WO2015158208A1 - 组网方法、光模块和设备 - Google Patents

组网方法、光模块和设备 Download PDF

Info

Publication number
WO2015158208A1
WO2015158208A1 PCT/CN2015/075789 CN2015075789W WO2015158208A1 WO 2015158208 A1 WO2015158208 A1 WO 2015158208A1 CN 2015075789 W CN2015075789 W CN 2015075789W WO 2015158208 A1 WO2015158208 A1 WO 2015158208A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
component
optical module
wavelength
light emitting
Prior art date
Application number
PCT/CN2015/075789
Other languages
English (en)
French (fr)
Inventor
郭蓥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015158208A1 publication Critical patent/WO2015158208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to the field of optical signal transmission, and in particular, to a networking method, an optical module, and a device.
  • the optical module (English) is the main component of the optical fiber communication technology.
  • the optical module can be used as an optical interface to receive the illuminating signal and be connected to the fiber pigtail.
  • English: line card can adapt to various types of optical interfaces. For example, when the circuit board needs to be connected to different types of pigtails such as round threaded, snap-on round or snap-on square, replace the corresponding optical module. This will solve the problem.
  • FIG. 1A and FIG. 1B are schematic structural diagrams of two optical modules in the prior art.
  • FIG. 1A is a schematic structural diagram of an optical module including a light emitting component (abbreviation: TOSA, English: transmit optical subassembly) and a light receiving component (abbreviation: ROSA, English: receiver optical subassembly).
  • FIG. 1B is a schematic structural diagram of an optical module including a single-fiber bidirectional optical component (abbreviation: BOSA, English: bi-directional optical subassembly). As shown in FIG. 1A and FIG. 1B, the optical module in the prior art only includes one path of the light-emitting path.
  • each device When multiple devices that process optical signals need to form a ring network or a chain network, each device requires two optical modules. It is possible to connect to the upstream device and the downstream device at the same time, thereby correspondingly forming a ring network or a chain network.
  • the device For a device that forms a ring or chain network, the device needs to pass two lights
  • the module is connected to one optical module of the upstream device and one optical module of the downstream device to ensure normal communication between the device and the upstream device and the downstream device.
  • the embodiments of the present invention provide a networking method, an optical module, and a device to solve the technical problem of wasting resources in the prior art.
  • the first aspect provides an optical module, including: a first single-fiber bidirectional optical component and a second single-fiber bidirectional optical component;
  • the first single-fiber bidirectional optical component is connected to the first optical module in the first device by using the first end of the first single-fiber bidirectional optical component, and the first single-fiber bidirectional optical component is used for
  • the first optical module sends an optical signal of a first wavelength and receives an optical signal of a second wavelength sent by the first optical module, where the first wavelength is different from the second wavelength;
  • the second single-fiber bidirectional optical component is connected to the second optical module in the second device by the first end of the second single-fiber bidirectional optical component, and the second single-fiber bidirectional optical component is used to The two optical modules send the optical signal of the second wavelength and receive the optical signal of the first wavelength by the second optical module.
  • the optical module further includes a bypass unit, the bypass unit has a first end and a second end, and the first end and the first optical module Connected, the second end is connected to the second optical module;
  • the first optical module is connected to the second optical module through the bypass unit when the bypass unit is in an active state.
  • the optical module further includes a service processing unit, where the service processing unit and the second end of the first single-fiber bidirectional optical component and the second The second ends of the single-fiber bidirectional optical components are connected.
  • an optical module includes: a first light emitting component, a first light receiving component, a second light emitting component, and a second light receiving component;
  • the first light emitting component is connected to the third light receiving component of the first device through the first end of the first light emitting component, and the first light emitting component is used to the third light receiving component Transmitting an optical signal of a first wavelength;
  • the first light receiving component is connected to a third light emitting component of the first device through a first end of the first light receiving component, and the first light receiving component is configured to receive the third light emitting component Transmitting a second wavelength optical signal, the first wavelength being different from the second wavelength;
  • the second light emitting component is connected to the fourth light receiving component of the second device through the first end of the second light emitting component, and the second light emitting component is configured to send the fourth light emitting component to the fourth light emitting component An optical signal of a second wavelength;
  • the second light receiving component is connected to the fourth light emitting component of the second device through a first end of the second light receiving component, and the second light receiving component is configured to receive the fourth light emitting component The optical signal of the first wavelength transmitted.
  • the optical module further includes a bypass unit, where the bypass unit includes a first link and a second link, where the first link has a first end And the second end, the first end is connected to the second light receiving component, the second end is connected to the fourth light emitting component, and the second link has a third end and a fourth end, The third end is connected to the second light emitting component, and the fourth end is connected to the fourth light receiving component;
  • the second light emitting component is connected to the fourth light receiving component through the bypass unit when the bypass unit is in an operating state, and the second light receiving component passes the bypass unit and the The fourth light emitting component is connected.
  • the optical module further includes a service processing unit, where the service processing unit is respectively connected to the second end of the first light emitting component and the first light receiving component The second end, the second end of the second light emitting component and the second end of the second light receiving component are connected.
  • an apparatus comprising:
  • the optical module of the first aspect or the second aspect is disposed on the PCB.
  • a networking method including:
  • the first single-fiber bidirectional optical component of the first optical module in the first device Connecting the first single-fiber bidirectional optical component of the first optical module in the first device to the second single-fiber bidirectional optical component of the second optical module in the second device, where the first A single-fiber bidirectional optical component capable of transmitting data with an optical signal of a first wavelength and receiving data with an optical signal of a second wavelength, the second single-fiber bidirectional optical component capable of transmitting data with the optical signal of the second wavelength
  • the optical signal of the first wavelength receives data, the first wavelength being different from the second wavelength;
  • the third single-fiber bidirectional optical component in the first optical module Connecting the third single-fiber bidirectional optical component in the first optical module to the fourth single-fiber bidirectional optical component in the third optical module in the third device, where the third single fiber
  • the bidirectional optical component is capable of receiving data with the optical signal of the second wavelength and receiving data with the optical signal of the first wavelength
  • the fourth single-fiber bidirectional optical component capable of transmitting data with the optical signal of the first wavelength Data is transmitted at the optical signal of the second wavelength.
  • the first optical module further includes a bypass unit, the bypass unit includes a first end and a second end, and the first end and the first end The second single-fiber bidirectional optical component is connected, and the second end is connected to the fourth single-fiber bidirectional optical component;
  • the second single-fiber bidirectional optical component is connected to the fourth single-fiber bidirectional optical component through the bypass unit when the bypass unit is in an active state.
  • a networking method including:
  • the first light receiving component is connected to the second light emitting component of the second optical module via the second optical fiber, wherein the optical signal processed by the first light emitting component and the second light receiving component is a wave a long optical signal, wherein the optical signal processed by the first light receiving component and the second light emitting component is an optical signal of a second wavelength;
  • the light receiving component is connected to the fourth light emitting component of the third optical module via the fourth optical fiber, wherein the signal processed by the third light emitting component and the fourth light receiving component is the second wavelength
  • the optical signal, the optical signal processed by the third light receiving component and the fourth light emitting component is an optical signal of the first wavelength.
  • the first optical module further includes a bypass unit, where the bypass unit includes a first link and a second link, where the first link has a One end and a second end, the first end is connected to the second light receiving component, the second end is connected to the fourth light emitting component, and the second link has a third end a fourth end, the third end is connected to the second light emitting component, and the fourth end is connected to the fourth light receiving component;
  • the second light emitting component is connected to the fourth light receiving component through the bypass unit when the bypass unit is in an operating state, and the second light receiving component passes the bypass unit and the The fourth light emitting component is connected.
  • the first single-fiber bidirectional optical component of the optical module can be used to the first device by using the technical means of providing two single-fiber bidirectional optical components in the optical module, that is, one optical module includes two receiving and illuminating paths.
  • the first optical module transmits the optical signal of the first wavelength and receives the optical signal of the second wavelength sent by the first optical module, and sends the second optical module to the second optical module of the second device by using the second single-fiber bidirectional optical component.
  • the optical signal of the wavelength and the optical signal of the first wavelength sent by the second optical module that is, when the ring network or the chain network is configured, only one optical module provided by the embodiment of the present invention needs to be used.
  • the device Capable of connecting to upstream and downstream devices And corresponding data transmission, the device only needs one optical module to be able to communicate with the upstream device and the downstream device. Therefore, the technical problem of wasting resources existing in the prior art is solved. The technical effect of saving interface resources of the device is realized.
  • FIGS. 1A and 1B are schematic structural views of two optical modules in the prior art
  • FIG. 2 is a schematic diagram of a plurality of devices forming a ring network or a chain network in the prior art
  • 3A is a schematic structural diagram of a first implementation manner of an optical module according to an embodiment of the present disclosure
  • FIG. 3B is a schematic diagram of signal transmission of a first single-fiber bidirectional optical component according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a single-fiber bidirectional networking performed by an optical module according to an embodiment of the present disclosure
  • 5A is a structural diagram of a second implementation manner of an optical module according to an embodiment of the present invention.
  • FIG. 5B is a schematic diagram of signal transmission of a first light emitting component and a first light receiving component according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a dual-fiber bidirectional networking performed by an optical module according to a second implementation manner according to an embodiment of the present disclosure
  • FIG. 7 is a functional block diagram of a device according to an embodiment of the present invention.
  • two devices are connected to mean that the two devices are connected by a transmission medium between the two devices.
  • One end and the other end of the transmission medium are directly connected to the two devices.
  • the transmission medium can be an optical fiber or a cable.
  • two BOSA connections mean that the two BOSAs are connected by a transmission medium between the two BOSAs. One end and the other end of the transmission medium are directly connected to the two BOSAs.
  • the transmission medium can be an optical fiber.
  • connection of TOSA to ROSA means that the TOSA and the ROSA are connected by a transmission medium between the TOSA and the ROSA. One end and the other end of the transmission medium are directly connected to the TOSA and the ROSA, respectively.
  • the transmission medium can be an optical fiber.
  • FIG. 2 is a schematic diagram of a plurality of devices forming a ring network or a chain network in the prior art.
  • the first device includes only two optical modules (the first optical module and the third optical module), and the second device includes only one optical module (the second optical module).
  • the third device includes only one optical module (fourth optical module).
  • the optical module in FIG. 2 may specifically be the optical module shown in FIG. 1A.
  • the first device, the second device, and the third device form a chain network.
  • the chain network may include only the first device, the second device, and the third device.
  • the second device may include only one optical module.
  • the third device may include only one optical module.
  • the second device or the third device may respectively include two optical modules to connect the chain network with other devices.
  • the first device, the second device, and the third device may also form a ring network.
  • the second device also includes a fifth optical module.
  • the third device also includes a sixth optical module. The second device and the third device are connected together by the optical fibers between the fifth optical module, the sixth optical module, and the fifth optical module and the sixth optical module, thereby forming a ring network. I won't go into details here.
  • an optical module can receive data and transmit data through optical signals of multiple wavelengths.
  • the wavelength can be 850 nanometers (English: nanometre, abbreviated as nm), 1310 nm, 1490 nm, or 1550 nm.
  • the optical modules need to be paired.
  • the first optical module in the first device is connected to the second optical module in the second device. If the first optical module passes the optical signal of 1490 nm to the second The device transmits data and receives the data sent by the second device through the optical signal of 1310 nm, and the second optical module needs to receive the data sent by the first device through the optical signal of 1490 nm and send the data to the first device through the optical signal of 1310 nm.
  • the third optical module in the first device is connected to the fourth optical module in the third device, if the third optical module sends data to the third device through the optical signal of 1310 nm and receives the third device through the optical signal of 1490 nm.
