WO2020098493A1 - 一种全氟表面活性剂及其制备方法 - Google Patents

一种全氟表面活性剂及其制备方法 Download PDF

Info

Publication number
WO2020098493A1
WO2020098493A1 PCT/CN2019/114220 CN2019114220W WO2020098493A1 WO 2020098493 A1 WO2020098493 A1 WO 2020098493A1 CN 2019114220 W CN2019114220 W CN 2019114220W WO 2020098493 A1 WO2020098493 A1 WO 2020098493A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
perfluorosurfactant
reaction system
preparation
formula
Prior art date
Application number
PCT/CN2019/114220
Other languages
English (en)
French (fr)
Inventor
陈艾
Original Assignee
四川科源精诚新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川科源精诚新材料科技有限公司 filed Critical 四川科源精诚新材料科技有限公司
Priority to EP19884518.2A priority Critical patent/EP3872115B1/en
Priority to US17/293,699 priority patent/US12018200B2/en
Publication of WO2020098493A1 publication Critical patent/WO2020098493A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/007Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers

Definitions

  • the invention relates to the field of fluorine-containing surfactants, in particular to a perfluorosurfactant and a preparation method thereof.
  • Fluorine surfactant is a surfactant with a fluorocarbon chain as a non-polar group, that is, a fluorine atom partially or completely replaces the hydrogen atom on the hydrocarbon chain. Fluorocarbon surfactants have high surface activity, high thermodynamics and chemical stability.
  • fluorosurfactants are widely used in the production process of fluoropolymer emulsion polymerization.
  • the existing fluorosurfactants have 8-carbon linear perfluorooctanoic acid.
  • Perfluorooctanoic acid is biologically toxic and can cause cancer.
  • perfluorooctanoic acid and its salts are not easily decomposed by nature and are easily enriched in natural environments. Therefore, it is necessary to develop a fluorine-containing surfactant without a perfluorooctanoic acid 8-carbon linear structure.
  • Chinese patent CN105170018B discloses a fluorosurfactant that does not contain perfluorooctanoic acid as an emulsifier for the fluoropolymer emulsion polymerization process. Since the preparation process of the fluorosurfactant uses an olefin or alkyne containing at least one non-fluorine atom as the third monomer, there are chemical bonds of non-fluorine atoms in the prepared fluorosurfactant, such as hydrocarbons Bond or carbon halide bond other than fluorine. The chemical bond is weakened under the influence of strong electron-withdrawing fluoride ion.
  • the fluorosurfactant When the fluorosurfactant is used in the emulsion polymerization system of high-temperature and high-pressure fluoropolymer, the chemical bond is very unstable, and it is easy to break the bond and drop it. Free radicals are formed, resulting in a decrease in the average molecular weight of the fluoropolymer produced.
  • the purpose of the present invention is to provide a perfluorosurfactant and its preparation method to solve the non-fluorine chemical bond in the fluorosurfactant in the prior art is easily broken under high temperature and high pressure, resulting in the fluoropolymer emulsion process
  • the obtained fluoropolymer has low average molecular weight and other problems.
  • Chinese patent CN105170018B discloses a fluorosurfactant free of perfluorooctanoic acid.
  • the fluorosurfactant is mainly used in the fluoropolymer emulsion polymerization process.
  • the inventor found that in the technical route disclosed in this patent, an olefin or an alkyne containing at least a non-fluorine atom is used as the third monomer, so that the prepared fluorine-containing surfactant has a non-fluorine atom chemical bond.
  • the non-fluorine atom bonds in the fluorosurfactant are much smaller than the fluorocarbon bond dissociation energy, and it is easy to break the bond during the fluoropolymerization process. Free radicals are formed, which in turn cause at least the following problems:
  • Fluoropolymer emulsions are easily demulsified, demulsification occurs during the production process, and even more, explosive polymerization occurs and causes production accidents.
  • the present invention provides a perfluorosurfactant represented by formula I.
  • the values of the polymerization degrees n and z of the two repeating units are both integers, and the value range of the sum of n and z is 1 to 100.
  • the value of n may be the same as z or different.
  • the two repeating units in formula I can be randomly distributed along the molecular chain.
  • the stability of perfluorosurfactants in the fluorine polymerization process under high temperature and high pressure mainly depends on the nature of the halogen atoms in the carbon-halogen bond, and it is also affected to a certain extent by the overall structure of the surfactant.
  • the bond energy of the carbon-fluorine bond is the highest among the carbon-halogen bonds, and the bond energy of the carbon-iodine bond is the lowest. Therefore, the thermal stability of the carbon-fluoride bond is usually very high and is not easy to decompose.
  • the molecular structure of Formula I does not contain non-fluorocarbon-halogen bonds, so when it is used as an emulsifier for the fluoropolymer reaction, the fluorocarbon bonds are not easily broken, making the fluoropolymer generated by the fluoropolymer reaction
  • the average molecular weight is significantly increased; at the same time, there is no need to continuously add initiators during the production process, which saves the manufacturing cost of the fluoropolymer; not only that, the fluoropolymer emulsion is not easy to break the emulsion, thus improving the safety of fluoropolymer production.
  • the structure of formula I exhibits a high degree of symmetry.
  • the distribution of electron clouds in the molecular structure is evenly arranged, which is conducive to attract and aggregate each other in the water body to form stable and spherical micro micelles, which are evenly distributed in the water body and provide fluorine.
  • the stability of the perfluorosurfactant shown in Formula I can be further improved, so that the average molecular weight of the fluoropolymer produced by the fluoropolymer reaction is significantly increased.
  • the perfluorosurfactant shown in Formula I has the following product indicators:
  • Average molecular weight 300-20000
  • the invention also provides a preparation method of the above perfluorosurfactant, the preparation method includes the following steps:
  • the prior art mainly uses a batch kettle reactor for the reaction.
  • the residence time of the reaction product in the reactor usually takes several hours.
  • the residence time of hexafluoropropylene and oxygen in the reactor is 0.5 to 5 hours, the backmixing of the reaction products in the reaction system is serious, resulting in the optical coupling of the active acid fluoride end groups under the irradiation of ultraviolet light
  • the active acyl fluoride end groups are combined with each other, so that the acyl fluoride end groups of the reaction product disappear.
  • the probability of the occurrence of this side reaction is very large, which leads to a decrease in the reaction yield.
  • the reaction system of the present invention is a continuous microchannel reaction system.
  • the continuous microchannel reaction system includes an ozonation reaction module and a photo-oxidation reaction module connected in sequence.
  • the ozonation reaction module is used to perform the ozonation reaction in step (A)
  • the photo-oxidation reaction module is used to perform the photo-oxidation reaction in step (B).
  • Both the ozonation reaction module and the photo-oxidation reaction module are composed of at least one micro-channel reactor.
  • a plunger pump is used to pump hexafluoropropylene and ozone into the microchannel reactor of the ozonation reaction module.
  • the temperature is 10-50 ° C. and the pressure is 0.6-0.8 MPa.
  • the flow ratio of hexafluoropropylene and ozone is 3-6: 1, and the flow rate of hexafluoropropylene is 30-35 ml / min.
  • Hexafluoropropene and ozone are subjected to the ozonation reaction in step (A) in the ozonation reaction module to obtain an active intermediate
  • the reaction of hexafluoropropylene with ozone does not require the addition of an initiator.
  • reaction formula of step (A) is:
  • step (A) Active intermediate produced in step (A) And the unreacted hexafluoropropylene enters the micro-channel reactor of the photo-oxidation reaction module, and at the same time, a certain flow rate of oxygen is passed into the micro-channel reactor. Active intermediate Under the ultraviolet light of the photooxidation reaction module, the OO bond is broken to form free radicals at both ends.
  • the reaction formula is:
  • the double bond of the free radical active monomer and hexafluoropropylene and oxygen undergo chain growth to obtain a perfluoropolyether with the acyl fluoride end groups in formula III.
  • the perfluoropolyetheracyl fluoride of formula III is pumped into the hydrolysis microchannel reaction system, and simultaneously deionized water is pumped into the hydrolysis microchannel reaction system.
  • the perfluoropolyetheracyl fluoride of formula III is hydrolyzed to form the perfluorosurfactant of formula I.
  • the preparation method disclosed in the present invention can greatly reduce the residence time of the reactants in the reaction system to several minutes or even several seconds by using the continuous flow microchannel reactor, thereby basically eliminating the backmixing phenomenon in the reaction system, thereby Substantially reduce the occurrence of side reactions and photocoupling reactions.
