WO2020097748A1 - 一种光学传感装置和终端 - Google Patents
一种光学传感装置和终端 Download PDFInfo
- Publication number
- WO2020097748A1 WO2020097748A1 PCT/CN2018/114940 CN2018114940W WO2020097748A1 WO 2020097748 A1 WO2020097748 A1 WO 2020097748A1 CN 2018114940 W CN2018114940 W CN 2018114940W WO 2020097748 A1 WO2020097748 A1 WO 2020097748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- image sensor
- light
- integrated
- optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 64
- 238000003384 imaging method Methods 0.000 claims abstract description 18
- 238000004806 packaging method and process Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 19
- 230000010354 integration Effects 0.000 description 16
- 239000005022 packaging material Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/74—Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0022—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
- G01J5/0025—Living bodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0265—Handheld, portable
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0896—Optical arrangements using a light source, e.g. for illuminating a surface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/04—Systems determining the presence of a target
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
- G06V40/166—Detection; Localisation; Normalisation using acquisition arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/20—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
- H04N23/611—Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/67—Focus control based on electronic image sensor signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/71—Circuitry for evaluating the brightness variation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J2005/0077—Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/085—Optical arrangements having a through-hole enabling the optical elements to fulfil an additional optical function, e.g. mirrors or gratings having a through-hole for a light collecting or light injecting optical fiber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0853—Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
Definitions
- the present application relates to the field of optical technology, in particular to an optical sensing device and terminal.
- 3D face recognition led by Face ID immediately set off a wave, and there were more and more sensors on the top of the phone, as shown in Figure 1.
- 3D face recognition module consisting of infrared camera, structured light projection module, floodlighting module
- RGB front camera ambient light sensor
- distance sensor distance sensor
- speaker noise reduction microphone
- the ambient light sensor and the distance sensor can also solve the light transmission problem by opening a hole under the OLED screen, it will greatly reduce the accuracy of the sensor, and the screen color of the opening position may be different, which affects the display effect.
- due to the low light transmittance of the LCD screen it is impossible to achieve light transmission under the display screen.
- the purpose of some embodiments of the present application is to provide an optical sensing device, which can reduce the module volume, reduce the complexity of the structure and optical path design, and reduce the manufacturing cost without affecting the original function of the sensor.
- An embodiment of the present application provides an optical sensing device, including: a photoelectric sensor for converting an optical signal acquired by a photosensitive unit of the photoelectric sensor into an electrical signal; and an image sensor for acquiring the photosensitive unit of the image sensor The light signal is converted into image data; where the image sensor and the photo sensor are physically integrated, the photosensitive unit of the image sensor and the photosensitive unit of the photo sensor are used to receive light in the imaging area of the same lens.
- An embodiment of the present application further provides a terminal, including: the above-mentioned optical sensing device, a lens, for receiving light to form an imaging area; a photosensitive unit of an image sensor and a photosensitive unit of a photoelectric sensor in the optical sensing device are used for Sensitive in the imaging area of the same lens.
- the optical sensing device in the embodiments of the present application includes: an image sensor and a photoelectric sensor.
- the physical integration of the image sensor and the photoelectric sensor is beneficial to reduce the volume of the optical sensing device, thereby making the optical sensing device When applied to a full screen, it can increase the screen ratio.
- the photosensitive unit of the image sensor and the photosensitive unit of the photo sensor are used to receive light in the imaging area of the same lens, that is, the photosensitive unit of the image sensor and the photosensitive unit of the photo sensor are located in the imaging area of a lens, so that the image sensor and the photo sensor can Sharing a lens and reusing the optical path and structure of the lens without having to reopen a new lens for the photoelectric sensor is beneficial to reduce the complexity of the structure and optical path design and reduce manufacturing costs.
- the photo sensor converts the light signal obtained through the photosensitive unit of the photo sensor into an electrical signal
- the image sensor converts the light signal obtained through the photosensitive unit of the image sensor into image data
- the image sensor is specifically an infrared image sensor, and provides an implementation method of the image sensor.
- the image sensor is specifically an RGB image sensor, and provides an implementation manner of the image sensor, which makes the implementation manners of the embodiments of the present application flexible and diverse.
- the photoelectric sensor is specifically a distance sensor, and provides an implementation method of the photoelectric sensor, which is advantageous for detecting the distance.
- the photoelectric sensor is specifically an ambient light sensor, and provides an implementation method of the photoelectric sensor, which is beneficial to the detection of ambient light.
- the light source is used to emit light of a predetermined wavelength or wavelength range, the distance sensor is used to receive light reflected by the object after the light is emitted, and the image sensor and the photo sensor are physically
- the integrated light source helps to further reduce the volume of the optical sensing device.
- the light source is used to emit light, so that if the emitted light is reflected by an object, it can enter the lens and be irradiated on the photoelectric sensor to obtain the distance between the object and the photoelectric sensor. Provide a basis for calculation.
- the distance sensor and the image sensor are integrated at the wafer level, and the light source is integrated at the package level, providing an integrated method of the image sensor, the distance sensor, and the light source.
- the distance sensor and the image sensor are integrated at the wafer level, and the light source is integrated at the circuit board level, which provides another integration method of the image sensor, the distance sensor and the light source, so that the embodiments of the present application can be flexibly implemented.
- the distance sensor, the image sensor, and the light source are all integrated at the packaging level, so that the embodiments of the present application can be implemented more flexibly and easily.
- the integration of the photo sensor and the image sensor at the wafer level provides a way to integrate the photo sensor and the image sensor.
- the photosensitive unit of the image sensor and the photosensitive unit of the photo sensor are time-multiplexed and the same photosensitive unit, so that Using the same photosensitive unit can realize two functions of image sensor and photoelectric sensor, reducing the complexity and cost of designing the device.
- photoelectric sensors and image sensors are integrated at the packaging level, providing a way of integrating photoelectric sensors and image sensors, making the integration process simpler and easier to implement.
- the integration of the photoelectric sensor and the image sensor at the circuit board level provides a way of integrating the photoelectric sensor and the image sensor, so that the embodiments of the present application can be flexibly implemented.
- FIG. 1 is a schematic diagram of a sensor on the top of a mobile phone according to the background technology of the present application
- FIG. 2 is a schematic structural diagram of an optical sensing device according to the first embodiment of the present application.
- FIG. 3 is a plan view of the imaging area of the lens according to the first embodiment of the present application.
- FIG. 4 is a cross-sectional view of the imaging area of the lens according to the first embodiment of the present application.
- FIG. 5 is a schematic structural diagram of distance detection according to the first embodiment of the present application.
- FIG. 6 is a top view of the photoelectric sensor and the image sensor integrated at the wafer level and the light source integrated at the package level according to the first embodiment of the present application;
- FIG. 7 is a cross-sectional view of a photoelectric sensor and an image sensor integrated at a wafer level and a light source integrated at a packaging level according to the first embodiment of the present application;
- FIG. 8 is a plan view of the position of the light source on the wafer according to the first embodiment of the present application.
- FIG. 9 is a cross-sectional view of a light source and a wafer mounted on a substrate according to the first embodiment of the present application.