  • the fourth optical module needs to receive the data transmitted by the first device through the optical signal of 1310 nm and transmit the data to the first device through the optical signal of 1490 nm. This enables normal communication of the ring network or the chain network including the first device, the second device, and the third device.
  • the first device needs to provide a first interface and a third interface to be connected to the first optical module and the third optical module
  • the second device needs to provide the second interface and the fifth interface to be the second interface.
  • the optical module is connected to the fifth optical module
  • the third device needs to provide the fourth interface and the sixth interface to be connected to the fourth optical module and the sixth optical module, so as to ensure normal communication between the devices in FIG.
  • Each device in the ring network or the chain network needs to provide two interfaces to connect two optical modules respectively, thus wasting interface resources of the device.
  • the embodiments of the present invention provide a networking method, an optical module, and a device, which are used to solve the technical problem of wasting resources in the prior art.
  • An embodiment of the present invention provides an optical module, including: a first single-fiber bidirectional optical component and a second single-fiber bidirectional optical component;
  • the first single-fiber bidirectional optical component is connected to the first optical module in the first device by using the first end of the first single-fiber bidirectional optical component, and the first single-fiber bidirectional optical component is used for
  • the first optical module sends an optical signal of a first wavelength and receives an optical signal of a second wavelength sent by the first optical module, where the first wavelength is different from the second wavelength;
  • the second single-fiber bidirectional optical component is connected to the second optical module in the second device by the first end of the second single-fiber bidirectional optical component, and the second single-fiber bidirectional optical component is used to Two light
  • the module sends the optical signal of the second wavelength and receives the optical signal of the first wavelength by the second optical module.
  • the optical module includes two optical transceiving paths, and the optical module can transmit the optical signal of the first wavelength to the first optical module in the first device by using the first single-fiber bidirectional optical component. And receiving, by the first optical module, the optical signal of the second wavelength, and the optical module transmitting the optical signal of the second wavelength to the second optical module of the second device by using the second single-fiber bidirectional optical component, and receiving the second optical The optical signal of the first wavelength transmitted by the module.
  • a device when performing the ring network or the chain network networking, a device (such as a router or a switch, etc.) only needs to use one optical module provided by the embodiment of the present invention to connect to the upstream device and the downstream device and perform data.
  • the device For the transmission, the device only needs to provide an interface to be connected to the optical module, that is, to receive data sent by the upstream device or the downstream device, and to send data to the upstream device or the downstream device, that is, the device is ensured between the device and the upstream device and the downstream device.
  • Normal communication so that the technical problem of wasting resources existing in the prior art is solved, and the technical effect of saving interface resources of the device is realized.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3A is a schematic structural diagram of a first implementation manner of an optical module according to an embodiment of the present invention.
  • the optical module includes a first single-fiber bidirectional optical component and a second single-fiber bidirectional optical component.
  • the first single-fiber bidirectional optical component can transmit an optical signal of a first wavelength and receive an optical signal of a second wavelength. The first wavelength is different from the second wavelength.
  • the second single-fiber bidirectional optical component can transmit the optical signal of the second wavelength and receive the optical signal of the first wavelength.
  • the optical module may further include a circuit for clock and data recovery (abbreviation: CDR, English: clock and data recovery).
  • the optical module may further include an interface, which may be an interface for exchanging data with the device, or an interface for exchanging control instructions with the device, and details are not described herein again.
  • FIG. 3B is a schematic diagram of a signal transmission manner of the first single-fiber bidirectional optical module provided in FIG. 3A.
  • the first single-fiber bidirectional optical component transmits a signal received through the optical fiber to an amplifier (amplifier) and then to the service processing unit (of course, the signal undergoes optical-electrical conversion processing).
  • the first single-fiber bidirectional optical component receives a signal transmitted by the service processing unit via a driver (English: driver), and the first single-fiber bidirectional optical component transmits the received signal to other devices through the optical fiber (of course, similarly, the signal passes through Electro-optical conversion processing).
  • the signal transmission process of the second single-fiber bidirectional optical component is similar to the signal transmission process of the first single-fiber bidirectional optical component, and will not be described herein.
  • FIG. 4 is a schematic diagram of a single-fiber bidirectional networking performed by an optical module according to an embodiment of the present invention.
  • the first single-fiber bidirectional optical component in the first optical module in the first device is connected to the second single-fiber bidirectional optical component in the second optical module of the second device via the first optical fiber.
  • the first single-fiber bidirectional optical component is capable of transmitting data to the second single-fiber bidirectional optical component with the optical signal of the first wavelength and receiving the data sent by the second single-fiber bidirectional optical component with the optical signal of the second wavelength.
  • the second single-fiber bidirectional optical component is capable of transmitting data to the first single-fiber bidirectional optical component with the optical signal of the second wavelength and receiving the data transmitted by the first single-fiber bidirectional optical component with the optical signal of the first wavelength.
  • the third single-fiber bidirectional optical component in the first optical module is connected to the fourth single-fiber bidirectional optical component in the third optical module of the third device via the second optical fiber.
  • the third single-fiber bidirectional optical component is capable of transmitting data to the fourth single-fiber bidirectional optical component with the optical signal of the second wavelength and receiving the data transmitted by the fourth single-fiber bidirectional optical component with the optical signal of the first wavelength.
  • the fourth single-fiber bidirectional optical component is capable of transmitting data to the third single-fiber bidirectional optical component with the optical signal of the first wavelength and receiving the data transmitted by the third single-fiber bidirectional optical component with the optical signal of the second wavelength.
  • the third single-fiber bidirectional optical component in the first optical module of the first device in FIG. 4 can be implemented by the second single-fiber bidirectional optical component of the optical module in FIG. 3A.
  • the first single-fiber bidirectional optical component in the first optical module of the first device in FIG. 4 can be implemented by the first single-fiber bidirectional optical component of the optical module in FIG. 3A.
  • the optical module includes two optical transceiving paths, and the optical module can transmit the optical signal of the first wavelength to the first optical module in the first device by using the first single-fiber bidirectional optical component. And receiving, by the first optical module, the optical signal of the second wavelength, and the optical module transmitting the optical signal of the second wavelength to the second optical module of the second device by using the second single-fiber bidirectional optical component, and receiving the second optical The optical signal of the first wavelength transmitted by the module.
  • a device when performing the ring network or the chain network networking, a device (such as a router or a switch, etc.) only needs to use one optical module provided by the embodiment of the present invention to connect to the upstream device and the downstream device and perform data.
  • the device For the transmission, the device only needs to provide an interface to be connected to the optical module, that is, to receive data sent by the upstream device or the downstream device, and to send data to the upstream device or the downstream device, that is, the device is ensured between the device and the upstream device and the downstream device.
  • Normal communication so that the technical problem of wasting resources existing in the prior art is solved, and the technical effect of saving interface resources of the device is realized.
  • the first device may Simultaneously sending a signal to the second device and the third device, that is, when the first device sends a certain signal to the second device, the signal may be sent to the third device at the same time, and the third device may pass the signal.
  • the destination address of the signal is determined whether it can be discarded.
  • the destination address of the signal is not the third device.
  • the destination address described herein does not refer to the destination address that the signal ultimately needs to reach, but refers to the signal.
  • the destination address to be sent for example, the signal is actually sent to the second device, where the destination address of the signal is the address corresponding to the second device, and can be directly discarded, and will not be described here.
  • the first optical module shown in FIG. 4 may further include a bypass unit having a first end and a second end.
  • the first end of the bypass unit is connected to the second single-fiber bidirectional optical component of the second device, and the second end of the bypass unit and the fourth single fiber of the third device Two-way optical component phase even.
  • the bypass unit can be triggered to be in working state.
  • the second single-fiber bidirectional optical component is connected to the fourth single-fiber bidirectional optical component through the bypass unit.
  • the bypass unit may short-circuit the second single-fiber bidirectional optical component with the fourth single-fiber bidirectional optical component by shorting the first end and the second end of the bypass unit. In this way, communication interruption of the entire network due to the failure of the first device is avoided, thereby improving the reliability of the network.
  • the bypass unit is triggered to enter the operating state.
  • it can be triggered by a power supply, or by a general purpose input/output (GPIO, general purpose input output) controller, or by an electronic watchdog (English: watch dog).
  • GPIO general purpose input/output
  • electronic watchdog Edinburgh: watch dog
  • the optical module provided by the embodiment of the present invention further includes a service processing unit.
  • the service processing unit may be a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC).
  • the service processing unit can process the forwarding service.
  • the forwarding service may be a Layer 2 forwarding service, a Layer 3 forwarding service, a Layer 4 forwarding service, a Multiprotocol Label Switching (MPLS: MPLS) forwarding service, or a virtual private network (English: virtual private network. : VPN) forwards the service.
  • the Layer 2 forwarding service may be a Media Access Control (MAC) protocol forwarding service.
  • MAC Media Access Control
  • the Layer 3 forwarding service may be an Internet protocol (English: Internet Protocol, IP for short) forwarding service.
  • the Layer 4 forwarding service may be a Transmission Control Protocol (English: Transmission Control Protocol, TCP for short) forwarding service or a User Datagram Protocol (UDP) forwarding service.
  • the VPN forwarding service may be a Layer 2 virtual private network (English: Layer 2 virtual private network, referred to as L2VPN) forwarding industry. Service or Layer 3 virtual private network (English: Layer 3 virtual private network, L3VPN for short) forwards services.
  • the forwarding service may process a packet of a certain protocol.
  • the MAC protocol forwarding service can process the MAC protocol packet.
  • the IP forwarding service can process IP packets.
  • the TCP forwarding service can process TCP packets.
  • the UDP forwarding service can process UDP packets.
  • the service processing unit is respectively connected to the first single-fiber bidirectional optical component and the second single-fiber bidirectional optical component, so that the optical module can implement the first single-fiber bidirectional optical component and the second single-fiber bidirectional optical component.
  • the signals provided by the components are processed for business.
  • the service corresponding to the service processing unit may be at least one layer of services in the layer 2-7 layers defined by the open system interconnect reference model.
  • the service corresponding to the service processing may be a service of a data link layer or a network layer.
  • the component other than the first optical module in the first device may be a network processor (English: network processor, NP for short).
  • the first device only needs to be connected to the service processing unit in the first optical module through an interface, and the service processing unit can send the signal that the first device needs to send to the corresponding single fiber.
  • the bidirectional optical component for example, the first device needs to send a signal to the second device, and after the first device sends the signal to the first optical module through the interface connected to the first optical module, the service processing unit sends the signal The signal is sent to the first single-fiber bidirectional optical component, so that the signal is sent to the second device by using the first optical fiber, so that the signal is sent to the third device, which reduces the probability of data congestion occurring on the network.
  • a person skilled in the art can write a corresponding software, a protocol, and the like that can run on the service processing unit, so that the service processing unit can implement the corresponding function, and no longer I will go into details.
  • the communication of the entire network is interrupted, except that the foregoing part can be
  • the bypass unit is introduced to ensure normal communication of the entire network, and an electrical switch can be disposed between the service processing unit and the first single-fiber bidirectional optical component and the second single-fiber bidirectional optical component.
  • an electrical switch can be disposed between the service processing unit and the first single-fiber bidirectional optical component and the second single-fiber bidirectional optical component.
  • the status of the business processing unit can be monitored by an electronic watchdog. After the service processing unit fails, the electronic watchdog control switching circuit transmits the data pre-transmitted to the service processing unit received by the first single-fiber bidirectional optical component and the second single-fiber bidirectional optical component to the processor of the first device.
  • the switching time is short and the impact on the network is extremely low.
  • the first single fiber of the optical module can be adopted because the optical fiber module includes two single-fiber bidirectional optical components, that is, one optical module includes two light-receiving paths. Transmitting, by the bidirectional optical component, the optical signal of the first wavelength to the first optical module of the first device, and receiving the optical signal of the second wavelength sent by the first optical module, and the second single-fiber bidirectional optical component to the second device.
