WO2020098071A1 - 一种水合物沉积物渗透率测试装置 - Google Patents

一种水合物沉积物渗透率测试装置 Download PDF

Info

Publication number
WO2020098071A1
WO2020098071A1 PCT/CN2018/122477 CN2018122477W WO2020098071A1 WO 2020098071 A1 WO2020098071 A1 WO 2020098071A1 CN 2018122477 W CN2018122477 W CN 2018122477W WO 2020098071 A1 WO2020098071 A1 WO 2020098071A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
outlet
reducing valve
inlet
pressure reducing
Prior art date
Application number
PCT/CN2018/122477
Other languages
English (en)
French (fr)
Inventor
李栋梁
王哲
梁德青
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2020098071A1 publication Critical patent/WO2020098071A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change

Definitions

  • the invention relates to a permeability testing device, in particular to a hydrate sediment permeability testing device under high-pressure and low-temperature triaxial conditions.
  • Natural gas hydrate is a solid compound similar in shape to ice. It is composed of low molecular weight gas (mainly hydrocarbon molecules such as methane, ethane, etc., and small molecular gases such as carbon dioxide and hydrogen sulfide) and water molecules at low temperatures. A compound with a cage structure formed under high pressure. Natural gas is mainly formed by methane gas in natural gas hydrate, and because its shape is similar to ice, it is generally called combustible ice. Methane hydrates are mainly stored in the deep-sea submarine slope environment and the permafrost regions on land. Gas hydrates under the standard condition can be released methane gas 164 ⁇ 180m 3 of water and of 0.87m 3. According to conservative estimates, the content of natural gas hydrates in nature is 21 ⁇ 10m 3 , which is almost twice that of fossil energy known on earth, and is considered to be an ideal alternative energy source for fossil energy in the 21st century.
  • low molecular weight gas mainly hydrocarbon molecules such as
  • the China Geological Survey successively carried out three hydrate drillings in the Shenhu sea area, and obtained high saturation diffusion hydrates in low-permeability clay silt reservoirs, delineating 10 high grades.
  • the hydrate layer has a maximum thickness of 80m and a maximum saturation of 75%.
  • the China Geological Survey carried out the first natural gas hydrate trial mining in the Shenhu area of the South China Sea. The gas test was fired for 60 days. The cumulative gas production was 309,000 m3, the average daily gas production was 5151m3, and the methane content was as high as 99.5%.
  • natural gas hydrate development potential evaluation, mining economic evaluation, mining safety evaluation and mining process selection all depend on a clear understanding of the natural gas hydrate reservoir geological characteristics, and the reservoir geological characteristics mainly include reservoir temperature, pressure, Saturation, porosity, permeability, etc. Among them, temperature, pressure, etc. can be obtained in drilling and other detailed data, on-site permeability measurement is more complicated, and there are many interference factors, it is difficult to obtain accurate and effective permeability parameters. less.
  • reaction vessel internal end cap and base are connected by a metal capillary tube.
  • the capillary tube solves the problem of pressure resistance and sealing, but due to the use of deposits, it is easy to cause capillary blockage.
  • the currently reported devices are all closed reaction chambers, and it is not possible to observe changes in hydrate deposits during the experiment.
  • the purpose of the present invention is to provide a hydrate sediment permeability test device, which can improve the reliability, pressure resistance, observability and economy of the natural gas hydrate permeability test device.
  • a hydrate sediment permeability test device including a reaction kettle, a constant pressure air intake system connected to the reaction kettle, a water inlet system, an outlet pressure control system, a confining pressure loading system, an in-situ stress loading system, a data acquisition system, a pump Vacuum system and temperature control system; constant pressure air intake system, water inlet system, outlet pressure control system, confining pressure loading system, in-situ stress loading system, data acquisition system, vacuuming system and temperature control system are all connected to the computer;
  • the reaction kettle includes an outer frame, a suspension wire motor, a guide rod, a housing, a base, a pulley, and a suspension wire.
  • the housing is a cylinder with a closed top surface, and a lower flange is provided on the bottom surface, and is fixed to the top surface of the base through the lower flange Connected to form a closed reactor inner cavity
  • the outer frame includes a bottom plate, two uprights spaced on the bottom plate, a lower crossbar connected at the middle of the two uprights, and an upper crossbar connected at the top of the two uprights, and the outer shell
  • the top surface is provided with an upper flange, and two guide rods are respectively provided on both sides of the casing.
  • the lower end of the guide rod is connected to the bottom plate of the outer frame, and the upper end passes through the upper flange of the casing and is connected to the lower cross bar of the outer frame ,
  • the suspension wire motor is installed on the upper cross bar of the outer frame, the lower end of the suspension wire is connected to the upper flange of the casing, and the upper end is connected to the rotating shaft of the suspension wire motor.
  • the bottom surface of the base, the base is placed on the bottom plate of the outer frame through the pulley;
  • the ground stress loading system includes a screw motor, a screw, a first coupling and a force transmission shaft.
  • the screw motor is installed on the lower crossbar of the outer frame, the upper end of the screw is connected to the screw motor, and the lower end is connected to the first coupling
  • the upper end of the force transmission shaft is connected, and the lower end of the force transmission shaft passes through the top surface of the housing and extends into the cavity of the reaction kettle;
  • the top surface of the base is provided with an upward boss
  • the lower end surface of the force transmission shaft is provided with a downward boss
  • a transparent rubber sleeve is provided in the inner cavity of the reaction kettle, and the two ends of the transparent rubber sleeve are respectively It is sleeved on the boss of the base and the boss of the force transmission shaft to form a sample cavity for placing samples.
  • Both the base and the force transmission shaft are provided with an inlet and outlet communicating with the sample cavity, and a transparent window is opened on the side of the housing.
  • the outlet pressure control system includes a booster pump, an outlet buffer tank, a third pressure gauge, and a fifth pressure reducing valve.
  • the outlet buffer tank is connected to the booster pump, and the booster pump passes through the third pressure gauge, the first 5. After the pressure reducing valve is connected with the inlet and outlet of the base.