- FIG. 10 is a top view of a photoelectric sensor and an image sensor integrated at a wafer level and a light source integrated at a circuit board level according to the first embodiment of the present application;
- FIG. 11 is a cross-sectional view of a photoelectric sensor and an image sensor integrated at a wafer level and a light source integrated at a circuit board level according to the first embodiment of the present application;
- FIG. 12 is a top view of the photosensor, image sensor and light source integrated in the package level according to the first embodiment of the present application;
- 13 is a cross-sectional view of the photosensor, image sensor, and light source integrated in the package level according to the first embodiment of the present application;
- FIG. 14 is a plan view of electrical connection using bonding wires when the photoelectric sensor, image sensor, and light source are integrated at the package level according to the first embodiment of the present application;
- 15 is a cross-sectional view of electrical connection using bonding wires when the photosensor, image sensor, and light source are integrated at the package level according to the first embodiment of the present application;
- 16 is a plan view of the photoelectric sensor, image sensor and light source integrated in the circuit board level according to the first embodiment of the present application;
- 17 is a cross-sectional view of the photoelectric sensor, image sensor, and light source integrated at the circuit board level according to the first embodiment of the present application;
- FIG. 18 is a top view of the photoelectric sensor and the image sensor integrated at the package level and the light source integrated at the circuit board level according to the first embodiment of the present application;
- 19 is a cross-sectional view of a photoelectric sensor and an image sensor integrated at a packaging level and a light source integrated at a circuit board level according to the first embodiment of the present application;
- 20 is a schematic structural diagram of implementing ambient light detection according to the second embodiment of the present application.
- 21 is a plan view of the photoelectric sensor in the second embodiment of the present application integrated on the wafer level of the image sensor, multiplexed photosensitive unit;
- FIG. 22 is a cross-sectional view of a photoelectric sensor integrated on a wafer level of an image sensor according to a second embodiment of the present application and multiplexed photosensitive units;
- FIG. 23 is a plan view of the photo sensor in the second embodiment of the present application integrated on the wafer level of the image sensor set without multiplexing the photosensitive unit;
- FIG. 24 is a cross-sectional view of a photoelectric sensor integrated on a wafer level of an image sensor according to a second embodiment of the present application, without multiplexing a photosensitive unit;
- FIG. 25 is a plan view of the photoelectric sensor integrated on the packaging level of the image sensor according to the second embodiment of the present application.
- 26 is a cross-sectional view of the photoelectric sensor integrated on the packaging level of the image sensor according to the second embodiment of the present application;
- FIG. 27 is a plan view of a photoelectric sensor and an image sensor integrated on a circuit board level according to a second embodiment of the present application.
- FIG. 29 is a plan view of a photoelectric sensor and an image sensor integrated on a structural level according to a second embodiment of the present application.
- FIG. 30 is a cross-sectional view in which a photosensor and an image sensor are integrated on a structural level according to a second embodiment of the present application.
- FIG. 31 is a schematic structural diagram of a terminal according to a third embodiment of the present application.
- the first embodiment of the present application relates to an optical sensing device, including: a photo sensor for converting a light signal acquired by a photosensitive unit of the photo sensor into an electrical signal; and an image sensor for converting a photosensitive unit passing the image sensor
- the acquired optical signal is converted into image data; among them, the image sensor and the photo sensor are physically integrated, and the photosensitive unit of the image sensor and the photosensitive unit of the photo sensor are used to receive light in the imaging area of the same lens, so that the module volume can be reduced and reduced
- the complexity of the design of the structure and the optical path reduces the manufacturing cost.
- the optical sensing device in this embodiment can be applied to the following products: 1. Mobile terminals such as mobile phones, notebooks, smart door locks and other devices and devices. 2. Equipment and devices with 3D scanning or reverse modeling capabilities such as 3D scanners. 3. AR, VR, MR, somatosensory games or in-vehicle devices or devices equipped with gesture recognition or gesture detection. 4. Industrial cameras or devices that need to capture or recognize three-dimensional objects are not given here.
- the photoelectric sensor in the optical sensing device of this embodiment may be a photodiode, a phototransistor, a photosensitive pixel of a CMOS image sensor, a photosensitive pixel of a CCD image sensor, a sensor that integrates a photosensitive unit, a signal conditioning circuit and outputs an analog signal, and integrates photosensitive Units, signal conditioning circuits, analog-to-digital converters and digital output interface (such as I2C, SPI, I3C, UART and other serial or parallel interfaces) sensors, photoelectric sensors can be single, multiple, or array.
- the structural schematic diagram of the optical sensor device includes: a lens 101, a filter 102, an image sensor 103, a circuit board 104, and a photoelectric sensor 105.
- the lens 101 is used to receive light to form an imaging area.
- the photosensitive unit of the image sensor 103 and the photosensitive unit of the photo sensor 105 are located in the imaging area of the same lens.
- the photosensitive unit can correspond to light sensing of multiple wavelength bands, for example To laser, white light, infrared light, etc.
- the photosensor 105 is placed in the largest imaging circle 202 formed by the chief ray 201 passing through the lens 101.
- the photo sensor 105 can receive the light outside the lens.
- the image sensor 103 may also receive light outside the lens and convert the light signal acquired by the photosensitive unit into image data.
- the lens is only taken as an example in the optical sensor device, but in practical applications, the optical sensor device itself may not include a lens, and the lens may be a lens on the terminal.
- the image sensor in this embodiment may be an infrared image sensor, and the photoelectric sensor is specifically a distance sensor.
- the distance sensor needs to be used with a light source.
- the light source may be an LED, LD, VCSEL, EEL, or other light-emitting diode or laser. Is single, multiple, or array.
- the filter 102 may specifically be a natural light filter, which is used to filter out natural light in the received light, so that the light received by the photo sensor 105 is infrared light, so as to complete the distance calculation.
- the processor 403 controls the light source 106 to emit modulated light.
- the light is reflected by an object A and enters the lens 101, and then illuminates the photoelectric sensor 105.
- the photoelectric sensor 105 obtains a light signal through the photosensitive unit. It is converted into an electrical signal, and the electrical signal is transmitted to the processor 403.
- the processor 403 can process the algorithm to obtain the distance between the optical sensing device and the object A. In different application scenarios, the processor 403 can control different peripherals to make corresponding responses.
- the mobile phone is provided with the optical sensing device in this embodiment.
- the image sensor 103 may send the image data to the processor 403, and the processor 403 performs further processing according to the received image data.
- the physical integration of the image sensor 103, the photo sensor 105, and the light source 106 can be specifically implemented through the following scheme:
- Solution 1 As shown in FIGS. 6 and 7, the photo sensor 105 and the image sensor 103 are integrated at the wafer level, and the light source 106 is integrated at the packaging level. In other words, the distance sensor 105 and the image sensor 103 are integrated on the same wafer, that is, on the same wafer (Die) 301, and then the photoelectric sensor 105 and the image sensor 103 integrated on the same wafer The light source 106 is packaged together.
- the photosensor 105 is integrated with the image sensor 103, which means that the photosensitive unit 303 of the photosensor 105 and the photosensitive unit 303 of the image sensor 103 are time-multiplexed, that is, the photosensitive unit 303 of the image sensor 103 can be used for imaging purposes or as a distance.
- the photosensitive part of the sensor but the two are not used at the same time.
- the signal conditioning circuit used to cooperate with the photosensitive unit 303 to complete distance detection or imaging is provided on the wafer at another position that does not affect the light reception of the photosensitive unit 303.
