WO2020098463A1 - 一种升降压电路 - Google Patents

一种升降压电路 Download PDF

Info

Publication number
WO2020098463A1
WO2020098463A1 PCT/CN2019/112795 CN2019112795W WO2020098463A1 WO 2020098463 A1 WO2020098463 A1 WO 2020098463A1 CN 2019112795 W CN2019112795 W CN 2019112795W WO 2020098463 A1 WO2020098463 A1 WO 2020098463A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
port
buck
power supply
switching
Prior art date
Application number
PCT/CN2019/112795
Other languages
English (en)
French (fr)
Inventor
康博
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2020098463A1 publication Critical patent/WO2020098463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Definitions

  • the invention relates to a switching power supply converter circuit, in particular to a buck-boost circuit with two working modes of boost and buck.
  • the existing four-switch BUCK-BOOST buck-boost circuit is shown in FIG. 1 and includes four switching devices S1 to S4, an inductor L, an input capacitor C1 and an output capacitor C2.
  • the switching device S1, switching device S2 and inductance L in Fig. 1 form a buck converter.
  • the switching device S2 uses MOS tubes instead of diodes to achieve synchronous rectification;
  • the switching device S3, switching device S4 and inductance L form a boost Voltage (BOOST) converter, in which the switching device S4 uses MOS tube instead of diode to achieve synchronous rectification.
  • BOOST boost Voltage
  • the converters S1 and S3 as the main control switching device can realize the transfer of energy from input to output
  • S4 and S2 as the main control switching device can realize the transfer of energy from output to input, so the energy can flow in two directions and can achieve two-way power conversion Applications.
  • the output voltage is less than the input voltage.
  • S4 is normally open, S3 is long off, S1 and S2 are turned on in turn, the relationship between the input and output voltage ratio and S1's on-duty cycle D1, in the case of fixed switching frequency, with D1's It is known that it takes time to turn on and turn off the switching device.
  • D1 is reduced to a certain value, that is, less than the time required for the switching device to turn on, the switching device S1 cannot be turned on normally, nor can the power supply It works normally.
  • the output voltage is greater than the input voltage.
  • S1 is normally open, S2 is long off, S3 and S4 are turned on alternately, and the ratio of the input and output voltage and the on-duty ratio of S3 is D3.
  • D3 increases to a certain value, it is 1 -When D3 is less than the time required for the switching device to turn off, the switching device S3 cannot be turned off normally, and the power supply cannot work normally.
  • the traditional four-buck BUCK-BOOST buck-boost circuit can realize the power supply application where the output voltage V OUT is less than, equal to or greater than the input voltage V IN , and can also realize the power supply application of bidirectional power conversion.
  • the loss of the switching device becomes larger, the efficiency of the power supply system becomes lower, and even the voltage conversion function cannot be realized.
  • the existing coupled inductor-like topologies are shown in Figures 2 and 3, and each includes two switching devices S1 and S2, two inductive devices L1 and L2, an input capacitor C1 and an output capacitor C2, and two inductive devices Coupling together through the magnetic core.
  • Figure 2 shows the topology of the buck coupled inductance class.
  • the input / output voltage ratio is related to the turn-on duty ratio D and turn ratio ⁇ of S1.
  • the formula shows that with the same gain M, the turn ratio ⁇ increases, and the duty ratio D also increases.
  • the turn ratio ⁇ of 1 is the relationship between the ratio of the input and output voltage of the ordinary BUCK and the duty ratio D.
  • the advantage of this circuit is that under the same input and output voltage ratio, the turn ratio ⁇ becomes larger and the duty ratio D also becomes larger, which solves the problem that the switching device cannot be turned on normally with the decrease of D1 in the ordinary 4-switch BUCK-BOOST circuit. But the disadvantage is that the boost function cannot be realized at the same time.
  • Figure 3 shows the boost-coupled inductor-like topology.
  • the input / output voltage ratio is related to the turn-on duty ratio D and turn ratio ⁇ of S2.
  • the formula shows that with the same gain M, the turn ratio ⁇ increases, and the duty ratio D decreases.
  • the turn ratio ⁇ of 1 is the relationship between the ratio of the input and output voltage of the ordinary BOOST and the duty ratio D.
  • the advantage of this circuit is that under the same input-output voltage ratio, the turn ratio ⁇ becomes larger and the duty ratio D decreases, which solves the problem that the switching device cannot be normally turned off with the increase of D3 in the ordinary 4-switch BUCK-BOOST circuit. But the disadvantage is that it can not realize the step-down function at the same time.
  • the buck-coupling inductor topology shown in Figure 2 can solve the problem of large transformation ratio requirements when the output is less than the input condition; The problem.
