WO2020100599A1 - 光伝送システム及び非使用経路確認方法 - Google Patents

光伝送システム及び非使用経路確認方法 Download PDF

Info

Publication number
WO2020100599A1
WO2020100599A1 PCT/JP2019/042647 JP2019042647W WO2020100599A1 WO 2020100599 A1 WO2020100599 A1 WO 2020100599A1 JP 2019042647 W JP2019042647 W JP 2019042647W WO 2020100599 A1 WO2020100599 A1 WO 2020100599A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
idle
determination
unit
Prior art date
Application number
PCT/JP2019/042647
Other languages
English (en)
French (fr)
Inventor
佳奈 益本
松田 俊哉
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/291,520 priority Critical patent/US11451293B2/en
Publication of WO2020100599A1 publication Critical patent/WO2020100599A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • H04B10/43Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • the present invention relates to an optical transmission system and an unused route confirmation method for properly confirming an unused route of a redundant network having a plurality of arrival routes to a destination node.
  • optical signal is superposed on the optical signal.
  • OAM Operaation Administration and Maintenance
  • a redundant network will be described with reference to the redundant network 10A having the configuration shown in FIG.
  • a source node 11 of data and a destination node 12 of the data are connected by a first route 14 and a second route 15 via routers 13a and 13b arranged on the nodes 11 and 12 side.
  • the first and second paths 14 and 15 are configured by using an optical fiber cable (also called an optical fiber).
  • Optical fibers are connected between the source node 11 and the router 13a and between the router 13b and the destination node 12.
  • the source node 11 and the destination node 12 are optical transceivers that transmit and receive optical signals.
  • the actual data signal D1 transmitted by being superposed on the optical signal from the transmission source node 11 is transmitted.
  • One route 14) is called a use route.
  • the path (second path 15) through which the actual data signal D1 is not transmitted is called a non-use path.
  • the OAM signal is transmitted in a constant cycle on both the used path and the unused path.
  • Non-Patent Document 1 there is a technique that uses the optical fiber identifier described in Non-Patent Document 1 to properly detect an unused route without error.
  • This is called an optical fiber optical fiber contrast technique, and the optical transmitter of the optical fiber of the unused path of the work, which has a different wavelength from the optical signal and is subjected to low speed modulation (described later), is transmitted from the optical transmitter. ..
  • the optical fiber cable for transmitting the optical signal is sandwiched between the optical fiber identifying devices to bend the optical fiber cable, and the leak light generated by the bending is detected by the optical fiber identifying device to detect the reference light. By detecting the reference light, it is possible to detect an unused path.
  • contrast light is transmitted by providing the optical transmitter with the following functions. That is, the optical transmitter has a function of transmitting a reference light when it detects a state in which actual data transmission by superimposing actual data on an optical signal is not performed, in other words, an idle state that is an empty data state is detected. There is.
  • the optical fiber identification device is composed of a bent portion of the optical fiber cable and a detection portion of the reference light.
  • the bending amount of the optical fiber cable by the bent portion is designed within a range that does not adversely affect the optical signal such as signal loss.
  • the reference light uses a wavelength on the longer wavelength side of the optical signal in order to increase the amount of leaked light due to bending.
  • the optical fiber core wire comparison technique using the optical fiber identification device described in Non-Patent Document 1 has the following problems.
  • the optical signal is usually transmitted at a wavelength near the wavelength with the least optical loss.
  • the optical signal is in the C band (1530 nm to 1565 nm), while the reference light is in the L band (1565 nm to 1625 nm) is used.
  • the actual data signal D1 may flow intermittently across the idle state. In this case, if the portion in the idle state is relatively long, this idle state is detected and the reference light is emitted, so the optical fiber identification device detects the unused route even though it is the used route. ..
  • the present invention has been made in view of the above circumstances, and an optical transmission system capable of appropriately detecting an unused route in which actual data is not transmitted in a long-distance redundant network and realizing this function at low cost, It is an object to provide a method of confirming a non-use route.
  • the invention according to claim 1 connects between optical transceivers having an optical signal transmitter and a receiver, and an OAM signal for maintenance monitoring is transmitted by being superposed on the optical signal.
  • an OAM signal for maintenance monitoring is transmitted by being superposed on the optical signal.
  • the actual data signal from the communication terminal connected to the optical transceiver is transmitted by being superposed on the optical signal, and the empty data state is interposed between the intermittent actual data signals.
  • An optical transmission system comprising: a use path through which an idle signal is superimposed on an optical signal for transmission; and a non-use path through which the actual data signal is not transmitted and the idle signal is transmitted, the transmission of the optical transceiver
  • the unit includes a laser that emits a laser beam that becomes the optical signal, and a light intensity control unit that controls the optical level of the optical signal by the laser beam of the laser, the optical transceiver, the idle signal, the A control unit that superimposes each signal of the OAM signal and the actual data signal on an interface signal for absorbing the difference of the communication medium and outputs the superposed signal to the transmission unit of the optical signal, and each signal output to the transmission unit.
  • the optical transmission system is characterized in that the optical level of the optical signal on which the signals are superimposed is controlled to be different for each signal.
  • the actual data signal from the communication terminal connected to the optical transceiver is transmitted by superimposing it on the optical signal, and the idle signal in the empty data state interposed between the intermittent actual data signals is superposed on the optical signal and transmitted.
  • the optical transceiver includes a laser that emits a laser beam that becomes an optical signal, and a light intensity control unit that controls the optical level of the optical signal by the laser beam of the laser, and the optical transceiver includes the idle signal, the OAM signal, and the Determining the step of superimposing each signal of the actual data signal on an interface signal for absorbing the difference in the communication medium and outputting the signal to the transmitter of the optical signal, and the unique information of each signal output to the transmitter.
  • the step of outputting a determination result signal by this determination is executed, the light intensity control unit, in accordance with the determination state of each signal shown in the determination result signal, the signal of this determination state is superposed It is a non-use route confirmation method characterized by executing a step of controlling to change the optical level of an optical signal to a different level for each signal.
  • the optical levels of the idle signal, the OAM signal, and the actual data signal, which are superimposed on the optical signal transmitted through the optical transmission line are set to different levels for each signal. I changed it. If each of the optical levels is detected by a detector that can be detected from the outside of the optical transmission line, each signal can be detected properly, and thus it can be properly detected whether the optical transmission line is the use route or the non-use route.
  • An optical transceiver capable of changing the optical level different for each signal can be configured by using a microprocessor of a general optical transceiver as a signal determination unit, and a transmission unit including a laser and a light intensity control unit can be used. It is installed in a general optical transceiver. Therefore, an additional circuit, an additional device or the like to the optical transceiver is unnecessary, and since the installed optical fiber is not touched at all, re-laying or re-wiring is unnecessary. Therefore, the unused route detection configuration of the present invention can be realized at low cost.
  • an optical signal of two different wavelengths is not transmitted for detecting an unused route, and an optical signal of one wavelength is sufficient in the present invention. Therefore, the relay amplifier can be used, and the unused path can be detected even in the long-distance optical transmission path. Therefore, it is possible to realize at low cost the function of detecting an unused route in which a real data signal is not transmitted in a long-distance redundant optical transmission line (redundant network).
  • the optical level of the optical signal on which the idle signal transmitted on the optical transmission line is superimposed is detected to detect the idle signal, and the detection time is determined by a predetermined idle determination.
  • the invention according to claim 3 is characterized in that the detector detects the use route if the detection time of the idle signal is less than the idle determination time. It is a transmission system.
  • the detector has only the function of detecting only the non-use route as in claim 2, it is assumed that the use route is detected and measured. In this case, when the non-use route cannot be detected for a long time, the measurer can finally determine that the use route is the use route.
  • the idle signal detection time is less than the idle determination time, it can be detected as the use route, so that the measurer can determine the use route in a short time and improve the work efficiency. You can That is, when it is unknown whether the optical transmission path is the use path or the non-use path, it can be determined that the use path is the use path in a short time.
  • the present invention it is possible to properly detect an unused path in which actual data is not transmitted in a long-distance redundant network, and to provide an optical transmission system and an unused path confirmation method that realize this function at low cost. ..
  • FIG. 1 It is a block diagram showing composition of an optical transmission system concerning an embodiment of the present invention. It is a figure which shows the specific example of a structure of the optical transceiver in the optical transmission system of this embodiment.
  • the optical transmission system of the present embodiment there are three levels of (a) idle signal A1, various transmission signals of OAM signal O1 and actual data signal D1, (b) determination signal, (c) determination result signal, and (d) optical signal.
  • FIG. 3 is a timing chart showing It is a figure which shows the structure when the 1st route of a redundant network in a conventional optical transmission system is a use route, and a 2nd route is a non-use route. It is a figure which shows the structure when the 1st route of a redundant network in a conventional optical transmission system is a non-use route, and a 2nd route is a use route.
  • FIG. 10 is a diagram showing a configuration in a case where a connector of a use route is pulled out when a first route of a redundant network in a conventional optical transmission system is a non-use route and a second route is a use route.
  • FIG. 1 is a block diagram showing the configuration of an optical transmission system according to an embodiment of the present invention.
  • the optical transmission system 20 shown in FIG. 1 includes optical transceivers 21a and 21b on both sides that are spaced apart from each other, and an optical fiber cable 22 (also referred to as an optical fiber 22) that connects these optical transceivers 21a and 21b.