  • the booster pump includes a motor, a gear, a toothed sleeve, a afterburner screw, a second coupling, a piston, and a cylinder.
  • the gear is installed on the output shaft of the motor, and the toothed sleeve is connected to the gear Meshing, afterburning screw is screwed with toothed threaded sleeve, afterburning screw is connected to the piston sleeved on the cylinder through the second coupling, and a second displacement sensor for detecting the displacement of the piston is also provided on the cylinder
  • a pressure sensor for detecting cylinder pressure, a gas-liquid inlet and outlet connected to the third pressure gauge, and a buffer tank interface connected to the outlet buffer tank.
  • the vacuum pumping system includes a vacuum pump and a second pressure reducing valve.
  • the vacuum pump communicates with the inlet and outlet of the force transmission shaft through the second pressure reducing valve.
  • the constant pressure air intake system includes a gas cylinder, a sixth pressure reducing valve, a first pressure gauge, a third pressure reducing valve, a constant pressure pump, and an inlet buffer tank.
  • the inlet buffer tank is connected to the constant pressure pump.
  • the constant pressure pump is connected between the sixth pressure reducing valve and the first pressure gauge.
  • the gas cylinder is connected to the inlet and outlet of the force transmission shaft through the sixth pressure reducing valve, the first pressure gauge, and the third pressure reducing valve in sequence.
  • An inlet and outlet pressure difference sensor one end of which is connected to the pipeline between the third pressure reducing valve and the inlet and outlet of the force transmission shaft, and the other end is connected to the phase pipeline between the fifth pressure reducing valve and the inlet and outlet of the base.
  • the confining pressure loading system includes a confining pressure liquid loading device, a first pressure reducing valve, an electric booster pump, a second pressure gauge, and a fourth pressure reducing valve.
  • the loading device communicates with the inlet and outlet of the housing through the first pressure reducing valve
  • the electric booster pump sequentially communicates with the inlet and outlet of the housing through the second pressure gauge and the fourth pressure reducing valve.
  • the data acquisition system includes a data acquisition board connected to a computer, a temperature sensor and a confining pressure sensor installed on the top of the housing and extending into the inner cavity of the reaction kettle, and a ground installed on the first coupling
  • the stress sensor, the first displacement sensor installed between the lower cross bar and the housing, the temperature sensor, the confining pressure sensor, the ground stress sensor and the first displacement sensor are all connected to the data acquisition board.
  • the temperature control system is an air bath.
  • the sample cavity is also provided with a metal gasket, a metal filter screen and a filter paper, and the two ends of the sample are respectively connected to the boss of the base and the boss of the force transmission shaft through the filter paper, the metal filter and the metal gasket in sequence.
  • the present invention has the following advantages:
  • the motor controls the lifting of the casing and the force transmission shaft, which can avoid the disturbance of the hydrate sediment samples during the loading process, ensure concentricity to prevent the rubber sleeve from being cut, and at the same time save labor and improve work efficiency.
  • the design pressure range of the reactor is 0 ⁇ 30MPa
  • the system working temperature and the design temperature range of the reactor are -30 °C ⁇ 50 °C, which can simulate the temperature and pressure conditions of natural gas hydrate on the seabed and frozen soil area.
  • the reaction kettle is equipped with a transparent window and a transparent rubber sleeve is used to surround the sample. The changes of the sample during the experiment can be observed.
  • FIG. 1 is a working principle diagram of the penetration test device of the present invention
  • FIG. 2 is a schematic structural diagram of a permeability test device of the present invention, in which the reaction kettle is viewed from the front;
  • Figure 3 is a side view of the reaction kettle of the present invention.
  • FIG. 4 is a schematic structural view of the booster pump of the present invention.
  • a hydrate sediment permeability test device includes a reaction kettle, a constant pressure air intake system connected to the reaction kettle, a water inlet system, an outlet pressure control system, a confining pressure loading system, a ground Stress loading system, data acquisition system, vacuum system and temperature control system; constant pressure air intake system, water inlet system, outlet pressure control system, confining pressure loading system, in-situ stress loading system, data acquisition system, vacuum system and temperature
  • the control system is connected to the computer 1.
  • the reaction kettle includes an outer frame 3, a suspension wire motor 4, a guide rod 11, a housing 12, a base 13, a pulley 16, and a suspension wire 19.
  • the outer shell 12 is a cylinder with a closed top surface and an open bottom surface.
  • the bottom surface of the outer shell 12 is provided with a lower flange.
  • the lower flange and the top surface of the base 13 are fixedly connected by a flange connecting screw 14 and a sealing ring 17 to form a closed reaction kettle. Cavity.
  • the outer frame 3 includes a bottom plate, two upright bars spaced on the bottom plate, a lower crossbar connected at the middle of the two upright bars, and an upper crossbar connected at the top of the two upright bars.
  • the top surface of the casing 12 is provided with an upper flange, and two guide rods 11 are provided on both sides of the casing 12, the lower end of the guide rod 11 is connected to the bottom plate of the outer frame 3, and the upper end passes through the upper flange of the casing 12
  • the lower crossbar of the outer frame 3 is connected, the suspension wire motor 4 is installed on the upper crossbar of the outer frame 3, the lower end of the suspension wire 19 is connected to the upper flange of the housing 12, and the upper end is connected to the rotating shaft of the suspension wire motor 4, in this embodiment,
  • the roller 19 matched with the suspension wire motor 4 realizes the collection and release of the suspension wire 19, so that the traction casing 12 moves up and down along the guide rod 11 to open or close the reaction kettle.
  • the pulley 16 is installed on the bottom surface of the base 13, and the base 13 is placed on the bottom plate of the outer frame 3 through the pulley 16, so that it can be dragged along the bottom plate to facilitate loading of the sample 15.
  • the ground stress loading system includes a screw motor 5, a screw 6, a first coupling 21 and a force transmission shaft 31.