  • neither of the two coupled inductor-type topologies can simultaneously achieve power supply applications where the output voltage is less than, equal to, or greater than the input voltage.
  • the disadvantage of the existing four-switch BUCK-BOOST is that it cannot achieve the function of a large ratio of output and input; the disadvantage of the existing coupled-inductor topology is that it cannot simultaneously achieve a power supply with an output voltage less than, equal to or greater than the input voltage application.
  • the technical problem to be solved by the present invention is to propose a buck-boost circuit, which can not only realize the power supply application with output voltage less than, equal to or greater than the input voltage, but also achieve large changes in output and input Than the power application.
  • the inventive concept of the present application is to improve on the basis of the four-tube BUCK-BOOST buck-boost circuit of FIG. 1, remove the switching device S3 therein, and multiplex the switching device S2 in the BOOST boost mode to thereby Omit a switching tube, and an inductance is connected in series between the source of the switching device S1 and the drain of the switching device S2, so that the circuit has a different turn ratio in different modes.
  • the duty cycle of the switching device S1 is greater than when the turn ratio is greater than 1
  • the duty cycle of the switching device S2 is greater than the turn ratio when the turn ratio is greater than 1.
  • the time is small, so that the circuit can realize not only the power supply application whose output voltage is less than, equal to or greater than the input voltage, but also the power supply application whose output and input are of a large transformation ratio.
  • a buck-boost circuit includes positive input power supply, positive output power supply, negative power supply, first switching device S1, second switching device S2, third switching device S3, first coupled inductance device L1, second coupled inductance device L2 , The first capacitive device C1 and the second capacitive device C2; wherein, the on-current inflow terminal of the first switching device S1 is connected to the input power supply and port one of the first capacitor C1, and the on-current outflow terminal of the first switching device S1 is connected Port one of the first coupled inductance device L1, the conducting current of the second switching device S2 is connected to port two of the first coupled inductance device L1 and port one of the second coupled inductance device L2, and the second switching device S2 is turned on The current outflow terminal is connected to the power supply negative, the conducting current inflow terminal of the third switching device S3 is connected to the second coupling inductance device L2, and the conducting current outflow terminal of the third switching device S3 is connected to the output power supply positive and the second capacitor device C2 Port one
  • the first coupled inductance device L1 and the second coupled inductance device L2 are coupled to each other by sharing a magnetic core.
  • the number of turns of the first coupled inductance device L1 and the second coupled inductance device L2 is adjustable.
  • the first switching device S1, the second switching device S2 and the third switching device S3 are all MOS transistors.
  • the first switching device S1 and the second switching device S2 are MOS transistors, and the third switching device S3 is a diode.
  • the first port of the third coupled inductance device L3 is connected to the second port of the first coupled inductance device L1 and the first port of the second coupled inductance device L2.
  • the port two of the three-coupling inductance device L3 is connected to the on-current outgoing end of the fourth switching device S4.
  • the on-current inflow end of the fourth switching device S4 is the second output power supply of the buck-boost circuit and the third capacitor device C3.
  • Port one is connected to the on-current of the fourth switching device S4, and port two of the third capacitive device C3 is connected to the negative power supply; this is repeated in turn; until port one of the X + 1 coupling inductance device L (X + 1) is connected to the first Port two of the coupled inductance device L1 and port one of the second coupled inductance device L2, port two of the X + 1 coupled inductance device L (X + 1) is connected to the conduction of the X + 2 switching device S (X + 2)
  • the current outgoing end, the conducting current inflow end of the X + 2 switching device S (X + 2) is the Xth output power of the buck-boost circuit, and the X + 1 capacitor device C (X + 1) is connected to the first port
  • the conduction current of the X + 2 switching device S (X + 2) flows into the terminal, and the port two of the X + 1 capacitor device C (X + 1) is connected to the negative power supply;
  • X is a natural number greater than or equal to
  • the control terminal of the switching device a port that controls the on and off of the switch.
  • a MOS tube it refers to the gate of the MOS tube; for a transistor, it refers to the base of the transistor.
  • the on-current of the switching device flows into the terminal: after the switch is turned on, the current flows into the port.