  • the second optical module sends the optical signal of the second wavelength and receives the optical signal of the first wavelength sent by the second optical module, that is, when performing the ring network or the chain network networking, only one device needs to be used in one device.
  • the optical module provided by the embodiment can be connected to the upstream device and the downstream device and perform corresponding data transmission.
  • the device only needs to provide an interface connected to the optical module to receive data sent by the upstream device or the downstream device, and to the upstream device or The downstream device sends data, that is, the normal communication between the device and the upstream device and the downstream device is ensured, so the prior art is solved. Waste of resources that exist technical problems, to achieve a technical effect saving device interface resources.
  • the embodiment of the present invention further provides a networking method, including: first, a first single-fiber bidirectional optical component in a first optical module in a first device, and a first optical fiber and a second device.
  • the second single-fiber bidirectional optical component of the second optical module is connected, wherein the first single-fiber bidirectional optical component is capable of transmitting data by using an optical signal of a first wavelength and receiving data by an optical signal of a second wavelength.
  • the second single-fiber bidirectional optical component is capable of transmitting data with the optical signal of the second wavelength and The first wavelength optical signal receives data, the first wavelength is different from the second wavelength, and the third single fiber bidirectional optical component in the first optical module passes through the second optical fiber and the third a fourth single-fiber bidirectional optical component in the third optical module in the device, wherein the third single-fiber bidirectional optical component is capable of receiving data and light at the first wavelength with the optical signal of the second wavelength The signal receives data, and the fourth single-fiber bidirectional optical component is capable of transmitting data with the optical signal of the first wavelength and transmitting data with the optical signal of the second wavelength.
  • the first optical module further includes a bypass unit, where the bypass unit includes a first end and a second end, and the first end is connected to the second single-fiber bidirectional optical component, The second end is connected to the fourth single-fiber bidirectional optical component; when the bypass unit is in an active state, the second single-fiber bidirectional optical component passes the bypass unit and the fourth single fiber Two-way optical components are connected.
  • the bypass unit includes a first end and a second end, and the first end is connected to the second single-fiber bidirectional optical component, The second end is connected to the fourth single-fiber bidirectional optical component; when the bypass unit is in an active state, the second single-fiber bidirectional optical component passes the bypass unit and the fourth single fiber Two-way optical components are connected.
  • the networking method in the embodiment of the present invention and the optical module introduced in the foregoing part are based on two aspects under the same inventive concept.
  • the structure and connection process of the optical module have been described in detail above, so those skilled in the art
  • the specific process of the networking method in this embodiment can be clearly understood according to the foregoing description.
  • details are not described herein again.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 5A is a structural diagram of a second implementation manner of an optical module according to an embodiment of the present invention.
  • the optical module includes: a first light emitting component, a first light receiving component, a second light emitting component, and a second light receiving component.
  • the first light emitting component is coupled to the third light receiving component of the first device, and the first light emitting component is configured to transmit the optical signal of the first wavelength to the third light receiving component.
  • the first light receiving component is connected to the third light emitting component of the first device, and the first light receiving component is configured to receive the optical signal of the second wavelength transmitted by the third light emitting component, where the first wavelength is different from the second wavelength.
  • the second light emitting component is coupled to the fourth light receiving component of the second device, and the second light emitting component is configured to transmit the optical signal of the second wavelength to the fourth light receiving component.
  • the second light receiving component is coupled to the fourth light emitting component of the second device, and the second light receiving component is configured to receive the optical signal of the first wavelength transmitted by the fourth light emitting component.
  • FIG. 5B is a schematic diagram of signal transmission of a first light emitting component and a first light receiving component according to an embodiment of the present invention.
  • the first optical transmitting component receives the signal transmitted by the service processing unit via the driver, and transmits the signal to other devices through the optical fiber (of course, the signal undergoes optical-electrical conversion processing).
  • the first light receiving component receives the signal transmitted by the other device through the optical fiber and transmits it to the service processing unit through the amplifier (of course, the signal is similarly subjected to electro-optical conversion processing).
  • the signal transmission process of the second light emitting component is similar to the signal transmission process of the first light emitting component.
  • the signal transmission process of the second light receiving component is similar to the signal transmission process of the first light receiving component.
  • FIG. 6 is a schematic diagram of a dual-fiber bidirectional networking performed by an optical module according to an embodiment of the present invention.
  • the first device includes a first optical module.
  • the first light emitting component of the first optical module in the first device is connected to the second light receiving component of the second optical module of the second device via the first optical fiber.
  • the first light receiving component of the first optical module is connected to the second light emitting component of the second optical module via the second optical fiber.
  • the optical signal sent by the first light emitting component to the second light receiving component is an optical signal of a first wavelength.
  • the optical signal transmitted by the second light emitting component received by the first light receiving component is an optical signal of a second wavelength.
  • the third light emitting component of the first optical module is connected to the fourth light receiving component of the third optical module of the third device via the third optical fiber.
  • the third light receiving component of the first optical module is connected to the fourth light emitting component of the third optical module via the fourth optical fiber.
  • the signal sent by the third light emitting component to the fourth light receiving component is an optical signal of the second wavelength.
  • the optical signal transmitted by the fourth light emitting component received by the third light receiving component is an optical signal of the first wavelength.
  • the third light emitting component in FIG. 6 can be implemented by the second light emitting component in FIG. 5A.
  • the third light receiving component of Figure 6 can be implemented by the second light receiving component of Figure 5A.
  • the optical module provided by the embodiment of the present invention further includes a bypass unit
  • the first optical module further includes a bypass unit
  • the bypass unit includes the first a first link and a second end
  • the first link has a first end and a second end
  • the first end is connected to the second light receiving component
  • the second end is connected to the fourth light emitting component
  • the second link has a third link And a fourth end, the third end is connected to the second light emitting component, and the fourth end is connected to the fourth light receiving component;
  • the second light emitting component is connected to the fourth light receiving component through the bypass unit, and the second light receiving component is connected to the fourth light emitting component through the bypass unit.
  • the triggering process of the bypass unit in this embodiment is consistent with the triggering process of the bypass unit in the first embodiment, and will not be described herein.
  • the optical module provided by the embodiment of the present invention further includes a service processing unit, and the service processing unit is respectively coupled to the first light emitting component, the first light receiving component, the second light emitting component, and the second light receiving component. Connected.
  • the service processing unit is coupled to the first light emitting component, the first light receiving component, the second light emitting component, and the second light receiving component, respectively. Similar to the service processing unit introduced in the first embodiment, the service processing unit can implement the signals transmitted or received by the first light emitting component, the first light receiving component, the second light emitting component, and the second light receiving component. The processing of the ⁇ 7 layer service will not be described here.
  • the service processing unit in this embodiment can also send the signal that the first device device needs to send to the corresponding light emitting component, thereby reducing The probability of data congestion on the network is not repeated here.
  • optical module in the first embodiment is similar.
  • the optical module in this embodiment may also include an electrical switch to improve the reliability of the entire network.
  • the specific principle and implementation process of the electrical switch have been introduced in the first embodiment. I won't go into details here.
  • the device may send an optical signal of a first wavelength to the third light receiving component of the first device by using the first light emitting component of the optical module, and receive the third light of the first device by using the first light receiving component Transmitting, by the second component, the optical signal of the second wavelength, and transmitting, by the second light emitting component, the optical signal of the second wavelength to the fourth light receiving component of the second device, by the second light receiving component Receiving, by the fourth optical transmitting component of the second device, the optical signal of the first wavelength, that is, when performing the ring network or the chain network networking, only one device of the present invention needs to be provided by using an embodiment of the present invention.
  • the optical module can be connected to the upstream device and the downstream device and perform corresponding data transmission.
  • the device only needs to provide an interface connected to the optical module to receive the upstream device or the lower device.
  • the data sent by the device and the data sent to the upstream device or the downstream device ensure the normal communication between the device and the upstream device and the downstream device. Therefore, the technical problem of wasting resources existing in the prior art is solved. Save the technical effects of the interface resources of the device.
  • the embodiment of the present invention further provides a networking method, including: first, a first optical component in a first optical module in a first device, and a first optical fiber and a second device.
  • the second light receiving component of the second optical module is connected, and the first light receiving component of the first optical module is connected to the second light emitting component of the second optical module via the second optical fiber, wherein
  • the optical signal processed by the first light emitting component and the second light receiving component is an optical signal of a first wavelength, and the optical signal processed by the first light receiving component and the second light emitting component is a second Optical signal of wavelength;
  • the light receiving component is connected to the fourth light emitting component of the third optical module via the fourth optical fiber, wherein the signal processed by the third light emitting component and the fourth light receiving component is the second wavelength of The optical signal, the optical signal processed by the third light receiving component and the fourth light emitting component is an optical signal of the first wavelength.
  • the first optical module further includes a bypass unit
  • the bypass unit includes a first link and a second link
  • the first link has a first end and a second end, where the The first end is connected to the second light receiving component, the second end is connected to the fourth light emitting component, and the second link has a third end and a fourth end, and the third end Connected to the second light emitting component, the fourth end is connected to the fourth light receiving component; when the bypass unit is in an active state, the second light emitting component passes through the bypass unit Connected to the fourth light receiving component, the second light receiving component is connected to the fourth light emitting component through the bypass unit.
  • the networking method in the embodiment of the present invention and the optical module introduced in the foregoing part are based on two aspects under the same inventive concept.
  • the structure and connection process of the optical module have been described in detail above, so those skilled in the art
  • the specific process of the networking method in this embodiment can be clearly understood according to the foregoing description.
  • details are not described herein again.
  • FIG. 7 is a functional block diagram of a device according to an embodiment of the present invention.
  • the device includes a printed circuit board (English: printed circuit board, PCB) 701 and an optical module 702.
  • the optical module 702 is disposed on the PCB 701.
  • the optical module may be an optical module as described in the foregoing Embodiment 1 or Embodiment 2.
  • one device when performing the ring network or the chain network networking, one device only needs to use one optical module provided by the embodiment of the present invention, that is, can be combined with two devices. Connected and corresponding data transmission, that is, can form a corresponding ring network or chain network, and at the same time, due to the wavelength of the optical signal processed by the two channels of the light-emitting path in the optical module of each device in the ring network or the chain network, No need to spend time on the pairing of optical modules, which simplifies the complexity of optical module pairing and saves time.
  • the first single-fiber bidirectional optical component of the optical module can be used to the first device by using the technical means of providing two single-fiber bidirectional optical components in the optical module, that is, one optical module includes two receiving and illuminating paths.
  • the first optical module transmits the optical signal of the first wavelength and receives the optical signal of the second wavelength sent by the first optical module, and sends the second optical module to the second optical module of the second device by using the second single-fiber bidirectional optical component.
  • the optical signal of the wavelength and the optical signal of the first wavelength sent by the second optical module that is, when the ring network or the chain network is configured, only one optical module provided by the embodiment of the present invention needs to be used.
  • the device can be connected to the upstream device and the downstream device and perform corresponding data transmission.

