WO2020100182A1 - クロマトグラフ装置 - Google Patents

クロマトグラフ装置 Download PDF

Info

Publication number
WO2020100182A1
WO2020100182A1 PCT/JP2018/041795 JP2018041795W WO2020100182A1 WO 2020100182 A1 WO2020100182 A1 WO 2020100182A1 JP 2018041795 W JP2018041795 W JP 2018041795W WO 2020100182 A1 WO2020100182 A1 WO 2020100182A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromatogram
peak
unit
region
sample
Prior art date
Application number
PCT/JP2018/041795
Other languages
English (en)
French (fr)
Inventor
和也 鵜飼
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020556470A priority Critical patent/JP7088306B2/ja
Priority to PCT/JP2018/041795 priority patent/WO2020100182A1/ja
Publication of WO2020100182A1 publication Critical patent/WO2020100182A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis

Definitions

  • the present invention relates to a chromatograph device.
  • Chromatographs such as gas chromatographs (GC) and liquid chromatographs (LC) can be obtained by analyzing a sample.
  • peaks corresponding to the components (generally compounds) contained in the sample appear.
  • the position (time) at which the peak appears depends on the type of compound, and the size (height or area) of the peak depends on the content or concentration of the component corresponding to the peak. Therefore, in order to identify the components in the sample using the chromatogram, it is important to specify the peak position accurately. Further, in order to grasp the content and concentration of the component in the sample, it is important to accurately obtain the height and area of the peak. In any case, in order to obtain the position of the peak appearing in the chromatogram, and the height or area of the peak, it is necessary to accurately detect the peak derived from the significant component based on the waveform of the chromatogram. Become.
  • Non-Patent Document 1 As a method of detecting the peaks observed on the chromatogram, various methods have been conventionally proposed and installed in the device.
  • the peak waveform processing software described in Non-Patent Document 1 has a function such that a peak can be automatically detected on a chromatogram by simply specifying a peak detection sensitivity and a detection time range by a user as a basic setting. have.
  • the user can set the parameters necessary for automatic waveform processing in addition to the basic parameters described above. Often need to be set to.
  • the appropriate parameter values for automatic waveform processing differ depending on the waveform processing algorithm such as peak detection, peak division, or baseline processing. Therefore, in order for the user to set an appropriate parameter value, it is necessary to understand to some extent the waveform processing algorithm used at that time. However, it is difficult for many users (operators) to understand the waveform processing algorithm implemented in software in detail.
  • the present invention has been made to solve these problems, and an object thereof is to favorably perform peak detection and the like by automatic waveform processing while simplifying the troublesome parameter input work relating to peak waveform processing. It is to provide a chromatograph device capable of
  • the “chromatography device” in this specification includes a liquid chromatography device and a gas chromatography device. Further, since the detectors are of any type, the detector also includes a liquid chromatograph mass spectrometer and a gas chromatograph mass spectrometer, which are mass spectrometers.
  • a display unit that can display images
  • An input unit operated by the user A data storage unit for storing chromatogram data obtained by analyzing a sample containing a target component to be detected, A chromatogram in which a peak corresponding to the target component is observed is created using the data stored in the data storage unit, and a chromatogram drawing processing unit that is displayed on the screen of the display unit,
  • a region designation reception processing unit that receives designation of a peak region on the chromatogram,
  • a waveform processing parameter calculation unit that calculates a value of a parameter for identifying a peak and a non-peak when detecting a peak; Peak waveform processing for performing waveform
  • the user confirms the peak corresponding to the target component on the chromatogram obtained by analyzing the sample containing the target component, and the peak is appropriately included.
  • the parameter value for executing the waveform processing for the peak corresponding to the target component is automatically calculated only by designating the peak area. This eliminates the need for the user to input troublesome parameters regarding peak waveform processing. Further, while simplifying such troublesome work, peak detection and the like by automatic waveform processing can be favorably performed, and component identification and quantification can be performed with high accuracy.
  • 6 is a flowchart showing the procedure of peak waveform processing in the LC-MS of this embodiment.
  • LC-MS liquid chromatograph mass spectrometer
  • FIG. 1 is a schematic configuration diagram of the LC-MS of this embodiment.
  • the LC-MS includes a liquid chromatograph (LC section) 10 and a mass spectrometric section (MS section) 15 as the measuring section 1.
  • the LC unit 10 includes a mobile phase container 11 in which a mobile phase is stored, a liquid feed pump 12 that sucks and feeds the mobile phase from the mobile phase container 11, an injector 13 that injects a liquid sample into the mobile phase, and A column 14 for temporally separating the components in the liquid sample.
  • the MS unit 15 ionizes the components in the eluate eluted from the column 14 and mass-analyzes the generated ions or the ions dissociated from the generated ions.
  • the MS unit 15 is a triple quadrupole mass spectrometer having front and rear quadrupole mass filters sandwiching a collision cell that dissociates ions by collision-induced dissociation, but the MS unit 15 is not limited to this.
  • Other types of mass spectrometers such as a single type quadrupole mass spectrometer and a quadrupole-time of flight (Q-TOF type) mass spectrometer may be used.
  • a detection signal (ion intensity signal) obtained by an ion detector (not shown) in the MS unit 15 is converted into digital data by an analog-digital converter (ADC) 16 and input to the data processing unit 20.
  • the data processing unit 20 includes, as functional blocks, a data storage unit 21, a chromatogram creation unit 22, a parameter calculation information input support unit 23, a waveform processing parameter calculation unit 24, a waveform processing parameter storage unit 25, a peak waveform processing unit 26, and , A display processing unit 27 and the like.
  • the parameter calculation information input support unit 23 further includes an area designation reception processing unit 231 as a lower functional block.
  • the data storage unit 21 is configured to include a large-capacity storage device such as a hard disk drive (HDD) or a solid state drive (SSD), and stores the data obtained by the measurement unit 1. Normally, the data obtained by the measurement for one sample is stored in one data file and stored in the data storage unit 21.
  • a large-capacity storage device such as a hard disk drive (HDD) or a solid state drive (SSD)
  • the chromatogram creation unit 22 creates a chromatogram showing the relationship between the retention time and the signal intensity based on the data stored in the data storage unit 21.
  • the chromatogram is a total ion chromatogram, an extracted ion chromatogram (mass chromatogram), or the like.
  • the parameter calculation information input support unit 23, the waveform processing parameter calculation unit 24, the waveform processing parameter storage unit 25, and the peak waveform processing unit 26 are functional blocks responsible for peak waveform processing characteristic of the LC-MS of this embodiment. Yes, and will be described in detail later.
  • the LC-MS includes a control unit for controlling the operation of each unit included in the measurement unit 1, but the description thereof is omitted in FIG.
  • the data processing unit 20 can be configured by a hardware circuit, in general, the substance is a personal computer, and by executing dedicated software installed in the computer by the computer.
  • the function blocks described above may be embodied.
  • the input unit 30 includes a keyboard attached to the personal computer, and a pointing device such as a mouse and a slide pad.
  • the display unit 31 is a monitor attached to the personal computer.
  • ⁇ Data collection operation in measurement unit> it is assumed that a multi-component simultaneous analysis targeting a plurality of components is performed on a large number of samples.
  • the types of a plurality of components to be detected are determined in advance, and the retention time for each component and the MRM transition in the multiple reaction monitoring (hereinafter, commonly referred to as “MRM”) measurement are measured.
  • MRM multiple reaction monitoring
  • the liquid feed pump 12 in the LC unit 10 sucks the mobile phase stored in the mobile phase container 11 and feeds it to the column 14 at a constant flow rate.
  • the injector 13 injects a predetermined amount of liquid sample into the mobile phase.
  • the liquid sample is introduced into the column 14 along with the flow of the mobile phase, and while passing through the column 14, various components in the sample are separated and eluted from the outlet of the column 14 with a time lag.
  • the MS unit 15 repeatedly executes the MRM measurement for the MRM transition corresponding to the target component during a predetermined time range including the retention time designated for each target component. That is, among the ions generated from the components in the sample, the ion having the mass-to-charge ratio specified by the MRM transition is selected as the precursor ion, and the precursor ion is dissociated. Among various product ions generated by the dissociation, product ions having a mass-to-charge ratio specified by the MRM transition are selectively detected. Therefore, if a certain target component is contained in the liquid sample injected by the injector 13, the MS unit 15 obtains data indicating the temporal change in the ionic strength of the product ion derived from the target component.
  • data indicating temporal changes in ion intensity corresponding to a plurality of predetermined target components is obtained for each sample, and the data is stored in the data storage unit 21.