  • Perfluoropolyethers containing more than 90% acyl fluoride end groups can be obtained without the use of non-fluorinated halogenated olefins as the third monomer, without the need to introduce non-fluorinated carbon-halogen bonds , From the root to improve the stability of perfluorosurfactants in fluoropolymerization.
  • the prior art mainly uses hexafluoropropylene and oxygen as raw materials, and uses ultraviolet light to illuminate the entire reaction system to perform photooxidation.
  • oxygen will be randomly converted into ozone under the irradiation of ultraviolet light, so that in the reaction system, as the reaction time increases, the amount of ozone in the reaction system and the time of existence are both uncontrollable.
  • the preparation method disclosed in the present invention uses ozone as a raw material to perform an ozonation reaction in an ozonation reaction module, and then supplements oxygen in the photo-oxidation reaction module and performs a photo-oxidation reaction under ultraviolet light conditions.
  • the amount of ozone generated can be basically ignored compared with the amount of ozone in the raw materials, so use
  • the person can adjust the reaction time in the ozonation reaction module and the photo-oxidation reaction module, as well as the amount of ozone and oxygen added, to achieve the purpose of controlling the amount and duration of ozone in the entire reaction system, and then control the proportion of main and side reactions , Significantly improve the yield of perfluoropolyetheracyl fluoride and perfluorosurfactant.
  • the continuous microchannel reaction system of the present invention can also well control the degree of polymerization of the perfluorosurfactant and perfluoropolyetheracyl fluoride to be prepared, that is, the perfluorosurfactant and perfluoropolyetheracyl fluoride Molecular weight.
  • the degree of polymerization of the perfluorosurfactant and perfluoropolyetheracyl fluoride to be prepared that is, the perfluorosurfactant and perfluoropolyetheracyl fluoride Molecular weight.
  • both perfluorosurfactants and perfluoropolyethers with molecular weights of 500-800 can be obtained
  • Acyl fluoride can also be obtained from perfluoropolyetheracyl fluoride with a molecular weight of 1,000 to 20,000.
  • bifunctional modified third monomer As a bifunctional modified third monomer, it is involved in the modification of hydrocarbon polymers such as polyacrylic acid, polyurethane, polyester, etc. Some of the characteristics of fluoropolymers reduce the surface tension of hydrocarbon polymers, improve the weatherability, chemical resistance and hydrolysis resistance of hydrocarbon polymers.
  • the ozonation reaction module includes at least one first microchannel reactor, and the photooxidation reaction module includes at least one second microchannel reactor.
  • the first microchannel reactor is not provided with an ultraviolet light illumination system
  • the second microchannel reactor is provided with an ultraviolet light illumination system.
  • the number of the first microchannel reactors is 1-30, and the number of the second microchannel reactors is 3-50.
  • the second microchannel reactor includes a flow channel, and mounting plates are provided on both sides of the flow channel, and LED ultraviolet lamp groups are provided on the mounting plate.
  • the LED ultraviolet lamp group includes a plurality of LED ultraviolet lamps arranged at equal intervals, and the wavelength range of the LED ultraviolet lamp is 190-610 nm. In the photo-oxidation reaction stage, ultraviolet light will initiate a free radical reaction, and the light intensity of ultraviolet light has an important influence on the reaction.
  • the invention improves the existing microchannel reactor.
  • mounting plates are provided on both the left and right sides of the flow channel of the second microchannel reactor, and an LED ultraviolet lamp group is provided on the mounting board.
  • the LED ultraviolet lamp group includes a plurality of LED ultraviolet lamps arranged at equal intervals.
  • the intensity of the ultraviolet light received by the reaction system everywhere in the flow channel is basically the same, that is, the luminous flux is the same.
  • the user can not only reduce the occurrence of side reactions, but also adjust the polymerization degree of the two repeating units in the perfluorosurfactant, which is more conducive to the user's control of the perfluoropolyetheracyl fluoride product and perfluorosurfactant Molecular weight.
  • the left and right LED ultraviolet lamp sets are symmetrical about the vertical central axis of the flow channel.
  • the number of gas-liquid mixing chambers of the first microchannel reactor and the second microchannel reactor are not less than 50.
  • Both the first microchannel reactor and the second microchannel reactor are provided with a plurality of gas-liquid mixing chambers connected in sequence, to ensure that the gas and liquid reaction materials flow in the microchannel reactor to achieve a sufficient mixing effect and prevent The phenomenon of gas-liquid separation occurs in the flow channel, forming a fluid state where the gas and the liquid are separated, resulting in insufficient reaction and no reaction.
  • the number of gas-liquid mixing chambers in each first microchannel reactor or second microchannel reactor is not less than 50.
  • the micro-channel reaction system further includes a gas-liquid separation tank, and the inlet end of the gas-liquid separation tank is connected to the outlet end of the photo-oxidation reaction module. After the photooxidation reaction is completed, the reaction system enters a gas-liquid separation tank for gas-liquid separation to obtain a perfluoropolyetheracyl fluoride product.
  • reaction temperature of the steps (A) and (B) is -10 to 150 ° C
  • inlet pressure of the reaction system of the steps (A) and (B) is 0.1 to 2 MPa
  • outlet pressure is 0.2 to 2MPa.
  • the present invention has the following advantages and beneficial effects:
  • the perfluorosurfactant provided by the present invention does not contain non-fluorocarbon-halogen bonds, so when it is used as an emulsifier for fluoropolymer reaction, the fluorocarbon bonds are not easily broken, making the fluoropolymer produced by the fluoropolymer reaction
  • the average molecular weight of the polymer is significantly increased; at the same time, there is no need to continuously add initiators during the production process, which saves the manufacturing cost of the fluoropolymer; not only that, the fluoropolymer emulsion is not easy to break the emulsion, thus improving the safety of fluoropolymer production;
  • the perfluorosurfactant provided by the present invention exhibits a highly symmetric molecular structure with uniform distribution of electron clouds, which is conducive to attract and aggregate each other in the water body to form stable and spherical micro micelles, evenly distributed in the water body, providing The place where fluoropolymer polymerization occurs.
  • the reaction system of the present invention uses a continuous micro-channel reaction system, which can greatly reduce the residence time of the reactants in the reaction system to a few minutes or even seconds, basically eliminating the backmixing phenomenon in the reaction system, thereby greatly reducing the side reaction optical coupling reaction Can occur without the use of non-fluorine-containing halogenated olefins as the third monomer under the premise of obtaining a perfluoropolyether containing more than 90% of acyl fluoride end groups, thereby eliminating the need to introduce non-fluorocarbon-halogen bonds, which improves the Stability of fluorosurfactants in fluoropolymerization;
  • the disclosed preparation method of the present invention uses ozone as a raw material to perform an ozonation reaction in an ozonation reaction module, and then supplement oxygen in the photo-oxidation reaction module and perform a photo-oxidation reaction under ultraviolet light conditions, allowing use
  • ozone as a raw material to perform an ozonation reaction in an ozonation reaction module, and then supplement oxygen in the photo-oxidation reaction module and perform a photo-oxidation reaction under ultraviolet light conditions, allowing use
  • the reaction time in the ozonation reaction module and the photo-oxidation reaction module, as well as the amount of ozone and oxygen added the purpose of controlling the amount and duration of ozone in the entire reaction system is achieved, thereby controlling the proportion of main and side reactions, Significantly improve the yield of bisacyl fluoride terminal perfluoropolyether and perfluorosurfactant;
  • the present invention can control the perfluorosurfactant and perfluoropolyetheracyl fluoride by increasing the residence time of the reaction system in the ozonation reaction module and / or photooxidation reaction module without increasing the raw materials.
  • the present invention improves the second micro-channel reactor used in the photo-oxidation reaction module, so that the ultraviolet light intensity received by the reaction system in the flow channel is basically the same, and the user can not only reduce it by changing the light intensity
  • the degree of polymerization of the two repeating units in the perfluorosurfactant can also be adjusted, which is more conducive to the user's control of the molecular weight of the perfluorosurfactant.
  • FIG. 1 is an infrared spectrum diagram of a perfluorosurfactant in a specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of a continuous microchannel reaction system in a specific embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a second microchannel reactor in a specific embodiment of the present invention.