Abstract

组网方法、光模块和设备。光模块包括:第一单纤双向光组件与第二单纤双向光组件,其中,第一单纤双向光组件通过第一单纤双向光组件的第一端与第一设备中的第一光模块相连,用于向第一光模块发送第一波长的光信号以及接收第一光模块发送的第二波长的光信号,第一波长与第二波长不相同;第二单纤双向光组件通过第二单纤双向光组件的第一端与第二设备中的第二光模块相连,用于向第二光模块发送第二波长的光信号以及接收第二光模块发送的第一波长的光信号。

Description

组网方法、光模块和设备 技术领域
本发明涉及光信号传输领域,尤其涉及组网方法、光模块和设备。
背景技术
随着科学技术的不断发展,电子技术也得到了飞速的发展,电子产品的种类也越来越多,人们也享受到了科技发展带来的各种便利。现在人们可以通过各种类型的设备,享受随着科技发展带来的舒适生活。例如,光纤通信技术因其巨大的传输容量、极低的传输衰耗、抗电磁干扰、信道串扰小和保密性好等优点,成为了目前主要的信息传输技术之一,极大地推动了现代信息社会的发展。
光模块(英文:optical module)是光纤通信技术中的主要组成部分,光模块能够作为光接口收发光信号,与光纤的尾纤对接,更能够保证用于承载光模块的线路板如线卡(英文:line card)能够适应各种类型的光接口,例如线路板需要分别与圆型带螺纹、卡接式圆型或卡接式方型等不同的尾纤相连时,通过更换相应的光模块来即能够解决该问题。
请参考图1A与图1B,图1A和图1B是现有技术中两种光模块的结构示意图。其中,图1A包括光发射组件(简称:TOSA,英文:transmitter optical subassembly)和光接收组件(简称:ROSA,英文:receiver optical subassembly)的光模块的结构示意图。图1B是包括单纤双向光组件(简称:BOSA,英文:bi-directional optical subassembly)的光模块的结构示意图。如图1A和图1B所示,现有技术中的光模块只包括一路收发光路,在需要将多个处理光信号的设备组成环形网或链状网时,每个设备都需要两个光模块才能够同时与上游设备和下游设备相连,从而相应地组成环形网或链状网。
针对组成环形网或者链状网的某一设备而言,该设备需要通过两个光 模块分别连接上游设备的一个光模块以及下游设备的一个光模块,才能够保证该设备与上游设备和下游设备进行正常通信。
可以看出,由于一个设备需要包含两个光模块,才能够保证该设备在组成环形网或者链状网时与上游设备和下游设备连接。现有技术中存在浪费资源的技术问题。
发明内容
本发明实施例通过提供组网方法、光模块和设备,用以解决现有技术中浪费资源的技术问题。
第一方面,提供了一种光模块,包括:第一单纤双向光组件与第二单纤双向光组件;
其中,所述第一单纤双向光组件通过所述第一单纤双向光组件的第一端与第一设备中的第一光模块相连,所述第一单纤双向光组件用于向所述第一光模块发送第一波长的光信号以及接收所述第一光模块发送的第二波长的光信号,所述第一波长与所述第二波长不相同;以及
所述第二单纤双向光组件通过所述第二单纤双向光组件的第一端与第二设备中的第二光模块相连,所述第二单纤双向光组件用于向所述第二光模块发送所述第二波长的光信号以及接收所述第二光模块发送所述第一波长的光信号。
在第一方面的第一种可能的实现方式中,所述光模块还包括一旁路单元,所述旁路单元具有第一端与第二端,所述第一端与所述第一光模块相连,所述第二端与所述第二光模块相连;
在所述旁路单元处于工作状态时,所述第一光模块通过所述旁路单元与所述第二光模块相连。
在第一方面的第二种可能的实现方式中,所述光模块还包括一业务处理单元,所述业务处理单元分别与所述第一单纤双向光组件的第二端和所述第二单纤双向光组件的第二端相连。
第二方面,提供一种光模块,包括:第一光发射组件、第一光接收组件、第二光发射组件和第二光接收组件;
其中,所述第一光发射组件通过所述第一光发射组件的第一端与第一设备的第三光接收组件相连,所述第一光发射组件用于向所述第三光接收组件发送第一波长的光信号;
所述第一光接收组件通过所述第一光接收组件的第一端与所述第一设备的第三光发射组件相连,所述第一光接收组件用于接收所述第三光发射组件发送的第二波长的光信号,所述第一波长与所述第二波长不相同;
所述第二光发射组件通过所述第二光发射组件的第一端与第二设备的第四光接收组件相连,所述第二光发射组件用于向所述第四光接收组件发送所述第二波长的光信号;
所述第二光接收组件通过所述第二光接收组件的第一端与所述第二设备的第四光发射组件相连,所述第二光接收组件用于接收所述第四光发射组件发送的所述第一波长的光信号。
在第二方面的第一种可能的实现方式中,所述光模块还包括一旁路单元,所述旁路单元包括第一链路与第二链路,所述第一链路具有第一端与第二端,所述第一端与所述第二光接收组件相连,所述第二端与所述第四光发射组件相连,所述第二链路具有第三端与第四端,所述第三端与所述第二光发射组件相连,所述第四端与所述第四光接收组件相连;
在所述旁路单元处于工作状态时,所述第二光发射组件通过所述旁路单元与所述第四光接收组件相连,所述第二光接收组件通过所述旁路单元与所述第四光发射组件相连。
在第二方面的第二种可能的实现方式中,所述光模块还包括一业务处理单元,所述业务处理单元分别与所述第一光发射组件的第二端、第一光接收组件的第二端、第二光发射组件的第二端和第二光接收组件的第二端相连。
第三方面,提供一种设备,包括:
印制线路板PCB;
如第一方面或第二方面所述的光模块,设置在所述PCB上。
第四方面,提供一种组网方法,包括:
将第一设备中的第一光模块中的第一单纤双向光组件,经第一光纤与第二设备中的第二光模块中的第二单纤双向光组件相连,其中,所述第一单纤双向光组件能够以第一波长的光信号发送数据和以第二波长的光信号接收数据,所述第二单纤双向光组件能够以所述第二波长的光信号发送数据和以所述第一波长的光信号接收数据,所述第一波长与所述第二波长不相同;以及
将所述第一光模块中的第三单纤双向光组件,经第二光纤与第三设备中的第三光模块中的第四单纤双向光组件相连,其中,所述第三单纤双向光组件能够以所述第二波长的光信号接收数据和以所述第一波长的光信号接收数据,所述第四单纤双向光组件能够以所述第一波长的光信号发送数据和以所述第二波长的光信号发送数据。
在第四方面的第一种可能的实现方式中,所述第一光模块中还包括一旁路单元,所述旁路单元包括第一端与第二端,将所述第一端与所述第二单纤双向光组件相连,将所述第二端与所述第四单纤双向光组件相连;
在所述旁路单元处于工作状态时,所述第二单纤双向光组件通过所述旁路单元与所述第四单纤双向光组件相连。
第五方面,提供一种组网方法,包括:
将第一设备中的第一光模块中的第一光发射组件,经第一光纤与第二设备中的第二光模块中的第二光接收组件相连,和将所述第一光模块中的第一光接收组件,经第二光纤与所述第二光模块中的第二光发射组件相连,其中,所述第一光发射组件与所述第二光接收组件处理的光信号为第一波 长的光信号,所述第一光接收组件与所述第二光发射组件处理的光信号为第二波长的光信号;
将所述第一光模块中的第三光发射组件,经第三光纤与第三设备中的第三光模块中的第四光接收组件相连,和将所述第一光模块中的第三光接收组件,经第四光纤与所述第三光模块中的第四光发射组件相连,其中,所述第三光发射组件与所述第四光接收组件处理的信号为所述第二波长的光信号,所述第三光接收组件与所述第四光发射组件处理的光信号为所述第一波长的光信号。
在第五方面的第一种可能的实现方式中,所述第一光模块还包括一旁路单元,所述旁路单元包括第一链路与第二链路,所述第一链路具有第一端与第二端,将所述第一端与所述第二光接收组件相连,将所述第二端与所述第四光发射组件相连,所述第二链路具有第三端与第四端,将所述第三端与所述第二光发射组件相连,将所述第四端与所述第四光接收组件相连;
在所述旁路单元处于工作状态时,所述第二光发射组件通过所述旁路单元与所述第四光接收组件相连,所述第二光接收组件通过所述旁路单元与所述第四光发射组件相连。
本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
由于采用了在光模块中设置两个单纤双向光组件的技术手段,也即一个光模块中包括两路收发光路,该设备可以通过该光模块的第一单纤双向光组件向第一设备中的第一光模块发送第一波长的光信号以及接收第一光模块发送的第二波长的光信号,以及通过第二单纤双向光组件向第二设备中的第二光模块发送第二波长的光信号以及接收第二光模块发送的第一波长的光信号,也就是说,在进行环形网或者链状网组网时,一个设备只需要使用一个本发明实施例提供的光模块即能够与上游设备和下游设备相连 并进行对应的数据传输,该设备只需要一个光模块即能够与上游设备和下游设备通信。所以解决了现有技术中存在的浪费资源的技术问题。实现了节省设备的接口资源的技术效果。
附图说明
图1A和图1B是现有技术中两种光模块的结构示意图;
图2是现有技术中多个设备组成环形网或链状网的示意图;
图3A是本发明实施例提供的光模块的第一种实现方式的结构示意图;
图3B是本发明实施例提供的第一单纤双向光组件的信号传输示意图;
图4是本发明实施例提供的通过第一种实现方式的光模块进行单纤双向组网的示意图;
图5A是本发明实施例提供的光模块的第二种实现方式的结构图;
图5B是本发明实施例提供的第一光发射组件与第一光接收组件的信号传输示意图;
图6是本发明实施例提供的通过第二种实现方式的光模块进行双纤双向组网的示意图;
图7是本发明实施例提供的设备的功能模块图。
具体实施方式
本申请中,两个光模块相连是指上述两个光模块通过上述两个光模块之间的传输介质连接。所述传输介质的一端与另一端分别与上述两个光模块直连。所述传输介质可以是光纤。
本申请中,两个设备相连是指上述两个设备通过上述两个设备之间的传输介质连接。所述传输介质的一端与另一端分别与上述两个设备直连。所述传输介质可以是光纤或者电缆。
本申请中,两个BOSA相连是指上述两个BOSA通过上述两个BOSA之间的传输介质连接。所述传输介质的一端与另一端分别与上述两个BOSA直连。所述传输介质可以是光纤。
本申请中,TOSA与ROSA相连是指所述TOSA与所述ROSA通过所述TOSA与ROSA之间的传输介质连接。所述传输介质的一端与另一端分别与所述TOSA与所述ROSA直连。所述传输介质可以是光纤。
在具体介绍本申请实施例中的技术方案之前,为了让本申请所属技术领域的技术人员能够更好地理解本申请实施例中的技术方案,先结合图1A、图1B和图2,对现有技术中的方案及现有技术中存在的技术问题进行描述。具体如下:
请参考图2,图2是现有技术中多个设备组成环形网或链状网的示意图。如图2所示,第一设备只包括两个光模块(第一光模块和第三光模块),第二设备只包括一个光模块(第二光模块)。第三设备只包括一个光模块(第四光模块)。图2中的光模块具体可以是图1A所示的光模块。
请继续参考图2,第一设备、第二设备与第三设备组成链状网。在该链状网可以只包括第一设备、第二设备与第三设备。第二设备可以只包括一个光模块。第三设备可以只包括一个光模块。当然,第二设备或第三设备可以分别包括两个光模块以使该链状网与其他设备连接。
当然,第一设备、第二设备与第三设备还可以组成环形网。第二设备还包括第五光模块。第三设备还包括第六光模块。第二设备和第三设备通过第五光模块、第六光模块以及第五光模块与第六光模块之间的光纤连接在一起,从而形成一个环网。在此就不再赘述了。
在实际应用中,光模块可以通过多种波长的光信号来接收数据和发送数据。例如,波长可以是850纳米(英文:nanometre,简称:nm)、1310nm、1490nm或者1550nm。为了保证由第一设备、第二设备与第三设备组成的环形网或者链状网的正常通信,需要对光模块进行配对。