  • one data file in which data corresponding to one sample is stored is given a data file name distinguishable from other files.
  • information about the continuous analysis such as the sample name and the information that specifies the measurement method file that contains the analysis conditions used for the analysis, is included in one batch.
  • one batch file corresponds to one continuous analysis.
  • This batch file is also stored in the data storage unit 21.
  • Sequential analysis for a large number of samples is controlled according to the information stored in the batch file, and individual analyzes in the serial analysis are performed according to the analysis conditions stored in the measurement method file. Note that such a measurement operation is very general and is not unique to the LC-MS of this embodiment.
  • FIG. 2 is a flowchart showing the procedure of peak waveform processing.
  • 3 to 5 are examples of display screens displayed on the display unit in the process of peak waveform processing.
  • FIG. 6 is a schematic diagram showing an example of designation of peak areas and noise areas on a chromatogram.
  • the parameter calculation information input support unit 23 displays the sample selection window 200 as shown in FIG. 3 on the screen of the display unit 31 via the display processing unit 27.
  • a batch file name display field 210 and a batch file list display button 220 are arranged on the sample selection window 200.
  • the operator clicks the batch file list display button 220 with a mouse or the like a list of batch files registered at that time is displayed in a drop-down list.
  • the parameter calculation information input support unit 23 reads the selected batch file from the data storage unit 21 and uses the information stored in the file, as shown in FIG.
  • a data file list table 230 is created and displayed in the sample selection window 200 (step 102).
  • This data file list table 230 has a plurality of data file names (“Data File name” in FIG. 3) corresponding to this one batch file, sample name (“Sample name” in FIG. 3), data acquisition date and time ( Information such as “Acquired Date” in FIG. 3) is included.
  • a check box 250 is arranged at the beginning of the line corresponding to each data file, and the operator clicks the check box 250 in front of the data file to be analyzed and puts a check mark in the data file to be analyzed, that is, A sample is selected (step 103). It should be noted that by putting a check mark in the check box in the highest row of the check box 250 column, it is possible to put check marks in all check boxes at once.
  • the parameter calculation information input support unit 23 creates a data file list table excluding data files that are not marked with a check mark.
  • the window on the screen of the display unit 31 is switched to the method selection window 300 including the data file list table 310 shown in FIG.
  • a data file list table 310 and a waveform processing method instruction column 320 are arranged on the method selection window 300.
  • the parameter calculation information input support unit 23 switches the window on the screen of the display unit 31 to the parameter update window 400 shown in FIG. 5 (step 104).
  • a compound table 410 showing a list of compounds to be analyzed in the data file selected in one batch file is arranged on the parameter update window 400.
  • the compound name (“Name” in FIG. 5), the MRM transition (“m / z” in FIG. 5) for detecting the compound, and the retention time (“RT” in FIG. 5). )) Etc. are included.
  • a check box 411 is arranged at the beginning of the row corresponding to each compound on the compound table 410, and the operator clicks the check box 411 in front of the compound for which the waveform processing parameter is to be set (or updated). Select a compound by putting a check mark.
  • Information indicated by reference numeral 412 in FIG. 5 is information displayed when the compound table 410 is scrolled to the right. That is, it means that when the compound table 410 is scrolled to the right, the information indicated by reference numeral 412 appears in the compound table 410.
  • the data file name (“Data Filename” in FIG. 5) 413 corresponding to each compound drawn here is the data file corresponding to the sample used when calculating the waveform processing parameters for that compound. Is the name.
  • the data file in which the compound is set as the detection target in one batch at that time that is, the list of samples is a drop-down list. Is displayed. The operator selects an arbitrary data file name in the drop-down list to specify the sample (data file) used to calculate the waveform processing parameter for each compound (step 105).
  • a data file with the data file name "Conc-3_001" is specified for all four compounds, but different data file names can all be specified. That is, as the chromatogram data for calculating the waveform processing parameter, a chromatogram obtained for a different sample for each compound can be designated, or a chromatogram obtained for the same sample can be designated. You can also
  • the operator can select any one of the data files displayed in the drop-down list, but the target compound is surely included, and other compounds and contaminants are included in the chromatogram. It is desirable that they do not overlap. Therefore, in general, a standard sample containing only the target compound, or both the target compound and the target compound, which are clearly not overlapping in peaks with the target compound on the chromatogram, are included. Select the data file corresponding to the standard sample to be prepared.
  • the chromatogram creation unit 22 causes the data stored in the data file associated with the selected compound.
  • a chromatogram (extracted ion chromatogram here) is created based on the above, and displayed in the chromatogram display area 430 (step 106).
  • the compound with the compound name “MPA” is selected, and the corresponding extracted ion chromatogram created from the data in the data file with the data file name “Conc-3_001” is selected. Is displayed in the chromatogram display area 430.
  • a peak corresponding to the target compound should appear on the chromatogram displayed in step 106. If the peak corresponding to the retention time of the target compound does not appear in the displayed chromatogram, another peak overlaps, or the peak shape collapses, it is appropriate to select the data file. May not be. In that case, the process returns to step 105 and the selection of the data file may be performed again.
  • a data file that can be observed peak suitable for reference of peak waveform processing for each compound ( Sample) can be selected.
  • the operator confirms the peak shape and the like in the displayed chromatogram and confirms the peak time area corresponding to the target compound and the noise time area. Are designated respectively (step 107). Specifically, when the operator clicks the peak area adjustment button 421 in the area designation operation field 420 and then performs a drag operation on the drawn chromatogram, the area designation reception processing unit 231 is dragged. The recognized range is recognized as the peak area. Since this peak area is indicated by the band-shaped range 431 on the chromatogram, the operator can easily visually confirm whether the specified range is appropriate. In general, the area of the peak corresponding to the target compound may be designated so that the peak to the end point of the peak observed on the chromatogram is sufficiently included (see FIG. 6).
  • the area designation reception processing unit 231 recognizes the dragged range as a noise area.
  • the designation of the peak region is indispensable, the designation of the noise region can be omitted.
  • the area designation reception processing unit 231 automatically determines the noise area according to a predetermined algorithm. For example, a region of a predetermined time width at a position distant by a predetermined time from one end of the designated peak region is a candidate for a noise region, and if the data included in the entire region is equal to or less than a predetermined intensity threshold It may be officially determined as the noise region.
  • the waveform processing parameter calculation unit 24 determines, for each compound, the data included in the specified peak area and the data included in the specified (or automatically calculated) noise area. From this, basic parameters for peak waveform processing are calculated.
  • this basic parameter is a parameter for peak filter processing for determining whether or not to consider a peak during peak detection, that is, a threshold value (step 108).
  • the basic parameters include the minimum peak half width and the ratio (%) of the relative value of the intensity to the intensity value of the main peak.
  • the “minimum peak full width at half maximum” is a threshold value for determining the full width at half maximum of the peak detected according to a predetermined algorithm, and if the full width at half maximum does not reach the threshold value, it is not regarded as a compound-derived peak.
  • the "ratio of the relative value of the intensity to the intensity value of the main peak” is a threshold value for determining the intensity of the peak detected according to a predetermined algorithm, and the peak of the maximum intensity detected in the specified time range is If the intensity ratio of the peak does not reach the threshold, the peak is not regarded as the peak.
  • the above two parameters are determined from the data of the peak region and the noise region, for example, as follows. (1) Assuming that the peak region includes the entire unimodal peak, the maximum value of data in the peak region is the signal intensity at the peak top. Further, the minimum value of the data in the peak region can be estimated to be the baseline signal strength. Therefore, the position (time) at which the signal intensity becomes 1 ⁇ 2 of the peak top is known from these values, and the full width at half maximum is obtained from the peak width at that position. Then, the minimum peak full width at half maximum is calculated by multiplying the full width at half maximum by a predetermined value (for example, 0.6).
  • a predetermined value for example, 0.6
  • the method of determining the above two parameters is not limited to this.
  • the operator selects a data file (sample) in which an appropriate peak is observed while confirming the actually acquired chromatogram, and on the chromatogram, Specify the peak area. Therefore, appropriate data can be obtained to determine the parameters of the peak waveform processing, and the highly reliable parameters can be determined based on the data.
