WO2020097790A1 - 激光器功率稳定系统、调节激光器功率的方法及装置 - Google Patents

激光器功率稳定系统、调节激光器功率的方法及装置 Download PDF

Info

Publication number
WO2020097790A1
WO2020097790A1 PCT/CN2018/115232 CN2018115232W WO2020097790A1 WO 2020097790 A1 WO2020097790 A1 WO 2020097790A1 CN 2018115232 W CN2018115232 W CN 2018115232W WO 2020097790 A1 WO2020097790 A1 WO 2020097790A1
Authority
WO
WIPO (PCT)
Prior art keywords
output power
laser
power
driving
driving component
Prior art date
Application number
PCT/CN2018/115232
Other languages
English (en)
French (fr)
Inventor
丁闯
勾志勇
蒋峰
Original Assignee
深圳市创鑫激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创鑫激光股份有限公司 filed Critical 深圳市创鑫激光股份有限公司
Priority to PCT/CN2018/115232 priority Critical patent/WO2020097790A1/zh
Publication of WO2020097790A1 publication Critical patent/WO2020097790A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters

Definitions

  • the embodiments of the present application relate to the technical field of lasers, and in particular, to a laser power stabilization system and a method and device for adjusting laser power.
  • the inventor found that the prior art has the following problems: because the internal optical path of the solid-state laser has relatively high requirements on the peripheral environment, so after the problem of power reduction, in addition to adjusting some electrical parameters on site, Most lasers need to be returned to the factory for maintenance, so not only the maintenance cost is high and the time is long, but also the work process will be delayed, the work schedule will be affected, and the user will be incalculable losses.
  • the main technical problem solved by the embodiments of the present application is to provide a laser power stabilization system, laser, and method and device for adjusting the laser power, aiming to solve the problem that most of the lasers need to be returned to the factory for repair after the power drop problem .
  • a technical solution adopted in the embodiments of the present application is to provide a laser power stabilization system, which is applied to a laser, including:
  • Laser resonant cavity including mechanical adjustment device
  • a beam splitter which is opposite to the output end of the laser resonator
  • a power detector which is used to obtain the laser beam split by the beam splitter to detect the output power of the laser
  • a controller which is connected to the power detector and the mechanical adjustment device, respectively, and the controller is used to obtain the output power and determine whether the output power meets a preset standard output power.
  • the output power sends an adjustment instruction to the mechanical adjustment device to control the mechanical adjustment device to adjust, so that the output power meets the preset standard output power.
  • the mechanical adjustment device includes:
  • the controller is respectively connected to the first driving component and the second driving component, the first driving component and the second driving component are both disposed on the fixing base, and the resonant cavity lens is disposed on On the moving board, the fixed base and the moving board are connected by the elastic connecting member, the first driving component and the second driving component both abut the moving board, and the control
  • the controller controls the operating states of the first drive assembly and the second drive assembly through the adjustment instruction to adjust the two-dimensional spatial angle of the resonant cavity lens on the moving plate, so as to satisfy the output power The preset standard output power.
  • the first drive assembly includes a first motor, a second motor, and a first telescopic device.
  • the first telescopic device includes a first threaded rod, a first fixed sleeve, and a first threaded sleeve, the first The motor, the second motor and the first fixed pipe sleeve are all fixed on the fixing seat, one end of the first threaded pipe sleeve is disposed in the first fixed pipe sleeve, and the first threaded rod One end of the first threaded sleeve is disposed in the first threaded sleeve, the other end of the first threaded rod abuts against the moving plate, the outer surface of the first threaded rod and the inner surface of the first threaded sleeve Are connected by threads, and the central axes of the first threaded rod, the first threaded sleeve, and the first fixed sleeve are all coincident, and the first motor and the second motor are
  • the second drive assembly includes a third motor, a fourth motor, and a second telescopic device.
  • the second telescopic device includes a second threaded rod, a second fixed sleeve, and a second threaded sleeve.
  • the third motor, the The fourth motor and the second fixed pipe sleeve are fixed on the fixing seat, one end of the second threaded pipe sleeve is disposed in the second fixed pipe sleeve, and one end of the second threaded rod is disposed on In the second threaded sleeve, the other end of the second threaded rod abuts against the moving plate, and the outer surface of the second threaded rod and the inner surface of the second threaded sleeve are connected by threads, And the central axes of the second threaded rod, the second threaded pipe sleeve and the second fixed pipe sleeve are all coincident, and the third motor and the fourth motor are all in contact with the second threaded pipe sleeve The other end is connected and can drive the second threaded pipe sleeve to rotate around the central axis of the second threaded pipe sleeve, so that the other end of the second threaded rod is displaced, thereby changing
  • a technical solution adopted by the embodiments of the present application is to provide a method for adjusting the laser power, including:
  • the step of outputting an adjustment instruction for adjusting the mechanical adjustment device of the laser until the output power meets the standard output power includes:
  • the second driving component in the mechanical adjustment device of the laser is controlled to operate in a driving direction
  • the first driving component is controlled to operate in the first driving direction
  • the second driving component is controlled to operate in the second driving direction until the output power meets the requirements Describe the standard output power.
  • the method before the step of determining whether the output power meets a preset standard output power, the method further includes:
  • the preset standard output power is determined according to the service life.
  • a technical solution adopted in the embodiments of the present application is to provide a device for adjusting laser power, including:
  • An obtaining module which is used to obtain the output power of the laser
  • a judgment module which is used to judge whether the output power meets a preset standard output power
  • the adjustment module is configured to output an adjustment instruction for adjusting the mechanical adjustment device of the laser if the output power does not meet the preset standard output power until the output power meets the standard output power.
  • the adjustment module includes:
  • a first control unit which is used to output an adjustment instruction and control the first driving component in the mechanical adjustment device of the laser to run in a driving direction;
  • a first confirmation unit which is used to acquire and judge whether the output power tends to the standard output power in real time to confirm the first driving direction of the first driving component, wherein, when the first driving component When running in the first driving direction, the output power will tend to the standard output power;
  • a second control unit which is used to control the second drive assembly in the mechanical adjustment device of the laser to operate in a drive direction when the first drive direction is confirmed;
  • a second confirmation unit which is used to acquire and determine whether the output power tends to the standard output power in real time to confirm the second driving direction of the second driving component, wherein, when the second driving component When running in the second driving direction, the output power will tend to the standard output power;
  • a third control unit for controlling the first drive assembly to operate in the first drive direction and the second drive assembly to operate in the second drive direction when confirming the second drive direction Until the output power meets the standard output power.
  • the device further includes:
  • a first confirmation module which is used to determine the service life of the laser
  • the second confirmation module is used to determine a preset standard output power according to the service life.
  • the laser power stabilization system is applied to the laser.
  • the laser power stabilization system includes: a laser resonator, which includes a mechanical adjustment device; beam splitting A mirror, which is arranged opposite to the output end of the laser resonator; a power detector, which is used to obtain the laser beam split by the beam splitter to detect the output power of the laser; a controller, which is respectively A power detector is connected to the mechanical adjustment device, and the controller is used to obtain the output power and determine whether the output power meets a preset standard output power, and if not, adjust to the mechanical adjustment according to the output power
  • the device sends an adjustment instruction to control the mechanical adjustment device to adjust, so that the output power meets the preset standard output power. Therefore, when there is a problem of power reduction, there is no need for deliberate shutdown and maintenance. Self-recovery and adjustment are carried out while the machine is in use. The whole process of automatic control does not require any human adjustment, making
  • FIG. 1 is a schematic structural diagram of a laser power stabilization system according to Embodiment 1 of the present application;
  • FIG. 2 is another schematic structural diagram of a laser power stabilization system according to an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a laser power stabilization system according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a connection structure of a mechanical adjustment device in a laser power stabilization system according to an embodiment of the present application
  • FIG. 5 is a perspective view of a mechanical adjustment device in a laser power stabilization system of an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a first telescopic device in a laser power stabilization system according to an embodiment of the present application
  • FIG. 7 is a flowchart of a method for adjusting laser power according to Embodiment 2 of the present application.
  • FIG. 8 is a specific flow diagram of the steps of outputting an adjustment instruction of a mechanical adjustment device for adjusting a laser in Embodiment 2 of the present application so that the output power meets the standard output power;