  • MOS tube it refers to the drain of the MOS tube, whether it is N-channel, P-channel, enhanced or depleted MOS tube.
  • the triode it refers to the collector of the triode.
  • the current flows from the collector with high voltage to the low voltage Emitter; for a diode, the anode of the diode.
  • the current outflow port such as for the MOS tube, refers to the source of the MOS tube; for the triode, refers to the emitter of the triode; for the diode, refers to The cathode of the diode.
  • the buck-boost circuit of the present invention requires only three switching devices, and the traditional four-switch buck-boost circuit requires four switching devices. The number of switching devices is greatly reduced. Because there is one less switching device, the total loss of the switching device is also Reduced, the overall efficiency is improved.
  • the step-up and step-down circuit of the present invention solves the problem that the power device cannot be fully turned on when the output voltage is less than the input voltage when the input-output voltage ratio is large, and solves the problem that the power device cannot be completely turned on when the output voltage is greater than the input voltage The problem of shutting down.
  • Figure 1 is a schematic diagram of the traditional four-switch BUCK-BOOST circuit
  • Figure 2 is a block diagram of the existing two-way coupled inductor BUCK circuit
  • Figure 3 is a block diagram of the existing two-way coupled inductor BOOST circuit
  • FIG. 7 is a schematic diagram of a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a third embodiment of the present invention.
  • FIG. 4 shows a principle diagram of the first embodiment of the present invention.
  • the first coupled inductance device L1 and the second coupled inductance device L2 are coupled to each other by sharing a magnetic core, thereby achieving mutual conversion between the voltage and current of the three coupled inductance devices.
  • the number of turns of the first coupled inductance device L1 and the second coupled inductance device L2 is adjustable, so as to realize the design of the turns ratio.
  • the buck-boost circuit can have two working modes of BUCK and BOOST.
  • the duty ratios of the switching devices Q1 and Q2 are denoted as D1 and D2.
  • the duty cycle D1 of the switching device S1 is greater when the turn ratio ⁇ is greater than 1 and when ⁇ is equal to 1, which solves the problem of the ordinary four-switch BUCK-BOOST circuit at the input
  • the duty cycle D2 of the switching device S2 is smaller when the turn ratio ⁇ is greater than 1 than when ⁇ is equal to 1, which solves the problem that the ordinary four-switch BUCK-BOOST circuit The problem that the switching device cannot be normally turned off with the increase of D3 when the output ratio is large,
  • the buck-boost circuit of this embodiment can realize the functions that the output voltage is less than the input voltage, the output voltage is equal to the input voltage, and the output voltage is greater than the input voltage. And only three switching devices are used.
  • This embodiment effectively solves the problem that the power device cannot be fully turned on when the output voltage is less than the input voltage when the input / output voltage ratio is large, and the power device cannot be completely turned off The problem. And there is one less switching device than the traditional four-switch BUCK-BOOST circuit. The number of switching devices is greatly reduced. Because there is one less switching device, the total loss of the switching device is also reduced, and the overall efficiency is improved.
  • FIG. 7 is a schematic diagram of a second embodiment of the present invention.
  • a unidirectional high-gain BUCK-BOOST power supply application is realized by changing the third switch tube to the diode D1.
  • the beneficial effect is that there is one less controllable switching device than the first embodiment, and the power supply cost is greatly reduced.
  • FIG. 8 is a schematic diagram of a third embodiment of the present invention.
  • the first coupling inductance device L3 is connected to the first coupling inductance device L1 Port two and port one of the second coupled inductance device L2, port two of the third coupled inductance device L3 are connected to the on-current outgoing end of the fourth switching device S4, and the on-current inflow end of the fourth switching device S4 is the buck-boost
  • the second output power of the circuit is positive, the first current of the third capacitive device C3 is connected to the on-current inflow terminal of the fourth switching device S4, and the second output of the third capacitive device C3 is connected to the negative power; repeat in turn; until the X + 1 coupling
  • the switch tube can be MOSFET, BJT, IGBT, etc.
  • Switching device according to the circuit principle and design needs, fine-tuning the circuit through simple series and parallel means of the device, these improvements and retouching should also be regarded as the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种升降压电路,在传统四管BUCK-BOOST升降压电路的基础之上进行改进,去掉其中的开关器件S3,BOOST升压模式下复用开关器件S2从而省掉一个开关管,并且在开关器件S1的源极与开关器件S2的漏极之间串联一电感,使得电路在不同模式下的匝比有所不同,当为BUCK模式时,相同输入输出电压比值条件下,开关器件S1的占空比在匝比大于1时比匝比等于1时大,并且当为BOOST模式时,开关器件S2的占空比在匝比大于1时比匝比等于1时小,从而实现了该电路不仅可以实现输出电压小于、等于或大于输入电压的电源应用,还可以实现输出和输入为大变比的电源应用。