  • the operator similarly designates the peak region on the displayed chromatogram and further designates the noise region as necessary. According to this designation, the basic parameters of the waveform processing for the compound are determined. (Steps 105 to 108). The operator clicks the “advance” button 440 after designating at least the peak region for all the compounds to be analyzed (Yes in step 109). In response to this operation, the waveform processing parameter calculation unit 24 determines the basic parameter value for each compound calculated at that time and stores it in the waveform processing parameter storage unit 25 (step 110).
  • the peak waveform processing unit 26 includes the basic parameter values for each compound stored in the waveform processing parameter storage unit 25 in the batch selected in step 101 and selects all samples (data files) selected in step 103. ) To perform peak waveform processing (step 111). As the peak detection algorithm at this time, an algorithm generally used in the past can be used, but the filtering process is performed based on the basic parameter value, that is, it is determined whether or not to consider it as a substantial peak. , The fine parameters used in each algorithm are determined.
  • peaks derived from different compounds will be detected with different standards. Therefore, for example, the peaks having the same height and the same width are detected as a peak derived from the compound for a certain compound and not detected as a peak derived from the compound for another compound, That is quite possible. Further, even if the samples are different, peaks are detected on the same basis for the same compound. This makes it possible to accurately detect peaks derived from compounds having different detection sensitivities.
  • the peak detection process corresponding to the designated compound is carried out for all the selected samples, and then the component identification process and the quantification process based on the detected peaks are executed (step 112). .. Since the peaks are accurately detected as described above, the position of the peak top is highly accurate and the component identification is also highly accurate. In addition, since the area of the peak is highly accurate, the quantification accuracy is also high. Further, since the troublesome setting work of the parameters of the peak waveform processing is unnecessary, the burden on the operator during the analysis work is reduced, and the difference in the identification result and the quantitative result due to the difference in the experience and skill of the operator can be reduced. it can.
  • the basic parameter values calculated from the data corresponding to the peak area and the noise area are not limited to those described above.
  • the two basic parameters exemplified above are thresholds for filtering the peaks based on the peak width and the peak intensity (height), but the peak area value, the peak SN ratio, or the standard.
  • a threshold value for discriminating a peak derived from the target compound and a peak not derived from the target compound may be used based on the amount of deviation from the specific retention time.
  • the formats and modes of the display screen and the input screen for the operator to make various selections and designations when automatically determining the waveform processing parameters are not limited to those shown in FIGS. 3 to 5.
  • the chromatograms obtained for a plurality of different samples for one compound are displayed side by side or in a tab switchable manner, and the operator can display the chromatograms. It is also possible to select the most appropriate one while comparing the waveforms of.
  • a touch panel may be used as the display unit 31, and an operator's input work such as designation of a region on the chromatogram may be performed by touch operation on the panel.
  • the present invention can also be applied to a liquid chromatograph (LC) in which the detector is a photodiode array detector, an ultraviolet-visible spectrophotometric detector, or the like.
  • LC liquid chromatograph
  • the present invention can also be applied to a gas chromatograph (GC) and a gas chromatograph mass spectrometer (GC-MS) that separate components in a sample in a gas state. Even in such a case, although the configuration of the measurement unit 1 in the above embodiment is changed, the configuration of the data processing unit 20 does not basically need to be changed.
  • the chromatographic apparatus is A display unit (31) capable of displaying an image, An input unit (30) operated by the user, A data storage unit (21) for storing chromatogram data obtained by analyzing a sample containing a target component to be detected, A chromatogram drawing processing unit that creates a chromatogram in which a peak corresponding to the target component is observed using the data stored in the data storage unit (21) and displays it on the screen of the display unit (31). (22,27), Region designation receiving process for receiving designation of a peak region on the chromatogram displayed on the display unit (31) according to a predetermined operation by the user using the input unit (30).
  • the target component A waveform processing parameter calculation unit (24) for calculating a value of a parameter for distinguishing a peak from a non-peak when detecting a peak corresponding to Using the parameter values calculated by the waveform processing parameter calculator (24) for each of the plurality of target components, the waveform processing is performed on the peak corresponding to the target component in the chromatogram obtained for any sample.
  • the troublesome work conventionally performed such that the user (operator) grasps the peak waveform processing algorithm and then determines and inputs the parameter is unnecessary. become. Therefore, the efficiency of the work of component identification and quantification can be improved. Further, it is possible to eliminate the difference in the analysis result due to the difference in the experience and skill of the operator, and it is easy to ensure the accuracy of the analysis. Furthermore, even an inexperienced person can take charge of the analysis work, which leads to a reduction in analysis cost.
  • the chromatographic apparatus of the second aspect of the present invention is the chromatographic apparatus of the first aspect of the present invention
  • the region designation reception processing unit receives designation of a peak region and a noise region on a chromatogram according to a predetermined operation by the user using the input unit
  • the waveform processing parameter calculation unit calculates the value of the parameter corresponding to the target component using the respective chromatogram waveforms in the peak region and the noise region received by the region designation receiving unit.
  • the noise area on the chromatogram not only the peak area on the chromatogram but also the noise area is specified by the operator.
  • the noise region can be appropriately designated excluding such a peak.
  • the reliability of the data in the noise region is enhanced, and the accuracy of the automatically calculated peak waveform processing parameter can be further enhanced.
  • the chromatographic apparatus of the third aspect of the present invention is the chromatographic apparatus of the first or second aspect of the present invention.
  • the data storage unit stores chromatogram data corresponding to a plurality of samples, For each of the plurality of target components, an input support unit that allows a user to select a chromatogram that is a target of a predetermined operation in the region designation reception processing unit or a sample from which the chromatogram is obtained is further provided.
  • the operator can use the input support unit to easily obtain the chromatogram or sample for determining the peak waveform processing parameter corresponding to each component. You can choose.
  • the chromatographic apparatus is the chromatographic apparatus according to the second or third aspect of the present invention,
  • the input support unit For each target component, a sample that has been analyzed, or a data file that stores data obtained by analysis of the sample, and a table that can be selected, and the sample or data file that is selected on the table, corresponding to The chromatogram created by the chromatogram drawing processing unit and the chromatogram are displayed in one screen.
  • the chromatograph apparatus of the fourth aspect of the present invention when the operator selects a sample or data file for a certain target component on the table, it is possible to immediately confirm the corresponding chromatogram. As a result, the operator can accurately and quickly determine whether or not the chromatogram is appropriate for obtaining the peak waveform processing parameter of the target component, and the work efficiency is high.
  • a fifth aspect of the present invention is a chromatographic apparatus according to any one of the first to fourth aspects of the present invention, It is assumed that the predetermined operation is a range designation by a drag operation or a click operation by the input unit on the chromatogram displayed on the display unit.
  • the chromatograph device of the fifth aspect of the present invention it is possible to specify a peak area in an arbitrary range by a simple operation on the screen. Thereby, work efficiency is high and work mistakes can be reduced.
  • Measuring unit 10 Liquid chromatograph (LC unit) 11 ... Mobile phase container 12 ... Liquid sending pump 13 ... Injector 14 ... Column 15 ... Mass spectrometric section (MS section) 20 ... Data processing unit 21 ... Data storage unit 22 ... Chromatogram creation unit 23 ... Parameter calculation information input support unit 231 ... Area designation acceptance processing unit 24 ... Waveform processing parameter calculation unit 25 ... Waveform processing parameter storage unit 26 ... Peak waveform processing Part 27 ... Display processing part 30 ... Input part 31 ... Display part 200 ... Sample selection window 210 ... Batch file name display field 220 ... Batch file list display button 230 ... Data file list table 250, 411 ... Check boxes 240, 330, 440 ...
  • Form button 300 ... Method selection window 310 ... Data file list table 320 ... Waveform processing method instruction field 400 ... Parameter update window 410 ... Compound table 413 ... Data file name 420 ... Area designation operation field 421 ... Peak area adjustment button 422 ... Noise area adjustment button 430... Chromatogram display area 431... Band-shaped range