  • FIG. 9 is another schematic flowchart of a method for adjusting laser power according to Embodiment 2 of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for adjusting laser power according to Embodiment 3 of the present application.
  • a process, method, system, product, or device that includes a series of steps or units is not limited to the listed steps or units, but optionally includes steps or units that are not listed, or optionally also includes Other steps or units inherent to these processes, methods, products, or equipment.
  • FIG. 1 is a schematic structural diagram of a laser power stabilization system according to Embodiment 1 of the present application.
  • the laser power stabilization system 100 according to this embodiment of the present application is applied to a laser.
  • the laser may be a solid-state laser, and the laser power stabilization system 100 includes : Laser resonator 10, beam splitter 11, power detector 12, and controller 13.
  • the laser resonator 10 includes a mechanical adjustment device 101, a total reflection mirror 102, a laser crystal 103, an acousto-optic switch 104, and a nonlinear crystal group 105. Among them, the total reflection mirror 102 can also be replaced by a high reflection grating.
  • the layout of the internal components of the laser resonator 10 is not limited to the case of FIG. 1, please further refer to FIGS. 2 and 3.
  • FIG. 2V cavity is another structure of the laser power stabilization system of the embodiment of the present application Schematic diagram.
  • FIG. 3Z cavity is another structural schematic diagram of the laser power stabilization system of the embodiment of the present application.
  • the internal structure of the laser resonator 10 of FIG. 2 and the laser resonator 10 of FIG. 3 is the same as that of the laser resonator 10 of FIG. Not the same, but they all belong to the same application concept.
  • the beam splitter 11 is arranged opposite to the output end of the laser resonator 10;
  • the power detector 12 is used to obtain the laser beam split by the beam splitter 11 to detect the output power of the laser 200 or the laser resonator 10, wherein after the laser resonator 10 is oscillated, for example, 98% of the power is emitted outside the laser, and The other 2% of the power is split into the power detector 12, and the power detector 12 estimates the output power at this time based on the 2% power and feeds back the value of the perceived output power to the controller 13 for processing, optionally,
  • the controller 13 is a single-chip microcomputer.
  • the controller 13 includes a power monitoring and processing module 131 and a mechanical adjustment control module 132.
  • the power monitoring and processing module 131 compares the obtained output power with the factory-set power value.
  • the factory-set power value is specifically The standard output power is set to determine whether the mechanical adjustment control module 132 controls the operating state of the mechanical adjustment device 101 to change the output power.
  • the controller 13 is connected to the power detector 12 and the mechanical adjustment device 101 respectively.
  • the controller 13 is used to obtain the output power and determine whether the output power meets the preset standard output power.
  • FIG. 4 is a schematic diagram of a connection structure of a mechanical adjustment device in a laser power stabilization system according to an embodiment of the present application.
  • FIG. 5 is a diagram of a mechanical adjustment device in a laser power stabilization system according to an embodiment of the present application.
  • the mechanical adjustment device 101 includes a first drive assembly 1011, a second drive assembly 1012, a fixed base 1013, a moving plate 1014, an elastic connector 1015, and a resonant cavity lens 1016; the controller 13 is respectively connected to the first drive assembly 1011, the first The two driving components 1012 are connected.
  • the first driving component 1011 and the second driving component 1012 are both disposed on the fixed base 1013, the resonant cavity lens 1016 is disposed on the moving plate 1014, and the fixed base 1013 and the moving plate 1014 are connected by an elastic connecting member 1015 Connection, the first drive assembly 1011 and the second drive assembly 1012 are both in contact with the mobile board 1014, and the controller 13 controls the operating state of the first drive assembly 1011 and the second drive assembly 1012 through adjustment commands to adjust the
  • the two-dimensional spatial angle of the resonant cavity lens 1016 is based on the principle that the power of the laser 200 can be adjusted through the micro resonant cavity lens 1016, so that the output power meets the preset standard output power.
  • the first driving assembly 1011 includes a first motor 10111, a second motor 10112, and a first telescopic device 10113.
  • FIG. 6 is a structure of the first telescopic device in the laser power stabilization system of the embodiment of the present application.
  • the first telescopic device 10113 includes a first threaded rod 10113a, a first fixed sleeve 10113b, and a first threaded sleeve 10113c.
  • the first motor 10111, the second motor 10112, and the first fixed sleeve 10113b are all fixed to the fixing base 1013
  • the first motor 10111 and the second motor 10112 are located on opposite sides of the first fixed sleeve 10113b.
  • Both the first motor 10111 and the second motor 10112 operate synchronously, and one end of the first threaded sleeve 10113c is provided at In the first fixed sleeve 10113b, one end of the first threaded rod 10113a is disposed in the first threaded sleeve 10113c, the other end of the first threaded rod 10113a abuts the moving plate 1014, and the outer surface of the first threaded rod 10113a is connected to the first
  • the inner surface of a threaded socket 10113c is connected by threads, and the central axes of the first threaded rod 10113a, the first threaded socket 10113c, and the first fixed socket 10113b are all coincident.
  • the first motor 10111 and the second motor 10112 are all The other end of a threaded sleeve 10113c is connected.
  • the first motor 10111 and the second motor 10112 are also connected to the other end of the first threaded sleeve 10113c by threads.
  • first motor 10111 and the first The screw connection between the two motors 10112 and the first threaded sleeve 10113c is optical grade, and the threaded connection between the outer surface of the first threaded rod 10113a and the inner surface of the first threaded sleeve 10113c is also optical grade, which can be To ensure extremely high precision control of the movement distance of the first threaded rod 10113a relative to the first threaded sleeve 10113c.
  • the first motor 10111 and the second motor 10112 are both connected to the other end of the first threaded sleeve 10113c and can drive the first threaded sleeve 10113c to rotate around the central axis of the first threaded sleeve 10113c, so that the first threaded rod 10113a Displacement occurs at the other end. Since the other end of the first threaded rod 10113a abuts the moving plate 1014, the two-dimensional spatial angle of the moving plate 1014 and the two-dimensional spatial angle of the resonant cavity lens 1016 on the moving plate 1014 are changed.
  • the second driving assembly 1012 includes a third motor 10121, a fourth motor 10122, and a second telescopic device 10123.
  • the second telescopic device 10123 includes a second threaded rod (not shown) and a second fixed sleeve (not shown) ) And the second threaded sleeve (not shown), the specific structure of the second telescopic device 10123 is the same as the first telescopic device 10113, as shown in FIG.
  • the third motor 10121, the fourth motor 10122 and the second fixed tube sleeve Both are fixed on the fixed base 1013, and the third motor 10121 and the fourth motor 10122 are located opposite to the two sides of the first fixed sleeve 10113, the third motor 10121 and the fourth motor 10122 run synchronously, the second threaded tube
  • One end of the sleeve is disposed in the second fixed pipe sleeve
  • one end of the second threaded rod is disposed in the second threaded pipe sleeve
  • the other end of the second threaded rod contacts the moving plate 1014
  • the outer surface of the second threaded rod is
  • the inner surface of the two-threaded pipe sleeve is connected by threads, and the central axes of the second threaded rod, the second-threaded pipe sleeve, and the second fixed pipe sleeve are all coincident.
  • the third motor and the fourth motor are all connected to the second thread
  • the other end of the sleeve is also connected by a thread.
  • the thread connection between the third motor and the fourth motor and the second threaded sleeve is optical grade
  • the outer surface of the second threaded rod and the second thread The screw connection of the inner surface of the sleeve is also of optical grade, thereby ensuring extremely high precision control of the movement distance of the second screw rod relative to the second screw sleeve.
  • the third motor 10121 and the fourth motor 10122 are both connected to the other end of the second threaded sleeve and can drive the second threaded sleeve to rotate around the central axis of the second threaded sleeve, so that the other end of the second threaded rod is displaced Since the other end of the second threaded rod is in contact with the moving plate 1014, the two-dimensional spatial angle of the moving plate 1014 will be changed, thereby changing the two-dimensional spatial angle of the resonant cavity lens 1016 on the moving plate 1014. Thus, it is adjusted so that the output power meets the preset standard output power.
  • the first drive assembly 1011 may be provided with only one drive motor or more than two drive motors
  • the second drive assembly 1012 may be provided with only one drive motor or more than two drive motors.
  • the driving motor is not described here one by one.
  • the telescopic movement of the first telescopic device 10113 and the second telescopic device 10123 can also be manually adjusted by the M2.5 Allen wrench to change the moving plate The two-dimensional spatial angle of the resonant cavity lens 1016 on 1014.
  • the laser power stabilization system 100 is applied to a laser.
  • the laser power stabilization system 100 includes: a laser resonant cavity 10 including a mechanical adjustment device 10; a beam splitter 11 that is output from the laser resonant cavity 10
  • the power detector 12 is used to obtain the laser beam split by the beam splitter 11 to detect the output power of the laser;
  • the controller 13 is respectively connected to the power detector 12 and the mechanical adjustment device 10, and the controller 13 It is used to obtain the output power and judge whether the output power meets the preset standard output power. If not, it sends an adjustment instruction to the mechanical adjustment device 10 according to the output power to control the mechanical adjustment device 10 to adjust so that the output power meets the preset Standard output power.