  • And communication terminals 24a and 24b such as personal computers connected to the optical transceivers 21a and 21b on both sides, respectively.
  • a signal detector (detector) 23 for individually detecting the idle signal A1, the OAM signal O1, and the actual data signal D1 which are individually superimposed on the optical signal P1 and transmitted through the optical fiber 22 is provided.
  • the redundant network is preferably a PtoP (PeertoPeer) network including a network connection of one-to-one node.
  • the one optical transceiver 21a and the communication terminal 24a are connected by an Ethernet (registered trademark) cable 26 to exchange the Ethernet frame signal 26a.
  • An Ethernet cable 26 is also connected between the other optical transceiver 21b and the communication terminal 24b.
  • the optical transceivers 21 a and 21 b are configured to include a control unit 31, a signal determination unit 32, an optical signal transmission unit (also referred to as a transmission unit) 33, and an optical signal reception unit (also referred to as a reception unit) 34. ..
  • the control unit 31 controls to individually superimpose each signal of the idle signal A1, the OAM signal O1, and the actual data signal D1 on the XGMII signal 31s (see FIG. 2) described later.
  • the actual data signal D1 is a signal including the Ethernet frame signal 26a received from the communication terminals 24a, 24b, and after being superimposed on the XGMII signal 31s (described later), the transmission path from the transmission unit 33 to the optical fiber 22 described above (see FIG. 6)).
  • the idle signal A1 is an empty data signal without actual data, and is transmitted to an unused path (see FIG. 6) where the actual data signal D1 is not transmitted. Further, the actual data signal D1 is transmitted by being interposed between the actual data signals D1 which are intermittently transmitted in the use route.
  • the signal determination unit 32 determines the unique information of each signal of the idle signal A1, the OAM signal O1, and the actual data signal D1 which is superimposed on the XGMII signal 31s (described later) and output to the transmission unit 33, and shows the determination result.
  • the determination result signal 32s (see FIG. 2) is output to the transmitter 33.
  • the transmitter 33 sets the optical signal P1 to an optical level corresponding to the determination result signal 32s, and transmits the optical signal P1 of this optical level to the optical fiber 22.
  • the optical transceiver 21a illustrated in FIG. 2 is configured based on a general SFP (Small Form-Factor Pluggable) transceiver, and has a protocol IC (Integrated Circuit) unit 31 having the function of the control unit 31 described above and a signal determination unit. It includes a unit 32, a serial / parallel conversion unit (also referred to as an SP conversion unit 36) 36, and the above-described transmission unit 33 and reception unit 34.
  • SFP Small Form-Factor Pluggable
  • the protocol IC unit 31 includes a MAC (Media Access Control) sublayer unit 31a and a PHY (physical layer) unit 31b.
  • MAC Media Access Control
  • PHY physical layer
  • the MAC sublayer 31a controls transmission / reception between the communication terminals 24a and 24b, which are Ethernet compatible devices, using a MAC address having a source and a destination.
  • the MAC sublayer unit 31a processes data exchange with the PHY unit 31b and absorbs the difference in communication media below the physical layer.
  • the MAC sublayer unit 31a is connected to the PHY unit 31b through an interface such as XGMII (10 Gigabit Media Independent Interface) defined by IEEE802.3z, and the PHY unit 31b, the SP conversion unit 36, the transmission unit 33, and the reception unit. It can be connected to the optical fiber 22 which is a network via the section 34.
  • the XGMII signal 31s exchanged between the MAC sublayer unit 31a and the PHY unit 31b superimposes each of the above-mentioned idle signal A1, OAM signal O1, and actual data signal D1 individually.
  • Each of the superimposed signals is converted from the parallel signal PL into the serial signal SL by the SP conversion unit 36 connected between the transmission unit 33 and the PHY unit 31b.
  • the XGMII signal 31s constitutes an interface signal for absorbing the difference between the communication media described in the claims.
  • the SP conversion unit 36 converts the serial signal SL from the transmission unit 33 into a parallel signal PL.
  • the serial signal SL between the SP conversion unit 36 and the transmission unit 33 is indicated by a bidirectional arrow. This bidirectional arrow indicates that the serial signal SL related to the optical signal P1 received by the reception unit 34 is SP converted.
  • the output to the unit 36 is also expressed.
  • the PHY (physical layer) unit 31b is a type of protocol that belongs to the most physical position of the OSI (Open System Interconnection) reference model in the network.
  • the PHY unit 31b defines physical contents such as the interface shape and the data transmission method. For example, the shape of the connector, the voltage and wavelength system used for conversion of electric signals, etc. are specified.
  • the PHY is also provided with a function of transmitting and receiving electrical signals and scrambling data.
  • the PHY unit 31b outputs each signal of the idle signal A1, the OAM signal O1, and the actual data signal D1 that are individually superimposed on the XGMII signal 31s from the MAC sublayer unit 35a to the transmission unit 33 via the SP conversion unit 36. To do.
  • the OAM signal O1 is generally transmitted in any one cycle of 3.3 ms, 10 ms, 100 ms, 10 s, 1 m, and 10 m (referred to as OAM cycle T1).
  • the OAM cycle T1 may be a cycle other than those listed.
  • the signal determination unit 32 is composed of a microprocessor equipped in a general SFP transceiver, and has the following characteristic configuration of the present invention.
  • the TD_snoop_Pin (transmission data monitoring pin) 32a of the microprocessor is connected to a signal line between the SP conversion unit 36 and the transmission unit 33, and an idle signal A1 flowing as a serial signal SL on this signal line.
  • OAM signal O1 and actual data signal D1 are input.
  • the TD_snoop_Pin 32a is also referred to as the TDPin 32a.
  • the AUX_mod_Pin (sub-modulation signal pin) 32b for signal output (out) of the signal determination unit 32 is connected to the AUX_mod_Pin 33a for signal input (in) provided as standard in the transmission unit 33, which will be described later.
  • the determination result signal 32s of No. 3 is configured to flow.
  • the AUX_mod_Pin 32b is also referred to as an output Pin 32b
  • the AUX_mod_Pin 33a is also referred to as an input Pin 33a.
  • the transmitter 33 includes a light intensity controller 35 and a laser 37 that are generally provided.
  • the laser 37 emits a laser beam, which is the optical signal P1, to the optical fiber 22.
  • the light intensity control unit 35 is connected to the input Pin 33a and performs the control described below.
  • the signal determination unit 32 individually determines the unique information of each signal of the idle signal A1, the OAM signal O1, and the actual data signal D1 shown in FIG. 3A input from the TDPIN 32A, and the determination result signal indicating this determination result. 32s is output from the output Pin 32b to the input Pin 33a.
  • the signal determination unit 32 when determining the unique information of each signal, uses the determination signal J1 shown in FIG. 3B.
  • the determination signal J1 is a strobe signal that is oscillated at a constant period (for example, 3.7 ms period) for signal determination in the signal determination unit 32.
  • the determination signal J1 can be input from the outside of the signal determination unit 32.
  • the signal determination unit 32 outputs the determination result of the determination signal J 1 to the determination result signal 32 s as OFF, ON, and an intermediate level between OFF and ON. It is represented by three types of determination states with OA.
  • the determination result signal 32s is turned ON when the signal determination unit 32 determines that the idle signal A1, is OA when determined as the OAM signal O1, and is OFF when determined as the actual data signal D1.
  • the determination result signal 32s indicating these determination results is output from the output Pin 32b shown in FIG. 2, input to the input Pin 33a, and supplied to the light intensity controller 35.
  • the light intensity control unit 35 controls the injection current of the laser 37 according to the determination states of the various transmission signals A1, O1, and D1 indicated by the determination result signal 32s, so that the laser light emitted from the laser 37 (light Control for changing the light intensity (light level) of the signal P1) is performed. That is, the light intensity control unit 35 controls to change the light level of the optical signal P1.
  • the light intensity control unit 35 sets the optical signal P1 to the optical level L1 and outputs the OA indicating the OAM signal O1 as shown in FIG.
  • the light level L2 is higher than the light level L1
  • the light level L3 is higher than the light level L2.
  • Each of the light levels L1 to L3 has a light intensity that does not adversely affect the transmission through the optical fiber 22.
  • the intensity modulation control of the optical signal P1 may be performed by providing a VOC (Variable Optical Attenuator) (not shown) on the output side of the laser 37 and in accordance with each signal indicated by the determination result signal 32s.
  • VOC Variable Optical Attenuator
  • the optical fiber 22 is a concentrating network
  • a problem occurs such that each signal of the idle signal A1, the OAM signal O1, and the actual data signal D1 collides with each signal of other paths.
  • the optical fiber 22 is a PtoP network including a network connection of one-to-one node, there is no possibility that the above-mentioned trouble will occur.
  • the signal detector 23 shown in FIG. 1 is configured based on the above-described optical fiber discriminator, and includes a bending portion 23a, a detecting portion 23b, and a display portion 23c. ..
  • the bent portion 23a is for inserting the optical fiber cable 22 into a groove and bending it to generate leak light.
  • the amount of bending is designed in a range that does not adversely affect the optical signal P1 such as signal loss.
  • the detection unit 23b detects various transmission signals A1, O1, D1 by detecting leaked light corresponding to the optical levels L1 to L3 of the various transmission signals A1, O1, D1 superimposed on the above-mentioned optical signal P1. .. At this time, the detection unit 23b detects that the optical fiber 22 is an unused path when detecting the leaked light of the idle signal A1 and detecting the idle signal A1 for a predetermined time (called idle determination time) or more. To do. Further, when detecting the idle signal A1 having a length shorter than the idle determination time, the detection unit 23b detects that the optical fiber 22 is the use path. However, it is a precondition that the idle signal A1 does not flow in the use route for the idle determination time or longer.
  • the display unit 23c displays that each signal has been detected, and that the detection unit 23b indicates that the route is an unused route when the idle signal A1 having a length equal to or longer than the idle determination time is detected.
  • the idle signal A1 is detected, it is displayed that it is a use route.
  • FIG. 4 shows an idle signal A1 and an actual data signal D1 as various transmission signals transmitted by being superimposed on the XGMII signal 35s.
  • B shows the determination signal J1
  • c shows the determination result signal 32s.
  • D represents the optical level La of the optical signal P1 and the optical level Lb having an optical intensity higher than the optical level La.
  • the optical level La is a level according to the idle signal A1
  • the optical level Lb is a level according to the actual data signal D1.
  • the idle signal A1 is transmitted from time t1 to t4 and is input to the TDPin 32a of the signal determination unit 32.