  • All raw materials of the present invention are not particularly limited in terms of purity.
  • the present invention preferably adopts analytical purity or surfactants which require conventional purity in the field of preparation.
  • the expression manner of the substituent is not particularly limited, and all expression manners well known to those skilled in the art are adopted. Those skilled in the art can understand the meaning correctly according to the expression manner based on common sense.
  • the continuous flow microchannel reaction system includes three first microchannel reactors 1 and four second microchannel reactors 2, wherein the third first microchannel reactor 1 and the first The two microchannel reactors 2 are connected, and the fourth second microchannel reactor 2 is connected to the gas-liquid separation tank 3.
  • hexafluoropropylene was pumped into the reaction system at a flow rate of 30 ml / min through a plunger pump, and ozone was pumped into the reaction system at a flow rate of 10 ml / min.
  • Hexafluoropropene and ozone were conducted in three first microchannel reactors 1 Obtained by ozonation
  • the reaction temperature of the first microchannel reactor 1 is controlled at 10 ° C.
  • oxygen, hexafluoropropylene, oxygen and active intermediates are pumped into the first second microchannel reactor 2 at a flow rate of 10 ml / min
  • the reaction is carried out under LED ultraviolet lamp illumination to obtain perfluoropolyetheracyl fluoride P1, the ultraviolet wavelength is 365 nm, and the reaction temperature of the second microchannel reactor 2 is controlled at 10 ° C.
  • the perfluoropolyetheracyl fluoride P1 and the raw material are separated in the gas-liquid separation tank 3.
  • the total residence time of hexafluoropropylene in the reaction system is 1.148min, and the outlet pressure at the end of the reaction system is 1MPa.
  • the yield of perfluoropolyetheracyl fluoride P1 was 20 ml / min, and the average molecular weight was 748.
  • the recovery amount of hexafluoropropylene was 2 ml / min, and the conversion rate of hexafluoropropylene was 93%.
  • perfluoropolyetheracyl fluoride P1 600 ml was pumped into the hydrolysis microchannel reaction system at a flow rate of 30 ml / min, and at the same time, deionized water was pumped into the reaction system at a flow rate of 10 ml / min.
  • the hydrolysis microchannel reaction system includes five first microchannel reactors 1 connected in sequence. After the perfluoropolyetheracyl fluoride P1 and deionized water are reacted in the hydrolysis microchannel reaction system, 560 ml of perfluorosurfactants with different degrees of polymerization are obtained through oil-water separation. After that, perfluorosurfactant was rectified to obtain perfluorosurfactant S1. The yield of perfluorosurfactant S1 was 512 ml, and the yield was 85%.
  • S1 is a mixture of the above two compounds, with an average molecular weight of 754;
  • the continuous flow microchannel reaction system includes two first microchannel reactors 1 and eight second microchannel reactors 2, wherein the second first microchannel reactor 1 and the first second microchannel reactor 2 Connected, the eighth second microchannel reactor 2 is connected to the gas-liquid separation tank 3.
  • reaction temperature of the first microchannel reactor 1 is controlled at 10 ° C.
  • oxygen, hexafluoropropylene, oxygen and active intermediates are pumped into the first second microchannel reactor 2 at a flow rate of 10 ml / min
  • the reaction is carried out under the illumination of an LED ultraviolet lamp to obtain perfluoropolyetheracyl fluoride P2, the ultraviolet wavelength is 365 nm, and the reaction temperature of the second microchannel reactor 2 is controlled at 10 ° C.
  • the perfluoropolyetheracyl fluoride P2 and the raw material are separated in the gas-liquid separation tank 3.
  • the total residence time of hexafluoropropylene in the reaction system is 1.64 min, and the outlet pressure at the end of the reaction system is 1 MPa.
  • the yield of perfluoropolyetheracyl fluoride P2 is 23 ml / min, and the average molecular weight of perfluoropolyetheracyl fluoride P2 is 17,000.
  • the recovery amount of hexafluoropropylene was 5 ml / min, and the conversion rate of hexafluoropropylene was 83%.
  • the perfluoropolyetheracyl fluoride P2 was hydrolyzed according to the method in Example 1 to prepare a dicarboxylic acid terminal perfluoropolyether S2.
  • the yield of dicarboxylic acid terminal perfluoropolyether S2 was 620 ml, and the yield was 82.2%.
  • n 45-50
  • z 45-50
  • n and z may be the same or different.
  • the infrared spectrum of the perfluorosurfactant S2 is the same as the infrared spectrum of the perfluorosurfactant S1.
  • perfluoropolyetheracyl fluoride P2 in addition to being able to hydrolyze the perfluoropolyetheracyl fluoride P2 to obtain the perfluorosurfactant S2, it can also be used as a bifunctional modified third monomer to participate in hydrocarbon polymers such as polyacrylic acid, polyurethane, polyester Modified to make it have some characteristics of perfluoropolymer, reduce the surface tension of hydrocarbon polymer, improve the weatherability, chemical resistance and hydrolysis resistance of hydrocarbon polymer.
  • hydrocarbon polymers such as polyacrylic acid, polyurethane, polyester Modified to make it have some characteristics of perfluoropolymer, reduce the surface tension of hydrocarbon polymer, improve the weatherability, chemical resistance and hydrolysis resistance of hydrocarbon polymer.
  • (s1) Feeding Add 55 kg of deionized water, 972 g of paraffin and 1000 g of 20% ammonium salt aqueous solution of perfluorosurfactant S1 to a 100L stainless steel high-pressure polymerizer with a baffle;
  • (s3) Initiate the reaction: pressurize the high-pressure polymerizer with tetrafluoroethylene, and raise the temperature to 73 ° C with stirring at a stirring speed of 200 rpm; pressurize the high-pressure polymerizer with tetrafluoroethylene again until the pressure in the polymerizer reaches When 1.8Mpa and the temperature is 73 °C, use the metering pump to add the initiator prepared in step s2 to the polymerization kettle;
  • the polytetrafluoroethylene emulsion prepared by this method was filtered with a 300-mesh metal filter, and the surface of the filter was observed to be free of solid particles or powder impurities. It was judged that no polytetrafluoroethylene solid particles were precipitated during the reaction and the emulsion was stable.
  • the obtained polytetrafluoroethylene solid was subjected to differential scanning calorimetry analysis, and the initial decomposition temperature of the polytetrafluoroethylene was 345.67 ° C.
  • Patent Example 3 The same polymerization scheme in Patent Example 3 was used to verify the 1-bromo-polypolyfluoroalkyl carboxyether ammonium fluorinated emulsifier containing non-fluorocarbon-halogen bond disclosed in CN103936906B.
  • the polytetrafluoroethylene emulsion prepared by this method was filtered with a 300-mesh metal filter, and the surface of the filter was observed to have solid particles or powder impurities. Therefore, it can be judged that a large amount of polytetrafluoroethylene particles are precipitated during the reaction.
  • the emulsion is unstable.
  • the obtained polytetrafluoroethylene solid was subjected to differential scanning calorimetry analysis, and the initial decomposition temperature of the polytetrafluoroethylene was 330.48 ° C.
  • the perfluorosurfactant S1 prepared in this application has good stability in the polymerization experiment of polytetrafluoroethylene, so that no solid polytetrafluoroethylene particles are precipitated during the polymerization reaction, and the emulsion is stable.
  • the initial decomposition temperature of the prepared polytetrafluoroethylene was 345.67 ° C, which was significantly higher than 330.48 ° C in the comparative example, indicating that the polymerization degree of polytetrafluoroethylene was higher.
  • Example 1 On the basis of Example 1 and Example 2, the structures of the first microchannel reactor 1 and the second microchannel reactor 2 are improved.
  • the second microchannel reactor 2 includes a flow channel 21, and mounting plates 23 are provided on both sides of the flow channel 21, and an LED ultraviolet lamp group is provided on the mounting board 23, and the LED ultraviolet lamp group includes A plurality of LED ultraviolet lamps 22 arranged at equal intervals, the wavelength range of the LED ultraviolet lamp is 190-610 nm.
  • the number of gas-liquid mixing chambers of the first microchannel reactor 1 or the second microchannel reactor 2 is not less than 50.
  • the reaction system is exposed to the same ultraviolet light intensity everywhere in the flow channel.
  • the user can not only reduce the occurrence of side reactions, but also adjust the perfluoropolyether
  • the degree of polymerization of the two repeating units in is more conducive to the user to control the molecular weight of the perfluoropolyetheracyl fluoride product.
  • the gas-liquid mixing chamber can ensure that the gas and liquid reaction materials are fully mixed during the flow in the micro-channel reactor, preventing the phenomenon of gas-liquid separation in the flow channel, forming a fluid state in which the gas and liquid are separated, Avoid inadequate or no reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种全氟表面活性剂及其制备方法,其中全氟表面活性剂在用作氟聚合物反应的乳化剂时,碳氟键不易断裂,使得氟聚合物反应所生成的氟聚合物的平均分子量明显提高。其制备方法在连续微通道反应系统中进行,可以大幅缩短反应物在反应系统中的停留时间至数分钟甚至数秒,基本消除反应体系中的反混现象,从而大幅减少副反应光耦合反应的发生。反应阶段包括臭氧化反应和光氧化反应,允许使用者通过调整臭氧化反应模组和光氧化反应模组中的反应时间,以及臭氧和氧气的添加量,来实现控制整个反应体系中臭氧量和存在时间的目的,进而控制主、副反应的比例,显著提高双酰氟端基全氟聚醚的收率。