  • FIG. 7 is a flowchart of a method for adjusting laser power according to Embodiment 2 of the present application. The method is applied to the laser power stabilization system of Embodiment 1 above.
  • Step 101 Obtain the output power of the laser
  • the controller 13 obtains the output power of the laser through the power detector 12.
  • Step 102 Determine whether the output power meets the preset standard output power
  • the controller 13 compares the acquired output power with the preset standard output power, and when the acquired output power is greater than or equal to the preset standard output power, it determines that the output power meets the preset standard output power, otherwise, it does not .
  • the preset standard output power can be obtained according to a numerical table of factory-set power values.
  • Step 103 If not, output an adjustment instruction for adjusting the mechanical adjustment device of the laser so that the output power meets the standard output power.
  • the adjustment instruction for the mechanical adjustment device for adjusting the laser is output so that the output power meets the standard output power.
  • step 103 includes the following steps 1031 to 1035:
  • Step 1031 output an adjustment instruction, so that the mechanical adjustment device of the laser controls the first driving component in the mechanical adjustment device to operate in a driving direction according to the adjustment instruction;
  • the controller 13 outputs an adjustment instruction, and the mechanical adjustment device 101 controls the first drive assembly 1011 in the mechanical adjustment device 101 to operate in a driving direction according to the adjustment instruction. Specifically, the mechanical adjustment device 101 controls the first drive assembly 1011 in the mechanical adjustment device 101 according to the adjustment instruction.
  • the first motor 10111 and the second motor 10112 in a driving assembly 1011 operate in a driving direction, for example, the first motor 10111 and the second motor 10112 are controlled to operate in a clockwise direction or counterclockwise.
  • Step 1032 Obtain and judge whether the output power tends to the standard output power in real time to confirm the first driving direction of the first driving component, wherein, when the first driving component operates in the first driving direction, the output power will tend to the standard output power;
  • step 1031 After performing step 1031, it is obtained and judged in real time whether the output power tends to the standard output power. If the output power tends to the standard output power, that is, the output power keeps changing and approaching the standard output power, then confirm the drive The direction is the first driving direction, otherwise, it is confirmed that the opposite direction of the one driving direction in step 1031 is the first driving direction.
  • the real-time acquisition and judgment whether the output power tends to the standard output power can be It is executed when the first threaded rod moves a thread position. For example, assuming that the driving direction in step 1031 is clockwise, during operation, the output power continuously changes and approaches the standard output power, then it is confirmed that clockwise is the first driving direction, otherwise, it is confirmed that counterclockwise is the first One driving direction.
  • step 1031 the second driving assembly 1012 remains stationary.
  • Step 1033 When the first driving direction is confirmed, the second driving component in the mechanical adjustment device that controls the laser operates in a driving direction;
  • the second driving assembly 1012 in the mechanical adjustment device 101 is controlled to operate in a driving direction, specifically, the third motor 10121 and the fourth motor 10122 in the second driving assembly 1012 are controlled in a driving direction Operation, for example, the third motor 10121 and the fourth motor 10122 are controlled to operate clockwise or counterclockwise.
  • Step 1034 Obtain and judge whether the output power tends to the standard output power in real time to confirm the second driving direction of the second driving component, wherein, when the second driving component operates in the second driving direction, the output power will tend to the standard output power;
  • step 1033 After step 1033 is executed, real-time acquisition and determination of whether the output power tends to the standard output power, if the output power tends to the standard output power, that is, the output power continues to change and approaches the standard output power, it is worth explaining that: here is real-time acquisition And determine whether the output power tends to the standard output power can be executed when the second threaded rod moves a thread position, then confirm that the one driving direction in step 1033 is the second driving direction, otherwise, confirm in step 1033 The direction opposite to the one driving direction is the second driving direction. For example, assuming that the driving direction in step 1033 is clockwise, during operation, the output power continuously changes and approaches the standard output power, then clockwise is the second driving direction, otherwise, counterclockwise is the first. Two driving directions.
  • step 1033 the first driving assembly 1011 remains stationary.
  • Step 1035 When the second driving direction is confirmed, the first driving component is controlled to operate in the first driving direction, and the second driving component is controlled to operate in the second driving direction until the output power meets the standard output power. Because the entire adjustment process is performed in real time, a slight change in power will cause the power feedback control system to work, thereby playing a role in stabilizing the power.
  • the controller 13 In the factory setting, the attenuation factor of power with time needs to be set according to the previous use of similar models, so as to ensure that the power is stable within a required range within a certain period of time. For example, 3W UV water-cooled laser, the power stability requirement is ⁇ 0.15%. If according to the previous user data statistics, the power will drop by about 5% after one year of use.
  • the default power stability standard value is 3.06mW, so the power stability range It is: 3.00-3.10mW, the standard output power is: 2.81W-2.89W.
  • FIG. 9 is another schematic flow chart of the method for adjusting the laser power according to the second embodiment of the present application, in determining whether the output power meets the preset standard output power Before step 102, the method further includes the following step 104 and step 105:
  • Step 104 Determine the service life of the laser
  • Step 105 Determine the preset standard output power according to the service life.
  • the developer or manufacturer of the laser may list a correspondence table between the service life and the standard output power according to the experimental data, and the preset standard output power may be determined from the table.
  • the method of the laser power includes obtaining the output power of the laser; judging whether the output power meets the preset standard output power; if not, outputting the adjustment instruction for adjusting the mechanical adjustment device of the laser to make the output power Meet standard output power. Therefore, when there is a problem of power reduction, there is no need for deliberate shutdown and maintenance. Self-recovery and adjustment are carried out while the machine is in use. The whole process of automatic control does not require any human adjustment, making power recovery faster and more accurate.
  • FIG. 10 is a schematic structural diagram of an apparatus for adjusting laser power according to Embodiment 3 of the present application.
  • the apparatus is applied to the laser power stabilization system of Embodiment 1 described above.
  • the apparatus 300 includes an acquisition module 301, a judgment module 302, and The adjustment module 303, the first confirmation module 304, and the second confirmation module 305;
  • the obtaining module 301 is used to obtain the output power of the laser
  • the judgment module 302 is used to judge whether the output power meets the preset standard output power
  • the adjustment module 303 is used for outputting the adjustment instruction of the mechanical adjustment device for adjusting the laser if the output power does not meet the preset standard output power until the output power meets the standard output power.
  • the adjustment module 303 includes: a first output unit 3031, a first confirmation unit 3032, a second output unit 3033, a second confirmation unit 3034, and a third output unit 3035;
  • the first output unit 3031 is used to output an adjustment instruction, so that the mechanical adjustment device of the laser controls the first driving component in the mechanical adjustment device to operate in a driving direction according to the adjustment instruction;
  • the first confirmation unit 3032 is used to acquire and determine whether the output power tends to the standard output power in real time to confirm the first driving direction of the first driving assembly, wherein, when the first driving assembly operates in the first driving direction, the output power will be Tend to standard output power;
  • the second output unit 3033 is used to output information confirming the first driving direction, so that the mechanical adjustment device of the laser controls the second drive assembly in the mechanical adjustment device to operate in a driving direction;
  • the second confirmation unit 3034 is used to acquire and determine whether the output power tends to the standard output power in real time to confirm the second drive direction of the second drive assembly, wherein, when the second drive assembly operates in the second drive direction, the output power will be Tend to standard output power;
  • the third output unit 3035 is used to output information confirming the second driving direction, so that the mechanical adjustment device of the laser controls the first driving assembly to operate in the first driving direction, and controls the second driving assembly to operate in the second driving direction until The output power meets the standard output power.
  • the first confirmation module 304 is used to determine the service life of the laser
  • the second confirmation module 305 is used to determine the preset standard output power according to the service life.
  • the device embodiment of the third embodiment of the present application and the method embodiment of the second embodiment are based on the same application concept, and the same technical content and beneficial effects as the second embodiment will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Abstract