- the integration of the light source 106 and the wafer 301 at the packaging level means that the light source 106 and the wafer 301 are mounted on the same substrate, and the surroundings of the light source 106 and the wafer 301 are wrapped with a packaging material to form protection.
- the light source 106 can be at any position on the top, bottom, left, and right of the wafer 301.
- the forms in which the light source 106 and the wafer 301 are mounted on the substrate include and are not limited to reflow soldering, semiconductor key alloy wire / gold wire bonding, and silver paste bonding and other packaging or soldering processes, as shown in FIG. 9.
- Solution 2 As shown in FIGS. 10 and 11, the photo sensor 105 and the image sensor 103 are integrated at the wafer level, and the light source 106 is integrated at the circuit board level. That is to say, after the photo sensor 105 and the image sensor 103 are integrated on the same wafer and packaged, they are mounted on the circuit board 104 together with the light source 106, for example, on a printed circuit board PCB or a flexible circuit board FPC.
- Solution 3 As shown in FIGS. 12 and 13, the photosensor 105, image sensor 103, and light source 106 are all integrated at the package level.
- the two sensors may be two Dies respectively, and the light source may be one Die, or it may be a packaging sheet.
- Method (1) The forms of the image sensor 103, the photo sensor 105, and the light source 106 are all Die. Referring to FIGS. 14 and 15, the image sensor 103, the photo sensor 105, and the light source 106 are pasted on the substrate 303 through silver paste or other common materials, and then through semiconductor bond alloy wires / gold wire bonding wires, or through other wafer-level, Package-level electrical connection methods, such as TSV technology through silicon channel, etc., are used to electrically connect the three Dies to the lines on the substrate. The number of bonding wires shown in FIG. 14 is only for illustration, and the actual number is not based on this. limit. Then, the packaging material 302 is used to wrap the Die and the bonding wire as protection against external forces from damage or corrosion.
- the packaging material 302 may be an electronic packaging material EMC or other materials.
- the image sensor 103, the photo sensor 105, and the light source 106 need to be specially treated to ensure that the light transmittance of the packaging material above it is greater than 80%.
- the upper packaging material may be hollowed out, or a transparent material with a light transmittance greater than 80% may be used for packaging, or the upper packaging material may be polished until the photosensitive or light-emitting area is exposed.
- the image sensor 103 and the photoelectric sensor 105 are in the form of Die, and the light source 106 is a packaged product.
- the light source 106 may be an LED with a package size of 0402.
- the image sensor 103 and the photosensor 105 electrically connect Die to the circuit on the substrate through bonding wires, or other wafer-level and package-level electrical connection means, such as TSV.
- the light source 106 establishes an electrical connection with the substrate 303 through reflow soldering, or other surface assembly technology SMT process.
- the packaging material 302 is used to wrap the Die and the bonding wire as protection against external forces from damage or corrosion.
- the packaging material 302 may be EMC or other materials.
- special processing similar to the above method (1) needs to be performed, and details are not described herein again.
- the photo sensor 105, the image sensor 103, and the light source 106 are all integrated at the circuit board level.
- the photo sensor 105, the image sensor 103, and the light source 106 may be three independent chips, which are packaged separately and then mounted on the circuit board 104 together.
- Solution 5 As shown in FIGS. 18 and 19, the photo sensor 105 and the image sensor 103 are integrated at the package level, and the light source 106 is integrated at the circuit board level.
- the image sensor 103 and the photo sensor 105 are pasted on the substrate by silver paste or other common materials, the substrate is mounted on the circuit board 104, and the light source 106 is also mounted on the circuit board.
- this embodiment has the following technical effects: 1. Integrate the distance sensor and the image sensor to reduce the size of the module, and at the same time, realize the functions of the distance sensor and the image sensor; 2. After integration The module can reuse the optical path and structure of the image sensor, which can reduce the design complexity of the structure and optical path; 3. The module multiplexing the optical path and structure can greatly reduce the cost; 4. Provide a variety of optional integration methods that make this embodiment Is more flexible and diverse.
- the second embodiment of the present application relates to an optical sensing device.
- This embodiment is substantially the same as the first embodiment, the difference is that the photoelectric sensor in the first embodiment is specifically a distance sensor, and the distance sensor needs to be used in conjunction with the light source, so in the first embodiment, the distance sensor, image sensor, and light source are physically integrated.
- the photoelectric sensor in this embodiment is specifically an ambient light sensor, and the ambient light sensor does not need to be used in conjunction with the light source. Therefore, in this embodiment, the ambient light sensor and the image sensor are physically integrated, so that the image can be realized while reducing the size of the module The function of the sensor and the ambient light sensor.
- the structural schematic diagram of the optical sensor device in this embodiment may also be as shown in FIG. 2.
- the image sensor in this embodiment may be an RGB image sensor, and the photoelectric sensor 105 is specifically an ambient light sensor. Changes, the output signal of the ambient light sensor will change accordingly.
- the filter 102 is specifically an infrared filter, which is used to filter out the infrared light in the received light, so that the light received by the ambient light sensor is natural light, so as to complete the detection of the ambient light.
- the infrared filter in this embodiment is set in the lens, and the lens can be set in the optical sensor device, but in practical applications, the lens can also be the lens set in the terminal. The embodiments are not specifically limited.
- the photoelectric sensor 105 converts the optical signal obtained through the photosensitive unit into an electrical signal.
- the converted electrical signal may be an electrical signal that characterizes light intensity, and the photoelectric sensor 105 transmits the electrical signal to the processor 403.
- the current ambient light intensity or color temperature can be analyzed to further control the display brightness or other display effects.
- the image sensor 103 may send the image data to the processor 403, and the processor 403 performs further processing according to the received image data.
- the image sensor 103 and the photo sensor 105 are physically integrated, and a specific integration scheme may be as follows:
- Solution 1 The photo sensor 105 and the image sensor 103 are integrated at the wafer level; that is, the photo sensor 105 and the image sensor 103 are integrated on the same wafer, that is, on the same wafer (Die) 301.
- Method (1) As shown in FIGS. 21 and 22, the photo sensor 105 and the image sensor 103 are on the same wafer 301, and the photosensitive unit of the photo sensor 105 is the image sensor 103
- One of the plurality of photosensitive units 303, that is, the image sensor 103 has at least one photosensitive unit multiplexed as the photosensitive unit of the photosensor 105.
- the photosensitive unit of the photosensor 105 may be one or more of the photosensitive units 303 of the image sensor 103, or even all of them are multiplexed.
- Mode (2) As shown in FIGS. 23 and 24, the photosensitive unit of the photosensor 105 and the image sensor 103 are on the same wafer 301, and the photosensitive units of the photosensor 105 and the image sensor 103 are independent of each other and are not multiplexed. For example, two sensors are manufactured in the same lithography process, and multiple single chips containing the two sensors are formed after cutting.
- Solution 2 As shown in FIGS. 25 and 26, the photoelectric sensor 105 and the image sensor 103 are integrated at the packaging level, that is, the two sensors may be two Dies and packaged together.
- the first embodiment describes the integration at the packaging level in detail.
- the photo sensor 105 and the image sensor 103 may be integrated at the packaging level in a similar manner. To avoid repetition, they are not repeated here.
- Solution 3 As shown in Figures 27 and 28, the photoelectric sensor 105 and the image sensor 103 are integrated at the circuit board level, that is, the two sensors can be two chips, respectively, and each package is mounted on the same circuit board, for example, in Integrated on printed circuit board PCB or flexible circuit board FPC.