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明の一実施形態であるLC-MSは、表示部(31)と、入力部(30)と、試料を分析することで得られたデータを記憶するデータ記憶部(21)と、目的成分に対応するピークが観測されるクロマトグラムを作成し表示部(31)に表示するクロマトグラム描画処理部(22,27)と、表示されているクロマトグラム上での、入力部(30)を用いたユーザによる所定の操作に応じてピーク領域の指定を受け付ける領域指定受付処理部(231)と、領域指定受付処理部(231)で受け付けられたピーク領域中の波形と、該ピーク領域以外の領域中の少なくとも一部のノイズ領域中の波形と、を用いて、当該目的成分に対応するピーク波形処理の基本パラメータの値を算出する波形処理パラメータ算出部(24)と、複数の目的成分毎に、上記基本パラメータ値を用いて任意の試料についてのピーク波形処理を実行するピーク波形処理部(26)と、を備える。

Description

クロマトグラフ装置
 本発明はクロマトグラフ装置に関する。
 ガスクロマトグラフ(GC)や液体クロマトグラフ(LC)等のクロマトグラフ装置では、試料を分析することによりクロマトグラムが得られる。クロマトグラムには、試料に含まれる成分(一般的には化合物)に対応したピークが現れる。通常、そのピークの出現位置(時間)は化合物の種類に依存し、ピークの大きさ(高さや面積)は該ピークに対応する成分の含有量や濃度に依存する。そのため、クロマトグラムを利用して試料中の成分を同定するには、ピークの位置を正確に特定することが重要である。また、試料中の成分の含有量や濃度を把握するには、ピークの高さや面積を正確に求めることが重要である。いずれにしても、クロマトグラムに現れるピークの位置、及び、ピークの高さ又は面積などを求めるには、該クロマトグラムの波形に基づいて有意な成分由来のピークを的確に検出することが必要となる。
 クロマトグラム上で観測されるピークを検出する手法としては、従来、様々な方法が提案されるとともに装置に実装されている。また、非特許文献1に記載のピーク波形処理ソフトウェアは、基本設定として、ピークの検出感度及び検出時間範囲をユーザが指定するだけで、クロマトグラム上のピークが自動的に検出されるような機能を有している。但し、こうしたソフトウェアを利用する場合でも、ベースラインドリフトが大きい、ノイズが多い、といった状況の下では、上述したような基本的なパラメータ以外にも、自動波形処理に必要なパラメータを、ユーザが適切に設定する必要がある場合が多い。
 近年、様々な分野において、多数の試料に対し、一つの試料に含まれる既知の多数の成分を一度に分析する多成分一斉分析が実施されることが多くなっている。成分の種類によって検出感度やクロマトグラフでの分離特性が異なるため、多成分一斉分析に際して各成分に対応するピークを良好に検出するには、成分毎に、自動波形処理のための適切なパラメータをユーザが設定する必要がある。
「インテリジェントな波形処理アルゴリズムで解析業務を効率化 」、株式会社島津製作所、[2018年10月29日検索]、インターネット<URL : https://www.an.shimadzu.co.jp/hplc/support/faq/faq8/i-peakfinder_introduction.htm>
 自動波形処理のための適切なパラメータの値は、ピーク検出やピーク分割、或いはベースライン処理などの波形処理のアルゴリズムによって異なる。そのため、ユーザが適切なパラメータ値を設定するには、そのときに使用される波形処理のアルゴリズムを或る程度理解している必要がある。しかしながら、ソフトウェアに実装されている波形処理アルゴリズムを詳しく理解することは、多くのユーザ(オペレータ)にとって困難である。
 また、上述したような基本的なパラメータのみをユーザが設定すればよい場合であっても、分析に精通していない一般のオペレータが適切なパラメータ値を推測して入力するのは負担が大きい。また、分析上でのミスの大きな要因となり得る。
 本発明はこうした課題を解決するためになされたものであり、その目的とするところは、ピーク波形処理に関する面倒なパラメータの入力作業を簡略化しつつ、自動波形処理によるピーク検出等を良好に行うことができるクロマトグラフ装置を提供することにある。
 なお、本明細書における「クロマトグラフ装置」は液体クロマトグラフ装置及びガスクロマトグラフ装置を含む。また、検出器の種類を問わないから、検出器が質量分析装置である液体クロマトグラフ質量分析装置及びガスクロマトグラフ質量分析装置も含む。
 上記課題を解決するために成された本発明に係るクロマトグラフ装置は、
 画像を表示可能な表示部と、
 ユーザが操作する入力部と、
 検出対象である目的成分を含む試料を分析することで得られたクロマトグラムデータを記憶するデータ記憶部と、
 前記目的成分に対応するピークが観測されるクロマトグラムを前記データ記憶部に記憶されているデータを用いて作成し、前記表示部の画面上に表示するクロマトグラム描画処理部と、
 前記表示部に表示されているクロマトグラム上での、前記入力部を用いたユーザによる所定の操作に応じて、該クロマトグラム上におけるピーク領域の指定を受け付ける領域指定受付処理部と、
 前記領域指定受付処理部で受け付けられたピーク領域中のクロマトグラム波形と、該ピーク領域以外の領域中の少なくとも一部のノイズ領域中のクロマトグラム波形と、を用いて、当該目的成分に対応するピークを検出する際にピークと非ピークとを識別するためのパラメータの値を算出する波形処理パラメータ算出部と、
 複数の目的成分毎に、前記波形処理パラメータ算出部でそれぞれ算出されたパラメータ値を用い、任意の試料について得られたクロマトグラムにおいて前記目的成分に対応するピークについての波形処理を実行するピーク波形処理部と、
 を備える。
 本発明に係るクロマトグラフ装置によれば、ユーザは、目的成分が含まれる試料を分析することで得られたクロマトグラム上で、該目的成分に対応するピークを確認し、そのピークが含まれる適当なピーク領域を指定するだけで、その目的成分に対応するピークについての波形処理を実行するためのパラメータ値が自動的に算出される。これにより、ユーザによる、ピーク波形処理に関する面倒なパラメータの入力作業が不要になる。また、そうした面倒な作業を簡略化しながら、自動波形処理によるピーク検出等を良好に行うことができ、成分の同定や定量を高い精度で行うことができる。
本発明の一実施形態である液体クロマトグラフ質量分析装置(LC-MS)の概略構成図。 本実施形態のLC-MSにおけるピーク波形処理の手順を示すフローチャート。 本実施形態のLC-MSにおけるピーク波形処理の際の表示画面の一例を示す図。 本実施形態のLC-MSにおけるピーク波形処理の際の表示画面の一例を示す図。 本実施形態のLC-MSにおけるピーク波形処理の際の表示画面の一例を示す図。 本実施形態のLC-MSにおけるピーク領域及びノイズ領域の指定の一例を示す図。
 以下、本発明の一実施形態である液体クロマトグラフ質量分析装置(以下「LC-MS」と称す)について、添付図面を参照して説明する。
 <本実施形態の装置の構成>
 図1は、本実施形態のLC-MSの概略構成図である。
 このLC-MSは、測定部1として、液体クロマトグラフ(LC部)10と質量分析部(MS部)15とを含む。LC部10は、移動相が貯留されている移動相容器11、移動相容器11から移動相を吸引して送給する送液ポンプ12、移動相中に液体試料を注入するインジェクタ13、及び、該液体試料中の成分を時間的に分離するカラム14、を含む。MS部15は、カラム14から溶出する溶出液中の成分をイオン化し、生成されたイオン又はそれを解離させたイオンを質量分析する。MS部15は、イオンを衝突誘起解離により解離させるコリジョンセルを挟んで前後に四重極マスフィルタを有するトリプル四重極型質量分析装置であるが、MS部15はこれに限るものではなく、シングルタイプの四重極型質量分析装置や四重極-飛行時間型(Q-TOF型)質量分析装置など、他の方式の質量分析装置であってもよい。
 MS部15において図示しないイオン検出器で得られる検出信号(イオン強度信号)は、アナログデジタル変換器(ADC)16でデジタルデータに変換され、データ処理部20に入力される。データ処理部20は、機能ブロックとして、データ記憶部21、クロマトグラム作成部22、パラメータ算出情報入力支援部23、波形処理パラメータ算出部24、波形処理パラメータ記憶部25、ピーク波形処理部26、及び、表示処理部27などを含む。パラメータ算出情報入力支援部23はさらに下位の機能ブロックとして領域指定受付処理部231を含む。