具体来讲,请继续参考图2。如图2所示,第一设备中的第一光模块与第二设备中的第二光模块相连。若第一光模块通过1490nm的光信号向第二 设备发送数据并通过1310nm的光信号接收第二设备发送的数据,则第二光模块需要通过1490nm的光信号接收第一设备发送的数据并通过1310nm的光信号向第一设备发送数据。类似地,第一设备中的第三光模块与第三设备中的第四光模块相连,若第三光模块通过1310nm的光信号向第三设备发送数据并通过1490nm的光信号接收第三设备发送的数据,则第四光模块需要通过1310nm的光信号接收第一设备发送的数据并通过1490nm的光信号向第一设备发送数据。这样才能够使得包括第一设备、第二设备与第三设备的环形网或者链状网的正常通信。
在图2所示的结构中,第一设备需要提供第一接口和第三接口来与第一光模块和第三光模块相连,第二设备需要提供第二接口和第五接口来与第二光模块和第五光模块相连,第三设备需要提供第四接口和第六接口来与第四光模块和第六光模块相连,才能够保证图2中的设备之间的正常通信,可以看出,该环形网或链状网中的每个设备均需要提供两个接口分别连接两个光模块,所以浪费了该设备的接口资源。
为此,本发明实施例提供一种组网方法、光模块和设备,用以解决现有技术中浪费资源的技术问题。
本发明实施例中的总体思路如下:
本发明实施例提供一种光模块,包括:第一单纤双向光组件与第二单纤双向光组件;
其中,所述第一单纤双向光组件通过所述第一单纤双向光组件的第一端与第一设备中的第一光模块相连,所述第一单纤双向光组件用于向所述第一光模块发送第一波长的光信号以及接收所述第一光模块发送的第二波长的光信号,所述第一波长与所述第二波长不相同;以及
所述第二单纤双向光组件通过所述第二单纤双向光组件的第一端与第二设备中的第二光模块相连,所述第二单纤双向光组件用于向所述第二光 模块发送所述第二波长的光信号以及接收所述第二光模块发送所述第一波长的光信号。
通过上述部分可以看出,采用了在光模块中设置两个单纤双向光组件的技术手段。具体来说,所述光模块中包括两路收发光路(optical transceiving path),所述光模块可以通过第一单纤双向光组件向第一设备中的第一光模块发送第一波长的光信号以及接收第一光模块发送的第二波长的光信号,以及所述光模块通过第二单纤双向光组件向第二设备中的第二光模块发送第二波长的光信号以及接收第二光模块发送的第一波长的光信号。也就是说,在进行环形网或者链状网组网时,一个设备(例如路由器或者交换机等等)只需要使用一个本发明实施例提供的光模块即能够与上游设备和下游设备相连并进行数据传输,该设备只需要提供一个接口与光模块相连即能够接收上游设备或下游设备发送的数据,以及向上游设备或下游设备发送数据,也即保证了该设备与上游设备和下游设备之间的正常通信,所以解决了现有技术中存在的浪费资源的技术问题,实现了节省设备的接口资源的技术效果。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
实施例一:
请参考图3A,图3A是本发明实施例提供的光模块的第一种实现方式的结构示意图。如图3A所示,该光模块包括第一单纤双向光组件以及第二单纤双向光组件。第一单纤双向光组件可以发送第一波长的光信号以及接收第二波长的光信号。第一波长与第二波长不相同。第二单纤双向光组件可以发送第二波长的光信号以及接收第一波长的光信号。在实际应用中,光模块还可以包括时钟和数据恢复(简称:CDR,英文:clock and data recovery)电路。光模块还可以包括接口,该接口可以是与设备交换数据的接口,或者与设备交换控制指令的接口,在此就不再赘述了。
请参考图3B。图3B是图3A提供的第一单纤双向光组件的一种信号传输方式的示意图。如图3B所示,第一单纤双向光组件将通过光纤接收到的信号发送给放大器(英文:amplifier),再传输给业务处理单元(当然,该信号会经过光-电转换处理)。第一单纤双向光组件接收业务处理单元经过驱动器(英文:driver)传输的信号,第一单纤双向光组件通过光纤将接收到的信号发送给其他设备(当然,类似地,该信号会经过电-光转换处理)。第二单纤双向光组件的信号传输过程与第一单纤双向光组件的信号传输过程类似,在此就不再赘述了。
请参考图4,图4是本发明实施例提供的通过第一种实现方式的光模块进行单纤双向组网的示意图。如图4所示,第一设备中的第一光模块中的第一单纤双向光组件,经第一光纤与第二设备中的第二光模块中的第二单纤双向光组件相连。其中,第一单纤双向光组件能够以第一波长的光信号向第二单纤双向光组件发送数据和以第二波长的光信号接收第二单纤双向光组件发送的数据。第二单纤双向光组件能够以第二波长的光信号向第一单纤双向光组件发送数据和以第一波长的光信号接收第一单纤双向光组件发送的数据。第一光模块中的第三单纤双向光组件,经第二光纤与第三设备中的第三光模块中的第四单纤双向光组件相连。其中,第三单纤双向光组件能够以第二波长的光信号向第四单纤双向光组件发送数据和以第一波长的光信号接收第四单纤双向光组件发送的数据。第四单纤双向光组件能够以第一波长的光信号向第三单纤双向光组件发送数据和以第二波长的光信号接收第三单纤双向光组件发送的数据。
需要说明的是,图4中第一设备的第一光模块中的第三单纤双向光组件可以通过图3A中光模块的第二单纤双向光组件实现。图4中第一设备的第一光模块中的第一单纤双向光组件可以通过图3A中光模块的第一单纤双向光组件实现。
通过上述部分可以看出,采用了在光模块中设置两个单纤双向光组件的技术手段。具体来说,所述光模块中包括两路收发光路(optical transceiving path),所述光模块可以通过第一单纤双向光组件向第一设备中的第一光模块发送第一波长的光信号以及接收第一光模块发送的第二波长的光信号,以及所述光模块通过第二单纤双向光组件向第二设备中的第二光模块发送第二波长的光信号以及接收第二光模块发送的第一波长的光信号。也就是说,在进行环形网或者链状网组网时,一个设备(例如路由器或者交换机等等)只需要使用一个本发明实施例提供的光模块即能够与上游设备和下游设备相连并进行数据传输,该设备只需要提供一个接口与光模块相连即能够接收上游设备或下游设备发送的数据,以及向上游设备或下游设备发送数据,也即保证了该设备与上游设备和下游设备之间的正常通信,所以解决了现有技术中存在的浪费资源的技术问题,实现了节省设备的接口资源的技术效果。
当然,请继续参考图4,由于第一单纤双向光组件和第二单纤双向光组件使用同一接口,所以第一设备在向第二设备或第三设备发送信号的时候,第一设备会同时向第二设备和第三设备发送信号,也即第一设备在将某一信号发送给第二设备的时候,可能会同时将该信号发送给第三设备,此时第三设备可以通过该信号的目的地址确定是否可以抛弃,如该信号的目的地址不为第三设备(需要说明的是,此处所述的目的地址并非是指该信号最终需要到达的目的地址,而是指该信号此次被发送的目的地址,例如该信号实际为发给第二设备,则此处该信号的目的地址即为第二设备对应的地址),则可以直接抛弃,在此就不再赘述了。
在具体实施过程中,为了保证网络的正常通行,图4所示的第一光模块还可以包括旁路(英文:bypass)单元,该旁路单元具有第一端与第二端。请同时参考图3A和图4,所述旁路单元的第一端与第二设备的第二单纤双向光组件相连,所述旁路单元的第二端与第三设备的第四单纤双向光组件相 连。在第一设备因断电或设备故障等原因无法工作时,可以触发旁路单元处于工作状态。旁路单元处于工作状态时,第二单纤双向光组件通过旁路单元与第四单纤双向光组件相连。也就是说,所述旁路单元可以通过将所述旁路单元的第一端和第二端短接,使得第二单纤双向光组件与第四单纤双向光组件短接。这样,避免了因第一设备的故障而造成整个网络的通信中断,从而提高了网络的可靠性。
在实际应用中,旁路单元被触发而进入工作状态的方式有许多种。例如可以通过电源来触发,或者通过通用输入/输出(简称:GPIO,英文:general purpose input output)控制器来实现,或者通过电子看门狗(英文:watch dog)来实现。通过本实施例的介绍,本领域所属的技术人员能够根据实际情况,为旁路单元设置合适的触发方式,以满足实际情况的需要,在此就不再赘述了。
在具体实施过程中,请继续参考图3A,如图3A所示,本发明实施例提供的光模块还包括一业务处理单元。在实际应用中,该业务处理单元具体可以是现场可编程门阵列(英文:field programmable gate array,简称:FPGA)或者专用集成电路(英文:application-specific integrated circuit,简称:ASIC)。举例来说,所述业务处理单元可以对转发业务进行处理。所述转发业务可以是二层转发业务、三层转发业务、四层转发业务、多协议标签交换(英文:Multiprotocol Label Switching,简称:MPLS)转发业务或者虚拟专用网(英文:virtual private network,简称:VPN)转发业务。所述二层转发业务可以是媒体接入控制(英文:Media Access Control,简称:MAC)协议转发业务。所述三层转发业务可以是网际协议(英文:internet protocol,简称:IP)转发业务。所述四层转发业务可以是传输控制协议(英文:Transmission Control Protocol,简称:TCP)转发业务或者用户数据报协议(User Datagram Protocol,UDP)转发业务。所述VPN转发业务可以是二层虚拟专用网(英文:Layer 2 virtual private network,简称:L2VPN)转发业 务或者三层虚拟专用网(英文:Layer 3 virtual private network,简称:L3VPN)转发业务。所述转发业务可以对某种协议的报文进行处理。例如MAC协议转发业务可以对MAC协议报文进行处理。IP转发业务可以对IP报文进行处理。TCP转发业务可以对TCP报文进行处理。UDP转发业务可以对UDP报文进行处理。
请继续参考图3A,该业务处理单元分别与第一单纤双向光组件和第二单纤双向光组件相连,从而使得光模块能够实现对第一单纤双向光组件和第二单纤双向光组件所提供的信号进行业务处理。所述业务处理单元对应的业务可以是开放式系统互联参考模型(英文:open system interconnect reference model)定义的2~7层业务中至少一层业务。例如,所述业务处理对应的业务可以是数据链路层或者网络层的业务。上述技术方案中,对第一光模块接收到的数据进行处理时,可以减少对第一设备中除第一光模块之外的部件的依赖,并且加快了数据处理的速度。第一设备中除第一光模块之外的部件可以是网络处理器(英文:network processor,简称:NP)。
请继续参考图3A和图4,第一设备只需要通过一个接口与第一光模块中的业务处理单元相连即可,业务处理单元即能够将第一设备需要发送的信号发往对应的单纤双向光组件,例如,第一设备需要将一信号发送给第二设备,则第一设备在通过与第一光模块相连的接口将该信号发送给第一光模块后,业务处理单元即将该信号发送给第一单纤双向光组件,从而通过第一光纤将该信号发送给第二设备,避免了会将该信号发送给第三设备,降低了网络上发生数据拥堵的概率。当然,通过本实施例的介绍,本领域所属的技术人员能够通过编写对应的软件、协议等等能够在业务处理单元上运行的代码,使得业务处理单元能够实现对应的功能,在此就不再赘述了。