  • the signal determination unit 32 determines the input signal with the determination signal J1 as shown in FIG.
  • the signal determination unit 32 turns on the determination result signal 32s and outputs the determination result signal 32s from the output Pin 32b, as shown in FIG. 4 (c).
  • the output determination result signal 32s is input from the input Pin 33a of the transmitter 33 and supplied to the light intensity controller 35.
  • the light intensity control unit 35 Since the determination result signal 32s is ON indicating the idle signal A1, the light intensity control unit 35 outputs the optical signal P1 generated by the laser light emitted from the laser 37 as shown from time t1 to t4 in FIG. Let level be La.
  • the idle signal A1 is input at the time t11
  • the actual data signal D1 is input from the time t11 in the middle to the time t13 in the middle, and then the time t13 elapses. It is assumed that the idle signal A1 is input on the way.
  • the determination result signal 32s is turned on according to the idle signal A1 between the times t11 and t12 as shown in FIG. 4 (c) by the determination by the determination signal J1 shown in FIG. 4 (b). Furthermore, the determination result signal 32s becomes the OFF state related to the actual data signal D1 between times t12 and t14, and becomes the ON state related to the idle signal A1 at time t14.
  • the light intensity control unit 35 sets the optical signal P1 to the optical level La between the times t11 and t12 as shown in FIG. And t14, the light level Lb is set, and at time t14, the light level La is set.
  • the signal detector 23 detects leaked light corresponding to different optical levels La and Lb of the optical signal P1 between times t11 and t14, and detects the idle signal A1 and the actual data signal D1.
  • the OAM signal O1 of 3.3 ms period interposed between the intermittent idle signals A1 is input to the TDPin 32a of the signal determination unit 32 as shown in time t1 to t4 of FIG. It is assumed that the OAM signal O1 having a period of 10 ms has been input, as shown between the progress of t11 and t13.
  • the determination result signal 32s shown in FIG. 5C is changed to the OFF state related to the OAM signal O1 between the times t1 and t2 by the determination with the determination signal J1 between the times t1 and t4 shown in FIG. 5B.
  • the idle state of the idle signal A1 is set.
  • the light intensity control unit 35 sets the optical signal P1 to the light level Lb between time t1 and t2 as shown in FIG. 5D, and between time t2 and t4.
  • the light level is La.
  • the determination result signal 32s changes from the time t11 to the time t14 according to the determination result.
  • the OAM signal O1 of 10 ms is turned off.
  • the light intensity control unit 35 sets the optical signal P1 to the optical level Lb between times t11 and t14 as shown in FIG. 5 (d).
  • the idle signal A1 is detected at the optical level La and the OAM signal O1 is detected at the optical level Lb. Therefore, the detection of the OAM signal O1 at the optical level Lb overlaps with the detection of the actual data signal D1 at the optical level Lb shown in FIG. 4, and it becomes impossible to distinguish between the actual data signal D1 and the OAM signal O1.
  • an optical signal P1 that individually superimposes each of the idle signal A1, the OAM signal O1, and the actual data signal D1 is output in three optical levels L1 to It can be discriminated by being represented by L3. This operation will be described with reference to FIGS.
  • the MAC sublayer unit 31a illustrated in FIG. 2 superimposes the actual data signal D1 on the XGMII signal 35s according to the Ethernet frame signal 26a received from the communication terminal 24a, and passes the data through the PHY unit 31b and the SP conversion unit 36. And transmits it to the transmitter 33.
  • the MAC sublayer unit 35a superimposes the idle signal A1 or the OAM signal O1 on the XGMII signal 31s and transmits it to the transmission unit 33 via the PHY unit 31b and the SP conversion unit 36.
  • Each signal of the idle signal A1, the OAM signal O1, and the actual data signal D1 transmitted to the transmission unit 33 is simultaneously input to the signal determination unit 32 via the TDPin 32a. That is, as shown in time t1 to t5 and time t11 to t15 in FIG. 3A, various transmission signals A1, O1, D1 are input to the signal determination unit 32.
  • the signal determination unit 32 determines the unique information of each signal by the determination signal J1 shown in FIG. 3 (b).
  • the determination result is the idle signal A1 shown between the times t1 and t2
  • the determination result signal 32s is turned on as shown in FIG. 3 (c).
  • the determination result signal 32s is turned off.
  • the light intensity control unit 35 When the determination result signal 32s is ON indicating the idle signal A1, the light intensity control unit 35 indicates the optical signal P1 by the laser light emitted from the laser 37 as shown between the times t1 and t2 in FIG. Is the light level L1. When the determination result signal 32s is OFF indicating the actual data signal D1, the light intensity control unit 35 sets the optical signal P1 to the optical level L3 shown between the times t2 and t5.
  • the signal determination unit 32 performs As shown in c), the determination result signal 32s is turned on. In the case of the OAM signal O1 shown between the times t12 and t15, the determination result signal 32s is set to the OA state.
  • These determination result signals 32s are output from the output Pin 32b of the signal determination unit 32 and supplied to the light intensity control unit 35 via the input Pin 33a of the transmission unit 33.
  • the light intensity control unit 35 sets the light signal P1 to the light level L1 as shown between times t11 and t12 in FIG. 4D.
  • the determination result signal 32s is OA indicating the OAM signal O1
  • the light intensity control unit 35 sets the light signal P1 to the light level L2 indicated between the times t12 and t15.
  • the actual data signal D1 is intermittently transmitted via the idle signal A1 in the use path, Moreover, even when the OAM signal O1 is transmitted, each signal can be detected individually.
  • the idle signal A1 interposed and transmitted between the intermittent real data signals D1 is transmitted for a time shorter than the idle determination time as in the above-mentioned precondition. Therefore, when the signal detector 23 detects the idle signal A1 that is shorter than the idle determination time, the signal detector 23 detects it as a use route.
  • the actual data signal D1 is not transmitted and only the idle signal A1 and the OAM signal O1 are transmitted. Therefore, since the idle signal A1 is transmitted for a long time equal to or longer than the idle signal determination time, when the signal detector 23 detects the idle signal A1 equal to or longer than the idle determination time, it is detected as a non-use route.
  • the display unit 23c displays that each signal is detected. At this time, the display unit 23c displays that the route is an unused route when the idle signal A1 having a length equal to or longer than the idle determination time is detected, and the length less than the idle determination time is displayed. When the idle signal A1 is detected, it is displayed that it is a use route.
  • the optical transmission system 20 connects between the optical transceivers 21a and 21b having the transmission unit 33 and the reception unit 34 for the optical signal P1, and the pulse-shaped OAM signal O1 for maintenance monitoring is superimposed on the optical signal P1 and transmitted. It has a plurality of optical fibers 22.
  • the actual data signal D1 from the communication terminals 24a and 24b connected to the optical transceivers 21a and 21b is superimposed on the optical signal P1 and transmitted through these optical fibers 22, and is interposed between the intermittent actual data signals D1.
  • the idle signal A1 in the empty data state is superposed on the optical signal P1 and transmitted, and the non-use route in which the actual data signal D1 is not transmitted and the idle signal A1 is transmitted. There is.
  • This optical transmission system 20 has the following characteristic configuration.
  • the transmitter 33 includes a laser 37 that emits a laser beam that becomes the optical signal P1 and a light intensity controller 35 that controls the optical level of the optical signal by the laser beam of the laser 37.
  • the optical transceiver superimposes each signal of the idle signal A1, the OAM signal O1 and the actual data signal D1 on the interface signal for absorbing the difference of the communication medium, and outputs the superposed signal to the transmitter 33 of the optical signal P1.
  • the signal determination unit 32 that individually determines the unique information of each signal output to the transmission unit 33 and outputs the determination result signal 32s based on this determination.
  • the light intensity control unit 35 determines the optical level of the optical signal P1 on which the signal in the determination state is superimposed, which is different for each signal (optical level L1 ... L3) is controlled.
  • the optical levels L1 to L3 of the idle signal A1, the OAM signal O1, and the actual data signal D1 superimposed on the optical signal P1 transmitted through the optical fiber 22 are changed to different levels for each signal. .. If each of the light levels L1 to L3 is detected by the signal detector 23 that can be detected from the outside of the optical fiber 22, each signal can be detected properly, so that the optical fiber 22 can be used or not used. Can be detected properly.
  • the optical transceivers 21a and 21b capable of changing to different optical levels L1 to L3 for each signal can be configured by using a microprocessor of a general optical transceiver as the signal determination unit 32.
  • the transmitter 33 including the laser 37 and the light intensity controller 35 is mounted on a general optical transceiver. Therefore, an additional circuit or an additional device for the optical transceivers 21a and 21b is unnecessary, and since the optical fiber 22 that has already been installed is not touched at all, re-laying and rewiring are not required. Therefore, the unused route detection configuration of the present invention can be realized at low cost.
  • an optical signal of two different wavelengths is not transmitted for detecting an unused route, and in the present invention, an optical signal P1 of one wavelength is sufficient. Therefore, the relay amplifier can be used, and the unused path can be detected even in the long-distance optical fiber 22. Therefore, the function of detecting an unused path in which the actual data signal D1 is not transmitted in the long-distance redundant optical fiber 22 (redundant network) can be realized at low cost.
  • the optical levels L1 to L3 of the optical signal P1 superposed with the idle signal A1 transmitted to the optical fiber 22 are detected to detect the idle signal A1, and the detection time is a predetermined idle determination time. If it is above, it is set as the structure provided with the signal detector 23 which detects that it is a non-use path.
  • the signal detector 23 is configured to detect the use route if the detection time of the idle signal A1 is less than the idle determination time.
  • the measurer can finally determine that the use route is the use route.
  • the signal detector 23 of (3) if the detection time of the idle signal A1 is less than the idle determination time, it can be detected as a use route, so that the measurer can determine that it is the use route in a short time, and work efficiency can be improved. Can be improved. That is, when it is unclear whether the optical fiber 22 is the use route or the non-use route, it can be determined that it is the use route in a short time.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】長距離の冗長ネットワークにおいて実データが伝送されない非使用経路を適正に検知できると共に、この機能を低コストで実現する。 【解決手段】光伝送システム20の光ファイバ22で接続された光トランシーバ21a,21bの送信部33は、光信号P1となるレーザ光を光ファイバ22へ出射するレーザ37と、レーザ光による光信号の光レベルを変える制御を行う光強度制御部35とを備える。光トランシーバ21a,21bは、アイドル信号A1、OAM信号O1及び実データ信号D1の各信号を、XGMII信号31sに重畳して光信号P1の送信部33へ出力する制御部31と、送信部33への各信号の固有情報を判定し、この判定結果信号32sを出力する信号判定部32とを備える。光強度制御部35は、判定結果信号32sに示される信号毎の判定の信号が重畳された光信号P1の光レベルを、信号毎で異なる光レベルL1~L3に変える制御を行う。