 データ記憶部21はハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)などの大容量の記憶装置を含んで構成され、測定部1で得られたデータを記憶する。通常、一つの試料に対する測定により得られたデータは一つのデータファイルに格納され、データ記憶部21に記憶される。
 クロマトグラム作成部22は、データ記憶部21に記憶されているデータに基づいて、保持時間と信号強度との関係を示すクロマトグラムを作成する。クロマトグラムは、トータルイオンクロマトグラム、抽出イオンクロマトグラム(マスクロマトグラム)などである。パラメータ算出情報入力支援部23、波形処理パラメータ算出部24、波形処理パラメータ記憶部25、及び、ピーク波形処理部26は、本実施形態のLC-MSに特徴的なピーク波形処理を担う機能ブロックであり、あとで詳しく説明する。
 なお、このLC-MSは、測定部1に含まれる各部の動作を制御するための制御部を備えるが、図1ではその記載を省略している。
 また、データ処理部20はハードウェア回路で構成することも可能ではあるものの、一般的には、その実体はパーソナルコンピュータであり、該コンピュータにインストールされた専用のソフトウェアを該コンピュータで実行することで、上述した各機能ブロックが具現化される構成とすることができる。この場合、入力部30は、パーソナルコンピュータに付設されているキーボード、及び、マウス、スライドパッド等のポインティングデバイスを含む。また、表示部31は、パーソナルコンピュータに付設されているモニタである。
 <測定部でのデータ収集動作>
 ここでは、複数の成分を対象とする多成分一斉分析を、多数の試料について実施する場合を想定する。この場合、検出対象である複数の成分の種類は事前に決まっており、成分毎に、保持時間、及び、多重反応モニタリング(Multiple Reaction Monitoring、以下、慣用に従い「MRM」という)測定でのMRMトランジション(プリカーサイオンの質量電荷比とプロダクトイオンの質量電荷比比との組合せ)が、分析条件の一つとして事前に指定される。
 LC部10において送液ポンプ12は移動相容器11に貯留されている移動相を吸引し、一定流速でカラム14に送給する。所定のタイミングでインジェクタ13は所定量の液体試料を移動相中に注入する。該液体試料は移動相の流れに乗ってカラム14に導入され、カラム14を通過する間に、試料中の各種成分は分離され、カラム14の出口から時間的にずれて溶出する。
 MS部15は、目的成分毎に指定された保持時間を含む所定の時間範囲の期間中、該目的成分に対応するMRMトランジションについてのMRM測定を繰り返し実行する。即ち、試料中の成分から生成されたイオンの中で、MRMトランジションで特定される質量電荷比を有するイオンをプリカーサイオンとして選択し、該プリカーサイオンを解離させる。その解離により生成された各種のプロダクトイオンの中で、MRMトランジションで特定される質量電荷比を有するプロダクトイオンを選択的に検出する。そのため、インジェクタ13により注入された液体試料中に或る目的成分が含まれていれば、MS部15では、その目的成分由来であるプロダクトイオンのイオン強度の時間的変化を示すデータが得られる。多成分一斉分析では、試料毎に、予め決められた複数の目的成分に対応するイオン強度の時間的変化を示すデータがそれぞれ得られ、該データがデータ記憶部21に保存される。このとき、一つの試料に対応するデータが格納される一つのデータファイルには、他のファイルとは識別可能なデータファイル名が付与される。
 多数の試料についての分析を連続的に実施する際には、その連続分析についての情報、例えば試料名称、分析に使用する分析条件が収録された測定メソッドファイルを特定する情報などが、一つのバッチファイルに格納される。つまり、一つのバッチファイルは一つの連続分析に対応する。このバッチファイルもデータ記憶部21に保存される。多数の試料についての連続分析はバッチファイルに格納されている情報に従って制御され、その連続分析における個々の分析は測定メソッドファイルに格納されている分析条件に従って実施される。
 なお、こうした測定動作はごく一般的なものであり、本実施形態のLC-MSに特有のものではない。
 <本実施形態の装置におけるピーク波形処理>
 次に、上述したような連続分析により収集された、多数の試料に対するデータがデータ記憶部21に保存されている状態で実施される、成分同定や定量分析のためのピーク波形処理の詳細を説明する。
 図2は、ピーク波形処理の手順を示すフローチャートである。図3~図5は、ピーク波形処理の過程で表示部に表示される表示画面の一例である。図6はクロマトグラム上でのピーク領域及びノイズ領域の指定の一例を示す模式図である。
 オペレータが入力部30で所定の操作を行うと、パラメータ算出情報入力支援部23は表示処理部27を介して、図3に示すような試料選択ウインドウ200を表示部31の画面上に表示する。試料選択ウインドウ200上には、バッチファイル名表示欄210と、バッチファイル一覧表示ボタン220と、が配置されている。オペレータがバッチファイル一覧表示ボタン220をマウス等でクリック操作すると、そのときに登録されているバッチファイルの一覧がドロップダウンリストで表示される。オペレータは、解析対象とする一つのバッチファイルをドロップダウンリスト中で選択する操作を行う(ステップ101)。この操作により、選択されたバッチファイルのファイル名がバッチファイル名表示欄210に表示される。
 また、上記操作を受けてパラメータ算出情報入力支援部23は、選択されたバッチファイルをデータ記憶部21から読み出し、そのファイルに格納されている情報を用いて、図3中に示されているようなデータファイル一覧テーブル230を作成して試料選択ウインドウ200内に表示する(ステップ102)。このデータファイル一覧テーブル230は、この一つのバッチファイルに対応する複数のデータファイル名(図3中の「Data File name」)、試料名(図3中の「Sample name」)、データ取得日時(図3中の「Acquired Date」)、などの情報を含む。各データファイルに対応する行の先頭にはチェックボックス250が配置されており、オペレータは、解析したいデータファイルの前のチェックボックス250をクリック操作しチェックマークを入れることで、解析したいデータファイル、つまり試料を選択する(ステップ103)。なお、チェックボックス250の欄の最上位の行のチェックボックスにチェックマークを入れることで、全てのチェックボックスに一度にチェックマークを付すことができる。
 オペレータは、解析したいデータファイルを選択したあと「進む」ボタン240をクリック操作する。この操作を受けてパラメータ算出情報入力支援部23は、チェックマークが付されていないデータファイルを除外したデータファイル一覧テーブルを作成する。そして、表示部31の画面上のウインドウを、図4に示す、データファイル一覧テーブル310を含むメソッド選択ウインドウ300に切り替える。このメソッド選択ウインドウ300上には、データファイル一覧テーブル310と波形処理メソッド指示欄320が配置されている。波形処理パラメータを新たに設定する際には、オペレータはメソッド作成(図4中の「Create Method」)を選択し、「進む」ボタン330をクリック操作する。
 この操作を受けてパラメータ算出情報入力支援部23は、表示部31の画面上のウインドウを、図5に示すパラメータ更新ウインドウ400に切り替える(ステップ104)。パラメータ更新ウインドウ400上には、一つのバッチファイルにおいて選択されているデータファイルでの解析対象である化合物の一覧を示す化合物テーブル410が配置されている。化合物テーブル410には、化合物名(図5中の「Name」)と、その化合物を検出するためのMRMトランジション(図5中の「m/z」)、及び保持時間(図5中の「RT」)などの情報が含まれる。化合物テーブル410上の各化合物に対応する行の先頭にはチェックボックス411が配置されており、オペレータは、波形処理パラメータを設定したい(又は更新したい)化合物の前のチェックボックス411をクリック操作してチェックマークを入れることで化合物を選択する。
 図5中に符号412で示す情報は、化合物テーブル410を右スクロールしたときに表示される情報である。つまり、化合物テーブル410を右スクロールすると、符号412で示される情報が化合物テーブル410に現れることを意味する。ここで描かれている、各化合物に対応するデータファイル名(図5中の「Data File name」)413は、その化合物についての波形処理パラメータを算出する際に使用される試料に対応するデータファイル名である。オペレータが各化合物に対応するデータファイル名413の欄をクリック操作すると、そのときの一つのバッチの中で、その化合物が検出対象として設定されているデータファイル、つまりは試料の一覧がドロップダウンリストで表示される。オペレータはそのドロップダウンリストにおいて任意のデータファイル名を選択することにより、化合物毎に波形処理パラメータを算出するために使用する試料(データファイル)を指定する(ステップ105)。
