジルピリミジン、C-ハロピリミジン、C-ビニルピリミジン、C-アセチレン性ピリミジン、C-アシルピリミジン、C-ヒドロキシアルキルプリン、C-アミドピリミジン、C-シアノピリミジン、C-ニトロピリミジン、C-アミノピリミジン、N-アルキルプリン、N-アルキル-6-チオプリン、5-シチジニル、5-アザウラシリル、トラゾロピリジニル、イミダゾロピリジニル、ピロロピリミジニル、およびピラゾロピリミジニルなどを挙げられるが、これらに限定されない。好ましい核酸の塩基部分としては例えば、アデニン、グアニン、2,6-ジアミノプリン、チミン、2-チオチミン、シトシン、5-メチルシトシン、ウラシル、5-フルオロシトシン、キサンチン、6-アミノプリン、2-アミノプリン、6-クロロ-2-アミノ-プリン、および6-クロロプリンが挙げられ、特に好ましい核酸塩基部分としては例えば、アデニン、グアニン、シトシン、5-メチルシトシン、チミンまたはウラシルが挙げられる。これらの核酸の塩基部分は、1つ以上の置換基で置換されていてもよく、該置換基としては、水酸基、C1-6のアルコキシ基、メル力プ卜基、C1-6のアルキルチオ基、アミノ基、C1-6のアルキル基で置換されたアミノ基、C1-6のアルキル基、C1-6のアルキニル基および、オキソ基、チオキソ基、ハロゲン原子が挙げられる。該塩基部分上の官能性の酸素、硫黄および窒素基は、必要ならばまたは所望するならば、保護しおよび/または脱保護することができる。適当な保護基は当該分野の当業者にとってよく知られており、例えば、前記した水酸基の保護基、アミノ基の保護基を含み、ジフェニルアミノカルボニル基、シリル基(例えば、トリメチルシリル基、ジメチルへキシルシリル基、t-ブチルジメチルシリル基、およびt-ブチルジフェニルシリル基)、トリチル基、アルキル基、アシル基(例えば、アセチル基、プロピオニル基、イソブチリル基、ベンゾイル基(Bz)、フェノキシアセチル基(Pac))、アルコキシカルボニル基(例えば、t-ブトキシカルボニル基(Boc)、ベンジロキシカルボニル基(Cbz)、ジフェニルアミノカルボニル基(DPC)、シアノエトキシカルボニル基(Ceoc))、スルホニル基(例えば、メタンスルホニル基、およびp-トルエンスルホニル基)、ジメチルアミノメチレニル基などが挙げられるが、これらに限定されない。
 本明細書において、用語「人工核酸」とは、人工ヌクレオシド、人工ヌクレオチド(本明細書では1個のヌクレオシドまたはヌクレオチドをモノマーと記載する場合もある。)、または人工オリゴヌクレオチドを包含する。これらの人工核酸は天然の核酸ではなく、かつ人為的にのみ製造することができる核酸である。これらの人工核酸には核酸塩基部分が非天然の塩基を有するもの、糖部分が修飾された糖を有するもの、及び/またはリン酸部分が非天然のリン酸基を有するものがあげられるが、本発明では糖部分が非天然の糖を有するもの、特に2’位と4’位の炭素原子が架橋されている(デオキシ)リボースを有するものをいう。
 本明細書において、用語「人工オリゴヌクレオチド」とは、同一または異なる「人工ヌクレオチド」がリン酸ジエステル結合やチオリン酸ジエステル結合等で2個以上結合したものをいい、好ましくは2から100個までの、より好ましくは5から50個までの、最も好ましくは10から30個までの人工ヌクレオチドが結合したもの、またはこれらの相補鎖と2重鎖を形成したものをいう。本明細書では2個以上のヌクレオチドが結合したオリゴヌクレオチドをオリゴマーと記載する場合もある。
 本発明の化合物の態様について記載する。
一般式Iで示される化合物
 一態様によれば、
 一般式(I):
Figure JPOXMLDOC01-appb-C000013
[式中、
 Bは、1つ以上の置換基で置換されていてもよい核酸の塩基部分であり;
 R、R、RおよびRは各々独立して、水素原子、または1つ以上の置換基で置換されていてもよいC1-6アルキル基であり;
 RおよびRは各々独立して、水素原子、水酸基の保護基、または置換されてもよいリン酸基であり;
 mは、1または2であり;
 Xは、下記式(II-1)、(II-2)、または(II-3):
Figure JPOXMLDOC01-appb-C000014
で示される基であり;
 式(II-1)、(II-2)、または(II-3)中に記載の記号:
Figure JPOXMLDOC01-appb-C000015
は、2’-アミノ基との結合点を示し;
 RおよびRは各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、1つ以上の置換基で置換されてもよいC2-6アルケニル基、1つ以上の置換基で置換されてもよいC2-6アルキニル基、または1つ以上の置換基で置換されていてもよい芳香族基であり;
 Aは芳香族基であり;
 Mは、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよい芳香族基からなる群から選ばれる1つの置換基で置換された、スルホニル基である。]
で示される化合物、またはその塩、
を提供する。
 一実施態様において、一般式(I)で表される化合物またはその塩は、一般式I-a:
Figure JPOXMLDOC01-appb-C000016
で表される化合物またはその塩であることが好ましい(式中、R、R、R、R、R、R、B、Xおよびmは、一般式(I)と同義である。)。
 一実施態様において、式(I)における環Bが、1つ以上の保護基を有してもよいアデニニル、1つ以上の保護基を有してもよいグアニニル、1つ以上の保護基を有してもよいシトシニル、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有してもよいウラシリルである、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、式(I)における環Bが、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有していてもよい5-ウラシリル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、式(I)における、R、R、RおよびRが各々独立して、水素原子であり、mが1である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、式(I)における、Rが水素原子またはDMTr基であり、そしてRが水素原子または-P(O(CH)CN)(N(iPr))である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、式(I)における、RがDMTr基であり、そしてRが-P(O(CH)CN)(N(iPr))である、式(I)で示される化合物またはその塩を提供する。
 式(II-1)、(II-2)、または(II-3)と記載する使用される一実施態様に大別される。
 まず、式(I)におけるXが式(II-1)で示される基である化合物(以下、本願明細書中、「ウレア型化合物」とも呼称することがある)を挙げることができる。
 一実施態様において、Xが、式(II-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-3アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、メチル基、イソプロピル基、またはフェニル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-1)で示される基であり;そして、
 RおよびRの組み合わせが、RおよびRがともに水素原子である組み合わせ、RおよびRがともにメチル基である組み合わせ、Rが水素原子でありそしてRがメチル基である組み合わせ、Rが水素原子でありそしてRがイソプロピル基である組み合わせ、またはRが水素原子でありそしてRがフェニル基である組み合わせ、である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-1)で示される基であり;そして、
 RおよびRの組み合わせが、RおよびRがともに水素原子である組み合わせ、RおよびRがともにメチル基である組み合わせ、RおよびRの一方が水素原子であり、他方がメチル基である組み合わせ、RおよびRの一方が水素原子であり、他方がイソプロピル基である組み合わせ、またはRおよびRの一方が水素原子であり、他方がフェニル基である組み合わせ、である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-1)で示される基であり;そして、
 RおよびRの一方が水素原子であり、他方がメチル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-1)で示される基であり;そして、
 RおよびRの一方が水素原子であり、他方がイソプロピル基である、式(I)で示される化合物またはその塩を提供する。
 また、式(I)におけるXが式(II-2)で示される基である化合物(以下、本願明細書中、「ヘテロアリール型化合物」とも呼称することがある)を挙げることができる。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた2または3つのヘテロ原子を含む5または6員環のヘテロアリール基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aとしての5または6員環のヘテロアリール基が、1つ以上の置換基で置換されていてもよい、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、およびピラジニル基からなる群から選ばれる、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aとしての1つ以上の置換基で置換されていてもよいトリアゾリル基が、1,5-ジメチル-1,2,4-トリアゾール-3-イル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aとしての1つ以上の置換基で置換されていてもよいオキサジアゾリル基が、5-メチル-1,2,4-オキサジアゾール-3-イル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-2)で示される基であり;そして、
 Aとしての1つ以上の置換基で置換されていてもよいチアジアゾリル基が、3-メチル-1,2,4-チアジアゾール-5-イル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-3)で示される基であり;そして、
 Mが、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよいアリール基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-3)で示される基であり;そして、
 Mが、1つ以上の置換基で置換されていてもよいメチル基、および1つ以上の置換基で置換されていてもよいフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、Xが式(II-3)で示される基であり;そして、
 Mが、メチル基およびフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、式(I)で示される化合物またはその塩を提供する。
 一実施態様において、式(I)で示される化合物またはその塩の具体的な例として、以下に示す化合物からなる群から選ばれる1つ以上の化合物またはその塩を提供する。
 以下の化合物:
 3-[[(1R,4R,6R,7S)-4-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-6-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-メチルスルホニル-5-オキサ-2-アザビシクロ[2.2.1]ヘプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物1);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物2);
 [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物3);
 N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-プリン-6-イル]ベンズアミド(本発明化合物4);
 3-[[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロニルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物5);
 N-[1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル)オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物6);
 (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物7);
 (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物8);
 [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(メチルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物9);
 (1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物10);
 (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物11);
 (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物12);
 [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(イソプロピルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物13);
 (1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物14);
 (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物15);
 (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物16);
 3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物17);
 1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物18);
 N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-6-ホルムアミジン(本発明化合物19);
 N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド(本発明化合物20);
 3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物21);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物22);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物23);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアンエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物24);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物25);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-4-イル]ベンズアミド(本発明化合物26));
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[6-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミン)ホスファニル]オキシプロパンニトリル(本発明化合物27);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[(6-ジメチルアミノ)ピリミジン-4-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物28);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)オキシプロパンニトリル(本発明化合物29);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物30);
 3-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物31);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物32);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物33);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物34);
 N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-ホルムアミジン(本発明化合物35);
 N-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド(本発明化合物36);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物37);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物38);
 3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物39);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物40);
 N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4―イル]ジヒドロピリミジン-2-オン(本発明化合物41)
 N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-N,N-ジメチルホルムアミジン(本発明化合物42);
 N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド(本発明化合物43);および
 N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド(本発明化合物44)、からなる群から選ばれる化合物。
オリゴヌクレオチド
一般式(I’)で示される化合物
 一態様によれば、
 一般式(I’):
Figure JPOXMLDOC01-appb-C000017
[式中、
 Bは、1つ以上の置換基で置換されていてもよい核酸の塩基部分であり;
 R、R、RおよびRは各々独立して、水素原子、または1つ以上の置換基で置換されていてもよいC1-6アルキル基であり;
 mは、1または2であり;
 Xは、下記式(II’-1)、(II’-2)、または(II’-3):
Figure JPOXMLDOC01-appb-C000018
で示される基であり;
 式(II’-1)、(II’-2)、または(II’-3)中に記載の記号:
Figure JPOXMLDOC01-appb-C000019
は2’-アミノ基との結合点を示し;
 Aは、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、芳香族基であり;
 Mは、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよい芳香族基からなる群から選ばれる1つの置換基で置換された、スルホニル基である。]
で示されるヌクレオシドを1つ以上有しているオリゴヌクレオチド、またはその塩、を提供する。
 一実施態様において、式(I’)における環Bが、1つ以上の保護基を有してもよいアデニニル、1つ以上の保護基を有してもよいグアニニル、1つ以上の保護基を有してもよいシトシニル、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有してもよいウラシリルである、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、式(I’)における環Bが、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有していてもよい5-ウラシリル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、式(I’)における、R、R、RおよびRが各々独立して、水素原子であり、mが1である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、式(I’)における、ヌクレオチド間の少なくとも1つ以上が、ホスホロチオエート結合である、硫黄化された、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 式(I’)におけるXが式(II’-1)で示される基である化合物(以下、本願明細書中、「ウレア型化合物」とも呼称することがある)を挙げることができる。
 一実施態様において、式(I’)において、Xが式(II’-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されていてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である。式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが、式(II’-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-3アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-1)で示される基であり;そして、
 RおよびRが各々独立して、水素原子、メチル基、イソプロピル基、またはフェニル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-1)で示される基であり;そして、
 RおよびRの組み合わせが、RおよびRがともに水素原子である組み合わせ、RおよびRがともにメチル基である組み合わせ、Rが水素原子でありそしてRがメチル基である組み合わせ、Rが水素原子でありそしてRがイソプロピル基である組み合わせ、またはRが水素原子でありそしてRがフェニル基である組み合わせ、である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-1)で示される基であり;そして、
 RおよびRの組み合わせが、RおよびRがともに水素原子である組み合わせ、RおよびRがともにメチル基である組み合わせ、RおよびRの一方が水素原子であり、他方がメチル基である組み合わせ、RおよびRの一方が水素原子であり、他方がイソプロピル基である組み合わせ、またはRおよびRの一方が水素原子であり、他方がフェニル基である組み合わせ、である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-1)で示される基であり;そして、
 RおよびRの一方が水素原子であり、他方がメチル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-1)で示される基であり;そして、
 RおよびRの一方が水素原子であり、他方がイソプロピル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 また、式(I’)におけるXが式(II’-2)で示される基である化合物(以下、本願明細書中、「ヘテロアリール型化合物」とも呼称することがある)を挙げることができる。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた2または3つのヘテロ原子を含む5または6員環のヘテロアリール基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aとしての5または6員環のヘテロアリール基が、1つ以上の置換基で置換されていてもよい、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、およびピラジニル基からなる群から選ばれる、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aとしての1つ以上の置換基で置換されていてもよいトリアゾール基が、1,5-ジメチル-1,2,4-トリアゾール-3-イル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aとしての1つ以上の置換基で置換されていてもよいオキサジアゾリル基が、5-メチル-1,2,4-オキサジアゾール-3-イル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-2)で示される基であり;そして、
 Aとしての1つ以上の置換基で置換されていてもよいチアジアゾリル基が、3-メチル-1,2,4-チアジアゾール-5-イル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-3)で示される基であり;そして、
 Mが、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよいアリール基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-3)で示される基であり;そして、
 Mが、1つ以上の置換基で置換されていてもよいメチル基、および1つ以上の置換基で置換されていてもよいフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-3)で示される基であり;そして、
 Mが、メチル基およびフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、Xが式(II’-3)で示される基であり;そして、
 Mが、メチル基およびフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、式(I’)で示されるオリゴヌクレオチド化合物またはその塩を提供する。
 一実施態様において、当該オリゴヌクレオチドまたはその塩は当該ヌクレオチドを2個以上結合したものであり、2から100個までのヌクレオチドを含むものであることが好ましく、5から50個までのヌクレオチドを含むものであることがより好ましく、最も好ましくは10から30個までの人工ヌクレオチドが結合したもの、またはこれらの相補鎖と2重鎖を形成したものである。
 本明細書において、用語「化合物の塩」における「塩」とは、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ヘキシルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等のアミン塩;フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン原子化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような炭素数1から6のアルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、リンゴ酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;および、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩などを挙げられるが、これらに限定されない。薬理的に許容し得る塩を包含する。
 本明細書で記載する一般式(I)で表される各化合物は、エナンチオマーもしくはジアステレオマーの形態またはこれらの混合物を包含する。例えば、各化合物の構造における、糖部分の立体配置がα体およびβ体を包含するが、β体が好ましい。前記一般式(I)で表される化合物がジアステレオマーまたはエナンチオマーの形態で得られる場合、これらを有機合成(例えば、糖合成)の分野で周知の慣用の方法、例えばクロマトグラフィーまたは分別結晶法等で分離することができる。例えば、下記式:
Figure JPOXMLDOC01-appb-C000020
で表される2Tdの化合物は、糖部分の立体配置がβ体である。
 本明細書で記載する一般式Iで表される各化合物は、同位元素(例えば、H、13C、14C、15N、18F、32P、35S、125I等)等で標識された化合物および重水素変換体を包含する。
 本明細書で記載するオリゴヌクレオチドおよびその類縁体は、例えば、賦形剤、結合剤、防腐剤、酸化安定剤、崩壊剤、滑沢剤、矯味剤などの医薬の製剤技術分野において通常用いられる補助剤を配合して、非経口投与製剤またはリポソーム製剤とすることができる。また、例えば、当該技術分野で通常用いられる医薬用担体を配合して、液剤、クリーム剤、軟膏剤などの局所用の製剤を調製できる。
(製造方法)
 以下に、本発明の化合物の製造方法を記載する。
 なお、下記に記載する出発化合物および中間体化合物の各化合物において、絶対配置を有する光学活性体は、出発原料に光学活性体のものを用いるかまたは合成の途中段階で生じる異性体を分離することによっても製造することができる。また、以下で記載する核酸塩基を置換する核酸塩基交換反応は、β選択的トランスグリコシル化が効率よく進行し、得られる一般式Iで表される化合物は、所望するβ体を選択的に得ることができる。
 本発明化合物またはその薬理的に許容し得る塩は、以下の方法で製造することができるが、これらに限定されるものではない。
 原料化合物については、それらの具体的な製法が述べられていない場合には、市販されているものを用いることができるか、または公知の方法もしくはこれに準じる方法に従って製造することができる。
 なお、本明細書において使用される略号は、それぞれ以下の意味を表す。
 THF:テトラヒドロフラン
 DMSO:ジメチルスルホキシド
 MsCl:メタンスルホニルクロリド
 DMAP:N,N-ジメチル-4-アミノピリジン
 iPrNEt、及びDIPEA:N,N-ジイソプロピルエチルアミン
 BSA:N,O-ビス(トリメチルシリル)アセトアミド
 TMSOTf:トリフルオロメタンスルホン酸トリメチルシリル
 TBSOTf: t-ブチルジメチルシリルトリフルオロメタンスルホン酸
 Bn:ベンジル
 TMS:トリメチルシリル
 TBDPS:tert-ブチルジフェニルシリル
 Ac:アセチル
 MOE:メトキシエチル
 CHCl:ジクロロエタン
 MeCN:アセトニトリル
 DMTr:4,4’-ジメトキシトリチル
 まず、本発明化合物(モノマー)の製造方法の概略を記載する。
(スルホンアミド系統化合物)
 一般式IにおけるXが式(II-3)で表される基である、いわゆるスルホンアミド系統の本発明化合物の製造方法を記載する。製造スキームの典型的な例は以下の反応スキーム1に示す通りであるが、これらに限定されるものではない。
反応スキーム1
Figure JPOXMLDOC01-appb-C000021
(工程1)
 出発物質として糖化合物である出発化合物1(例えば、国際公開第2017/047816号に記載の製法に従って製造することができる)を用い、公知の方法により、一般式(I)中のR基として水酸基の保護基を導入して、中間体化合物2を製造する。あるいは、出発化合物1中の核酸塩基部分(略語Bで表す)を別の保護されていてもよい核酸塩基部分(略語B’で表す)で核酸塩基交換反応を行うと同時に、水酸基の保護基を導入して、中間体化合物2を製造する。
 本水酸基の保護基の導入は、保護基の種類に応じて有機合成化学(例えば、核酸合成)でよく知られる反応条件下、実施することができる。例えば、水酸基の保護基がシリル型保護基(例えば、TMS)である場合には、シリル化剤(例えば、BSA、ヘキサメチルジシラザン、TMSクロリド)を使用することができる。この際、ルイス酸(例えば、TMSOTf、TBSOTf、塩化スズ)を添加してもよい。
 反応基質に対して、シリル化剤は約1~約20モル当量数で、ルイス酸は触媒量(約0.05モル当量数)~2モル当量数で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(例えば、THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化系水素類、アセトニトリル、水またはそれらの混合溶媒等)中、実施することができる。反応温度は、0℃~高温、とりわけ室温~約60℃で好適に進行する。
 また、核酸塩基交換反応(トランスグリコシル反応)により、チミン(T)、ウラシル(U)等の核酸塩基のピリミジン塩基部分を、別の保護されていてもよい核酸塩基部分(例えば、アデニン(A)、グアニン(G)、ウラシル(U)、チミン(T)、シトシン(C)、または5-メチルシトシン(MeC))に置換することによって、核酸塩基部分が交換された中間体化合物2を製造することができる。該塩基交換反応は、ルイス酸(例えば、TMSOTf、TBSOTf)の存在下で実施することができ、シリル化剤を反応させることによって反応を促進することができる。
(工程2)
 次に、中間体化合物2を出発物質として用いて、公知の方法により、アルキルスルホニルハライドまたは芳香族スルホニルハライドを、中間体化合物2と反応させることにより、イミノ窒素原子上をスルホンアミド化して、中間体化合物3を製造する。
 スルホンアミド化反応に用いられるスルホンアミド化試薬としては、アルキニルスルホニルハライド試薬(例えば、メタンスルホニルクロリド(MsCl))、アルキルスルホン酸無水物(例えば、メタンスルホン酸無水物)、芳香族スルホニルハライド試薬(例えば、ベンゼンスルホニルクロリド)、または芳香族スルホン酸無水物(例えば、ベンゼンスルホン酸無水物)が挙げられ、塩基(例えば、トリエチルアミン、DIPEA)の存在下、使用することができる。
 反応基質に対して、スルホンアミド化試薬はほぼ当量モル数~いくらか過剰当量モル数(例えば、約1.0モル当量)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化系水素類、アセトニトリル、水またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~室温、とりわけ0℃~室温で好適に進行する。
(工程3)
 次に、中間体化合物3を出発物質として用いて、公知の方法により、工程1において導入された水酸基の保護基を脱保護することにより、中間化合物4を製造する。
 本脱保護反応は、保護基の種類に応じて適当な反応条件(例えば、試薬等)下で行うことができる。例えば、水酸基の保護基(略語RPRO)がシリル型保護基(例えば、TMS)であるときは、酸性条件下での加水分解(例えば、酢酸-THF-水)またはフッ化物イオン供与試薬(例えば、TBAF)を用いて処理することにより、実施することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(例えば、THF等のエーテル類、ジクロロメタン等のハロゲン化炭化水素類、水またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~100℃、とりわけ0℃~50℃で好適に進行する。
(工程4)