Description

光伝送システム及び非使用経路確認方法
 本発明は、宛先ノードまでの到達経路が複数ある冗長ネットワークの非使用経路を適正に確認する光伝送システム及び非使用経路確認方法に関する。
 従来、光伝送システムの冗長ネットワークでは、一般的な光通信方式が適用された長距離通信を行っており、光信号に重畳される実データの伝送の有無に関わらず、同光信号に重畳されるOAM(Operation Administration and Maintenance:保守監視機能)信号が一定周期で伝送されている。光信号は、実データやOAM信号等の各種のデータ伝送を担うものである。
 このような冗長ネットワークを、図6に示す構成の冗長ネットワーク10Aを参照して説明する。冗長ネットワーク10Aは、データの送信元ノード11と、そのデータの宛先ノード12とが、各ノード11,12側に配備されたルータ13a,13bを介して第1経路14と第2経路15で接続されている。第1及び第2経路14,15は、光ファイバケーブル(光ファイバともいう)を用いて構成されている。送信元ノード11とルータ13a間並びに、ルータ13bと宛先ノード12間は光ファイバで接続されている。送信元ノード11と宛先ノード12は、光信号の送受信を行う光トランシーバである。
 各ノード11,12間の第1経路14には、送信元ノード11から光信号に重畳されて送信された実データ信号D1が伝送されており、この実データ信号D1が伝送される経路(第1経路14)を使用経路という。実データ信号D1が伝送されない経路(第2経路15)を非使用経路という。使用経路及び非使用経路の双方には、OAM信号が一定周期で伝送されている。
 このような通信状態において、現在使用中の第1経路14に、図7に破線枠で示すように、トランスポンダやルータ等のノード16を追加する必要性が生じた場合、現在、非使用経路となっている第2経路15(図6)を使用経路に切り替えて実データ信号D1を伝送する。この後、使用経路であった第1経路14を非使用経路に切り替える。この切替後の使用経路及び非使用経路の双方には上記同様にOAM信号が伝送される。
 次に、非使用経路となった第1経路14にノード16を追加する作業を行う。この際、第1経路14は導通状態であるため、第1経路14のコネクタをルータ13bから抜く必要がある。しかし、ルータ13bには、コネクタを介して経路としての多数の光ファイバが接続されている。
 このため、図8に×印で示すように、作業者が誤って使用経路である第2経路15のコネクタを抜いてしまうと、第2経路15が未導通の停止状態となってしまう。この過ちを防止するため、光ファイバケーブルにタグを付けたり、ケーブルの色で識別を行う等の対策を取っているが、それでもヒューマンエラーが生じてしまう。
 そこで、非特許文献1に記載の光ファイバ識別機を使用して非使用経路を誤りなく適正に検知する技術がある。これは、光ファイバ心線対照技術と呼ばれ、作業対象の非使用経路の光ファイバに、上記光信号とは別波長で且つ低速変調(後述)を掛けた対照光を光送信機から送信する。この光信号が伝送する光ファイバケーブルを光ファイバ識別機で挟んで光ファイバケーブルを湾曲させ、この湾曲により発生する漏れ光を光ファイバ識別機で検出することにより対照光を検知する。この対照光の検知により非使用経路を検知可能となっている。
 なお、対照光は、光送信機に次のような機能を設けて送信されている。即ち、光送信機は、光信号への実データの重畳による実データ伝送が行われていない状態、言い換えれば空データ状態であるアイドル状態を検知した際に、対照光を発信する機能を備えている。
 また、上述の漏れ光は、低パワー(例えば、最小が-80dBm)であるため、ノイズと区別する必要があり、このため、対照光に低速なオン/オフ変調による低速変調を付与することが一般的である。光ファイバ識別機は、光ファイバケーブルの曲げ部と、対照光の検出部とで構成されている。その曲げ部による光ファイバケーブルの曲げ量は、光信号に信号ロス等の悪影響を与えない範囲で設計されている。対照光は、曲げによる漏れ光量を多くするため、光信号よりも長波長側の波長を用いている。
古河電工"光ファイバ識別機",[online],2018,[平成30年10月27日検索],インターネット〈URL: https://www.furukawa.co.jp/common/images/l_footer/logo_group.svg〉
 しかし、上記非特許文献1に記載の光ファイバ識別機を用いる光ファイバ心線対照技術においては、次のような問題があった。光信号は、通常、最も光損失が少ない波長付近の波長で送信される。この他に、光信号よりも長波長側の波長の光信号である対照光を導入するので、光信号がC帯(1530nm~1565nm)であるのに対して、対照光はL帯(1565nm~1625nm)を使用する。
 この異なる2波長の光信号を伝送するため、光ファイバへの中継アンプの使用が不可能となる。中継アンプが使用できないと短距離通信しか行えないので、長距離の光伝送システムでは、上記光ファイバ心線対照技術を用いることができない。また、光信号用と対照光用との2台の光送信機が必要となるため、コスト高となってしまう。
 一方、使用経路では、実データ信号D1がアイドル状態を挟んで断続的に流れる場合がある。この場合に、アイドル状態の部分が比較的長いと、このアイドル状態を検知して対照光を発信するので、使用経路であるにも関わらず、光ファイバ識別機で非使用経路と検知してしまう。
 本発明は、このような事情に鑑みてなされたものであり、長距離の冗長ネットワークにおいて実データが伝送されない非使用経路を適正に検知できると共に、この機能を低コストで実現できる光伝送システム及び非使用経路確認方法を提供することを課題とする。
 上記課題を解決するための手段として、請求項1に係る発明は、光信号の送信部及び受信部を有する光トランシーバ間を接続し、保守監視用のOAM信号が光信号に重畳されて伝送される複数の光伝送路の内、前記光トランシーバに接続された通信端末機からの実データ信号が光信号に重畳されて伝送され、且つ断続的な実データ信号間に介在された空データ状態のアイドル信号が光信号に重畳されて伝送される使用経路と、前記実データ信号が未伝送で且つ前記アイドル信号が伝送される非使用経路とを有する光伝送システムであって、前記光トランシーバの送信部は、前記光信号となるレーザ光を出射するレーザと、当該レーザのレーザ光による光信号の光レベルを変える制御を行う光強度制御部とを備え、前記光トランシーバは、前記アイドル信号、前記OAM信号及び前記実データ信号の各信号を、通信媒体の違いを吸収するためのインタフェース信号に重畳して前記光信号の送信部へ出力する制御部と、前記送信部へ出力される前記各信号の固有情報を判定し、この判定による判定結果信号を出力する信号判定部とを備え、前記光強度制御部は、前記判定結果信号に示される信号毎の判定状態に応じて、この判定状態の信号が重畳された前記光信号の光レベルを、信号毎で異なるレベルに変える制御を行うことを特徴とする光伝送システムである。
 請求項4に係る発明は、光信号の送信部及び受信部を有する光トランシーバ間を接続し、保守監視用のOAM信号が光信号に重畳されて伝送される複数の光伝送路の内、前記光トランシーバに接続された通信端末機からの実データ信号が光信号に重畳されて伝送され、且つ断続的な実データ信号間に介在された空データ状態のアイドル信号が光信号に重畳されて伝送される使用経路と、前記実データ信号が未伝送で且つ前記アイドル信号が伝送される非使用経路とを有する光伝送システムの非使用経路確認方法であって、前記光トランシーバの送信部は、前記光信号となるレーザ光を出射するレーザと、当該レーザのレーザ光による光信号の光レベルを変える制御を行う光強度制御部とを備え、前記光トランシーバは、前記アイドル信号、前記OAM信号及び前記実データ信号の各信号を、通信媒体の違いを吸収するためのインタフェース信号に重畳して前記光信号の送信部へ出力するステップと、前記送信部へ出力される前記各信号の固有情報を判定し、この判定による判定結果信号を出力するステップとを実行し、前記光強度制御部は、前記判定結果信号に示される信号毎の判定状態に応じて、この判定状態の信号が重畳された前記光信号の光レベルを、信号毎で異なるレベルに変える制御を行うステップを実行することを特徴とする非使用経路確認方法である。
 請求項1の構成及び請求項4の方法によれば、光伝送路を伝送する光信号に重畳されるアイドル信号、OAM信号及び実データ信号の各信号の光レベルを、信号毎で異なるレベルに変えるようにした。この各光レベルを、光伝送路の外部から検出可能な検知器で検出すれば、各信号を適正に検知できるので、光伝送路が使用経路又は非使用経路であることを適正に検知できる。
 上記信号毎で異なる光レベルに変えることを可能とする光トランシーバは、一般的な光トランシーバのマイクロプロセッサを信号判定部として利用すれば構成でき、また、レーザ及び光強度制御部を備える送信部は一般的な光トランシーバに搭載されている。このため、光トランシーバへの追加回路や追加装置等が不要であり、また、敷設済みの光ファイバに全く手を加えないため、再敷設や再配線が不要である。従って、本発明の非使用経路の検知構成を低コストで実現できる。