在具体实施过程中,为了提高网络的可靠性,避免光模块中的业务处理单元发生故障后导致整个网络的通信发生中断,除了可以通过前述部分 所介绍的旁路单元来保证整个网络的正常通信之外,还可以通过在业务处理单元与第一单纤双向光组件、第二单纤双向光组件之间设置电开关。在业务处理单元发生故障时,将第一单纤双向光组件和第二单纤双向光组件接收的预传输至业务处理单元的数据传输至第一设备的处理器。由该处理器来处理数据,从而提高网络的可靠性。所述第一设备的处理器可以是NP。
当然,在实际应用中,可以由电子看门狗来监测业务处理单元的状态。在业务处理单元发生故障后,电子看门狗控制切换电路将第一单纤双向光组件和第二单纤双向光组件接收的预传输至业务处理单元的数据传输至第一设备的处理器。上述技术方案中,切换时间短,对网络的影响极低。
通过上述部分可以看出,由于采用了在光模块中设置两个单纤双向光组件的技术手段,也即一个光模块中包括两路收发光路,该设备可以通过该光模块的第一单纤双向光组件向第一设备中的第一光模块发送第一波长的光信号以及接收第一光模块发送的第二波长的光信号,以及通过第二单纤双向光组件向第二设备中的第二光模块发送第二波长的光信号以及接收第二光模块发送的第一波长的光信号,也就是说,在进行环形网或者链状网组网时,一个设备只需要使用一个本发明实施例提供的光模块即能够与上游设备和下游设备相连并进行对应的数据传输,该设备只需要提供一个接口与光模块相连即能够接收上游设备或下游设备发送的数据,以及向上游设备或下游设备发送数据,也即保证了该设备与上游设备和下游设备之间的正常通信,所以解决了现有技术中存在的浪费资源的技术问题,实现了节省设备的接口资源的技术效果。
请继续参考图4,本发明实施例还提供一种组网方法,该方法包括:将第一设备中的第一光模块中的第一单纤双向光组件,经第一光纤与第二设备中的第二光模块中的第二单纤双向光组件相连,其中,所述第一单纤双向光组件能够以第一波长的光信号发送数据和以第二波长的光信号接收数据,所述第二单纤双向光组件能够以所述第二波长的光信号发送数据和以 所述第一波长的光信号接收数据,所述第一波长与所述第二波长不相同;以及将所述第一光模块中的第三单纤双向光组件,经第二光纤与第三设备中的第三光模块中的第四单纤双向光组件相连,其中,所述第三单纤双向光组件能够以所述第二波长的光信号接收数据和以所述第一波长的光信号接收数据,所述第四单纤双向光组件能够以所述第一波长的光信号发送数据和以所述第二波长的光信号发送数据。
可选地,所述第一光模块中还包括一旁路单元,所述旁路单元包括第一端与第二端,将所述第一端与所述第二单纤双向光组件相连,将所述第二端与所述第四单纤双向光组件相连;在所述旁路单元处于工作状态时,所述第二单纤双向光组件通过所述旁路单元与所述第四单纤双向光组件相连。
本发明实施例中的组网方法与前述部分所介绍的光模块是基于同一发明构思下的两个方面,在前面已经对光模块的结构以及连接过程作了详细的描述,所以本领域技术人员可根据前述描述清楚地了解本实施例中的组网方法的具体过程,为了说明书的简洁,在此就不再赘述了。
实施例二:
请参考图5A。图5A是本发明实施例提供的光模块的第二种实现方式的结构图。如图5A所示,该光模块包括:第一光发射组件、第一光接收组件、第二光发射组件和第二光接收组件。
其中,第一光发射组件与第一设备的第三光接收组件相连,第一光发射组件用于向所第三光接收组件发送第一波长的光信号。
第一光接收组件与第一设备的第三光发射组件相连,第一光接收组件用于接收第三光发射组件发送的第二波长的光信号,第一波长与第二波长不相同。
第二光发射组件与第二设备的第四光接收组件相连,第二光发射组件用于向第四光接收组件发送第二波长的光信号。
第二光接收组件与第二设备的第四光发射组件相连,第二光接收组件用于接收第四光发射组件发送的第一波长的光信号。
请参考图5B。图5B是本发明实施例提供的第一光发射组件与第一光接收组件的信号传输示意图。如图5B所示,第一光发射组件接收业务处理单元经过驱动器传输的信号,并将信号通过光纤发送至其他设备(当然,该信号会经过光-电转换处理)。第一光接收组件接收其他设备通过光纤发送的信号,并将其通过放大器传输给业务处理单元(当然,类似地,该信号会经过电-光转换处理)。第二光发射组件的信号传输过程与第一光发射组件的信号传输过程类似。第二光接收组件的信号传输过程与第一光接收组件的信号传输过程类似。
请参考图6,图6是本发明实施例提供的通过第二种实现方式的光模块进行双纤双向组网的示意图。如图6所示,第一设备包括第一光模块。第一设备中的第一光模块中的第一光发射组件,经第一光纤与第二设备中的第二光模块中的第二光接收组件相连。第一光模块中的第一光接收组件,经第二光纤与第二光模块中的第二光发射组件相连。其中,第一光发射组件向第二光接收组件发送的光信号为第一波长的光信号。第一光接收组件接收的第二光发射组件发送的光信号为第二波长的光信号。
第一光模块中的第三光发射组件,经第三光纤与第三设备中的第三光模块中的第四光接收组件相连。第一光模块中的第三光接收组件,经第四光纤与第三光模块中的第四光发射组件相连。其中,第三光发射组件向第四光接收组件发送的信号为第二波长的光信号。第三光接收组件接收的第四光发射组件发送的光信号为第一波长的光信号。
需要说明的是,图6中第三光发射组件可以通过图5A中的第二光发射组件实现。图6中的第三光接收组件可以通过图5A中的第二光接收组件实现。
在具体实施过程中,为了保证网络的正常通行,请继续参考图5A,本发明实施例提供的光模块还包括一旁路单元,该第一光模块还包括一旁路单元,旁路单元包括第一链路与第二链路,第一链路具有第一端与第二端,第一端与第二光接收组件相连,第二端与第四光发射组件相连,第二链路具有第三端与第四端,第三端与第二光发射组件相连,第四端与第四光接收组件相连;
在旁路单元处于工作状态时,第二光发射组件通过旁路单元与第四光接收组件相连,第二光接收组件通过旁路单元与第四光发射组件相连。
本实施例中的旁路单元的触发过程与实施例一中的旁路单元的触发过程原理一致,在此就不再赘述了。
在具体实施过程中,请继续参考图5A。如图5A所示,本发明实施例提供的光模块还包括一业务处理单元,该业务处理单元分别与第一光发射组件、第一光接收组件、第二光发射组件和第二光接收组件相连。
关于图5A中的业务处理单元,可以参考实施例一中的业务处理单元,在此就不再赘述了。
请继续参考图5A,该业务处理单元分别与第一光发射组件、第一光接收组件、第二光发射组件和第二光接收组件相连。与实施例一中所介绍的业务处理单元类似,业务处理单元即能够实现对第一光发射组件、第一光接收组件、第二光发射组件和第二光接收组件发送或者接收的信号进行2~7层业务的处理,在此就不再赘述了。
请继续参考图5A与图6,与实施例一中的业务处理单元类似地,本实施例中的业务处理单元也能够将第一设备设备需要发送的信号发往对应的光发射组件,从而降低了网络上发生数据拥堵的概率,在此就不再赘述了。
当然,实施例一中的光模块类似的,本实施例中的光模块也可以包括一电开关,以提高整个网络的可靠性,在实施例一中已经介绍了电开关的具体原理以及实施过程,在此就不再赘述了。
可以看出,由于采用了在光模块中设置第一光发射组件、第一光接收组件、第二光发射组件和第二光接收组件的技术手段,也即一个光模块中包括两路收发光路,该设备可以通过该光模块的第一光发射组件向第一设备的所述第三光接收组件发送第一波长的光信号,通过第一光接收组件接收第一设备的所述第三光发射组件发送的第二波长的光信号,以及通过所述第二光发射组件向第二设备的所述第四光接收组件发送所述第二波长的光信号,通过所述第二光接收组件接收第二设备的所述第四光发射组件发送的所述第一波长的光信号,也就是说,在进行环形网或者链状网组网时,一个设备只需要使用一个本发明实施例提供的光模块即能够与上游设备和下游设备相连并进行对应的数据传输,该设备只需要提供一个接口与光模块相连即能够接收上游设备或下游设备发送的数据,以及向上游设备或下游设备发送数据,也即保证了该设备与上游设备和下游设备之间的正常通信,所以解决了现有技术中存在的浪费资源的技术问题,实现了节省设备的接口资源的技术效果。
请继续参考图6,本发明实施例还提供一种组网方法,该方法包括:将第一设备中的第一光模块中的第一光发射组件,经第一光纤与第二设备中的第二光模块中的第二光接收组件相连,和将所述第一光模块中的第一光接收组件,经第二光纤与所述第二光模块中的第二光发射组件相连,其中,所述第一光发射组件与所述第二光接收组件处理的光信号为第一波长的光信号,所述第一光接收组件与所述第二光发射组件处理的光信号为第二波长的光信号;
将所述第一光模块中的第三光发射组件,经第三光纤与第三设备中的第三光模块中的第四光接收组件相连,和将所述第一光模块中的第三光接收组件,经第四光纤与所述第三光模块中的第四光发射组件相连,其中,所述第三光发射组件与所述第四光接收组件处理的信号为所述第二波长的 光信号,所述第三光接收组件与所述第四光发射组件处理的光信号为所述第一波长的光信号。
可选地,所述第一光模块还包括一旁路单元,所述旁路单元包括第一链路与第二链路,所述第一链路具有第一端与第二端,将所述第一端与所述第二光接收组件相连,将所述第二端与所述第四光发射组件相连,所述第二链路具有第三端与第四端,将所述第三端与所述第二光发射组件相连,将所述第四端与所述第四光接收组件相连;在所述旁路单元处于工作状态时,所述第二光发射组件通过所述旁路单元与所述第四光接收组件相连,所述第二光接收组件通过所述旁路单元与所述第四光发射组件相连。
本发明实施例中的组网方法与前述部分所介绍的光模块是基于同一发明构思下的两个方面,在前面已经对光模块的结构以及连接过程作了详细的描述,所以本领域技术人员可根据前述描述清楚地了解本实施例中的组网方法的具体过程,为了说明书的简洁,在此就不再赘述了。
基于同一发明构思,本发明实施例另一方面还提供一种设备。请参考图7,图7是本发明实施例提供的设备的功能模块图。如图7所示,该设备包括:印制线路板(英文:printed circuit board,简称:PCB)701以及光模块702。光模块702设置在该PCB701上,该光模块可以是如前述实施例一或实施例二所介绍的光模块。
可以看出,如前述实施例一或实施例二所介绍的内容,在进行环形网或者链状网组网时,一个设备只需要使用一个本发明实施例提供的光模块即能够与两个设备相连并进行对应的数据传输,即能够组成对应的环形网或者链状网,同时由于该环形网或者链状网中每个设备的光模块中两路收发光路所处理的光信号的波长对应,不需要再花费时间在光模块的配对上,所以简化了光模块配对的复杂度,节省了时间。
在前述实施例一以及实施例二中已经详细介绍了光模块的具体结构以及实施过程,本领域所属的技术人员能够根据前述描述清楚地了解本实施例中的设备的结构及实施过程,为了说明书的简洁,在此就不再赘述了。
本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
由于采用了在光模块中设置两个单纤双向光组件的技术手段,也即一个光模块中包括两路收发光路,该设备可以通过该光模块的第一单纤双向光组件向第一设备中的第一光模块发送第一波长的光信号以及接收第一光模块发送的第二波长的光信号,以及通过第二单纤双向光组件向第二设备中的第二光模块发送第二波长的光信号以及接收第二光模块发送的第一波长的光信号,也就是说,在进行环形网或者链状网组网时,一个设备只需要使用一个本发明实施例提供的光模块即能够与上游设备和下游设备相连并进行对应的数据传输,该设备只需要提供一个接口与光模块相连即能够接收上游设备或下游设备发送的数据,以及向上游设备或下游设备发送数据,也即保证了该设备与上游设备和下游设备之间的正常通信,所以解决了现有技术中存在的浪费资源的技术问题,实现了节省设备的接口资源的技术效果。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (11)