 図5の例では、四つの化合物に対していずれも「Conc-3_001」というデータファイル名のデータファイルが指定されているが、全て異なるデータファイル名を指定することもできる。即ち、波形処理パラメータを算出するためのクロマトグラムデータとして、化合物毎に異なる試料に対して得られたクロマトグラムを指定することができるし、同一の試料に対して得られたクロマトグラムを指定することもできる。
 なお、オペレータは、ドロップダウンリストに表示されているデータファイルのうちの任意の一つを選択することができるが、目的の化合物が確実に含まれ、且つクロマトグラム上で他の化合物や夾雑物の重なりがないものであることが望ましい。そのため、一般的には、目的の化合物のみが含まれる標準試料、又は、クロマトグラム上でその目的化合物とピークが重ならないことが明らかである別の一又は複数の化合物と目的化合物とが共に含まれる標準試料に対応するデータファイルを選択するとよい。
 オペレータが、化合物テーブル410の化合物名の欄をクリック操作することで一つの化合物を選択すると、クロマトグラム作成部22は、その選択された化合物に対応付けられているデータファイルに格納されているデータに基づきクロマトグラム(ここでは抽出イオンクロマトグラム)を作成し、クロマトグラム表示領域430に表示する(ステップ106)。図5の例では、化合物名が「MPA」である化合物が選択されており、これに対応する、データファイル名が「Conc-3_001」であるデータファイル中のデータから作成された抽出イオンクロマトグラムがクロマトグラム表示領域430に表示されている。
 ステップ105において、目的化合物に対して適切なデータファイル(試料)が指定されていれば、ステップ106において表示されるクロマトグラム上には、目的化合物に対応するピークが現れる筈である。もし、表示されるクロマトグラム上に目的化合物の保持時間に対応するピークが現れていなかったり、別のピークが重なっていたり、或いはピーク形状が崩れていたりした場合には、データファイルの選択が適切でない可能性がある。その場合には、ステップ105に戻り、データファイルの選択をやり直せばよい。換言すれば、本実施形態の装置では、簡単な操作によって、クロマトグラム上でピークの形状等を確認しながら、化合物毎にピーク波形処理の基準とするのに適切なピークが観測できるデータファイル(試料)を選択することができる。
 クロマトグラム表示領域430に表示されたクロマトグラムが適切なものである場合、オペレータは表示されたクロマトグラムにおいてピークの形状等を確認し、目的化合物に対応するピークの時間領域、及びノイズの時間領域、をそれぞれ指定する(ステップ107)。具体的には、オペレータが領域指定操作欄420中のピーク領域調整ボタン421をクリック操作したうえで、描画されているクロマトグラム上でドラッグ操作を行うと、領域指定受付処理部231はドラッグ操作された範囲をピーク領域として認識する。このピーク領域はクロマトグラム上では帯状範囲431で示されるから、オペレータは指定した範囲が適切かどうかを視覚的に容易に確認することができる。なお、一般的には、目的化合物に対応するピークについての領域の指定は、クロマトグラム上で観測されるピークの始点から終点までが十分に入るように指定すればよい(図6参照)。
 またオペレータがノイズ領域調整ボタン422をクリック操作したうえで、描画されているクロマトグラム上でドラッグ操作を行うと、領域指定受付処理部231はドラッグ操作された範囲をノイズ領域として認識する。但し、上記ピーク領域の指定は必須であるものの、ノイズ領域の指定は省略することができる。ノイズ領域がオペレータにより指定されなかった場合には、領域指定受付処理部231は所定のアルゴリズムに従って自動的にノイズ領域を決定する。例えば、指定されたピーク領域の一方の端部から所定時間だけ離れた位置で所定の時間幅の領域をノイズ領域の候補とし、その領域全体に含まれるデータが所定の強度閾値以下であれば、それをノイズ領域として正式に決定すればよい。
 ピーク領域及びノイズ領域が決まると、波形処理パラメータ算出部24は、化合物毎に、指定されたピーク領域に含まれるデータと指定された(又は自動的に算定された)ノイズ領域に含まれるデータとから、ピーク波形処理のための基本的なパラメータを算出する。典型的には、この基本的なパラメータとは、ピーク検出の際にピークであるとみなすか否かを判定するためのピークフィルタ処理のためのパラメータ、つまりは閾値である(ステップ108)。一例として、この基本的なパラメータは、最小ピーク半値幅、及び、メインピークの強度値に対する強度の相対値の比率(%)、を含む。ここでいう「最小ピーク半値幅」とは所定のアルゴリズムに従って検出されたピークの半値全幅を判定する閾値であり、半値全幅がその閾値に達しない場合には化合物由来のピークとはみなさない。一方、「メインピークの強度値に対する強度の相対値の比率」は、所定のアルゴリズムに従って検出されたピークの強度を判定する閾値であり、指定された時間範囲において検出された最大強度のピークをメインピークとしたときに、その強度に対して強度比率がその閾値に達しない場合にはピークとみなさない。
 上記二つのパラメータは例えば次のようにして、ピーク領域及びノイズ領域のデータから決められる。
 (1)ピーク領域に単峰性のピークの全体が含まれていると仮定すれば、そのピーク領域中のデータの最大値はピークトップの信号強度である。また、そのピーク領域中のデータの最小値はベースラインの信号強度であると推定することができる。そこで、それら値から信号強度がピークトップの1/2になる位置(時間)が分かり、該位置におけるピーク幅から半値全幅が求まる。そして、その半値全幅に所定値(例えば0.6)を乗じることで、最小ピーク半値幅を算出する。
 (2)ノイズ領域中のデータの最大値と最小値の差がノイズピークであると仮定し、その差とピーク領域中の単峰性のピークの高さとの比率を求める。この比率に所定の値を乗じることで、メインピークの強度値に対する強度の相対値の比率を算出する。
 但し、これらは一例であり、上記二つのパラメータの決め方はこれに限らない。いずれにしても、計算の元となるピークの波形形状が崩れていたり、ピークの重なりがあったり、或いは、ドリフトが極端に大きかったりするような場合には、適切なパラメータは求まらない。これに対し本実施形態の装置では、オペレータが実際に取得されたクロマトグラムを確認しながら、適切なピークが観測されるデータファイル(試料)を化合物毎に選択し、且つ、そのクロマトグラム上でピーク領域を指定する。そのため、ピーク波形処理のパラメータを決めるのに適切なデータが得られ、そのデータに基づき、信頼性の高いパラメータを決めることができる。
 オペレータは、化合物テーブル410において選択した他の化合物についても同様に、表示されたクロマトグラム上でピーク領域を指定し、さらに必要に応じてノイズ領域を指定する。この指定に応じて、その化合物に対する波形処理の基本パラメータが決まる。(ステップ105~108)。オペレータは、解析対象の化合物の全てについて少なくともピーク領域を指定したあと(ステップ109でYes)、「進む」ボタン440をクリック操作する。この操作を受けて波形処理パラメータ算出部24はその時点で算出されている化合物毎の基本パラメータ値を確定し、波形処理パラメータ記憶部25に保存する(ステップ110)。
 ピーク波形処理部26は、波形処理パラメータ記憶部25に保存された化合物毎の基本パラメータ値を、ステップ101で選択されているバッチに含まれ、ステップ103で選択されている全ての試料(データファイル)に適用してピーク波形処理を実行する(ステップ111)。このときのピーク検出のアルゴリズムは従来一般に利用されているアルゴリズムを利用することができるが、基本パラメータ値に基づいてフィルタ処理がなされる、つまりは実質的なピークとみなすのか否かの判定がなされるように、各アルゴリズムにおいて使用される細かいパラメータが決められる。
 基本パラメータ値は化合物毎に異なるため、同一の試料について得られたクロマトグラムであっても、異なる化合物由来のピークについては異なる基準でピークが検出される。そのため、例えば全く同じ高さ、同じ幅のピークであったとしても、或る化合物に対しては該化合物由来のピークとして検出され、他の化合物に対しては該化合物由来のピークとして検出されない、ということも十分にあり得る。また、試料が異なっていても、同じ化合物については同じ基準でピークが検出される。これにより、検出感度が相違する化合物由来のピークを的確に検出することができる。