 更に、中間体化合物4を出発物質として用いて、有機合成(特に、核酸合成)上一般的に知られる反応条件(例えば、試薬)下で、ホスホロアミダイト化して、所望するスルホンアミド系統の本発明化合物を製造する。
 ホスホロアミダイト化試薬としては、例えば、下記式:
Figure JPOXMLDOC01-appb-C000022
が挙げられるが、これに限定されない。当該ホスホロアミダイト化反応は、適宜塩基(例えば、DIPEA)または適宜酸(例えば、ジイソプロピルアンモニウムテトラゾリド、4,5-ジシアノイミダゾール)の存在下で行ってもよい。
 反応基質に対して、ホスホロアミダイト化試薬は1モル当量数~10モル当量数、好ましくは1モル当量数~5モル当量数(例えば、3モル当量数)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、アセトニトリル、またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~60℃、とりわけ0℃~室温で好適に進行する。
 なお、上記工程1の実施前から工程4の実施後のいずれかの段階で、適宜、核酸塩基の環上の置換基を修飾(例えば、シトシン環のアミノ置換基のベンゾイル化、もしくはアセチル化)してもよい。
 また、上記の工程(1)~工程(4)のうち、複数の工程(例えば、工程(1)と工程(2)、および工程(2)と工程(3))を連続して行ってもよい。
(ウレア系統化合物)
 一般式IにおけるXが式(II-1)で表される基である、いわゆるウレア系統の本発明化合物の製造方法を記載する。製造スキームの典型的な例は以下の反応スキーム2に示す通りであるが、これらに限定されるものではない。
反応スキーム2
Figure JPOXMLDOC01-appb-C000023
(工程1)
 出発物質として前記の出発化合物1を用いて、公知の方法によるウレア化反応を行う前に、前記反応スキーム1の工程1と同様に、出発化合物1中の核酸塩基部分(略語Bで表す)を別の保護されていてもよい核酸塩基部分(略語B’で表す)で核酸塩基交換反応を行った後に、ウレア化反応を行ってもよい。また、前記反応スキームと同様に、この核酸塩基交換反応を行った後に、適宜、水酸基の保護基を導入してもよい。
 核酸塩基交換反応(トランスグリコシル反応)は、公知の方法により、チミン(T)、ウラシル(U)等の核酸塩基のピリミジン塩基部分を、別の保護されていてもよい核酸塩基部分(例えば、アデニン(A)、グアニン(G)、ウラシル(U)、チミン(T)、シトシン(C)、または5-メチルシトシン(MeC))に置換することによって、核酸塩基部分が交換された中間体化合物5を製造することができる。該塩基交換反応は、ルイス酸(例えば、TMSOTf、TBSOTf)の存在下で実施することができ、シリル化剤(例えば、BSA)を反応させることによって反応を促進することができる。
 また、この水酸基の保護基の導入は、保護基の種類に応じて有機合成化学(例えば、核酸合成)でよく知られる反応条件下、実施することができる。例えば、水酸基の保護基がシリル型保護基(例えば、TMS)である場合には、シリル化剤(例えば、BSA、ヘキサメチルジシラザン、TMSクロリド)を使用することができる。この際、ルイス酸(例えば、TMSOTf、TBSOTf、塩化スズ)を添加してもよい。
 反応基質に対して、シリル化剤は約1~約20モル当量数で、ルイス酸は触媒量(約0.05モル当量数)~2モル当量数で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(例えば、THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化系水素類、アセトニトリル、水またはそれらの混合溶媒等)中、実施することができる。反応温度は、0℃~高温、とりわけ室温~約60℃で好適に進行する。
(工程2)
 次に、出発化合物1または中間体化合物5を出発物質として用いて、公知の方法により、ウレア化試薬を、出発化合物1または中間体化合物5と反応させることにより、イミノ窒素原子上でウレア化して、中間体化合物6を製造する。
 ウレア化反応に用いられるウレア化試薬としては、イソシアナートや、N-アルキルカルバモイルハライド試薬(例えば、N-メチルカルバモイルクロリド)またはN,N-ジアルキルカルバモイルハライド試薬(例えば、N,N-ジメチルカルバモイルクロリド)が挙げられ、塩基(例えば、DIPEA)の存在下、もしくは非存在下、使用することができる。
 反応基質に対して、ウレア化試薬は、ほぼ当量モル数~いくらか過剰当量モル数(例えば、約1.0モル当量)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~室温、とりわけ0℃~室温で好適に進行する。
(工程3)
 次に、適宜、前記工程1において水酸基の保護基を導入した場合には、中間体化合物6を出発物質として用いて、公知の方法により、導入された水酸基の保護基を脱保護することにより、中間体化合物7を製造する。
 この脱保護反応は、前記反応スキーム1の工程3と同様に、保護基の種類に応じて適当な反応条件(例えば、試薬等)下で行うことができる。例えば、水酸基の保護基(略語RPRO)がシリル型保護基(例えば、TMS)であるときは、酸性条件下での加水分解(例えば、酢酸-THF-水)またはフッ化物イオン供与試薬(例えば、TBAF)を用いて処理することにより、実施することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(例えば、THF等のエーテル類、ジクロロメタン等のハロゲン化炭化水素類、水またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~100℃、とりわけ0℃~50℃で好適に進行する。
(工程4)
 更に、前記反応スキーム1の工程4と同様に、中間体化合物6または中間体化合物7を出発物質として用いて、公知の方法により、ホスホロアミダイト化して、所望するウレア系統(例えば、メチルウレア系統、およびイソプロピルウレア系統)の本発明化合物を製造する。
 ホスホロアミダイト化試薬としては、例えば、2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミダイトが挙げられ、塩基(例えば、トリエチルアミン、DIPEA)の存在下、使用することができる。
 反応基質に対して、ホスホロアミダイト化試薬は1モル当量数~10モル当量数、好ましくは1モル当量数~5モル当量数(例えば、3モル当量数)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、アセトニトリル、またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~60℃、とりわけ0℃~室温で好適に進行する。
 また、上記の工程(1)~工程(4)のうち、複数の工程(例えば、工程(1)と工程(2)、工程(2)と工程(3)、および工程(1)~工程(3))を連続して行ってもよい。
 なお、上記工程1の実施前から工程4の実施後のいずれかの段階で、適宜、核酸塩基の環上の置換基を修飾(例えば、シトシン環のアミノ置換基のベンゾイル化、もしくはアセチル化)してもよい。
(アリール系統化合物)
 一般式IにおけるXが式(II-2)で表される基である、いわゆるアリール系統の本発明化合物の製造方法を記載する。製造スキームの例は以下の反応スキーム3に示す通りである。
反応スキーム3
Figure JPOXMLDOC01-appb-C000024
(工程1)
 出発物質として前記の出発化合物1を用いて、公知の方法によるアリール化反応を行う前に、前記反応スキーム1の工程1と同様に、出発化合物1中の核酸塩基部分(略語Bで表す)を別の保護されていてもよい核酸塩基部分(略語B’で表す)で核酸塩基交換反応を行った後に、アリール化反応を行ってもよい。
 核酸塩基交換反応(トランスグリコシル反応)は、公知の方法により、チミン(T)、ウラシル(U)等の核酸塩基のピリミジン塩基部分を、別の保護されていてもよい核酸塩基部分(例えば、アデニン(A)、グアニン(G)、ウラシル(U)、チミン(T)、シトシン(C)、または5-メチルシトシン(MeC))に置換することによって、核酸塩基部分が交換された中間体化合物8を製造することができる。該塩基交換反応は、ルイス酸(例えば、TMSOTf、TBSOTf)の存在下で実施することができ、シリル化剤(例えば、BSA)を反応させることによって反応を促進することができる。
 また、この水酸基の保護基の導入は、保護基の種類に応じて有機合成化学(例えば、核酸合成)でよく知られる反応条件下、実施することができる。例えば、水酸基の保護基がシリル型保護基(例えば、TMS)である場合には、シリル化剤(例えば、BSA、ヘキサメチルジシラザン、TMSクロリド)を使用することができる。この際、ルイス酸(例えば、TMSOTf、TBSOTf、塩化スズ)を添加してもよい。
 反応基質に対して、シリル化剤は約1~約20モル当量数で、ルイス酸は触媒量(約0.05モル当量数)~2モル当量数で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(例えば、THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、ベンゼン、トルエンなどの炭化系水素類、アセトニトリル、水またはそれらの混合溶媒等)中、実施することができる。反応温度は、0℃~高温、とりわけ室温~約60℃で好適に進行する。
(工程2)
 次に、出発化合物1または中間体化合物8を出発物質として用いて、公知の方法により、アリール化試薬を、出発物質化合物1または中間体化合物8と反応させることにより、イミノ窒素原子上で芳香族化して、中間体化合物9を製造する。
 芳香族化反応に用いられるアリール化試薬としては、所望するアリールのハライド化合物(例えば、クロロピリミジン、ジクロロピリミジン、フルオロピラジン、クロロトリアゾール、クロロオキサジアゾール、またはクロロチアジアゾール)が挙げられ、塩基(例えば、DIPEA)の存在下、使用することができる。
 反応基質に対して、アリール化試薬は、約1~約10モル当量数、好ましくは約1~約5モル当量数(例えば、約3モル当量数)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、DMSO等の非プロトン性極性溶媒、またはそれらの混合溶媒等)中、実施することができる。反応温度は、室温~高温、とりわけ高温(例えば、120~130℃)で好適に進行する。
(工程3)
 更に、前記反応スキーム1の工程4と同様に、中間体化合物9または中間体化合物8を出発物質として用いて、公知の方法により、ホスホロアミダイト化して、所望するアリール系統(例えば、芳香族系統、およびヘテロアリール系統)の本発明化合物を製造する。
 ホスホロアミダイト化試薬としては、例えば、2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミダイトが挙げられ、塩基(例えば、トリエチルアミン、DIPEA)の存在下、使用することができる。
 反応基質に対して、ホスホロアミダイト化試薬は1モル当量数~10モル当量数、好ましくは1モル当量数~5モル当量数(例えば、3モル当量数)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、アセトニトリル、またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~60℃、とりわけ0℃~室温で好適に進行する。
 また、上記の工程(1)~工程(3)のうち、複数の工程(例えば、工程(1)と工程(2))を連続して行ってもよい
 なお、上記工程1の実施前から工程3の実施後のいずれかの段階で、適宜、核酸塩基の環上の置換基を修飾(例えば、シトシン環のアミノ置換基のベンゾイル化、もしくはアセチル化)してもよく、または、導入されたアリール基の芳香環上の置換基を修飾(例えば、クロロ基のアミノ基への変換)してもよく、あるいは、これらの両方の修飾を行ってもよい。
(核酸塩基交換の別製法)
 工程1に記載する核酸塩基交換反応の代わりに、以下の反応スキーム4に示す一連の反応を用いて核酸塩基の部分的返還を行ってもよい。かかる一連の反応は、文献(例えば、C.H.Kimら、J.Med.Chem.1987,30,862.)に記載の方法に従って実施することができる。
反応スキーム4
Figure JPOXMLDOC01-appb-C000025
(工程A)
 核酸塩基部分がチミンである中間体化合物9'(例えば、上記工程2で得られた中間体化合物2)を出発物質として用いて、アセチル化試薬(例えば、無水酢酸)を塩基(例えば、ピリジン)の存在下で反応させることにより、水酸基がアシル化された中間体化合物Aを製造する。適宜、反応活性化試薬として、触媒量のDMAPを加えてもよい。
 反応基質に対して、アセチル化試薬は、約1~3モル当量数(例えば、約1.5モル当量数)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、または塩基として使用するピリジン等)中、実施することができる。反応温度は、0℃~高温(例えば、室温)で好適に進行する。
(工程B)
 次に、中間体化合物Aを出発物質として用いて、チミン部をオキシ塩化リンなどのクロロ化剤にて活性化した後、1,2,4-トリアゾールを、塩基(例えば、DIPEA)の存在下で反応させることにより、核酸塩基部分が1,2,4-トリアゾール基に置換された中間体化合物Bを製造する。
 反応基質に対して、1,2,4-トリアゾールは、過剰モル当量(約5~約20モル当量数(例えば、約9~10モル当量数))で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、ジクロロメタン、ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、アセトニトリル、またはそれらの混合溶媒等)中、実施することができる。反応温度は、-25℃~室温、とりわけ0℃~室温で好適に進行する。
(工程C)
 また、中間体化合物Bを出発物質として用いて、塩基(例えば、アンモニア水)を反応させて、上記工程Aで導入したアセチル基および工程Bで修飾された1,2,4-トリアゾール基を除去して、核酸塩基部分が5-メチルシトシンである中間体化合物Cを製造する。
 反応基質に対して、アンモニア水(例えば、28%アンモニア水)は、過剰モル当量で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、アセトニトリル、またはそれらの混合溶媒等)中、実施することができる。反応温度は、0℃~室温、とりわけ室温で好適に進行する。
 得られた中間体化合物Cを出発物質として用いて、適宜、核酸塩基の環上の置換基を修飾(例えば、シトシン環のアミノ置換基のベンゾイル化、もしくはアセチル化)、または、導入されたアリール基の芳香環上の置換基を修飾(例えば、クロロ基のアミノ基への変換)し、その後に、ホスホロアミダイト化して、所望するアリール系統(例えば、芳香族系統、およびヘテロアリール系統)の本発明化合物を製造する。
(芳香族化の別製法1)
 更に、工程2に記載する、アリール化試薬による芳香族化の代わりに、以下の反応スキーム5に示す一連の反応を用いて芳香族化を行ってもよい。
反応スキーム5
Figure JPOXMLDOC01-appb-C000026
(工程D)
 前記出発化合物1を用いて、チオウレア化試薬(例えば、1,1-チオカルボニルジイミダゾール)を反応させ、アンモニア水で処理することにより、イミノ窒素原子上でチオウレア化された中間体化合物Dを製造する。
 反応基質に対して、チオウレア化試薬は、約1~5モル当量数、とりわけ約2モル当量数で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類等)中、実施することができる。反応温度は、0℃~室温(例えば、室温)で好適に進行する。
(工程E)
 次に、中間体化合物Dを出発物質として用いて、メチル化試薬(例えば、ヨウ化メチル)と反応させることにより、S-メチル化され且つカルボイミド化された中間体化合物Eを製造する。
 反応基質に対して、メチル化試薬は、約1~5モル当量数、とりわけ3モル当量数で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類等)中、実施することができる。反応温度は、0℃~室温(例えば、室温)で好適に進行する。
(工程F)
 また、中間体化合物Eを出発物質として用いて、アセチル化試薬(例えば、無水酢酸)と塩基(例えば、ピリジン)の存在下で反応させることにより、カルボイミド基および水酸基がアシル化された中間体化合物Fを製造する。適宜、反応活性化試薬として、触媒量のDMAPを加えてもよい。
 反応基質に対して、アセチル化試薬は、約1~5モル当量数(例えば、約3モル当量数)で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(THF等のエーテル類、または塩基として使用するピリジン等)中、実施することができる。反応温度は、0℃~高温(例えば、室温)で好適に進行する。
(工程G)
 また、中間体化合物Fを出発物質として用いて、メチルヒドラジンとの閉環反応により、1,2,4-トリアゾール環が形成した中間体化合物Gを製造する。
 反応基質に対して、メチルヒドラジンは、過剰モル当量(約5~20モル当量数(例えば、約10モル当量数))で使用することができる。
 溶媒としては反応に影響を与えないものであればよく、適当な溶媒(エタノール等のアルコール溶媒等)中、実施することができる。反応温度は、0℃~高温(例えば、室温)で好適に進行する。
 得られた中間体化合物Gを出発物質として用いて、適宜、核酸塩基の環上の置換基を修飾(例えば、シトシン環のアミノ置換基のベンゾイル化、もしくは)、または、導入されたアリール基の芳香環上の置換基を修飾(例えば、クロロ基のアミノ基への変換)し、その後に、ホスホロアミダイト化して、所望するアリール系統(例えば、芳香族系統、およびヘテロアリール系統)の本発明化合物を製造する。
(オリゴマーの製法)
Figure JPOXMLDOC01-appb-C000027
 本発明化合物またはその塩は、オリゴヌクレオチドを製造するための、モノマー出発原料として使用することができる。オリゴヌクレオチドは、一般式(I)で表される化合物またはその塩を用いてオリゴマー化反応をした後、必要に応じてアミノ保護基、および水酸基保護基を脱保護することで合成することができる。
 オリゴマー化反応は例えば、合成化学(特に、核酸合成)上一般的に知られる方法であれば限定されるものではないが、例えばホスホロアミダイトホスホロアミダイト法により行うことができる。ホスホロアミダイトホスホロアミダイト法としては、例えばWO 2014/046212A1に記載の方法に準じる方法に従って行うことができる。
 本オリゴマー化反応により、一般式(I)で表されるヌクレオチドを1つ以上有しているオリゴヌクレオチドを製造することができる。
 すなわち、一般式(I’)で表されるオリゴヌクレオチドの製造方法は、以下の工程を含む:
a)一般式(I)で表される化合物、またはその塩を用いてオリゴマー化反応をした後、必要に応じてアミノ保護基、および水酸基保護基を脱保護する。
 また、一般式(I)で表される化合物またはその塩の製造方法は、本明細書に記載する工程のうち、以下の少なくとも1つの工程を含んでいてもよい。
 本発明化合物またはその塩を製造する工程。
 例えば前記中間体化合物4、7または9で表される化合物またはその塩をホスホロアミダイト化反応させて、一般式(I’)で表される化合物またはその塩を製造する工程。
 例えば前記中間体化合物3、または6で表される化合物の水酸基の保護基を脱保護することにより、前記中間体化合物4、7または9で表される化合物を製造する工程。
(ホスホロチオエートオリゴマーの製法)
 ホスホロアミダイト法によるオリゴヌクレオチドの合成では、亜リン酸基をリン酸基に変換する際に酸化剤が用いられる。このときに用いられる酸化剤の代わりにDDTT(((ジメチルアミノ-メチリデン)アミノ)-3H-1,2,4-ジチアザオリン-3-チオン)や、Beaucage試薬(3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド)を用いると、リン酸基のP=Oにおける酸素原子がP=Sのように硫黄に置換されてチオリン酸基となった、保護基を有するホスホロチオエートオリゴマーが得られる。
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、化合物の同定はマス・スペクトル、高速液体クロマト質量分析計;LCMS、NMRスペクトル、高速液体クロマトグラフィー(HPLC)等により行った。NMRにおいて水素核磁気共鳴(H-NMR)では共鳴周波数が400MHzのものを、リン核磁気共鳴(31P-NMR)では共鳴周波数が161.8MHzのものを用いた。NMRに用いられる記号としては、sは一重線、dは二重線、ddは二重の二重線、tは三重線、tdは三重の二重線、qは四重線、quinは五重線、septは七重線、mは多重線、brは幅広い、brsは幅広い一重線、brdは幅広い二重線、brtは幅広い三重線及びJは結合定数を意味する。
 各人工核酸の構造と略称(本明細書中で適宜、略称で記す)を、下記構造式に示した。
各人工核酸の構造と略称
Figure JPOXMLDOC01-appb-C000028
ALNA[Ms]-Tの合成
Figure JPOXMLDOC01-appb-C000029
実施例1 化合物2Taの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチルピリミジン-2,4-ジオン
 国際公開第2017/047816号に記載の方法にて合成した1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチルピリミジン-2,4-ジオン(1a)(12.35g, 21.61mmol)のジクロロメタン(61mL)混合溶液にBSA(13mL,53.17mmol)を添加し、混合物を室温にて8時間撹拌した。そこにBSA(5.2mL,21mmol)、TMSOTf(200μL,1.0mmol)を加え、再度室温にて混合物を15時間撹拌した。反応液に5%重曹水(50mL)を添加して撹拌し、ジクロロメタンで抽出した。水層をジクロロメタン(61mL)で混合し、抽出して、ジクロロメタンの有機層を合液し混合した。有機層を溶媒留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~98/2)にて精製することで、化合物2Ta(10.49g, 収率75%)を得た。
MS(ESI): m/z = 644 (M+H)
実施例2 化合物2Tbの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-5-メチルスルホニル-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチルピリミジン-2,4-ジオン
 化合物2Ta(10.19g, 15.83mmol)のジクロロメタン(50mL)混合溶液にDIPEA(5.4mL,31mmol)を添加し、氷浴下でメシルクロリド(1.4mL,18mmol)を添加し、混合物を氷浴下で1.5時間撹拌した。反応液に5%重曹水(20mL)を添加して撹拌し、ジクロロメタンで抽出した。水層をジクロロメタン(20mL)で混合し、抽出して、ジクロロメタンの有機層を合液し混合した。有機層を溶媒留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~98/2)にて精製することで、化合物2Tb(6.56g, 収率57%)を得た。
MS(ESI): m/z = 720 (M-H)
実施例3 化合物2Tcの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチルピリミジン-2,4-ジオン
 化合物2Tb(3.02g, 4.13mmol)のテトラヒドロフラン(15mL)混合液に氷浴下でTBAF(1.35mL,4.58mmol,1M テトラヒドロフラン溶液)を添加し、混合物を30分間撹拌した。反応液に10%塩化アンモニウム水溶液(20mL)、ジクロロメタン(20mL)を添加して撹拌し、ジクロロメタンで抽出した。水層をジクロロメタン(20mL)で混合し、抽出して、ジクロロメタンの有機層を混合した。有機層を溶媒留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~98/2)にて精製することで、化合物2Tc(2.47g, 収率92%)を得た。
MS(ESI): m/z = 648 (M-H)
実施例4 化合物2Td
3-[[(1R,4R,6R,7S)-4-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-6-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-メチルスルホニル-5-オキサ-2-アザビシクロ[2.2.1]ヘプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物1)
 化合物2Tc(2.47g, 3.80mmol)のジクロロメタン(12.5mL)溶液に氷冷下にてDIPEA(2.00mL, 12.0mmol)、2-シアノエチル N,N,N’,N’-ジイソプロピルクロロホスホロアミダイト(2.10mL, 9.40mmol)を加えて、混合物を室温にて5時間撹拌した。そこに氷冷下にて5%炭酸水素ナトリウム水溶液(15mL)、ジクロロメタン(10mL)を加えて室温にて撹拌した後、ジクロロメタンで抽出した。水層をジクロロメタン(10mL)で抽出し、ジクロロメタンの有機層を合液し混合した。これを減圧下、溶媒留去した後、シリカゲルカラムクロマトグラフィー精製(ヘキサン/酢酸エチル、60/40~40/60)を行うことで、本発明化合物1としての化合物2Td(2.13g, 収率66%)を得た。
MS(ESI): m/z = 850 (M+H)
31P-NMR (CDCl3) δ: 150.30, 149.12
ALNA[Ms]-mCの合成
Figure JPOXMLDOC01-appb-C000030
実施例5 化合物2mCcの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物1a(10.33g,18.1mmol)とN-(5-メチル-2-オキソ-1H-ピリミジン-4-イル)ベンズアミド(12.42g,54.2mmol)のトルエン(180mL)懸濁液にBSA(44mL,180mmol)を加えて、混合物を室温にて15分間撹拌した。そこにTMSOTf(0.52mL,2.71mmol)を加え、室温にて2時間撹拌した。反応液をIPE(100mL)と飽和重曹水(50mL)、水(50mL)の混合液中に加え、混合物を10分間撹拌し、不溶物をセライトろ去した。ろ液から水層を除き、有機層を水(50mL)、飽和食塩水(50mL)にて順次洗浄した。フェーズセパレーターに通し、溶媒留去した。残渣にジクロロメタン(90mL)を加えて溶解し、トリエチルアミン(5.0mL,36.0mmol)、メタンスルホン酸無水物(3463mg,19.9mmol)を加えて、混合物を室温にて40分間撹拌した。メタンスルホン酸無水物(944mg,5.42mmol)を追加して、混合物を室温にて30分間撹拌した。さらにメタンスルホン酸無水物(944mg,5.42mmol)、トリエチルアミン(1.3mL,9.06mmol)を追加して、混合物を室温にて20分間撹拌した。酢酸エチル(80mL)で希釈し、水(40mL)および飽和重曹水(40mL)を加えて、混合物を撹拌した。水層を除き、有機層を飽和食塩水(50mL)で洗浄した後、フェーズセパレーターに通して溶媒留去し、真空乾燥した。残渣にTHF(90mL)を加えて溶液とし、氷冷下にてTBAF(0.1M THF溶液、21.7mL,21.7mmol)を加えて、混合物を氷冷下にて15分間撹拌した。酢酸エチル(90mL)で希釈し、飽和塩化アンモニウム水溶液(40mL)、および水(40mL)を加えて撹拌した。水層を除き、フェーズセパレーターに通して溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~95/5)にて精製することで、化合物2mCc(5702mg,3工程での収率38%)を得た。
MS(ESI): m/z = 753(M+H)
実施例6 化合物2mCdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物2)
 実施例4と同様にして化合物2mCc(8099mg, 9.89mmol)から、本発明化合物2としての化合物2mCd(6809mg,収率72%)を得た。
MS(APCI): m/z = 954(M+H)
ALNA[Ms]-Gの合成
Figure JPOXMLDOC01-appb-C000031
実施例7 化合物2Gaの合成
[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート
 化合物1a(5040mg, 8.817mmol)と[2-(2-メチルプロパノイルアミノ)-9H-プリン-6-イル]N,N-ジフェニルカルバメート(5400mg,12.97mmol)の1,2-ジクロロエタン(24.7mL)溶液にBSA(14.8mL,60.46mmol)を加えて、混合物を64℃にて1時間撹拌した。続いて、そこにTMSOTf(0.167mL,0.864mmol)を内温60℃で維持しながら徐々に加えて、混合物を1時間撹拌した。放冷後、反応液を別途調整したクロロホルム(40mL)と飽和炭酸水素ナトリウム水溶液(40mL)の混合溶液に徐々に加えて、混合物を撹拌した。不溶物を吸引ろ過後、ろ液を酢酸エチル(50mL)で抽出した。有機層を飽和食塩水(50mL)にて洗浄した後、硫酸ナトリウムにて乾燥した。続いて、ろ液を減圧留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~97/3)にて精製することで、化合物2Ga(6350mg, 収率79%)を得た。
MS(ESI): m/z = 935 (M+H)
実施例8 化合物2Gbの合成
[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-5-メチルスルホニル-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート
 化合物2Ga(2370mg, 2.537mmol)のジクロロメタン(24.9mL)溶液にトリエチルアミン(0.692mL,4.984mmol)を加えて、混合物を室温にて5分間撹拌した。続いて、そこに氷冷下、メタンスルホニルクロライド(0.193mL,2.488mmol)を加えて、混合物を1時間撹拌した。氷冷下にて反応液に塩化メチレン(30mL)と飽和炭酸水素ナトリウム水溶液(30mL)を加えて撹拌し、分液した。有機層を飽和食塩水(30mL)にて洗浄した後、硫酸ナトリウムにて乾燥した。続いて、ろ液を減圧留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、67/33~50/50)にて精製することで、化合物2Gb(2210mg, 収率88%)を得た。
MS(ESI): m/z = 1013 (M+H)
実施例9 化合物2Gcの合成 [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート
 化合物2Gb(2200mg, 2.173mmol)のTHF(11mL)溶液に、氷冷下、TBAF(2.4mL,3.407mmol)を加えて、混合物を室温にて5時間撹拌した。氷冷下にて反応液に酢酸エチル(30mL)と飽和塩化アンモニウム水溶液(30mL)を加えて撹拌し、分液した。有機層を飽和食塩水(30mL)にて洗浄した後、硫酸ナトリウムにて乾燥した。続いて、ろ液を減圧留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、60/40~50/50)にて精製した。原料を除くために再度、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~97/3)にて精製することで、化合物2Gc(1070mg, 収率52%)を得た。
MS(ESI): m/z = 941 (M+H)
実施例10 化合物2Gdの合成
[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物3)
 化合物2Gc(1070mg, 1.139mmol)のジクロロメタン(5.690mL)溶液に氷冷下、DIPEA(0.590mL,3.407mmol)と2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミダイト(0.510mL,2.282mmol)を加えて、混合物を室温にて22時間撹拌した。氷冷下にて反応液にジクロロメタン(20mL)と飽和重曹水(20mL)を加えて撹拌し、分液した。水層を除き、有機層をフェーズセパレーターに通した。ろ液を減圧留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、50/50~40/60)にて精製することで、本発明化合物3としての化合物2Gd(548mg, 収率42%)を得た。
MS(ESI): m/z = 1141(M+H)
ALNA[Ms]-Aの合成
Figure JPOXMLDOC01-appb-C000032
実施例11 化合物2Acの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-プリン-6-イル]ベンズアミド
 化合物1a(10.0g, 17.6mmol)とN-(9H-プリン-6-イル)ベンズアミド(5.04g,21.1mmol)のトルエン(176mL)懸濁液にBSA(30mL,123mmol)を滴下し、混合物を60℃に昇温し、30分撹拌した。そこにTMSOTf(1.03mL,5.34mmol)を加え、混合物を60℃にて15分間撹拌した。氷冷下、撹拌しながら、IPE(100mL)と飽和重曹水(100mL)の混合液中に反応液を加え、混合物を20分間撹拌し、不溶物をろ去した。ろ残をEtO(20mL)で2度洗浄した後、ろ液を分液し、飽和食塩水(50mL)にて洗浄した。フェーズセパレーターに通した後、減圧下濃縮した。残渣にジクロロメタン(24.9mL)を加えて溶解し、ピリジン(4.57mL,56.5mmol)、メタンスルホン酸無水物(3614mg,20.75mmol)を加えて、混合物を室温にて30分間撹拌した。飽和炭酸水素ナトリウム水溶液(50mL)、および水(50mL)を加えて撹拌し、分液した。有機層を飽和食塩水(50mL)にて洗浄した後、フェーズセパレーターに通し、減圧下溶媒留去した。残渣にTHF(88mL)を加えて溶液とし、氷冷下にてTBAF(1M THF溶液、21.1mL,21.1mmol)を加えて、混合物を氷冷下にて30分間撹拌した。酢酸エチル(80mL)で希釈し、飽和塩化アンモニウム水溶液(50mL)、および水(50mL)を加えて、混合物を室温にて撹拌した。分液し、有機層を飽和食塩水(50mL)で洗浄した後、フェーズセパレーターに通して溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~95/5)にて精製することで、化合物2Ac(10.6g,3工程での収率75%)を得た。
MS(ESI): m/z = 763(M+H)
実施例12 化合物2Adの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-プリン-6-イル]ベンズアミド(本発明化合物4)
