WO2020097705A1 - Unidade móvel e método de monitoramento contínuo de água de resfriamento em fluxo - Google Patents

Unidade móvel e método de monitoramento contínuo de água de resfriamento em fluxo Download PDF

Info

Publication number
WO2020097705A1
WO2020097705A1 PCT/BR2019/050486 BR2019050486W WO2020097705A1 WO 2020097705 A1 WO2020097705 A1 WO 2020097705A1 BR 2019050486 W BR2019050486 W BR 2019050486W WO 2020097705 A1 WO2020097705 A1 WO 2020097705A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
monitoring unit
mobile monitoring
cooling
parameters
Prior art date
Application number
PCT/BR2019/050486
Other languages
English (en)
French (fr)
Inventor
Sergio PAGNIN
Andrea AZEVEDO VEIGA
Original Assignee
Petróleo Brasileiro S.A. - Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A. - Petrobras filed Critical Petróleo Brasileiro S.A. - Petrobras
Priority to US17/292,833 priority Critical patent/US20210405013A1/en
Publication of WO2020097705A1 publication Critical patent/WO2020097705A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/008Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/36Biological material, e.g. enzymes or ATP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • G01N2035/00881Communications between instruments or with remote terminals network configurations

Definitions

  • the present invention is related to technologies in water treatment and reuse. More particularly, the present invention relates to a cooling water monitoring unit for cooling systems, and a method associated with it.
  • the document WO2010086857A1 discloses a disposable cartridge for use in analyzing samples in an automated water quality monitoring analyzer that has reservoirs for reagents and a reaction chamber mounted on a platform.
  • the reaction chamber is designed to move on the platform and thus receive the appropriate reagents for carrying out the water analysis.
  • Document EP497518A1 reveals improvements to the analytical procedure for monitoring circulating cooling water in a nuclear reactor cooling system.
  • the improvement consists in the preconditioning of the water samples, by adjusting their pH, in order to stabilize it, keeping in solution the ions to be investigated.
  • the pH adjustment is done, preferably, with the injection of carbon dioxide (C0 2 ).
  • the document WO1995003997A1 reveals an automatic system for the injection of chemicals and for “blown-down” of the cooling water.
  • the system consists of two sensors. The first measures the redox potential of water and acts directly on the injection of chemicals when the measured redox potential reaches a predetermined value. The second sensor measures the conductivity of the water and triggers the opening of the system's blown-down valve when the measured conductivity reaches a predetermined value.
  • the devices described in such The documents do not describe a mobile device, capable of monitoring up to eleven parameters related to the physico-chemical evaluation of cooling systems, adjusting the dosage of chemicals, testing new formulations for water treatment or optimizing the dosages of the products used.
  • the state of the art demonstrates a demand for a cooling water monitoring system that provides the potential reduction in the number of analyzes performed in external laboratories, optimizing the monitoring, and the indication in real time of any deviations from the water characteristics, enabling actions to anticipate damages and / or corrective actions in the system as a whole.
  • the present invention aims to solve the problems of the state of the art, described above, in a practical and efficient way.
  • the objective of the present invention is to provide a liquid monitoring system that provides a reduction in the demand for analysis in external laboratories and that indicates in real time any deviations from the liquid's characteristics, which would allow for possible corrective actions to prevent damage to the system.
  • the present invention provides a mobile unit for continuous monitoring of cooling water in flow which comprises: means to capture a flow of cooling water; means for analyzing a plurality of cooling water parameters through a plurality of analytical techniques, generating a plurality of results related to each of the analyzed parameters; and means for returning the cooling water flow to the cooling.
  • the invention also provides a method of continuous monitoring of a flow of cooling water, comprising the steps of: capturing a flow of cooling water; analyze a plurality of cooling water parameters through various analytical techniques generating results related to each of the analyzed parameters; and return the cooling water flow to the cooling system.
  • Figure 1 illustrates a schematic flowchart of a mobile cooling water flow monitoring unit, according to an optional configuration of the present invention.
  • Figure 2 illustrates a schematic flowchart of a signal and data transmission system, according to a specific configuration of the invention.
  • Figure 3 illustrates a schematic flowchart of the data transmission of the mobile monitoring unit according to a specific configuration of the invention.
  • the mobile cooling water continuous monitoring unit consists of a container, where they are installed industrial analyzers, Programmable Logic Controller (PLC), supervisory computer, electrical panel, dosing pumps, pipes and accessories, in addition to two centrifugal pumps.
  • PLC Programmable Logic Controller
  • Figure 1 illustrates a schematic flowchart of a mobile cooling water flow monitoring unit, according to an optional configuration of the present invention.