Description

一种全氟表面活性剂及其制备方法 技术领域
本发明涉及含氟表面活性剂领域,具体涉及一种全氟表面活性剂及其制备方法。
背景技术
氟表面活性剂,简称FSA,是以氟碳链为非极性基团的表面活性剂,即以氟原子部分或全部取代碳氢链上的氢原子。氟碳表面活性剂具有高表面活性,高热力学和化学稳定性。
目前,含氟表面活性剂被广泛地应用于氟聚合物乳液聚合生产过程。但是,现有的含氟表面活性剂具有8碳直链结构的全氟辛酸,全氟辛酸有生物毒性且能够致癌,同时全氟辛酸及其盐不易被大自然分解,容易在自然环境中富集。因此,有必要研发一种不具有全氟辛酸8碳直链结构的含氟表面活性剂。
现有技术中,中国专利CN105170018B公开了一种不含全氟辛酸的含氟表面活性剂以作为氟聚合物乳液聚合工艺的乳化剂使用。由于该含氟表面活性剂的制备工艺中使用了至少含有一个非氟原子的烯烃或炔烃作为第三单体,所以制得的含氟表面活性剂中存在非氟原子的化学键,例如碳氢键或除氟以外的碳卤键。该化学键在强吸电子基氟离子的影响下,键能被弱化,当含氟表面活性剂应用于高温高压的氟聚合物的乳液聚合体系中时,该化学键很不稳定,容易断键掉落形成自由基,导致生产的氟聚合物的平均分子量降低。
发明内容
本发明的目的在于提供一种全氟表面活性剂及其制备方法,以解决现有技术中的含氟表面活性剂中的非氟原子化学键在高温高压下容易断裂,造成氟聚合物乳工艺所制得的氟聚合物平均分子量低等问题。
本发明通过下述技术方案实现:
一种全氟表面活性剂,具有式Ⅰ所示的结构:
Figure PCTCN2019114220-appb-000001
其中,式Ⅰ中的n、z均为整数,且n+z=1~100;式Ⅰ中的两个重复单元均为随机分布。
现有技术中,中国专利CN105170018B公开了一种不含全氟辛酸的含氟表面活性剂,该含氟表面活性剂主要用于氟聚合物乳液聚合工艺。发明人发现该专利所公开的技术路线中,使用到至少含有非氟原子的烯烃或炔烃作为第三单体,使得所制得的含氟表面活性剂中具有 非氟原子化学键。当用于高温高压的氟聚合物乳液聚合工艺时,含氟表面活性剂中的非氟原子键由于解离能较碳氟键的解离能小得多,容易在氟聚合过程中断键掉落形成自由基,进而至少产生以下问题:
(1)氟聚合物产品的平均分子量降低;
(2)氟聚合物引发剂消耗量增加在生产过程中需要不断的补加引发剂;
(3)断键产生的杂质降低了氟聚合物乳液的稳定性,氟聚合物乳液很容易破乳,在生产过程中发生破乳现象,更有甚者发生爆聚现象并导致生产事故。
为了解决上述问题,本发明提供了式Ⅰ所示的全氟表面活性剂。式Ⅰ中,两个重复单元的聚合度n和z的取值均为整数,n、z之和的取值范围为1~100,n的取值可以与z相同,也可以不同。式Ⅰ中两个重复单元可以沿分子链随机分布。
全氟表面活性剂在高温高压下的氟聚合工艺中的稳定性主要取决于碳卤键中卤素原子的性质,同时还在一定程度上受表面活性剂整体结构的影响。
一方面,对于卤代烷烃而言,碳氟键的键能是碳卤键中最高的,而碳碘键的键能是最低的,因此碳氟键的热稳定性通常很高,不易分解。可以看出,式Ⅰ的分子结构中不含有非氟碳卤键,因而其在用作氟聚合物反应的乳化剂时,碳氟键不易断裂,使得氟聚合物反应所生成的氟聚合物的平均分子量明显提高;同时,在生产过程中无需不断补加引发剂,节约了氟聚合物的制造成本;不仅如此,氟聚合物乳液不易破乳,因而提高了氟聚合物生产的安全性。
另一方面,式Ⅰ的结构呈现出高度对称性,分子结构中电子云分布排列均匀,有利于在水体中相互吸引聚集形成稳定且成球性的微小胶束,均匀分布在水体内,提供氟聚合物的发生聚合反应的场所。能够进一步提高式Ⅰ所示的全氟表面活性剂稳定性,使得氟聚合物反应所制造的氟聚合物的平均分子量显著增加。
式Ⅰ所示的全氟表面活性剂具备以下产品指标:
平均分子量:300-20000;
酸值:1-300mgNaOH/g;
表面张力:12~20mN/m(在纯水溶液中,含量为1%,温度25℃)(碱金属盐,如钠盐、铵盐、钾盐等);
临界胶束浓度:1%-0.05%;
纯度:80%-99.99%。
本发明还提供了上述全氟表面活性剂的制备方法,该制备方法包括以下步骤:
(A)臭氧化:将六氟丙烯和臭氧连续通入反应系统中得到式Ⅱ的活性中间体;
Figure PCTCN2019114220-appb-000002
(B)光氧化:向式Ⅱ的活性中间体中通入六氟丙烯和氧气得到式Ⅲ的全氟聚醚酰氟;
Figure PCTCN2019114220-appb-000003
(C)水解:向式Ⅲ的全氟聚醚酰氟中通入去离子水,水解后得到式Ⅰ的全氟表面活性剂。
现有技术主要采用间歇釜式反应器进行反应。在进行光氧化反应过程中,反应产物在反应釜中的停留时间通常需要数小时。发明专利CN105170018B中,六氟丙烯与氧气在反应釜中的停留时间为0.5~5小时,反应产物在反应体系中的反混严重,造成活性酰氟端基在紫外光的辐照下发生光耦合反应,活性酰氟端基两两结合,使得反应产物的酰氟端基消失,该副反应发生的概率很大导致了反应收率下降。
为了解决上述问题,本发明的反应系统为连续微通道反应系统。该连续微通道反应系统包括依次连接的臭氧化反应模组和光氧化反应模组。其中,臭氧化反应模组用于进行步骤(A)中的臭氧化反应,光氧化反应模组用于进行步骤(B)中的光氧化反应。臭氧化反应模组和光氧化反应模组均由至少一个微通道反应器构成。
具体地,在温度为-10~150℃,压力为0.1~2MPa的条件下,首先利用柱塞泵向臭氧化反应模组的微通道反应器中泵入六氟丙烯和臭氧。优选地,温度为10~50℃,压力为0.6~0.8MPa。优选地,六氟丙烯和臭氧的流量比为3~6:1,六氟丙烯的流量为30~35ml/min。六氟丙烯和臭氧在臭氧化反应模组中进行步骤(A)中的臭氧化反应得到活性中间体
Figure PCTCN2019114220-appb-000004
步骤(A)中,六氟丙烯与臭氧的反应无需添加引发剂。
步骤(A)的反应式为:
Figure PCTCN2019114220-appb-000005
步骤(A)中生成的活性中间体
Figure PCTCN2019114220-appb-000006
以及未反应完的六氟丙烯进入光氧化反应模组的微通道反应器中,同时,在该微通道反应器中通入一定流速的氧气。活性中间体
Figure PCTCN2019114220-appb-000007
在光氧化反应模组的紫外光光照下O-O键断键形成两端带自由基的
Figure PCTCN2019114220-appb-000008
反应式为:
Figure PCTCN2019114220-appb-000009
在光氧化反应模组中,该自由基活性单体与六氟丙烯的双键和氧气发生链增长,得到式Ⅲ中两端为酰氟端基的全氟聚醚。