 また、従来のように非使用経路検知のために異なる2波長の光信号を伝送させることも無く、本発明では1波長の光信号で済む。このため、中継アンプが使用可能となって長距離の光伝送路でも非使用経路を検知可能となる。従って、長距離の冗長光伝送路(冗長ネットワーク)において実データ信号が伝送されない非使用経路を検知する機能を低コストで実現できる。
 従って、長距離の冗長ネットワークにおいて実データが伝送されない非使用経路を適正に検知できると共に、この機能を低コストで実現できる。
 請求項2に係る発明は、前記光伝送路に伝送される前記アイドル信号が重畳された光信号の光レベルを検出して当該アイドル信号を検知し、この検知時間が、予め定められたアイドル判定時間以上であれば、前記非使用経路であると検知する検知器を備えることを特徴とする請求項1に記載の光伝送システムである。
 この構成によれば、光伝送路が非使用経路であることを適正に検知できる。
 請求項3に係る発明は、前記検知器は、前記アイドル信号の検知時間が、前記アイドル判定時間未満であれば、前記使用経路であると検知することを特徴とする請求項2に記載の光伝送システムである。
 この構成によれば、次のような作用効果がある。まず、検知器が上記請求項2のように非使用経路のみの検知機能しか備えていない場合に、使用経路の検知測定を行ってしまったと想定する。この場合、非使用経路の検知が長時間に亘って不可能なときに、ようやく測定者が使用経路であることを判断できる。しかし、本請求項3では、アイドル信号の検知時間がアイドル判定時間未満であれば使用経路と検知できるので、測定者が短時間で使用経路であることを判断でき、作業の効率を向上させることができる。つまり、光伝送路が使用経路か非使用経路かが不明の場合に、使用経路については短時間で使用経路であることが判断できる。
 本発明によれば、長距離の冗長ネットワークにおいて実データが伝送されない非使用経路を適正に検知できると共に、この機能を低コストで実現する光伝送システム及び非使用経路確認方法を提供することができる。
本発明の実施形態に係る光伝送システムの構成を示すブロック図である。 本実施形態の光伝送システムにおける光トランシーバの構成の具体例を示す図である。 本実施形態の光伝送システムにおける(a)アイドル信号A1、OAM信号O1及び実データ信号D1の各種送信信号、(b)判定信号、(c)判定結果信号、(d)光信号の3段階の各タイミングを示すタイミングチャートである。 本実施形態の光伝送システムにおける(a)アイドル信号A1及び実データ信号D1の各種送信信号、(b)判定信号、(c)判定結果信号、(d)光信号の2段階の光レベルの各タイミングを示すタイミングチャートである。 本実施形態の光伝送システムにおける(a)アイドル信号A1及びOAM信号O1の各種送信信号、(b)判定信号、(c)判定結果信号、(d)光信号の2段階の光レベルの各タイミングを示すタイミングチャートである。 従来の光伝送システムにおける冗長ネットワークの第1経路が使用経路、第2経路が非使用経路である場合の構成を示す図である。 従来の光伝送システムにおける冗長ネットワークの第1経路が非使用経路、第2経路が使用経路である場合の構成を示す図である。 従来の光伝送システムにおける冗長ネットワークの第1経路が非使用経路、第2経路が使用経路である場合に、使用経路のコネクタが抜かれた場合の構成を示す図である。
 以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書の全図において機能が対応する構成部分には同一符号を付し、その説明を適宜省略する。
<実施形態の構成>
 図1は、本発明の実施形態に係る光伝送システムの構成を示すブロック図である。
 図1に示す光伝送システム20は、遠隔地に離間して配置された両側の光トランシーバ21a,21bと、これらの光トランシーバ21a,21bを接続する光ファイバケーブル22(光ファイバ22ともいう)と、両側の光トランシーバ21a,21bに各々接続されたパーソナルコンピュータ等の通信端末機24a,24bとを備えて構成されている。更に、光信号P1に個別に重畳されて光ファイバ22で伝送されるアイドル信号A1、OAM信号O1、実データ信号D1を個別に検知する信号検知器(検知器)23を備える。
 但し、光トランシーバ21a,21b間の光ファイバ22は、図1には1本しか記載していないが、前述の図6に示したように、冗長ネットワーク構成となっているものとする。冗長ネットワークは、ノード1対1のネットワーク接続を含むPtoP(Peer to Peer)ネットワークであることが好ましい。
 一方の光トランシーバ21aと通信端末機24a間は、イーサネット(登録商標)ケーブル26で接続され、イーサネットフレーム信号26aを遣り取りする。他方の光トランシーバ21bと通信端末機24b間も、同様にイーサネットケーブル26で接続されている。
 光トランシーバ21a,21bは、制御部31と、信号判定部32と、光信号送信部(送信部ともいう)33と、光信号受信部(受信部ともいう)34とを備えて構成されている。
 制御部31は、アイドル信号A1、OAM信号O1及び実データ信号D1の各信号を後述のXGMII信号31s(図2参照)に個別に重畳する制御を行う。
 実データ信号D1は、通信端末機24a,24bから受信したイーサネットフレーム信号26aを含む信号であり、XGMII信号31s(後述)への重畳後に、送信部33から光ファイバ22の前述した使用経路(図6参照)に伝送される。
 アイドル信号A1は、実データの無い空データの信号であり、実データ信号D1が伝送されていない非使用経路(図6参照)に伝送される。また、実データ信号D1は、使用経路において断続的に伝送される実データ信号D1間に介在されて伝送される。
 信号判定部32は、XGMII信号31s(後述)に重畳されて送信部33へ出力されるアイドル信号A1、OAM信号O1及び実データ信号D1の各信号の固有情報を判定し、この判定結果を示す判定結果信号32s(図2参照)を送信部33へ出力する。
 送信部33は、光信号P1を判定結果信号32sに応じた光レベルとし、この光レベルの光信号P1を光ファイバ22へ送信する。
 次に、光トランシーバ21a,21bの具体例を、図2に光トランシーバ21aを代表して示し、その説明を行う。図2に示す光トランシーバ21aは、一般的なSFP(Small Form-Factor Pluggable)トランシーバを基に構成されており、上述した制御部31の機能を有するプロトコルIC(Integrated Circuit)部31と、信号判定部32と、シリアル/パラレル変換部(SP変換部36ともいう)36と、上述した送信部33及び受信部34とを備える。
 プロトコルIC部31は、MAC(Media Access Control)副層部31aと、PHY(physical layer:物理層)部31bとを備える。
 MAC副層部31aは、送信元と宛先とを有するMACアドレスを使用して、イーサネット対応機器である通信端末機24a,24b間の送受信を制御する。
 MAC副層部31aは、PHY部31bとのデータの交換を処理し、物理層以下の通信媒体の違いを吸収する処理を行う。このMAC副層部31aは、IEEE802.3zで規定されたXGMII(10 Gigabit Media Independent Interface)といったインタフェースでPHY部31bに接続されており、PHY部31b並びに、SP変換部36、送信部33及び受信部34を介してネットワークである光ファイバ22に接続可能となっている。
 MAC副層部31aとPHY部31b間で遣り取りされるXGMII信号31sは、上述したアイドル信号A1、OAM信号O1及び実データ信号D1の各信号を個別に重畳するものである。重畳された各信号は、送信部33とPHY部31bとの間に接続されたSP変換部36によってパラレル信号PLからシリアル信号SLに変換される。なお、XGMII信号31sは、請求項記載の通信媒体の違いを吸収するためのインタフェース信号を構成する。
 また、SP変換部36は、送信部33からのシリアル信号SLをパラレル信号PLに変換する。図2にはSP変換部36と送信部33間のシリアル信号SLを双方向矢印で示したが、この双方向矢印は、受信部34で受信された光信号P1に係るシリアル信号SLがSP変換部36へ出力されることも表現している。
 PHY(物理層)部31bとは、ネットワークにおけるOSI(Open System Interconnection)参照モデルの最も物理的な位置に属するプロトコルの一種である。PHY部31bでは、インタフェースの形やデータ伝送方法等の物理的な内容が規定されている。例えば、コネクタの形や電気信号の変換に用いられる電圧や波長の方式などが規定されている。PHYには、電気的な信号の送受信を行うことやデータのスクランブルを行う機能も付属されている。
 PHY部31bは、MAC副層部35aからのXGMII信号31sに個別に重畳されたアイドル信号A1、OAM信号O1及び実データ信号D1の各信号を、SP変換部36を介して送信部33へ出力する。