  1. 一种光模块,其特征在于,包括:第一单纤双向光组件与第二单纤双向光组件;
    其中,所述第一单纤双向光组件通过所述第一单纤双向光组件的第一端与第一设备中的第一光模块相连,所述第一单纤双向光组件用于向所述第一光模块发送第一波长的光信号以及接收所述第一光模块发送的第二波长的光信号,所述第一波长与所述第二波长不相同;以及
    所述第二单纤双向光组件通过所述第二单纤双向光组件的第一端与第二设备中的第二光模块相连,所述第二单纤双向光组件用于向所述第二光模块发送所述第二波长的光信号以及接收所述第二光模块发送所述第一波长的光信号。
  2. 如权利要求1所述的光模块,其特征在于,所述光模块还包括一旁路单元,所述旁路单元具有第一端与第二端,所述第一端与所述第一光模块相连,所述第二端与所述第二光模块相连;
    在所述旁路单元处于工作状态时,所述第一光模块通过所述旁路单元与所述第二光模块相连。
  3. 如权利要求1所述的光模块,其特征在于,所述光模块还包括一业务处理单元,所述业务处理单元分别与所述第一单纤双向光组件的第二端和所述第二单纤双向光组件的第二端相连。
  4. 一种光模块,其特征在于,包括:第一光发射组件、第一光接收组件、第二光发射组件和第二光接收组件;
    其中,所述第一光发射组件通过所述第一光发射组件的第一端与第一设备的第三光接收组件相连,所述第一光发射组件用于向所述第三光接收组件发送第一波长的光信号;
    所述第一光接收组件通过所述第一光接收组件的第一端与所述第一设备的第三光发射组件相连,所述第一光接收组件用于接收所述第三光发射组件发送的第二波长的光信号,所述第一波长与所述第二波长不相同;
    所述第二光发射组件通过所述第二光发射组件的第一端与第二设备的第四光接收组件相连,所述第二光发射组件用于向所述第四光接收组件发送所述第二波长的光信号;
    所述第二光接收组件通过所述第二光接收组件的第一端与所述第二设备的第四光发射组件相连,所述第二光接收组件用于接收所述第四光发射组件发送的所述第一波长的光信号。
  5. 如权利要求4所述的光模块,其特征在于,所述光模块还包括一旁路单元,所述旁路单元包括第一链路与第二链路,所述第一链路具有第一端与第二端,所述第一端与所述第二光接收组件相连,所述第二端与所述第四光发射组件相连,所述第二链路具有第三端与第四端,所述第三端与所述第二光发射组件相连,所述第四端与所述第四光接收组件相连;
    在所述旁路单元处于工作状态时,所述第二光发射组件通过所述旁路单元与所述第四光接收组件相连,所述第二光接收组件通过所述旁路单元与所述第四光发射组件相连。
  6. 如权利要求4所述的光模块,其特征在于,所述光模块还包括一业务处理单元,所述业务处理单元分别与所述第一光发射组件的第二端、第一光接收组件的第二端、第二光发射组件的第二端和第二光接收组件的第二端相连。
  7. 一种设备,其特征在于,包括:
    印制线路板PCB;
    如权利要求1-6中任一权项所述的光模块,设置在所述PCB上。
  8. 一种组网方法,其特征在于,包括:
    将第一设备中的第一光模块中的第一单纤双向光组件,经第一光纤与第二设备中的第二光模块中的第二单纤双向光组件相连,其中,所述第一单纤双向光组件能够以第一波长的光信号发送数据和以第二波长的光信号接收数据,所述第二单纤双向光组件能够以所述第二波长的光信号发送数据和以所述第一波长的光信号接收数据,所述第一波长与所述第二波长不相同;以及
    将所述第一光模块中的第三单纤双向光组件,经第二光纤与第三设备中的第三光模块中的第四单纤双向光组件相连,其中,所述第三单纤双向光组件能够以所述第二波长的光信号接收数据和以所述第一波长的光信号接收数据,所述第四单纤双向光组件能够以所述第一波长的光信号发送数据和以所述第二波长的光信号发送数据。
  9. 如权利要求8所述的方法,其特征在于,所述第一光模块中还包括一旁路单元,所述旁路单元包括第一端与第二端,将所述第一端与所述第二单纤双向光组件相连,将所述第二端与所述第四单纤双向光组件相连;
    在所述旁路单元处于工作状态时,所述第二单纤双向光组件通过所述旁路单元与所述第四单纤双向光组件相连。
  10. 一种组网方法,其特征在于,包括:
    将第一设备中的第一光模块中的第一光发射组件,经第一光纤与第二设备中的第二光模块中的第二光接收组件相连,和将所述第一光模块中的第一光接收组件,经第二光纤与所述第二光模块中的第二光发射组件相连,其中,所述第一光发射组件与所述第二光接收组件处理的光信号为第一波长的光信号,所述第一光接收组件与所述第二光发射组件处理的光信号为第二波长的光信号;
    将所述第一光模块中的第三光发射组件,经第三光纤与第三设备中的第三光模块中的第四光接收组件相连,和将所述第一光模块中的第三光接收组件,经第四光纤与所述第三光模块中的第四光发射组件相连,其中, 所述第三光发射组件与所述第四光接收组件处理的信号为所述第二波长的光信号,所述第三光接收组件与所述第四光发射组件处理的光信号为所述第一波长的光信号。
  11. 如权利要求10所述的方法,其特征在于,所述第一光模块还包括一旁路单元,所述旁路单元包括第一链路与第二链路,所述第一链路具有第一端与第二端,将所述第一端与所述第二光接收组件相连,将所述第二端与所述第四光发射组件相连,所述第二链路具有第三端与第四端,将所述第三端与所述第二光发射组件相连,将所述第四端与所述第四光接收组件相连;
    在所述旁路单元处于工作状态时,所述第二光发射组件通过所述旁路单元与所述第四光接收组件相连,所述第二光接收组件通过所述旁路单元与所述第四光发射组件相连。
PCT/CN2015/075789 2014-04-16 2015-04-02 组网方法、光模块和设备 WO2015158208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410153822.3A CN103941356B (zh) 2014-04-16 2014-04-16 组网方法、光模块和设备
CN201410153822.3 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015158208A1 true WO2015158208A1 (zh) 2015-10-22