之后,将式Ⅲ的全氟聚醚酰氟泵入水解微通道反应系统中,同时向水解微通道反应系统中泵入去离子水。式Ⅲ的全氟聚醚酰氟经过水解后生成式Ⅰ的全氟表面活性剂。
相较于现有技术,本发明所公开的制备方法利用连续流微通道反应器可以大幅缩短反应物在反应系统中的停留时间至数分钟甚至数秒,基本消除反应体系中的反混现象,从而大幅减少副反应光耦合反应的发生,可以在不使用含非氟卤素烯烃作为第三单体的前提下得到酰氟端基含量大于90%的全氟聚醚,进而无需引入非氟碳卤键,从根源上提高了全氟表面活性剂的在氟聚合反应中的稳定性。
不仅如此,现有技术主要以六氟丙烯和氧气作为原料,并利用紫外光光照整个反应体系以进行光氧化反应。但是,氧气在紫外光照射下将随机转变为臭氧,致使反应体系中,随着反应时间的增加,反应体系中臭氧的量和存在的时间都是不可控的。在工程应用中实际无法控制主、副反应的比例,导致主产品收率较低,副产物多的问题。本发明公开的制备方法使用臭氧作为原料在臭氧化反应模组中进行臭氧化反应,之后在光氧化反应模组中补入氧气并在紫外光光照条件下进行光氧化反应。通过上述设置,即使补入的氧气在光照条件下部分随机转变为臭氧,但由于反应时间短、氧气的占比少,使得生成的臭氧量与原料中的臭氧量相比可以基本忽略,因此使用者可以通过调整臭氧化反应模组和光氧化反应模组中的反应时间,以及臭氧和氧气的添加量,来实现控制整个反应体系中臭氧量和存在时间的目的,进而控制主、副反应的比例,显著提高全氟聚醚酰氟、全氟表面活性剂的收率。
另外,本发明的连续微通道反应系统还可以很好地控制所需制备的全氟表面活性剂、全氟聚醚酰氟的聚合度,即全氟表面活性剂、全氟聚醚酰氟的分子量。在不增加原料的前提下,通过增加反应体系在臭氧化反应模组和/或光氧化反应模组中的停留时间,既可以得到分子量为500~800的全氟表面活性剂、全氟聚醚酰氟,也可以得到分子量为1000~20000的全氟聚醚酰氟,作为双官能改性第三单体,参与聚丙烯酸,聚氨酯,聚酯等碳氢聚合物的改性,使其具有全氟聚合物的部分特性,降低碳氢聚合物的表面张力,提高碳氢聚合物的耐候性能,耐化学介质性能,耐水解性能等。
进一步地,所述臭氧化反应模组包括至少一个第一微通道反应器,所述光氧化反应模组 包括至少一个第二微通道反应器。其中,第一微通道反应器未设置紫外光光照系统,而第二微通道反应器设置有紫外光光照系统。通过上述设置,增加或减少第一微通道反应器即可延长或缩短反应体系在臭氧化反应模组中的反应时间;增加或减少第二微通道反应器即可延长或缩短反应体系在光氧化反应模组中的反应时间。有利于使用者调整反应体系在各反应阶段的反应时间,控制全氟聚醚酰氟产物和全氟表面活性剂的分子量。
进一步地,所述第一微通道反应器的个数为1~30个,所述第二微通道反应器的个数为3~50个。
作为第二微通道反应器的一个优选结构,所述第二微通道反应器包括流道,所述流道两侧均设置有安装板,所述安装板上设置有LED紫外灯组,所述LED紫外灯组包括等间距设置的多个LED紫外灯,所述LED紫外灯的波长范围为190~610nm。在光氧化反应阶段,紫外光将引发自由基反应,紫外光的光照强度对反应有着重要影响。本发明对现有的微通道反应器进行改进。具体地,在第二微通道反应器流道的左右两侧均设置有安装板,并在安装板上设置LED紫外灯组,该LED紫外灯组包括等间距设置的多个LED紫外灯。通过上述改进,使得反应体系在流道中的各处所受到的紫外光光照强度基本相同,即光通量相同。使用者通过更改光照强度不仅可以减少副反应发生,还可以调整全氟表面活性剂中两个重复单元的聚合度,更加有利于使用者控制全氟聚醚酰氟产物、全氟表面活性剂的分子量。优选地,左右两侧的LED紫外灯组关于流道的竖直中轴线对称。
进一步地,所述第一微通道反应器和第二微通道反应器的气液混合腔的数量均不少于50个。第一微通道反应器和第二微通道反应器中均设置有依次连接的多个气液混合腔,确保气体和液体反应物料在微通道反应器内流动过程中,达到充分混合的效果,防止在流道内发生气液分离的现象,形成气体和液体相间隔的流体状态,造成反应不充分和不发生反应。在实践过程中,每个第一微通道反应器或第二微通道反应器的气液混合腔的数量不少于50个。
进一步地,所述微通道反应系统还包括气液分离罐,所述气液分离罐的进口端与光氧化反应模组的出口端连接。光氧化反应结束后,反应体系进入气液分离罐进行气液分离,以获得全氟聚醚酰氟产物。
进一步地,所述步骤(A)和步骤(B)的反应温度为-10~150℃,步骤(A)和步骤(B)的反应系统进口压力为0.l~2MPa,出口压力为0.2~2MPa。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明提供的全氟表面活性剂不含非氟碳卤键,因而其在用作氟聚合物反应的乳化剂时,碳氟键不易断裂,使得氟聚合物反应所生成的氟聚合物的平均分子量明显提高;同时,在生产过程中无需不断补加引发剂,节约了氟聚合物的制造成本;不仅如此,氟聚合物乳液 不易破乳,因而提高了氟聚合物生产的安全性;
2、本发明提供的全氟表面活性剂呈现出高度对称分子结构中电子云分布排列均匀,有利于在水体中相互吸引聚集形成稳定且成球性的微小胶束,均匀分布在水体内,提供氟聚合物的发生聚合反应的场所。
3、本发明的反应系统采用连续微通道反应系统,可以大幅缩短反应物在反应系统中的停留时间至数分钟甚至数秒,基本消除反应体系中的反混现象,从而大幅减少副反应光耦合反应的发生,可以在不使用含非氟卤素烯烃作为第三单体的前提下得到酰氟端基含量大于90%的全氟聚醚,进而无需引入非氟碳卤键,从根源上提高了全氟表面活性剂的在氟聚合反应中的稳定性;
4、本发明的公开的制备方法使用臭氧作为原料在臭氧化反应模组中进行臭氧化反应,之后在光氧化反应模组中补入氧气并在紫外光光照条件下进行光氧化反应,允许使用者通过调整臭氧化反应模组和光氧化反应模组中的反应时间,以及臭氧和氧气的添加量,来实现控制整个反应体系中臭氧量和存在时间的目的,进而控制主、副反应的比例,显著提高双酰氟端基全氟聚醚、全氟表面活性剂的收率;
5、本发明在不增加原料的前提下,通过增加反应体系在臭氧化反应模组和/或光氧化反应模组中的停留时间,可以控制全氟表面活性剂、全氟聚醚酰氟的分子量;
6、本发明对光氧化反应模组中所使用的第二微通道反应器进行改进,使得反应体系在流道中的各处所受到的紫外光光照强度基本相同,使用者通过更改光照强度不仅可以减少副反应发生,还可以调整全氟表面活性剂中两个重复单元的聚合度,更加有利于使用者控制全氟表面活性剂的分子量。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明具体实施例中全氟表面活性剂的红外谱图;