一种激光器功率稳定系统(100)、调节激光器功率的方法及装置。激光器功率稳定系统(100)包括:激光器谐振腔(10),其包括机械调节装置(101);分束镜(11);功率探测器(12),其用于获取分束镜(11)分束出来的激光以检测激光器的输出功率;控制器(13),其分别与功率探测器(12)和机械调节装置(101)连接,控制器(13)用于获取输出功率并判断输出功率是否满足预设的标准输出功率,若否,则根据输出功率向机械调节装置(101)发送调节指令,以控制机械调节装置(101)进行调节,进而使输出功率满足预设的标准输出功率。当出现功率下降的问题后,不需要刻意的停机维修,在机器使用的同时便进行了自我恢复和调节,全程自动化控制,不需要任何人为调节,使得功率恢复更加快捷、准确。

Description

激光器功率稳定系统、调节激光器功率的方法及装置 技术领域
本申请实施方式涉及激光器技术领域,特别是涉及一种激光器功率稳定系统、调节激光器功率的方法及装置。
背景技术
随着固体激光器特别是紫外激光器的诞生,因其峰值功率高、输出能量大,以及结构紧凑方便携带等优点,在微孔、打标、3D成型等工业领域有着广泛的应用,不仅如此,固体激光器在科研、国防、特别是医疗领域都获得了大量的广泛的应用与迅速的发展。
发明人在实现本申请的过程中,发现现有技术存在以下问题:因为固体激光器的内部光路对外围环境要求比较高,故而出现功率下降的问题后,除了现场调节一些的电气参数之外,绝大多数激光器都需要返厂维修,因此不仅维修成本高、时间长,而且还会耽搁工作流程,影响工作进度,给使用者带来不可估量的损失。
申请内容
本申请实施方式主要解决的技术问题是提供一种激光器功率稳定系统、激光器、调节激光器功率的方法及装置,旨在解决当出现功率下降的问题后,绝大多数激光器都需要返厂维修的问题。
第一方面,为解决上述技术问题,本申请实施方式采用的一个技术方案是:提供一种激光器功率稳定系统,其应用于激光器,包括:
激光器谐振腔,其包括机械调节装置;
分束镜,其与所述激光器谐振腔的输出端相对设置;
功率探测器,其用于获取所述分束镜分束出来的激光以检测所述激光器的输出功率;
控制器,其分别与所述功率探测器和所述机械调节装置连接,所述控制器用于获取所述输出功率并判断所述输出功率是否满足预设的标准输出功率,若否,则根据所述输出功率向所述机械调节装置发送调节指令,以控制所述机械调节装置进行调节,进而使所述输出功率满足预设的所述标准输出功率。
可选的,所述机械调节装置包括:
第一驱动组件、第二驱动组件、固定座、移动板、弹性连接件以及谐振腔镜片;
所述控制器分别与所述第一驱动组件、所述第二驱动组件连接,所述第一驱动组件和所述第二驱动组件均设置于所述固定座上,所述谐振腔镜片设置于所述移动板上,所述固定座与所述移动板之间通过所述弹性连接件连接,所述第一驱动组件和所述第二驱动组件均与所述移动板抵接,所述控制器通过所述调节指令控制所述第一驱动组件、所述第二驱动组件的运行状态,以调整所述移动板上的所述谐振腔镜片的二维空间角度,进而使所述输出功率满足预设的所述标准输出功率。
可选的,所述第一驱动组件包括第一电机、第二电机以及第一伸缩装置,第一伸缩装置包括第一螺纹杆、第一固定管套以及第一螺纹管套,所述第一电机、所述第二电机以及所述第一固定管套均固定于所述固定座上,所述第一螺纹管套的一端设置于所述第一固定管套内,所述第一螺纹杆的一端设置于所述第一螺纹管套内,所述第一螺纹杆的另一端与所述移动板抵接,所述第一螺纹杆的外表面与所述第一螺纹管套的内表面通过螺纹连接,且所述第一螺纹杆、所述第一螺纹管套以及所述第一固定管套的中心轴均重合,所述第一电机和所述第二电机均与所述第一螺纹管套的另一端连接并可驱动所述第一螺纹管套绕所述第一螺纹管套的中心轴转动,以使所述第一螺纹杆的另一端产生位移,进而改变所述移动板上的所述谐振腔镜片的二维空间角度;
所述第二驱动组件包括第三电机、第四电机以及第二伸缩装置,第二伸缩装置包括第二螺纹杆、第二固定管套以及第二螺纹管套,所述第三电机、所述第四电机以及所述第二固定管套均固定于所述固定座上,所述第二螺纹管套的一端设置于所述第二固定管套内,所述第二螺纹杆的一端设置于所述第二螺纹管套内,所述第二螺纹杆的另一端与所述移动板抵接,所述第二螺纹杆的外表面与所述第二螺纹管套的内表面通过螺纹连接,且所述第二螺纹杆、所述第二螺纹管套以及所述第二固定管套的中心轴均重合,所述第三电机和所述第四电机均与所述第二螺纹管套的另一端连接并可驱动所述第二螺纹管套绕所述第二螺纹管套的中心轴转动,以使所述第二螺纹杆的另一端产生位移,进而改变所述移动板上的所述谐振腔镜片的二维空间角度。
第二方面,为解决上述技术问题,本申请实施方式采用的一个技术方案是:提供一种调节激光器功率的方法,包括:
获取所述激光器的输出功率;
判断所述输出功率是否满足预设的标准输出功率;
若否,输出用于调整所述激光器的机械调整装置的调整指令,至所述输出功率满足所述标准输出功率。
可选的,所述输出用于调整所述激光器的机械调整装置的调整指令,至所述输出功率满足所述标准输出功率的步骤,包括:
输出调整指令,控制所述激光器的机械调整装置中的第一驱动组件按一驱动方向运行;
实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第一驱动组件的第一驱动方向,其中,当所述第一驱动组件按照所述第一驱动方向运行时,所述输出功率将趋向于所述标准输出功率;
当确认所述第一驱动方向时,控制所述激光器的机械调整装置中的第二驱动组件按一驱动方向运行;
实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第二驱动组件的第二驱动方向,其中,当所述第二驱动组件按照所述第二驱动方向运行时,所述输出功率将趋向于所述标准输出功率;
当确认所述第二驱动方向时,控制所述第一驱动组件按所述第一驱动方向运行,以及控制所述第二驱动组件按所述第二驱动方向运行,直至所述输出功率满足所述标准输出功率。
可选的,在所述判断所述输出功率是否满足预设的标准输出功率的步骤之前,所述方法还包括:
确定所述激光器的使用年限;
根据所述使用年限确定预设的标准输出功率。
第三方面,为解决上述技术问题,本申请实施方式采用的一个技术方案是:提供一种调节激光器功率的装置,包括:
获取模块,其用于获取所述激光器的输出功率;
判断模块,其用于判断所述输出功率是否满足预设的标准输出功率;
调整模块,其用于若所述输出功率不满足预设的标准输出功率,输出用于 调整所述激光器的机械调整装置的调整指令,至所述输出功率满足所述标准输出功率。
可选的,所述调整模块包括:
第一控制单元,其用于输出调整指令,控制所述激光器的机械调整装置中的第一驱动组件按一驱动方向运行;
第一确认单元,其用于实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第一驱动组件的第一驱动方向,其中,当所述第一驱动组件按照所述第一驱动方向运行时,所述输出功率将趋向于所述标准输出功率;
第二控制单元,其用于当确认所述第一驱动方向时,控制所述激光器的机械调整装置中的第二驱动组件按一驱动方向运行;
第二确认单元,其用于实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第二驱动组件的第二驱动方向,其中,当所述第二驱动组件按照所述第二驱动方向运行时,所述输出功率将趋向于所述标准输出功率;
第三控制单元,其用于当确认所述第二驱动方向时,控制所述第一驱动组件按所述第一驱动方向运行,以及控制所述第二驱动组件按所述第二驱动方向运行,直至所述输出功率满足所述标准输出功率。
可选的,所述装置还包括:
第一确认模块,其用于确定所述激光器的使用年限;
第二确认模块,其用于根据所述使用年限确定预设的标准输出功率。
本申请实施方式的有益效果是:区别于现有技术的情况,在本申请实施方式中,激光器功率稳定系统应用于激光器,激光器功率稳定系统包括:激光器谐振腔,其包括机械调节装置;分束镜,其与所述激光器谐振腔的输出端相对设置;功率探测器,其用于获取所述分束镜分束出来的激光以检测所述激光器的输出功率;控制器,其分别与所述功率探测器和所述机械调节装置连接,所述控制器用于获取所述输出功率并判断所述输出功率是否满足预设的标准输出功率,若否,则根据所述输出功率向所述机械调节装置发送调节指令,以控制所述机械调节装置进行调节,进而使所述输出功率满足预设的所述标准输出功率。由此,当出现功率下降的问题后,不需要刻意的停机维修,在机器使用的同时便进行了自我恢复和调节,全程自动化控制,不需要任何人为调节,使得功率恢复更加快捷、准确。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例一的激光器功率稳定系统的一结构示意图;