Description

一种升降压电路 技术领域
本发明涉及开关电源变换器电路,特别涉及具备升压降压两种工作模式的升降压电路。
背景技术
在太阳能,风能、燃料电池等应用领域,和宽电压范围输入的领域,需要采用具有升降压特性的直流变换器。由于功率变换器的输入电压范围宽,现有技术所提供的同时具有升压和降压的电路无法在高或低输入电压及一定占空比范围内的情况下实现高的升降压比率,即使可以用其他拓扑实现,但是增加了系统的复杂性、稳定性和原材料成本。
现有四开关BUCK-BOOST升降压电路如图1所示,包含4个开关器件S1至S4、一个电感L、一个输入电容C1和一个输出电容C2。
图1中的开关器件S1、开关器件S2和电感L组成降压(BUCK)变换器,其中的开关器件S2采用MOS管替代二极管能实现同步整流;开关器件S3、开关器件S4和电感L组成升压(BOOST)变换器,其中的开关器件S4采用MOS管替代二极管能实现同步整流。该变换器S1和S3作为主控开关器件,可以实现能量从输入至输出传递,S4和S2作为主控开关器件,可以实现能量从输出至输入传递,所以能量能双向流动,可以实现双向电源变换的应用。
图1电路两种模式工作原理分析如下:
BUCK模式下,输出电压小于输入电压。在每个开关周期时间t内,S4常开,S3长关,S1和S2轮流开通,输入输出电压比值和S1的开通占空比D1存在关系,在开关频率固定的情况下,随着D1的减小,众所周知,开关器件的开通和关断都是需要时间的,当D1减小到一定值时,也就是小于开关器件开通需要的时间时,开关器件S1就不能正常开通了,电源也不能正常工作了。
BOOST模式下,输出电压大于输入电压。在每个开关周期时间t内,S1常开,S2长关,S3和S4轮流开通,输入输出电压比值和S3的开通占空比D3存在关系,当D3增大到一定值时,也就是1-D3小于开关器件关断需要的时间时,开关器件S3就不能正常关断了,电源也不能正常工作了。
从上述分析可知,传统的四管BUCK-BOOST升降压电路可以实现输出电压V OUT小于、等于或大于输入电压V IN的电源应用,还可以实现双向功率变换的电源应用。但在输入和输出为大变比应用环境下开关器件的损耗变大,电源系统效率变低,甚至无法实现电压变换功能。
现有的耦合电感类拓扑如图2和图3所示,均包含2个开关器件S1和S2、2个电感类器件L1和L2、一个输入电容C1和一个输出电容C2,两个电感类器件通过磁芯耦合在一起。
图2所示为降压耦合电感类拓扑,针对图2,定义匝比λ=(n1+n2)/n1,其输入输出电压比值和S1的开通占空比D和匝比λ存在关系,根据公式可得,相同增益M,匝比λ增大,占空比D也增大,匝比λ为1就是普通BUCK的输入输出电压比值和占空比D的关系式。该电路优点是相同输入输出电压比值条件下,匝比λ变大,占空比D也变大,解决了普通4开关BUCK-BOOST电路随着D1的减小导致开关器件不能正常开通的问题,但缺点是不能同时实现升压功能。
图3所示为升压耦合电感类拓扑,针对图3,定义匝比λ=(n1+n2)/n1,其输入输出电压比值和S2的开通占空比D和匝比λ存在关系,根据公式可得,相同增益M,匝比λ增大,占空比D减小,匝比λ为1就是普通BOOST的输入输出电压比值和占空比D的关系式。该电路优点是相同输入输出电压比值条件下,匝比λ变大,占空比D减小,解决了普通4开关BUCK-BOOST电路随着D3的增大导致开关器件不能正常关断的问题。但缺点是不能同时实现降压功能。
通过上述分析可知,图2所示降压耦合电感类拓扑可以解决输出小于输入条件下大变比需求的问题;图3所示升压耦合电感类拓扑可以解决输出大于输入条件下大变比需求的问题。但两种耦合电感类拓扑都无法同时实现输出电压小于、等于或大于输入电压的电源应用。
综上所述,现有四开关BUCK-BOOST的缺点是无法实现输出和输入为大变比的功能;现有耦合电感类拓扑的缺点是无法同时实现输出电压小于、等于或大于输入电压的电源应用。
发明内容
鉴于上述电路所存在的技术缺陷,本发明要解决的技术问题是提出一种升降压电路,不仅可以实现输出电压小于、等于或大于输入电压的电源应用,还 可以实现输出和输入为大变比的电源应用。