图2为本发明具体实施例中连续微通道反应系统示意图;
图3为本发明具体实施例中第二微通道反应器的结构示意图。
附图中标记及对应的零部件名称:
1-第一微通道反应器,2-第二微通道反应器,21-流道,22-LED紫外灯,23-安装板,3-气液分离罐。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明 作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法即可制备。
本发明所有原料,其牌号和简称均属于本领域常规牌号和简称,每个牌号和简称在其相关用途的领域内均是清楚明确的,本领域技术人员根据牌号、简称以及相应的用途,能够从市售中购买得到或者通过常规方法制备得到。
本发明所有原料,对其纯度没有特别限制,本发明优选采用分析纯或表面活性剂制备领域常规的纯度要求。
本发明对所述取代基的表达方式没有特别限制,均采用本领域技术人员熟知的表达方式,本领域技术人员基于常识,可根据其表达方式正确理解其含义。
【实施例1】
制备全氟聚醚酰氟P1:
如图2所示,连续流微通道反应系统包括三个第一微通道反应器1和四个第二微通道反应器2,其中,第三个第一微通道反应器1与第一个第二微通道反应器2连接,第四个第二微通道反应器2与气液分离罐3连接。
反应时,六氟丙烯通过柱塞泵以30ml/min的流量泵入反应系统,臭氧以10ml/min的流量泵入反应系统,六氟丙烯和臭氧在三个第一微通道反应器1中进行臭氧化反应得到
Figure PCTCN2019114220-appb-000010
第一微通道反应器1的反应温度控制在10℃。之后以10ml/min的流量向第一个第二微通道反应器2中泵入氧气,六氟丙烯、氧气和活性中间体
Figure PCTCN2019114220-appb-000011
在LED紫外灯光照下进行反应得到全氟聚醚酰氟P1,紫外波长为365nm,第二微通道反应器2的反应温度控制在10℃。全氟聚醚酰氟P1和原料在气液分离罐3中进行分离。六氟丙烯在反应系统中的总停留时间为1.148min,反应系统末端出口压力为1MPa。
全氟聚醚酰氟P1的产量为20ml/min,平均分子量为748。六氟丙烯回收量为2ml/min,六氟丙烯的转化率为93%。
制备全氟表面活性剂S1:
将600ml全氟聚醚酰氟P1以流速为30ml/min泵入水解微通道反应系统,同时,向反应系统中以流速为10ml/min泵入去离子水。该水解微通道反应系统包括五个依次连接的第一微通道反应器1。全氟聚醚酰氟P1和去离子水在水解微通道反应系统中反应后,通过油水分离得到560ml不同聚合度的全氟表面活性剂。之后,将全氟表面活性剂进行精馏可得到全氟表 面活性剂S1,全氟表面活性剂S1的产量为512ml,收率为85%。
全氟表面活性剂S1的结构式为:
Figure PCTCN2019114220-appb-000012
S1为以上两种化合物的混合物,平均分子量为754;
图1为全氟表面活性剂S1的红外谱图。从图中可以看出产物中的1000-1300cm -1处的特征吸收峰,表明C-O-C,醚键伸缩振动,3500-3550处的特征吸收峰,表明O-H的伸缩振动,1700-1800处的特征吸收峰,表明C=O的伸缩振动,由此说明该聚合物为式Ⅰ所示的结构。
【实施例2】
制备全氟聚醚酰氟P2:
连续流微通道反应系统包括两个第一微通道反应器1和八个第二微通道反应器2,其中,第二个第一微通道反应器1与第一个第二微通道反应器2连接,第八个第二微通道反应器2与气液分离罐3连接。
反应时,六氟丙烯通过柱塞泵以30ml/min的流量泵入反应系统,臭氧以5ml/min的流量泵入反应系统,六氟丙烯和臭氧在两个第一微通道反应器1中进行臭氧化反应得到
Figure PCTCN2019114220-appb-000013
第一微通道反应器1的反应温度控制在10℃。之后以10ml/min的流量向第一个第二微通道反应器2中泵入氧气,六氟丙烯、氧气和活性中间体
Figure PCTCN2019114220-appb-000014
在LED紫外灯光照下进行反应得到全氟聚醚酰氟P2,紫外波长为365nm,第二微通道反应器2的反应温度控制在10℃。全氟聚醚酰氟P2和原料在气液分离罐3中进行分离。六氟丙烯在反应系统中的总停留时间为1.64min,反应系统末端出口压力为1MPa。
全氟聚醚酰氟P2的产量为23ml/min,全氟聚醚酰氟P2的平均分子量为17000。六氟丙烯回收量为5ml/min,六氟丙烯的转化率为83%。
制备全氟表面活性剂S2:
按照实施例1中的方法水解全氟聚醚酰氟P2以制备双羧酸端基全氟聚醚S2。双羧酸端基全氟聚醚S2的产量为620ml,收率为82.2%。
全氟表面活性剂S2的结构式为:
Figure PCTCN2019114220-appb-000015
n=45~50,z=45~50,n与z可以相同,也可以不相同。
由于仅是重复单元的聚合物改变,因此全氟表面活性剂S2的红外图谱与全氟表面活性剂S1的红外图谱相同。
值得注意的是,全氟聚醚酰氟P2除了能够水解得到全氟表面活性剂S2以外,还能够作为双官能改性第三单体,参与聚丙烯酸,聚氨酯,聚酯等碳氢聚合物的改性,使其具有全氟聚合物的部分特性,降低碳氢聚合物的表面张力,提高碳氢聚合物的耐候性能,耐化学介质性能,耐水解性能等。
【实施例3】
全氟表面活性剂稳定性验证实验:
采用专利CN103936906B公开的聚合方案对实施例1所制得的全氟表面活性剂S1进行验证实验。
包括以下步骤:
(S01)配制全氟表面活性剂S1的铵盐的水溶液:
在2000ml玻璃烧杯中加入700g去离子水和100g 25%的氨水,然后通过玻璃滴液漏斗向去离子水中缓慢匀速滴加200g全氟表面活性剂S1,在滴加的同时进行搅拌,搅拌速度为80rpm,得到全氟表面活性剂S1的铵盐水溶液备用,其中,双羧酸端基全氟聚醚的铵盐与水的重量配比为20:100;
(S02)聚合准备:用氮气对高压聚合釜进行置换排氧,使该高压聚合釜抽空至釜内氧含量≤25ppm;
(S03)聚合过程:
(s1)投料:向具有挡板的100L不锈钢高压聚合釜中加入55kg去离子水、972g石蜡以及1000g 20%的全氟表面活性剂S1的铵盐水溶液;
(s2)配制引发剂:将6.0g过硫酸铵溶解于1L温水(约75℃)中,得到0.6%的过硫酸铵水溶液;
(s3)引发反应:用四氟乙烯对高压聚合釜进行加压,一边搅拌一边升温至73℃,搅拌速度为200rpm;再次用四氟乙烯对高压聚合釜进行升压,直至聚合釜内压力达到1.8Mpa、 温度为73℃时,用计量泵向聚合釜内加入步骤s2中所配制的引发剂;
(s4)当高压聚合釜的压力降至1.7MPa时,再次添加四氟乙烯,使得高压聚合釜内的压力保持在1.8MPa、温度为73℃,进行聚合反应;
(s5)在四氟乙烯添加量达到27kg时,使聚合反应停止,反应时间为200min。
反应结束放料后打开反应釜盖,观察反应釜内表面发现反应釜内表面清洁并没凝结物。将采用此法制备的聚四氟乙烯乳液,用300目的金属滤网过滤,观察滤网表面,没有固体颗粒或粉末杂质,判断在反应过程中没有聚四氟乙烯固体颗粒析出,乳液稳定。将所得的聚四氟乙烯固体进行示差扫描量热分析,该聚四氟乙烯的初始分解温度为345.67℃。
【对比例1】
采用专利实施例3中相同的聚合方案对CN103936906B公开的含有非氟碳卤键的1-溴-聚多氟烷基羧醚酸铵含氟乳化剂进行验证实验。
反应结束放料后打开反应釜盖,观察反应釜内表面发现反应釜内表面凝结有大量白色固体或粉末。将用此法制备的聚四氟乙烯乳液,用300目的金属滤网过滤,观察滤网表面,有固体颗粒或粉末杂质,因此可以判断在反应进行过程中有大量的聚四氟乙烯颗粒析出,乳液不稳定。将所得的聚四氟乙烯固体进行示差扫描量热分析,该聚四氟乙烯的初始分解温度为330.48℃。
通过对比可以看出,本申请所制备的全氟表面活性剂S1在聚四氟乙烯的聚合实验中稳定性好,使得聚合反应过程中没有聚四氟乙烯固体颗粒析出,乳液稳定。同时,所制得的聚四氟乙烯的初始分解温度为345.67℃,明显高于对比例中的330.48℃,说明聚四氟乙烯的聚合度更高。
【实施例4】
在实施例1和实施例2的基础上,对第一微通道反应器1和第二微通道反应器2的结构进行改进。
其中,所述第二微通道反应器2包括流道21,所述流道21两侧均设置有安装板23,所述安装板23上设置有LED紫外灯组,所述LED紫外灯组包括等间距设置的多个LED紫外灯22,LED紫外灯的波长范围为190~610nm。
第一微通道反应器1或者第二微通道反应器2的气液混合腔的数量均不少于50个。
通过对第二微通道反应器2的改进,使得反应体系在流道中的各处所受到的紫外光光照强度基本相同,使用者通过更改光照强度不仅可以减少副反应发生,还可以调整全氟聚醚中两个重复单元的聚合度,更加有利于使用者控制全氟聚醚酰氟产物的分子量。
另外,气液混合腔能够确保气体和液体反应物料在微通道反应器内流动过程中,达到充 分混合的效果,防止在流道内发生气液分离的现象,形成气体和液体相间隔的流体状态,避免反应不充分或者不发生反应。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种全氟表面活性剂,其特征在于,具有式Ⅰ所示的结构:
    Figure PCTCN2019114220-appb-100001
    其中,式Ⅰ中的n、z均为整数,且n+z=1~100;式Ⅰ中的两个重复单元均为随机分布。
  2. 根据权利要求1所述的一种全氟表面活性剂,其特征在于,所述全氟表面活性剂的平均分子量为300~20000。
  3. 权利要求1或2所述的一种全氟表面活性剂的制备方法,其特征在于,包括以下步骤:
    (A)臭氧化:将六氟丙烯和臭氧连续通入反应系统中得到式Ⅱ的活性中间体;
    Figure PCTCN2019114220-appb-100002
    (B)光氧化:向式Ⅱ的活性中间体中通入六氟丙烯和氧气得到式Ⅲ的全氟聚醚酰氟;
    Figure PCTCN2019114220-appb-100003
    (C)水解:向式Ⅲ的全氟聚醚酰氟中通入去离子水,水解后得到式Ⅰ的全氟表面活性剂。
  4. 根据权利要求3所述的一种全氟表面活性剂的制备方法,其特征在于,所述制备方法在连续微通道反应系统中进行,所述连续微通道反应系统包括依次连接的臭氧化反应模组和光氧化反应模组;所述臭氧化反应模组用于进行步骤(A)中的臭氧化反应,光氧化反应模组用于进行步骤(B)中的光氧化反应。
  5. 根据权利要求4所述的一种全氟表面活性剂的制备方法,其特征在于,所述臭氧化反应模组包括至少一个第一微通道反应器(1),所述光氧化反应模组包括至少一个第二微通道反应器(2)。
  6. 根据权利要求5所述的一种全氟表面活性剂的制备方法,其特征在于,所述第一微通道反应器(1)的个数为1~30个,所述第二微通道反应器(2)的个数为3~50个。
  7. 根据权利要求5所述的一种全氟表面活性剂的制备方法,其特征在于,所述第二微通 道反应器(2)包括流道(21),所述流道(21)两侧均设置有安装板(23),所述安装板(23)上设置有LED紫外灯组,所述LED紫外灯组包括等间距设置的多个LED紫外灯(22),所述LED紫外灯的波长范围为190~610nm。
  8. 根据权利要求5所述的一种全氟表面活性剂的制备方法,其特征在于,所述第一微通道反应器(1)和第二微通道反应器(2)的气液混合腔的数量均不少于50个。
  9. 根据权利要求4所述的一种全氟表面活性剂的制备方法,其特征在于,所述微通道反应系统还包括气液分离罐(3),所述气液分离罐(3)的进口端与光氧化反应模组的出口端连接。
  10. 根据权利要求3所述的一种全氟表面活性剂的制备方法,其特征在于,所述步骤(A)和步骤(B)的反应温度为-10~150℃,步骤(A)和步骤(B)的反应系统进口压力为0.l~2MPa,出口压力为0.2~2MPa。
PCT/CN2019/114220 2018-11-15 2019-10-30 一种全氟表面活性剂及其制备方法 WO2020098493A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19884518.2A EP3872115B1 (en) 2018-11-15 2019-10-30 Perfluoro surfactant and preparation method therefor
US17/293,699 US12018200B2 (en) 2018-11-15 2019-10-30 Perfluoro surfactant and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811361290.7 2018-11-15
CN201811361290.7A CN109384911B (zh) 2018-11-15 2018-11-15 一种全氟表面活性剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2020098493A1 true WO2020098493A1 (zh) 2020-05-22

Family

ID=65429307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114220 WO2020098493A1 (zh) 2018-11-15 2019-10-30 一种全氟表面活性剂及其制备方法

Country Status (3)

Country Link
EP (1) EP3872115B1 (zh)
CN (1) CN109384911B (zh)
WO (1) WO2020098493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286030A (zh) * 2023-01-09 2023-06-23 四川晨光博达新材料有限公司 一种低泡、低表面张力环保型全氟聚醚表面活性剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384911B (zh) * 2018-11-15 2019-08-27 四川科源精诚新材料科技有限公司 一种全氟表面活性剂及其制备方法
CN110790917A (zh) * 2019-11-15 2020-02-14 江苏梅兰化工有限公司 一种用于聚合特种三元氟橡胶的全氟醚羧酸的制备工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451908A (en) * 1966-07-19 1969-06-24 Montedison Spa Method for preparing polyoxyperfluoromethylenic compounds
US4003941A (en) * 1966-02-07 1977-01-18 Minnesota Mining And Manufacturing Company Process for producing polyhalocarbons oxides
CN102260160A (zh) * 2010-05-26 2011-11-30 张小燕 同时制备碳酰氟和三氟乙酰氟的方法
CN103936906A (zh) 2014-05-09 2014-07-23 成都晨光博达橡塑有限公司 一种不含全氟辛酸或全氟辛磺酸的含氟聚合物
CN105111351A (zh) * 2015-08-12 2015-12-02 江苏梅兰化工有限公司 一种特种氟醚表面活性剂的制备方法
CN105170018A (zh) 2015-09-30 2015-12-23 成都晨光博达橡塑有限公司 一种不含全氟辛酸的含氟表面活性剂及其制备方法和工艺系统
CN106866953A (zh) * 2015-12-10 2017-06-20 大金工业株式会社 过氧化全氟聚氧化烯烃化合物的制造方法
CN107602733A (zh) * 2017-10-13 2018-01-19 山东东岳高分子材料有限公司 一种含氟乳化剂以及利用等离子体制备含氟乳化剂的方法
CN109384911A (zh) * 2018-11-15 2019-02-26 四川科源精诚新材料科技有限公司 一种全氟表面活性剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622635A (en) * 1968-09-06 1971-11-23 Montedison Spa Process for the production of oxygen-containing fluoro compounds
CN108440748B (zh) * 2018-04-09 2020-06-16 浙江巨化技术中心有限公司 一种高分子量带有酰氟基团全氟聚醚过氧化物的合成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003941A (en) * 1966-02-07 1977-01-18 Minnesota Mining And Manufacturing Company Process for producing polyhalocarbons oxides
US3451908A (en) * 1966-07-19 1969-06-24 Montedison Spa Method for preparing polyoxyperfluoromethylenic compounds
CN102260160A (zh) * 2010-05-26 2011-11-30 张小燕 同时制备碳酰氟和三氟乙酰氟的方法
CN103936906A (zh) 2014-05-09 2014-07-23 成都晨光博达橡塑有限公司 一种不含全氟辛酸或全氟辛磺酸的含氟聚合物
CN105111351A (zh) * 2015-08-12 2015-12-02 江苏梅兰化工有限公司 一种特种氟醚表面活性剂的制备方法
CN105170018A (zh) 2015-09-30 2015-12-23 成都晨光博达橡塑有限公司 一种不含全氟辛酸的含氟表面活性剂及其制备方法和工艺系统
CN106866953A (zh) * 2015-12-10 2017-06-20 大金工业株式会社 过氧化全氟聚氧化烯烃化合物的制造方法
CN107602733A (zh) * 2017-10-13 2018-01-19 山东东岳高分子材料有限公司 一种含氟乳化剂以及利用等离子体制备含氟乳化剂的方法
CN109384911A (zh) * 2018-11-15 2019-02-26 四川科源精诚新材料科技有限公司 一种全氟表面活性剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872115A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286030A (zh) * 2023-01-09 2023-06-23 四川晨光博达新材料有限公司 一种低泡、低表面张力环保型全氟聚醚表面活性剂及其制备方法
CN116286030B (zh) * 2023-01-09 2023-10-27 四川晨光博达新材料有限公司 一种低泡、低表面张力环保型全氟聚醚表面活性剂及其制备方法

Also Published As

Publication number Publication date
CN109384911B (zh) 2019-08-27
CN109384911A (zh) 2019-02-26
EP3872115B1 (en) 2022-07-27
EP3872115A4 (en) 2022-01-05
US20220008881A1 (en) 2022-01-13
EP3872115A1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2020098493A1 (zh) 一种全氟表面活性剂及其制备方法
US7989568B2 (en) Fluorosulfonates
EP2087018B1 (en) Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
CN103347908A (zh) 微乳剂以及用微乳剂制备的含氟聚合物
JP5900587B2 (ja) ポリテトラフルオロエチレン水性分散液の製造方法
Schmiegel Crosslinking of elastomeric vinylidene fluoride copolymers with nucleophiles
EP0625526B1 (en) (Co)polymerization process in aqueous emulsion of fluorinated olefinic monomers
US6642307B1 (en) Process for producing fluoropolymer
WO2009133902A1 (ja) 含フッ素重合体の製造方法および含フッ素イオン交換膜
EP2084195A1 (en) Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and hydrocarbon surfactant
CN105111351A (zh) 一种特种氟醚表面活性剂的制备方法
WO2019024287A1 (zh) 一种全氟聚醚及其制备方法
WO2010073940A1 (ja) 含フッ素ポリマー粒子の製造方法
CN107001509B (zh) 制备氟聚合物分散体的方法
US20200017620A1 (en) Method for making fluoropolymers
CN105111353A (zh) 一种特种耐低温氟橡胶制备方法
JPH08301940A (ja) 極性末端基が存在しないフルオロエラストマーとその製法
US12018200B2 (en) Perfluoro surfactant and preparation method therefor
US20140080930A1 (en) Process for producing fluorinated copolymer
CN103193904A (zh) 一种分散法制备含氟聚合物的方法
EP0228798B1 (en) Acrylamide/alkylacrylamide acrylate terpolymer and process for its preparation
CN105111352A (zh) 一种特种氟醚低聚物的制备方法
US7645845B2 (en) Polymerization process
CN111620972A (zh) 一种全氟聚醚及其制备方法
WO2024020783A1 (zh) 一种反应性含氟表面活性剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019884518

Country of ref document: EP

Effective date: 20210526