图2是本申请实施例激光器功率稳定系统的另一结构示意图;
图3是本申请实施例激光器功率稳定系统的再一结构示意图;
图4是本申请实施例激光器功率稳定系统中的机械调节装置的连接结构示意图;
图5是本申请实施例激光器功率稳定系统中的机械调节装置的立体图;
图6是本申请实施例激光器功率稳定系统中的第一伸缩装置的结构示意图;
图7是本申请实施例二的调节激光器功率的方法的流程图;
图8是本申请实施例二中输出用于调整激光器的机械调整装置的调整指令,以使输出功率满足标准输出功率的步骤的具体流程示意图;
图9是本申请实施例二的调节激光器功率的方法的另一流程示意图;
图10是本申请实施例三的调节激光器功率的装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了便于理解本申请的技术方案,对现有技术的状况做进一步说明:随着固体激光器特别是紫外激光器的诞生,因其峰值功率高、输出能量大,以及结构紧凑方便携带等优点,在微孔、打标、3D成型等工业领域有着广泛的应用,不仅如此,固体激光器在科研、国防、特别是医疗领域都获得了大量的广泛的应用与迅速的发展。然而,因为诸多因素,比如光学器件温度过高、环境温度的剧烈变化、机械结构的微微变形,腔体结构的应力变化等等都会影响到激光器功率输出的大小。所以,固体激光器特别是紫外固体激光器的功率下降成为了当前行业的一个难题。在实际维修过程中,我们发现除去电气故障因素,使用年代太久造成的镜片损坏、晶体老化等客观因素部分后,绝大多数激光器均可通过微调谐振腔镜后,激光器的功率、光斑、脉宽、稳定性等便会恢复到出厂值的90%以上,基本都可满足使用者对于当前工作的需求。所以,只要实时的优化谐振腔镜的空间位置,及时匹配出最佳的腔形结构,就能使得输出功率在一定范围内始终维持到最大值。由此,基于通过微调谐振腔镜便可调整激光器的功率的原理,实现了本申请的技术方案。
实施例一
请参阅图1,图1为本申请实施例一的激光器功率稳定系统的一结构示意图,本申请实施例的激光器功率稳定系统100,应用于激光器,激光器可以是固体激光器,激光器功率稳定系统100包括:激光器谐振腔10、分束镜11、功率探测器12以及控制器13。
其中,激光器谐振腔10包括机械调节装置101、全反镜102、激光晶体103、声光开关104和非线性晶体组105,其中,全射镜102也可以由高反光栅代替。再本申请实施例中,激光器谐振腔10内部组件的布局不仅仅局限于图1的情况,请进一步参考图2和图3,图2V型腔是本申请实施例激光器功率稳定系统的另一结构示意图,图3Z型腔是本申请实施例激光器功率稳定系统的再一结构示 意图,图2的激光器谐振腔10和图3的激光器谐振腔10与图1中的的激光器谐振腔10的内部结构均不相同,但是均属于同一个申请构思。
分束镜11与激光器谐振腔10的输出端相对设置;
功率探测器12用于获取分束镜11分束出来的激光以检测激光器200或者激光器谐振腔10的输出功率,其中,激光器谐振腔10经过震荡后,例如98%的功率出射至激光器外,而另外2%的功率被分束到功率探测器12中,功率探测器12根据该2%的功率推测此时的输出功率并将把感知的输出功率数值反馈给控制器13处理,可选的,控制器13为单片机,控制器13包括功率监控处理模块131和机械调节控制模块132,功率监控处理模块131根据获取的输出功率和出厂设置功率值的数值对比,出厂设置功率值的数值具体为预设的标准输出功率,由此判断是否通过机械调节控制模块132来控制机械调节装置101的运行状态,以改变输出功率。
控制器13分别与功率探测器12和机械调节装置101连接,控制器13用于获取输出功率并判断输出功率是否满足预设的标准输出功率,若否,则根据输出功率向机械调节装置101发送调节指令,以控制机械调节装置101进行调节,进而使输出功率满足预设的标准输出功率。
进一步具体的,请参阅图4和图5,图4为本申请实施例激光器功率稳定系统中的机械调节装置的连接结构示意图,图5为本申请实施例激光器功率稳定系统中的机械调节装置的立体图,该机械调节装置101包括第一驱动组件1011、第二驱动组件1012、固定座1013、移动板1014、弹性连接件1015以及谐振腔镜片1016;控制器13分别与第一驱动组件1011、第二驱动组件1012连接,第一驱动组件1011和第二驱动组件1012均设置于固定座1013上,谐振腔镜片1016设置于移动板1014上,固定座1013与移动板1014之间通过弹性连接件1015连接,第一驱动组件1011和第二驱动组件1012均与移动板1014抵接,控制器13通过调节指令控制第一驱动组件1011、第二驱动组件1012的运行状态,以调整移动板1014上的谐振腔镜片1016的二维空间角度,基于通过微谐振腔镜片1016便可调整激光器200的功率的原理,进而使输出功率满足预设的标准输出功率。
更进一步的,第一驱动组件1011包括第一电机10111、第二电机10112以及第一伸缩装置10113,请参阅图6,图6为本申请实施例激光器功率稳定系统 中的第一伸缩装置的结构示意图,第一伸缩装置10113包括第一螺纹杆10113a、第一固定管套10113b以及第一螺纹管套10113c,第一电机10111、第二电机10112以及第一固定管套10113b均固定于固定座1013上,且第一电机10111、第二电机10112位于相对设置于第一固定管套10113b的两侧,第一电机10111和第二电机10112两者同步运行,第一螺纹管套10113c的一端设置于第一固定管套10113b内,第一螺纹杆10113a的一端设置于第一螺纹管套10113c内,第一螺纹杆10113a的另一端与移动板1014抵接,第一螺纹杆10113a的外表面与第一螺纹管套10113c的内表面通过螺纹连接,且第一螺纹杆10113a、第一螺纹管套10113c以及第一固定管套10113b的中心轴均重合,第一电机10111和第二电机10112均与第一螺纹管套10113c的另一端连接,可选的,第一电机10111和第二电机10112均与第一螺纹管套10113c的另一端也通过螺纹连接,值得说明的是:第一电机10111和第二电机10112分别与第一螺纹管套10113c之间的螺纹连接是光学级别的,第一螺纹杆10113a的外表面与第一螺纹管套10113c的内表面的螺纹连接也是光学级别的,由此可以确保极高精度的控制第一螺纹杆10113a相对于第一螺纹管套10113c的运动距离。第一电机10111和第二电机10112均与第一螺纹管套10113c的另一端连接并可驱动第一螺纹管套10113c绕第一螺纹管套10113c的中心轴转动,以使第一螺纹杆10113a的另一端产生位移,由于第一螺纹杆10113a的另一端与移动板1014抵接,因此将改变移动板1014的二维空间角度,进而改变移动板1014上的谐振腔镜片1016的二维空间角度。同样的,第二驱动组件1012包括第三电机10121、第四电机10122以及第二伸缩装置10123,第二伸缩装置10123包括第二螺纹杆(图未示)、第二固定管套(图未示)以及第二螺纹管套(图未示),第二伸缩装置10123的具体结构与第一伸缩装置10113一致,具体可参见图6,第三电机10121、第四电机10122以及第二固定管套均固定于固定座1013上,且第三电机10121、第四电机10122位于相对设置于第一固定管套10113的两侧,第三电机10121、第四电机10122两者同步运行,第二螺纹管套的一端设置于第二固定管套内,第二螺纹杆的一端设置于第二螺纹管套内,第二螺纹杆的另一端与移动板1014抵接,第二螺纹杆的外表面与第二螺纹管套的内表面通过螺纹连接,且第二螺纹杆、第二螺纹管套以及第二固定管套的中心轴均重合,可选的,第三电机和第四电机均与第二螺纹管套的另一端也通过螺纹连接,值得说明的是:第三电机 和第四电机分别与第二螺纹管套之间的螺纹连接是光学级别的,第二螺纹杆的外表面与第二螺纹管套的内表面的螺纹连接也是光学级别的,由此可以确保极高精度的控制第二螺纹杆相对于第二螺纹管套的运动距离。第三电机10121和第四电机10122均与第二螺纹管套的另一端连接并可驱动第二螺纹管套绕第二螺纹管套的中心轴转动,以使第二螺纹杆的另一端产生位移,由于第二螺纹杆的另一端与移动板1014抵接,因此将改变移动板1014的二维空间角度,进而改变移动板1014上的谐振腔镜片1016的二维空间角度。由此,调整至使输出功率满足预设的标准输出功率。