- Solution 4 As shown in FIGS. 29 and 30, the photoelectric sensor 105 and the image sensor 103 are integrated at the structural level, that is, the photoelectric sensor and the image sensor are only fixed by the structure, the optical path and the structure are multiplexed, and there is no circuit-level connection.
- the sensors are installed on different circuit boards, and are combined together through some structural design.
- this embodiment realizes the integration of the ambient light sensor and the image sensor by integrating the ambient light sensor and the image sensor, multiplexing the optical path and structure of the image sensor, without affecting the respective functions of the two sensors At the same time, it solves the problem of complicated structural design caused by the narrow space, and can greatly reduce costs.
- the third embodiment of the present application relates to a terminal 401. As shown in FIG. 31, it includes a lens 402, an optical sensing device 403 and a processor 404 in any of the above embodiments.
- the photoelectric sensor in the optical sensing device 403 is an ambient light sensor, and an infrared light filter is provided in the lens 402 to filter out infrared light in the received light to ensure that the ambient light sensor can receive To pure ambient light, so as to accurately analyze the current ambient light intensity.
- the ambient light sensor converts the light signal obtained through the photosensitive unit into an electrical signal.
- the converted electrical signal may be an electrical signal that characterizes the light intensity.
- the photoelectric sensor transmits the electrical signal to the processor 404.
- the electrical signal sent by the light sensor analyzes the current ambient light.
- the terminal 401 takes a mobile phone as an example, and the mobile phone analyzes the current ambient light intensity or color temperature to control the brightness of the display screen or other display effects.
- the photoelectric sensor in the optical sensing device 403 is a distance sensor, and a natural light filter is provided in the lens 402 to filter out natural light in the received light to ensure that the distance sensor can receive pure light Infrared light to accurately calculate the distance to an object to be measured.
- the distance sensor obtains the optical signal through the photosensitive unit, converts it into an electrical signal, and transmits the electrical signal to the processor 404.
- the processor 404 calculates the distance between the terminal 401 and an object to be measured according to the electrical signal sent by the distance sensor, so that In different application scenarios, control different peripherals to make corresponding responses.
- the terminal 401 takes a mobile phone as an example.
- the screen When making a call, when the mobile phone is close to the face, the screen is automatically turned off; when performing structured light 3D face recognition, it is detected that the face is within a suitable distance, and then Control the dot matrix projector to emit speckle, otherwise the dot matrix projector will not be activated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Studio Devices (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
本申请部分实施例提供了一种光学传感装置和终端。本申请提供的光学传感装置,包括:光电传感器(105),用于将通过光电传感器的感光单元获取的光信号,转换为电信号;图像传感器(103),用于将通过图像传感器的感光单元获取的光信号,转换为图像数据;其中,图像传感器和光电传感器物理集成,图像传感器的感光单元和光电传感器的感光单元用于在同一镜头的成像区域内感光。采用本申请的实施例,使得在不影响传感器原有功能的前提下,可以减小模块体积,降低结构和光路设计的复杂度并减少制造成本。
Description
本申请涉及光学技术领域,特别涉及一种光学传感装置和终端。
随着iPhone X的推出,以Face ID为首的3D人脸识别随即掀起一股浪潮,手机顶部的传感器也越来越多,如图1所示。除体积巨大的3D人脸识别模块(由红外摄像头、结构光投影模块、泛光照明模块构成)外,还有RGB前置摄像头、环境光感应器、距离感应器、扬声器、降噪麦克风等。
发明人发现现有技术至少存在以下问题:在全面屏趋势的推动下,手机的屏占比越来越高,留给传感器的空间也越来越狭小,由于空间狭小,导致设计难度和制造成本增加。而扬声器已经有了解决方案,即采用压电陶瓷扬声器,可以置于屏幕之下,麦克风则可以置于手机顶部。虽然环境光感应器和距离感应器也可以通过在OLED屏幕下方开孔以解决透光问题,但会大幅降低传感器的准确度,且开孔位置的屏幕颜色可能存在差异,影响显示效果。此外LCD屏幕由于透光率较低,无法实现显示屏下透光。
发明内容
本申请部分实施例的目的在于提供一种光学传感装置,使得在不影响传 感器原有功能的前提下,可以减小模块体积,降低结构和光路设计的复杂度并减少制造成本。