 但し、OAM信号O1は、一般的に3.3ms、10ms、100ms、10s、1m、10mの何れか1つの周期(OAM周期T1という)で送信される。なお、OAM周期T1は、その列挙した以外の周期であることも可能である。
 信号判定部32は、一般的なSFPトランシーバに装備されるマイクロプロセッサにより構成されており、次の本発明の特徴構成を有する。
 第1の特徴構成として、マイクロプロセッサのTD_snoop_Pin(送信データ監視ピン)32aが、SP変換部36と送信部33間の信号線に接続されており、この信号線にシリアル信号SLとして流れるアイドル信号A1、OAM信号O1及び実データ信号D1の各信号(各種送信信号A1,O1,D1ともいう)が入力されるように構成してある。TD_snoop_Pin32aを、TDPin32aとも称す。
 第2の特徴構成として、信号判定部32の信号出力用(out)のAUX_mod_Pin(副変調信号ピン)32bが、送信部33に標準装備された信号入力用(in)のAUX_mod_Pin33aに接続され、後述の判定結果信号32sが流れるように構成してある。AUX_mod_Pin32bを出力Pin32bとも称し、AUX_mod_Pin33aを入力Pin33aとも称す。
 送信部33は、一般的に配備される光強度制御部35及びレーザ37を備える。レーザ37は、光信号P1であるレーザ光を光ファイバ22へ出射する。光強度制御部35は、入力Pin33aに接続されており、後述の制御を行う。
 信号判定部32は、TDPIN32Aから入力される図3(a)に示すアイドル信号A1、OAM信号O1及び実データ信号D1の各信号の固有情報を個別に判定し、この判定結果を示す判定結果信号32sを、出力Pin32bから入力Pin33aへ出力する。
 信号判定部32は、各信号の固有情報を判定する場合、図3(b)に示す判定信号J1で行う。この判定信号J1は、信号判定部32において信号判定のために一定周期(例えば、3.7ms周期)で発振されるストローブ信号である。判定信号J1は信号判定部32の外部からの入力も可能である。
 信号判定部32は、判定信号J1で判定した結果を、図3(c)に示すように、判定結果信号32sに、OFF(オフ)と、ON(オン)と、OFFとON間の中間レベルであるOAとの3種類の判定状態で表わす。
 信号判定部32がアイドル信号A1と判定した場合は判定結果信号32sがONとなり、OAM信号O1と判定した場合はOAとなり、実データ信号D1と判定した場合はOFFとなる。これらの判定結果を示す判定結果信号32sは、図2に示す出力Pin32bから出力されて入力Pin33aに入力され、光強度制御部35に供給される。
 光強度制御部35は、判定結果信号32sで示される各種送信信号A1,O1,D1の判定状態に応じて、レーザ37の注入電流を制御することにより、レーザ37から出射されるレーザ光(光信号P1)の光強度(光レベル)を変える制御を行う。つまり、光強度制御部35は、光信号P1の光レベルを変える制御を行う。
 即ち、光強度制御部35は、判定結果信号32sがアイドル信号A1を示すON状態の場合に、図3(d)に示すように、光信号P1を光レベルL1とし、OAM信号O1を示すOA状態の場合に光レベルL1よりも高いレベルの光レベルL2とし、実データ信号D1を示すOFF状態の場合に光レベルL2よりも高いレベルの光レベルL3とする。各光レベルL1~L3は、光ファイバ22での伝送に悪影響を与えない光強度としてある。
 この光信号P1の強度変調制御は、レーザ37の出力側に図示せぬVOC(Variable Optical Attenuator:可変光減衰器)を設け、判定結果信号32sで示される各信号に応じて行ってもよい。
 ここで、光ファイバ22が集線ネットワークであるとすると、アイドル信号A1、OAM信号O1及び実データ信号D1の各信号が、他経路の各信号と衝突する等の不具合が生じる。しかし、本実施形態では、光ファイバ22が、ノード1対1のネットワーク接続を含むPtoPネットワークであるため、上記不具合が生じる恐れは無い。
 次に、図1に示す信号検知器23は、前述した光ファイバ識別機を基に構成されたものであり、曲げ部23aと、検出部23bと、表示部23cとを備えて構成されている。
 曲げ部23aは、光ファイバケーブル22を溝に挿入して湾曲させ、漏れ光を発生させるものである。その湾曲量は、光信号P1に信号ロス等の悪影響を与えない範囲で設計されている。
 検出部23bは、上述した光信号P1に重畳される各種送信信号A1,O1,D1の光レベルL1~L3に応じた漏れ光を検出することにより、各種送信信号A1,O1,D1を検知する。この際、検出部23bは、アイドル信号A1の漏れ光の検出により、アイドル信号A1を予め定められた時間(アイドル判定時間という)以上検知した際に、光ファイバ22が非使用経路であると検知する。また、検出部23bは、アイドル判定時間未満の長さのアイドル信号A1を検知した際に、光ファイバ22が使用経路であると検知する。但し、使用経路には、アイドル判定時間以上のアイドル信号A1が流れないことを前提条件とする。
 表示部23cは、各信号を検知したことを表示、並びに、検出部23bによるアイドル判定時間以上の長さのアイドル信号A1の検知時に非使用経路であることを表示し、アイドル判定時間未満の長さのアイドル信号A1の検知時に使用経路であることを表示する。
 ここで、1本の光ファイバ22に、実データ信号D1が、アイドル信号A1を介在して断続的に伝送される場合に、実データ信号D1及びアイドル信号A1を信号検知器23で個別に検知する場合を想定する。この検知動作を、図4を参照して説明する。
 図4の(a)は、XGMII信号35sに重畳されて送信される各種送信信号としてのアイドル信号A1及び実データ信号D1を示す。(b)は判定信号J1、(c)は判定結果信号32sを示す。(d)は光信号P1の光レベルLaと、この光レベルLaよりも高い光強度の光レベルLbを表わす。光レベルLaはアイドル信号A1に応じたレベルであり、光レベルLbは実データ信号D1に応じたレベルである。
 図4(a)に示すように、時刻t1~t4においてアイドル信号A1が送信され、信号判定部32のTDPin32aに入力されたとする。この場合、信号判定部32は、図4(b)に示すように、判定信号J1で入力信号を判定する。
 この判定結果がアイドル信号A1の場合、信号判定部32は、図4(c)に示すように、判定結果信号32sをON状態とし、この判定結果信号32sを出力Pin32bから出力する。この出力された判定結果信号32sは、送信部33の入力Pin33aから入力され、光強度制御部35に供給される。
 光強度制御部35は、判定結果信号32sがアイドル信号A1を示すONなので、図4(d)の時刻t1~t4間に示すように、レーザ37から出射されるレーザ光による光信号P1を光レベルLaとする。
 次に、図4(a)に示すように、時刻t11におけるアイドル信号A1の入力後、実データ信号D1が時刻t11を経過途中から時刻t13の経過途中まで入力され、この後、時刻t13の経過途中にアイドル信号A1が入力されたとする。
 この場合、図4(b)に示す判定信号J1による判定により、図4(c)に示すように、判定結果信号32sが、時刻t11とt12間でアイドル信号A1に係るON状態となる。更に、判定結果信号32sが、時刻t12とt14間で実データ信号D1に係るOFF状態、時刻t14でアイドル信号A1に係るON状態となる。
 このようなON又はOFF状態の判定結果信号32sに応じて、光強度制御部35は、図4(d)に示すように光信号P1を、時刻t11とt12間で光レベルLaとし、時刻t12とt14間で光レベルLbとし、時刻t14で光レベルLaとする。
 信号検知器23は、時刻t11~t14間において光信号P1の異なる光レベルLa,Lbに応じた漏れ光を検出し、アイドル信号A1及び実データ信号D1を検知する。
 一方、信号判定部32のTDPin32aに、図5(a)の時刻t1~t4間に示すように、断続的なアイドル信号A1間に介在された3.3ms周期のOAM信号O1が入力され、時刻t11とt13の経過途中との間に示すように、10ms周期のOAM信号O1が入力されて来たとする。
 この場合、図5(b)に示す時刻t1~t4間における判定信号J1での判定により、図5(c)に示す判定結果信号32sが、時刻t1とt2間でOAM信号O1に係るOFF状態、時刻t2とt4間でアイドル信号A1に係るON状態となる。
 この時刻t1~t4の判定結果に応じて、光強度制御部35は、図5(d)に示すように光信号P1を、時刻t1とt2間で光レベルLbとし、時刻t2とt4間で光レベルLaとする。
 また、時刻t11とt13の経過途中との間、つまり、時刻t11から10ms経過した間においては、図5(c)に示すように、判定結果に応じて判定結果信号32sが、時刻t11~t14間で10msのOAM信号O1に係るOFF状態となる。このOFFに応じて、光強度制御部35は、図5(d)に示すように光信号P1を、時刻t11~t14間で光レベルLbとする。
 この図5に示す場合は、光レベルLaでアイドル信号A1を検知し、光レベルLbでOAM信号O1を検知する。このため、光レベルLbでのOAM信号O1の検知が、図4に示した光レベルLbでの実データ信号D1の検知と重なり、実データ信号D1かOAM信号O1かを判別できなくなる。