值得说明的是:在一些替代实施例中,第一驱动组件1011可以只设置一个驱动电机或者设置两个以上的驱动电机,第二驱动组件1012页可以只设置一个驱动电机或者设置两个以上的驱动电机,在此不一一赘述,此外,在本申请实施例中,还可以通过M2.5的内六角扳手手动调节第一伸缩装置10113和第二伸缩装置10123的伸缩运动,从而改变移动板1014上的谐振腔镜片1016的二维空间角度。
在本申请实施例一的中,激光器功率稳定系统100应用于激光器,激光器功率稳定系统100包括:激光器谐振腔10,其包括机械调节装置10;分束镜11,其与激光器谐振腔10的输出端相对设置;功率探测器12,其用于获取分束镜11分束出来的激光以检测激光器的输出功率;控制器13,其分别与功率探测器12和机械调节装置10连接,控制器13用于获取输出功率并判断输出功率是否满足预设的标准输出功率,若否,则根据输出功率向机械调节装置10发送调节指令,以控制机械调节装置10进行调节,进而使输出功率满足预设的标准输出功率。由此,当出现功率下降的问题后,不需要刻意的停机维修,在机器使用的同时便进行了自我恢复和调节,全程自动化控制,不需要任何人为调节,使得功率恢复更加快捷、准确,且适用于多种腔形结构,如:平平镜、平凹镜、平凸镜等等,结构简单,易于实现。
实施例二
请参阅图7,图7为本申请实施例二的调节激光器功率的方法的流程图,该方法应用于上述实施例一的激光器功率稳定系统,该方法包括:
步骤101:获取激光器的输出功率;
控制器13通过功率探测器12获取激光器的输出功率。
步骤102:判断输出功率是否满足预设的标准输出功率;
控制器13根据获取的输出功率和预设的标准输出功率进行对比,当获取的输出功率大于或者等于预设的标准输出功率时,则确定输出功率满足预设的标准输出功率,否则,不满足。其中,预设的标准输出功率可以根据出厂设置功率值的数值表获得。
步骤103:若否,输出用于调整激光器的机械调整装置的调整指令,以使输出功率满足标准输出功率。
当确定输出功率不满足预设的标准输出功率时,则输出用于调整激光器的机械调整装置的调整指令,以使输出功率满足标准输出功率。
具体的,为了确保输出功率可以满足标准输出功率,在调整激光器的机械调整装置时,可以通过分别单独尝试性的调整机械调整装置的第一驱动组件1011和第二驱动组件1012,根据功率变化的强弱趋势来判断第一驱动组件1011、第二驱动组件1012的运行状态,由此,请参阅图8,图8是本申请实施例二中输出用于调整激光器的机械调整装置的调整指令,以使输出功率满足标准输出功率的步骤的具体流程示意图,即步骤103包括以下步骤1031至步骤1035:
步骤1031:输出调整指令,以使激光器的机械调整装置根据调整指令控制机械调整装置中的第一驱动组件按一驱动方向运行;
控制器13输出调整指令,机械调整装置101根据调整指令控制机械调整装置101中的第一驱动组件1011按一驱动方向运行,具体的,机械调整装置101根据调整指令控制机械调整装置101中的第一驱动组件1011中的第一电机10111和第二电机10112按一驱动方向运行,例如控制第一电机10111和第二电机10112均按照顺时针方向运行或者逆时针。
步骤1032:实时获取并判断输出功率是否趋向于标准输出功率,以确认第一驱动组件的第一驱动方向,其中,当第一驱动组件按照第一驱动方向运行时,输出功率将趋向于标准输出功率;
在执行步骤1031后,实时获取并判断输出功率是否趋向于标准输出功率,若输出功率趋向于标准输出功率,即输出功率不断变化并向不断接近标准输出功率,则确认步骤1031中的该一驱动方向为第一驱动方向,否则,则确认步骤1031中的该一驱动方向的反方向为第一驱动方向,值得说明的是:此处实时获 取并判断输出功率是否趋向于标准输出功率可以是在第一螺纹杆移动一螺牙位置时执行的。例如,假设步骤1031中该一驱动方向为顺时针方向,在运行过程中,输出功率不断变化并向不断接近标准输出功率,则确认顺时针为第一驱动方向,否则,则确认逆时针为第一驱动方向。
需要说明的是:在执行步骤1031的过程中,第二驱动组件1012保持不动。
步骤1033:当确认第一驱动方向时,控制激光器的机械调整装置中的第二驱动组件按一驱动方向运行;
当确认第一驱动方向时,控制机械调整装置101中的第二驱动组件1012按一驱动方向运行,具体的,控制第二驱动组件1012中的第三电机10121和第四电机10122按一驱动方向运行,例如控制第三电机10121、第四电机10122均按照顺时针方向运行或者逆时针。
步骤1034:实时获取并判断输出功率是否趋向于标准输出功率,以确认第二驱动组件的第二驱动方向,其中,当第二驱动组件按照第二驱动方向运行时,输出功率将趋向于标准输出功率;
在执行步骤1033后,实时获取并判断输出功率是否趋向于标准输出功率,若输出功率趋向于标准输出功率,即输出功率不断变化并向不断接近标准输出功率,值得说明的是:此处实时获取并判断输出功率是否趋向于标准输出功率可以是在第二螺纹杆移动一螺牙位置时执行的,则确认步骤1033中的该一驱动方向为第二驱动方向,否则,则确认步骤1033中的该一驱动方向的反方向为第二驱动方向。例如,假设步骤1033中该一驱动方向为顺时针方向,在运行过程中,输出功率不断变化并向不断接近标准输出功率,则确认顺时针为第二驱动方向,否则,则确认逆时针为第二驱动方向。
需要说明的是:在执行步骤1033的过程中,第一驱动组件1011保持不动。
步骤1035:当确认第二驱动方向时,控制第一驱动组件按第一驱动方向运行,以及控制第二驱动组件按第二驱动方向运行,直至输出功率满足标准输出功率。因为整个调节过程均是实时进行,功率的略微变化都会致使功率反馈控制系统的工作,从而起到稳定功率的作用。
进一步的,由于随着激光器使用年限的增长,腔内镜片膜层的损耗,晶体的老化,腔内干燥剂的失效等诸多因素的影响都会影响功率很难回复至100%,因而,控制器13在出厂设置的时候需要根据之前同类机型的使用情况来设置功 率随时间的衰减因素,从而保证在某一时间段内功率稳定在一个要求范围之内。如3W紫外水冷的激光器,功率稳定性要求为±0.15%,假如根据之前用户数据统计,使用一年后功率会下降5%左右,这个时候默认功率稳定性标准值为3.06mW,因而功率稳定范围为:3.00-3.10mW,标准输出功率为:2.81W-2.89W。为了根据不同年限更好的确定输出功率,因此,请参阅图9,图9为本申请实施例二的调节激光器功率的方法的另一流程示意图,在判断输出功率是否满足预设的标准输出功率的步骤102之前,方法还包括以下步骤104和步骤105:
步骤104:确定激光器的使用年限;
步骤105:根据使用年限确定预设的标准输出功率。
可选的,激光器的研发商或者生产商可以根据实验数据列出使用年限与标准输出功率的对应表,由表可以确定预设的标准输出功率。
在本申请实施例中,激光器功率的方法包括获取激光器的输出功率;判断输出功率是否满足预设的标准输出功率;若否,输出用于调整激光器的机械调整装置的调整指令,以使输出功率满足标准输出功率。由此,当出现功率下降的问题后,不需要刻意的停机维修,在机器使用的同时便进行了自我恢复和调节,全程自动化控制,不需要任何人为调节,使得功率恢复更加快捷、准确。
实施例三
请参阅图10,图10为本申请实施例三的调节激光器功率的装置的结构示意图,该装置应用于上述实施例一的激光器功率稳定系统,该装置300包括:获取模块301、判断模块302和调整模块303、第一确认模块304和第二确认模块305;
获取模块301用于获取激光器的输出功率;
判断模块302用于判断输出功率是否满足预设的标准输出功率;
调整模块303用于若输出功率不满足预设的标准输出功率,输出用于调整激光器的机械调整装置的调整指令,至输出功率满足标准输出功率。
其中,调整模块303包括:第一输出单元3031、第一确认单元3032、第二输出单元3033、第二确认单元3034和第三输出单元3035;
第一输出单元3031用于输出调整指令,以使激光器的机械调整装置根据调整指令控制机械调整装置中的第一驱动组件按一驱动方向运行;
第一确认单元3032用于实时获取并判断输出功率是否趋向于标准输出功率,以确认第一驱动组件的第一驱动方向,其中,当第一驱动组件按照第一驱动方向运行时,输出功率将趋向于标准输出功率;
第二输出单元3033用于输出确认第一驱动方向的信息,以使激光器的机械调整装置控制机械调整装置中的第二驱动组件按一驱动方向运行;
第二确认单元3034用于实时获取并判断输出功率是否趋向于标准输出功率,以确认第二驱动组件的第二驱动方向,其中,当第二驱动组件按照第二驱动方向运行时,输出功率将趋向于标准输出功率;
第三输出单元3035用于输出输出确认第二驱动方向的信息,以使激光器的机械调整装置控制第一驱动组件按第一驱动方向运行,以及控制第二驱动组件按第二驱动方向运行,直至输出功率满足标准输出功率。
第一确认模块304用于确定激光器的使用年限;
第二确认模块305用于根据使用年限确定预设的标准输出功率。
本申请实施例三的装置实施例与实施例二的方法实施例基于相同的申请构思,与实施例二相同的技术内容和有益效果在此不一一赘述。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种激光器功率稳定系统,其应用于激光器,其特征在于,包括:
    激光器谐振腔,其包括机械调节装置;
    分束镜,其与所述激光器谐振腔的输出端相对设置;
    功率探测器,其用于获取所述分束镜分束出来的激光以检测所述激光器的输出功率;
    控制器,其分别与所述功率探测器和所述机械调节装置连接,所述控制器用于获取所述输出功率并判断所述输出功率是否满足预设的标准输出功率,若否,则根据所述输出功率向所述机械调节装置发送调节指令,以控制所述机械调节装置进行调节,进而使所述输出功率满足预设的所述标准输出功率。
  2. 根据权利要求1所述的系统,其特征在于,所述机械调节装置包括:
    第一驱动组件、第二驱动组件、固定座、移动板、弹性连接件以及谐振腔镜片;
    所述控制器分别与所述第一驱动组件、所述第二驱动组件连接,所述第一驱动组件和所述第二驱动组件均设置于所述固定座上,所述谐振腔镜片设置于所述移动板上,所述固定座与所述移动板之间通过所述弹性连接件连接,所述第一驱动组件和所述第二驱动组件均与所述移动板抵接,所述控制器通过所述调节指令控制所述第一驱动组件、所述第二驱动组件的运行状态,以调整所述移动板上的所述谐振腔镜片的二维空间角度,进而使所述输出功率满足预设的所述标准输出功率。
  3. 根据权利要求2所述的系统,其特征在于,
    所述第一驱动组件包括第一电机、第二电机以及第一伸缩装置,第一伸缩装置包括第一螺纹杆、第一固定管套以及第一螺纹管套,所述第一电机、所述第二电机以及所述第一固定管套均固定于所述固定座上,所述第一螺纹管套的一端设置于所述第一固定管套内,所述第一螺纹杆的一端设置于所述第一螺纹管套内,所述第一螺纹杆的另一端与所述移动板抵接,所述第一螺纹杆的外表面与所述第一螺纹管套的内表面通过螺纹连接,且所述第一螺纹杆、所述第一螺纹管套以及所述第一固定管套的中心轴均重合,所述第一电机和所述第二电机均与所述第一螺纹管套的另一端连接并可驱动所述第一螺纹管套绕所述第一 螺纹管套的中心轴转动,以使所述第一螺纹杆的另一端产生位移,进而改变所述移动板上的所述谐振腔镜片的二维空间角度。
  4. 根据权利要求2所述的系统,其特征在于,
    所述第二驱动组件包括第三电机、第四电机以及第二伸缩装置,第二伸缩装置包括第二螺纹杆、第二固定管套以及第二螺纹管套,所述第三电机、所述第四电机以及所述第二固定管套均固定于所述固定座上,所述第二螺纹管套的一端设置于所述第二固定管套内,所述第二螺纹杆的一端设置于所述第二螺纹管套内,所述第二螺纹杆的另一端与所述移动板抵接,所述第二螺纹杆的外表面与所述第二螺纹管套的内表面通过螺纹连接,且所述第二螺纹杆、所述第二螺纹管套以及所述第二固定管套的中心轴均重合,所述第三电机和所述第四电机均与所述第二螺纹管套的另一端连接并可驱动所述第二螺纹管套绕所述第二螺纹管套的中心轴转动,以使所述第二螺纹杆的另一端产生位移,进而改变所述移动板上的所述谐振腔镜片的二维空间角度。
  5. 一种调节激光器功率的方法,其特征在于,包括:
    获取所述激光器的输出功率;
    判断所述输出功率是否满足预设的标准输出功率;
    若否,输出用于调整所述激光器的机械调整装置的调整指令,以使所述输出功率满足所述标准输出功率。
  6. 根据权利要求5所述的方法,其特征在于,
    所述输出用于调整所述激光器的机械调整装置的调整指令,以使所述输出功率满足所述标准输出功率的步骤,包括:
    输出调整指令,控制所述激光器的机械调整装置中的第一驱动组件按一驱动方向运行;
    实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第一驱动组件的第一驱动方向,其中,当所述第一驱动组件按照所述第一驱动方向运行时,所述输出功率将趋向于所述标准输出功率;
    当确认所述第一驱动方向时,控制所述激光器的机械调整装置中的第二驱动组件按一驱动方向运行;
    实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第二驱动组件的第二驱动方向,其中,当所述第二驱动组件按照所述第二驱动 方向运行时,所述输出功率将趋向于所述标准输出功率;
    当确认所述第二驱动方向时,控制所述第一驱动组件按所述第一驱动方向运行,以及控制所述第二驱动组件按所述第二驱动方向运行,直至所述输出功率满足所述标准输出功率。
  7. 根据权利要求5所述的方法,其特征在于,
    在所述判断所述输出功率是否满足预设的标准输出功率的步骤之前,所述方法还包括:
    确定所述激光器的使用年限;
    根据所述使用年限确定预设的标准输出功率。
  8. 一种调节激光器功率的装置,其特征在于,包括:
    获取模块,其用于获取所述激光器的输出功率;
    判断模块,其用于判断所述输出功率是否满足预设的标准输出功率;
    调整模块,其用于若所述输出功率不满足预设的标准输出功率,输出用于调整所述激光器的机械调整装置的调整指令,至所述输出功率满足所述标准输出功率。
  9. 根据权利要求8所述的装置,其特征在于,
    所述调整模块包括:
    第一控制单元,其用于输出调整指令,控制所述激光器的机械调整装置中的第一驱动组件按一驱动方向运行;
    第一确认单元,其用于实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第一驱动组件的第一驱动方向,其中,当所述第一驱动组件按照所述第一驱动方向运行时,所述输出功率将趋向于所述标准输出功率;
    第二控制单元,其用于当确认所述第一驱动方向时,控制所述激光器的机械调整装置中的第二驱动组件按一驱动方向运行;
    第二确认单元,其用于实时获取并判断所述输出功率是否趋向于所述标准输出功率,以确认所述第二驱动组件的第二驱动方向,其中,当所述第二驱动组件按照所述第二驱动方向运行时,所述输出功率将趋向于所述标准输出功率;
    第三控制单元,其用于当确认所述第二驱动方向时,控制所述第一驱动组件按所述第一驱动方向运行,以及控制所述第二驱动组件按所述第二驱动方向运行,直至所述输出功率满足所述标准输出功率。
  10. 根据权利要求8所述的装置,其特征在于,
    所述装置还包括:
    第一确认模块,其用于确定所述激光器的使用年限;
    第二确认模块,其用于根据所述使用年限确定预设的标准输出功率。
PCT/CN2018/115232 2018-11-13 2018-11-13 激光器功率稳定系统、调节激光器功率的方法及装置 WO2020097790A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115232 WO2020097790A1 (zh) 2018-11-13 2018-11-13 激光器功率稳定系统、调节激光器功率的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115232 WO2020097790A1 (zh) 2018-11-13 2018-11-13 激光器功率稳定系统、调节激光器功率的方法及装置