本申请实施例提供了一种光学传感装置,包括:光电传感器,用于将通过光电传感器的感光单元获取的光信号,转换为电信号;图像传感器,用于将通过图像传感器的感光单元获取的光信号,转换为图像数据;其中,图像传感器和光电传感器物理集成,图像传感器的感光单元和光电传感器的感光单元用于在同一镜头的成像区域内感光。
本申请实施例还提供了一种终端,包括:上述的光学传感装置,镜头,用于接收光线,形成成像区域;光学传感装置内的图像传感器的感光单元和光电传感器的感光单元用于在同一镜头的成像区域内感光。
本申请实施例相对于现有技术而言,光学传感装置,包括:图像传感器和光电传感器,图像传感器和光电传感器物理集成,有利于减小光学传感装置的体积,从而使得光学传感装置应用于全面屏时,能够增大屏占比。图像传感器的感光单元和光电传感器的感光单元用于在同一镜头的成像区域内感光,即图像传感器的感光单元和光电传感器的感光单元均位于一镜头的成像区域内,使得图像传感器和光电传感器可以共用一个镜头,复用镜头的光路和结构,而无需为光电传感器再重新开设新的镜头,有利于降低结构和光路设计的复杂度并降低制作成本。光电传感器将通过光电传感器的感光单元获取的光信号,转换为电信号,图像传感器将通过图像传感器的感光单元获取的光信号,转换为图像数据,使得集成后的图像传感器和光电传感器依然能够很好的实现各自的功能,避免了现有技术中为了增大屏占比在屏幕下方开孔所带来的弊端。
例如,图像传感器具体为红外图像传感器,提供了一种图像传感器的实 现方式。
例如,图像传感器具体为RGB图像传感器,提供了一种图像传感器的实现方式,使得本申请实施例的实现方式灵活多样。
例如,光电传感器具体为距离传感器,提供了一种光电传感器的实现方式,有利于对于距离的检测。
例如,光电传感器具体为环境光传感器,提供了一种光电传感器的实现方式,有利于对于环境光的检测。
例如,还包括:与图像传感器和光电传感器物理集成的光源;光源用于发射预定波长或者波长范围的光线,距离传感器用于接收光线发射后经物体反射回的光线,与图像传感器和光电传感器物理集成的光源,有利于进一步减小光学传感装置的体积,光源用于发出光线,使得发射的光线如果被一物体反射后可以进入镜头,照射在光电传感器上,为得到物体与光电传感器的距离提供计算的依据。
例如,距离传感器和图像传感器在晶圆级集成,光源在封装级集成,提供了一种图像传感器、距离传感器和光源的集成方式。
例如,距离传感器和图像传感器在晶圆级集成,光源在电路板级集成,提供了另一种图像传感器、距离传感器和光源的集成方式,使得本申请的实施方式可以灵活多变的实现。
例如,距离传感器、图像传感器和光源均在封装级集成,使得本申请的实施方式可以更加灵活容易的实现。
例如,光电传感器与图像传感器在晶圆级集成,提供了一种光电传感器与图像传感器的集成方式,图像传感器的感光单元与光电传感器的感光单元, 为分时复用的相同的感光单元,使得利用相同的感光单元可以实现图像传感器和光电传感器两种功能,减少了设计装置的复杂度和成本。
例如,光电传感器与图像传感器在封装级集成,提供了一种光电传感器与图像传感器的集成方式,使得集成的过程更加简单容易实现。
例如,光电传感器与图像传感器在电路板级集成,提供了一种光电传感器与图像传感器的集成方式,使得本申请的实施方式可以灵活多变的实现。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请背景技术中的手机顶部的传感器的示意图;
图2是根据本申请第一实施例中的光学传感装置的结构示意图;
图3是根据本申请第一实施例中的镜头的成像区域的俯视图;
图4是根据本申请第一实施例中的镜头的成像区域的截面图;
图5是根据本申请第一实施例中实现距离检测的结构示意图;
图6是根据本申请第一实施例中的光电传感器和图像传感器集成在晶圆级,光源集成在封装级的俯视图;
图7是根据本申请第一实施例中的光电传感器和图像传感器集成在晶圆级,光源集成在封装级的截面图;
图8是根据本申请第一实施例中的光源在晶片上的位置俯视图;
图9是根据本申请第一实施例中的光源和晶片在基板上安装的截面图;
图10是根据本申请第一实施例中的光电传感器和图像传感器集成在晶圆级,光源集成在电路板级的俯视图;
图11是根据本申请第一实施例中的光电传感器和图像传感器集成在晶圆级,光源集成在电路板级的截面图;
图12是根据本申请第一实施例中的光电传感器、图像传感器和光源均集成在封装级的俯视图;
图13是根据本申请第一实施例中的光电传感器、图像传感器和光源均集成在封装级的截面图;
图14是根据本申请第一实施例中的光电传感器、图像传感器和光源均集成在封装级时采用bonding线电气连接的俯视图;
图15是根据本申请第一实施例中的光电传感器、图像传感器和光源均集成在封装级时采用bonding线电气连接的截面图;
图16是根据本申请第一实施例中的光电传感器、图像传感器和光源均集成在电路板级的俯视图;
图17是根据本申请第一实施例中的光电传感器、图像传感器和光源均集成在电路板级的截面图;
图18是根据本申请第一实施例中的光电传感器和图像传感器集成在封装级,光源集成在电路板级的俯视图;
图19是根据本申请第一实施例中的光电传感器和图像传感器集成在封装级,光源集成在电路板级的截面图;
图20是根据本申请第二实施例中的实现环境光检测的结构示意图;
图21是根据本申请第二实施例中的光电传感器集成在图像传感器的晶 圆级上,复用感光单元的俯视图;
图22是根据本申请第二实施例中的光电传感器集成在图像传感器的晶圆级上,复用感光单元的截面图;
图23是根据本申请第二实施例中的光电传感器集成在图像传感器集的晶圆级上,不复用感光单元的俯视图;
图24是根据本申请第二实施例中的光电传感器集成在图像传感器的晶圆级上,不复用感光单元的截面图;
图25是根据本申请第二实施例中的光电传感器集成在图像传感器的封装级上的俯视图;
图26是根据本申请第二实施例中的光电传感器集成在图像传感器的封装级上的截面图;
图27是根据本申请第二实施例中的光电传感器与图像传感器集成在电路板级上的俯视图;
图28是根据本申请第二实施例中的光电传感器与图像传感器集成在电路板级上的截面图;
图29是根据本申请第二实施例中的光电传感器与图像传感器集成在结构级上的俯视图;
图30是根据本申请第二实施例中的光电传感器与图像传感器集成在结构级上的截面图。
图31是根据本申请第三实施例中的终端的结构示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请第一实施例涉及一种光学传感装置,包括:光电传感器,用于将通过光电传感器的感光单元获取的光信号,转换为电信号;图像传感器,用于将通过图像传感器的感光单元获取的光信号,转换为图像数据;其中,图像传感器和光电传感器物理集成,图像传感器的感光单元和光电传感器的感光单元用于在同一镜头的成像区域内感光,使得可以减小模块体积,降低结构和光路设计的复杂度并减少制造成本。
本实施例中光学传感装置,可以应用在以下产品中:1、手机等移动终端、笔记本、智能门锁等设备和装置。2、3D扫描仪等具备三维扫描或逆向建模功能的设备和装置。3、AR、VR、MR、体感游戏或者车载的等具备手势识别或者姿态检测的设备或装置。4、需要捕获或者识别立体物体的工业相机或者装置等,在此不一一例举。
本实施例的光学传感装置中的光电传感器可以是光电二极管,光电三极管,CMOS图像传感器的感光像素,CCD图像传感器的感光像素,集成感光单元、信号调理电路并输出模拟信号的传感器,集成感光单元、信号调理电路、模数转换器和数字输出接口(如I2C、SPI、I3C、UART等串行或并行接口)的传感器,光电传感器可以是单个、多个,或者阵列。
具体的说,光学传感装置的结构示意图,如图2所示,包括:镜头101、滤光片102、图像传感器103、电路板104、光电传感器105。其中,镜头101用于接收光线,形成成像区域,图像传感器103的感光单元和光电传感器105 的感光单元均位于同一镜头的成像区域内,感光单元可以对应多种波段的光感应,比如说可以感应到激光、白光、红外光等。如图3和图4所示,光电传感器105放置在穿过镜头101的主光线201形成的最大成像圆202内。当主光线201通过镜头101照射进来时,最大成像圆202内所有的区域都可以被照射到,所以光电传感器105可以接收到镜头外的光线。图像传感器103也可以接收到镜头外的光线,并将通过感光单元获取的光信号,转换为图像数据。
值得一提的是,本实施例中只是以镜头在光学传感装置中为例,但在实际应用中光学传感装置本身可以不包含镜头,镜头可以为终端上的镜头。
需要说明的,本实施例中的图像传感器可以为红外图像传感器,光电传感器具体为距离传感器,距离感应器需要配合光源使用,光源可以是LED、LD、VCSEL、EEL等发光二极管或者激光器,光源可以是单个、多个,或者阵列。滤光片102具体可以为自然光滤光片,用于滤除接收到的光线中的自然光,使得光电传感器105接收到的光线为红外光,以便完成距离的计算。