  • the screw motor 5 is mounted on the lower crossbar of the outer frame 3 through the motor bracket 18, the upper end of the screw 6 is connected to the screw motor 5, the lower end is connected to the upper end of the force transmission shaft 31 through the first coupling 21, and the lower end of the force transmission shaft 31 After passing through the top surface of the outer shell 12 and extending into the inner cavity of the reaction kettle, a sealing ring needs to be provided between the force transmission shaft 31 and the top surface of the outer shell 12 to ensure the tightness of the inner cavity of the reaction kettle.
  • the screw motor 5 is used to drive the screw 6 to move up and down, and the power transmission shaft 31 moves up and down through the first coupling 21 to apply ground stress.
  • the specific motion mechanism is the same as the booster pump 24 below.
  • the top surface of the base 13 is provided with an upward boss, and the lower end surface of the force transmission shaft 31 is provided with a downward boss.
  • a transparent rubber sleeve 37 is provided in the cavity of the reaction kettle, and both ends of the transparent rubber sleeve 37 are sleeved
  • the boss of the base 13 and the boss of the force transmission shaft 31 can be tightly bound by a rubber ring to form a sample chamber for placing the sample 15.
  • Both the base 13 and the force transmission shaft 31 are provided with an inlet and outlet communicating with the sample chamber.
  • a transparent window 39 is opened on the side of the casing 12. Through the transparent window 39 and the transparent rubber cover 37, the changes of the sample 15 during the experiment can be observed.
  • the sample chamber is also provided with a metal gasket 33, a metal filter screen 34 and a filter paper 35. Both ends of the sample 15 respectively pass through the filter paper 35, the metal filter screen 34 and the metal gasket 33 in sequence with the boss of the base 13 and the force transmission shaft 31 The boss is connected.
  • the outlet pressure control system includes a booster pump 24, an outlet buffer tank 29, a third pressure gauge P3 and a fifth pressure reducing valve F5.
  • the outlet buffer tank 29 is connected to the booster pump 24, which in turn passes through the third pressure gauge P3 5.
  • the fifth pressure reducing valve F5 communicates with the inlet and outlet of the base 13 to control the outlet pressure of the sample chamber.
  • the booster pump 24 includes a motor 40, a gear 41, a toothed sleeve 49, a afterburner screw 42, a second coupling 43, a piston 50, and a cylinder 51.
  • the gear 41 is mounted on the output shaft of the motor 40 Up, the toothed threaded sleeve 49 meshes with the gear 41, the afterburner screw 42 is screwed to the toothed threaded sleeve 49, the upper end of the afterburner screw 42 is connected to the piston 50 sleeved on the cylinder 51 through the second coupling 43 .
  • the toothed screw sleeve 49 is set to rotate only, and cannot move in the axial direction of the afterburner screw 42.
  • the lower end of the afterburner screw 42 is slidably sleeved on the positioning seat.
  • the motor 40 drives the gear 41 to rotate, and then the gear 41 drives the belt
  • the toothed screw sleeve 49 rotates, and the toothed screw sleeve 49 drives the afterburner screw 42 to rotate, thereby realizing the up and down movement of the afterburner screw 42.
  • the afterburner screw 42 drives the piston 50 to move up and down through the coupling 43 to achieve pressurization.
  • the cylinder 51 is also provided with a second displacement sensor 44 for detecting the displacement of the piston 50, a pressure sensor 45 for detecting the pressure in the cylinder 51, a gas-liquid inlet and outlet 47 connected to the third pressure gauge P3, and an outlet buffer
  • the buffer tank interface 48 of the tank 29 is connected.
  • the vacuum pumping system includes a vacuum pump 23 and a second pressure-reducing valve F2.
  • the vacuum pump 23 is connected to the inlet and outlet of the force transmission shaft 31 through the second pressure-reducing valve F2 through a pipeline. .
  • the constant pressure intake system includes a gas cylinder 27, a sixth pressure reducing valve F6, a first pressure gauge P1, a third pressure reducing valve F3, a constant pressure pump 26, and an inlet buffer tank 28.
  • the inlet buffer tank 28 is connected to the constant pressure pump 26.
  • the constant pressure pump 26 is connected between the sixth pressure reducing valve F6 and the first pressure gauge P1.
  • the gas cylinder 27 passes through the sixth pressure reducing valve F6 and the first pressure gauge P1 in sequence. 3.
  • the third pressure reducing valve F3 communicates with the inlet and outlet of the force transmission shaft 31.
  • the confining pressure loading system includes a confining pressure liquid loading device 10, a first pressure reducing valve F1, an electric booster pump 25, a second pressure gauge P2, and a fourth pressure reducing valve F4.
  • the side of the casing 12 is provided with an inlet and outlet.
  • the confining pressure fluid loading device 10 communicates with the inlet and outlet of the casing 12 through the first pressure reducing valve F1, and can inject the confining fluid into the pressure chamber.
  • the electric booster pump 25 is in turn communicated with the inlet and outlet of the casing 12 through the second pressure gauge P2 and the fourth pressure reducing valve F4, and is used to adjust the surrounding pressure of the reaction kettle.
  • the data acquisition system includes a data acquisition board 2 connected to the computer 1, a temperature sensor 7 and a confining pressure sensor 8 installed on the top of the housing 12 and extending into the inner cavity of the reaction kettle, and a ground stress sensor installed on the first coupling 21 22.
  • the first displacement sensor 9 installed between the lower cross bar and the housing, the temperature sensor 7, the confining pressure sensor 8, the first displacement sensor 9 and the ground stress sensor 22 are all connected to the data acquisition board 2.
  • the temperature control system is an air bath 32 in which the entire reactor is placed to achieve a low temperature environment for hydrate formation.
  • the main process of penetration testing includes:
  • the airtightness is good to enter the next step.
  • the sample 15 for calibration can be made of polytetrafluoroethylene, aluminum or lead or other elastic materials with small elastic modulus.
  • the middle is perforated to ensure that the inlet and outlet of the force transmission shaft communicate with the inlet and outlet of the base through the sample for calibration.
  • the modulus of elasticity needs to be much smaller than that of stainless steel.
  • step (1) the sediment sample 15 is fixed between the force transmission shaft 31 and the base 13, and the bottom and top of the sample 15 are covered with a metal gasket 33, a metal filter 34, and a filter paper 35, respectively. Tighten the transparent rubber sleeve 37 with a rubber band so that it closely adheres to the boss of the base 13 and the boss of the force transmission shaft 31.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种水合物沉积物渗透率测试装置,包括反应釜、与反应釜相连的恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统;恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统均与计算机(1)相连。水合物沉积物渗透率测试装置提高了测试的可靠性、耐压性、可观测性及经济性。

Description

一种水合物沉积物渗透率测试装置 技术领域
本发明涉及一种渗透率测试装置,尤其是一种高压低温三轴条件下的水合物沉积物渗透率测试装置。
背景技术
天然气水合物是一种外形类似于冰的固体化合物,它是由低分子量气体(主要是烃类分子,如甲烷、乙烷等,还有二氧化碳、硫化氢等小分子气体)和水分子在低温高压的条件下所构成的笼状结构的化合物。自然界中主要是由甲烷气体形成的天然气水合物为主,而且因为其外形类似于冰,一般又被成为可燃冰。甲烷水合物主要储藏在海底深水陆坡环境以及陆地永久冻土区。天然气水合物在标准状态下可释放出164~180m 3的甲烷气体和0.87m 3的水。据保守估计,自然界中天然气水合物的含量21×10m 3,这几乎是地球上已知的化石能源的两倍,被认为是21世纪化石能源的理想替代能源。
2007年、2015年和2016年中国地质调查局相继在神狐海域实施3次水合物钻探,在低渗透黏土质粉砂储层中获取了高饱和度扩散型水合物,圈定了10个高品位矿体,水合物层厚度最大达80m,最大饱和度达75%。2017年5月,中国地质调查局在南海神狐海域进行了首次天然气水合物试开采,连续试气点火60天,累计产气30.9万m3,平均日产气5151m3,甲烷含量最高达99.5%。同时,中国海洋石油公司在南海荔湾海域采用“固态流化开采技术”也实现了对深水浅层非成岩天然气水合物的开采。随着试采的不断获得成功,天然气水合物的商业性开采也被列入了主要发达国家的发展规划,如日本、美国等。
然而,天然气水合物开发潜力评价、开采经济性评价、开采安全评价和开采工艺选择等均依赖于对天然气水合物储层地质特征的清晰认识,而储层地质特征主要包括储层温度、压力、饱和度、孔隙度、渗透率等。其中,温度、压力等在钻井等勘探中可获得详细数据,现场渗透率测定较为复杂,且干扰因素较多,难以获取准确有效的渗透率参数,同时关于含水合物地层的渗透率研究还较少。另外,在天然气水合物进行商业开采之前,必须深入而彻底地了解天然气水合物的储层地质特征包括渗透率及渗透率在开采过程中的变化规律,才能对开采过程中水合物储层损害以及对海底结构物的影响进行正确的评价,从而最大限度的降低水合物盲目开采而带来严重后果。
近年来,国内外有很多研究机构都研究了水合物原位生成的技术,并设计制作了水合 物沉积物力学性质测试的装置,其中有不少都是测量水合物沉积物渗透率的设备。水合物沉积物的原位渗透率装置的核心部件是反应釜,反应釜可实现沉积物中水合物的合成、剪切和分解。目前的反应釜可实现底部进气或顶部进气,有的还实现了底部和顶部同时进气,但是顶部和底部大多采用耐压软管连接,总体耐压不高,且很容易泄露,稍微操作不当就会使实验前功尽弃,导致目前报道的实验设备设计压力很高,但是很少有高压(大于10MPa)下的实验数据报道。耐压软管连接很容易损坏,设备需经常维修,且装样麻烦,操作需严格按照操作章程,有时还不能单人操作,单人操作很难保证样品垂直安装。少部分反应釜内部端盖和底座间采用金属毛细管连接,毛细管解决了耐压和密封问题,但由于使用了沉积物,很容易造成毛细管堵塞。除此之外,目前报道的设备都是密闭的反应室,无法观测到实验过程中水合物沉积物的变化。
发明内容
本发明的目的在于提供一种水合物沉积物渗透率测试装置,可提高天然气水合物渗透率测试装置的可靠性、耐压性、可观测性及经济性。
为实现上述目的,本发明的技术方案是:
一种水合物沉积物渗透率测试装置,包括反应釜、与反应釜相连的恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统;恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统均与计算机相连;
所述的反应釜包括外框架、吊线电机、导向杆、外壳、底座、滑轮和吊线,外壳为顶面封闭的筒体,其底面设有下法兰,并通过下法兰与底座顶面固定连接以形成一封闭的反应釜内腔,外框架包括底板、间隔设置在底板上的两根立杆、连接在两根立杆中部的下横杆、以及连接在两根立杆顶部的上横杆,外壳顶面设有上法兰,导向杆为两根,分别设置在外壳的两侧,导向杆的下端与外框架的底板连接,上端穿过外壳的上法兰后与外框架的下横杆连接,吊线电机安装在外框架的上横杆上,吊线的下端与外壳的上法兰连接,上端连接在吊线电机的转轴上,吊线电机带动吊线收放以驱动外壳沿导向杆上下运动,滑轮安装在底座的底面,底座通过滑轮放置在外框架的底板上;
所述的地应力加载系统包括螺杆电机、螺杆、第一联轴器和力传递轴,螺杆电机安装在外框架的下横杆上,螺杆的上端与螺杆电机连接,下端通过第一联轴器与力传递轴的上端连接,力传递轴的下端穿过外壳顶面后伸入到反应釜内腔中;
所述底座的顶面设有向上的凸台,所述力传递轴的下端面设有向下的凸台,在所述反应釜内腔中设置有透明橡胶套,透明橡胶套的两端分别套设在底座的凸台和力传递轴的凸台上,构成放置样品的样品腔,底座和力传递轴上均设有与样品腔连通的进出口,外壳侧面开设有透明视窗。
进一步地,所述的出口压力控制系统包括增压泵、出口缓冲罐、第三压力表和第五减压阀,出口缓冲罐与增压泵连接,增压泵依次经第三压力表、第五减压阀后与底座的进出口连通。
进一步地,所述的增压泵包括电机、齿轮、带齿螺套、加力螺杆、第二联轴器、活塞和缸体,齿轮安装在电机的输出轴上,带齿螺套与齿轮相啮合,加力螺杆与带齿螺套螺接,加力螺杆通过第二联轴器与套设在缸体上的活塞连接,在缸体上还设有用于检测活塞位移的第二位移传感器、用于检测缸体压力的压力传感器、与第三压力表连接的气液进出口、与出口缓冲罐连接的缓冲罐接口。
进一步地,所述的抽真空系统包括真空泵和第二减压阀,真空泵经第二减压阀与力传递轴的进出口连通。
进一步地,所述的恒压进气系统包括气瓶,第六减压阀、第一压力表、第三减压阀、恒压泵和进口缓冲罐,进口缓冲罐连接在恒压泵上,恒压泵连接在第六减压阀和第一压力表之间,气瓶依次经第六减压阀、第一压力表、第三减压阀后与力传递轴的进出口连通,还包括一个进出口压差传感器,其一端连接在第三减压阀与力传递轴进出口之间的管道上,另一端连接在第五减压阀与底座进出口之间的相管道上。
进一步地,所述的围压加载系统包括围压液加载装置、第一减压阀、电动增压泵、第二压力表和第四减压阀,外壳的侧面开设有进出口,围压液加载装置通过第一减压阀与外壳的进出口连通,电动增压泵依次经第二压力表、第四减压阀与外壳的进出口连通。
进一步地,所述的数据采集系统包括与计算机连接的数据采集板、安装在外壳顶部且延伸至所述反应釜内腔中的温度传感器和围压传感器、安装在第一联轴器上的地应力传感器、安装在下横杆与外壳之间的第一位移传感器,温度传感器、围压传感器、地应力传感器和第一位移传感器均与数据采集板连接。
进一步地,所述的温度控制系统为空气浴。
进一步地,所述的样品腔中还设置金属垫片、金属滤网和滤纸,样品两端分别依次通过滤纸、金属滤网、金属垫片后与底座的凸台、力传递轴的凸台相连。
本发明与现有技术相比,具有如下优点:
1、通过电机控制外壳和力传递轴升降,能避免装样过程中对含水合物沉积物样品的扰动,保证同心从而避免橡胶套被剪破,同时能节省劳动力,提高工作效率。
2、反应釜的设计压力范围为0~30MPa,系统工作温度以及反应釜的设计温度范围为-30℃~50℃,可以模拟海底以及冻土区域的天然气水合物的温度,压力条件。
3、反应釜带有透明视窗以及使用透明橡胶套包围样品,可以观察到实验过程中样品发生的变化。
附图说明
图1为本发明渗透率测试装置的工作原理图;
图2为本发明渗透率测试装置的结构示意图,图中反应釜为正视;
图3为本发明反应釜的侧视图;
图4为本发明增压泵的结构示意图;
附图标记说明:1-计算机;2-数据采集板;3-外框架;4-吊线电机;5-螺杆电机;6-螺杆;7-温度传感器;8-围压传感器;9-第一位移传感器;10-围压液加载装置;11-导向杆;12-外壳;13-底座;14-法兰连接螺钉;15-样品;16-滑轮;17-密封圈;18-电机支架;19-吊线;20-滚轮;21-第一联轴器;22-地应力传感器;23-真空泵;24增压泵;25-电动增压泵;26-恒压泵;27-气瓶;28-进口缓冲罐;29-出口缓冲罐;30-进出口压差传感器;31-力传递轴;32-空气浴;33-金属垫片;34-金属滤网;35-滤纸;36-金属套管;37-透明橡胶套;38-固定夹;39-透明视窗;40-电机;41-齿轮;42-加力螺杆;43-第二联轴器;44-第二位移传感器;45-压力传感器;46-第五压力表;47-气液进出口;48-缓冲罐接口;F1-第一减压阀;F2-第二减压阀;F3-第三减压阀;F4-第四减压阀;F5-第五减压阀;F6-第六减压阀;P1-第一压力表;P2-第二压力表;P3-第三压力表。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1至图4所示,一种水合物沉积物渗透率测试装置,包括反应釜、与反应釜相连的恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统;恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统均与计算机1相连。
请参照图2和图3,反应釜包括外框架3、吊线电机4、导向杆11、外壳12、底座13、滑轮16和吊线19。外壳12为顶面封闭、底面敞开的筒体,外壳12底面设有下法兰,下法兰与底座13顶面通过法兰连接螺钉14、密封圈17固定连接以形成一封闭的反应釜内腔。外框架3包括底板、间隔设置在底板上的两根立杆、连接在两根立杆中部的下横杆、以及连接在两根立杆顶部的上横杆。外壳12顶面设有上法兰,导向杆11为两根,分别设置在外壳12的两侧,导向杆11的下端与外框架3的底板连接,上端穿过外壳12的上法兰后与外框架3的下横杆连接,吊线电机4安装在外框架3的上横杆上,吊线19的下端与外壳12的上法兰连接,上端连接在吊线电机4的转轴上,本实施例中,吊线19为两根,分别连接在外壳12上法兰的两端,且分别通过安装在外框架3下横杆上的滚轮20进行导向。通过吊线电机4配套的辊轴实现吊线19的收放,从而牵引外壳12沿导向杆11上下运动,以打开或关闭反应釜。同时,滑轮16安装在底座13的底面,底座13通过滑轮16放置在外框架3的底板上,从而可以沿底板拖动,以方便装填样品15。
地应力加载系统包括螺杆电机5、螺杆6、第一联轴器21和力传递轴31。螺杆电机5通过电机支架18安装在外框架3的下横杆上,螺杆6的上端与螺杆电机5连接,下端通过第一联轴器21与力传递轴31的上端连接,力传递轴31的下端穿过外壳12顶面后伸入到反应釜内腔中,力传递轴31与外壳12顶面之间需设置密封圈,以保证反应釜内腔的密闭性。螺杆电机5用于驱动螺杆6上下移动,通过第一联轴器21带动力传递轴31上下运动,从而施加地应力,其具体运动机构同下面的增压泵24。
底座13的顶面设有向上的凸台,力传递轴31的下端面设有向下的凸台,在反应釜内腔中设置有透明橡胶套37,透明橡胶套37的两端分别套设在底座13的凸台和力传递轴31的凸台上,并可用橡皮圈扎紧,构成放置样品15的样品腔,底座13和力传递轴31上均设有与样品腔连通的进出口,外壳12侧面开设有透明视窗39,通过透明视窗39和透明橡胶套37,可以观察到实验过程中样品15发生的变化。样品腔中还设置有金属垫片33、金属滤网34和滤纸35,样品15两端分别依次通过滤纸35、金属滤网34、金属垫片33后与底座13的凸台、力传递轴31的凸台相连。
出口压力控制系统包括增压泵24、出口缓冲罐29、第三压力表P3和第五减压阀F5,出口缓冲罐29与增压泵24连接,增压泵24依次经第三压力表P3、第五减压阀F5后与底座13的进出口连通,以控制样品腔的出口压力。
请参照图4,增压泵24包括电机40、齿轮41、带齿螺套49、加力螺杆42、第二联轴器43、活塞50和缸体51,齿轮41安装在电机40的输出轴上,带齿螺套49与齿轮41相 啮合,加力螺杆42与带齿螺套49螺接,加力螺杆42上端通过第二联轴器43与套设在缸体51上的活塞50连接。带齿螺套49被设置成只能转动,不能沿加力螺杆42轴向移动,加力螺杆42下端滑动套设在定位座上,作为支撑,电机40带动齿轮41转动,然后齿轮41带动带齿螺套49转动,带齿螺套49带动加力螺杆42转动,从而实现加力螺杆42的上下移动,加力螺杆42通过联轴器43带动活塞50上下移动,实现增压。在缸体51上还设有用于检测活塞50位移的第二位移传感器44、用于检测缸体51内压力的压力传感器45、与第三压力表P3连接的气液进出口47、与出口缓冲罐29连接的缓冲罐接口48。
抽真空系统包括真空泵23和第二减压阀F2,真空泵23经第二减压阀F2通过管道与力传递轴31的进出口连通,用于在水合物合成前将样品腔中的空气抽走。
恒压进气系统包括气瓶27,第六减压阀F6、第一压力表P1、第三减压阀F3、恒压泵26和进口缓冲罐28。进口缓冲罐28连接在恒压泵26上,恒压泵26连接在第六减压阀F6和第一压力表P1之间,气瓶27依次经第六减压阀F6、第一压力表P1、第三减压阀F3后与力传递轴31的进出口连通。出口压力控制系统与恒压进气系统之间设有一个进出口压差传感器30,其一端连接在第三减压阀F3与力传递轴31进出口之间的管道上,另一端连接在第五减压阀F5与底座13进出口之间的相管道上。
围压加载系统包括围压液加载装置10、第一减压阀F1、电动增压泵25、第二压力表P2和第四减压阀F4。外壳12的侧面开设有进出口,围压液加载装置10通过第一减压阀F1与外壳12的进出口连通,可向压力腔内注入围压液。电动增压泵25依次经第二压力表P2、第四减压阀F4与外壳12的进出口连通,用于调节反应釜围压。
数据采集系统包括与计算机1连接的数据采集板2、安装在外壳12顶部且延伸至反应釜内腔中的温度传感器7和围压传感器8、安装在第一联轴器21上的地应力传感器22、以及安装在下横杆与外壳之间的第一位移传感器9,温度传感器7、围压传感器8、第一位移传感器9和地应力传感器22均与数据采集板2连接。
温度控制系统为空气浴32,整个反应釜置于其中,实现水合物生成的低温环境。
在本实施例中,渗透率测试的主要过程包括:
(1)装配并检查设备的气密性:将抽真空系统、恒压进气系统、围压加载系统、地应力加载系统、出口压力控制系统、数据采集系统与反应釜装配好之后,留下法兰未连接,连接好相应的排水排气管,用橡皮圈扎紧透明橡皮套37下端,使其紧贴底座13的凸台(其中,透明橡皮套37可以是中空的筒状或方形结构),套上金属套管36,再使用固定夹38固定,开始装样品15,等样品15装完后,撤去固定夹38和金属套管36,关闭并密封反 应釜内腔,用围压加载系统将围压增至5MPa,温度常温,通过恒压进气系统向样品腔内注入氦气,用洗洁精水沿缝检测气密性。气密性良好进入下一步。标定用样品15可采用聚四氟乙烯或铝或铅或其他弹性模量较小的弹性材料,中间穿孔并保证力传递轴的进出口通过标定用样品与底座的进出口相通,标定用样品的弹性模量需远小于不锈钢。
(2)填装样品:卸掉氦气及围压液,打开外壳12和底座13之间连接的法兰连接螺钉14,向上升起外壳12,将底座13拉出。同步骤(1)一样,将沉积物样品15固定在力传递轴31和底座13之间,样品15的底部和顶部分别铺上金属垫片33、金属滤网34和滤纸35。用橡皮圈扎紧透明橡皮套37,使其紧贴底座13的凸台和力传递轴31的凸台。
(3)水合物生成:将外壳12保持垂直闭合并重新将外壳12和底座13通过法兰连接螺钉14固定,注入围压液。利用围压加载系统将反应釜内围压逐步加压到所需数值,通过恒压进气系统向样品腔内注入甲烷气,通过进水系统向样品腔内注入去离子水,通过空气浴32将温度逐步降至天然气水合物的合成温度,合成天然气水合物。
(4)启动恒压泵26注入氦气,将底座13的进出口连接到出口压力控制系统,并设定恒定的进出口压力,检测气体流量。
(5)通过地应力加载系统和围压加载系统调节地应力和围压至实验参考值,当出气压力稳定后,检测流速并记录。
(6)测量结束后,降低出口压力到水合物相平衡压力之下使水合物部分分解,然后将出口压力升至一定数值,第一次水合物分解结束。
(7)再次启动恒压泵26注入氦气,并设定恒定的进出口压力,检测气体流量。
(8)当出气压力速度稳定后,检测流速并记录。
(9)测量结束后,降低出口压力到水合物相平衡压力之下使水合物部分分解,然后将出口压力升至一定数值,第二次水合物分解结束。
(10)重复以上步骤7-9即可完成水合物降压过程中,水合物沉积物的三轴加载渗透率测试。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (9)

  1. 一种水合物沉积物渗透率测试装置,其特征在于:包括反应釜、与反应釜相连的恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统;恒压进气系统、进水系统、出口压力控制系统、围压加载系统、地应力加载系统、数据采集系统、抽真空系统和温控系统均与计算机(1)相连;
    所述的反应釜包括外框架(3)、吊线电机(4)、导向杆(11)、外壳(12)、底座(13)、滑轮(16)和吊线(19),外壳(12)为顶面封闭的筒体,其底面设有下法兰,并通过下法兰与底座(13)顶面固定连接以形成一封闭的反应釜内腔,外框架(3)包括底板、间隔设置在底板上的两根立杆、连接在两根立杆中部的下横杆、以及连接在两根立杆顶部的上横杆,外壳(12)顶面设有上法兰,导向杆(11)为两根,分别设置在外壳(12)的两侧,导向杆(11)的下端与外框架(3)的底板连接,上端穿过外壳(12)的上法兰后与外框架(3)的下横杆连接,吊线电机(4)安装在外框架(3)的上横杆上,吊线(19)的下端与外壳(12)的上法兰连接,上端连接在吊线电机(4)的转轴上,吊线电机(4)带动吊线(19)收放以驱动外壳(12)沿导向杆(11)上下运动,滑轮(16)安装在底座(13)的底面,底座(13)通过滑轮(16)放置在外框架(3)的底板上;
    所述的地应力加载系统包括螺杆电机(5)、螺杆(6)、第一联轴器(21)和力传递轴(31),螺杆电机(5)安装在外框架(3)的下横杆上,螺杆(6)的上端与螺杆电机(5)连接,下端通过第一联轴器(21)与力传递轴(31)的上端连接,力传递轴(31)的下端穿过外壳(12)顶面后伸入到反应釜内腔中;
    所述底座(13)的顶面设有向上的凸台,所述力传递轴(31)的下端面设有向下的凸台,在所述反应釜内腔中设置有透明橡胶套(37),透明橡胶套(37)的两端分别套设在底座(13)的凸台和力传递轴(31)的凸台上,构成放置样品(15)的样品腔,底座(13)和力传递轴(31)上均设有与样品腔连通的进出口,外壳(12)侧面开设有透明视窗(39)。
  2. 根据权利要求1所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的出口压力控制系统包括增压泵(24)、出口缓冲罐(29)、第三压力表(P3)和第五减压阀(F5),出口缓冲罐(29)与增压泵(24)连接,增压泵(24)依次经第三压力表(P3)、第五减压阀(F5)后与底座(13)的进出口连通。
  3. 根据权利要求2所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的增压泵(24)包括电机(40)、齿轮(41)、带齿螺套(49)、加力螺杆(42)、第二联轴器(43)、活塞(50)和缸体(51),齿轮(41)安装在电机(40)的输出轴上,带齿螺套(49) 与齿轮(41)相啮合,加力螺杆(42)与带齿螺套(49)螺接,加力螺杆(42)通过第二联轴器(43)与套设在缸体(51)上的活塞(50)连接,在缸体(51)上还设有用于检测活塞(50)位移的第二位移传感器(44)、用于检测缸体(51)压力的压力传感器(45)、与第三压力表(P3)连接的气液进出口(47)、与出口缓冲罐(29)连接的缓冲罐接口(48)。
  4. 根据权利要求1所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的抽真空系统包括真空泵(23)和第二减压阀(F2),真空泵(23)经第二减压阀(F2)与力传递轴(31)的进出口连通。
  5. 根据权利要求2所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的恒压进气系统包括气瓶(27),第六减压阀(F6)、第一压力表(P1)、第三减压阀(F3)、恒压泵(26)和进口缓冲罐(28),进口缓冲罐(28)连接在恒压泵(26)上,恒压泵(26)连接在第六减压阀(F6)和第一压力表(P1)之间,气瓶(27)依次经第六减压阀(F6)、第一压力表(P1)、第三减压阀(F3)后与力传递轴(31)的进出口连通,还包括一个进出口压差传感器(30),其一端连接在第三减压阀(F3)与力传递轴(31)进出口之间的管道上,另一端连接在第五减压阀(F5)与底座(13)进出口之间的相管道上。
  6. 根据权利要求1所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的围压加载系统包括围压液加载装置(10)、第一减压阀(F1)、电动增压泵(25)、第二压力表(P2)和第四减压阀(F4),外壳(12)的侧面开设有进出口,围压液加载装置(10)通过第一减压阀(F1)与外壳(12)的进出口连通,电动增压泵(25)依次经第二压力表(P2)、第四减压阀(F4)与外壳(12)的进出口连通。
  7. 根据权利要求1所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的数据采集系统包括与计算机(1)连接的数据采集板(2)、安装在外壳(12)顶部且延伸至所述反应釜内腔中的温度传感器(7)和围压传感器(8)、安装在第一联轴器(21)上的地应力传感器(22)、以及安装在下横杆与外壳之间的第一位移传感器(9),温度传感器(7)、围压传感器(8)、第一位移传感器(9)和地应力传感器(22)均与数据采集板(2)连接。
  8. 根据权利要求1所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的温度控制系统为空气浴(32)。
  9. 根据权利要求1所述的一种水合物沉积物渗透率测试装置,其特征在于:所述的样品腔中还设置金属垫片(33)、金属滤网(34)和滤纸(35),样品(15)两端分别依次通过滤纸(35)、金属滤网(34)、金属垫片(33)后与底座(13)的凸台、力传递轴(31) 的凸台相连。
PCT/CN2018/122477 2018-11-12 2018-12-20 一种水合物沉积物渗透率测试装置 WO2020098071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811340813.XA CN109540762B (zh) 2018-11-12 2018-11-12 一种水合物沉积物渗透率测试装置
CN201811340813.X 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020098071A1 true WO2020098071A1 (zh) 2020-05-22

Family

ID=65846883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122477 WO2020098071A1 (zh) 2018-11-12 2018-12-20 一种水合物沉积物渗透率测试装置

Country Status (2)

Country Link
CN (1) CN109540762B (zh)
WO (1) WO2020098071A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982782A (zh) * 2020-08-24 2020-11-24 中国海洋石油集团有限公司 水合物沉积物原位渗透率压力梯度及力学特性测量系统
CN118010594A (zh) * 2024-04-09 2024-05-10 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 地热勘探取样岩心力学性质测试装置及测试方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109827829B (zh) * 2019-04-09 2021-04-20 大连理工大学 一种轮转式水合物沉积物试样制备及力学特性试验装置
CN110927358B (zh) * 2019-10-28 2021-03-05 中国科学院广州能源研究所 一种天然气水合物矿藏压裂实验装置
CN111829933B (zh) * 2020-07-21 2021-03-05 中国矿业大学 一种用于裂隙网络剪切渗流试验装置及其试验方法
CN112730188A (zh) * 2020-11-27 2021-04-30 江苏珂地石油仪器有限公司 一种含水合物沉积物渗透率气体达西实验测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445371A (zh) * 2011-11-10 2012-05-09 大连理工大学 水合物沉积物原位生成与分解及其渗透率测量一体化装置
CN104406864A (zh) * 2014-12-01 2015-03-11 中国科学院广州能源研究所 一种天然气水合物力学特性测试装置
CN204359655U (zh) * 2014-11-05 2015-05-27 山东科技大学 一种天然气水合物孔隙率及渗透系数测定装置
US9128021B2 (en) * 2011-10-31 2015-09-08 Korea Institute Of Geoscience And Mineral Resources Holder for measuring permeability of unconsolidated sediment
CN206756652U (zh) * 2017-03-20 2017-12-15 青岛海洋地质研究所 一种用于含水合物沉积物渗透率应力敏感性评价的反应釜
CN107894383A (zh) * 2017-11-03 2018-04-10 青岛海洋地质研究所 三轴应力条件下含水合物沉积物渗透率测量装置及其方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067814B2 (ja) * 2009-07-02 2012-11-07 独立行政法人産業技術総合研究所 メタンハイドレート分解方法及び装置
CN104458527A (zh) * 2014-11-05 2015-03-25 山东科技大学 一种天然气水合物孔隙率及渗透系数测定装置
CN106092772B (zh) * 2016-06-07 2018-11-09 大连理工大学 一种天然气水合物岩心试样保压转移式三轴装置及方法
CN106950153B (zh) * 2017-04-20 2018-07-10 青岛海洋地质研究所 含水合物沉积物出砂过程模拟专用反应釜及其测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128021B2 (en) * 2011-10-31 2015-09-08 Korea Institute Of Geoscience And Mineral Resources Holder for measuring permeability of unconsolidated sediment
CN102445371A (zh) * 2011-11-10 2012-05-09 大连理工大学 水合物沉积物原位生成与分解及其渗透率测量一体化装置
CN204359655U (zh) * 2014-11-05 2015-05-27 山东科技大学 一种天然气水合物孔隙率及渗透系数测定装置
CN104406864A (zh) * 2014-12-01 2015-03-11 中国科学院广州能源研究所 一种天然气水合物力学特性测试装置
CN206756652U (zh) * 2017-03-20 2017-12-15 青岛海洋地质研究所 一种用于含水合物沉积物渗透率应力敏感性评价的反应釜
CN107894383A (zh) * 2017-11-03 2018-04-10 青岛海洋地质研究所 三轴应力条件下含水合物沉积物渗透率测量装置及其方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982782A (zh) * 2020-08-24 2020-11-24 中国海洋石油集团有限公司 水合物沉积物原位渗透率压力梯度及力学特性测量系统
CN118010594A (zh) * 2024-04-09 2024-05-10 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 地热勘探取样岩心力学性质测试装置及测试方法
CN118010594B (zh) * 2024-04-09 2024-06-04 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 地热勘探取样岩心力学性质测试装置及测试方法

Also Published As

Publication number Publication date
CN109540762B (zh) 2020-05-19
CN109540762A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020098071A1 (zh) 一种水合物沉积物渗透率测试装置
CN101793635B (zh) 一种浅水域低扰动沉积物取样器
CN202330236U (zh) 一种气体渗流—蠕变的共同作用石力学试验装置
CN103144751B (zh) 一种滩浅海沉积物强度原位检测装置及方法
CN105259003A (zh) 一种合成海洋天然气水合物样品的实验装置和方法
CN102220841B (zh) 一种海底取样钻机
CN102494981A (zh) 一种岩石气体渗流—蠕变耦合的试验装置
CN110700229B (zh) 一种便携式浅层含气地层原位气压量测装置及方法
CN109826612B (zh) 天然气水合物储层径向水平井钻采模拟装置及方法
CN212508201U (zh) 一种水文地质钻探用分层止水装置
CN102108697A (zh) 钻探压水试验/灌浆装置
CN203164441U (zh) 轻便式气囊隔离随钻压水试验器
CN111980673A (zh) 模拟水合物开采引起海洋能源土-井耦合作用的测试装置和测试方法
CN113295540A (zh) 一种含天然气水合物沉积物的三轴试验装置
Guo et al. Pressure-retaining sampler for sediment including overlying water based on heavy duty ROV-Jellyfish
CN201662488U (zh) 浅水域低扰动沉积物取样器
CN114075967A (zh) 基于光纤传感技术的天然气水合物开采监测系统及方法
CN211697083U (zh) 一种用于岩土地层的新型水气同步取样探头
CN101377127B (zh) 抽汲状态下水平井油管输送测试方法
CN102207399A (zh) 电机驱动翻板阀式海底冷泉渗漏流量测量排水集气系统
CN202256110U (zh) 一种高温渗流实验装置
CN201678994U (zh) 一种内衬式薄壁静动三轴取土器
CN111024452A (zh) 一种用于岩土地层的新型水气同步取样探头
CN207093043U (zh) 一种煤层气和致密砂岩气井下共采管柱
CN116482299A (zh) 一种冻土区天然气水合物原位监测系统和安装监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940205

Country of ref document: EP

Kind code of ref document: A1