为了解决上述技术问题,本申请的发明构思为:在图1四管BUCK-BOOST升降压电路的基础之上进行改进,去掉其中的开关器件S3,BOOST升压模式下复用开关器件S2从而省掉一个开关管,并且在开关器件S1的源极与开关器件S2的漏极之间串联一电感,使得电路在不同模式下的匝比有所不同,当为BUCK模式时,相同输入输出电压比值条件下,开关器件S1的占空比在匝比大于1时比匝比等于1时大,并且当为BOOST模式时,开关器件S2的占空比在匝比大于1时比匝比等于1时小,从而实现了该电路不仅可以实现输出电压小于、等于或大于输入电压的电源应用,还可以实现输出和输入为大变比的电源应用。
为了实现上述发明目的,本发明采用以下技术方案:
一种升降压电路,包括输入电源正、输出电源正、电源负、第一开关器件S1、第二开关器件S2、第三开关器件S3、第一耦合电感器件L1、第二耦合电感器件L2、第一电容器件C1和第二电容器件C2;其中,第一开关器件S1的导通电流流入端连接输入电源正和第一电容C1的端口一,第一开关器件S1的导通电流流出端连接第一耦合电感器件L1的端口一,第二开关器件S2的导通电流流入端连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第二开关器件S2的导通电流流出端连接电源负,第三开关器件S3的导通电流流入端连接第二耦合电感器件L2的端口二,第三开关器件S3的导通电流流出端连接输出电源正和第二电容器件C2的端口一,第一电容器件C1和第二电容器件C2的端口二连接电源负。
优选地,所述第一耦合电感器件L1和第二耦合电感器件L2通过共用一个磁芯而相互耦合在一起。
优选地,所述第一耦合电感器件L1和第二耦合电感器件L2的匝数是可调整的。
优选地,所述的第一开关器件S1、第二开关器件S2和第三开关器件S3均为MOS管。
优选地,所述的第一开关器件S1和第二开关器件S2为MOS管,第三开关器件S3为二极管。
作为上述技术方案的改进,还包括第三耦合电感器件L3至第X+1耦合电感 器件L(X+1)、第四开关器件S4至第X+2开关器件S(X+2),以及第三电容器件C3至第X+1电容器件C(X+1);第三耦合电感器件L3的端口一连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第三耦合电感器件L3的端口二连接第四开关器件S4的导通电流流出端,第四开关器件S4的导通电流流入端为升降压电路的第二输出电源正,第三电容器件C3的端口一连接第四开关器件S4的导通电流流入端,第三电容器件C3的端口二连接电源负;依次重复;直至第X+1耦合电感器件L(X+1)的端口一连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第X+1耦合电感器件L(X+1)的端口二连接第X+2开关器件S(X+2)的导通电流流出端,第X+2开关器件S(X+2)的导通电流流入端为升降压电路的第X输出电源正,第X+1电容器件C(X+1)的端口一连接第X+2开关器件S(X+2)的导通电流流入端,第X+1电容器件C(X+1)的端口二连接电源负;X为大于或等于2的自然数。
术语解释:
开关器件的控制端:控制开关导通与截止的端口,如对于MOS管,指的是MOS管的栅极;对于三极管,指的是三极管的基极。
开关器件的导通电流流入端:开关导通后,电流流入的端口,如对于MOS管,指的是MOS管的漏极,无论N沟道、P沟道、增强型还是耗尽型MOS管,在导通时,电流都是由电压高的漏极流向电压低的源极;对于三极管,指的是三极管的集电极,在导通时,电流是由电压高的集电极流向电压低的发射极;对于二极管,指的是二极管的阳极。
开关器件的导通电流流出端:开关导通后,电流流出的端口,如对于MOS管,指的是MOS管的源极;对于三极管,指的是三极管的发射极;对于二极管,指的是二极管的阴极。
本发明的工作原理将在具体实施方式中进行详细阐述,与现有技术相比,本发明具有如下的有益效果:
1、本发明升降压电路,只需要三个开关器件,传统的四开关升降压电路需要四个开关器件,开关器件数量大大减少,因为少了一个开关器件,所以开关器件的总损耗也降低,整机效率得到提高。
2、本发明升降压电路,当输入输出电压比值为大变比情况下,解决了输出 电压小于输入电压,功率器件不能完全导通的问题,解决了输出电压大于输入电压,功率器件不能完全关断的问题。
附图说明
图1为传统的四开关BUCK-BOOST电路原理图;
图2为现有的双向耦合电感BUCK电路的原理框图;
图3为现有的双向耦合电感BOOST电路的原理框图;
图4为本发明第一实施例原理图;
图5为本发明BUCK模式下输出和输入比值、匝比λ和占空比的关系曲线图;
图6为本发明BOOST模式下输出和输入比值、匝比λ和占空比的关系曲线图;