 化合物2Ac(5.60mg, 7.01mmol)のジクロロメタン(40mL)溶液に氷冷下、DIPEA(4.8mL,28.0mmol)と2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミダイト(4.7mL,21.0mmol)を加えて、混合物を室温にて4時間撹拌した。氷冷下にてエタノール(1.2mL,21.0mmol)を加え、混合物を室温にて5分間撹拌した。再び氷冷下とし、そこに飽和重曹水(20mL)、および飽和食塩水(20mL)を加えて撹拌し、有機層をフェーズセパレーターに通した。ろ液を減圧留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、67/33~10/90)にて精製することで、本発明化合物4としての化合物2Ad(5.44g, 収率77%)を得た。
MS(ESI): m/z = 964 (M+H)
ALNA[Bs]-Tの合成
Figure JPOXMLDOC01-appb-C000033
実施例13 化合物3Tbの合成
1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物2Ta(1.00g, 1.56mmol)にトルエンを加えて共沸した。残渣にジクロロメタン(5mL)及びトリエチルアミン(0.43mL,3.1mmol)を添加し、完溶させた。混合溶液を氷冷し、ベンゼンスルホニルクロリド(0.21mL,1.6mmol)を加え、混合物を氷冷下にて4時間撹拌した。反応液に5%炭酸カリウム水溶液(20mL)を添加して撹拌し、ジクロロメタン(5mL)で抽出した。水層をジクロロメタン(5mL)で混合し、抽出して、ジクロロメタンの有機層を合液し混合した。有機層を溶媒留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、40/60~20/80)にて精製することで、化合物3Tb(0.78g, 収率64%)を得た。
MS(ESI): m/z = 782 (M-H)
実施例14 化合物3Tcの合成
1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 実施例3と同様にして、化合物3Tb(0.78g, 0.99mmol)から化合物3Tc(0.59g, 収率84%)を合成した。
MS(ESI): m/z = 710 (M-H)
実施例15 化合物3Tdの合成
3-[[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロニルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物5)
 化合物3Tc(599mg, 0.765mmol)のアセトニトリル(3mL)溶液に、ジイソプロピルアンモニウム テトラゾリド(171mg, 0.996mmol)、3-ビス(ジイソプロピルアミノ)ホスファニロキシプロパンニトリル(0.36 mL, 1.1 mmol)を添加し、混合物を室温にて19時間撹拌した。反応液に酢酸エチル(10mL)、水(5mL)を添加し、撹拌後に水層を分離した。水層に酢酸エチル(10mL)を添加し、混合後に有機層を分離した。有機層を合液し混合し、40℃にて減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、67/33~10/90)にて精製することで、本発明化合物5としての化合物3Td(0.65g, 収率86%)を合成した。
MS(ESI): m/z = 912(M+H)
31P-NMR (CDCl3) δ: 149.68, 149.22
ALNA[Bs]-mCの合成
Figure JPOXMLDOC01-appb-C000034
実施例16 化合物3Cbの合成
N-[1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 実施例13と同様にして、国際公開第2017/047816号に記載の方法にて合成した化合物1b(1.00g, 1.34mmol)から化合物3mCb(0.85g, 収率71%)を合成した。
MS(ESI): m/z = 887 (M+H)
実施例17 化合物3mCbの合成
N-[1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 実施例14と同様にして、化合物3mCb(0.85g, 0.96mmol)から化合物3mCc(0.78g, 収率99%)を合成した。
MS(ESI): m/z = 813 (M+H)
実施例18 化合物3mCdの合成
N-[1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル)オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物6)
 実施例15と同様にして、化合物3mCc(0.78g, 0.89mmol)から、本発明化合物6としての化合物3mCd(0.53g, 収率55%)を合成した。
MS(ESI): m/z =1015(M+H)
31P-NMR (CDCl3) δ: 149.94, 149.34
ALNA[mU]-Tの合成
Figure JPOXMLDOC01-appb-C000035
実施例19 化合物4Tcの合成
(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-N-メチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 化合物1a(1.20g, 2.10mmol)をトルエン共沸し、残渣のテトラヒドロフラン(6mL)混合溶液にN-ジイソプロピル-N-エチルアミン(0.61mL,3.5mmol)を添加し、そこに、氷浴下でN-メチルカルバモイルクロリド(0.20g,2.2mmol)のテトラヒドロフラン溶液(1mL)を添加し、混合物を氷浴下で3時間撹拌した。反応液に5%重曹水(20mL)、酢酸エチル(10mL)を添加して撹拌し、酢酸エチルで抽出した。水層を酢酸エチル(10mL)で2度抽出して、有機層を合液し混合した。有機層を溶媒留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~97/3)にて精製することで、化合物4Tc(1.28g, 収率97%)を得た。
MS(ESI): m/z = 627 (M-H)
実施例20 化合物4Tdの合成
(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物7)
 実施例15と同様にして、化合物4Tc(1.16g, 1.8mmol)から、本発明化合物7としての化合物4Td(0.56g, 収率37%)を合成した。
MS(ESI): m/z = 828(M-H)
31P-NMR (CDCl3) δ: 149.31, 147.44
ALNA[mU]-mCの合成
Figure JPOXMLDOC01-appb-C000036
実施例21 化合物4mCaの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物1a(105.0g,184mmol)、5-メチルシトシン(69.0g,551mmol)、および1,2-ジクロロエタン(918mL)の混合液に、BSA(584mL,2390mmol)を18分間かけて滴下した。混合物を60℃に昇温し、20分間撹拌した。氷冷し内温を19.5度まで冷却した後、そこにTMSOTf(10mL,55.2mmol)を加え、混合物を60℃に昇温した。40分間撹拌した後、反応液を氷冷し、5%炭酸水素ナトリウム水溶液(525mL)を滴下した。次いで、そこにクロロホルム(1050mL)、15%塩化ナトリウム水溶液(525mL)を加えた。得られたスラリーをセライトろ過した後、ろ残をクロロホルム(525mL)にて洗浄することで、残渣とろ液を得た。残渣に酢酸エチル(2100mL)、水(2100mL)を加え、混合物を1時間撹拌した。これをセライトろ過した後、残渣を酢酸エチル(1050mL)にて洗浄し、ろ液を得た。ろ液を分液し、有機層を水(525mL)にて2回洗浄した。一方、ろ液は分液し、水層をクロロホルム(525mL)にて抽出した。有機層を合液し、水1050mLにて2回洗浄した。得られた有機層を減圧下濃縮し、淡黄色固体(125.6g)を得た。これにTHF(550mL)を加えて撹拌し、1M TBAF/THF溶液(276mL,276mmol)を加えた。室温にて3時間撹拌した後、反応液に水(550mL)を加えてクエンチし、さらにクロロホルム(550mL)を加えて分液した。水層を再度クロロホルム(275mL)にて抽出し、有機層を合液した。有機層を水で洗浄した後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、20/1~4/1)にて精製することで、化合物4mCa(69.62g, 収率62%)を得た。
MS(ESI): m/z = 593(M+Na)
実施例22 化合物4mCbの合成
(1R,3R,4R,7S)-3-(4-アミノ-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 化合物4mCa(1.00g, 1.75mmol)をトルエン共沸し、残渣のテトラヒドロフラン(5mL)混合溶液にトリエチルアミン(0.49mL,3.5mmol)を添加し、氷浴下でN-メチルカルバモイルクロリド(0.17g,1.8mmol)のテトラヒドロフラン溶液(1mL)を添加し、混合物を氷浴下で3時間撹拌した。反応液に水道水(15mL)、酢酸エチル(1mL)、クロロホルム(15mL)を添加して撹拌し、有機溶媒で抽出した。水層をクロロホルム(5mL)で抽出して、有機層を合液し混合した。有機層を硫酸マグネシウムで乾燥し、固体をろ過した。ろ液を溶媒留去により、化合物4mCb(1.18g,収率quant.)を得た。残渣は精製せずに次反応に用いた。
MS(ESI): m/z = 627 (M-H)
実施例23 化合物4mCcの合成
(1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 化合物4mCb(1.18g)をトルエン共沸し、残渣のテトラヒドロフラン(5mL)混合溶液に室温にて安息香酸無水物(0.51g,2.27mmol)、メタノール(0.01mL,0.25mmol)を添加し、混合物を外浴70℃で4時間撹拌した。そこに、5%重曹水(10mL)、酢酸エチル(10mL)を添加して撹拌し、有機溶媒で抽出した。水層を酢酸エチル(15mL)で抽出して、有機層を合液し混合した。有機層を溶媒留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~97/3)にて精製することで、化合物4mCc(0.99g, 収率77%)を得た。
MS(ESI): m/z = 731 (M-H)
実施例24 化合物4mCdの合成
(1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物8)
 実施例15と同様にして、化合物4mCc(0.98g, 1.34mmol)から本発明化合物8としての化合物4mCd(0.96g, 収率77%)を合成した。
MS(ESI): m/z = 933 (M+H)
ALNA[mU]-Gの合成
Figure JPOXMLDOC01-appb-C000037
実施例25 化合物4Gaの合成
[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート 化合物1a(30.5g, 53.4mmol)と[2-(2-メチルプロパノイルアミノ)-9H-プリン-6-イル]N,N-ジフェニルカルバメート(26.7g,64.1mmol)のトルエン(267mL)懸濁液にBSA(91mL,372mmol)を20分間ほどかけて滴下し、混合物を60℃に昇温し、5分間撹拌した。トルエン(100mL)を追加して、混合物をさらに60℃にて10分間撹拌した。そこにTMSOTf(1.03mL,5.34mmol)を加え、混合物を60℃にて20分間撹拌した。氷冷下、撹拌しながら、IPE(100mL)と飽和重曹水(50mL)、水(50mL)の混合液中に反応液を加え、混合物を2時間撹拌し、不溶物をろ去した。残渣をEtO(20mL)で2度洗浄した後、ろ液を分液し、有機層を水(50mL)、飽和食塩水(50mL)にて順次洗浄した。フェーズセパレーターに通し、減圧下、濃縮し、真空乾燥することで、粗成績体として4Ga(48.67g)を得た。
MS(ESI): m/z = 954(M+H)
実施例26 化合物4Gcの合成
[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート
 化合物4Ga(17.4g,18.6mmol)にTHF(100mL)を加えて溶解し、氷冷下にてDIPEA(4.87mL,28.0mmol)、N-メチルカルバモイルクロリド(1830mg,19.6mmol)を加えて、混合物を30分間撹拌した。そこに、飽和重曹水(100mL)、酢酸エチル(100mL)を順次加え、混合物を室温として5分間撹拌した。分液した後、有機層を水(50mL)、飽和食塩水(50mL)で順次洗浄した後、フェーズセパレーターに通して溶媒留去し、真空乾燥した。残渣にTHF(90mL)を加えて溶液とし、氷冷下にてTBAF(1M THF溶液、4.54mL,4.54mmol)を加えて、混合物を氷冷下にて20分間撹拌した。酢酸エチル(100mL)で希釈し、飽和塩化アンモニウム水溶液(50mL)、および水(50mL)を加えて、混合物を室温として5分間撹拌した。分液し、有機層をフェーズセパレーターに通して溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~95/5)にて精製することで、化合物4Gc(9030mg,3工程での収率54%)を得た。
MS(ESI): m/z = 919(M+H)
実施例27 化合物4Gdの合成
[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(メチルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物9)
 実施例12と同様にして、化合物4Gc(9020mg, 9.82mmol)から、本発明化合物9としての化合物4Cd(8700mg, 収率79%)を合成した。
MS(ESI): m/z = 1197 (M+H)
ALNA[mU]-Aの合成
Figure JPOXMLDOC01-appb-C000038
実施例28 化合物4Aaの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド 化合物1a(30.0g, 52.5mmol)とN-(9H-プリン-6-イル)ベンズアミド(15.0g,62.7mmol)のトルエン(500mL)懸濁液にBSA(90mL,368mmol)を滴下し、混合物を80℃に昇温し、20分間撹拌した。そこに、氷冷下にて、TMSOTf(1.0mL,5.17mmol)を加え、混合物を60℃にて20分間撹拌した。氷冷下、撹拌しているIPE(200mL)と飽和重曹水(200mL)の混合液中に反応液を加え、混合物を20分間撹拌し、不溶物をろ去した。ろ残をEtO(40mL)で2度洗浄した後、ろ液を分液し、飽和食塩水にて洗浄した。有機層を硫酸ナトリウムにて乾燥した後、不溶物をろ去し、減圧下、濃縮し、真空乾燥することで粗成績体として4Aa(40.5g)を得た。
MS(ESI): m/z = 757(M+H)
実施例29 化合物4Abの合成
(1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-N-メチル-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 粗成績体4Aa(8.20g)にTHF(87mL)を加えて溶解し、そこに室温にてDIPEA(3.00mL,17.2mmol)、N-メチルカルバモイルクロリド (970mg,10.4mmol)を順次加えて、混合物を30分間撹拌した。そこに、酢酸エチル(100mL)、飽和重曹水(50mL)、水(50mL)を加え、分液した後、有機層を飽和食塩水(50mL)で洗浄し、フェーズセパレーターに通して溶媒留去し、真空乾燥することで、粗成績体4Ab(8.70g)を得た。
MS(ESI): m/z = 813(M-H)
実施例30 化合物4Acの合成
(1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-ヒドロキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 粗成績体4Ab(8.00g)にTHF(100mL)を加えて溶液とし、氷冷下にてTBAF(1M THF溶液、5.00mL,5.00mmol)を加えて、混合物を氷冷下にて1時間撹拌した。混合物を酢酸エチル(80mL)で希釈し、飽和塩化アンモニウム水溶液(50mL)、および水(50mL)を加えて、室温にて撹拌した。分液し、有機層を飽和食塩水(50mL)で洗浄した後、フェーズセパレーターに通して溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~97/3)にて精製することで、化合物4Ac(6100mg,3工程での収率84%)を得た。
MS(ESI): m/z = 742(M+H)
実施例31 化合物4Adの合成
(1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物10)
 実施例12と同様にして4Ac(6100mg, 8.20mmol)から、本発明化合物10としての4Ad(3830mg,収率48%)を得た。
MS(APCI): m/z = 942(M+H)
ALNA[ipU]-Tの合成
Figure JPOXMLDOC01-appb-C000039
実施例32 化合物5Tcの合成
(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-ヒドロキシ-N-イソプロピル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 化合物1a(1500mg, 2.624mmol)のジクロロメタン(26mL)溶液に、氷冷下で2-イソシアナートプロパン(0.27ml, 2.7mmol)を加えて、混合物を室温で1時間撹拌した。そこに、酢酸エチル(10mL)、飽和重層水(20mL)の混合液を加えて、分液後、水層を酢酸エチル10mLで2回抽出し、合わせた有機層を飽和食塩水10mLで洗浄した。有機層を無水硫酸ナトリウムで乾燥し、ろ過後、溶媒留去した。シリカゲルカラムクロマトグラフィー精製(ヘキサン/酢酸エチル、50/50~0/100)を行うことで、化合物5Tc(1904mg,収率quant.)を得た。
MS(ESI): m/z = 656(M-H)
実施例33 化合物5Tdの合成
(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物11)
 実施例4と同様にして化合物5Tc(2020mg, 2.85mmol)から、本発明化合物11としての化合物5Td(1272.9mg, 収率52%)を得た。
MS(ESI): m/z = 855(M-H)
ALNA[ipU]-mCの合成
Figure JPOXMLDOC01-appb-C000040
実施例34 化合物5mCcの合成
(1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-ヒドロキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 国際公開第2017/047816号に記載の方法にて合成した化合物1c(1300mg, 1.657mmol)から化合物5mCc(1168mg, 収率93%)を得た。
MS(ESI): m/z = 761(M+H)
実施例35 化合物5mCdの合成
(1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物12)
 実施例4と同様にして化合物5mCc(1168mg, 1.378mmol)から、本発明化合物12としての化合物5mCd(1002.8mg, 収率75%)を得た。
MS(ESI): m/z = 961(M+H)
ALNA[ipU]-Gの合成
Figure JPOXMLDOC01-appb-C000041
実施例36 化合物5Gcの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-(イソプロピルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート
 国際公開第2017/047816号の実施例に記載の方法に従って合成した化合物1d(2.42g, 2.81mmol)のジクロロメタン(28mL)溶液に、氷冷下でイソシアン酸イソプロピル(0.31mL,3.09mmol)を加えて、混合物を室温で3時間撹拌した。反応液に飽和重曹水を加えて撹拌し、フェーズセパレーターを通した後、溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、50/50~20/80)にて精製することで、化合物5Gc(1.41g,収率53%)を得た。
MS(ESI): m/z = 948(M+H)
実施例37 化合物5Gdの合成
[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(イソプロピルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート(本発明化合物13)
 実施例4と同様にして化合物5Gc(1.41g,1.49mmol)から、本発明化合物13としての化合物5Gd(1.20g, 収率70%)を得た。
MS(ESI): m/z = 1148(M+H)
31P-NMR (CDCl3) δ: 149.42, 149.39
ALNA[ipU]-Aの合成
Figure JPOXMLDOC01-appb-C000042
実施例38 化合物5Acの合成
 (1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-カルボキサミド
 化合物1a(10.0g, 17.5mmol)とN-(9H-プリン-6-イル)ベンズアミド(5.0g,21.0mmol)のトルエン(175mL)懸濁液にBSA(30mL,122mmol)を滴下し、混合物を60℃に昇温し10分撹拌したのち、そこにTMSOTf(0.34mL,1.8mmol)を加え、60℃で15分間撹拌した。氷冷下、撹拌しながらIPE(100mL)と飽和重曹水(100mL)の混合液中に反応液を加え、混合物を20分間撹拌し、不溶物をろ去した。ろ残をEtO(10mL)で洗浄した後、ろ液を分液し、飽和食塩水にて洗浄した。有機層を硫酸ナトリウムにて乾燥した後、不溶物をろ去し、減圧下、濃縮した。残渣にジクロロメタン(162mL)を加えて溶解し、室温にてイソシアン酸イソプロピル(1.8mL,18mmol)を加えて、混合物を60分間撹拌した。そこに、酢酸エチル(100mL)、飽和重曹水(50mL)、水(50mL)を加え、分液した後、有機層を飽和食塩水(50mL)で洗浄し、硫酸ナトリウムで乾燥、ろ過後、溶媒留去した。残渣にTHF(162mL)を加えて溶液とし、氷冷下にてTBAF(1M THF溶液、2.39mL,8.11mmol)を加えて、混合物を室温にて24時間撹拌した。酢酸エチル(80mL)で希釈し、飽和塩化アンモニウム水溶液(50mL)、および水(50mL)を加えて、混合物を室温にて撹拌した。分液し、有機層を飽和食塩水(50mL)で洗浄した後、硫酸ナトリウムで乾燥、ろ過後、溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル、50/50~0/100)にて精製することで、化合物5Ac(10.1g,3工程での収率77%)を得た。
MS(ESI): m/z = 770(M+H)
実施例39 化合物5Adの合成
(1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物14)
 実施例4と同様にして化合物5c(7.0g,9.09mmol)から、本発明化合物14としての化合物5d(4.6g, 収率51%)を得た。
MS(ESI): m/z = 970(M+H)
31P-NMR (CDCl3) δ: 149.4
ALNA[dmU]-Tの合成
Figure JPOXMLDOC01-appb-C000043
実施例40 化合物6Tcの合成
(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-N,N-ジメチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 化合物1a(1512mg, 2.645mmol)のテトラヒドロフラン(26mL)溶液に、ジイソプロピルエチルアミン(0.483ml, 2.773mmol)を加えて氷冷したのち、そこにN,N-ジメチルカルバモイルクロリド(0.255mL, 2.77mmol)を加えた。混合物を室温に昇温したのち、N,N-ジメチルホルムアミド(1mL, 12.9mmol)を加えて、混合物を4時間撹拌した。そこに、酢酸エチル(10mL)、飽和重層水(20mL)の混合液を加えて撹拌し、分液後、水層を酢酸エチル10mLで2回抽出し、合わせた有機層を飽和食塩水10mLで洗浄した。有機層を無水硫酸ナトリウムで乾燥し、ろ過後、溶媒留去した。シリカゲルカラムクロマトグラフィー精製(ヘキサン/酢酸エチル、50/50~0/100)を行うことで、化合物6Tc1(1705mg, 収率quant.)を得た。
MS(ESI): m/z = 642(M-H)
実施例41 化合物6Tdの合成
(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物15)
 実施例4と同様にして化合物6Tc(1758mg, 2.735mmol)から、本発明化合物15としての化合物6Td(1565mg, 収率68%)を得た。
MS(ESI): m/z = 842(M-H)
ALNA[dmU]-mCの合成
Figure JPOXMLDOC01-appb-C000044
実施例42 化合物6mCcの合成
(1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-N,N-ジメチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド
 化合物1c(1300mg, 1.657mmol)のテトラヒドロフラン(16.6mL)溶液に、ジイソプロピルエチルアミン(0.317mL, 1.820mmol)を加えて氷冷したのち、そこにN,N-ジメチルカルバモイルクロリド(0.168mL, 1.83mmol)を加えて、混合物を室温にて10分間撹拌した。混合物を2時間加熱還流したのち、室温で酢酸エチル(10mL)、飽和重層水(20mL)の混合液に加え、分液後、水層を酢酸エチル10mLで2回抽出し、合わせた有機層を飽和食塩水10mLで洗浄した。有機層を無水硫酸ナトリウムで乾燥し、ろ過後、溶媒留去した。シリカゲルカラムクロマトグラフィー精製(ヘキサン/酢酸エチル、70/30~30/70)を行うことで、化合物6mCc(1705mg, 収率79%)を得た。
MS(ESI): m/z = 747(M+H)
実施例43 化合物6mCdの合成
(1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド(本発明化合物16)
 実施例4と同様にして化合物6mCc(1019mg, 1.312mmol)から、本発明化合物16としての化合物6mCd(936.5mg, 収率76%)を得た。
MS(ESI): m/z = 947(M+H)
ALNA[2Pym]-Tの合成
Figure JPOXMLDOC01-appb-C000045
実施例44 化合物7Tcの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物1a(2.00g,3.50mmol)、2-クロロピリミジン(1.20g,10.5mmol)、DIPEA(3.05mL,17.5mmol)、DMSO(17.5mL)の混合物を、窒素雰囲気下130℃で6時間撹拌した。反応液に酢酸エチルを加え、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去後、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物7Tc(1.74 g,収率77%)を得た。
HRMS(MALDI): C3635での計算値[M+Na]+: 672.2429, 実測値: 672.2427
実施例45 化合物7Tdの合成
3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物17)
 化合物7Tc(1.73g,2.66mmol)、ジクロロメタン(13mL)、DIPEA(1.39mL,7.98mmol)の混合物に、氷冷下にて2-シアノエチル N,N-ジイソプロピルクロロホスホロアミミド(1.19mL,5.32mmol)を加え、混合物を窒素雰囲気下、室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、減圧下溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=60/40~10/90、Diol:ヘキサン/酢酸エチル=70/30~20/80、NH:クロロホルム/メタノール=100/0~95/5)にて精製し、本発明化合物17としての化合物7Td(1.53g,収率68%)を得た。
HRMS(FAB): C4552Pでの計算値[M+H]+: 850.3693, 実測値: 850.3699
31P-NMR (CDCl3) δ: 148.72, 148.83
ALNA[2Pym]-mCの合成
Figure JPOXMLDOC01-appb-C000046
実施例46 化合物7mCaの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物7Ta(3.68g,5.67mmol)、DMAP(69.3mg,0.567mmol)、ピリジン(28mL)の混合物に、無水酢酸(0.804mL,8.51mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去、減圧下濃縮した。酢酸エチルでピリジンを共沸後、ジイソプロピルエーテルでトリチュレートし、化合物7mCa(3.49g,収率89%)を得た。
HRMS(FAB): C3838での計算値 [M+H]+: 692.2720, 実測値: 692.2713
実施例47 化合物7mCbの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-[5-メチル-2-オキソ-4-(1,2,4-トリアゾール-1-イル)ピリミジン-1-イル]-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物7mCa(3.46g,5.00mmol)、1,2,4-トリアゾール(3.11g,45.0mmol)、DIPEA(8.71mL,50.0mmol)およびアセトニトリル(50mL)の混合物に、氷冷下、オキシ塩化リン(0.792mL,8.50mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去、減圧下濃縮した。ジイソプロピルエーテルでトリチュレートし、化合物7mCb1(3.40g,収率92%)を得た。
HRMS(FAB): C4038での計算値 [M+H]+: 743.2942, 実測値: 743.2945
実施例48 化合物7mCcの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチルピリミジン-2-オン
 化合物7mCb(3.40g,4.58mmol)、アセトニトリル(46mL)の混合物に、28%アンモニア水(31mL)を加え、混合物を室温で3日間撹拌した。反応液に水を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去、減圧下濃縮した。ジイソプロピルエーテルと少量の酢酸エチルでトリチュレートし、化合物7mCc(2.65g,収率89%)を得た。
HRMS(FAB): C3636での計算値 [M+H]+: 649.2775, 実測値: 649.2766
実施例49 化合物7mCdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物7mCc(2.62g,4.04mmol)、DMF(20mL)の混合物に、無水安息香酸(959mg,4.24mmol)を加え、混合物を窒素雰囲気下、室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物7mCd(1.42g,収率47%)を得た。
HRMS(FAB): C4340での計算値 [M+H]+:753.3037, 実測値: 753.3035
実施例50 化合物7mCeの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物18)
 化合物7mCd(1.40g,1.86mmol)、ジクロロメタン(9mL)、DIPEA(0.972mL,5.58mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(0.830mL,3.72mmol)を加え、混合物を窒素雰囲気下、室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=80/20~30/70、NH:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物18としての化合物7mCe(1.01g,収率57%)を得た。
HRMS(FAB): C5257Pでの計算値 [M+Na]+: 975.3935, 実測値: 975.3931
31P-NMR (CDCl3) δ: 149.17, 149.23
ALNA[2Pym]-Gの合成
Figure JPOXMLDOC01-appb-C000047
実施例51 化合物7Gcの合成
N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-ホルムアミジン
 化合物1d(3.00g, 3.50mmol)のメタノール(20mL)、およびTHF(20mL)溶液に28%アンモニア水(40mL)を加えた。メタノール(20mL)、およびTHF(20mL)を加えて、混合物を室温にて16時間静置した。40%メチルアミンのメタノール溶液(40mL)を加えて、混合物を室温に4時間静置した。溶媒留去した後、トルエンで共沸し、減圧乾燥した。残渣にDMSO(35mL)を加えて溶解し、そこにDIPEA(4.8mL,28.0mmol)、および2-フルオロピリミジン(0.66mL,10.5mmol)を加えて、混合物を80℃にて2時間撹拌した後、100℃にて2時間撹拌した。そこに2-フルオロピリミジン(0.66mL,10.5mmol)を追加して、混合物をさらに100℃にて2時間撹拌した。そこに2-フルオロピリミジン(0.22mL,3.5mmol)、DIPEA(1.6mL,9.3mmol)を再度追加して、混合物を100℃にて2時間撹拌した。反応液にN,N-ジメチルホルムアミドジメチルアセタール(2.3mL,17.0mmol)を加えて室温にて撹拌した。1時間後、酢酸エチル(200mL)、飽和重曹水(20mL)、水(80mL)を加えて分液した。有機層を水(50mL)にて3回洗浄した後、飽和食塩水にて洗浄した。硫酸ナトリウムで乾燥した後、不溶物をろ去して減圧下溶媒留去した。さらに分液時の水層をクロロホルム(100mL)にて3回抽出し、水(100mL)、飽和食塩水にて洗浄した。クロロホルム層を硫酸ナトリウムにて乾燥した後、不溶物をろ去して減圧下溶媒留去し、先の抽出物と合わせてシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~92/8)にて精製することで化合物7Gc(1.66g,3工程での収率65%)を得た。
MS(ESI): m/z = 731(M+H)+
実施例52 化合物7Gdの合成