Publications (1)

Publication Number Publication Date
WO2020097790A1 true WO2020097790A1 (zh) 2020-05-22

Family

ID=70731001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115232 WO2020097790A1 (zh) 2018-11-13 2018-11-13 激光器功率稳定系统、调节激光器功率的方法及装置

Country Status (1)

Country Link
WO (1) WO2020097790A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833871A (zh) * 2020-12-30 2021-05-25 中国人民解放军国防科技大学 一种应用于核磁共振陀螺的可集成激光功率稳定系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163782A (ja) * 1998-11-26 2000-06-16 Ricoh Co Ltd レーザ出力安定化装置
CN101615759A (zh) * 2009-07-17 2009-12-30 哈尔滨工业大学 基于碘稳频参考的双纵模热电致冷偏频锁定方法与装置
CN102141692A (zh) * 2011-03-10 2011-08-03 浙江大学 一种激光腔外功率稳定装置和锁定方法
CN102629731A (zh) * 2012-02-14 2012-08-08 浙江嘉莱光子技术有限公司 一种激光器波长和功率同时稳定的控制方法及其控制装置
CN103441425A (zh) * 2013-08-23 2013-12-11 西安电子科技大学 中波红外激光功率稳定系统
CN103904548A (zh) * 2014-04-10 2014-07-02 深圳市大族激光科技股份有限公司 激光功率稳定控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163782A (ja) * 1998-11-26 2000-06-16 Ricoh Co Ltd レーザ出力安定化装置
CN101615759A (zh) * 2009-07-17 2009-12-30 哈尔滨工业大学 基于碘稳频参考的双纵模热电致冷偏频锁定方法与装置
CN102141692A (zh) * 2011-03-10 2011-08-03 浙江大学 一种激光腔外功率稳定装置和锁定方法
CN102629731A (zh) * 2012-02-14 2012-08-08 浙江嘉莱光子技术有限公司 一种激光器波长和功率同时稳定的控制方法及其控制装置
CN103441425A (zh) * 2013-08-23 2013-12-11 西安电子科技大学 中波红外激光功率稳定系统
CN103904548A (zh) * 2014-04-10 2014-07-02 深圳市大族激光科技股份有限公司 激光功率稳定控制方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833871A (zh) * 2020-12-30 2021-05-25 中国人民解放军国防科技大学 一种应用于核磁共振陀螺的可集成激光功率稳定系统

Similar Documents

Publication Publication Date Title
US9398228B2 (en) Image pickup apparatus, interchangeable lens, and camera system
US20030074150A1 (en) Closed-loop focal positioning system and method
EP2061257A3 (en) Image display apparatus and method for displaying image
WO2020097790A1 (zh) 激光器功率稳定系统、调节激光器功率的方法及装置
CN105842962A (zh) 可换透镜及相机主体
CN202771098U (zh) Pc界面操控式成像显微镜
US20150146295A1 (en) Laser energy output control apparatus and method thereof
CN102717191B (zh) 一种脉冲激光刻蚀卷对卷柔性导电膜的装置和方法
CN107800937A (zh) 一种多摄像头模组及终端设备
CN108233815B (zh) 一种基于pwm的音圈电机高速精密光束指向系统控制方法
CN105080787A (zh) 点胶装置及点胶方法
CN104242029A (zh) 一种激光器折叠谐振腔的快速装调方法
JP2009252596A (ja) 試料ステージ装置及びその制御方法
JP2019530204A (ja) 光ビームのコヒーレンス量の調整
CN204680897U (zh) 多波长单窗口激光器及腔内输出端自动换镜系统
CN114054971B (zh) 一种自动实时gv值检测及补偿的方法和系统
TW202227873A (zh) 光學中繼系統以及使用和製造方法
KR100660112B1 (ko) 레이저빔의 광폭이 제어되는 레이저와 비전의 동축가공장치
CN115300807B (zh) 具有能量校正及光斑调节功能的激光器控制系统、方法
CN202667918U (zh) 一种脉冲激光刻蚀卷对卷柔性导电膜的装置
CN209858869U (zh) 可自动调节的激光衰减器
WO2020228715A1 (zh) 激光调阻系统
WO2012042588A1 (ja) プログラマブルコントローラシステム
CN113741042A (zh) 激光光束自动整形装置
CN208067559U (zh) 激光同轴振镜焊接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940303

Country of ref document: EP

Kind code of ref document: A1