图7为本发明第二实施例原理图;
图8为本发明第三实施例原理图。
具体实施方式
为了更好地理解本发明相对于现有技术所做出的改进,下面结合具体的实施例进行详细说明。
第一实施例
图4示出了本发明的第一实施例的原理图。包括输入电源正、输出电源正、电源负、第一开关器件S1、第二开关器件S2、第三开关器件S3、第一耦合电感器件L1、第二耦合电感器件L2、第一电容器件C1和第二电容器件C2;其中,第一开关器件S1的漏极连接输入电源正和第一电容C1的端口一,第一开关器件S1的源极连接第一耦合电感器件L1的端口一,第二开关器件S2的漏极连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第二开关器件S2的源极连接电源负,第三开关器件S3的漏极连接第二耦合电感器件L2的端口二,第三开关器件S3的源极连接输出电源正和第二电容器件C2的端口一,第一电容器件C1和第二电容器件C2的端口二连接电源负。
本实施例第一耦合电感器件L1和第二耦合电感器件L2通过共用一个磁芯而相互耦合在一起,从而实现三个耦合电感器件电压和电流之间的互相转换。
本实施例第一耦合电感器件L1和第二耦合电感器件L2的匝数是可调整的,从而实现匝比的设计。
本实施例其工作原理是这样的,根据输入、输出电压大小关系,本升降压电路可以有BUCK和BOOST两种工作模式,所述开关器件Q1和Q2的占空比记为D1和D2,匝比记为λ=(n1+n2)/n1,输入电压记为Vin,输出电压记为Vo。
当输出电压小于输入电压,即工作在BUCK模式。在每个开关周期时间内,S3常开,S1和S2轮流开通,其输入输出电压比值和S1的开通占空比D1和匝比λ存在关系
Figure PCTCN2019112795-appb-000001
附图5为输入输出电压比值Vo/Vin、S1的开通占空比D1和匝比λ之间的关系曲线图。从图5可以看出,相同输入输出电压比值条件下,所述开关器件S1的占空比D1在匝比λ大于1时比λ等于1时大,解决了普通四开关BUCK-BOOST电路在输入输出大变比时随着D1的减小导致开关器件不能正常开通的问题,
BOOST模式下,输出电压大于输入电压。在每个开关周期时间t内,S1常开,S2和S3轮流开通,输入输出电压比值和S2的开通占空比D2存在关系
Figure PCTCN2019112795-appb-000002
附图6为输入输出电压比值、S2的开通占空比D2和匝比λ之间的关系曲线图。从图6可以看出,相同输入输出电压比值条件下,所述开关器件S2的占空比D2在匝比λ大于1时比λ等于1时小,解决了普通四开关BUCK-BOOST电路在输入输出大变比时随着D3的增加导致开关器件不能正常关断的问题,
本实施例升降压电路可以实现输出电压小于输入电压、输出电压等于输入电压和输出电压大于输入电压的功能。并且只使用了三个开关器件。
本实施例有效的解决了当输入输出电压比值为大变比情况下,解决了输出电压小于输入电压,功率器件不能完全导通的问题,解决了输出电压大于输入电压,功率器件不能完全关断的问题。且比传统的四开关BUCK-BOOST电路少一个开关器件,开关器件数量大大减少,因为少了一个开关器件,所以开关器件的总损耗也降低,整机效率得到提高。
第二实施例
图7是本发明第二实施例原理图,在第一实施例的基础上,通过将第三开关管改为二极管D1来实现单向高增益BUCK-BOOST电源应用。
其有益效果是,比第一实施例少了一个可控开关器件,电源成本大大降低。
第二实施例的具体工作原理,本技术领域的普通技术人员可以根据第一实施例的工作过程及原理进行简单的推导即可得出,此处不详述。
第三实施例
图8是本发明第三实施例原理图,在第一实施例的基础上,增加了第三耦合电感器件L3至第X+1耦合电感器件L(X+1)、第四开关器件S4至第X+2开关器件S(X+2),以及第三电容器件C3至第X+1电容器件C(X+1);第三耦合电感器件L3的端口一连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第三耦合电感器件L3的端口二连接第四开关器件S4的导通电流流出端,第四开关器件S4的导通电流流入端为升降压电路的第二输出电源正,第三电容器件C3的端口一连接第四开关器件S4的导通电流流入端,第三电容器件C3的端口二连接电源负;依次重复;直至第X+1耦合电感器件L(X+1)的端口一连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第X+1耦合电感器件L(X+1)的端口二连接第X+2开关器件S(X+2)的导通电流流出端,第X+2开关器件S(X+2)的导通电流流入端为升降压电路的第X输出电源正,第X+1电容器件C(X+1)的端口一连接第X+2开关器件S(X+2)的导通电流流入端,第X+1电容器件C(X+1)的端口二连接电源负;X为大于或等于2的自然数。第三实施例的改进目的在于实现多路输出,具体工作原理,本技术领域的普通技术人员可以根据第一实施例的工作过程及原理进行简单的推导即可得出,此处不详述。