N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-6-ホルムアミジン(本発明化合物19)
 実施例4と同様にして化合物7Gc(1.58g,2.16mmol)から、本発明化合物19としての化合物7Gd(1.07g,収率53%)を得た。
MS(ESI): m/z = 931(M+H)+
ALNA[2Pym]-Aの合成
Figure JPOXMLDOC01-appb-C000048
実施例53 化合物7Aaの合成
N-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド
 国際公開第2017/047816号に記載の方法にて合成した化合物1e(500mg,0.730mmol)、2-フルオロピリミジン(215mg,2.19mmol)、DIPEA(0.509mL,2.92mmol)、DMSO(7mL)の混合物を、窒素雰囲気下130℃で7時間撹拌した。反応液に酢酸エチルを加え、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去して減圧下溶媒留去し濃縮した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、化合物7Aa(207mg,収率37%)を得た。
HRMS(MALDI): C4338での計算値[M+Na]+: 785.2807, 実測値: 785.2807
実施例54 化合物7Abの合成
N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド(本発明化合物20)
 化合物7Aa(126mg,0.165mmol)、ジクロロメタン(3mL)、DIPEA(86.2μL,0.495mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(73.6μL,0.330mmol)を加え、混合物を窒素雰囲気下室温で5時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(NH:ヘキサン/酢酸エチル=50/50~0/100、SiO:ヘキサン/酢酸エチル=50/50~0/100、ジオール:ヘキサン/酢酸エチル=60/40~10/90)にて精製し、本発明化合物20としての化合物7Ab(110mg,収率69%)を得た。
HRMS(MALDI): C525510Pでの計算値 [M+Na]+: 985.3885,実測値: 985.3878
31P-NMR (CDCl3) δ: 149.33, 149.47
ALNA[4Pym]-Tの合成
Figure JPOXMLDOC01-appb-C000049
実施例55 化合物8Taの合成1-[(1R,3R,4R,7S)-7-ベンジルオキシ-1-(ベンジルオキシメチル)-5-(6-クロロピリミジン-4-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 国際公開第2017/047816号に記載の方法にて合成した化合物1f(1.00g,2.22mmol)、4,6-ジクロロピリミジン(398mg,2.66mmol)、DIPEA(1.16mL,6.66mmol)、EtOH(20mL)の混合物(2バッチ)を、マイクロウェーブ照射下120℃で各バッチ毎に5時間撹拌した。バッチを合液し反応液の不溶物をろ取し、EtOHで洗浄することで、化合物8Ta(1.54g,収率62%)を得た。
HRMS(FAB): C2928ClNでの計算値 [M+H]+: 562.1857, 実測値: 562.1859
実施例56 化合物8Tbの合成
1-[(1R,3R,4R,7S)-5-(6-クロロピリミジン-4-イル)-7-ヒドロキシ-1-(ヒドロキシメチル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物8Ta(3.49g,6.21mmol)、ジクロロメタン(62mL)の混合物に、窒素雰囲気下-78℃でトリクロロボラン(1.0mol/L ジクロロメタン溶液、62mL,62.1mmol)を加え、混合物を徐々に室温まで昇温しながら終夜撹拌した。氷冷下、反応液にMeOH(62mL)をゆっくり加え、室温でしばらく撹拌した。反応液を濃縮後、酢酸エチルでトリチュレートし、化合物8Tb(3.27g)を粗体として得た。
HRMS(FAB): C1516ClNでの計算値[M+H]+: 382.0918, 実測値: 382.0919
実施例57 化合物8Tcの合成
1-[(1R,3R,4R,7S)-7-ヒドロキシ-1-(ヒドロキシメチル)-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物8Tb(3.27g,6.21mmol,粗体)、MeOH(62mL)に20%水酸化パラジウム(654mg,20wt%)を加え、混合物を水素雰囲気下室温で終夜撹拌した。反応液に水(31mL)を加えて不溶物を溶解させ、パラジウムをセライトろ過した。ろ液を濃縮し、水をトルエンで共沸した。残渣をMeOHでトリチュレートすることで、化合物8Tc(1.75g,2工程での収率81%)を得た。
HRMS(MALDI): C1517での計算値[M+H]+: 348.1302, 実測値: 348.1308
実施例58 化合物8Tdの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物8Tc(444mg,1.28mmol)、ピリジン(13mL)の混合物に、4,4-ジメトキシトリチルクロリド(520mg,1.54mmol)を加え、混合物を室温で終夜撹拌した。氷冷下、飽和炭酸水素ナトリウム水溶液に反応液を滴下し、そこに酢酸エチルを加えた。有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。ピリジンを酢酸エチルで共沸除去し、残渣をジイソプロピルエーテルでトリチュレートすることで、化合物8Td(652mg,収率78%)を得た。
HRMS(MALDI): C3635での計算値[M+H]+: 650.2609, 実測値: 650.2600
実施例59 化合物8Teの合成
3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物21)
 化合物8Td(300mg,0.462mmol)、ジクロロメタン(5mL)、DIPEA(322μL,1.85mmol)の混合物に、氷冷下2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(309μL,1.39mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10、ジオール:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物21としての化合物8Te(263mg,収率67%)を得た。
HRMS(FAB): C4552Pでの計算値[M+H]+: 850.3693, 実測値: 850.3685
31P-NMR (CDCl3) δ: 148.93, 149.47
ALNA[4Pym]-mCの合成
Figure JPOXMLDOC01-appb-C000050
実施例60 化合物8Caの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物8Td(234mg,0.360mmol)、DMAP(4.4mg,0.0360mmol)、ピリジン(3.6mL)の混合物に無水酢酸(51.1μL,0.540mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、5%硫酸銅水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をジイソプロピルエーテルでトリチュレートし、化合物8Ca(219mg,収率88%)を得た。
HRMS(FAB): C3837での計算値[M+H]+: 692.2720, 実測値: 692.2720
実施例61 化合物8Cbの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-[5-メチル-2-オキソ-4-(1,2,4-トリアゾール-1-イル)ピリミジン-1-イル)-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物8Ca(201mg,0.291mmol)、1,2,4-トリアゾール(181mg,2.62mmol)、DIPEA(507μL,2.91mmol)アセトニトリル(3mL)の混合物に、氷冷下オキシ塩化リン(46.1μL,0.494mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。ジイソプロピルエーテルでトリチュレートし、化合物8Cb(211mg,収率98%)を得た。
HRMS(FAB): C4038での計算値[M+H]+: 743.2942,実測値: 743.2939
実施例62 化合物8Ccの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物8Cb(613mg,0.825mmol)、アセトニトリル(8.3mL)の混合物に、28%アンモニア水(5.5mL)を加え、混合物を室温で終夜撹拌した。反応液のアセトニトリルを濃縮した。不溶物をろ取し、水で洗浄した。粗体を酢酸エチルで再度トリチュレートすることで、化合物8Cc(380mg,収率71%)を得た。
HRMS(FAB): C3636での計算値[M+H]+: 649.2775,実測値: 649.2773
実施例63 化合物8Cdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物8Cc(378mg,0.583mmol)、ピリジン(6mL)の混合物に、無水安息香酸(198mg,0.875mmol)を加え、混合物を室温で3日間撹拌した。反応液を濃縮し、残渣をカラムクロマトグラフィー(ジオール:0.5%トリエチルアミン-クロロホルム/メタノール=100/0~90/10、SiO:0.5%トリエチルアミン-クロロホルム/メタノール=100/0~90/10)にて精製し、化合物8Cd(247mg,収率56%)を得た。
HRMS(FAB): C4340での計算値[M+H]+: 753.3037, 実測値: 753.3040
実施例64 化合物8Ceの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物22)
 化合物8Cd(135mg,0.179mmol)、ジクロロメタン(2mL)、DIPEA(125μL,0.716mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(120μL,0.537mmol)を加え、混合物を窒素雰囲気下室温で2日間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=50/50~0/100、ジオール:ヘキサン/酢酸エチル=60/40~10/90、NH:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物22としての化合物8Ce(61.9mg,収率36%)を得た。
HRMS(FAB): C5257Pでの計算値[M+H]+: 953.4115, 実測値: 953.4109
31P-NMR (CDCl3) δ: 149.65, 150.24
ALNA[4-CF-2Pym]-Tの合成
Figure JPOXMLDOC01-appb-C000051
実施例65 化合物9Taの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物1a(500mg,0.875mmol)、2-クロロ-4-トリフルオロピリミジン(239mg,1.31mmol)、DIPEA(457μL,2.63mmol)、EtOH(4.4mL)の混合物を、マイクロウェーブ照射下120℃で30分間撹拌した。反応液に2-クロロ-4-トリフルオロピリミジン(239mg,1.31mmol)、DIPEA(457μL,2.63mmol)を追加し、混合物をマイクロウェーブ照射下120℃で1時間撹拌した。反応液を濃縮し、酢酸エチルを加え、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物9Ta(545mg,収率87%)を得た。
HRMS(FAB): C3734での計算値[M+H]+: 718.2489, 実測値: 718.2491
実施例66 化合物9Tbの合成
3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物23)
 化合物9Ta(527mg,0.734mmol)、ジクロロメタン(7mL)、DIPEA(384μL,2.20mmol)の混合物に、氷冷下2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(328μL,1.47mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=80/20~30/70、ジオール:ヘキサン/酢酸エチル=70/30~20/80)にて精製し、本発明化合物23としての化合物9Tb(530mg,収率79%)を得た。
HRMS(FAB): C4651Pでの計算値[M+H]+: 918.3567, 実測値: 918.3568
31P-NMR (CDCl3) δ: 149.04, 149.12, 149.20, 149.47
ALNA[4-CF-2Pym]-Gの合成
Figure JPOXMLDOC01-appb-C000052
実施例67 化合物9Caの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物4Ca(500mg,0.876mmol)、2-クロロ-4-トリフルオロピリミジン(317μL,2.63mmol)、DIPEA(610μL,3.50mmol)、EtOH(4.4mL)の混合物を、マイクロウェーブ照射下150℃で1時間撹拌した。反応液を濃縮し、酢酸エチルを加え、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物9Ca(186mg,収率30%)を得た。
HRMS(FAB): C3735での計算値[M+H]+: 717.2648, 実測値: 717.2651
実施例68 化合物9Cbの合成N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物9Ca(395mg,0.551mmol)、DMF(5.5mL)の混合物に、無水安息香酸(131mg,0.579mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/15)にて精製し、化合物9Cb(335mg,収率74%)を得た。
HRMS(FAB): C4439での計算値[M+H]+: 821.2911, 実測値: 821.2932
実施例69 化合物9Ccの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアンエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物24)
 化合物9Cb(316mg,0.385mmol)、ジクロロメタン(4mL)、DIPEA(201μL,1.16mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(172μL,0.770mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=100/0~50/50、Diol:ヘキサン/酢酸エチル=100/0~50/50)にて精製し、本発明化合物24としての化合物9Cc(227mg,収率58%)を得た。
HRMS(FAB): C5356Pでの計算値[M+H]+: 1021.3989, 実測値: 1021.3993
31P-NMR (CDCl3) δ: 149.15, 149.28, 149.36, 149.60
ALNA[5-Cl-2Pym]-Gの合成
Figure JPOXMLDOC01-appb-C000053
実施例70 化合物10Taの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物1a(500mg,0.875mmol)、2,5-ジクロロピリミジン(196mg,1.31mmol)、DIPEA(457μL,2.63mmol)、EtOH(4.4mL)の混合物を、マイクロウェーブ照射下150℃で1時間撹拌した。反応液の不溶物をクロロホルムで溶解させ、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物10Ta(263mg,収率44%)を得た。
HRMS(FAB): C3634ClNでの計算値[M+H]+: 684.2225, 実測値: 684.2226
実施例71 化合物10Tbの合成
3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物25)
 化合物10Ta(240mg,0.351mmol)、ジクロロメタン(3.5mL)、DIPEA(183μL,1.05mmol)の混合物に、氷冷下2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(157μL,0.702mmol)を加え、混合物を窒素雰囲気下室温で4日間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=70/30~20/80、ジオール:ヘキサン/酢酸エチル=70/30~20/80)にて精製し、本発明化合物25としての化合物10Tb(201mg,収率65%)を得た。
HRMS(FAB): C4551ClNPでの計算値[M+H]+: 884.3304, 実測値: 884.3303
31P-NMR (CDCl3) δ: 149.12
ALNA[5-Cl-2Pym]-mCの合成
Figure JPOXMLDOC01-appb-C000054
実施例72 化合物10mCaの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物4Ca(500mg,0.876mmol)、2,5-ジクロロピリミジン(391mg,2.63mmol)、DIPEA(610μL,3.50mmol)、EtOH(4.4mL)の混合物(2バッチ)を、各バッチ毎にマイクロウェーブ照射下150℃で1時間撹拌した。反応液を濃縮し、水を加え、クロロホルムで抽出した。合わせた有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物10mCa(381mg,収率32%)を得た。
HRMS(FAB): C3635ClNでの計算値[M+H]+: 683.2385, 実測値: 683.2389
実施例73 化合物10mCbの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物10mCa(375mg,0.549mmol)、DMF(5.5mL)の混合物に、無水安息香酸(130mg,0.576mmol)を加え、混合物を室温で終夜撹拌した。反応液に無水安息香酸(24.8mg,0.110mmol)を追加し、さらに室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物10mCb(422mg,収率98%)を得た。
HRMS(MALDI): C4339ClNでの計算値[M+Na]+: 809.2461, 実測値: 809.2463
実施例74 化合物10mCcの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-4-イル]ベンズアミド(本発明化合物26)
 化合物10mCb(409mg,0.520mmol)、ジクロロメタン(5mL)、DIPEA(272μL,1.56mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(232μL,1.04mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=100/0~50/50、ジオール:ヘキサン/酢酸エチル=100/0~50/50)にて精製し、本発明化合物26としての化合物10mCc(264mg,収率51%)を得た。
HRMS(MALDI): C5256ClNPでの計算値[M+Na]+: 1009.3540, 実測値: 1009.3521 
31P-NMR (CDCl3) δ: 149.28
ALNA[6-NMe-4Pym]-Tの合成
Figure JPOXMLDOC01-appb-C000055
実施例75 化合物11Taの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(6-クロロピリミジン-4-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物1a(1.00g,1.75mmol)、4,6-2-ジクロロピリミジン(391mg,2.63mmol)、DIPEA(914μL,5.25mmol)、EtOH(18mL)の混合物を、マイクロウェーブ照射下120℃で1時間撹拌した。反応液を濃縮し、残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物11Ta(1.00g,収率84%)を得た。
HRMS(FAB): C3634ClNでの計算値[M+H]+: 684.2225, 実測値: 684.2214
実施例76 化合物11Tbの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[6-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物11Ta(500mg,0.731mmol)、DIPEA(637μL,3.66mmol)、EtOH(5mL)の混合物に、ジメチルアミン塩酸塩(179mg,2.19mmol)を加え、マイクロウェーブ照射下150℃で30分間撹拌した。不溶物をろ取することで、化合物11Tb(386mg,収率76%)を得た。
HRMS(FAB): C3840での計算値[M+H]+: 693.3037, 実測値: 693.3030
実施例77 化合物11Tcの合成
3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[6-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミン)ホスファニル]オキシプロパンニトリル(本発明化合物27)
 化合物11Tb(335mg,0.484mmol)、ジクロロメタン(5mL)、DIPEA(253μL,1.45mmol)の混合物に、氷冷下2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(216μL,0.968mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液にDMF(2mL)を加え、窒素雰囲気下室温で終夜撹拌した。反応液にDIPEA(253μL,1.45mmol)、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(216μL,0.968mmol)を追加し、混合物を窒素雰囲気下室温で2日間撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10、Diol:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物27としての化合物11Tc(189mg,収率44%)を得た。
HRMS(FAB): C4757Pでの計算値[M+H]+: 893.4115, 実測値: 893.4115
31P-NMR (CDCl3) δ: 148.83, 148.99
ALNA[6-NMe-4Pym]-mCの合成
Figure JPOXMLDOC01-appb-C000056
実施例78 化合物11mCaの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(6-クロロピリミジン-4-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物4mCa1(2.00g,3.50mmol)、4,6-ジクロロピリミジン(626mg,4.20mmol)、DIPEA(1.83mL,10.5mmol)、EtOH(17.5mL)の混合物を、100℃で4時間撹拌した。反応液を濃縮し、水を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物11mCa(1.34g,収率56%)を得た。
HRMS(FAB): C3635ClNでの計算値[M+H]+: 683.2385, 実測値: 683.2384
実施例79 化合物11mCbの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[6-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物11mCa(1.12g,1.64mmol)、ジメチルアミン(50%水溶液, 863μL,8.20mmol)、EtOH(11mL)の混合物を、マイクロウェーブ照射下150℃で30分間撹拌した。反応液を濃縮し、残渣をカラムクロマトグラフィー(NH:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物11mCb(1.09g,収率96%)を得た。
HRMS(MALDI): C3841での計算値[M+Na]+: 714.3011, 実測値: 714.3003
実施例80 化合物11mCcの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[6-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物11mCb(1.08g,1.56mmol)、DMF(8mL)の混合物に、無水安息香酸(389mg,1.72mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物11mCc(1.02g,収率82%)を得た。
HRMS(MALDI): C4545での計算値[M+H]+: 796.3453, 実測値: 796.3466
実施例81 化合物11mCdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[(6-ジメチルアミノ)ピリミジン-4-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物28)
 化合物11mCc(972mg,1.22mmol)、ジクロロメタン(12 mL)、DIPEA(637μL,3.66mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(545μL,2.44mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=50/50~0/100、NH:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物28としての化合物11mCd(788mg,収率65%)を得た。
HRMS(MALDI): C5462Pでの計算値[M+H]+: 996.4532, 実測値: 996.4513 
31P-NMR (CDCl3) δ: 149.06, 149.17
ALNA[2-NMe-4Pym]-Tの合成
Figure JPOXMLDOC01-appb-C000057
実施例82 化合物12Taの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(2-クロロピリミジン-4-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物1a(2.00g,3.50mmol)、2,4-ジクロロピリミジン(782mg,5.25mmol)、DIPEA(1.83mL,10.5mmol)、EtOH(17.5mL)の混合物を、100℃で4.5時間撹拌した。反応液を濃縮し、水を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物12Ta(1.86g,収率78%)を得た。
HRMS(FAB): C3634ClNでの計算値[M+H]+: 684.2225, 実測値: 684.2223
実施例83 化合物12Tbの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物12Ta(500mg,0.731mmol)、DIPEA(637μL,3.66mmol)、EtOH(5mL)の混合物に、ジメチルアミン塩酸塩(179mg,2.19mmol)を加え、マイクロウェーブ照射下150℃で30分間撹拌した。反応液を濃縮し、残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製した。ジイソプロピルエーテルでトリチレートし、化合物12Tb(648mg)を粗体として得た。
HRMS(FAB): C3840での計算値[M+H]+: 693.3037,実測値: 693.3041
実施例84 化合物12Tcの合成
3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)オキシプロパンニトリル(本発明化合物29)
 化合物12Tb(638mg,0.731mmol,粗体)、ジクロロメタン(7mL)、DIPEA(382μL,2.19mmol)の混合物に、氷冷下2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(326μL,1.46mmol)を加え、混合物を窒素雰囲気下室温で5日間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10、ジオール:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物29としての化合物12Tc(304mg,2工程での収率47%)を得た。
HRMS(FAB): C4757Pでの計算値[M+H]+: 893.4115,実測値: 893.4128
31P-NMR (CDCl3) δ: 148.91, 149.33
ALNA[2-NMe-4Pym]-mCの合成
Figure JPOXMLDOC01-appb-C000058
実施例85 化合物12mCaの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(2-クロロピリミジン-4-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物4mCa(2.00g,3.50mmol)、2,4-ジクロロピリミジン(627mg,4.20mmol)、DIPEA(1.83mL,10.5mmol)、EtOH(17.5mL)の混合物を、100℃で3時間撹拌した。反応液を濃縮し、水を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物12mCa(1.28g,収率54%)を得た。
HRMS(MALDI): C3635ClNでの計算値[M+Na]+: 705.2199,実測値: 705.2194
実施例86 化合物12mCbの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物12mCa(941mg,1.38mmol)、ジメチルアミン(50%水溶液,725μL,6.90mmol)、EtOH(14mL,0.1M)の混合物を、マイクロウェーブ照射下150℃で30分間撹拌した。反応液を濃縮し、残渣をカラムクロマトグラフィー(NH:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物12mCb(784mg,収率82%)を得た。
HRMS(MALDI): C3841での計算値[M+H]+: 692.3191,実測値: 692.3167
実施例87 化合物12mCcの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物12mCb(754mg,1.09mmol)、DMF(5.5mL)の混合物に、無水安息香酸(271mg,1.20mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物12mCc(731mg,収率84%)を得た。
HRMS(MALDI): C4545での計算値[M+H]+:796.3453,実測値: 796.3440
実施例88 化合物12mCdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物30)
 化合物12mCc(709mg,0.891mmol)、ジクロロメタン(9mL)、DIPEA(466μL,2.67mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(397μL,1.78mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=50/50~0/100、NH:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物30としての化合物12mCd(482mg,収率54%)を得た。
HRMS(MALDI): C5462Pでの計算値[M+H]+: 996.4532, 実測値: 996.4526
31P-NMR (CDCl3) δ: 149.19, 149.46, 149.65
ALNA[Prz]-Tの合成
Figure JPOXMLDOC01-appb-C000059
実施例89 化合物13Taの合成
[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物1a(500mg,0.875mmol)、2-フルオロピラジン(201μL,2.63mmol)、DIPEA(610μL,3.50mmol)、DMSO(8.8mL)の混合物を、窒素雰囲気下140℃で1.5時間、150℃で4.5時間撹拌した。反応液に酢酸エチルを加え、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10、SiO:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、化合物13Ta(227mg,収率40%)を得た。
HRMS(MALDI): C3635での計算値[M+Na]+: 672.2429, 実測値: 672.2409
実施例90 化合物13Tbの合成
3-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物31)
 化合物13Ta(214mg,0.329mmol)、ジクロロメタン(6.6mL)、DIPEA(172μL,0.987mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(147μL,0.658mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=50/50~0/100、NH:酢酸エチル/メタノール=100/0~90/10)にて精製し、本発明化合物31としての化合物13Tb(204mg,収率73%)を得た。
HRMS(MALDI): C4552Pでの計算値[M+Na]+: 872.3507, 実測値: 872.3507
31P-NMR (CDCl3) δ: 149.12, 149.31
ALNA[Prz]-mCの合成
Figure JPOXMLDOC01-appb-C000060
実施例91 化合物13mCbの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物13Ta(746mg,1.15mmol)、DMAP(14.0mg,0.115mmol)、ピリジン(5.8mL)の混合物に無水酢酸(163μL,1.73mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。ピリジンを酢酸エチルで共沸除去し、残渣をジイソプロピルエーテルでトリチュレートし、化合物13mCb(712mg,収率90%)を得た。
HRMS(MALDI): C3837での計算値[M+Na]+: 714.2534, 実測値: 714.2520
実施例92 化合物13mCcの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2-オキソ-(4-1,2,4-トリアゾール-1-イル)ピリミジン-1-イル]-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物13mCb(692mg,1.00mmol)、1,2,4-トリアゾール(622mg,9.00mmol)、DIPEA(1.74mL,10.0mmol)アセトニトリル(10mL)の混合物に、氷冷下オキシ塩化リン(158μL,1.70mmol)を加え、混合物を窒素雰囲気下室温で1時間撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮することで、化合物13mCc(753 mg)を粗体として得た。
HRMS(MALDI): C4038での計算値[M+Na]+: 765.2756, 実測値: 765.2750
実施例93 化合物13mCdの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物13mCc(744mg,1.00mmol,粗体)、アセトニトリル(10mL)の混合物に、28%アンモニア水(6.7mL)を加え、混合物を室温で終夜撹拌した。反応液に水を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、濃縮することで、化合物13mCd(638mg,収率98%,2工程)を得た。
HRMS(MALDI): C3636での計算値[M+Na]+: 671.2589, 実測値: 671.2591
実施例94 化合物13mCeの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物13mCd(625mg,0.963mmol)、DMF(4.8mL)の混合物に、無水安息香酸(327mg,1.44mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物13mCe(245mg,収率34%)を得た。
HRMS(MALDI): C4340での計算値[M+Na]+: 775.2851, 実測値: 775.2845
実施例95 化合物13mCfの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物32)
 化合物13mCe(565mg,0.751mmol)、ジクロロメタン(7.5mL)、DIPEA(392μL,2.25mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(335μL,1.50mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=70/30~20/80、NH:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物32としての化合物13mCf(369mg,収率52%)を得た。
HRMS(MALDI): C5044での計算値[M+Na]+: 975.3929, 実測値: 975.3923
31P-NMR (CDCl3) δ: 149.25, 149.49
ALNA[Trz]-Tの合成
Figure JPOXMLDOC01-appb-C000061
実施例96 化合物14Taの合成
(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボチオアミド
 化合物1a(2.00g,3.50mmol)、THF(17.5mL)の混合物に、1,1-チオカルボニルジイミダゾール(1.25g,7.00mmol)を加え、混合物を室温で終夜撹拌した。反応液に28%アンモニア水(17.5mL)を加え、室温で終夜撹拌した。反応液を濃縮し、不溶物をろ取した。不溶物を水で洗浄することで、化合物14Ta(2.35g)を粗体として得た。
HRMS(MALDI): C3334での計算値[M+Na]+: 653.2040, 実測値: 653.2026
実施例97 化合物14Tbの合成
メチル (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキシミドチオエート
 化合物14Ta(2.35g,3.50mmol,粗体)、THF(17.5mL)の混合物に、ヨウ化メチル(654μL,10.5mmol)を加え、混合物を室温で2日間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~80/20)にて精製し、化合物14Tb(1.88g,2工程での収率83%)を得た。
HRMS(MALDI): C3436での計算値[M+H]+: 645.2377, 実測値: 645.2374
実施例98 化合物14Tcの合成
[(1R,3R,4R,7S)-5-[(Z)-N-アセチル-C-メチルスルファニル-カルボイミドリル]-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物14Tb(1.87g,2.90mmol)、DMAP(35.4mg,0.290mmol)、ピリジン(14.5mL)の混合物に無水酢酸(822μL,8.70mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、5%硫酸銅水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮することにより、化合物14Tc(2.11g,収率100%)を得た。
HRMS(MALDI): C3840Sでの計算値[M+Na]+: 751.2408, 実測値: 751.2398
実施例99 化合物14Tdの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物14Tc(1.66g,2.28mmol)、EtOH(23mL)の混合物に、メチルヒドラジン(1.20mL,22.8mmol)を加え、混合物を室温で終夜撹拌した。反応液を濃縮し、残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物14Td(985mg,収率65%)を得た。
HRMS(MALDI): C3638での計算値[M+Na]+: 689.2694, 実測値: 689.2684
実施例100 化合物14Teの合成
3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物33)
 化合物14Td(576mg,0.864mmol)、ジクロロメタン(8.6mL)、DIPEA(451μL,2.59mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(385μL,1.73mmol)を加え、混合物を窒素雰囲気下室温で2日間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=50/50~0/100、ジオール:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物33としての化合物14Te(517mg,収率69%)を得た。
HRMS(MALDI): C4555Pでの計算値[M+Na]+:889.3773 , 実測値: 889.3778
31P-NMR (CDCl3) δ: 148.40, 148.45
ALNA[Trz]-mCの合成
Figure JPOXMLDOC01-appb-C000062
実施例101 化合物14Caの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物14Td(918mg,1.38mmol)、DMAP(16.9mg,0.138mmol)、ピリジン(6.9mL)の混合物に無水酢酸(196μL,2.07mmol)を加え、混合物を室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮することで、化合物14Ca(955mg,収率98%)を得た。
HRMS(MALDI): C3840での計算値[M+Na]+: 731.2800, 実測値: 731.2791
実施例102 化合物14Cbの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-3-(5-メチル-2-オキソ-4-(1,2,4-トリアゾール-1-イル)ピリミジン-1-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物14Ca(915mg,1.29mmol)、1,2,4-トリアゾール(802mg,11.6mmol)、DIPEA(2.25mL,12.9mmol)、アセトニトリル(12.9mL)の混合物に、氷冷下オキシ塩化リン(204μL,2.19mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮することで、化合物14Cb(1.08g)を粗体として得た。
HRMS(MALDI): C4041での計算値[M+Na]+: 782.3021, 実測値: 782.3019
実施例103 化合物14Ccの合成
4-アミノ-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物14Cb(1.07g,1.29mmol,粗体)、アセトニトリル(12.9mL)の混合物に、28%アンモニア水(8.6mL)を加え、混合物を室温で終夜撹拌した。反応液に水を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、濃縮することで、化合物14Cc(748mg,2工程での収率87%)を得た。
HRMS(MALDI): C3639での計算値[M+Na]+: 688.2854, 実測値: 688.2857
実施例104 化合物14Cdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物14Cc(733mg,1.10mmol)、ピリジン(5.5mL)の混合物に、無水安息香酸(374mg,1.65mmol)を加え、混合物を室温で終夜撹拌した。反応液に2規定水酸化ナトリウム水溶液(5.5mL)を加え、混合物を室温で1時間撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物14Cd(744mg,収率88%)を得た。
HRMS(MALDI): C4343での計算値[M+Na]+: 792.3116, 実測値: 792.3111
実施例105 化合物14Ceの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物34)
 化合物14Cd(730mg,0.948mmol)、ジクロロメタン(9.5mL)、DIPEA(0.495mL,2.84mmol)の混合物に、氷冷下2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(0.423mL,1.90mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=50/50~0/100、NH:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物34としての化合物14Ce(672mg,収率73%)を得た。
HRMS(MALDI): C5260Pでの計算値[M+Na]+: 992.4195, 実測値: 992.4186
31P-NMR (CDCl3) δ: 148.50, 148.58
ALNA[Trz]-Gの合成
Figure JPOXMLDOC01-appb-C000063
実施例106 化合物14Gaの合成
(1R,3R,4R,7S)-3-(2-アミノ-6-オキソ-1H-プリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボチオアミド
 国際公開第2017/047816号に記載の方法にて合成した化合物1g(55.0g,58.9mmol)のTHF(270mL)溶液に、1,1-チオカルボニルジイミダゾール(21.0g,118mmol)を投入し、混合物を室温で2時間撹拌した。反応液に28%アンモニア水(270mL)を加え、混合物を室温で30分撹拌後に50℃にて46時間撹拌した。反応液にクロロホルム(700mL)を加え、しばらく撹拌後に有機層を分液し、無水硫酸ナトリウムで乾燥した。不溶物をろ去後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて粗精製した。得られた残渣を酢酸エチル(250mL)に溶解しトルエン(250mL)を加えた。溶媒を約300mL減圧留去し(固形物析出)、得られた懸濁液にジイソプロピルエーテル(IPE)(50mL)を加え、混合物を室温で30分間撹拌した。析出物を濾取し、濾取体をIPE(50mL)で洗浄後、減圧乾燥することにより、化合物14Ga(27.9g,収率72%)を得た。
MS(ESI):m/z=656[M+H]
実施例107 化合物14Gbの合成
メチル (1R,3R,4R,7S)-3-(2-アミノ-6-オキソ-1H-プリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキシイミドチオエート
 化合物14Ga(27.9g,42.5mmol)のTHF(400mL)溶液に氷冷下にてヨウ化メチル(4.24mL,68.1mmol)を滴下し、混合物を室温で24時間撹拌した。反応液を、重曹水(飽和重曹水(400mL)および水(400mL)より調製)およびクロロホルム(1400mL)の混液に撹拌しながら加えた。しばらく撹拌後に有機層を分液し、無水硫酸ナトリウムで乾燥した。セライト濾過し、濾液を減圧濃縮後にトルエン共沸することにより化合物14Gb(26.9g,収率82%)を得た。
MS(ESI):m/z=670[M+H]
実施例108 化合物14Gcの合成
[(1R,3R,4R,7S)-5-(N-アセチル-C-メチルスルファニル-カルボンイミドイル)-3-(2-アミノ-6-オキソ-1H-プリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物14Gb(26.9g,34.7mmol)のピリジン(100mL)溶液に無水酢酸(9.83mL,104mmol)およびDMAP(424mg,3.47mmol)を加え、混合物を室温で4時間撹拌した。反応液に酢酸エチル(400mL)および飽和重曹水(200mL)を加え、20分激しく撹拌後に有機層を分液した。有機層を水(2×200mL)および飽和食塩水(200mL)で洗浄後に無水硫酸ナトリウムで乾燥した。不溶物をろ去後、溶媒を減圧留去し、得られた残渣をトルエン共沸することにより、化合物14Gc(30.5g)を得た。精製は行わず、このまま次工程に供した。
MS(ESI):m/z=754[M+H]
実施例109 化合物14Gdの合成
N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-ホルムアミジン
 化合物14Gc(30.5g,35.9mmol)の1,4-ジオキサン(300mL)溶液にメチルヒドラジン(18.9mL,359mmol)を加え、混合物を室温で2時間撹拌し、さらに50℃で3時間撹拌した。反応液に水(100mL)を加え、減圧留去した。クロロホルム(250mL)を加え、しばらく緩やかに撹拌後にフェーズセパレーターに通し有機層を分液した。溶媒を減圧留去後にトルエン共沸した。得られた残渣をIPE(100mL)で懸濁し、超音波漕に20分間付けた後に析出物を濾取し、風乾後減圧乾燥した。
 得られた残渣のDMF(75mL,970mmol)溶液にN,N-ジメチルホルムアミド ジメチルアセタール(50mL,375mmol)を加え、混合物を室温にて2時間撹拌した。反応溶媒を減圧留去し、得られた濃縮残渣をシリカゲルカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10,SiO:酢酸エチル/メタノール=90/10~72/28)にて精製し、粗精製した。粗成績体を酢酸エチル(200mL)で懸洗し、ろ取した後、減圧乾燥することで化合物14Gd(11.2g,収率40%)を得た。
MS(ESI):m/z=748[M+H]
実施例110 化合物14Geの合成
N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-ホルムアミジン(本発明化合物35)
 化合物14Gd(6.00g,7.60mmol)のジクロロメタン(60mL)溶液に氷冷下にてDIPEA(5.30mL,30.6mmol)を加え、続いて2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(5.12mL,23.0mmol)を滴下し、混合物を室温で6時間撹拌した。反応液を氷冷し、飽和重曹水(120mL)およびクロロホルム(160mL)を加え15分激しく撹拌後に有機層を分液し、無水硫酸ナトリウムで乾燥した。不溶物をろ去後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(SiO:酢酸エチル/メタノール=100/0~84/16)にて精製し、本発明化合物35としての化合物14Ge(5.59g,収率74%)を得た。
MS(ESI):m/z=948[M+H]
31P-NMR (CDCl3) δ: 148.52, 148.59
ALNA[Trz]-Aの合成
Figure JPOXMLDOC01-appb-C000064
実施例111 化合物14Aaの合成
ベンゾトリアゾール-1-イル(ベンゾトリアゾール-2-イル)メタンイミン
Figure JPOXMLDOC01-appb-C000065
 ベンゾトリアゾール(7.70g,64.6mmol)のEtOH(135mL)溶液に氷冷下にて臭化シアン(3.41g,32.2mmol)のアセトン(15mL)溶液をゆっくり滴下し、続いて2規定水酸化ナトリウム水溶液(16.2mL,32.4mmol)をゆっくり滴下した。氷冷下で30分撹拌後に析出物を濾取し、濾取体を冷エタノール(80mL)で洗浄した。風乾後に減圧乾燥することにより、化合物14Aa(5.14g,収率61%)を得た。
1H NMR (400 MHz, CHLOROFORM-d) δ ppm 6.92 - 6.98 (m, 1 H) 7.46 - 7.55 (m, 2 H) 7.58 - 7.65 (m, 1 H) 7.77 (ddd, J=8.35, 7.06, 1.03 Hz, 1 H) 8.17 - 8.22 (m, 1 H) 8.22 - 8.27 (m, 1 H) 8.31 - 8.37 (m, 1 H) 9.67 (s, 1 H)
MS(ESI):未検出
実施例112 化合物14Aeの合成
(1R,3R,4R,7S)-3-(6-アミノプリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-オール
 N-(9H-プリン-6-イル)ベンズアミド(5.15g,21.5mmol)のトルエン(200mL)懸濁液に化合物1a(10.3g,17.9mmol)を少しずつ投入し、続いてBSA(38mL,120mmol)を加え、混合物を60℃にて30分間激しく撹拌した。同温度でTMSOTf(0.324mL,1.79mmol)を加え、混合物を60℃にて15分間撹拌した。反応液を氷水で冷却し、次いで氷冷したIPE(100mL)、水(100mL)および飽和重曹水(100mL)の混液に、激しく撹拌下にて反応液を加えた。20分間激しく撹拌後に不溶物をセライト濾去した。濾液の有機層を分液し、飽和食塩水(200mL)で洗浄後に無水硫酸ナトリウムで乾燥し、溶媒を留去して粗化合物14Gbの残渣を得た。
 得られた残渣のTHF(200mL)溶液に化合物14Aa(4.72g,17.9mmol)を加え、混合物を室温で92時間撹拌し、さらに50℃で9時間撹拌した。反応液に酢酸エチル(400mL)および飽和重曹水(200mL)を加え20分撹拌後に有機層を分液した。有機層を水(300mL)および飽和食塩水(100mL)で洗浄後に無水硫酸ナトリウムで乾燥し、不溶物をろ去後、溶媒を留去して、粗化合物14Gcの残渣を得た。
 得られた残渣のピリジン(65mL)溶液に無水酢酸(5.08mL,53.8mmol)およびDMAP(219mg,1.79mmol)を加え、混合物を室温で3時間撹拌した。反応液に酢酸エチル(400mL)および飽和重曹水(200mL)を加え、20分撹拌後に有機層を分液した。有機層を水(300mL)および飽和食塩水(100mL)で洗浄後に無水硫酸ナトリウムで乾燥した。不溶物をろ去後、溶媒を減圧留去した後にトルエン共沸して、粗化合物14Gdの残渣を得た。
 得られた残渣の1,4-ジオキサン(100mL)溶液に冷水で冷却下にてメチルヒドラジン(9.44mL,179mmol)を滴下し、混合物を室温で3時間撹拌した。50℃に昇温し、10時間撹拌した。反応液に水(100mL)を加えた後、減圧留去し、残渣をクロロホルム(2×150mL)で分液抽出した。有機層を併せ、飽和食塩水(100mL)で洗浄後に無水硫酸ナトリウムで乾燥した。不溶物をろ去した後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(NHシリカ:クロロホルム/メタノール=100/0~99/1)にて精製し、化合物14Ae(4.91g,収率41%)を得た。
MS(ESI):m/z=675[M-H]
実施例113 化合物14Afの合成
N-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド
 化合物14Ae(4.80g,7.10mmol)、ピリジン(10mL)の混合物に、氷冷下塩化ベンゾイル(2.48mL,21.3mmol)を加え、混合物を氷冷下で3時間撹拌した。反応液に2規定水酸化ナトリウム水溶液(25mL,50mmol)を加え、混合物を室温で2時間撹拌した。反応液をクロロホルム(50mL)で4回抽出し、有機層をフェーズセパレーターに通した後、無水硫酸ナトリウムで乾燥した。溶液をセライトろ過後、濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~93/7)にて精製し、化合物14Af(4.60g,収率83%)を得た。
MS(ESI):m/z=781[M+H]
実施例114 化合物14Agの合成
N-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド(本発明化合物36)
 化合物14Af(4.26g,5.46mmol)、ジクロロメタン(50mL)の混合物に、氷冷下DIPEA(3.78mL,21.8mmol)、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(3.66mL,16.4mmol)を加え、混合物を室温で2時間撹拌した。反応液を氷冷し、飽和炭酸水素ナトリウム水溶液(100mL)を加え、クロロホルム(100mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥後、不溶物をろ去して溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:酢酸エチル/メタノール=100/0~94/6、NHシリカ:酢酸エチル/メタノール=100/0~93/7)にて精製し、本発明化合物36としての化合物14Ag(3.88g,収率67%)を得た。
MS(ESI):m/z=980[M+H]
31P-NMR (CDCl3) δ: 148.84, 149.04
ALNA[Oxz]-Tの合成
Figure JPOXMLDOC01-appb-C000066
実施例115 化合物15Taの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物14Tc(2.10g,2.88mmol)、EtOH(14.4mL)の混合物に、ヒドロキシルアミン(50%水溶液,1.90mL,28.8mmol)を加え、混合物を室温で2日間撹拌した。反応液を濃縮し、残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物15Ta(1.34g,収率71%)を得た。
HRMS(MALDI): C3535での計算値[M+Na]+: 676.2378, 実測値: 676.2363
実施例116 化合物15Tbの合成
3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物37)
 化合物15Ta(300mg,0.459mmol)、ジクロロメタン(4.6mL)、DIPEA(240μL,1.38mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(205μL,0.918mmol)を加え、混合物を窒素雰囲気下室温で5日間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=60/40~10/90、Diol:ヘキサン/酢酸エチル=70/30~20/80、NH:クロロホルム/メタノール=100/0~95/5)にて精製し、本発明化合物37としての化合物15Tb(214mg,収率55%)を得た。
HRMS(MALDI): C4452Pでの計算値[M+Na]+: 876.3456, 実測値: 876.3441
31P-NMR (CDCl3) δ: 148.83, 149.09
ALNA[Oxz]-mCの合成
Figure JPOXMLDOC01-appb-C000067
実施例117 化合物15Caの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物15Ta(999mg,1.53mmol)、DMAP(18.7mg,0.153mmol)、ピリジン(7.7mL)の混合物に無水酢酸(217μL,2.30mmol)を加え、混合物を室温で2日間撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮することで、化合物15Ca(1.10g,定量的に進行)を得た。
HRMS(MALDI): C3737での計算値[M+Na]+: 718.2483, 実測値: 718.2470
実施例118 化合物15Cbの合成
[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-3-[5-メチル-2-オキソ-4-(1,2,4-トリアゾール-1-イル)ピリミジン-1-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物15Ca(1.05g,1.51mmol)、1,2,4-トリアゾール(939mg,13.6mmol)、DIPEA(2.63mL,15.1mmol)、アセトニトリル(15mL)の混合物に、氷冷下オキシ塩化リン(239μL,2.57mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮することで、化合物15Cb(1.32g)を粗体として得た。
HRMS(MALDI): C3938での計算値[M+Na]+: 769.2705, 実測値: 769.2707
実施例119 化合物15Ccの合成
4-アミノ-1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物15Cb(1.30g,1.51mmol,粗体)、アセトニトリル(15.1mL)の混合物に、28%アンモニア水(10.1mL)を加え、混合物を室温で終夜撹拌した。反応液に水を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、濃縮することで、化合物15Cc(0.96g,2工程での収率97%)を得た。
HRMS(MALDI): C3536での計算値[M+Na]+: 675.2538, 実測値: 675.2539
実施例120 化合物15Cdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-ヒドロキシ-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物15Cc(0.93g,1.42mmol)、ピリジン(7.1mL)の混合物に、無水安息香酸(482mg,2.13mmol)を加え、混合物を室温で終夜撹拌した。反応液に2規定水酸化ナトリウム水溶液(7.1mL)を加え、室温で1時間撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物15Cd(958mg,収率89%)を得た。
HRMS(MALDI): C4240での計算値[M+Na]+: 779.2800, 実測値: 779.2794
実施例121 化合物15Ceの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物38)
 化合物15Cd(949mg,1.25mmol)、ジクロロメタン(12.5mL)、DIPEA(0.653mL,3.75mmol)の混合物に、氷冷下2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(0.559mL,2.50mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=80/20~30/70、NH:ヘキサン/酢酸エチル=50/50~0/100)にて精製し、本発明化合物38としての化合物15Ce(834mg,収率70%)を得た。
HRMS(MALDI): C5157Pでの計算値[M+Na]+: 979.3878, 実測値: 979.3876
31P-NMR (CDCl3) δ: 148.98, 149.27
ALNA[Tdz]-Tの合成
Figure JPOXMLDOC01-appb-C000068
実施例122 化合物16Taの合成
1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 化合物1a(3.00g,5.25mmol)、5-クロロ-3-メチル-1,2,4-チアジアゾール(848mg,6.30mmol)、DIPEA(2.72mL,15.7mmol)、DMSO(26mL)の混合物を120℃で2時間撹拌した。反応液に酢酸エチルを加え、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~95/5)にて精製し、化合物16TaAB37420-001(3.30g,収率94%)を得た。
MS(ESI):m/z=670[M+H]
実施例123 化合物16Tbの合成
3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル(本発明化合物39)
 化合物16Ta(2.26g,3.37mmol)、ジクロロメタン(17mL)、DIPEA(1.75mL,10.1mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(1.51mL,6.77mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=70/30~20/80、Diol:ヘキサン/酢酸エチル=70/30~20/80)にて精製し、本発明化合物39としての化合物16Tb(2.45g,収率84%)を得た。
MS(ESI):m/z=870[M+H]
31P-NMR (CDCl3) δ: 149.23, 149.51
ALNA[Tdz]-mCの合成
Figure JPOXMLDOC01-appb-C000069
実施例124 化合物16mCaの合成
[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物16Ta(5.92g,8.84mmol)、DMAP(120mg,0.982mmol)、ピリジン(18mL)の混合物に無水酢酸(1.25mL,13.2mmol)を加え、混合物を室温で終夜撹拌した。反応液を濃縮し、残渣に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮することで、化合物16mCa(5.69g,収率90%)を得た。
MS(ESI):m/z=712[M+H]
実施例125 化合物16mCbの合成
[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-[5-メチル-2-オキソ-4-(1,2,4-チアジアゾール-1-イル)ピリミジン-1-イル]-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]アセテート
 化合物16mCa(5.52g,7.75mmol)、1,2,4-トリアゾール(4.82g,69.8mmol)、DIPEA(13.4mL,77.5mmol)、アセトニトリル(39mL)の混合物に、氷冷下オキシ塩化リン(1.23mL,13.2mmol)を加え、混合物を窒素雰囲気下室温で2時間撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮することで、粗成績体として化合物16mCb(6.18g,不純物含む)を得た。
実施例126 化合物16mCcの合成
4-アミノ-1-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物16mCb(6.18g,7.75mmol,不純物含む)、アセトニトリル(39mL)の混合物に、28%アンモニア水(39mL)を加え、混合物を室温で4日間撹拌した。反応液に水を加え、クロロホルムで抽出した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物16mCc(4.50g,2工程での収率87%)を得た。
MS(ESI):m/z=667[M-H]
実施例127 化合物16mCdの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド
 化合物16mCc(4.37g,6.53mmol)、無水安息香酸(2.22g,9.81mmol)、ピリジン(13mL)の混合物を室温で終夜撹拌した。反応液に2規定水酸化ナトリウム水溶液(13mL,26mmol)を加え、混合物を室温で1.5時間撹拌した。反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、不溶物をろ去した後、減圧下濃縮した。残渣をカラムクロマトグラフィー(SiO:クロロホルム/メタノール=100/0~90/10)にて精製し、化合物16mCdAB37471-001(4.76g,収率94%)を得た。
MS(ESI):m/z=773[M+H]
実施例128 化合物16mCeの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド(本発明化合物40)
 化合物16mCd(4.62g,5.98mmol)、ジクロロメタン(12mL)、DIPEA(3.10mL,17.9mmol)の混合物に、2-シアノエチル N,N-ジイソプロピルクロロホスホロアミド(2.67mL,12.0mmol)を加え、混合物を窒素雰囲気下室温で終夜撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通し、溶媒を留去した。残渣をカラムクロマトグラフィー(SiO:ヘキサン/酢酸エチル=80/20~30/70、NH:ヘキサン/酢酸エチル=70/30~20/80)にて精製し、本発明化合物40としての化合物16mCe(3.57g,収率61%)を得た。
MS(ESI):m/z=974[M+H]
31P-NMR (CDCl3) δ: 149.45, 149.78
 ALNA[Ms]-mCは、次のようにALNA[Ms]-Tヌクレオシドの核酸塩基部を変換することでも合成することができる。
化合物2Cfの合成
Figure JPOXMLDOC01-appb-C000070
実施例129 化合物2Cdの合成
3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-メチルスルホニル-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-6-(1,2,4-トリアゾール-1-イル)-1,6-ジヒドロピリミジン-2-オン
 2Tb(14.1g,0.019mol)をアセトニトリル(310mL)に溶解し、トリエチルアミン(97.29mL,0.961mol)を加えて0℃にて15分撹拌した。反応溶液に1,2,4-トリアゾール(30.36g,0.439mol)を加えて0℃にて15分撹拌した後、オキシ塩化リン(4.44mL,0.028mol)を加えて0℃で15分撹拌し、室温に昇温して2時間撹拌した。反応液を減圧下濃縮した後、酢酸エチル(200mL)と水(100mL)を加えて分液した。有機層を炭酸ナトリウム(100mL)で2度洗浄した後、硫酸ナトリウムで乾燥し、減圧下濃縮することで粗成績体2Cd(11.8g)を得た。
実施例130 化合物2Ceの合成
6-アミノ-3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-ピリミジン-2-オン
 粗成績体2Cd(11.8g)を1,4-ジオキサン(118mL)に溶解し、25%アンモニア水(118mL)を加えて室温にて終夜撹拌した。反応溶液を減圧下にて濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール、95/5~94/6)にて精製した。これをジクロロメタン/ヘキサン(10/90)の混合液中で撹拌し、析出物をろ取することで化合物2Ce(8.3g, 2工程収率64%)を得た。
MS(ESI): m/z = 649.3(M+H)+
実施例131 化合物2Cfの合成
N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4―イル]ジヒドロピリミジン-2-オン
 化合物2Ce(8.3g,0.012mol)のDMF(63mL)溶液に安息香酸無水物(2.57g,0.011mol)を加えて室温にて24時間撹拌した。反応液に酢酸エチル(200mL)を加えて希釈し、水(100mL)で2度洗浄した。有機層を炭酸ナトリウム水(100mL)、及び飽和食塩水(100mL)にて順次洗浄し、硫酸ナトリウムにて乾燥した。これを減圧下にて濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール、99.5/0.5~99/1)にて精製した。これをジクロロメタン/ヘキサン(10/90)の混合液中で撹拌し、析出物をろ取することで化合物2Cf(4.0g, 収率47%)を得た。
MS(ESI): m/z = 753.1(M+H)+
 また、ALNA[Ms]-mCヌクレオシドは次のようにしても合成することができる。
化合物2Cjの合成
Figure JPOXMLDOC01-appb-C000071
実施例132 化合物2Cgの合成
1-[(1R,3R,4R,7S)-7-ベンジロキシ-1-(ベンジロキシメチル)-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-ピリミジン-2,4-ジオン
 国際公開第2017/047816号に記載の方法にて合成した1-[(1R,3R,4R,7S)-7-ベンジロキシ-1-(ベンジロキシメチル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチルピリミジン-2,4-ジオン(1h)(20.00g, 21.61mmol)のジクロロメタン(200mL)混合溶液にトリエチルアミン(15.5mL,111mmol)を添加し、氷浴下でメシルクロリド(4.15mL,53.4mmol)を添加し、混合物を氷浴下で4.5時間撹拌した。反応液に5%重曹水(60mL)を添加して撹拌し、分液した。水層をジクロロメタン(40mL)で抽出し、ジクロロメタンの有機層を合液し混合した。有機層を15%食塩水(60mL)にて洗浄した後、溶媒留去した。濃縮残渣にメタノール(90mL)を加え、懸洗した。生じた析出物をろ取し、真空乾燥することで、化合物2Cg(21.94g, 収率94%)を得た。
MS(ESI): m/z = 528 (M+H)+
実施例133 化合物2Chの合成
1-[(1R,3R,4R,7S)-7-ベンジロキシ-1-(ベンジロキシメチル)-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-4-(1,2,4-トリアゾール-1-イル)ピリミジン-2-オン
 実施例129と同様にして、2Cg(3.0g,5.6mmol)から化合物2Ch(3.4g)を粗成績体として得た。
実施例134 化合物2Ciの合成
4-アミノ-1-[(1R,3R,4R,7S)-7-ベンジロキシ-1-(ベンジロキシメチル)-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-ピリミジン-2-オン
 実施例130と同様にして、化合物2Ch(3.4g,5.8mmol)から化合物2Ci(2.6g,87%収率)を得た。
MS(ESI): m/z = 527.2(M+H)+
実施例135 化合物2Cjの合成
4-アミノ-1-[(1R,3R,4R,7S)-7-ヒドロキシ-1-(ヒドロキシメチル)-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-ピリミジン-2-オン
 化合物2Ci(2.6g,4.9mmol)を酢酸(28.6mL)に溶解し、20%水酸化パラジウム/炭素(0.35g)を加え、水素雰囲気下として室温にて16時間撹拌した。不溶物をろ去した後、減圧下にて濃縮した。残渣に1-ブタノールとIPEを加えて撹拌し、析出物をろ取した。得られた固体をメタノールにて再結晶することで、化合物2Cj(1.0g,58%収率)を得た。
MS(ESI): m/z = 346.9(M+H)+
 ALNA[Ms]-Gは次のようにしてグアニン部位がジメチルアミノメチレニル基で保護されたモノマーを合成することができる。なお、この保護様式を持つモノマーをオリゴマー合成に用いた場合には、グアニンの6位がDPC保護された2Gdを用いてオリゴマー合成する場合に生じうる副生物の生成を制御することが可能となる。
Figure JPOXMLDOC01-appb-C000072
実施例136 化合物2Geの合成
2-アミノ-9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-1H-プリン-6-オン
 化合物2Gc(1000mg, 1.1mmol)のテトラヒドロフラン(10mL)溶液に室温にて、28%アンモニア水(5ml)を加えて室温で終夜攪拌した。さらに、28%アンモニア水(15ml)を加え、70℃で8時間攪拌した。室温で水、ジクロロメタンを加え、攪拌後、有機層を回収し、硫酸ナトリウムで乾燥した。残渣をろ過し、溶媒留去した後、シリカゲルカラムクロマトグラフィー精製(クロロホルム/メタノール、97/3~92/8)を行うことで化合物2Ge(620mg, 収率86%)を得た。
MS(ESI): m/z = 675(M+H)+
実施例137 化合物2Gfの合成
N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-N,N-ジメチルホルムアミジン
 化合物2Ge(150mg, 0.22mmol)をテトラヒドロフラン(2.22 mL)に溶解し、室温にてN,N-ジメチルホルムアミドジメチルアセタール(132 mg,1.11 mmol)、を加え時間撹拌した。室温で加え、酢酸エチル(2 mL)で1回抽出した。得られた有機層を食塩水で洗浄し、硫酸ナトリウムで乾燥した。残渣を濾過し、溶媒留去した後、シリカゲルカラムクロマトグラフィー精製(クロロホルム/メタノール=99/1、クロロホルム/メタノール=93/7)を行うことで化合物2Gf(145 mg, 収率89 %)を得た。
MS(ESI): m/z = 728 (M-H)-
実施例138 化合物2Ggの合成
N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-N,N-ジメチルホルムアミジン
 化合物2Gf(900mg,1.2mmol)をジクロロメタン(15mL)に溶解し、室温にてN,N-ジイソプロピルエチルアミン(747mg,5.8mmol)、2-シアノエチル-N,N-ジイソプロピルクロロホスホロアミジド(1061mg, 4.5mmol)を加え終夜撹拌した。室温で飽和重層水とジクロロメタンを加え、有機層を分離した。得られた有機層を、硫酸ナトリウムで乾燥し、残渣を濾過した。溶媒留去した後、アミノシリカゲルカラムクロマトグラフィー精製(クロロホルム/メタノール、100/0~97/3)、ジオールシリカゲルカラムクロマトグラフィー精製(クロロホルム/メタノール、100/0~97/3)、を行うことで化合物2Gg(690mg, 収率60%)を得た。
MS(ESI): m/z = 930 (M+H)+
 ALNA[Ms]-Gは次のようにしてグアニン部位がイソブチロイル基のみで保護されたモノマーを合成することができる。なお、この保護様式を持つモノマーをオリゴマー合成に用いた場合には、グアニンの6位がDPC保護された2Gdを用いてオリゴマー合成する場合に生じうる副生物の生成を制御することが可能となる。
Figure JPOXMLDOC01-appb-C000073
実施例139 化合物2Ghの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド
 化合物2Ge(100mg,0.15mmol)をピリジン(1.4mL)に溶解し、室温にてN,N-ジメチル-4-アミノピリジン(29mg,0.24mmol)、2-メチルプロパノイル2-メチルプロパノエート(100μL,0.6mmol)を加え100℃で4時間撹拌した。さらに、2-メチルプロパノイル 2-メチルプロパノエート(100μL,0.6mmol)を加え、100℃で2時間撹拌した。室温で飽和重層水と酢酸ナトリウムを加え、有機層を分離した。得られた有機層を、硫酸ナトリウムで乾燥した。残渣を濾過し、溶媒留去した後、シリカゲルカラムクロマトグラフィー精製(ヘキサン/酢酸エチル、50/50~20/80)を行った。さらに、化合物をテトラヒドロフラン(1mL)に溶解し、0.1N水酸化ナトリウム水溶液(1mL)を加え0℃で40分攪拌した。反応液に水、酢酸エチルを加え、有機層を分離したのちに、飽和塩化アンモニウム水溶液で洗浄し、再び有機層を分離した。硫酸ナトリウムで乾燥後、残渣をろ過し、溶媒留去することで化合物2Gh(56mg, 収率50%)を得た。
MS(ESI): m/z = 745 (M+H)+
実施例140 化合物2Giの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド
 ジクロロメタン(3.6mL)にモレキュラーシーブ3Aを加え1時間攪拌後、室温にて化合物2Gh(500mg,0.67mmol)、1-メチルイミダゾール(10.9mg,0.1mol)、テトラゾール(84mg,1.2mmol)、3-ビス(ジイソプロピルアミノ)フォスファニルオキシプロパンニトリル(949mg, 3.1mmol)を加え、6時間攪拌した。室温で飽和重層水を加えジクロロメタンで二回抽出した。得られた有機層を、硫酸ナトリウムで乾燥し、残渣を濾過した。溶媒留去した後、シリカゲルカラムクロマトグラフィー精製(ヘキサン/酢酸エチル、50/50~25/75)を行うことで化合物2Gi(500mg, 収率79%)を得た。
MS(ESI): m/z = 946 (M+H)+
 また、グアニン部位がイソブチロイル基のみで保護されたALNA[Ms]-Gモノマーは、次のようにして化合物1aからトランスグリコシル化により直接的にも合成することが可能である。
Figure JPOXMLDOC01-appb-C000074
実施例141 化合物2Gjの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド
 化合物1a(5.0g, 8.75mmol)、2-メチル-N-(6-オキソ-1,9-ジヒドロプリン-2-イル)プロパンアミド(3.87g, 17.5mmol)の1,2-ジクロロエタン(30mL)混合液にBSA(21.4mL,87.5mmol)を加えて60℃にて30分撹拌した。続いて、TMSOTf(0.254mL,1.31mmol)を加えて1時間半撹拌した。放冷後、反応液にクロロホルム(50mL)と飽和炭酸水素ナトリウム水溶液(50mL)を加え撹拌した。不溶物を吸引ろ過後、有機層を水、飽和食塩水にて洗浄し、硫酸マグネシウムにて乾燥し、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~90/10)にて精製することで化合物2Gj(3.83g, 収率59%)を得た。
MS(ESI): m/z = 739.5 (M+H)+
実施例142 化合物2Gkの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-メチルスルホニル-7-トリメチルシリロキシ-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド
 化合物2Gj(1.0g, 1.35mmol)、ピリジン(0.327mL,4.06mmol)のジクロロメタン(7mL)溶液に、氷冷下メタンスルホン酸無水物(284mg,1.63mmol)を加えて、氷冷下で45分撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層をフェーズセパレーターに通した後、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~90/10)にて精製することで化合物2Gk(657mg, 収率59%)を得た。
MS(ESI): m/z = 817.4 (M+H)+
実施例143 化合物2Ghの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド
 化合物2Gk(3.16g, 3.87mmol)のTHF(8mL)溶液にTBAF(1mol/L THF溶液,4.6mL,4.6mmol)を加えて室温にて1時間撹拌した。反応液を濃縮し、酢酸エチルを加え、有機層を水、飽和食塩水にて洗浄した。有機層を硫酸マグネシウムにて乾燥し、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール、100/0~90/10)にて精製することで化合物2Gh(2.57g, 収率89%)を得た。
MS(ESI): m/z = 745.5(M+H)+
 また、化合物2Ghは、次のようにして化合物2Gbから合成することも可能である。
Figure JPOXMLDOC01-appb-C000075
実施例144 化合物2Ghの合成
N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド
 化合物2Gb(1010mg,1.0mmol)をテトラヒドロフラン(10mL)に溶解し、室温にてテトラブチルアンモニウムフルオリド(1mol/L テトラヒドロフラン溶液,3mL,3.0mmol)を加え70℃で24時間撹拌した。さらに、室温にてテトラブチルアンモニウムフルオリド(1mol/L テトラヒドロフラン溶液,9mL,9.0mmol)を加え80℃で8時間撹拌した。溶媒留去した後、シリカゲルカラムクロマトグラフィー精製(クロロホルム/メタノール、98/2~93/7)を行った。さらに、シリカゲルカラムクロマトグラフィー精製(クロロホルム/メタノール、100/0~94/6)を行うことで化合物2Gh(570mg, 収率77%)を得た。
MS(ESI): m/z = 745 (M+H)+
実施例145 オリゴヌクレオチド類縁体の合成および精製 (in vitro)
 上記の実施例で得られた各種アミダイト(本発明化合物1~44)を用いて、下表1から4に記載したオリゴヌクレオチド類縁体化合物を、DNA/RNAオリゴヌクレオチド自動合成機ns-8II(株式会社ジーンデザイン製)により0.2または1.0μmolスケールにてCPGまたはポリスチレン担体を用いて合成した。アミダイトは全て0.1Mのアセトニトリル溶液に調整し、非天然型ヌクレオシドにおけるカップリング時間は10分間で行い、それ以外の工程はns-8IIの標準条件にて行った。活性化剤はActivator42(Sigma-Aldrich)、チオ化にはSulfurizing ReagentII(Gren Research Corporation)を使用した。合成したオリゴヌクレオチドは28%アンモニア水溶液を加えて60-65℃にて8時間反応させることで担体からの切り出しと塩基部の脱保護を行った。アンモニアを濃縮留去したのち、逆相HPLC精製を行った。
 実施例146 オリゴヌクレオチド類縁体の合成および精製 (in vivo)
 上記の実施例で得られた各種アミダイト(本発明化合物1~44)を用いて、下表5に記載したオリゴヌクレオチド類縁体化合物を、DNA/RNAオリゴヌクレオチド自動合成機AKTA oligopilot plus 10 (GEヘルスケアジャパン株式会社製)により20μmolスケールにてポリスチレン担体を用いて合成した。DNAアミダイトは0.1M、非天然型アミダイトは0.05Mのアセトニトリル溶液に調整し、非天然型ヌクレオシドにおけるカップリングリサイクル時間は20分間で行い、ユニバーサル担体への1塩基目の導入の際は、カップリング、チオ化、キャッピング工程をそれぞれ2回連続で実施した。それ以外の工程はAKTA oligopilot plus10の標準条件にて行った。活性化剤はActivator42(Sigma-Aldrich)、チオ化にはSulfurizing ReagentII(Gren Research Corporation)を使用した。合成したオリゴヌクレオチドは28%アンモニア水溶液を加えて60-65℃にて8時間反応させることで担体からの切り出しと塩基部の脱保護を行った。アンモニアを濃縮留去したのち、陰イオン交換カラムで精製を行った。陰イオン交換後に含まれる余剰塩を脱塩カラムにより除去した。
 合成したオリゴヌクレオチド類縁体の精製および純度確認は、逆相HPLCにより以下の条件で行った。
逆相HPLC
移動相:
 A液: 20mM 酢酸ヘキシルアミン水溶液
 B液: アセトニトリル
 グラジエント: A:B =90:10→50:50(40min)もしくはA:B =90:10→40:60(45min)
使用カラム:
 分析 Waters XBridge@ Oligonucleotide BEH C18 Column, 130Å, 2.5μm, 4.6mm*50mm
 分取 Waters XBridge@ Oligonucleotide BEH C18 OBDTM Prep Column,130Å, 2.5μm, 10mm*50mm 
流速:
 分析 1ml/min
 分取 4ml/min
カラム温度: 60℃
検出: UV(260nm)
陰イオン交換精製
移動相:
 A液:20mM Tris-HCl(pH8.0)水溶液
 B液:20mM Tris-HCl(pH8.0)、1M NaBr水溶液
使用カラム:
 GE HiTrap CaptQ ImpRes(Anion exchange) 5ml
流速:5ml/min
カラム温度:室温
検出:UV(260nm)
脱塩カラム
移動相:
 A液:H
 B液:H
使用カラム:
GE HiPrep 26/10 Desalting
流速:10ml/min
カラム温度:室温
 合成したオリゴヌクレオチド類縁体の分子量は、Waters ZQを用いて以下の条件で行った。
移動相:
 A液:400mM ヘキサフルオロイソプロパノール、15mM トリエチルアミン水溶液
 B液:メタノール
グラジエント:A:B =80:20→70:30(2.5min)もしくはA:B =90:10→40:60(45min)
使用カラム:
 分析 Waters ACQUITY UPLC@ Oligonucleotide BEH C18 Column, 130Åm 1.7μm, 2.1mm*100mm
流速:0.2ml/min
カラム温度:60℃
検出:UV(260nm)
表1 各Tm配列のマススペクトル測定結果
gcgttT(X)tttgct(配列番号1)
(ここで、小文字はDNAの各核酸塩基を、T(X)はチミンを有する各人工核酸種を示し、すべてのリン酸結合はホスホジエステルである)
Figure JPOXMLDOC01-appb-T000076
表2 各SRB1(2-10-2)配列のマススペクトル測定結果 
T(X)C(X)agtcatgactT(X)C(X)(配列番号2)
(ここで、小文字はDNAの各核酸塩基を、T(X)およびC(X)はそれぞれ、チミンを有する各人工核酸種、および5-メチルシトシンを有する各人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである)
Figure JPOXMLDOC01-appb-T000077
表3 各SRB1(3-10-3)配列のマススペクトル測定結果
T(X)T(X)C(X)agtcatgactT(X)C(X)C(X)(配列番号3)
(ここで、小文字はDNAの各核酸塩基を、T(X)およびC(X)はそれぞれ、チミンを有する各人工核酸種、および5-メチルシトシンを有する人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである)
Figure JPOXMLDOC01-appb-T000078
表4 各antimiR-21配列のマススペクトル測定結果
A(m)C(X)atC(X)agtC(X)tgaT(X)aagC(X)tA(m)(配列番号4)
(ここで、A(m)は2’-MOEアデノシンを、小文字はDNAの各核酸塩基を、T(X)およびC(X)はそれぞれ、チミンを有する各人工核酸種、および5-メチルシトシンを有する人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである)
Figure JPOXMLDOC01-appb-T000079
表5 各Malat1配列のマススペクトル測定結果 
G(X)T(X)T(X)cactgaatG(X)C(X)G(X)(配列番号5)
(ここで、小文字はDNAの各核酸塩基を、T(X)、C(X)およびG(X)はそれぞれ、チミンを有する各人工核酸種、5-メチルシトシンを有する人工核酸種、およびグアニンを有する人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである)
Figure JPOXMLDOC01-appb-T000080
実施例147 標的鎖への結合能とミスマッチ選択性評価
 各種人工核酸種を含むアンチセンス鎖(ここで、配列はgcgttT(X)tttgct(前記配列番号1)を、小文字はDNAの各核酸塩基を、T(X)はチミンを有する各人工核酸種を示す)と、センス鎖、即ち、アンチセンス鎖に対して相補的配列を有するDNA鎖(ここで、配列はagcaaaaaacgc(配列番号6)を、小文字はDNAの各核酸塩基を示す)、相補的配列を有するRNA鎖(ここで、配列はAGCAAAAAACGC(配列番号7)を、大文字はRNAの各核酸塩基を示す)、および1塩基ミスマッチを含む3種の相補的配列を有するRNA鎖(ここで、配列はAGCAAANAACGC(配列番号8)を、大文字はRNAの各核酸塩基を、Nはそれぞれウラシル(U)、グアニン(G)、シトシン(C)を示す)のそれぞれをアニーリング処理して二重鎖を形成させた後、二重鎖の50%が乖離する温度であるTm値を測定することにより、オリゴヌクレオチドの二重鎖形成能を調べた。具体的には、塩化ナトリウム水溶液100mmol/L、リン酸ナトリウム緩衝液(pH 7.4)10mmol/L、アンチセンス鎖4μmol/L、センス鎖4μmol/Lを含むサンプル溶液(150μL)を95℃まで昇温させた後、4時間かけて室温まで冷却させた。分光光度計(JASCO、V-730、PAC-743R)のセル室内に結露防止のため窒素気流を通し、サンプル溶液を10℃まで徐々に冷却し、さらに1分間10℃に保った後、測定を開始した。毎分0.5℃の速度で80℃まで昇温させ、0.5℃毎に260nmにおける吸光度を測定した。なお、温度上昇による濃度変化を防止するため、セルは蓋付きのものを用いた。結果を表6に示す。
表6 各Tm値測定結果
Figure JPOXMLDOC01-appb-T000081
 表6から明らかなように、各種人工核酸を含むアンチセンス鎖は、天然型DNAや既知のALNAであるALNA[Me]を含むアンチセンス鎖と比較して、同等以上のセンス鎖結合能、およびミスマッチ選択能を有していた。
実施例147 In vitroSR-B1ノックダウン活性試験
 Hepa 1c1c7細胞を1ウェル当たり2.5 ×103個播種し、24時間培養した後、SRB1に相補的配列を有する各種修飾化されたアンチセンスオリゴ核酸を終濃度100、20、4 nmol/Lで添加し、48時間後に定量PCRを行った。同条件を3ウェルずつで実施した。アンチセンス活性は陰性対照でのSRB1のGAPDHに対する量比を元に、アンチセンス化合物を添加した場合のSRB1発現の阻害率を100分率で示した。その結果を表7に示した。
表7 In vitro SRB1ノックダウン活性
Figure JPOXMLDOC01-appb-T000082
 3-10-3, 2-10-2の2つの配列パターンでの各人工核酸を含むアンチセンスオリゴヌクレオチドのGymnosis 100nMでの標的遺伝子(SRB1)ノックダウン活性を示した。
 2つの配列パターンはそれぞれ次の通りである。
3-10-3: T(X)T(X)C(X)agtcatgactT(X)C(X)C(X)(前記表3の配列番号3と同じ)
2-10-2: T(X)C(X)agtcatgactT(X)C(X)(前記表2の配列番号2と同じ)
 なお、小文字はDNAの各核酸塩基を、T(X)およびC(X)はそれぞれ、チミンを有する各人工核酸種、および5-メチルシトシンを有する人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである。
 表7から明らかなように、ALNA[Ms]、ALNA[ipU]、ALNA[2Pym]、ALNA[Prz],ALNA[Trz]、ALNA[Oxz]は、既知のALNAであるALNA[Me]と比較して、強力なIn vitroでの標的遺伝子ノックダウン活性を有していた。
実施例148  In vitro miRNA-21阻害活性試験
 3.0×106 cells/mlのHEK293細胞を10 cm dishに播種し、細胞をCO2インキュベーターで一晩培養した。翌日、FuGENE HD Transfection Reagentを用いて、miR-21の相補配列をpsiCHECK-2 vector (Promega)のマルチクローニングサイトにクローニングしたレポータープラスミド10 μgを細胞にトランスフェクションし、CO2インキュベーターで24時間程度培養した。この細胞を回収し、96 well plateに2.0×104 cells/wellの細胞を再播種するとともに、各人工核酸を導入したmiR-21阻害剤を添加した。細胞をCO2インキュベーターで96時間培養した後、Dual-Glo Luciferase Assay Systemを用いて,細胞内のfirefly luciferaseとRenilla luciferase発光値をプレートリーダーで検出した。Renillaルシフェラーゼ活性による発光値からトランスフェクション効率や細胞数の影響を補正するために,fireflyルシフェラーゼ活性による発光値との比を算出した。さらに,算出した比から、psiCHECK-2 vectorを導入した細胞での比を阻害率100%、miR-21相補配列をクローニングしたpsiCHECK-2 vectorを導入した細胞の比を阻害率0%として、各阻害率を算出し、阻害活性を求めた。その結果を表8に示した。
表8 In vitro miRNA-21阻害活性
Figure JPOXMLDOC01-appb-T000083
 用いたアンチセンスオリゴの配列は次の通りである。
A(m)C(X)atC(X)agtC(X)tgaT(X)aagC(X)tA(m)(前記表4の配列番号4と同じ)
 なお、ここで、A(m)は2’-MOEアデノシンを、小文字はDNAの各核酸塩基を、T(X)およびC(X)はそれぞれ、チミンを有する各人工核酸種、および5-メチルシトシンを有する人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである。
 表8から明らかなように、ALNA[mU]、ALNA[ipU]、ALNA[dmU]、ALNA[Trz]、ALNA[Oxz]は、既知のALNAであるALNA[Me]と比較して、強力なIn vitroでのマイクロRNA阻害活性を有していた。
実施例149 In vivo MALAT1ノックダウン活性試験
 6週齢のC57BL/6Jマウス(雄性、日本チャールズリバー)にMALAT1を標的としたアンチセンスオリゴヌクレオチド(10mg/kg、および50mg/kg)を10mg/mLとなるようにPBSで調製し、5mL/kgとなるようにPBSで希釈して尾静脈内投与した。72時間後にイソフルラン(日本薬局方 ファイザー(株))麻酔下にてマウスの腹部大静脈より血液を採取し、放血致死させた。血液は凝固後遠心分離して血清を調製し、測定時まで冷凍保存(-80℃設定)した。放血致死後、肝、腎、脂肪、骨格筋(大腿四頭筋、腓腹筋)、肺、心臓、胃、空腸、精巣、皮膚、脾臓、脳を採取し、液体窒素で凍結した。凍結組織にMaxwell RSC simplyRNA Tissue Kitのホモジェネーションバッファーを加えてマルチビーズショッカーを用いて破砕し、キット記載のプロトコールに従ってRNAを精製した。RT反応以降はduplicateで行い、1反応当たりのRNA量は、50~500 ngで実施した。ノックダウン活性はvehicle群でのMalat1のGAPDHに対する量比を元に、Malat1発現の阻害率を100分率で示した。標準誤差はduplicateの平均により個体別の値を求め、その値を元に算出した。その結果を表9および10に示した。
表9 50mg/kg投与した際の各臓器でのMalat1ノックダウン率(%)
Figure JPOXMLDOC01-appb-T000084
表10 10mg/kg投与した際の各臓器でのMalat1ノックダウン率(%)
Figure JPOXMLDOC01-appb-T000085
 用いたアンチセンスオリゴヌクレオチドの配列は次の通りである。
G(X)T(X)T(X)cactgaatG(X)(前記表5の配列番号5と同じ)
 なお、ここで、小文字はDNAの各核酸塩基を、T(X)、C(X)およびG(X)はそれぞれ、チミンを有する各人工核酸種、5-メチルシトシンを有する人工核酸種、およびグアノシンを有する人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである。
 表9、10から明らかなように、ALNA[Ms]は、既知のALNAであるALNA[Me]と比較して、多くの臓器(肝臓、腎臓、骨格筋、肺、心臓、胃、空腸、精巣、脂肪)において強力な標的遺伝子ノックダウン活性を有していた。また、ALNA[2Pym]は、既知のALNAであるALNA[Me]と比較して、特定の臓器(心臓、空腸、精巣、脂肪)において強力な標的遺伝子ノックダウン活性を有していた。また、ALNA[ipU]は、肝臓での標的遺伝子ノックダウン作用は、ALNA[Me]と比較して同程度でありながら、肺や脾臓ではALNA[Me]をはるかに上回る強力な標的遺伝子ノックダウン作用を有していた。脾臓には種々の免疫細胞が集積していることから、ALNA[ipU]を含むアンチセンスオリゴは、通常の核酸医薬では移行性が低いと考えられる免疫細胞への作用が期待できる。また、ALNA[ipU]は、肝臓での毒性を低減しながら、肺や免疫系への強力な薬効が期待できる。
実施例150 脳室内投与での中枢各組織、及び肝、腎におけるMALAT1ノックダウン活性試験
 7週齢のC57BL/6J(雄性、日本チャールズリバー)をイソフルラン(ファイザー(株)麻酔下で脳定位固定装置に固定し、保温マット上に寝かせた状態で頭皮を切開して頭蓋骨を露出させた。ブレグマの位置を確認後、左側脳室上部(ブレグマより左に1.0 mm, 後方に0.4 mm)周辺1~2 mmの頭蓋骨に歯科用電気ドリルで穴を開けた。左側脳室(ブレグマより左に1.0 mm, 後方に0.4 mm、深さ2.3 mmの位置)に27ゲージの針を挿入し、針に装着したマイクロインフュージョンポンプを用いて生理食塩水で5μg/10μLになるよう調製したMALAT1を標的としたアンチセンスオリゴ(5μg/10μL/head)を2μL/minの流速で5分間、単回投与した。その後、医療用セメントのベルファースト(睦化学工業)で頭蓋骨の穴を塞ぎ、切開部を縫合して感染症防止のためゲンタシン軟膏0.1 %(高田製薬)を塗布した。投与から72時間後にイソフルラン麻酔下にてマウスの腹部大静脈より血液を採取し、放血致死させた。血液は凝固後遠心分離して血清を取得し、測定時まで冷凍保存(-30℃設定)した。放血致死後、脳、脊髄、腎臓、肝臓を採取した。脳については安楽死後に頭蓋骨と脊椎を切り離してから脳を取り出し、矢状断面作製用スライサーであるBrain Matrices(RBM-2000S、バイオリサーチセンター株式会社)を用いて正中線から左脳側に厚さ約2 mmになるよう薄切後、切片から嗅球、大脳皮質、海馬、線条体、小脳を取り出した。5部位を取り除いた切片の残りの部分についても脳幹等複合部位として採取した。脊髄についてはT13を境に切り分け、T13より脳側(以下、脊髄近位)と、T13からL5まで(以下、脊髄遠位)の2ヶ所を採取した。採取した臓器はRNA later(Invitrogen)に浸漬して-30℃で保管した。チューブに臓器とQIAzol Lysis Reagent(QIAGEN)を加えてマルチビーズショッカーを用いて破砕し、クロロホルム(純正化学)を加えて混和した。この混和物から遠心機分離により水層部分を回収し,この水層からRNeasy 96 Universal Tissue Kit(QIAGEN)のキット記載のプロトコールに従ってRNAを精製した。RT反応以降、1反応当たりのRNA量は2 ~ 7 ngで実施した。ノックダウン活性はvehicle群でのMALAT1のGAPDHに対する量比を基に、MALAT1発現の阻害率を100分率で示した。標準誤差は個体別の値を基に算出した。
表11 5μg/head投与した際の各中枢組織、及び肝、腎でのMALAT1ノックダウン率(%)
Figure JPOXMLDOC01-appb-T000086
 用いたアンチセンスオリゴヌクレオチドの配列は次の通りである。
G(X)T(X)T(X)cactgaatG(X)C(X)(前記表5の配列番号5と同じ)
 なお、ここで、小文字はDNAの各核酸塩基を、T(X)、C(X)およびG(X)はそれぞれ、チミンを有する各人工核酸種、5-メチルシトシンを有する人工核酸種、およびグアノシンを有する人工核酸種を示し、すべてのリン酸結合はホスホロチオエートである。
 表11から明らかなように、ALNA[Ms]、ALNA[mU]、及びALNA[Oxz]は、既知のALNAであるALNA[Me]と比較して、各中枢組織において強力な標的遺伝子ノックダウン活性を有していた。
 本発明のアミノ架橋型人工核酸(ALNA)は、新規な人工核酸オリゴマーの製造に使用することができる。また、本発明のアミノ架橋型人工核酸を含むオリゴマーは、特定の臓器において強力な標的遺伝子ノックダウン活性を有しており、核酸医薬として使用することができる。
 配列番号1~6は、DNAオリゴヌクレオチドを示す。
 配列番号7~8は、RNAオリゴヌクレオチドを示す。