<実施形態の動作>
 そこで、本実施形態では、図3(d)に示したように、アイドル信号A1、OAM信号O1及び実データ信号D1の各信号を個別に重畳する光信号P1を、3段階の光レベルL1~L3で表わして判別可能とした。この動作を図2及び図3を参照して説明する。
 まず、図2に示すMAC副層部31aは、通信端末機24aから受信したイーサネットフレーム信号26aに応じて実データ信号D1を、XGMII信号35sに重畳し、PHY部31b及びSP変換部36を介して送信部33へ送信する。この送信と異なるタイミングで、MAC副層部35aは、アイドル信号A1又はOAM信号O1をXGMII信号31sに重畳し、PHY部31b及びSP変換部36を介して送信部33へ送信する。
 送信部33へ送信されるアイドル信号A1、OAM信号O1及び実データ信号D1の各信号は、同時に、TDPin32aを介して信号判定部32に入力される。即ち、図3(a)の時刻t1~t5間及びt11~t15間に示すように、各種送信信号A1,O1,D1が、信号判定部32に入力される。
 まず、時刻t1~t5間において、信号判定部32は、図3(b)に示す判定信号J1により各信号の固有情報を判定する。この判定結果が時刻t1とt2間に示すアイドル信号A1の場合、図3(c)に示すように、判定結果信号32sをON状態とする。時刻t2とt5間に示す実データ信号D1の場合、判定結果信号32sをOFF状態とする。これらの判定結果信号32sは、信号判定部32の出力Pin32bから出力され、送信部33の入力Pin33aを介して光強度制御部35に供給される。
 光強度制御部35は、判定結果信号32sがアイドル信号A1を示すONの場合に、図3(d)の時刻t1とt2間に示すように、レーザ37から出射されるレーザ光による光信号P1を光レベルL1とする。光強度制御部35は、判定結果信号32sが実データ信号D1を示すOFFの場合に、光信号P1を時刻t2~t5間に示す光レベルL3とする。
 次に、時刻t11~t15間において、信号判定部32は、図3(b)に示す判定信号J1による各信号の判定結果が、時刻t11とt12間に示すアイドル信号A1の場合、図3(c)に示すように、判定結果信号32sをON状態とする。時刻t12~t15間に示すOAM信号O1の場合、判定結果信号32sをOA状態とする。これらの判定結果信号32sは、信号判定部32の出力Pin32bから出力され、送信部33の入力Pin33aを介して光強度制御部35に供給される。
 光強度制御部35は、判定結果信号32sがアイドル信号A1を示すONの場合に、図4(d)の時刻t11とt12間に示すように、光信号P1を光レベルL1とする。光強度制御部35は、判定結果信号32sがOAM信号O1を示すOAの場合に、光信号P1を時刻t12とt15間に示す光レベルL2とする。
 このように時刻t1~t5間及びt11~t15間において、3段階の光レベルL1~L3とすることにより、使用経路において、実データ信号D1がアイドル信号A1を介在して断続的に伝送され、且つOAM信号O1が伝送される場合でも、各信号を個別に検知可能となる。
 光ファイバ22が使用経路である場合、断続的な実データ信号D1間に介在されて伝送されるアイドル信号A1は、前述した前提条件のように、アイドル判定時間よりも短い時間しか伝送されない。このため、信号検知器23は、アイドル判定時間よりも短いアイドル信号A1を検知した際に、使用経路と検知する。
 一方、非使用経路においては、実データ信号D1が伝送されず、アイドル信号A1及びOAM信号O1のみが伝送される。このため、アイドル信号A1がアイドル信号判定時間以上の長い時間伝送されるので、信号検知器23がアイドル判定時間以上のアイドル信号A1を検知した際に、非使用経路と検知する。
 表示部23cは、各信号を検知したことを表示するが、この際に、アイドル判定時間以上の長さのアイドル信号A1の検知時に非使用経路であることを表示し、アイドル判定時間未満の長さのアイドル信号A1の検知時に使用経路であることを表示する。
<実施形態の効果>
 本実施形態に係る光伝送システム20の効果について説明する。光伝送システム20は、光信号P1の送信部33及び受信部34を有する光トランシーバ21a,21b間を接続し、保守監視用のパルス状のOAM信号O1が光信号P1に重畳されて伝送される複数の光ファイバ22を有する。これらの光ファイバ22に、光トランシーバ21a,21bに接続された通信端末機24a,24bからの実データ信号D1が光信号P1に重畳されて伝送され、且つ断続的な実データ信号D1間に介在された空データ状態のアイドル信号A1が光信号P1に重畳されて伝送される使用経路と、実データ信号D1が未伝送で且つアイドル信号A1が伝送される非使用経路とを有する構成となっている。この光伝送システム20を次の特徴構成とした。
 (1)送信部33は、光信号P1となるレーザ光を出射するレーザ37と、当該レーザ37のレーザ光による光信号の光レベルを変える制御を行う光強度制御部35とを備える。光トランシーバは、アイドル信号A1、OAM信号O1及び実データ信号D1の各信号を、通信媒体の違いを吸収するためのインタフェース信号に重畳して光信号P1の送信部33へ出力する制御部31と、送信部33へ出力される各信号の固有情報を個別に判定し、この判定による判定結果信号32sを出力する信号判定部32とを備える。光強度制御部35は、判定結果信号32sに示される信号毎の判定状態に応じて、この判定状態の信号が重畳された光信号P1の光レベルを、信号毎で異なるレベル(光レベルL1~L3)に変える制御を行う構成とした。
 この構成により、光ファイバ22を伝送する光信号P1に重畳されるアイドル信号A1、OAM信号O1及び実データ信号D1の各信号の光レベルL1~L3を、信号毎で異なるレベルに変えるようにした。この各光レベルL1~L3を、光ファイバ22の外部から検出可能な信号検知器23で検出すれば、各信号を適正に検知できるので、光ファイバ22が使用経路又は非使用経路であることを適正に検知できる。
 上記信号毎で異なる光レベルL1~L3に変えることを可能とする光トランシーバ21a,21bは、一般的な光トランシーバのマイクロプロセッサを信号判定部32として利用すれば構成できる。また、レーザ37及び光強度制御部35を備える送信部33は一般的な光トランシーバに搭載されている。このため、光トランシーバ21a,21bへの追加回路や追加装置等が不要であり、また、敷設済みの光ファイバ22に全く手を加えないため、再敷設や再配線が不要である。従って、本発明の非使用経路の検知構成を低コストで実現できる。
 また、従来のように非使用経路検知のために異なる2波長の光信号を伝送させることも無く、本発明では1波長の光信号P1で済む。このため、中継アンプが使用可能となって長距離の光ファイバ22でも非使用経路を検知可能となる。従って、長距離の冗長光ファイバ22(冗長ネットワーク)において実データ信号D1が伝送されない非使用経路を検知する機能を低コストで実現できる。
 従って、長距離の冗長ネットワークにおいて実データが伝送されない非使用経路を適正に検知できると共に、この機能を低コストで実現できる。
 (2)光ファイバ22に伝送されるアイドル信号A1が重畳された光信号P1の光レベルL1~L3を検出して当該アイドル信号A1を検知し、この検知時間が、予め定められたアイドル判定時間以上であれば、非使用経路であると検知する信号検知器23を備える構成とした。
 この構成によれば、光ファイバ22が非使用経路であることを適正に検知できる。
 (3)信号検知器23は、アイドル信号A1の検知時間が、アイドル判定時間未満であれば、使用経路であると検知する構成とした。
 この構成によれば、次のような作用効果がある。まず、上記(2)のように、信号検知器23が非使用経路のみの検知機能しか備えていない場合に、使用経路の検知測定を行ってしまったと想定する。この場合、非使用経路の検知が長時間に亘って不可能な場合に、ようやく測定者が使用経路であることを判断できる。しかし、(3)の信号検知器23では、アイドル信号A1の検知時間がアイドル判定時間未満であれば使用経路と検知できるので、測定者が短時間で使用経路であることを判断でき、作業効率を向上させることができる。つまり、光ファイバ22が使用経路か非使用経路かが不明の場合に、短時間で使用経路であることが判断できる。
 その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
 20 光伝送システム
 21a,21b 光トランシーバ
 22 光ファイバケーブル
 23 信号検知器
 23a 曲げ部
 23b 検出部
 23c 表示部
 24a,24b 通信端末機
 31 制御部,プロトコルIC部
 31a MAC副層部
 31b PHY部
 31s XGMII信号
 32 信号判定部
 32a TD_snoop_Pin
 32b AUX_mod_Pin(out)
 32s 判定結果信号
 33 光信号送信部
 33a AUX_mod_Pin(in)
 34 光信号受信部
 35 光強度制御部
 36 シリアル/パラレル変換部
 37 レーザ
 P1 光信号
 A1 アイドル信号
 O1 OAM信号
 D1 実データ信号

Claims (4)

  1.  光信号の送信部及び受信部を有する光トランシーバ間を接続し、保守監視用のOAM信号が光信号に重畳されて伝送される複数の光伝送路の内、前記光トランシーバに接続された通信端末機からの実データ信号が光信号に重畳されて伝送され、且つ断続的な実データ信号間に介在された空データ状態のアイドル信号が光信号に重畳されて伝送される使用経路と、前記実データ信号が未伝送で且つ前記アイドル信号が伝送される非使用経路とを有する光伝送システムであって、
     前記光トランシーバの送信部は、
     前記光信号となるレーザ光を出射するレーザと、当該レーザのレーザ光による光信号の光レベルを変える制御を行う光強度制御部とを備え、
     前記光トランシーバは、
     前記アイドル信号、前記OAM信号及び前記実データ信号の各信号を、通信媒体の違いを吸収するためのインタフェース信号に重畳して前記光信号の送信部へ出力する制御部と、
     前記送信部へ出力される前記各信号の固有情報を判定し、この判定による判定結果信号を出力する信号判定部とを備え、
     前記光強度制御部は、前記判定結果信号に示される信号毎の判定状態に応じて、この判定状態の信号が重畳された前記光信号の光レベルを、信号毎で異なるレベルに変える制御を行う
     ことを特徴とする光伝送システム。
  2.  前記光伝送路に伝送される前記アイドル信号が重畳された光信号の光レベルを検出して当該アイドル信号を検知し、この検知時間が、予め定められたアイドル判定時間以上であれば、前記非使用経路であると検知する検知器を備える
     ことを特徴とする請求項1に記載の光伝送システム。
  3.  前記検知器は、
     前記アイドル信号の検知時間が、前記アイドル判定時間未満であれば、前記使用経路であると検知する
     ことを特徴とする請求項2に記載の光伝送システム。
  4.  光信号の送信部及び受信部を有する光トランシーバ間を接続し、保守監視用のOAM信号が光信号に重畳されて伝送される複数の光伝送路の内、前記光トランシーバに接続された通信端末機からの実データ信号が光信号に重畳されて伝送され、且つ断続的な実データ信号間に介在された空データ状態のアイドル信号が光信号に重畳されて伝送される使用経路と、前記実データ信号が未伝送で且つ前記アイドル信号が伝送される非使用経路とを有する光伝送システムの非使用経路確認方法であって、
     前記光トランシーバの送信部は、前記光信号となるレーザ光を出射するレーザと、当該レーザのレーザ光による光信号の光レベルを変える制御を行う光強度制御部とを備え、
     前記光トランシーバは、
     前記アイドル信号、前記OAM信号及び前記実データ信号の各信号を、通信媒体の違いを吸収するためのインタフェース信号に重畳して前記光信号の送信部へ出力するステップと、
     前記送信部へ出力される前記各信号の固有情報を判定し、この判定による判定結果信号を出力するステップとを実行し、
     前記光強度制御部は、
     前記判定結果信号に示される信号毎の判定状態に応じて、この判定状態の信号が重畳された前記光信号の光レベルを、信号毎で異なるレベルに変える制御を行うステップを実行する
     ことを特徴とする非使用経路確認方法。
PCT/JP2019/042647 2018-11-13 2019-10-30 光伝送システム及び非使用経路確認方法 WO2020100599A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/291,520 US11451293B2 (en) 2018-11-13 2019-10-30 Optical transmission system and unused channel verification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212702 2018-11-13
JP2018212702A JP7180297B2 (ja) 2018-11-13 2018-11-13 光伝送システム及び非使用経路確認方法

Publications (1)

Publication Number Publication Date
WO2020100599A1 true WO2020100599A1 (ja) 2020-05-22

Family

ID=70730507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042647 WO2020100599A1 (ja) 2018-11-13 2019-10-30 光伝送システム及び非使用経路確認方法

Country Status (3)

Country Link
US (1) US11451293B2 (ja)
JP (1) JP7180297B2 (ja)
WO (1) WO2020100599A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065894A (ja) * 2001-08-28 2003-03-05 Nippon Telegraph & Telephone East Corp 光ファイバ心線対照方法及び装置
JP2004064442A (ja) * 2002-07-29 2004-02-26 Fujitsu Ltd 加入者線端局装置および折り返し試験方法
JP2008160583A (ja) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp 冗長化光アクセス装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118566A (en) * 1998-11-04 2000-09-12 Corvis Corporation Optical upconverter apparatuses, methods, and systems
WO2010082290A1 (ja) * 2009-01-13 2010-07-22 株式会社日立製作所 通信システム、加入者収容装置及び通信方法
US20150098317A1 (en) * 2013-10-07 2015-04-09 Electronics And Telecommunications Research Institute Linear protection switching method and apparatus for protecting network segmented into multi-domain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065894A (ja) * 2001-08-28 2003-03-05 Nippon Telegraph & Telephone East Corp 光ファイバ心線対照方法及び装置
JP2004064442A (ja) * 2002-07-29 2004-02-26 Fujitsu Ltd 加入者線端局装置および折り返し試験方法
JP2008160583A (ja) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp 冗長化光アクセス装置

Also Published As

Publication number Publication date
JP2020080465A (ja) 2020-05-28
US20220006522A1 (en) 2022-01-06
US11451293B2 (en) 2022-09-20
JP7180297B2 (ja) 2022-11-30

Similar Documents

Publication Publication Date Title
US10541758B2 (en) Power delivery through an optical system
JP6523640B2 (ja) 光ファイバ・ケーブルの動作テスト方法
US9118982B2 (en) Optical line terminal (OLT) optical module adapted to perform optical unit network (ONU) functionality
US9203512B2 (en) Distinguishing light in single fiber transceivers
US11860058B2 (en) Fiber-optic testing source and fiber-optic testing receiver for multi-fiber cable testing
US20070147844A1 (en) Bi-directional, full-duplex, one-wire communications link for use in fiber optic transceivers
US20150263810A1 (en) Passive Optical Networking with Daisy-Chaining
CN110692207B (zh) 自动光学反射计功率调节
CN111683021A (zh) 交换机用双路冗余输出的多协议终端
EP1524781A1 (en) Optical link performance monitoring using OTDM with laser for data transmission/reception
WO2020100599A1 (ja) 光伝送システム及び非使用経路確認方法
US11595120B2 (en) Optical transmission system and unused channel verification method
CN106772816A (zh) 一种高速率平面光波导的结构和实现方法
JP2012085056A (ja) 加入者宅側光回線終端装置
JP5391122B2 (ja) 光通信システム
JP2021027474A (ja) 光ファイバー給電システム
JP2002247135A (ja) 信号伝送方法及び装置、並びに信号伝送システム
JP2005519492A (ja) 光学ポートを備えるノードを有するネットワークで信号伝達するための方法及び構成
CN107154830A (zh) 一种创建逻辑光纤以及逻辑光纤信号流的方法和装置
CN106209243B (zh) 中继光模块
CN109936407A (zh) 一种10g epon非对称onu发射光眼图质量验证方法
CN113824496B (zh) 一种Combo光器件的测试方法及测试装置
JP4540619B2 (ja) リング状ネットワークにおける輻輳箇所特定方法、システム、計測端末、管理装置及びプログラム
JP6244674B2 (ja) 光通信装置及び光通信装置制御方法
KR20130093842A (ko) 광 인터페이스 장치 및 그것의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884804

Country of ref document: EP

Kind code of ref document: A1