进一步的,如图5所示,处理器403控制光源106发出经过调制的光线,光线被一物体A反射后进入镜头101,然后照射在光电传感器105上,光电传感器105通过感光单元获取光信号,转换为电信号,将电信号传输给处理器403,处理器403可以通过算法处理,得到光学传感装置与物体A的距离。在不同的应用场景下,处理器403可以控制不同的外设做出相应的响应,比如,手机中设置有本实施例中的光学传感装置,打电话时,手机与脸部距离较近时,自动关闭屏幕;当进行结构光3D人脸识别时,检测到人脸处于合适的距离范围内后,再控制点阵投影器发出散斑,否则不启动点阵投影器。在实际应用中,图像传感器103在获取图像数据后,可以将图像数据发送给处理器403,处理器403 根据接收到的图像数据做进一步的处理。
本实施例中图像传感器103、光电传感器105和光源106的物理集成,具体的可通过以下方案实现集成:
方案一:如图6和图7所示,光电传感器105和图像传感器103在晶圆级集成,光源106在封装级集成。也就是说,将距离传感器105与图像传感器103集成在同一片晶圆上,即在同一个晶片(Die)301上集成,再将集成在同一片晶圆上的光电传感器105与图像传感器103与光源106封装在一起。
具体的说,光电传感器105与图像传感器103集成,表示光电传感器105的感光单元303与图像传感器103的感光单元303时分复用,即图像传感器103的感光单元303可以作为成像用途,也可以作为距离传感器的感光部分,但两者不在同一时刻使用。用于配合感光单元303完成距离检测或成像的信号调理电路设置在晶圆上不影响感光单元303光线接收的其他位置。光源106与晶片301在封装级集成,是指将光源106与晶片301安装在同一基板上,且光源106与晶片301的周围使用封装材料包裹起来形成保护。如图8所示光源106可以在晶片301的上下左右任意位置。光源106和晶片301在基板上安装的形式包含且不限于回流焊、半导体键合金线/金丝Wire Bonding、银浆粘贴等封装或焊接工艺,如图9所示。
方案二:如图10和图11所示,光电传感器105和图像传感器103在晶圆级集成,光源106在电路板级集成。也就是说,将光电传感器105与图像传感器103集成在同一片晶圆上并封装好之后,与光源106一起安装在电路板104上,比如说安装在印刷电路板PCB或者柔性线路板FPC上。
方案三:如图12和图13所示,光电传感器105、图像传感器103和光 源106均在封装级集成。在实际应用中,两个传感器可以分别为两个Die,光源可以为一个Die,也可以是封装片。下面对封装级集成进行详细描述:
方式(1):图像传感器103、光电传感器105和光源106的形态均为Die。可参照图14和图15,图像传感器103、光电传感器105与光源106通过银浆或者其他常用材料粘贴在基板303上,然后通过半导体键合金线/金丝bonding线,或者通过其他晶圆级、封装级电气连接手段,如穿过硅片通道TSV技术等,将三个Die与基板上的线路进行电气连接,如图14所示的bonding线的数量仅作为示意,实际数量并不以此为限。然后,使用封装材料302将Die和bonding线包裹起来作为保护,防止外力损坏或者被腐蚀,封装材料302可以是电子封装材料EMC或者其他材料。图像传感器103、光电传感器105和光源106的上方需要做特殊处理,保证其上方封装材料的透光率大于80%。具体的,可以通过将上方的封装材料挖空,或者使用透光率大于80%的透光材料封装,或者将上方封装材料打磨至感光或者发光区域露出为止。
方式(2):图像传感器103、光电传感器105形态均为Die,光源106为已封装的产品,比如光源106可以为封装尺寸为0402的LED。可参照图14和图15,图像传感器103和光电传感器105通过bonding线,或者其他晶圆级、封装级电气连接手段,如TSV等将Die与基板上的线路进行电气连接。光源106通过回流焊,或其他表面组装技术SMT工艺与基板303建立电气连接。然后,使用封装材料302将Die和bonding线包裹起来作为保护,防止外力损坏或者被腐蚀,封装材料302可以是EMC或者其他材料。图像传感器103、光电传感器105和光源106的上方需要做与上述方式(1)类似的特殊处理,在此不再赘述。
方案四:如图16和图17所示,光电传感器105、图像传感器103和光源106均在电路板级集成。也就是说,光电传感器105、图像传感器103和光源106可以分别是三个相互独立的芯片,各自完成封装,再一起安装在电路板104上。
方案五:如图18和图19所示,光电传感器105、和图像传感器103在封装级集成,光源106在电路板级集成。比如说,图像传感器103和光电传感器105通过银浆或者其他常用材料粘贴在基板上,将基板安装在电路板104上,将光源106也安装在电路板上。
需要说明的是,本实施例只是以上述五种集成方式为例进行说明,但在实际应用并不以此为限。
本实施例相对于现有技术而言,具有以下技术效果:1.将距离传感器与图像传感器集成,减小模块体积,同时还能很好的实现距离传感器与图像传感器的功能;2.集成后的模块可以复用图像传感器的光路和结构,可降低结构和光路设计复杂度;3.复用光路和结构的模块能够大幅降低成本;4.提供可选择的多种集成方式,使得本实施方式的实现方式更加灵活多样。
本申请第二实施例涉及一种光学传感装置。本实施例与第一实施例大致相同,不同之处在于,第一实施例中光电传感器具体为距离传感器,距离传感器需要配合光源使用,因此第一实施例中将距离传感器、图像传感器和光源物理集成。而本实施例中光电传感器具体为环境光传感器,环境光传感器无需和光源配合使用,因此,本实施例中将环境光传感器与图像传感器物理集成,使得在减小模块体积的同时,能够实现图像传感器和环境光传感器的功能。
具体的说,本实施例中的光学传感装置的结构示意图也可以如图2所示, 本实施例中的图像传感器可以为RGB图像传感器,光电传感器105具体为环境光传感器,随着环境光的改变,环境光传感器的输出信号也会随之发生改变。本实施例中滤光片102具体为红外光滤光片,用于滤除接收到的光线中的红外光,使得环境光传感器接收到的光线为自然光,以便完成对环境光的检测。需要强调的是,本实施例中的红外光滤光片设置在镜头中,镜头可以设置在光学传感装置中,但在实际应用中,镜头也可以为设置在终端中的镜头,对此本实施例不做具体限定。
进一步的,如图20所示,光电传感器105将通过感光单元获取的光信号,转换为电信号,转换后的电信号可以为表征光强的电信号,光电传感器105将电信号传输给处理器403,经过处理器403处理后,可以分析出当前环境光的强弱程度或者色温,进一步控制显示屏亮度或其他显示效果。在实际应用中,图像传感器103在获取图像数据后,可以将图像数据发送给处理器403,处理器403根据接收到的图像数据做进一步的处理。
需要说明的是,本实施例中图像传感器103和光电传感器105物理集成,具体的集成方案可以如下:
方案一:光电传感器105与图像传感器103在晶圆级集成;即,将光电传感器105与图像传感器103集成在同一片晶圆上,即在同一个晶片(Die)301上集成。在晶圆级集成时有两种实现方式:方式(1):如图21、22所示,光电传感器105和图像传感器103在同一个晶片301上,且光电传感器105的感光单元是图像传感器103的多个感光单元303中的其中一个,即图像传感器103至少有一个感光单元复用为光电传感器105的感光单元。光电传感器105的感光单元可以是图像传感器103的感光单元303中的一个或者多个,甚至全部复 用。方式(2):如图23、24所示,光电传感器105的感光单元与图像传感器103在同一个晶片301上,光电传感器105与图像传感器103的感光单元相互独立,没有复用。比如说,在同一套光刻流程中下完成两个传感器的制造,切割后形成包含两个传感器的多个单一芯片。
方案二:如图25、26所示,光电传感器105与图像传感器103在封装级集成,即两个传感器可以分别为两颗Die,封装在一起。第一实施例对于在封装级的集成进行了详细的描述,本方案可采用类似的方式将光电传感器105与图像传感器103在封装级集成,为避免重复,在此不再赘述。
方案三:如图27、28所示,光电传感器105与图像传感器103在电路板级集成,即两个传感器可以分别是两个芯片,各自完成封装后安装到同一个电路板上,比如说在印刷电路板PCB或者柔性电路板FPC上集成。
方案四:如图29、30所示,光电传感器105与图像传感器103在结构级集成,即光电传感器与图像传感器仅通过结构固定,复用光路和结构,无电路级连接,比如说,将两个传感器分别装在不同的电路板上,通过一些结构设计组合在一起。
需要说明的是,本实施例只是以上述四种集成方式为例进行说明,但在实际应用并不以此为限。
本实施例相对于现有技术而言,通过将环境光传感器与图像传感器集成,复用图像传感器的光路和结构,实现环境光传感器与图像传感器的整合,在不影响两个传感器各自的功能的同时,解决了空间狭小导致的结构设计复杂的问题,同时能够大幅降低成本。
本申请第三实施例涉及一种终端401,如图31所示,包括镜头402、上 述任一实施例中的光学传感装置403和处理器404。
在一个例子中,光学传感装置403中的光电传感器为环境光传感器,镜头402内设有红外光滤光片,用于滤除接收到的光线中的红外光,以保证环境光传感器可以接收到纯净的环境光,从而准确的分析当前的环境光强弱。具体的,环境光传感器将通过感光单元获取的光信号,转换为电信号,转换后的电信号可以为表征光强的电信号,光电传感器将电信号传输给处理器404,处理器404根据环境光传感器发送的电信号对当前的环境光进行分析。比如说,终端401以手机为例,手机分析出当前环境光的强弱程度或者色温,从而控制显示屏亮度或其他显示效果。