上述实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,如根据应用场合的不同,所述开关管可以是MOSFET、BJT和IGBT等开关器件;根据电路原理和设计需要,通过器件的简单串并联等手段对电路的微调,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种升降压电路,其特征在于:包括输入电源正、输出电源正、电源负、第一开关器件S1、第二开关器件S2、第三开关器件S3、第一耦合电感器件L1、第二耦合电感器件L2、第一电容器件C1和第二电容器件C2;其中,第一开关器件S1的导通电流流入端连接输入电源正和第一电容C1的端口一,第一开关器件S1的导通电流流出端连接第一耦合电感器件L1的端口一,第二开关器件S2的导通电流流入端连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第二开关器件S2的导通电流流出端连接电源负,第三开关器件S3的导通电流流入端连接第二耦合电感器件L2的端口二,第三开关器件S3的导通电流流出端连接输出电源正和第二电容器件C2的端口一,第一电容器件C1和第二电容器件C2的端口二连接电源负。
  2. 根据权利要求1所述的升降压电路,其特征在于:所述第一耦合电感器件L1和第二耦合电感器件L2通过共用一个磁芯而相互耦合在一起。
  3. 根据权利要求1所述的升降压电路,其特征在于:所述第一耦合电感器件L1和第二耦合电感器件L2的匝数是可调整的。
  4. 根据权利要求1所述的升降压电路,其特征在于:所述的第一开关器件S1、第二开关器件S2和第三开关器件S3均为MOS管。
  5. 根据权利要求1所述的升降压电路,其特征在于:所述的第一开关器件S1和第二开关器件S2为MOS管,第三开关器件S3为二极管。
  6. 根据权利要求1至5任一项所述的升降压电路,其特征在于:还包括第三耦合电感器件L3至第X+1耦合电感器件L(X+1)、第四开关器件S4至第X+2开关器件S(X+2),以及第三电容器件C3至第X+1电容器件C(X+1);第三耦合电感器件L3的端口一连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一,第三耦合电感器件L3的端口二连接第四开关器件S4的导通电流流出端,第四开关器件S4的导通电流流入端为升降压电路的第二输出电源正,第三电容器件C3的端口一连接第四开关器件S4的导通电流流入端,第三电容器件C3的端口二连接电源负;依次重复;直至第X+1耦合电感器件L(X+1)的端口一连接第一耦合电感器件L1的端口二和第二耦合电感器件L2的端口一, 第X+1耦合电感器件L(X+1)的端口二连接第X+2开关器件S(X+2)的导通电流流出端,第X+2开关器件S(X+2)的导通电流流入端为升降压电路的第X输出电源正,第X+1电容器件C(X+1)的端口一连接第X+2开关器件S(X+2)的导通电流流入端,第X+1电容器件C(X+1)的端口二连接电源负;X为大于或等于2的自然数。
PCT/CN2019/112795 2018-11-13 2019-10-23 一种升降压电路 WO2020098463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811342262.0A CN109327139A (zh) 2018-11-13 2018-11-13 一种升降压电路
CN201811342262.0 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020098463A1 true WO2020098463A1 (zh) 2020-05-22