 こうして、選択されている全ての試料について、指定された化合物に対応するピークの検出処理が実施され、そのあと、検出されたピークに基づく成分の同定処理や定量処理が実行される(ステップ112)。
 上述したようにピークが的確に検出されるために、ピークトップの位置の正確性が高く成分同定の正確性も高い。また、ピークの面積の正確性が高いことで、定量精度も高い。また、ピーク波形処理のパラメータの面倒な設定作業が不要になるので、解析作業の際のオペレータの負担が軽減され、オペレータの経験や技量の差異による同定結果及び定量結果の差異も少なくすることができる。
 上記実施形態において、ピーク領域及びノイズ領域に対応するデータから算出される基本パラメータ値は上記記載のものに限らない。上記で例示した二つの基本パラメータは、ピークの幅、及び、ピークの強度(高さ)に基づいてピークをフィルタリングするための閾値であるが、ピークの面積値、ピークのSN比、或いは、標準的な保持時間からのずれ量、などに基づいて、目的化合物に由来するピークとそうでないピークとを識別するための閾値としても構わない。
 また、波形処理パラメータを自動的に決定する際にオペレータが様々な選択や指定を行うための表示画面及び入力画面の形式や態様は、図3~図5に示したものに限らない。
 例えば、図5に示したように、クロマトグラムを表示する際に、一つの化合物に対し複数の異なる試料に対してそれぞれ得られたクロマトグラムを並べて又はタブ切り替え可能に表示し、オペレータがクロマトグラムの波形を見比べながら最も適切なものを選択できるようにしてもよい。
 また、表示部31としてタッチパネルを用い、クロマトグラム上での領域の指定などのオペレータによる入力作業をパネルへのタッチ操作で行えるようにしてもよい。
 また上記実施形態はLC-MSであるが、本発明は、検出器がフォトダイオードアレイ検出器や紫外可視分光光度検出器などである液体クロマトグラフ装置(LC)にも適用することができる。また本発明は、気体状態の試料中の成分を分離するガスクロマトグラフ装置(GC)やガスクロマトグラフ質量分析装置(GC-MS)に適用することもできる。そうした場合でも、上記実施形態における測定部1の構成は変更になるものの、データ処理部20の構成は基本的に変える必要はない。
 また、上記実施形態はあくまでも本発明の一例にすぎず、本発明の趣旨の範囲で適宜変形、修正、追加などを行っても、本願特許請求の範囲に包含されることは明らかである。
 <本発明の種々の態様>
 以上、図面を参照しつつ本発明における種々の実施形態や変形例を説明したが、最後に、本発明の種々の態様について説明する。
 本発明の第1の態様のクロマトグラフ装置は、
 画像を表示可能な表示部(31)と、
 ユーザが操作する入力部(30)と、
 検出対象である目的成分を含む試料を分析することで得られたクロマトグラムデータを記憶するデータ記憶部(21)と、
 前記目的成分に対応するピークが観測されるクロマトグラムを前記データ記憶部(21)に記憶されているデータを用いて作成し、前記表示部(31)の画面上に表示するクロマトグラム描画処理部(22,27)と、
 前記表示部(31)に表示されているクロマトグラム上での、前記入力部(30)を用いたユーザによる所定の操作に応じて、該クロマトグラム上におけるピーク領域の指定を受け付ける領域指定受付処理部(231)と、
 前記領域指定受付処理部(231)で受け付けられたピーク領域中のクロマトグラム波形と、該ピーク領域以外の領域中の少なくとも一部のノイズ領域中のクロマトグラム波形と、を用いて、当該目的成分に対応するピークを検出する際にピークと非ピークとを識別するためのパラメータの値を算出する波形処理パラメータ算出部(24)と、
 複数の目的成分毎に、前記波形処理パラメータ算出部(24)でそれぞれ算出されたパラメータ値を用い、任意の試料について得られたクロマトグラムにおいて前記目的成分に対応するピークについての波形処理を実行するピーク波形処理部(26)と、
 を備える。
 本発明の第1の態様のクロマトグラフ装置によれば、ユーザ(オペレータ)がピーク波形処理のアルゴリズムを把握したうえでパラメータを決定して入力するような、従来行われていた面倒な作業が不要になる。そのため、成分の同定や定量の作業の効率化を図ることができる。また、オペレータの経験や技量の差異による解析結果の差異を解消することができ、解析の正確性を確保し易くなる。さらにまた、比較的経験の浅い者でも解析作業を担うことができるようになり、分析コストの低減にも繋がる。
 また本発明の第2の態様のクロマトグラフ装置は、本発明の第1の態様のクロマトグラフ装置において、
 前記領域指定受付処理部は、前記入力部を用いたユーザによる所定の操作に応じて、クロマトグラム上におけるピーク領域とノイズ領域との指定を受け付け、
 前記波形処理パラメータ算出部は、前記領域指定受付部で受け付けられたピーク領域中及びノイズ領域中のそれぞれのクロマトグラム波形を用いて、当該目的成分に対応するパラメータの値を算出するものである。
 本発明の第2の態様のクロマトグラフ装置によれば、クロマトグラム上のピーク領域のみならず、ノイズ領域もオペレータに操作により指定される。これにより、例えば単純なノイズピークではない、例えば夾雑物由来のピークがクロマトグラムに現れている場合に、そうしたピークを除いてノイズ領域を適切に指定することができる。その結果、ノイズ領域中のデータの信頼度が高まり、自動的に算出されるピーク波形処理パラメータの精度を一層高めることができる。
 また本発明の第3の態様のクロマトグラフ装置は、本発明の第1又は第2の態様のクロマトグラフ装置において、
 前記データ記憶部は、複数の試料に対応するクロマトグラムデータを記憶するものであり、
 複数の目的成分それぞれについて、前記領域指定受付処理部での所定の操作の対象であるクロマトグラム又は該クロマトグラムが得られた試料を、ユーザに選択させる入力支援部、をさらに備える。
 本発明の第3の態様のクロマトグラフ装置によれば、成分の数に多い場合でも、オペレータは入力支援部により、各成分に対応するピーク波形処理パラメータを決めるためのクロマトグラム又は試料を簡便に選択することができる。
 また本発明の第4の態様のクロマトグラフ装置は、本発明の第2又は第3の態様のクロマトグラフ装置において、
 前記入力支援部は、
 目的成分毎に、分析された試料、又は、試料に対する分析により得られたデータが格納されたデータファイル、を選択可能であるテーブルと、該テーブル上で選択された試料又はデータファイルに対応し、前記クロマトグラム描画処理部で作成されたクロマトグラムと、を一つの画面内に表示するものである。
 本発明の第4の態様のクロマトグラフ装置によれば、テーブル上でオペレータが或る目的成分について試料又はデータファイルを選択したとき、それに対応するクロマトグラムを直ぐに確認することができる。それにより、オペレータは、目的成分のピーク波形処理パラメータを求めるのに適切なクロマトグラムであるかどうかを、的確に且つ迅速に判断することができ、作業効率も高い。
 また本発明の第5の態様のクロマトグラフ装置は、本発明の第1乃至第4の態様のいずれか一つのクロマトグラフ装置において、
 前記所定の操作は、前記表示部に表示されているクロマトグラム上での、前記入力部によるドラッグ操作又はクリック操作での範囲指定であるものとしている。
 本発明の第5の態様のクロマトグラフ装置によれば、画面上での簡単な操作によって、任意の範囲のピーク領域を指定することができる。それにより、作業効率が高く、作業ミスも低減することができる。
1…測定部
10…液体クロマトグラフ(LC部)
11…移動相容器
12…送液ポンプ
13…インジェクタ
14…カラム
15…質量分析部(MS部)
20…データ処理部
21…データ記憶部
22…クロマトグラム作成部
23…パラメータ算出情報入力支援部
231…領域指定受付処理部
24…波形処理パラメータ算出部
25…波形処理パラメータ記憶部
26…ピーク波形処理部
27…表示処理部
30…入力部
31…表示部
200…試料選択ウインドウ
210…バッチファイル名表示欄
220…バッチファイル一覧表示ボタン
230…データファイル一覧テーブル
250、411…チェックボックス
240、330、440…「進む」ボタン
300…メソッド選択ウインドウ
310…データファイル一覧テーブル
320…波形処理メソッド指示欄
400…パラメータ更新ウインドウ
410…化合物テーブル
413…データファイル名
420…領域指定操作欄
421…ピーク領域調整ボタン
422…ノイズ領域調整ボタン
430…クロマトグラム表示領域
431…帯状範囲

Claims (7)

  1.  画像を表示可能な表示部と、
     ユーザが操作する入力部と、
     検出対象である目的成分を含む試料を分析することで得られたクロマトグラムデータを記憶するデータ記憶部と、
     前記目的成分に対応するピークが観測されるクロマトグラムを前記データ記憶部に記憶されているデータを用いて作成し、前記表示部の画面上に表示するクロマトグラム描画処理部と、
     前記表示部に表示されているクロマトグラム上での、前記入力部を用いたユーザによる所定の操作に応じて、該クロマトグラム上におけるピーク領域の指定を受け付ける領域指定受付部と、
     前記領域指定受付部で受け付けられたピーク領域中のクロマトグラム波形と、該ピーク領域以外の領域中の少なくとも一部のノイズ領域中のクロマトグラム波形と、を用いて、当該目的成分に対応するピークを検出する際にピークと非ピークとを識別するためのパラメータの値を算出する波形処理パラメータ算出部と、
     複数の目的成分毎に、前記波形処理パラメータ算出部でそれぞれ算出されたパラメータ値を用い、任意の試料について得られたクロマトグラムにおいて前記目的成分に対応するピークについての波形処理を実行するピーク波形処理部と、
     を備えるクロマトグラフ装置。
  2.  前記領域指定受付処理部は、前記入力部を用いたユーザによる所定の操作に応じて、クロマトグラム上におけるピーク領域とノイズ領域との指定を受け付け、
     前記波形処理パラメータ算出部は、前記領域指定受付部で受け付けられたピーク領域中及びノイズ領域中のそれぞれのクロマトグラム波形を用いて、当該目的成分に対応するパラメータの値を算出する、請求項1に記載のクロマトグラフ装置。
  3.  前記データ記憶部は、複数の試料に対応するクロマトグラムデータを記憶するものであり、
     複数の目的成分それぞれについて、前記領域指定受付部での所定の操作の対象であるクロマトグラム、又は、該クロマトグラムが得られた試料をユーザに選択させる入力支援部、をさらに備える、請求項1に記載のクロマトグラフ装置。
  4.  前記データ記憶部は、複数の試料に対応するクロマトグラムデータを記憶するものであり、
     複数の目的成分それぞれについて、前記領域指定受付部での所定の操作の対象であるクロマトグラム、又は、該クロマトグラムが得られた試料をユーザに選択させる入力支援部、をさらに備える、請求項2に記載のクロマトグラフ装置。
  5.  前記入力支援部は、
     目的成分毎に、分析された試料、又は、試料に対する分析により得られたデータが格納されたデータファイル、を選択可能であるテーブルと、該テーブル上で選択された試料又はデータファイルに対応し、前記クロマトグラム描画処理部で作成されたクロマトグラムと、を一つの画面内に表示するものである、請求項3に記載のクロマトグラフ装置。
  6.  前記入力支援部は、
     目的成分毎に、分析された試料、又は、試料に対する分析により得られたデータが格納されたデータファイル、を選択可能であるテーブルと、該テーブル上で選択された試料又はデータファイルに対応し、前記クロマトグラム描画処理部で作成されたクロマトグラムと、を一つの画面内に表示するものである、請求項4に記載のクロマトグラフ装置。
  7.  前記所定の操作は、前記表示部に表示されているクロマトグラム上での、前記入力部によるドラッグ操作又はクリック操作での範囲指定である、請求項1に記載のクロマトグラフ装置。
PCT/JP2018/041795 2018-11-12 2018-11-12 クロマトグラフ装置 WO2020100182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020556470A JP7088306B2 (ja) 2018-11-12 2018-11-12 クロマトグラフ装置
PCT/JP2018/041795 WO2020100182A1 (ja) 2018-11-12 2018-11-12 クロマトグラフ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041795 WO2020100182A1 (ja) 2018-11-12 2018-11-12 クロマトグラフ装置

Publications (1)

Publication Number Publication Date
WO2020100182A1 true WO2020100182A1 (ja) 2020-05-22

Family

ID=70730672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041795 WO2020100182A1 (ja) 2018-11-12 2018-11-12 クロマトグラフ装置

Country Status (2)

Country Link
JP (1) JP7088306B2 (ja)
WO (1) WO2020100182A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646715A (zh) * 2020-12-21 2022-06-21 株式会社岛津制作所 波形处理辅助装置以及波形处理辅助方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058930A (ja) * 2009-09-09 2011-03-24 Shimadzu Corp クロマトグラフ用データ処理装置
JP2013224858A (ja) * 2012-04-20 2013-10-31 Shimadzu Corp クロマトグラフタンデム四重極型質量分析装置
WO2016166861A1 (ja) * 2015-04-16 2016-10-20 株式会社島津製作所 クロマトグラムデータ処理装置及びプログラム
US20170219542A1 (en) * 2016-02-03 2017-08-03 Shimadzu Corporation Peak extraction method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058930A (ja) * 2009-09-09 2011-03-24 Shimadzu Corp クロマトグラフ用データ処理装置
JP2013224858A (ja) * 2012-04-20 2013-10-31 Shimadzu Corp クロマトグラフタンデム四重極型質量分析装置
WO2016166861A1 (ja) * 2015-04-16 2016-10-20 株式会社島津製作所 クロマトグラムデータ処理装置及びプログラム
US20170219542A1 (en) * 2016-02-03 2017-08-03 Shimadzu Corporation Peak extraction method and program

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "2.01 Liquid Chromatography 8. Terminology,", 17TH REVISED JAPANESE PHARMACOPOEIA, 7 March 2016 (2016-03-07), pages 37 - 40, XP009521207, Retrieved from the Internet <URL:https://www.mhlw.go.jp/file/06-Seisakujouhou-11120000-Iyakushokuhinkyoku/JP17.pdf> *
ANONYMOUS: "Qual Browser", 1 March 2013 (2013-03-01), pages 1 - 69, XP055708245, Retrieved from the Internet <URL:http://www-agr.meijo-u.ac.jp/labs/nn017/Orbitrap%20manual/Basic/81012221_QualBrowser_Basic.pdf> *
GREG WELLS ET AL: "Signal , noise and detection limit in mass spectrometry", 3 May 2011 (2011-05-03), pages 1 - 8, XP055708248, Retrieved from the Internet <URL:https://www.chem-agilent.com/pdf/low_5990-7651JAJP.pdf> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646715A (zh) * 2020-12-21 2022-06-21 株式会社岛津制作所 波形处理辅助装置以及波形处理辅助方法
CN114646715B (zh) * 2020-12-21 2023-08-04 株式会社岛津制作所 波形处理辅助装置以及波形处理辅助方法

Also Published As

Publication number Publication date
JP7088306B2 (ja) 2022-06-21
JPWO2020100182A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
JP6036304B2 (ja) クロマトグラフ質量分析用データ処理装置
JP5811023B2 (ja) クロマトグラフ質量分析用データ処理装置
JP5821767B2 (ja) クロマトグラフタンデム四重極型質量分析装置
EP1995593B1 (en) Chromatograph mass spectrometer
JP6028870B2 (ja) クロマトグラフ質量分析装置
JP5347932B2 (ja) クロマトグラフ質量分析装置
JP6048590B2 (ja) 包括的2次元クロマトグラフ用データ処理装置
JPH08128991A (ja) 質量スペクトル測定システム
JP2011237311A (ja) クロマトグラフ質量分析用データ処理装置
JP7173293B2 (ja) クロマトグラフ質量分析装置
US10794880B2 (en) Chromatograph mass spectrometer
JP6221800B2 (ja) クロマトグラフ質量分析装置用データ処理装置
CN108027345B (zh) 分析数据解析装置以及分析数据解析用程序
JP2017161442A (ja) クロマトグラフ質量分析データ処理装置
WO2020100182A1 (ja) クロマトグラフ装置
JP5561016B2 (ja) クロマトグラフ質量分析装置
JP2005221276A (ja) クロマトグラフ質量分析用データ処理装置
CN107615059B (zh) 色谱数据处理装置以及程序
US20190025253A1 (en) Mass spectrometer
JP6226823B2 (ja) クロマトグラフ質量分析装置及びその制御方法
JP6376262B2 (ja) クロマトグラフ質量分析装置用データ処理装置
US20230273162A1 (en) Preparative Liquid Chromatograph Apparatus and Method for Assisting Determination of Preparative Separation Conditions
JP7164037B2 (ja) クロマトグラフ質量分析装置
WO2023062854A1 (ja) クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理方法
JP2014032133A (ja) マニュアルベースライン処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940131

Country of ref document: EP

Kind code of ref document: A1