在另一个例子中,光学传感装置403中的光电传感器为距离传感器,镜头402内设有自然光滤光片,用于滤除接收到的光线中的自然光,以保证距离传感器可以接收到纯净的红外光,从而准确的计算与一待测距物体的距离。具体的,距离传感器通过感光单元获取光信号,转换为电信号,将电信号传输给处理器404,处理器404根据距离传感器发送的电信号计算终端401与一待测距物体的距离,从而在不同的应用场景下,控制不同的外设做出相应的响应。比如说,终端401以手机为例,打电话时,手机与脸部距离较近时,自动关闭屏幕;当进行结构光3D人脸识别时,检测到人脸处于合适的距离范围内后,再控制点阵投影器发出散斑,否则不启动点阵投影器。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。
Claims (20)
- 一种光学传感装置,其特征在于,包括:光电传感器,用于将通过所述光电传感器的感光单元获取的光信号,转换为电信号;图像传感器,用于将通过所述图像传感器的感光单元获取的光信号,转换为图像数据;其中,所述图像传感器和所述光电传感器物理集成,所述图像传感器的感光单元和所述光电传感器的感光单元用于在同一镜头的成像区域内感光。
- 根据权利要求1所述的光学传感装置,其特征在于,所述图像传感器为红外图像传感器。
- 根据权利要求2所述的光学传感装置,其特征在于,所述光电传感器为距离传感器。
- 根据权利要求3所述的光学传感装置,其特征在于,还包括:与所述图像传感器和所述光电传感器物理集成的光源;所述光源用于发射预定波长或者波长范围的光线,所述距离传感器用于接收所述光线发射后经物体反射回的光线。
- 根据权利要求4所述的光学传感装置,其特征在于,所述距离传感器和所述图像传感器在晶圆级集成,所述光源在封装级集成。
- 根据权利要求4所述的光学传感装置,其特征在于,所述距离传感器和所述图像传感器在晶圆级集成,所述光源在电路板级集成。
- 根据权利要求4所述的光学传感装置,其特征在于,所述距离传感器、所述图像传感器和所述光源均在封装级集成。
- 根据权利要求4所述的光学传感装置,其特征在于,所述距离传感器、所述图像传感器和所述光源均在电路板级集成。
- 根据权利要求4所述的光学传感装置,其特征在于,所述距离传感器和所述图像传感器在封装级集成,所述光源在电路板级集成。
- 根据权利要求1所述的光学传感装置,其特征在于,还包括:所述图像传感器为RGB图像传感器。
- 根据权利要求10所述的光学传感装置,其特征在于,还包括:所述光电传感器为环境光传感器。
- 根据权利要求1所述的光学传感装置,其特征在于,所述光电传感器与所述图像传感器在晶圆级集成;其中,所述图像传感器的感光单元与所述光电传感器的感光单元,为分时复用的相同的感光单元。
- 根据权利要求1所述的光学传感装置,其特征在于,所述光电传感器与所述图像传感器在封装级集成。
- 根据权利要求1所述的光学传感装置,其特征在于,所述光电传感器与所述图像传感器在电路板级集成。
- 根据权利要求1所述的光学传感装置,其特征在于,所述光电传感器与所述图像传感器在结构级集成。
- 一种终端,其特征在于,包括:如权利要求1至15中任一项所述的光学传感装置;镜头,用于接收光线,形成成像区域;所述光学传感装置内的图像传感器的感光单元和光电传感器的感光单元用于在所述成像区域内感光。
- 根据权利要求16所述的终端,其特征在于,还包括:处理器,所述光学传感装置中的光电传感器具体为:环境光传感器;所述处理器,用于接收所述环境光传感器发送的电信号,并根据所述环境光传感器发送的电信号对当前的环境光进行分析。
- 根据权利要求17所述的终端,其特征在于,所述镜头内设有红外光滤光片,用于滤除接收到的光线中的红外光。
- 根据权利要求16所述的终端,其特征在于,还包括:处理器,所述光学传感装置中的光电传感器具体为:距离传感器;所述处理器,用于接收所述距离传感器发送的电信号,并根据所述距离传感器发送的电信号计算所述终端与一待测距物体的距离。
- 根据权利要求19所述的终端,其特征在于,所述镜头内设有自然光滤光片,用于滤除接收到的光线中的自然光。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/114940 WO2020097748A1 (zh) | 2018-11-12 | 2018-11-12 | 一种光学传感装置和终端 |
CN201880002259.6A CN111436209A (zh) | 2018-11-12 | 2018-11-12 | 一种光学传感装置和终端 |
EP18914924.8A EP3674848A4 (en) | 2018-11-12 | 2018-11-12 | OPTICAL AND TERMINAL DETECTION DEVICE |
US16/658,116 US20200149956A1 (en) | 2018-11-12 | 2019-10-20 | Optical sensing device and terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/114940 WO2020097748A1 (zh) | 2018-11-12 | 2018-11-12 | 一种光学传感装置和终端 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/658,116 Continuation US20200149956A1 (en) | 2018-11-12 | 2019-10-20 | Optical sensing device and terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020097748A1 true WO2020097748A1 (zh) | 2020-05-22 |
Family
ID=70551144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/114940 WO2020097748A1 (zh) | 2018-11-12 | 2018-11-12 | 一种光学传感装置和终端 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200149956A1 (zh) |
EP (1) | EP3674848A4 (zh) |
CN (1) | CN111436209A (zh) |
WO (1) | WO2020097748A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112532836A (zh) * | 2020-11-25 | 2021-03-19 | 武汉格罗夫氢能汽车有限公司 | 一种氢能源汽车用的多功能摄像头 |
WO2022099904A1 (zh) * | 2020-11-10 | 2022-05-19 | 之江实验室 | 一种基于图像传感器的多模态传感器件 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114114317B (zh) * | 2020-08-28 | 2023-11-17 | 上海禾赛科技有限公司 | 激光雷达、数据处理方法及数据处理模块、介质 |
CN112183519B (zh) * | 2020-09-25 | 2023-02-10 | 华中科技大学 | 一种基于4d打印的仿神经视觉传感器 |
CN213342401U (zh) * | 2020-11-02 | 2021-06-01 | 达闼机器人有限公司 | 用于采集和显示的装置以及终端 |
GB202020408D0 (en) * | 2020-12-22 | 2021-02-03 | Ams Int Ag | Apparatus for capturing an image and determing an ambient light intensity |
CN112804391A (zh) * | 2020-12-29 | 2021-05-14 | 上海创功通讯技术有限公司 | 多功能传感器、移动终端、传感器控制方法及存储介质 |
CN112964308A (zh) * | 2021-03-25 | 2021-06-15 | 北京灵汐科技有限公司 | 传感器组件及电子设备 |
US11810492B2 (en) * | 2021-12-15 | 2023-11-07 | Htc Corporation | Method for determining ambient light luminance, host, and computer readable storage medium |
CN114821576A (zh) * | 2022-06-30 | 2022-07-29 | 之江实验室 | 一种基于视觉嗅觉协同感知器件的目标识别方法和装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106445122A (zh) * | 2016-09-08 | 2017-02-22 | 北京小米移动软件有限公司 | 设备状态控制方法及装置 |