Claims (33)

  1.  一般式I:
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Bは、1つ以上の置換基で置換されていてもよい核酸の塩基部分であり;
     R、R、RおよびRは各々独立して、水素原子、または1つ以上の置換基で置換されていてもよいC1-6アルキル基であり;
     RおよびRは各々独立して、水素原子、水酸基の保護基、または置換されてもよいリン酸基であり;
     mは、1または2であり;
     Xは、下記式(II-1)、(II-2)、または(II-3):
    Figure JPOXMLDOC01-appb-C000002
    で示される基であり;
     式(II-1)、(II-2)、または(II-3)中に記載の記号:
    Figure JPOXMLDOC01-appb-C000003
    は、2’-アミノ基との結合点を示し;
     RおよびRは各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、1つ以上の置換基で置換されてもよいC2-6アルケニル基、1つ以上の置換基で置換されてもよいC2-6アルキニル基、または1つ以上の置換基で置換されていてもよい芳香族基であり;
     Aは芳香族基であり;
     Mは、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよい芳香族基からなる群から選ばれる1つの置換基で置換された、スルホニル基である。]
    で示される化合物、またはその塩。
  2.  Bが、1つ以上の保護基を有してもよいアデニニル、1つ以上の保護基を有してもよいグアニニル、1つ以上の保護基を有してもよいシトシニル、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有してもよいウラシリルである、請求項1記載の化合物、またはその塩。
  3.  R、R、RおよびRが各々独立して、水素原子であり;
     mが、1である、
    請求項1または2に記載の化合物、またはその塩。
  4.  Xが、式(II-1)で示される基であり;そして、
     RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、
    請求項1~3のいずれか1つに記載の化合物、またはその塩。
  5.  RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-3アルキル基である、請求項4に記載の化合物、またはその塩。
  6.  RおよびRの一方が水素原子であり、他方がメチル基である、請求項5に記載の化合物、またはその塩。
  7.  RおよびRの一方が水素原子であり、他方がイソプロピル基である、請求項5に記載の化合物、またはその塩。
  8.  Xが、式(II-2)で示される基であり;そして、
     Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基である、
    請求項1~3のいずれか1つに記載の化合物、またはその塩。
  9.  Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた2または3つのヘテロ原子を含む5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、請求項8記載の化合物、またはその塩。
  10.  5または6員環のヘテロアリール基が、1つ以上の置換基で置換されていてもよい、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、およびピラジニル基からなる群から選ばれる、請求項9記載の化合物、またはその塩。
  11.  1つ以上の置換基で置換されていてもよいトリアゾリル基が、1,5-ジメチル-1,2,4-トリアゾール-3-イル基である、請求項10記載の化合物、またはその塩。
  12.  1つ以上の置換基で置換されていてもよいオキサジアゾリル基が、5-メチル-1,2,4-オキサジアゾール-3-イル基である、請求項10記載の化合物、またはその塩。
  13.  1つ以上の置換基で置換されていてもよいチアジアゾール基が、3-メチル-1,2,4-チアジアゾール-5-イル基である、請求項10記載の化合物、またはその塩。
  14.  Xが、式(II-3)で示される基であり;そして、
     Mが、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよいアリール基からなる群から選ばれる1つの置換基で置換されたスルホニル基である、
    請求項1~3のいずれか1つに記載の化合物、またはその塩。
  15.  Mが、メチル基およびフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、請求項14記載の化合物、またはその塩。
  16.  Rが水素原子またはDMTr基であり、そしてRが水素原子または-P(O(CH)CN)(N(iPr))である、請求項1~15のいずれか1つに記載の化合物、またはその塩。
  17.  以下の化合物:
     3-[[(1R,4R,6R,7S)-4-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-6-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-メチルスルホニル-5-オキサ-2-アザビシクロ[2.2.1]ヘプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート;
     N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-プリン-6-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロニルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-5-(ベンゼンスルホニル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル)オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(メチルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート;
     (1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-メチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     [9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(イソプロピルカルバモイル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-2-(2-メチルプロパノイルアミノ)プリン-6-イル]N,N-ジフェニルカルバメート;
     (1R,3R,4R,7S)-3-(6-ベンズアミドプリン-9-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N-イソプロピル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     (1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     (1R,3R,4R,7S)-3-(4-ベンズアミド-5-メチル-2-オキソ-ピリミジン-1-イル)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-N,N-ジメチル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-5-カルボキサミド;
     3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-6-ホルムアミジン;
     N’-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド;
     3-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピリミジン-4-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアンエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[4-(トリフルオロメチル)ピリミジン-2-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(5-クロロピリミジン-2-イル)-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-ピリミジン-4-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[6-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミン)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[(6-ジメチルアミノ)ピリミジン-4-イル]-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-[2-(ジメチルアミノ)ピリミジン-4-イル]-7-ヒドロキシ-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     3-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-ピラジン-2-イル-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-N,N-ジメチル-ホルムアミジン
     N-[9-(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(1,5-ジメチル-1,2,4-トリアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]プリン-6-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニルメトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(5-メチル-1,2,4-オキサジアゾール-3-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     3-[[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-3-(5-メチル-2,4-ジオキソ-ピリミジン-1-イル)-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-7-イル]オキシ-(ジイソプロピルアミノ)ホスファニル]オキシプロパンニトリル;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-(3-メチル-1,2,4-チアジアゾール-5-イル)-2-オキサ-5-アザビシクロ[2.2.1]へプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4-イル]ベンズアミド;
     N-[1-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-5-メチル-2-オキソ-ピリミジン-4―イル]ジヒドロピリミジン-2-オン;
     N’-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-N,N-ジメチルホルムアミジン;
     N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-[2-シアオノエトキシ-(ジイソプロピルアミノ)ホスファニル]オキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル] -6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド;および
     N-[9-[(1R,3R,4R,7S)-1-[[ビス(4-メトキシフェニル)-フェニル-メトキシ]メチル]-7-ヒドロキシ-5-メチルスルホニル-2-オキサ-5-アザビシクロ[2.2.1]ヘプタン-3-イル]-6-オキソ-1H-プリン-2-イル]-2-メチル-プロパンアミド、
    からなる群から選ばれる化合物。
  18.  一般式(I’):
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     Bは、1つ以上の置換基で置換されていてもよい核酸の塩基部分であり;
     R、R、RおよびRは各々独立して、水素原子、または1つ以上の置換基で置換されていてもよいC1-6アルキル基であり;
     mは、1または2であり;
     Xは、下記式(II’-1)、(II’-2)、または(II’-3):
    Figure JPOXMLDOC01-appb-C000005
    で示される基であり;
     式(II’-1)、(II’-2)、または(II’-3)中に記載の記号:
    Figure JPOXMLDOC01-appb-C000006
    は2’-アミノ基との結合点を示し;
     Aは、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、芳香族基であり;
     Mは、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよい芳香族基からなる群から選ばれる1つの置換基で置換された、スルホニル基である。]
    で示されるヌクレオシドを1つ以上有しているオリゴヌクレオチド化合物、またはその塩。
  19.  Bが、1つ以上の保護基を有してもよいアデニニル、1つ以上の保護基を有してもよいグアニニル、1つ以上の保護基を有してもよいシトシニル、1つ以上の保護基を有してもよい5-メチルシトシニルまたは1つ以上の保護基を有してもよいウラシリルである、請求項18記載のオリゴヌクレオチド化合物、またはその塩。
  20.  R、R、RおよびRが各々独立して、水素原子であり;
     mが、1である、
    請求項18または19に記載のオリゴヌクレオチド化合物、またはその塩。
  21.  Xが、式(II’-1)で示される基であり;そして、
     RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-6アルキル基、または1つ以上の置換基で置換されていてもよい芳香族基である、
    請求項18~20のいずれか1つに記載のオリゴヌクレオチド化合物、またはその塩。
  22.  RおよびRが各々独立して、水素原子、1つ以上の置換基で置換されてもよいC1-3アルキル基である、請求項21に記載のオリゴヌクレオチド化合物、またはその塩。
  23.  RおよびRの一方が水素原子であり、他方がメチル基である、請求項22に記載のオリゴヌクレオチド化合物、またはその塩。
  24.  RおよびRの一方が水素原子であり、他方がイソプロピル基である、請求項23に記載のオリゴヌクレオチド化合物、またはその塩。
  25.  Xが、式(II’-2)で示される基であり;そして、
     Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1つ以上のヘテロ原子を含む、5または6員環のヘテロアリール基である、
    請求項18~20のいずれか1つに記載のオリゴヌクレオチド化合物、またはその塩。
  26.  Aが、1つ以上の置換基で置換されていてもよい、窒素原子、酸素原子および硫黄原子からなる群から選ばれる少なくとも2つの窒素原子を含めた2または3つのヘテロ原子を含む5または6員環のヘテロアリール基であって、該置換基が各々独立して、1つ以上のハロゲン原子で置換されていてもよいC1-3アルキル基、ハロゲン原子、および1つ以上のC1-3アルキル基で置換されていてもよいアミノ基からなる群から選ばれる、請求項25記載のオリゴヌクレオチド化合物、またはその塩。
  27.  5または6員環のヘテロアリール基が、1つ以上の置換基で置換されていてもよい、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピリミジニル基、およびピラジニル基からなる群から選ばれる、請求項26記載のオリゴヌクレオチド化合物、またはその塩。
  28.  1つ以上の置換基で置換されていてもよいトリアゾリル基が、1,5-ジメチル-1,2,4-トリアゾール-3-イル基である、請求項27記載のオリゴヌクレオチド化合物、またはその塩。
  29.  1つ以上の置換基で置換されていてもよいオキサジアゾリル基が、5-メチル-1,2,4-オキサジアゾール-3-イル基である、請求項27記載のオリゴヌクレオチド化合物、またはその塩。
  30.  1つ以上の置換基で置換されていてもよいチアジアゾリル基が、3-メチル-1,2,4-チアジアゾール-5-イル基である、請求項27記載のオリゴヌクレオチド化合物、またはその塩。
  31.  Xが、式(II’-3)で示される基であり;そして、
     Mが、1つ以上の置換基で置換されていてもよいC1-6アルキル基および1つ以上の置換基で置換されていてもよいアリール基からなる群から選ばれる1つの置換基で置換されたスルホニル基である、
    請求項18~20のいずれか1つに記載のオリゴヌクレオチド化合物、またはその塩。
  32.  Mが、メチル基およびフェニル基からなる群から選ばれる1つの置換基で置換された、スルホニル基である、請求項18~31のいずれか1つに記載の化合物、またはその塩。
  33.  ヌクレオチド間のリン酸結合の少なくとも1つ以上が、ホスホロチオエート結合である、硫黄化された請求項1~32のいずれかに記載のオリゴヌクレオチド、またはその塩。
PCT/JP2019/044182 2018-11-12 2019-11-11 架橋型人工核酸alna WO2020100826A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
BR112021009168-8A BR112021009168A2 (pt) 2018-11-12 2019-11-11 alna de ácido nucleico artificial reticulado
CA3119580A CA3119580A1 (en) 2018-11-12 2019-11-11 Crosslinked artificial nucleic acid alna
SG11202104901VA SG11202104901VA (en) 2018-11-12 2019-11-11 Crosslinked artificial nucleic acid alna
CN201980074116.0A CN112996522A (zh) 2018-11-12 2019-11-11 桥连型人工核酸alna
US17/292,963 US20220002336A1 (en) 2018-11-12 2019-11-11 Crosslinked artificial nucleic acid alna
AU2019381386A AU2019381386A1 (en) 2018-11-12 2019-11-11 Crosslinked artificial nucleic acid ALNA
JP2020555685A JP7356448B2 (ja) 2018-11-12 2019-11-11 架橋型人工核酸alna
EP23191049.8A EP4275690A3 (en) 2018-11-12 2019-11-11 Crosslinked artificial nucleic acid alna
EP23191048.0A EP4275689A3 (en) 2018-11-12 2019-11-11 Crosslinked artificial nucleic acid alna
MX2021005537A MX2021005537A (es) 2018-11-12 2019-11-11 Ácido nucleico alna artificial reticulado.
EP19885739.3A EP3881851A4 (en) 2018-11-12 2019-11-11 ALNA CROSS-LINKED ARTIFICIAL NUCLEIC ACID
KR1020217017322A KR20210090659A (ko) 2018-11-12 2019-11-11 가교형 인공 핵산 alna
PH12021551082A PH12021551082A1 (en) 2018-11-12 2021-05-11 Crosslinked artificial nucleic acid alna
IL283103A IL283103A (en) 2018-11-12 2021-05-11 ALNA crosslinked artificial nucleic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212424 2018-11-12
JP2018-212424 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020100826A1 true WO2020100826A1 (ja) 2020-05-22

Family

ID=70731902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044182 WO2020100826A1 (ja) 2018-11-12 2019-11-11 架橋型人工核酸alna

Country Status (13)

Country Link
US (1) US20220002336A1 (ja)
EP (3) EP3881851A4 (ja)
JP (1) JP7356448B2 (ja)
KR (1) KR20210090659A (ja)
CN (1) CN112996522A (ja)
AU (1) AU2019381386A1 (ja)
BR (1) BR112021009168A2 (ja)
CA (1) CA3119580A1 (ja)
IL (1) IL283103A (ja)
MX (1) MX2021005537A (ja)
PH (1) PH12021551082A1 (ja)
SG (1) SG11202104901VA (ja)
WO (1) WO2020100826A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230286A1 (ja) 2020-05-12 2021-11-18 田辺三菱製薬株式会社 Ataxin 3発現を調節するための化合物、方法及び医薬組成物
WO2021261538A1 (ja) * 2020-06-24 2021-12-30 田辺三菱製薬株式会社 Plp1発現を調節するための化合物、方法及び医薬組成物
WO2022014703A1 (ja) 2020-07-17 2022-01-20 田辺三菱製薬株式会社 筋疾患の予防または治療剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
WO2011156202A1 (en) * 2010-06-08 2011-12-15 Isis Pharmaceuticals, Inc. Substituted 2 '-amino and 2 '-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
WO2012142085A1 (en) * 2011-04-13 2012-10-18 Merck Sharp & Dohme Corp. 2'-substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
WO2013013068A2 (en) 2011-07-19 2013-01-24 University Of Idaho Embodiments of a probe and method for targeting nucleic acids
WO2014046212A1 (ja) 2012-09-21 2014-03-27 国立大学法人大阪大学 グアニジン架橋を有する人工ヌクレオシドおよびオリゴヌクレオチド
WO2014124952A1 (en) 2013-02-12 2014-08-21 Syddansk Universitet "clickable" alkyne-lna oligonucleotides
WO2016128583A2 (en) 2015-02-15 2016-08-18 Ribo Task Aps Acyl-amino-lna and/or hydrocarbyl-amino-lna oligonucleotides
WO2017047816A1 (ja) 2015-09-18 2017-03-23 田辺三菱製薬株式会社 架橋型核酸GuNA、その製造方法および中間体化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145593A1 (en) * 2006-06-15 2007-12-21 Jyoti Chattopadhyaya Conformationally constrained 2' -n,4' -c-ethylene-bridged thymidine (aza-ena-t)
AR118513A1 (es) * 2019-03-29 2021-10-20 Mitsubishi Tanabe Pharma Corp Compuestos para modular la expresión de dux4, métodos y composiciones farmacéuticas de estos

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
WO2011156202A1 (en) * 2010-06-08 2011-12-15 Isis Pharmaceuticals, Inc. Substituted 2 '-amino and 2 '-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
WO2012142085A1 (en) * 2011-04-13 2012-10-18 Merck Sharp & Dohme Corp. 2'-substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
WO2013013068A2 (en) 2011-07-19 2013-01-24 University Of Idaho Embodiments of a probe and method for targeting nucleic acids
WO2014046212A1 (ja) 2012-09-21 2014-03-27 国立大学法人大阪大学 グアニジン架橋を有する人工ヌクレオシドおよびオリゴヌクレオチド
WO2014124952A1 (en) 2013-02-12 2014-08-21 Syddansk Universitet "clickable" alkyne-lna oligonucleotides
WO2016128583A2 (en) 2015-02-15 2016-08-18 Ribo Task Aps Acyl-amino-lna and/or hydrocarbyl-amino-lna oligonucleotides
WO2017047816A1 (ja) 2015-09-18 2017-03-23 田辺三菱製薬株式会社 架橋型核酸GuNA、その製造方法および中間体化合物

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
A. RIES ET AL., J. ORG. CHEM., vol. 81, 2016, pages 10845 - 10856
A. S. J(PRGENSEN ET AL., CHEM. COMMUN., vol. 49, 2013, pages 10751 - 10753
AJAYA R. SHRESTHA, YUTARO KOTOBUKI, YOSHIYUKI HARI, SATOSHI OBIKA: "Guanidine bridged nucleic acid (GuNA): an effect of a cationic bridged nucleic acid on DNA binding affinity", CHEMICAL COMMUNICATIONS, vol. 50, no. 5, 1 January 2014 (2014-01-01), pages 575 - 577, XP055246151, ISSN: 1359-7345, DOI: 10.1039/C3CC46017G *
B. R. BABU ET AL., CHEM. COMMUN., vol. 13, 2005, pages 1705 - 1707
C. LOU ET AL., CHEM. COMMUN., vol. 51, 2015, pages 4024 - 4027
C.H.KIM. ET AL., J. MED. CHEM., vol. 330, 1987, pages 862
H. SAWAMOTO ET AL., ORG. LETT., vol. 20, 2018, pages 1928 - 1931
I. K. ASTAKHOVA ET AL., ACC. CHEM. RES., vol. 47, 2014, pages 1768 - 1777
K. FLUITER ET AL., CHEM. BIO. CHEM., vol. 6, 2005, pages 1104 - 1109
K. W. KNOUSE ET AL., SCIENCE, 2018
M L WOLFROM , M W WINKLEY : "Anomeric purine nucleosides of the furanose form of amino-2-deoxy- D-ribose", JOURNAL OF ORGANIC CHEMISTRY, vol. 32, no. 6, 1 January 1967 (1967-01-01), pages 1823 - 1825, XP055814340 *
M. D. SORENSEN ET AL., CHEM. COMMUN., 2003, pages 2130
M. KALEK ET AL., J. AM. CHEM. SOC., vol. 129, 2007, pages 9392 - 9400
M. W. JOHANNSEN ET AL., ORG. BIOMOL. CHEM., vol. 9, 2011, pages 243 - 252
N. OKA ET AL., J. AM. CHEM. SOC., vol. 130, 2008, pages 16031
S.K. SINGH ET AL., J. ORG. CHEM., vol. 63, 1998, pages 6078 - 6079
SERGE VAN CALENBERGH, ELFRIDE VAN DEN EECKHOUT, PIET HERDEWIJN, ANDRE DE BRUYN, CHRISTOPHE VERLINDE, WIM HOL, MIA CALLENS, ARTHUR : "Synthesis and conformational analysis of 2'-deoxy-2'-(3- methoxybenzamido)adenosine, a rational-designed inhibitor of trypanosomal glyceraldehyde phosphate dehydrogenase (GAPDH", HELVETICA CHIMICA ACTA, vol. 77, no. 3, 1 May 1994 (1994-05-01), pages 631 - 644, XP055707566, ISSN: 0018-019X, DOI: 10.1002/hlca.19940770306 *
T. BRYLD ET AL., NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS, vol. 26, 2007, pages 1645 - 1647
T. SANTHOSH KUMAR, ANDREAS S. MADSEN, MICHAEL E. ØSTERGAARD, SUJAY P. SAU, JESPER WENGEL, PATRICK J. HRDLICKA: "Functionalized 2'-Amino-a-L- LNA: Directed Positioning of Intercalators for DNA Targeting", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 74, no. 3, 6 February 2009 (2009-02-06), pages 1070 - 1081, XP055142743, ISSN: 0022-3263, DOI: 10.1021/jo802037v *
T. UMEMOTO ET AL., ORG. BIOMOL. CHEM., vol. 7, 2009, pages 1793 - 1797
THEODORA W. GREENEPETER G. M. WUTS: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230286A1 (ja) 2020-05-12 2021-11-18 田辺三菱製薬株式会社 Ataxin 3発現を調節するための化合物、方法及び医薬組成物
WO2021261538A1 (ja) * 2020-06-24 2021-12-30 田辺三菱製薬株式会社 Plp1発現を調節するための化合物、方法及び医薬組成物
WO2022014703A1 (ja) 2020-07-17 2022-01-20 田辺三菱製薬株式会社 筋疾患の予防または治療剤

Also Published As

Publication number Publication date
CA3119580A1 (en) 2020-05-22
JP7356448B2 (ja) 2023-10-04
AU2019381386A1 (en) 2021-06-17
PH12021551082A1 (en) 2021-11-22
BR112021009168A2 (pt) 2021-08-17
IL283103A (en) 2021-06-30
EP4275689A2 (en) 2023-11-15
EP3881851A4 (en) 2023-02-15
CN112996522A (zh) 2021-06-18
EP4275690A3 (en) 2023-11-22
JPWO2020100826A1 (ja) 2021-09-30
EP4275690A2 (en) 2023-11-15
SG11202104901VA (en) 2021-06-29
MX2021005537A (es) 2021-09-10
KR20210090659A (ko) 2021-07-20
EP4275689A3 (en) 2023-11-22
EP3881851A1 (en) 2021-09-22
US20220002336A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP7356448B2 (ja) 架橋型人工核酸alna
RU2708237C2 (ru) Модифицированные олигонуклеотиды и способ их получения
JP6048982B2 (ja) グアニジン架橋を有する人工ヌクレオシドおよびオリゴヌクレオチド
JP6994197B2 (ja) 架橋型核酸GuNA、その製造方法および中間体化合物
JP5493117B2 (ja) オリゴヌクレオチド誘導体及びその利用
US20100240604A1 (en) Protected nucleotide analogs
KR102327464B1 (ko) 인플루엔자 rna 복제의 저해제로서의 4'-다이플루오로메틸 치환된 뉴클레오사이드 유도체
JP7441523B2 (ja) 5’位修飾ヌクレオシドおよびそれを用いたヌクレオチド
JPWO2018181428A1 (ja) 核酸医薬及び多分岐脂質の複合体
JP2022531899A (ja) Stingモジュレータとしての修飾環状ジヌクレオシド化合物
JPWO2020100826A5 (ja)
JP3119871B2 (ja) オリゴデオキシリボヌクレオチド類
EP2891717B1 (en) Oligonucleotide
CN117964673A (en) Bridged artificial nucleic acid ALNA
CN117964674A (en) Bridged artificial nucleic acid ALNA
TW202237848A (zh) 靶向tau之寡核苷酸缺口體
US10342819B2 (en) Oligonucleotide having non-natural nucleotide at 5′-terminal thereof
WO2023149038A1 (ja) フェノキサジン誘導体およびそれを用いたドラッグデリバリーシステム製剤
CA2999199A1 (en) Crosslinked nucleic acid guna, method for producing same, and intermediate compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555685

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3119580

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009168

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217017322

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019381386

Country of ref document: AU

Date of ref document: 20191111

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019885739

Country of ref document: EP

Effective date: 20210614

ENP Entry into the national phase

Ref document number: 112021009168

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210511