Family

ID=65261357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112795 WO2020098463A1 (zh) 2018-11-13 2019-10-23 一种升降压电路

Country Status (2)

Country Link
CN (1) CN109327139A (zh)
WO (1) WO2020098463A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327139A (zh) * 2018-11-13 2019-02-12 广州金升阳科技有限公司 一种升降压电路
CN110071636B (zh) * 2019-05-30 2021-07-06 广东工业大学 一种直流变换电路
CN117526709A (zh) * 2024-01-05 2024-02-06 深圳市高斯宝电气技术有限公司 一种双向直流变换电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650314A (zh) * 2011-03-22 2014-03-19 莱迪尔利恩技术股份有限公司 通过宽电压波动的高效dc到dc转换的装置和方法
CN106208726A (zh) * 2016-07-14 2016-12-07 厦门大学 一种电压型Quasi‑Z‑Source AC‑AC变换器
US9698674B1 (en) * 2015-12-30 2017-07-04 Silicon Laboratories Inc. Timing based approach for efficient switched mode power conversion
CN109327139A (zh) * 2018-11-13 2019-02-12 广州金升阳科技有限公司 一种升降压电路
CN109450258A (zh) * 2018-12-12 2019-03-08 亚瑞源科技(深圳)有限公司 一种双向buck boost线路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290985A (zh) * 2011-08-12 2011-12-21 南京航空航天大学 一种耦合电感升降压直流变换器
CN107517003B (zh) * 2017-08-31 2020-08-28 江苏大学 一种输出浮地输入并联高增益Boost变换电路及切换方法
CN209134302U (zh) * 2018-11-13 2019-07-19 广州金升阳科技有限公司 一种升降压电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650314A (zh) * 2011-03-22 2014-03-19 莱迪尔利恩技术股份有限公司 通过宽电压波动的高效dc到dc转换的装置和方法
US9698674B1 (en) * 2015-12-30 2017-07-04 Silicon Laboratories Inc. Timing based approach for efficient switched mode power conversion
CN106208726A (zh) * 2016-07-14 2016-12-07 厦门大学 一种电压型Quasi‑Z‑Source AC‑AC变换器
CN109327139A (zh) * 2018-11-13 2019-02-12 广州金升阳科技有限公司 一种升降压电路
CN109450258A (zh) * 2018-12-12 2019-03-08 亚瑞源科技(深圳)有限公司 一种双向buck boost线路

Also Published As

Publication number Publication date
CN109327139A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2019128071A1 (zh) 一种dc-dc变换器
WO2021103415A1 (zh) 一种基于倍压整流电路的高增益准谐振dc-dc变换器
CN109889047B (zh) 一种适用于宽输入宽输出电压范围的两级式dc-dc变换器
US10128756B2 (en) DC-DC converter with high transformer ratio
WO2020098463A1 (zh) 一种升降压电路
CN105305829B (zh) 电流型单向dc‑dc变换器及对称双pwm加移相控制方法
WO2016177011A1 (zh) 一种共地的高增益z源升压变换器
CN110224601B (zh) 一种基于三绕组耦合电感的高增益Boost变换器及其工作方法
CN109494989B (zh) 一种小功率电压补偿组合式dc/dc变换器电路及其工作方法
CN105939112A (zh) 一种高增益准开关升压dc-dc变换器
WO2013163776A1 (zh) 一种宽输入电压范围的双输入升降压变换器
CN103391001A (zh) 用于光伏逆变器mppt环节的高增益dcdc变换器
CN107453603B (zh) 一种双输入Sepic变换器
CN106452077B (zh) 带开关电感电容的高升压直流变换器
CN205490142U (zh) 一种开关电感Boost变换器
CN108880240A (zh) 复合型双不对称倍压单元dc-dc变换器
CN209283094U (zh) 一种升降压电路
CN111884521B (zh) 单级式Boost全桥升压零电流开关直流变换器及其控制方法
CN105978322B (zh) 一种开关电容型高增益准z源dc-dc变换器
CN108667304A (zh) 同步整流反激式直流-直流电源转换装置及控制方法
CN112054673A (zh) 一种软开关buck变换器电路及其控制方法
CN209170226U (zh) 一种新型可扩展Zeta DC-DC变换器
CN109274267B (zh) 一种新型可扩展Zeta DC-DC变换器
WO2020007108A1 (zh) 一种开关变换器
TWI501527B (zh) 單輔助開關之交錯式高升壓比柔切式轉換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885657

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19885657

Country of ref document: EP

Kind code of ref document: A1