CN107343136A (zh) * | 2017-09-05 | 2017-11-10 | 信利光电股份有限公司 | 一种摄像模组 |
CN206759605U (zh) * | 2017-06-12 | 2017-12-15 | 深圳市比亚迪电子部品件有限公司 | 一种车载摄像头 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7071456B2 (en) * | 2004-03-30 | 2006-07-04 | Poplin Dwight D | Camera module with ambient light detection |
KR100992411B1 (ko) * | 2009-02-06 | 2010-11-05 | (주)실리콘화일 | 피사체의 근접여부 판단이 가능한 이미지센서 |
KR101048768B1 (ko) * | 2009-06-10 | 2011-07-15 | (주)실리콘화일 | 조도, 근접도 및 색온도 측정이 가능한 이미지센서 |
US20120092541A1 (en) * | 2010-10-19 | 2012-04-19 | Nokia Corporation | Method and apparatus for ambient light measurement system |
EP2472853A1 (en) * | 2011-01-03 | 2012-07-04 | STMicroelectronics (Grenoble 2) SAS | Imaging device with ambient light sensing means |
CN103066087B (zh) * | 2012-12-20 | 2016-03-02 | 格科微电子(上海)有限公司 | 图像传感器模组和手持式电子装置 |
CN104036226B (zh) * | 2013-03-04 | 2017-06-27 | 联想(北京)有限公司 | 一种目标物信息获取方法及电子设备 |
CN104200631A (zh) * | 2014-09-10 | 2014-12-10 | 青岛永通电梯工程有限公司 | 一种与手机建立连接的健康监控方法 |
KR102290287B1 (ko) * | 2014-10-24 | 2021-08-17 | 삼성전자주식회사 | 이미지 신호와 근접 신호를 동시에 생성하는 이미지 센서 |
JP6486151B2 (ja) * | 2015-03-05 | 2019-03-20 | キヤノン株式会社 | 撮像システム |
US10185866B2 (en) * | 2015-09-18 | 2019-01-22 | Synaptics Incorporated | Optical fingerprint sensor package |
WO2018198766A1 (ja) * | 2017-04-25 | 2018-11-01 | ソニー株式会社 | 固体撮像装置および電子機器 |
-
2018
- 2018-11-12 WO PCT/CN2018/114940 patent/WO2020097748A1/zh unknown
- 2018-11-12 EP EP18914924.8A patent/EP3674848A4/en not_active Withdrawn
- 2018-11-12 CN CN201880002259.6A patent/CN111436209A/zh active Pending
-
2019
- 2019-10-20 US US16/658,116 patent/US20200149956A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106445122A (zh) * | 2016-09-08 | 2017-02-22 | 北京小米移动软件有限公司 | 设备状态控制方法及装置 |
CN206759605U (zh) * | 2017-06-12 | 2017-12-15 | 深圳市比亚迪电子部品件有限公司 | 一种车载摄像头 |
CN107343136A (zh) * | 2017-09-05 | 2017-11-10 | 信利光电股份有限公司 | 一种摄像模组 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3674848A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022099904A1 (zh) * | 2020-11-10 | 2022-05-19 | 之江实验室 | 一种基于图像传感器的多模态传感器件 |
CN112532836A (zh) * | 2020-11-25 | 2021-03-19 | 武汉格罗夫氢能汽车有限公司 | 一种氢能源汽车用的多功能摄像头 |
Also Published As
Publication number | Publication date |
---|---|
CN111436209A (zh) | 2020-07-21 |
US20200149956A1 (en) | 2020-05-14 |
EP3674848A4 (en) | 2020-10-21 |
EP3674848A1 (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020097748A1 (zh) | 一种光学传感装置和终端 | |
TWI606309B (zh) | 專用於計算成像並具有進一步功能性的光學成像設備 | |
US11575843B2 (en) | Image sensor modules including primary high-resolution imagers and secondary imagers | |
US10141366B2 (en) | Stacked semiconductor chip RGBZ sensor | |
US10291870B2 (en) | Monolithically integrated RGB pixel array and Z pixel array | |
KR102371009B1 (ko) | 복수의 이미지 센서가 배치된 기판을 지지하기 위한 보강 부재를 포함하는 카메라 모듈, 및 카메라 모듈을 포함하는 전자 장치 | |
CN106950738B (zh) | 显示装置与移动电子终端 | |
JP2005244974A (ja) | 集積回路パッケージを形成する方法 | |
CN110347295B (zh) | 感测板及具有感测板的显示器 | |
CN108965666B (zh) | 一种移动终端及图像拍摄方法 | |
US11781902B2 (en) | Reducing optical cross-talk in optical sensor modules | |
TW202236655A (zh) | 雙圖像感測器封裝 | |
CN211378086U (zh) | 照相机模块型传感器装置及照相机模块 | |
US11238279B2 (en) | Method for generating plural information using camera to sense plural wave bandwidth and apparatus thereof | |
KR20230016664A (ko) | 픽셀 유닛, 광전기 센서, 촬영 모듈 및 전자 장치 | |
TWI540469B (zh) | 高靜電防護之電子裝置 | |
CN107167945B (zh) | 显示装置与移动电子终端 | |
US20200374493A1 (en) | Camera module comprising complementary color filter array and electronic device comprising same | |
CN101082848A (zh) | 发光芯片固定在感测芯片上的光学输入装置及其制造方法 | |
KR102374428B1 (ko) | 그래픽 센서, 이동 단말 및 그래픽 촬영 방법 | |
KR20190059443A (ko) | 웨어러블 및 휴대 스마트 디바이스용 광학 센싱 모듈 | |
CN107392081B (zh) | 人像辨识摄影模组 | |
WO2022075725A1 (ko) | 전자 장치 및 전자 장치에서 피부 형광 측정 방법 | |
CN116325777A (zh) | 获取光量的电子设备及方法 | |
CN110674795A (zh) | 生物特征识别的图像采集光学结构、光学感应器、图像采集方法及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018914924 Country of ref document: EP Effective date: 20191022 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |