WO2020097887A1 - 一种相机镜头调节方法、装置及控制设备、控制系统 - Google Patents

一种相机镜头调节方法、装置及控制设备、控制系统 Download PDF

Info

Publication number
WO2020097887A1
WO2020097887A1 PCT/CN2018/115752 CN2018115752W WO2020097887A1 WO 2020097887 A1 WO2020097887 A1 WO 2020097887A1 CN 2018115752 W CN2018115752 W CN 2018115752W WO 2020097887 A1 WO2020097887 A1 WO 2020097887A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
interval
ring
adjustment ring
stroke
Prior art date
Application number
PCT/CN2018/115752
Other languages
English (en)
French (fr)
Inventor
谢文麟
苏铁
郝祎
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880038461.4A priority Critical patent/CN110771133B/zh
Priority to CN202210380488.XA priority patent/CN114827407A/zh
Priority to PCT/CN2018/115752 priority patent/WO2020097887A1/zh
Publication of WO2020097887A1 publication Critical patent/WO2020097887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present invention relates to the field of electronic technology, and in particular, to a camera lens adjustment method, device, control device, and control system.
  • Cameras such as SLR cameras generally have an adjustment ring that can adjust the lens.
  • the adjustment ring may specifically be a follow focus ring, a focus ring, etc.
  • the structure of the adjustment ring can be referred to FIG. 1a.
  • the purpose of focusing or focusing can be achieved during image shooting. Users can hold such cameras for image capture. It can also be set on some devices to shoot images through remote control, for example, on a supporting bracket of the gimbal, or on a drone and other devices.
  • Embodiments of the present invention provide a camera lens adjustment method, device, control device, and control system, which can safely control an adjuster for controlling an adjustment ring through a controller and a mapping relationship.
  • an embodiment of the present invention provides a camera lens adjustment method.
  • the camera includes a viewfinder lens and an adjustment ring for adjusting the viewfinder lens.
  • the adjustment ring cooperates with an adjuster through transmission, and the controller controls the adjustment by controlling the adjustment
  • the controller drives the adjustment ring to adjust the viewfinder lens.
  • the method is applied to the controller and includes:
  • a control command is issued to control the rotation of the power component in the regulator to drive the movement of the adjustment ring.
  • an embodiment of the present invention provides a camera lens adjustment device.
  • the camera includes a viewfinder lens and an adjustment ring for adjusting the viewfinder lens.
  • the adjustment ring cooperates with an adjuster through transmission, and the controller controls the The adjuster drives the adjustment ring to adjust the viewfinder lens.
  • the device is applied to the controller.
  • the device includes:
  • An acquisition module for acquiring the adjustment amount detected on the control component of the controller
  • the processing module is configured to issue a control command according to the obtained adjustment amount to control the rotation of the power component in the regulator according to the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring to drive the adjustment Ring movement.
  • an embodiment of the present invention provides a control device for controlling a camera lens
  • the camera includes a viewfinder lens and an adjustment ring for adjusting the viewfinder lens, the adjustment ring and the adjuster are driven by
  • the controller controls the regulator to drive the adjustment ring to adjust the viewfinder lens.
  • the control device includes: a processor;
  • the processor is used to obtain the adjustment value detected on the control component of the controller; according to the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring, and issue according to the acquired adjustment value
  • the control instruction controls the power component in the regulator to rotate to drive the adjustment ring to move.
  • an embodiment of the present invention provides a camera lens control system.
  • the camera includes a viewfinder lens and an adjustment ring for adjusting the viewfinder lens.
  • the control system includes an adjuster and a controller. The adjusting ring and the adjuster cooperate through transmission, and the controller drives the adjusting ring to move by adjusting the adjuster to adjust the viewfinder lens;
  • the controller is used to obtain the adjustment amount detected on the control component of the controller; according to the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring, and issue according to the acquired adjustment amount Control instruction;
  • the regulator is used to control the power component to rotate according to the control command issued by the controller to drive the adjustment ring to move.
  • the controller for controlling the adjustment ring can be safely controlled by the controller.
  • the controller can be built into the controller or used as an external remote controller, which greatly facilitates the user's control of the camera lens. And according to the adjustment amount and through the mapping relationship between the adjustment interval and a travel interval, it can be guaranteed to a certain extent that the adjustment of the camera lens will be performed in a safe interval, which meets the safety requirements for the adjustment of the camera lens.
  • FIG. 1a is a schematic diagram of an adjustment relationship between an adjuster and a camera according to an embodiment of the present invention
  • FIG. 1b is a schematic structural diagram of a camera lens control system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the motor control system of the regulator of the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the adjustment gear of the regulator and the rack on the adjustment ring after being unfolded;
  • FIG. 4a is a schematic flowchart of a camera lens adjustment method according to an embodiment of the present invention.
  • 4b is a schematic diagram of calibration between the adjustment interval of the regulator and the stroke interval of the adjustment ring according to an embodiment of the present invention
  • 4c is another schematic diagram of calibration between the adjustment interval of the regulator and the stroke interval of the adjustment ring according to an embodiment of the present invention
  • 4d is another schematic diagram of calibrating the adjustment interval of the regulator and the stroke interval of the adjustment ring according to another embodiment of the present invention
  • 4e is another schematic diagram of calibrating the adjustment interval of the regulator and the stroke interval of the adjustment ring according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of another camera lens adjustment method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a relationship curve between a torque parameter and a stroke interval according to an embodiment of the invention.
  • FIG. 7 is a schematic structural diagram of a camera lens adjustment device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • the embodiment of the present invention realizes the adjustment of the camera lens by controlling the adjuster so that the adjuster drives the adjustment ring on the camera lens to rotate.
  • the user can use a controller to automate and intelligently control the regulator based on the mapping relationship between the adjustment interval of the controller and the travel interval of the adjustment ring.
  • the controller can be built in the regulator or controlled by the user as a remote control.
  • the regulator can be turned according to the movement rules by writing program instructions or manually adjusted by the user, so as to drive the follow focus ring clockwise and / or reverse The purpose of turning on the hour hand to achieve the purpose of zooming in and zooming out.
  • the mapping relationship between the adjustment interval based on the controller and the travel interval of the adjustment ring can be set by the user through the controller.
  • FIG. 1a it is a schematic diagram of the adjustment relationship between the adjuster and the camera of the embodiment of the present invention.
  • FIG. 1a shows the positional relationship between the camera 100 and the adjuster 102 whose lens is adjusted by the adjustment ring 101.
  • the adjustment of the adjustment ring 101 mainly includes: the motor in the regulator 102 rotates the adjustment gear 1021 under the electric drive, thereby driving the adjustment ring 101 to rotate, so as to adjust or follow the focus of the camera 100.
  • the focus ring 1011 or the follow focus ring 1012 on the lens can be rotated to achieve the focus or follow focus of the camera 100 purpose.
  • the camera shown in FIG. 1a includes only the focus ring 1011 and the follow focus ring 1012.
  • the camera lens may further include an aperture ring for adjusting the exposure, which may also be based on the embodiment of the present invention Controller and regulator to adjust.
  • the regulator 102 may be controlled by a controller, which may be provided inside the regulator 102 as a part of the regulator 102 for power components such as motors in the regulator 102 Control is performed, and the adjustment gear 1021 is controlled to rotate by controlling a power component such as a motor, which in turn drives the adjustment ring 101 on the camera lens to rotate.
  • the regulator 102 can be controlled by an external controller, which acts as a remote controller to remotely control the regulator 102, as shown in FIG. 1b, can be controlled by a controller 103 acts as a remote controller to remotely control the adjuster 102, and controls the motor and other power components in the adjuster 102 to control the adjustment gear 1021 to rotate, thereby driving the adjustment ring 101 on the camera lens to rotate.
  • the controller 103 includes a button 1031.
  • the button 1031 can be used as at least a power switch and a button for calibration.
  • the controller 103 also includes an adjustment wheel 1032. The user can manually rotate The adjustment wheel 1032 controls the rotation of the motor on the adjuster 102, and accordingly controls the rotation of the adjustment gear 1021 according to the rotation amount of the adjustment wheel 1032, or the adjustment amount, which in turn drives the adjustment ring 101 on the camera lens to rotate, the adjustment wheel
  • the rotatable range of 1032 is the adjustment interval.
  • the adjustment ring 101 and the regulator 102 are meshed through gears, thereby achieving the purpose that the regulator 102 drives the adjustment ring 101 to rotate.
  • the transmission ring 101 and the regulator 102 can also be driven by a belt drive, a chain drive, or even a friction wheel.
  • the control of the regulator 102 may be based on the adjustment amount of the adjustment wheel 1032 on the controller 103 as shown in FIG. 1b, and based on the correspondence between the adjustment interval of the adjustment wheel 1032 and the stroke interval of the adjustment ring 101 , Control the adjusting ring 101 to rotate the corresponding stroke amount.
  • FIG. 2 it is a schematic diagram of the structure of the motor control system of the regulator 102 according to an embodiment of the present invention, which controls the motor rotation of the regulator according to the input position reference input signal and the corresponding feedback signal, wherein, The position reference input signal is the adjustment amount input by the user on the controller such as the controller 103 by rotating the adjustment wheel 1032.
  • FIG. 2 it is a schematic diagram of the structure of the motor control system of the regulator 102 according to an embodiment of the present invention, which controls the motor rotation of the regulator according to the input position reference input signal and the corresponding feedback signal, wherein,
  • the position reference input signal is the adjustment amount input by the user on the controller such as the controller 103 by rotating the adjustment wheel
  • r refers to the position reference input signal
  • e refers to the tracking error signal
  • d refers to the equivalent disturbance signal
  • u refers to the voltage command signal
  • i refers to the current command signal
  • n refers to the measurement noise
  • v refers to the speed feedback signal
  • y refers to the position feedback signal.
  • C p (s) is the position loop feedback controller
  • C v (s) is the speed loop feedback controller
  • filter (s) is the control quantity filter
  • Amp is the current controller
  • J (s) is the speed loop feedback control
  • the encoder and encoder are encoders. Based on the architecture shown in FIG.
  • the motor of the regulator 102 serves as a feedback device through the position sensor of the motor, and the motor serves as an output element to form a closed-loop control system.
  • the amount of control in this control system is the amount of rotation of the adjustment gear 1021 driven by the motor, specifically a target gear position is given based on the amount of adjustment on the adjustment wheel 1032, and the position of the adjustment gear 1021 is controlled by feedback
  • the target position of 1021 is to drive the adjusting ring 101 to rotate a corresponding amount of travel.
  • FIG. 3 is a schematic diagram of the adjustment gear 301 of the adjuster and the rack 302 on the adjustment ring in the embodiment of the present invention.
  • the rack 302 on the adjustment ring includes the limit point a
  • the limit point b in one embodiment, the role of the limit point is: the motor on the control regulator drives the adjustment gear 301 to rotate clockwise, and when the limit point b is reached, the adjustment ring no longer rotates; The motor on the control regulator drives the adjustment gear 302 to rotate counterclockwise. When the limit point a is reached, the adjustment ring no longer rotates.
  • the travel interval defined by the limit point a and the limit point b may be only a part of the movement stroke of the rack 302 on the adjusting ring, for example, 80% and 90% of the entire movement stroke.
  • a part of the interval outside the limit point a and / or outside the limit point b will be reserved as a gap, as a sliding buffer zone.
  • the adjustment interval of the adjustment wheel on the controller and the stroke interval of the adjustment ring can be calibrated in advance.
  • the regulator can be controlled by the adjustment wheel based on the mapping relationship, thereby controlling the adjustment ring between two limit points Rotate within the travel range.
  • FIG. 4a is a schematic flowchart of a camera lens adjustment method according to an embodiment of the present invention.
  • the embodiment of the present invention may be implemented by the controller mentioned above.
  • the method of the embodiment of the present invention includes the following steps.
  • the adjustment amount detected on the control component of the controller mainly refers to the amount that the user controls the movement of the control assembly in the corresponding control component.
  • the adjustment amount detected is mainly the unit scale of the rotation of the adjustment wheel when the user rotates the adjustment wheel.
  • the adjusting wheel can turn clockwise and counterclockwise one turn, then one turn can be quantized into 100 scales, and each turn of a unit scale corresponds to an adjustment amount of 1, and the adjustment amount after half rotation is 50.
  • the calibration between the adjustment interval of the adjustment wheel and the stroke interval of the adjustment ring of the embodiment of the present invention will be described below with reference to FIGS. 4b to 4e.
  • the stroke interval of the adjustment ring corresponds to the rotation interval of the adjustment gear on the regulator.
  • the position range or adjustment interval of the adjustable wheel can be quantified by 0-100, such as including 100 unit scales. Of course, other quantization methods can also be used, and the adjustment interval can also be described as a percentage, 100% including the entire adjustment interval of the adjustment wheel.
  • the stroke interval of the adjustment ring can be greater than the adjustment interval of the adjustment wheel. At this time, after the calibration is completed, when the adjustment wheel is rotated by a small adjustment amount, the corresponding stroke amount of the adjustment ring will be greater than this adjustment amount, for example The interval is twice the adjustment interval of the adjustment wheel, then when the adjustment wheel rotates 10% of the adjustment amount, or when the adjustment amount of the adjustment amount of the scale 10 is reached, the stroke amount of the adjustment ring rotation is 20% of the adjustment ring stroke area . In other embodiments, the stroke interval of the adjustment ring may be equal to or less than the adjustment interval of the adjustment wheel. With different K values, at the same rotation speed of the adjustment wheel, the rotation speed of controlling the adjustment gear or the adjustment ring is different.
  • the controller when it is detected that the adjustment wheel button is pressed on the remote controller as shown in FIG. 1b, it will obtain the default set travel interval and set the default setting
  • the stroke interval is determined as the stroke interval of the adjustment ring; the controller sets the mapping relationship between the adjustment interval of the control component and the determined stroke interval of the adjustment ring, so that each time it is detected on the adjustment wheel
  • the adjustment amount will control the adjustment ring or the adjustment gear on the regulator to rotate a corresponding stroke amount.
  • the adjustment interval 401 of the adjustment wheel can be calibrated with a default travel interval 402.
  • the default stroke interval 402 is smaller than the actual stroke interval 403 of the current adjustment ring.
  • the adjustment gear of the corresponding adjuster is located at point A (or B) of the default travel interval 402.
  • the adjustment gear corresponding to the adjuster is located at the point B of the default travel interval 402 (when the 0 adjustment amount corresponds to point B, it is point A at this time).
  • the larger adjustment amount of the adjustment wheel will correspond to a smaller stroke amount on the adjustment ring, which can facilitate the user to make fine adjustment through the adjustment wheel of the controller.
  • the default stroke interval 402 may specifically be a stroke interval set according to an empirical value, or the default stroke interval 402 is determined by averaging or taking the minimum value based on the stroke intervals of multiple different types of lenses and their adjustment rings.
  • determining the stroke interval of the adjustment ring by controlling the adjustment gear of the regulator to drive the adjustment ring to move includes: after receiving the calibration instruction, passing Control the adjustment gear of the regulator to drive the adjustment ring to determine the first limit point of the adjustment ring; after determining the first limit point, control the adjustment gear on the regulator to rotate in reverse To drive the movement of the adjustment ring and determine the second limit point; determine the stroke interval of the adjustment ring according to the stroke of the adjustment gear from the first limit point to the second limit point.
  • the controller will control the regulator to drive the adjustment ring to rotate, when the output torque of the regulator's motor feedback is greater than the preset threshold or the output torque is greater than the preset threshold and continues
  • the preset time length it can be determined that the first limit point is reached, and then the regulator is controlled to reversely rotate the adjustment ring, and the second limit point is determined in the same manner.
  • the stroke of the adjustment gear of the regulator can be used as the The stroke of the adjusting ring, that is, a stroke interval defined by the first limit point and the second limit point.
  • the first limit point and the second limit point can also be determined through direct observation by the user during calibration, for example, after receiving the calibration instruction, the adjustment can be driven by controlling the regulator
  • the ring movement when it is observed that the adjustment ring cannot rotate, it is determined to reach the first limit point.
  • click the button to determine the first limit point that is, the position data (or angle) sensed by the sensor on the regulator as The starting point is the first limit point, and the motor is rotated in the reverse direction by long pressing for 1 second, etc.
  • the stroke interval of the adjustment ring is determined according to the stroke of the adjustment gear from the first limit point to the second limit point.
  • a mapping relationship may be established between the entire adjustment interval of the adjustment wheel of the controller and the entire travel interval of the adjustment ring defined by the first limit point and the second limit point.
  • the adjustment section 401 of the adjustment wheel can be calibrated with the actual stroke section 403 of the adjustment ring.
  • the adjustment gear corresponding to the adjuster is located at point a (or b) of the actual travel interval.
  • the adjustment gear of the corresponding adjuster is located at the point b of the default travel interval (when the 0 adjustment amount corresponds to point b, this is point a).
  • the mapping relationship between the adjustment interval of the control component and the stroke interval of the adjustment ring includes: between the sub-adjustment interval included in the adjustment interval of the control component and the stroke interval of the adjustment ring Mapping relationship; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring. That is, the actual travel interval determined by the first limit point and the second limit point is mapped with a part of the adjustment interval.
  • a partial rotatable sub-range that is, a sub-adjustment interval 4011 and an actual travel interval 403 of the adjustment ring can be selected from the adjustment interval 401 of the adjustment wheel for calibration.
  • the sub-adjustment interval of the control component on the controller includes: the adjustment interval between the first adjustment point and the second adjustment point between the initial adjustment point and the end adjustment point of the control component on the controller.
  • the adjustment point currently turned by the control component when the first confirmation instruction is received is recorded as the first adjustment point; the user can manually rotate the adjustment amount and adjust the adjustment point. After the amount is rotated, the adjustment point at which the control component is currently rotating is recorded as the second adjustment point when the second confirmation instruction is received. In this way, some sub-intervals in the adjustment interval are selected.
  • a partial rotatable sub-range that is, a sub-adjustment interval 4011 and an actual travel interval 403 of the adjustment ring can be selected from the adjustment interval 401 of the adjustment wheel for calibration.
  • the actual operation may include: long-press P seconds (or other defined operation modes) twice in succession to make the controller currently enter the work mode selected by the adjustment interval, and click three times in succession for the first time (the first confirmation command can also be other definitions) Operation mode), the current adjustment point of the controller's adjustment wheel is used as the first adjustment point, that is, the adjustment point at the 25% position in Figure 4d.
  • the adjustment point where the adjustment wheel is turned is used as the second end point, that is, the adjustment at the 75% position in Figure 4d Point to determine the calibration adjustment interval from 25% to 75% of the adjustment interval.
  • the adjustment gear corresponding to the regulator is located at point a (or point b) of the actual travel interval.
  • the adjustment gear corresponding to the adjuster is located at the point b of the default travel interval (when the 0 adjustment amount corresponds to point b, this is point a). In this way, a smaller adjustment amount can be used to control a larger stroke range, which is convenient for the user to quickly adjust and control the adjustment ring.
  • the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring includes: a sub-adjustment interval included in the adjustment interval of the control component and a sub-interval in the travel interval of the adjustment ring The mapping relationship of the stroke interval; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • a partial rotatable sub-range that is, a sub-adjustable sub-range 4011 and an actual travel interval 403 of the adjustment ring, can be selected from the adjustment section 401 of the adjustment wheel. Calibration is performed in the stroke interval 4031.
  • the sub-stroke interval is to obtain a second stroke interval between the first stroke point and the second stroke point in the adjustment ring, and determine the second stroke interval as a rotation stroke interval; wherein, the first stroke point And the second travel point are detected during the rotation of the adjusting ring driven by the regulator, and the first travel point and the second travel point are both within the actual limits defined by the first limit point and the second limit point Within the itinerary. Specifically, the stroke point of the current rotation of the adjustment gear when receiving the third confirmation instruction is recorded as the first stroke point, and the stroke point of the current rotation of the adjustment gear when receiving the fourth confirmation instruction is recorded as the second Travel point.
  • the actual operation may include: press and hold Q seconds (or other defined operation modes) twice in succession, so that the controller currently enters the working mode selected in the travel interval, and after determining the limit point a, the controller is controlled to rotate clockwise,
  • the third confirmation command can also be other defined operation methods
  • the current travel point is determined as the first travel point, as shown in the figure
  • the adjustment ring continues to rotate.
  • the click operation is received again (the fourth confirmation command, or other defined operation methods)
  • the current travel point after the continued rotation is confirmed as the second travel point. For example, the BB point in FIG. 4e, and then the AA-BB sub-travel interval is determined.
  • the adjustment gear of the corresponding adjuster is located at the AA point (or BB point) of the actual travel interval.
  • the adjustment gear corresponding to the adjuster is located at the BB point of the default travel interval (when the 0 adjustment amount corresponds to the BB point, this is the AA point). In this way, it is convenient for the user to adjust the adjustment ring at any adjustment speed.
  • the mapping relationship between the adjustment interval of the control component and the stroke interval of the adjustment ring includes: the mapping relationship between the adjustment interval of the control component and the sub-stroke interval included in the stroke interval of the adjustment ring ; Wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring, that is, the actual stroke interval determined by the first limit point and the second limit point Part of the interval in the map with the adjustment interval.
  • the adjustment interval of the adjustment wheel of the controller is known, and the above-mentioned various or more calibration processes can be performed as needed to facilitate the user to adjust the adjustment ring of the lens .
  • the above mapping relationship can also be configured through a software application.
  • a user interface can be provided to the user, and the user interface can display similar expressions as shown in FIGS. 4b to 4e to express adjustments.
  • the user determines the adjustment interval and the travel interval that need to be mapped by sliding a virtual button, etc., completes the mapping of the adjustment interval and the travel interval, and writes it to the controller.
  • the controller itself is an intelligent terminal, which has a touch screen display function, and then performs intuitive configuration through a user interface.
  • FIG. 5 is a schematic flowchart of another camera lens adjustment method according to an embodiment of the present invention.
  • the method according to the embodiment of the present invention may be performed by the controller mentioned above.
  • the controller issues a control instruction according to the acquired adjustment amount to control the rotation of the power component in the regulator according to the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring to drive the movement of the adjustment ring During the movement of the adjustment ring, the camera lens adjustment method of the embodiment of the present invention is executed.
  • the controller can be a separate remote control, which realizes the rotation control of the lens adjustment ring by remotely controlling the regulator; it can also be built into the regulator and connected to the motor in the regulator to control the motor Output torque to make the adjustment gear rotate, and finally realize the rotation control of the lens adjustment ring.
  • the adjuster can automatically adjust the camera lens through the preset automatic control program instructions, for example, automatically according to the preset adjustment amount. Control the adjustment gear to drive the focus ring of the lens to rotate, so as to achieve the shooting of a certain shooting target from far and near or from near and far.
  • the adjustment ring and the adjuster cooperate through transmission, and the controller controls the rotation of the adjuster to drive the adjustment ring to adjust and control the viewfinder lens.
  • the method includes the following steps.
  • the controller obtains the operating parameters of the regulator, and the operating parameters include torque parameters of the regulator when the regulator ring is moved. After adjusting the adjusting ring such as those shown in Figure 1a and Figure 1b, the torque output under various conditions is evaluated to obtain the corresponding relationship between the torque parameter shown in Figure 6 and the actual travel interval . Based on the corresponding relationship, the embodiment of the present invention starts from acquiring the torque parameter to control the regulator, and then completes the control of the lens adjustment ring. The torque parameter is calculated by detecting the voltage and current on the power component of the regulator. In one embodiment, the regulator may calculate and send it to the controller.
  • the controller controls the power component of the regulator to reduce the output torque of the power component.
  • the power assembly includes a motor.
  • the safety control is achieved by reducing the output torque of the power component, so that To avoid the risk of motor burnout.
  • a locked-rotation situation may be caused by, for example, when the motor of the regulator is controlled to rotate the adjustment gear to drive the adjustment ring, the adjustment ring may have reached the limit point due to insufficient calibration or gear slippage.
  • the motor of the regulator is still driving the adjustment gear to rotate. At this time, the motor is outputting torque, but in fact the adjustment ring and the adjustment gear are not rotating.
  • the controller controls the power component of the regulator, and can reduce the output torque of the power component to a preset torque threshold. As shown in FIG. 6, reducing the output torque of the power component mainly includes stepwise Reduce the torque of the motor to a minimum, and even turn off the power of the motor.
  • the controller may determine in real time whether the parameter value of the acquired operating parameter is greater than a preset second threshold; if so, it is triggered to detect whether the torque parameter meets the preset control condition. Referring to FIG. 6, it can be found that after starting to rotate from the limit point a, the output torque will reach a certain value when reaching the limit point b.
  • the execution begins Process flow for determining whether the torque parameter meets the preset control conditions, for example, starting to acquire the stroke point of the movement of the adjustment ring during rotation of the regulator to drive the movement of the adjustment ring to determine whether it is the target stroke Point; or start to detect whether the adjustment amount on the control component such as the adjustment wheel on the controller is a preset target amount and so on.
  • the adjuster mainly drives the adjusting ring through gear meshing.
  • the adjuster and the adjusting ring can also be driven by belt transmission, chain transmission, or even friction wheels.
  • the torque parameter satisfying the preset control condition includes: the parameter value of the torque parameter is greater than a preset first threshold, and the parameter value of the torque parameter is greater than a preset first threshold
  • the duration is greater than the preset duration threshold.
  • the first threshold is a value close to the maximum value of the torque of the motor. When it is greater than the first threshold and lasts for 5 seconds, it is considered that the control conditions are met and the torque needs to be reduced, for example, gradually after 5 seconds.
  • the torque is at a minimum value to ensure that the motor remains in the stalled position, but does not rotate. It can be understood that the minimum value may approach or be equal to 0, so that the motor stops at the locked position.
  • the torque parameter satisfying the preset control condition includes: during rotation of the regulator to drive the adjustment ring, the adjustment ring moves to a preset target travel point, and The duration of the torque parameter being greater than the preset first threshold is greater than the preset duration threshold.
  • the target travel point may refer to a limit point, such as the above-mentioned limit point a or limit point b.
  • the target travel point refers to a point within a preset travel interval, which is set according to the limit point specified on the movement travel of the adjusting ring.
  • the preset travel interval may include: a travel interval between a point close to the limit point and the limit point. Whether the adjustment ring moves to the target stroke point may be detected by the regulator, and the regulator compares the stroke that the adjustment gear has rotated with the stroke of the known adjustment ring, and then determines that the adjustment ring rotates with the adjustment gear Whether it reached the limit point or reached a point close to the limit point.
  • whether the adjustment ring moves to the target travel point can also be determined based on the data sensed by the motion sensor provided on the adjustment ring.
  • the controller includes a control component that controls the regulator to drive the adjustment ring through the detected adjustment amount of the adjustment interval on the control component.
  • the control component refers to The adjustment wheel mentioned above can control the motor rotation of the regulator by rotating the adjustment wheel.
  • the controller may also be a mobile terminal or a remote controller, for example, a control interface is set on the mobile terminal, and the function of the control component is realized through a parameter input area or a virtual adjustment wheel on the control interface; or, through the A dial, a knob, or a key realizes the function of the control component.
  • Said torque parameter satisfies the preset control condition includes: the detected adjustment amount on said control component is a preset target amount, and the duration of the parameter value of said torque parameter is greater than the preset first threshold value is greater than the preset Set the threshold for the duration.
  • the adjustment point may be, for example, an adjustment point corresponding to the limit point of the adjustment ring, or the adjustment point is a point within a certain range close to the limit point.
  • the preset target amount belongs to a Within the set adjustment amount range, the preset adjustment amount range is set according to the limit point specified on the movement stroke of the adjustment ring.
  • the embodiment of the present invention ensures that the adjustment of the camera lens will be performed in a safe interval according to the adjustment amount and through the mapping relationship between the adjustment interval and a travel interval, without artificial Observation meets the safety requirements for camera lens adjustment.
  • the device of the embodiment of the present invention includes the following structure.
  • the obtaining module 701 is used for obtaining the adjustment amount detected on the control component of the controller; the processing module 702 is used for mapping the adjustment interval of the control component and the travel interval of the adjustment ring according to The acquired adjustment amount issues a control instruction to control the power component in the regulator to rotate to drive the adjustment ring to move.
  • the processing module 702 is further configured to determine the stroke interval of the adjustment ring by controlling the adjustment gear of the regulator to drive the adjustment ring after receiving the calibration instruction; The mapping relationship between the adjustment interval of the control component and the determined stroke interval of the adjustment ring.
  • the processing module 702 is configured to determine the stroke interval of the adjustment ring by controlling the adjustment gear of the regulator to drive the movement of the adjustment ring after receiving the calibration instruction, which is specifically used for After receiving the calibration instruction, determine the first limit point of the adjustment ring by controlling the adjustment gear of the regulator to drive the adjustment ring; after determining the first limit point, control the regulator The adjustment gear on the reverse rotation to drive the movement of the adjustment ring and determine the second limit point; determine the stroke of the adjustment ring according to the travel of the adjustment gear from the first limit point to the second limit point Interval.
  • the mapping relationship between the adjustment interval of the control component and the stroke interval of the adjustment ring includes: the mapping relationship between the adjustment interval of the control component and the sub-stroke interval included in the stroke interval of the adjustment ring ; Wherein the stroke interval of the adjusting ring is determined according to the first limit point and the second limit point of the adjusting ring.
  • the mapping relationship between the adjustment interval of the control component and the stroke interval of the adjustment ring includes: between the sub-adjustment interval included in the adjustment interval of the control component and the stroke interval of the adjustment ring Mapping relationship; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring includes: a sub-adjustment interval included in the adjustment interval of the control component and a sub-interval in the travel interval of the adjustment ring The mapping relationship of the stroke interval; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • the processing module 702 is further configured to obtain a default set travel interval after receiving the calibration instruction, and determine the default set travel interval as the travel interval of the adjustment ring; set the The mapping relationship between the adjustment interval of the control component and the determined stroke interval of the adjustment ring.
  • each related module of the device can also execute the related content in the foregoing embodiment corresponding to FIG. 5.
  • the acquisition module 701 acquires the operating parameters of the regulator, and the processing module 702 controls the power component of the regulator when the torque parameter meets the preset control conditions to reduce the output torque of the power component .
  • the embodiment of the present invention ensures that the adjustment of the camera lens will be performed in a safe interval according to the adjustment amount and through the mapping relationship between the adjustment interval and a travel interval, without artificial Observation meets the safety requirements for camera lens adjustment.
  • the control device corresponds to the above-mentioned controller.
  • the control device is used to adjust the camera lens.
  • the camera includes viewfinder A lens and an adjustment ring for adjusting a viewfinder lens, the adjustment ring and an adjuster cooperate through transmission, and the control device drives the adjustment ring to move by adjusting the adjuster to adjust the viewfinder lens, wherein
  • the control device includes: a processor 801; further optionally, the control device may further include a power supply circuit, a charging interface, etc.
  • the control device further includes a user interface 802 including a button 8021 and a control component 8022.
  • the control component 8022 may be the adjustment wheel mentioned above.
  • the button 8021 can be used as a power switch, and can also be used to trigger calibration of the mapping relationship between the adjustment interval and the travel interval.
  • the processor 801 may be a central processing unit 801 (central processing unit, CPU).
  • the processor 801 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (programmable logic device, PLD), or the like.
  • the PLD can be a field-programmable gate array (field-programmable gate array, FPGA), a general-purpose array logic (generic array logic, GAL), and so on.
  • the processor 801 may call the program instructions stored in the storage device 803 provided in the control device to implement the camera lens adjustment method shown in the embodiment of FIG. 4a and / or FIG. 5 of the present application.
  • the storage device 803 may include volatile memory (volatile memory), such as random access memory (random-access memory, RAM); the storage device 803 may also include non-volatile memory (non-volatile memory), For example, a flash memory (flash memory), a solid-state drive (SSD), etc .; the storage device 803 may further include a combination of the foregoing types of memories.
  • volatile memory volatile memory
  • RAM random access memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • SSD solid-state drive
  • the processor 801 is configured to obtain the adjustment amount detected on the control component 8022 of the controller; according to the mapping of the adjustment interval of the control component 8022 and the travel interval of the adjustment ring Relationship and issue a control command to control the rotation of the power component in the regulator according to the acquired adjustment amount to drive the movement of the adjustment ring.
  • the processor 801 is further configured to determine the stroke interval of the adjustment ring by controlling the adjustment gear of the regulator to drive the movement of the adjustment ring after receiving the calibration instruction; The mapping relationship between the adjustment interval of the control component 8022 and the determined stroke interval of the adjustment ring.
  • the processor 801 is specifically configured to determine the first limit point of the adjustment ring by controlling the adjustment gear of the regulator to drive the movement of the adjustment ring after receiving the calibration instruction; After determining the first limit point, control the adjustment gear on the regulator to rotate in reverse to drive the adjustment ring to move and determine the second limit point; according to the adjustment gear from the first limit point The stroke to the second limit point determines the stroke interval of the adjusting ring.
  • the mapping relationship between the adjustment interval of the control component 8022 and the stroke interval of the adjustment ring includes: the adjustment interval of the control component 8022 and the sub-stroke interval included in the stroke interval of the adjustment ring Mapping relationship; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • the mapping relationship between the adjustment interval of the control component 8022 and the stroke interval of the adjustment ring includes: the sub-adjustment interval included in the adjustment interval of the control component 8022 and the stroke interval of the adjustment ring Mapping relationship; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • the mapping relationship between the adjustment interval of the control component 8022 and the stroke interval of the adjustment ring includes: the sub-adjustment interval included in the adjustment interval of the control component 8022 and the stroke interval of the adjustment ring The mapping relationship of the sub-stroke interval of; wherein the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • the processor 801 is further configured to obtain a default set travel interval after receiving the calibration instruction, and determine the default set travel interval as the travel interval of the adjustment ring; set the The mapping relationship between the adjustment interval of the control component 8022 and the determined stroke interval of the adjustment ring.
  • the processor in the embodiment of the present invention for performing controller control and calibration-related processing, reference may be made to the description of related content in the foregoing embodiments, and details are not described herein.
  • the processor may execute the related content in the foregoing embodiment corresponding to FIG. 5.
  • the embodiment of the present invention ensures that the adjustment of the camera lens will be performed in a safe interval according to the adjustment amount and through the mapping relationship between the adjustment interval and a travel interval, without artificial Observation meets the safety requirements for camera lens adjustment.
  • An embodiment of the present invention also provides a camera lens control system.
  • the camera includes a viewfinder lens and an adjustment ring for adjusting the viewfinder lens.
  • the control system includes: an adjuster and a controller, the adjustment ring and the adjuster cooperate through transmission, and the controller drives the adjustment ring to move by adjusting the adjuster to adjust the viewfinder lens;
  • the controller is used to obtain the adjustment value detected on the control component of the controller; according to the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring, and issue control according to the obtained adjustment value Instruction;
  • the regulator is used to control the rotation of the power component according to the control instruction issued by the controller to drive the movement of the adjustment ring.
  • the controller is further used to determine the stroke interval of the adjustment ring by controlling the adjustment gear of the regulator to drive the adjustment ring after receiving the calibration instruction; setting the control The mapping relationship between the adjustment interval of the component and the determined stroke interval of the adjustment ring.
  • the controller is specifically configured to determine the first limit point of the adjustment ring by controlling the adjustment gear of the regulator to drive the adjustment ring after receiving the calibration instruction; After the first limit point is determined, the adjustment gear on the regulator is controlled to rotate in reverse to drive the adjustment ring to move and determine the second limit point; according to the adjustment gear, the first limit point is rotated The stroke to the second limit point determines the stroke interval of the adjusting ring.
  • the mapping relationship between the adjustment interval of the control component and the stroke interval of the adjustment ring includes: the mapping relationship between the adjustment interval of the control component and the sub-stroke interval included in the stroke interval of the adjustment ring ; Wherein the stroke interval of the adjusting ring is determined according to the first limit point and the second limit point of the adjusting ring.
  • the mapping relationship between the adjustment interval of the control component and the stroke interval of the adjustment ring includes: between the sub-adjustment interval included in the adjustment interval of the control component and the stroke interval of the adjustment ring Mapping relationship; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • the mapping relationship between the adjustment interval of the control component and the travel interval of the adjustment ring includes: a sub-adjustment interval included in the adjustment interval of the control component and a sub-interval in the travel interval of the adjustment ring The mapping relationship of the stroke interval; wherein, the stroke interval of the adjustment ring is determined according to the first limit point and the second limit point of the adjustment ring.
  • the controller is further configured to obtain a default set travel interval after receiving the calibration instruction, and determine the default set travel interval as the travel interval of the adjustment ring; set the control The mapping relationship between the adjustment interval of the component and the determined stroke interval of the adjustment ring.
  • controller in the embodiment of the present invention for controller control and calibration-related processing, reference may be made to the description of related content in the foregoing embodiments, and details are not described herein.
  • the controller may execute the related content in the foregoing embodiment corresponding to FIG. 5.
  • the embodiment of the present invention ensures that the adjustment of the camera lens will be performed in a safe interval according to the adjustment amount and through the mapping relationship between the adjustment interval and a travel interval, without artificial Observation meets the safety requirements for camera lens adjustment.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

一种相机镜头调节方法、装置及控制设备、控制系统,其中相机(100)包括取景镜头和用于调节取景镜头的调节环(101),调节环(101)与调节器(102)通过传动配合,控制器(103)通过控制调节器(102)带动调节环(101)运动以对取景镜头进行调节,方法应用于控制器(103)上,包括:获取在控制器(103)的控制组件上检测到的调节量(S401);根据控制组件的调节区间和调节环(101)的行程区间的映射关系,并根据获取的调节量发出控制指令控制调节器(102)中的动力组件转动,以带动调节环(101)运动(S402)。可满足对相机镜头调节的安全性要求。

Description

一种相机镜头调节方法、装置及控制设备、控制系统 技术领域
本发明涉及电子技术领域,尤其涉及一种相机镜头调节方法、装置及控制设备、控制系统。
背景技术
随着技术的进步和人们生活水平的提高,相机不再是奢侈品一般的存在,人们根据需要可以使用各种性能的相机来在不同场合采集所需图像。用户除了可以通过智能手机、平板电脑等附带的摄像装置进行拍摄外,还能够通过单反相机等拍摄更高质量的照片、视频等影像。
单反相机等相机上一般带有诸如可以对镜头进行调节的调节环,调节环具体可以是跟焦环、对焦环等,调节环的结构示意可参考图1a所示。通过转动调节环,可以在影像拍摄时达到调焦或对焦的目的。用户可以手持这类相机进行影像拍摄。也可以设置在某些设备上,通过远程控制的方式进行影像拍摄,例如设置在云台的某个承载支架上,又或是设置在无人机等设备上。
如何通过控制器来实现镜头调节环的自动化控制成为研究的热点问题。
发明内容
本发明实施例提供了一种相机镜头调节方法、装置及控制设备、控制系统,可通过控制器和一个映射关系对用于控制调节环的调节器进行安全控制。
一方面,本发明实施例提供了一种相机镜头调节方法,所述相机包括取景镜头和用于调节取景镜头的调节环,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,所述方法应用于控制器上,包括:
获取在所述控制器的控制组件上检测到的调节量;
根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
另一方面,本发明实施例提供了一种相机镜头调节装置,所述相机包括取景镜头和用于调节取景镜头的调节环,所述调节环与调节器通过传动配合,控 制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,所述装置应用于控制器上,所述装置包括:
获取模块,用于获取在所述控制器的控制组件上检测到的调节量;
处理模块,用于根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
再一方面,本发明实施例提供了一种控制设备,所述控制设备用于控制相机镜头,所述相机包括取景镜头和用于调节取景镜头的调节环,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,所述控制设备包括:处理器;
所述处理器,用于获取在所述控制器的控制组件上检测到的调节量;根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
又一方面,本发明实施例提供了一种相机镜头控制系统,所述相机包括取景镜头和用于调节取景镜头的调节环,其特征在于,所述控制系统包括:调节器和控制器,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节;
所述控制器,用于获取在所述控制器的控制组件上检测到的调节量;根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令;
所述调节器,用于根据所述控制器发出的控制指令控制动力组件转动,以带动所述调节环运动。
本发明实施例可通过控制器对用于控制调节环的调节器进行安全控制,控制器可以内置到调节器中,也可以作为外接遥控器使用,这样极大地方便了用户对相机镜头的控制,并且根据调节量并通过调节区间和一个行程区间的映射关系,可在一定程度上保证对相机镜头的调节会在一个安全的区间内进行,满足了对相机镜头调节的安全性要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本发明实施例的调节器和相机之间的调节关系示意图;
图1b是本发明实施例的一种相机镜头的控制系统的结构示意图;
图2是本发明实施例调节器的电机控制系统结构的示意图;
图3是本发明实施例中的调节器的调节齿轮与调节环上的齿条展开后的示意图;
图4a是本发明实施例的一种相机镜头调节方法的流程示意图;
图4b是本发明实施例的一种对调节器的调节区间和调节环的行程区间之间进行校准的示意图;
图4c是本发明实施例的另一种对调节器的调节区间和调节环的行程区间之间进行校准的示意图;
图4d是本发明实施例的再一种对调节器的调节区间和调节环的行程区间之间进行校准的示意图;
图4e是本发明实施例的又一种对调节器的调节区间和调节环的行程区间之间进行校准的示意图;
图5是本发明实施例的另一种相机镜头调节方法的流程示意图;
图6是本发明实施例的扭矩参数与行程区间之间的关系曲线示意图;
图7是本发明实施例的相机镜头调节装置的结构示意图;
图8是本发明实施例的一种控制设备的结构示意图。
具体实施方式
本发明实施例是通过控制调节器,使调节器带动相机镜头上的调节环转动来实现对相机镜头的调节。用户可以通过一个控制器,基于控制器的调节区间与调节环的行程区间的映射关系,对调节器进行自动化、智能化控制。控制器可以内置调节器中或者作为遥控器由用户支配,可以通过写入程序指令的方式或者用户手动调节的方式控制调节器按照移动的规则转动,达到带动跟焦环在顺时针和/或逆时针上转动的目的,从而实现镜头拉远以及拉近的拍摄目的。基于控制器的调节区间与调节环的行程区间的映射关系可以由用户通过控制器进行设置。
如图1a所示,是本发明实施例的调节器和相机之间的调节关系示意图,在图1a中示出了镜头采用调节环101进行调节的相机100和调节器102之间的位置关系。对调节环101的调节主要包括:调节器102中的电机在电力驱动下使调节齿轮1021转动,从而带动调节环101转动,达到对相机100进行调焦或跟焦的目的。具体的,在图1中,通过控制调节器102上的调节齿轮1021的转动,可以对镜头上的调焦环1011或者跟焦环1012进行转动控制,达到对相机100进行调焦或跟焦的目的。图1a所示的相机中仅包括调焦环1011和跟焦环1012,在其他的实施例中,相机镜头上还可以包括用来对曝光度进行调整的光圈环,同样可以基于本发明实施例的控制器和调节器进行调节。
在一个实施例中,所述调节器102可以通过一个控制器来控制,该控制器可以设置在所述调节器102的内部,作为调节器102的一部分对调节器102中的诸如电机等动力组件进行控制,通过控制电机等动力组件来控制调节齿轮1021转动,进而带动相机镜头上的调节环101转动。在另一个实施例中,所述调节器102可以通过一个外部的控制器来进行控制,该外部的控制器作为遥控器对调节器102进行遥控控制,如图1b所示,可以通过一个控制器103作为遥控器对调节器102进行远程控制,控制调节器102中的电机等动力组件来控制调节齿轮1021转动,进而带动相机镜头上的调节环101转动。
进一步地,如图1b所示,该控制器103包括一个按钮1031,该按钮1031至少可以作为电源开关使用,还可以作为校准用按钮,该控制器103还包括调节轮1032,用户可以通过手动旋转该调节轮1032来控制调节器102上的电机转动,根据调节轮1032的转动量或者称之为调节量来对应地控制调节齿轮1021转动,进而带动相机镜头上的调节环101转动,该调节轮1032的可转动范围为调节区间。
图1a和图1b中,调节环101和调节器102之间是通过齿轮啮合,由此达到调节器102带动调节环101转动的目的。在其他实施例中,调节环101和调节器102之间还可通过带传动、链传动,甚至使用摩擦轮的方式实现传动配合。
在一个实施例中,对调节器102的控制可以基于如图1b中的控制器103上调节轮1032的调节量,并基于调节轮1032的调节区间与调节环101的行程区间之间的对应关系,控制调节环101转动相应的行程量。在其他实施例中,如图2所示,是本发明实施例调节器102的电机控制系统结构的示意图,根据输入的位置参考输入信号和相应的反馈信号来控制调节器的电机转动,其中,所 述位置参考输入信号即是用户在诸如控制器103等类型的控制器上,通过旋转调节轮1032输入的调节量。具体的,在图2中,r是指位置参考输入信号、e是指跟踪误差信号、d是指等效扰动信号、u是指电压命令信号、i是指电流命令信号、n是指测量噪声信号、v是指速度反馈信号、y是指位置反馈信号。C p(s)为位置环反馈控制器、C v(s)是速度环反馈控制器、filter(s)是指控制量滤波器,Amp为电流控制器、J(s)是速度环反馈控制器、encoder为编码器。基于图2所示的架构,调节器102的电机通过电机的位置传感器作为反馈器件,电机作为输出元件,形成闭环控制系统。在这个控制系统中的控制量是电机带动的调节齿轮1021的转动量,具体是基于在调节轮1032上的调节量来给定一个目标齿轮位置,通过反馈调节齿轮1021的位置达到控制该调节齿轮1021的目标位置,以带动调节环101转动一个对应的行程量。
相机调节环一般是存在限位点,图3是本发明实施例中的调节器的调节齿轮301与调节环上的齿条302展开后的示意图,调节环上的齿条302包括限位点a和限位点b,在一个实施例中,限位点的作用在于:在控制调节器上的电机带动调节齿轮301顺时针转动,到达限位点b时,调节环不再转动;同样,当控制调节器上的电机带动调节齿轮302逆时针转动,到达限位点a时,调节环不再转动。另外,在一个实施例中,限位点a和限位点b所限定的行程区间可以仅仅是调节环上的齿条302的部分运动行程,例如整个运动行程的80%、90%的部分。会在限位点a之外,和/或限位点b之外预留一部分区间作为间隙,作为滑动的缓冲区间。
对于存在限位点的调节环,可以预先对控制器上调节轮的调节区间与调节环的行程区间进行校准。在校准确定调节轮的调节区间与调节环的行程区间之间的映射关系后,即可基于该映射关系通过调节轮对调节器进行控制,进而控制所述调节环在两个限位点之间的行程区间内转动。该映射关系可以基于L=K*S来表示,K为整数,L对应调节区间,S对应行程区间,在控制器获取到调节轮等控制组件采集到的调节量后,根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,可以得到此次调节量对应的行程量,例如,K=1时,当前转动到50个单位刻度的调节量时,对应的行程量也为整个行程区间的50%,又例如,K=2时,当前调节量为20度,对应的调节齿轮会转动40度(或者逻辑上认为是调节环会对应转动40度)。在一个实施例中,所述控制器可以实时检测到调节轮上的调节量,并实时地根据L=K*S来生成控制指令控制电机 转动相应的行程量。
具体请参见图4a,是本发明实施例的一种相机镜头调节方法的流程示意图,本发明实施例可以由上述提及的控制器来实现。本发明实施例的所述方法包括如下步骤。
S401:获取在所述控制器的控制组件上检测到的调节量。该调节量主要是指用户在相应的控制组件控制该控制组件移动的量,针对上述的调节轮,其检测到的调节量主要是用户旋转该调节轮时,调节轮转动的单位刻度。例如调节轮可以顺时针、逆时针转动一圈,那么可以将一圈量化为100个刻度,每转一个单位刻度,对应的调节量为1,旋转一半后的调节量为50。
S402:根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。在获取到调节量后,根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,可以得到此次调节量对应的行程量,例如当前转动到50个单位刻度时,对应的行程量也为整个行程区间的50%。
具体的,下面结合图4b到图4e对本发明实施例的调节轮的调节区间与调节环的行程区间之间的校准进行说明。实际上,调节环的行程区间与调节器上的调节齿轮的转动区间是相对应。
调节轮可运动的位置范围或者说调节区间可以通过0-100进行量化,如包括100个单位刻度。当然还可以采用其他量化方式,并且还可以以百分比来描述调节区间,100%包括调节轮的整个调节区间。调节环的行程区间可以大于调节轮的调节区间,此时,在完成校准后,将调节轮转动一个较小的调节量时,调节环对应的行程量会大于这个调节量,例如调节环的行程区间是调节轮的调节区间的两倍,那么调节轮转动10%的调节量或者说达到了刻度为10的调节量的调节量时,调节环转动的行程量为调节环的行程区间的20%。在其他实施例中,调节环的行程区间可等于或小于调节轮的调节区间。不同的K值,在对调节轮相同的旋转速度下,控制调节齿轮或者说调节环转动的转动速度不相同。
在一个实施例中,控制器在接收到校准指令时,例如在如图1b所示的遥控器上检测到调节轮按钮被按下时,会获取默认设置的行程区间,并将该默认设置的行程区间确定为所述调节环的行程区间;控制器会设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系,这样一来,每次在调节轮上检测到的调节量都会控制调节环或者说调节器上的调节齿轮转动一个对 应的行程量。如图4b所示,在进行校准时,调节轮的调节区间401可以与一个默认的行程区间402进行校准。在图4b中,默认的行程区间402比当前的调节环的实际行程区间403要小。在完成图4b所示的校准后,正常情况下,控制器的调节轮在0调节量时,对应调节器的调节齿轮位于默认的行程区间402的A点(或B点),在控制器的调节量达到100%调节量时,对应调节器的调节齿轮位于默认的行程区间402的B点(当0调节量对应于B点时,此时为A点)。调节轮较大的调节量会对应调节环上一个较小行程量,这样可以方便用户通过控制器的调节轮进行精细化调整。默认的行程区间402具体可以是一个根据经验值设置的行程区间,或者默认的行程区间402是基于多个不同类型的镜头及其调节环的行程区间进行平均计算或者取最小值确定的。
除了上述的通过默认设置的行程区间来进行校准外,在另一个实施例中,控制器在接收到校准指令后,例如,在如图1b所示的遥控器上检测到调节轮按钮被按下后,通过控制所述调节器带动所述调节环运动来确定所述调节环的行程区间;控制器会设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系,例如上述的L=K*S,这样一来,每次在调节轮上检测到的调节量都会控制调节环或者说调节器上的调节齿轮转动一个对应的行程量。
在一个实施例中,所述在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间,包括:在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的第一限位点;在确定所述第一限位点后,控制所述调节器上的调节齿轮反向转动,来带动所述调节环运动并确定第二限位点;根据所述调节齿轮从第一限位点转动到第二限位点的行程确定所述调节环的行程区间。具体的,在接收到校准指令后,控制器会控制所述调节器带动所述调节环转动,当调节器的电机反馈的输出扭矩大于预设的阈值或者输出的扭矩大于预设的阈值且持续预设时长时,即可确定到达第一限位点,再控制调节器反向带动调节环转动,以同样的方式确定第二限位点,可以将调节器的调节齿轮转动的行程作为所述调节环的行程,也即由第一限位点和第二限位点限定的一个行程区间。
在其他实施例中,在校准时也可通过用户直接观察的方式来确定第一限位点和第二限位点,例如,在接收到校准指令后,通过控制所述调节器带动所述调节环运动,观察到调节环不能转动时即确定到达第一个限位点,此时单击按钮确定第一个限位点,即将调节器上的传感器感测到的位置数据(或者角度) 作为起点即第一限位点,通过长按1秒等方式使电机反向转动,在观察到调节环不能转动时即确定到达第二个限位点,再次单击按钮确定终点即第二限位点,根据所述调节齿轮从第一限位点转动到第二限位点的行程确定所述调节环的行程区间。
在一个实施例中,可以将控制器的调节轮的整个调节区间与调节环的由第一限位点和第二限位点限定的整个行程区间建立映射关系。如图4c所示,在进行校准时,调节轮的调节区间401可以与调节环的实际行程区间403进行校准。在完成图4c所示的校准后,正常情况下,控制器的调节轮在0调节量时,对应调节器的调节齿轮位于实际行程区间的a点(或b点),在控制器的调节量达到100%调节量时,对应调节器的调节齿轮位于默认的行程区间的b点(当0调节量对应于b点时,此时为a点)。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间之间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。也就是将第一限位点和第二限位点确定的实际行程区间与调节区间中的一部分区间进行映射。如图4d所示,在进行校准时,可以从调节轮的调节区间401内选择部分可转动子范围即子调节区间4011与调节环的实际行程区间403进行校准。在完成图4d所示的校准后,正常情况下,控制器的调节轮在25%调节量时,对应调节器的调节齿轮位于实际行程区间的a点(或b点),在控制器的调节量达到75%调节量时,对应调节器的调节齿轮位于默认的行程区间的b点(当0调节量对应于b点时,此时为a点)。这样一来可以使得较小的调节量控制一个较大的行程范围,方便用户快速进行调节环的调节控制。所述控制器上控制组件的子调节区间包括:所述控制器上的控制组件的初始调节点和结束调节点之间的第一调节点和第二调节点之间的调节区间。具体的,在接收到校准指令后,是将在接收到第一确认指令时,所述控制组件当前转动的调节点记为第一调节点;用户可以通过手动等方式转动调节量,并在调节量转动后,将在接收到第二确认指令时,所述控制组件当前转动的调节点记为第二调节点。以此选出调节区间中的部分子区间。
如图4d所示,在进行校准时,可以从调节轮的调节区间401内选择部分可转动子范围即子调节区间4011与调节环的实际行程区间403进行校准。实际的操作可以包括:连续两次长按P秒(或其他定义的操作方式)使控制器当前进 入调节区间选择的工作模式,第一次连续三次点击(第一确认指令,也可以是其他定义的操作方式)时,将控制器的调节轮当前的调节点作为第一调节点,即图4d中的25%位置处的调节点,用户在手动转动调节轮或者其他方式转动调节轮后,第二次连续三次点击(第二确认指令,也可以是其他定义的操作方式)时,将转动后的调节轮所处的调节点作为第二个端点,即图4d中的75%位置处的调节点,以此确定调节区间25%到75%的校准调节区间。在完成图4d所示的校准后,正常情况下,控制器的调节轮在25%调节量时,对应调节器的调节齿轮位于实际行程区间的a点(或b点),在控制器的调节量达到75%调节量时,对应调节器的调节齿轮位于默认的行程区间的b点(当0调节量对应于b点时,此时为a点)。这样一来可以使得较小的调节量控制一个较大的行程范围,方便用户快速进行调节环的调节控制。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间中的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。如图4e所示,在进行校准时,可以从调节轮的调节区间401内选择部分可转动子范围即子调节区间4011与调节环的实际行程区间403中选取的部分限位行程子区间即子行程区间4031进行校准。在一个实施例中,所述子调节区间的调节方式可参考上述图4d对应内容的描述。所述子行程区间是获取所述调节环中在第一行程点和第二行程点之间的第二行程区间,将该第二行程区间确定为转动行程区间;其中,所述第一行程点和第二行程点是在所述调节器带动调节环转动的过程中检测得到的,所述第一行程点和第二行程点均在第一限位点和第二限位点所限定的实际行程区间之内。其中具体是将在接收到第三确认指令时所述调节齿轮当前转动的行程点记为第一行程点,将在接收到第四确认指令时所述调节齿轮当前转动的行程点记为第二行程点。实际的操作可以包括:连续两次长按Q秒(或其他定义的操作方式),使控制器当前进入行程区间选择的工作模式,在确定了限位点a后,控制调节器顺时针转动,在行程区间选择的工作模式下当接收到用户在按钮上的单击操作(第三确认指令,也可为其他定义的操作方式)时,将当前的行程点确定为第一行程点,例如图4e中的AA点,调节环继续转动,当再次接收到单击操作(第四确认指令,也可为其他定义的操作方式)后,将继续转动后当前的行程点确认为第二行程点,例如图4e中的BB点,进而确定AA-BB的子行程 区间。
在完成图4e所示的校准后,正常情况下,控制器的调节轮在25%调节量时,对应调节器的调节齿轮位于实际行程区间的AA点(或BB点),在控制器的调节量达到75%调节量时,对应调节器的调节齿轮位于默认的行程区间的BB点(当0调节量对应于BB点时,此时为AA点)。这样一来可以方便用户在任意调节速度下进行调节环的调整。例如,想要调节速度快一些,则可以使可转动子范围4011小于限位行程子区间4031,要想调节速度慢一些顾及调节精度,则可以使可转动子范围4011大于限位行程子区间4031即可。要想使得调节轮的转动速度和调节环的调节速度一致,则可以使可转动子范围4011等于限位行程子区间4031即可。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间与所述调节环的行程区间中包括的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的,也就是将第一限位点和第二限位点确定的实际行程区间中的一部分区间与调节区间进行映射。
在确定了实际行程区间后,对于控制器而言其调节轮的调节区间为已知,即可根据需要,进行上述的各种或更多种校准处理,以便于用户对镜头的调节环进行调整。另外,在其他实施例中,还可以通过软件应用的方式进行上述映射关系的配置,具体的,可以给用户提供一个用户界面,用户界面上可以显示类似于图4b到图4e的用来表达调节区间和行程区间的图样,用户通过滑动某个虚拟按钮等方式确定出需要映射的调节区间和行程区间,完成调节区间和行程区间的映射,并写入到控制器中。或者说,所述控制器本身为一个智能终端,具备触摸屏显示功能,进而通过用户界面进行直观的配置。
在完成上述的校准处理后,请参考图5,是本发明实施例的另一种相机镜头调节方法的流程示意图,本发明实施例的所述方法可以由上述提及的控制器来执行,在控制器根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动后,所述调节环的运动过程中会执行本发明实施例的相机镜头调节方法。
如上述,该控制器可以是一个单独的遥控器,通过远程控制调节器的方式来实现对镜头调节环的转动控制;也可以内置到调节器内部,通过与调节器内 的电机相连,控制电机输出扭矩来使得调节齿轮转动,最终实现对镜头调节环的转动控制,此时,调节器可以通过预设的自动控制程序指令来对相机镜头进行自动调节,例如,自动以预设的调节量来控制调节齿轮带动镜头的调焦环转动,实现对某个拍摄目标的由远及近或者由近及远的拍摄。
在本发明实施例中,所述调节环与调节器通过传动配合,控制器通过控制所述调节器的转动来带动所述调节环以对所述取景镜头进行调节控制,本发明实施例的所述方法包括如下步骤。
S501:控制器获取调节器的运行参数,所述运行参数包括所述调节器在带动所述调节环运动时的扭矩参数。经过对诸如图1a和图1b所示的调节器对调节环进行调节的过程中,在各种状况下所输出的扭矩进行评估,得到如图6所示的扭矩参数与实际行程区间的对应关系。基于该对应关系,本发明实施例从获取扭矩参数出发来对调节器进行控制,进而完成对镜头调节环的控制。扭矩参数是通过检测调节器的动力组件上的电压与电流来计算得到,在一个实施例中,可以是调节器计算并发送给控制器的。
S502:如果所述扭矩参数满足预设的控制条件,则控制器对所述调节器的动力组件进行控制,降低所述动力组件的输出扭矩。所述动力组件包括电机。当检测到扭矩参数满足预设的控制条件时,可认为调节器的电机可能存在堵转的情况,有电机被烧毁的风险,此时通过降低所述动力组件的输出扭矩来实现安全控制,以便于避免电机烧毁风险。
发生堵转的情况例如可以是指:在控制调节器的电机转动使得调节齿轮带动调节环转动的过程中,有可能因为校准不够准确或者存在齿轮打滑等原因,调节环已经达到限位点,但调节器的电机还在带动调节齿轮转动的情况,此时电机在输出扭矩,但实际上调节环、调节齿轮都没有转动。此时,控制器对所述调节器的动力组件进行控制,可以将所述动力组件的输出扭矩降低到预设的扭矩阈值,如图6所示,降低所述动力组件的输出扭矩主要包括逐步降低所述电机的扭矩到最小值,甚至关闭所述电机的电源。
在一个实施例中,控制器可以实时判断获取到的运行参数的参数值是否大于预设的第二阈值;若是则触发检测扭矩参数是否满足预设的控制条件。参考图6,可以发现在从限位点a开始转动后,到达限位点b时输出扭矩会达到某个数值,此时以在进行检测配置或者数据初始化节点获取到的在限位点b时的扭矩值作为参考值,将该参考值作为第二阈值、或者将略小于该参考值或略大于 该参考值的值作为第二阈值,在检测到扭矩值大于第二阈值时,才开始执行判断扭矩参数是否满足预设的控制条件的处理流程,例如开始获取在所述调节器的转动来带动所述调节环运动的过程中,所述调节环运动的行程点,确定其是否为目标行程点;或者开始检测到的所述控制器上的诸如调节轮等控制组件上的调节量是否为预设的目标量等等处理。
调节器主要是通过齿轮啮合的方式来带动调节环转动,在其他实施例中,调节器和调节环之间还可以通过带传动、链传动,甚至使用摩擦轮的方式实现传动配合。
在一个实施例中,所述扭矩参数满足预设的控制条件包括:所述扭矩参数的参数值大于预设的第一阈值、且所述扭矩参数的参数值大于预设的第一阈值的持续时长大于预设的时长阈值。参考图6,比如第一阈值为一个接近于电机的扭矩最大值的一个值,当大于该第一阈值且持续时间5秒,则认为满足控制条件,需要降低扭矩,例如在5秒后逐步降低扭矩到最小值,以保证所述电机保持在所述发生堵转的位置,然而不进行转动。可以理解,所述最小值可以趋近于或等于0,以使所述电机在所述堵转位置停转。
在一个实施例中,所述扭矩参数满足预设的控制条件包括:在所述调节器的转动来带动所述调节环运动的过程中,所述调节环运动到预设的目标行程点、且所述扭矩参数的参数值大于预设的第一阈值的持续时长大于预设的时长阈值。为了避免持续进行扭矩参数的采集所带来的开销,可以不用实时去获取电机输出的扭矩参数,而是在检测到调节环随着调节器的调节齿轮的转动而转动到某个特定位置即预设的目标行程点时,才开始获取扭矩参数。在一个实施例中,该目标行程点可以是指限位点,例如上述的限位点a或者限位点b。在另一个实施例中,该目标行程点是指在一个预设的行程区间内点,该行程区间是根据所述调节环的运动行程上所指定的限位点设置的。该预设的行程区间可以包括:接近于限位点的点到限位点之间的行程区间。所述调节环是否运动到目标行程点可以是调节器检测到的,调节器将调节齿轮已经转动过的行程与已知的调节环的行程进行比较,进而确定出调节环随着调节齿轮的转动是否到达了限位点或者到达了靠近限位点的某个点内部。当然,在其他实施例中,所述调节环是否运动到目标行程点也可以基于设置在调节环上的运动传感器感测的数据来确定。
在一个实施例中,所述控制器上包括控制组件,通过检测到的在所述控制 组件上的调节区间的调节量来控制所述调节器带动所述调节环运动,所述控制组件是指上述提到的调节轮,可以通过旋转调节轮的方式来控制调节器的电机转动。所述控制器也可以是移动终端或遥控器,如在移动终端上设置控制界面,通过控制界面上的参数输入区域或虚拟调节轮等实现所述控制组件的功能;或者,通过遥控器上的拨轮、旋钮或按键等实现所述控制组件的功能。所述扭矩参数满足预设的控制条件包括:检测到的所述控制组件上的调节量为预设的目标量、且所述扭矩参数的参数值大于预设的第一阈值的持续时长大于预设的时长阈值。为了避免持续进行扭矩参数的采集所带来的开销,可以不用实时去获取电机输出的扭矩参数,而是在确定调节轮转动到某个特定的调节点时才开始获取调节器的电机的输出扭矩。该调节点例如可以是对应于调节环的限位点的调节点,或者是该调节点是接近于限位点的某个区间内的点,具体的,所述预设的目标量属于一个预设的调节量范围内,该预设的调节量范围是根据所述调节环的运动行程上所指定的限位点设置的。
本发明实施例在对相机镜头进行自动调节的过程中,是根据调节量并通过调节区间和一个行程区间的映射关系,来保证对相机镜头的调节会在一个安全的区间内进行,不需要人为观测,满足了对相机镜头调节的安全性要求。
再请参见图7,是本发明实施例的一种相机镜头调节装置的结构示意图,,所述装置可以应用在上述的控制器中,在本发明实施例中,所述相机包括取景镜头和用于调节取景镜头的调节环,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,通过带动调节环的运动,具体可以进行跟焦调节和对焦调节。具体的,本发明实施例的所述装置包括如下结构。
获取模块701,用于获取在所述控制器的控制组件上检测到的调节量;处理模块702,用于根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
在一个实施例中,所述处理模块702,还用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
在一个实施例中,所述处理模块702,用于在接收到校准指令后,通过控制 所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间,具体用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的第一限位点;在确定所述第一限位点后,控制所述调节器上的调节齿轮反向转动,来带动所述调节环运动并确定第二限位点;根据所述调节齿轮从第一限位点转动到第二限位点的行程确定所述调节环的行程区间。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间与所述调节环的行程区间中包括的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间之间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间中的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述处理模块702,还用于在接收到校准指令后,获取默认设置的行程区间,并将该默认设置的行程区间确定为所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
本发明实施例中的所述装置的各个相关模块在进行调节器控制以及校准相关处理的具体实现可参考前述实施例中相关内容的描述,在此不赘述。同时,所述装置的各个相关模块除了可以执行在本实施例中的相关处理,可以执行前述的图5所对应实施例中的相关内容。例如由获取模块701来获取调节器的运行参数,由处理模块702来在所述扭矩参数满足预设的控制条件时,对所述调节器的动力组件进行控制,降低所述动力组件的输出扭矩。
本发明实施例在对相机镜头进行自动调节的过程中,是根据调节量并通过调节区间和一个行程区间的映射关系,来保证对相机镜头的调节会在一个安全的区间内进行,不需要人为观测,满足了对相机镜头调节的安全性要求。
再请参见图8,是本发明实施例的一种控制设备的结构示意图,所述控制设备与上述提及的控制器对应,所述控制设备用于对相机镜头进行调节,所述相机包括取景镜头和用于调节取景镜头的调节环,所述调节环与调节器通过传动配合,所述控制设备通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,其中,所述控制设备包括:处理器801;进一步可选地,该控制设备还可以包括供电电路、充电接口等,另外,所述控制设备上还包括用户接口802,该用户接口802包括按钮8021、控制组件8022。所述控制组件8022可以为上述提及的调节轮。该按钮8021可以作为电源开关,也可以用来触发进行调节区间和行程区间之间的映射关系的校准。
所述处理器801可以是中央处理器801(central processing unit,CPU)。所述处理器801还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)等。上述PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。所述处理器801可以通过调用在控制设备中设置的存储装置803中存储的程序指令,实现如本申请图4a和/或图5实施例中所示的相机镜头调节方法。
其中,所述存储装置803可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置803也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储装置803还可以包括上述种类的存储器的组合。
在一个实施例中,所述处理器801,用于获取在所述控制器的控制组件8022上检测到的调节量;根据所述控制组件8022的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
在一个实施例中,所述处理器801,还用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间;设置所述控制组件8022的调节区间与确定的所述调节环的行程区间之间的映射关系。
在一个实施例中,所述处理器801,具体用于在接收到校准指令后,通过控 制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的第一限位点;在确定所述第一限位点后,控制所述调节器上的调节齿轮反向转动,来带动所述调节环运动并确定第二限位点;根据所述调节齿轮从第一限位点转动到第二限位点的行程确定所述调节环的行程区间。
在一个实施例中,所述控制组件8022的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件8022的调节区间与所述调节环的行程区间中包括的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述控制组件8022的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件8022的调节区间中包括的子调节区间与所述调节环的行程区间之间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述控制组件8022的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件8022的调节区间中包括的子调节区间与所述调节环的行程区间中的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述处理器801,还用于在接收到校准指令后,获取默认设置的行程区间,并将该默认设置的行程区间确定为所述调节环的行程区间;设置所述控制组件8022的调节区间与确定的所述调节环的行程区间之间的映射关系。
本发明实施例中的所述处理器在进行调节器控制以及校准相关处理的具体实现可参考前述实施例中相关内容的描述,在此不赘述。同时,所述处理器除了执行在本实施例中的相关处理,可以执行前述的图5所对应实施例中的相关内容。
本发明实施例在对相机镜头进行自动调节的过程中,是根据调节量并通过调节区间和一个行程区间的映射关系,来保证对相机镜头的调节会在一个安全的区间内进行,不需要人为观测,满足了对相机镜头调节的安全性要求。
本发明实施例还提供了一种相机镜头控制系统,该系统的具体示意图可参考图1b所示,在本发明实施例中,所述相机包括取景镜头和用于调节取景镜头的调节环,其特征在于,所述控制系统包括:调节器和控制器,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所 述取景镜头进行调节;所述控制器,用于获取在所述控制器的控制组件上检测到的调节量;根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令;所述调节器,用于根据所述控制器发出的控制指令控制动力组件转动,,以带动所述调节环运动。
在一个实施例中,所述控制器,还用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
在一个实施例中,所述控制器,具体用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的第一限位点;在确定所述第一限位点后,控制所述调节器上的调节齿轮反向转动,来带动所述调节环运动并确定第二限位点;根据所述调节齿轮从第一限位点转动到第二限位点的行程确定所述调节环的行程区间。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间与所述调节环的行程区间中包括的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间之间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间中的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
在一个实施例中,所述控制器,还用于在接收到校准指令后,获取默认设置的行程区间,并将该默认设置的行程区间确定为所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
本发明实施例中的所述控制器在进行调节器控制以及校准相关处理的具体实现可参考前述实施例中相关内容的描述,在此不赘述。同时,所述控制器除了执行在本实施例中的相关处理,可以执行前述的图5所对应实施例中的相关内容。
本发明实施例在对相机镜头进行自动调节的过程中,是根据调节量并通过调节区间和一个行程区间的映射关系,来保证对相机镜头的调节会在一个安全的区间内进行,不需要人为观测,满足了对相机镜头调节的安全性要求。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (22)

  1. 一种相机镜头调节方法,所述相机包括取景镜头和用于调节取景镜头的调节环,其特征在于,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,所述方法应用于控制器上,包括:
    获取在所述控制器的控制组件上检测到的调节量;
    根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间;
    设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
  3. 如权利要求2所述的方法,其特征在于,所述在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间,包括:
    在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的第一限位点;
    在确定所述第一限位点后,控制所述调节器上的调节齿轮反向转动,来带动所述调节环运动并确定第二限位点;
    根据所述调节齿轮从第一限位点转动到第二限位点的行程确定所述调节环的行程区间。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:
    所述控制组件的调节区间与所述调节环的行程区间中包括的子行程区间的映射关系;
    其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  5. 如权利要求1-3任一项所述的方法,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:
    所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间之间的映射关系;
    其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  6. 如权利要求1-3任一项所述的方法,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:
    所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间中的子行程区间的映射关系;
    其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  7. 如权利要求1所述的方法,其特征在于,还包括:
    在接收到校准指令后,获取默认设置的行程区间,并将该默认设置的行程区间确定为所述调节环的行程区间;
    设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
  8. 一种相机镜头调节装置,所述相机包括取景镜头和用于调节取景镜头的调节环,其特征在于,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,所述装置应用于控制器上,所述装置包括:
    获取模块,用于获取在所述控制器的控制组件上检测到的调节量;
    处理模块,用于根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
  9. 一种控制设备,其特征在于,所述控制设备用于控制相机镜头,所述相机包括取景镜头和用于调节取景镜头的调节环,所述调节环与调节器通过传动配合,所述控制设备通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节,所述控制设备包括:处理器;
    所述处理器,用于获取在所述控制器的控制组件上检测到的调节量;根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令控制所述调节器中的动力组件转动,以带动所述调节环运动。
  10. 如权利要求9所述的控制设备,其特征在于,
    所述处理器,还用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
  11. 如权利要求10所述的控制设备,其特征在于,所述处理器,具体用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的第一限位点;在确定所述第一限位点后,控制所述调节器上的调节齿轮反向转动,来带动所述调节环运动并确定第二限位点;根据所述调节齿轮从第一限位点转动到第二限位点的行程确定所述调节环的行程区间。
  12. 如权利要求9-11任一项所述的控制设备,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间与所述调节环的行程区间中包括的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  13. 如权利要求9-11任一项所述的控制设备,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间之间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  14. 如权利要求9-11任一项所述的控制设备,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间中的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  15. 如权利要求9所述的控制设备,其特征在于,
    所述处理器,还用于在接收到校准指令后,获取默认设置的行程区间,并将该默认设置的行程区间确定为所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
  16. 一种相机镜头控制系统,所述相机包括取景镜头和用于调节取景镜头的调节环,其特征在于,所述控制系统包括:调节器和控制器,所述调节环与调节器通过传动配合,控制器通过控制所述调节器带动所述调节环运动以对所述取景镜头进行调节;
    所述控制器,用于获取在所述控制器的控制组件上检测到的调节量;根据所述控制组件的调节区间和所述调节环的行程区间的映射关系,并根据获取的调节量发出控制指令;
    所述调节器,用于根据所述控制器发出的控制指令控制动力组件转动,,以带动所述调节环运动。
  17. 如权利要求16所述的方法,其特征在于,
    所述控制器,还用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
  18. 如权利要求17所述的方法,其特征在于,
    所述控制器,具体用于在接收到校准指令后,通过控制所述调节器的调节齿轮带动所述调节环运动来确定所述调节环的第一限位点;在确定所述第一限位点后,控制所述调节器上的调节齿轮反向转动,来带动所述调节环运动并确定第二限位点;根据所述调节齿轮从第一限位点转动到第二限位点的行程确定 所述调节环的行程区间。
  19. 如权利要求16-18任一项所述的方法,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间与所述调节环的行程区间中包括的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  20. 如权利要求16-18任一项所述的方法,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间之间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  21. 如权利要求16-18任一项所述的方法,其特征在于,所述控制组件的调节区间和所述调节环的行程区间的映射关系包括:所述控制组件的调节区间中包括的子调节区间与所述调节环的行程区间中的子行程区间的映射关系;其中,所述调节环的行程区间是根据所述调节环的第一限位点和第二限位点确定的。
  22. 如权利要求16所述的方法,其特征在于,
    所述控制器,还用于在接收到校准指令后,获取默认设置的行程区间,并将该默认设置的行程区间确定为所述调节环的行程区间;设置所述控制组件的调节区间与确定的所述调节环的行程区间之间的映射关系。
PCT/CN2018/115752 2018-11-15 2018-11-15 一种相机镜头调节方法、装置及控制设备、控制系统 WO2020097887A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880038461.4A CN110771133B (zh) 2018-11-15 2018-11-15 一种相机镜头调节方法、装置及控制设备、控制系统
CN202210380488.XA CN114827407A (zh) 2018-11-15 2018-11-15 一种相机镜头调节方法、装置及控制设备、控制系统
PCT/CN2018/115752 WO2020097887A1 (zh) 2018-11-15 2018-11-15 一种相机镜头调节方法、装置及控制设备、控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115752 WO2020097887A1 (zh) 2018-11-15 2018-11-15 一种相机镜头调节方法、装置及控制设备、控制系统

Publications (1)

Publication Number Publication Date
WO2020097887A1 true WO2020097887A1 (zh) 2020-05-22

Family

ID=69328783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115752 WO2020097887A1 (zh) 2018-11-15 2018-11-15 一种相机镜头调节方法、装置及控制设备、控制系统

Country Status (2)

Country Link
CN (2) CN114827407A (zh)
WO (1) WO2020097887A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021258308A1 (zh) * 2020-06-23 2021-12-30 深圳市大疆创新科技有限公司 变焦控制方法、装置、手持云台及计算机可读存储介质
WO2022109774A1 (zh) * 2020-11-24 2022-06-02 深圳市大疆创新科技有限公司 相机的控制方法、装置及相机控制系统
WO2023065168A1 (zh) * 2021-10-20 2023-04-27 深圳市大疆创新科技有限公司 镜头的调焦方法、控制方法、标定方法、设备及存储介质
CN115623328B (zh) * 2022-09-02 2023-10-13 深圳市乐其网络科技有限公司 控制方法、镜头控制装置、镜头驱动器和跟焦控制系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230946A1 (en) * 2006-03-29 2007-10-04 Canon Kabushiki Kaisha Cradle having panhead function
CN203311078U (zh) * 2013-06-18 2013-11-27 红蝶科技(深圳)有限公司 一种调焦装置和投影系统
CN204807883U (zh) * 2015-08-06 2015-11-25 浙江宇视科技有限公司 一种双档位直流驱动光圈镜头及其摄像机
CN205539653U (zh) * 2016-02-26 2016-08-31 北京注色影视科技有限公司 识别镜头光圈齿轮或聚焦齿轮旋转范围的装置及镜头调节装置
CN107145028A (zh) * 2017-06-29 2017-09-08 环球智达科技(北京)有限公司 光电投射镜头模组
JP2017215396A (ja) * 2016-05-31 2017-12-07 キヤノン株式会社 カメラ雲台装置
CN206820877U (zh) * 2017-03-31 2017-12-29 成都市极米科技有限公司 一种调焦结构及投影仪
CN107864321A (zh) * 2017-11-29 2018-03-30 苏州蛟视智能科技有限公司 一种基于定焦镜头的电动调焦装置及方法
CN108241243A (zh) * 2016-12-27 2018-07-03 中国船舶重工集团公司七五〇试验场 一种水下电动调焦装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147427B2 (ja) * 2004-08-10 2008-09-10 フジノン株式会社 フォーカスコントロール装置
CA2930413C (en) * 2013-11-15 2021-05-11 Free Focus Systems, Llc Location-tag camera focusing systems
CN204557279U (zh) * 2015-04-16 2015-08-12 深圳市大疆创新科技有限公司 旋钮结构及使用该旋钮结构的跟焦遥控器
CN105519093B (zh) * 2015-04-29 2019-10-01 深圳市大疆创新科技有限公司 跟焦器、具有该跟焦器的遥控跟焦系统及飞行器
CN205384727U (zh) * 2015-11-25 2016-07-13 深圳市大疆创新科技有限公司 遥控器、可移动平台、可移动平台系统及无人飞行器
CN105303807B (zh) * 2015-11-25 2018-04-10 深圳市大疆灵眸科技有限公司 遥控器、可移动平台及其控制方法和系统以及无人飞行器
US20180234617A1 (en) * 2017-02-15 2018-08-16 John Przyborski Motion camera autofocus systems
CN107065836B (zh) * 2017-05-31 2019-09-20 上海拓攻机器人有限公司 一种电调校准方法及系统
CN207053650U (zh) * 2017-08-16 2018-02-27 桂林智神信息技术有限公司 一种可调节相机参数的手持稳定器
CN207817957U (zh) * 2018-01-23 2018-09-04 无锡华润矽科微电子有限公司 双芯片内核的滚轮遥控器
CN207884758U (zh) * 2018-02-08 2018-09-18 桂林智神信息技术有限公司 手持云台
CN207924234U (zh) * 2018-03-30 2018-09-28 深圳市大疆创新科技有限公司 旋钮机构和跟焦遥控器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230946A1 (en) * 2006-03-29 2007-10-04 Canon Kabushiki Kaisha Cradle having panhead function
CN203311078U (zh) * 2013-06-18 2013-11-27 红蝶科技(深圳)有限公司 一种调焦装置和投影系统
CN204807883U (zh) * 2015-08-06 2015-11-25 浙江宇视科技有限公司 一种双档位直流驱动光圈镜头及其摄像机
CN205539653U (zh) * 2016-02-26 2016-08-31 北京注色影视科技有限公司 识别镜头光圈齿轮或聚焦齿轮旋转范围的装置及镜头调节装置
JP2017215396A (ja) * 2016-05-31 2017-12-07 キヤノン株式会社 カメラ雲台装置
CN108241243A (zh) * 2016-12-27 2018-07-03 中国船舶重工集团公司七五〇试验场 一种水下电动调焦装置
CN206820877U (zh) * 2017-03-31 2017-12-29 成都市极米科技有限公司 一种调焦结构及投影仪
CN107145028A (zh) * 2017-06-29 2017-09-08 环球智达科技(北京)有限公司 光电投射镜头模组
CN107864321A (zh) * 2017-11-29 2018-03-30 苏州蛟视智能科技有限公司 一种基于定焦镜头的电动调焦装置及方法

Also Published As

Publication number Publication date
CN110771133A (zh) 2020-02-07
CN110771133B (zh) 2022-05-03
CN114827407A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2020097887A1 (zh) 一种相机镜头调节方法、装置及控制设备、控制系统
WO2020097889A1 (zh) 一种相机镜头调节方法、装置及控制设备、控制系统
WO2020097886A1 (zh) 一种相机镜头调节方法、装置及控制设备、控制系统
US9001255B2 (en) Imaging apparatus, imaging method, and computer-readable storage medium for trimming and enlarging a portion of a subject image based on touch panel inputs
US9426366B2 (en) Digital photographing apparatus and method of controlling the same
WO2020087344A1 (zh) 一种视频拍摄方法、装置及控制设备
US7208905B2 (en) Driving method, driving mechanism, and image capturing apparatus
JP2012186698A (ja) 画像撮影装置
JP5371323B2 (ja) 振動型アクチュエータ制御装置、レンズ鏡筒、撮像装置、振動型アクチュエータの制御方法、振動型アクチュエータの制御プログラム
JP2017076433A5 (zh)
WO2015000418A1 (zh) 调整移动终端摄像头取景界面显示图像的系统及方法
US9459691B2 (en) Techniques for adjusting a position of a display device based on a position of a user
TWI470191B (zh) 光源感測裝置及其光源感測方法
JP2014143681A5 (zh)
WO2020107295A1 (zh) 拍摄方法和拍摄系统
US10191244B2 (en) Imaging apparatus and position detection method
JP2011050048A5 (zh)
WO2018095185A1 (zh) 遮光装置的控制方法,及遮光装置
WO2021258308A1 (zh) 变焦控制方法、装置、手持云台及计算机可读存储介质
WO2022061539A1 (zh) 参数自适应方法、手持云台、系统及计算机可读存储介质
CN113302909A (zh) 控制方法、调焦控制方法、装置、手持云台及存储介质
JPS6340111A (ja) カメラのオ−トズ−ム装置
US10230896B2 (en) Accessory for camera and storage medium storing display control program
WO2022064927A1 (ja) レンズ装置、撮像装置、制御方法
JP2017126145A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940247

Country of ref document: EP

Kind code of ref document: A1