Family

ID=51189092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075789 WO2015158208A1 (zh) 2014-04-16 2015-04-02 组网方法、光模块和设备

Country Status (2)

Country Link
CN (1) CN103941356B (zh)
WO (1) WO2015158208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428379A (zh) * 2020-10-29 2022-05-03 青岛海信宽带多媒体技术有限公司 一种光模块

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941356B (zh) * 2014-04-16 2016-01-06 华为技术有限公司 组网方法、光模块和设备
CN114337820B (zh) * 2020-09-29 2024-01-02 华为技术有限公司 单纤双向光传输装置、波分设备及光传输系统
CN113556176B (zh) * 2021-06-29 2022-07-05 成都市联洲国际技术有限公司 光组件发射光控制方法、装置、光组件、光模块及收发器
WO2023108575A1 (zh) * 2021-12-16 2023-06-22 成都瑞通视讯科技股份有限公司 一种光通信模块、器件及系统
CN117498938A (zh) * 2023-10-09 2024-02-02 四川泰瑞创通讯技术股份有限公司 光模块收发装置、控制方法、电子装置及可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1492602A (zh) * 2002-10-16 2004-04-28 ���ǵ�����ʽ���� 双光纤光环形网
US20090175627A1 (en) * 2008-01-04 2009-07-09 Wen-Ping Yu Data transmission system using optical fiber
US7762730B2 (en) * 2008-04-08 2010-07-27 Sumitomo Electric Industries, Ltd. Bi-directional optical module and a method for assembling the same
WO2011120460A2 (zh) * 2011-05-05 2011-10-06 华为技术有限公司 单纤双向光模块和基于单纤双向光模块的传送系统及方法
CN202634436U (zh) * 2012-03-22 2012-12-26 绍兴电力局 上下行端口采用全自愈保护的无源光网络通信系统
CN202735550U (zh) * 2012-08-08 2013-02-13 青岛海信宽带多媒体技术有限公司 单纤双向光组件及双发双收光模块
CN202940821U (zh) * 2012-09-05 2013-05-15 瑞斯康达科技发展股份有限公司 光旁路保护设备
CN203166928U (zh) * 2013-04-24 2013-08-28 深圳市极致兴通科技有限公司 基于sfp封装的两路光收发一体模块
CN103472544A (zh) * 2013-07-29 2013-12-25 成都德浩科技有限公司 用于csfp模块的一体化光收发器件
CN103941356A (zh) * 2014-04-16 2014-07-23 华为技术有限公司 组网方法、光模块和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167813B2 (ja) * 1992-12-18 2001-05-21 株式会社日立製作所 半導体集積回路装置およびその製造方法
CN2646729Y (zh) * 2003-08-12 2004-10-06 飞博创(成都)科技有限公司 单纤双向光收发模块
US8104977B2 (en) * 2008-04-28 2012-01-31 Sumitomo Electric Industries, Ltd. Pluggable transceiver with bi-directional optical sub-assembly
TWM409436U (en) * 2010-12-13 2011-08-11 Axcen Photonics Corp Receptacle-type bi-directional optical module and electronic apparatus thereof
KR101283678B1 (ko) * 2011-07-26 2013-08-23 (주)옵토위즈 파장분할소자와 양방향 광송수신 소자가 집적화된 광송수신 모듈
CN102801475A (zh) * 2012-08-08 2012-11-28 青岛海信宽带多媒体技术有限公司 单纤双向光组件及双发双收光模块

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1492602A (zh) * 2002-10-16 2004-04-28 ���ǵ�����ʽ���� 双光纤光环形网
US20090175627A1 (en) * 2008-01-04 2009-07-09 Wen-Ping Yu Data transmission system using optical fiber
US7762730B2 (en) * 2008-04-08 2010-07-27 Sumitomo Electric Industries, Ltd. Bi-directional optical module and a method for assembling the same
WO2011120460A2 (zh) * 2011-05-05 2011-10-06 华为技术有限公司 单纤双向光模块和基于单纤双向光模块的传送系统及方法
CN202634436U (zh) * 2012-03-22 2012-12-26 绍兴电力局 上下行端口采用全自愈保护的无源光网络通信系统
CN202735550U (zh) * 2012-08-08 2013-02-13 青岛海信宽带多媒体技术有限公司 单纤双向光组件及双发双收光模块
CN202940821U (zh) * 2012-09-05 2013-05-15 瑞斯康达科技发展股份有限公司 光旁路保护设备
CN203166928U (zh) * 2013-04-24 2013-08-28 深圳市极致兴通科技有限公司 基于sfp封装的两路光收发一体模块
CN103472544A (zh) * 2013-07-29 2013-12-25 成都德浩科技有限公司 用于csfp模块的一体化光收发器件
CN103941356A (zh) * 2014-04-16 2014-07-23 华为技术有限公司 组网方法、光模块和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428379A (zh) * 2020-10-29 2022-05-03 青岛海信宽带多媒体技术有限公司 一种光模块
CN114428379B (zh) * 2020-10-29 2023-09-15 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN103941356B (zh) 2016-01-06
CN103941356A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2015158208A1 (zh) 组网方法、光模块和设备
US10419152B2 (en) Communication network employing network devices with packet delivery over pre-assigned optical channels
EP3169008B1 (en) Methods and apparatus for a flattened data center network employing wavelength-agnostic endpoints
US8386846B2 (en) Network switch with backup power supply
US7957650B2 (en) Pluggable optical network unit capable of status indication
JP4884184B2 (ja) リンクアグリゲーション用の通信装置及びプログラム
US20140140689A1 (en) Configurable single-fiber or dual-fiber optical transceiver
US10778561B2 (en) Diagnostic port for inter-switch and node link testing in electrical, optical and remote loopback modes
US8780927B2 (en) Data network elements, crossbars, and methods providing coupling between remote PHY and MAC devices
CN112865880B (zh) 一种通过光口单向传输数据系统及方法
US20160020912A1 (en) Optical cable assemblies with low-speed data pass-through architecture and sleep mode operation
WO2015157993A1 (zh) 互连系统、装置和数据传输方法
JP5574279B2 (ja) 伝送装置の管理システム
CN104283734A (zh) 用于低成本和低功率网络故障排除的系统和方法
US20180041277A1 (en) Protected ethernet ring with small form-factor pluggable devices
US20130215936A1 (en) Two-In-One CFP Form-Factor Pluggable Adapter
Kraus et al. Approach for an optical network design for autonomous vehicles
CN103746717A (zh) 一种cfp连接器及cfp传输架构
JP7180298B2 (ja) 光伝送システム及び非使用経路確認方法
US8265482B2 (en) Device and method to allow for uni-directional traffic on local area networks
CN103581774A (zh) 一种以太网单向传输光口及其传输方法和单向传输设备
WO2017020292A1 (zh) 一种光接入设备及光接入系统
US10523402B1 (en) Multi-media full duplex packet data splitter
JP5041600B2 (ja) 運用保守管理用のトレース要求を送信する方法、管理端点装置及びプログラム
JP2014135679A (ja) 端末側通信装置、局側装置、通信障害復旧方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780429

Country of ref document: EP

Kind code of ref document: A1