  • the mobile cooling water monitoring unit of the invention brings together, in an integrated manner, the necessary instruments for the acquisition of analytical data related to the monitoring of the quality of cooling water.
  • the mobile unit for monitoring a cooling water flow in flow operates in line with the cooling system 1 in which it is applied, capturing and returning cooling water, and integrates different analytical techniques, the to facilitate data acquisition.
  • the mobile unit for continuous monitoring of cooling water in flow comprises means for capturing cooling water, means for analyzing a plurality of cooling water parameters through various analytical techniques, generating results related to each one. of the analyzed parameters, and means to return the cooling water to the cooling system 1.
  • the invention also provides a method of continuous monitoring of cooling water comprising the steps of capturing a flow of cooling water, analyzing a plurality of cooling water parameters through various analytical techniques, generating related results to each of the analyzed parameters, and return the cooling water to the cooling system 1.
  • the analyzed parameters can be chosen from: loss of mass of specimens; corrosion rates by corrosimetric probes; free residual chlorine; total residual chlorine; Dissolved oxygen; pH; redox potential; conductivity; turbidity; biofilm formation and deposition index.
  • the method of continuous monitoring of a flow of cooling water in flow still provides, optionally, steps of: checking if the result of the analysis of each parameter of the cooling water is in accordance with the specification and take corrective action to each parameter of the cooling water that is outside the established standard value.
  • the monitoring unit can comprise a control system adapted to carry out all the actions described in the previous paragraph.
  • the control system adopted can be any known in the state of the art and must be interconnected, and controlling, a plurality of valves, pumps 2 and sensors necessary for the system to function properly.
  • the means to analyze a plurality of parameters of the cooling water may comprise specific sensors to analyze each parameter of the cooling water.
  • the types and quantities of sensors adopted may vary according to each application, in which more than one sensor, more than one analytical technique, can be used to analyze the same parameter, if desired.
  • the method of continuous monitoring of a flow of cooling water in flow may comprise a step of discarding a portion of collected cooling water, after performing at least one analysis of a parameter. This step it may be necessary in cases where the cooling water analysis process changes the characteristics of the water, which may cause damage to the cooling system 1.
  • the method of the invention allows the cooling water to be continuously monitored, so that, when any deviation in the established parameters is identified, a corrective action is performed.
  • the mobile unit for monitoring cooling water in flow being built in a habitable container structure, has the possibility of mobilization.
  • the unit also allows data collection at different industrial plants.
  • the means to analyze a plurality of cooling water parameters of the mobile continuous cooling water monitoring unit comprises five chemical tanks that allow the development of chemical performance tests commercial or test innovative formulations in the area of chemical water treatment of cooling systems or optimize dosages of products used.
  • the number of tanks adopted obviously, it can vary according to each application and the number of analyzes to be performed.
  • control system of the monitoring unit can comprise an operation and supervision system consisting of power panel (Electrical Panel), emergency electrical supply (nobreak), programmable logic controller (PLC), system supervisory, computer and modem.
  • This system will be responsible for the acquisition, treatment, storage and transmission of the values generated by the analyzers.
  • the monitoring unit is built in such a way as to allow it to be moved optionally by lifting the unit, completely assembled, and traveling by truck to the point of interest. Once positioned, the monitoring unit is connected hydraulically to the system, in which the cooling water is collected downstream from the cooling system 1 (cooling tower) and returns to the system at a point upstream of the cooling system or in the tower cooling.
  • the cooling system 1 cooling tower
  • the Mobile Monitoring Unit can comprise several pieces of equipment so that it works as desired. This equipment is common to several systems and can comprise: centrifugal pumps 2 and hoses; chemical product tanks 3; chemical metering pumps 5; residence tank for multiparameter probe 4; electric panel; auxiliary power system (nobreak); control panel; supervisory computer; air conditioning and counter with sink.
  • centrifugal pumps 2 can be specified to allow fluid displacement from the collection to the container with an operating flow of 10m 3 / h, and flexible hoses of about 50m make up the set.
  • Chemical tanks 3 are optionally five in number and include mixers, metering pumps 5 and solenoids. These devices allow the action of chemicals to be tested, individually or together, in the water captured by the monitoring unit. This allows tests to be developed with commercial chemicals or with chemicals in development.
  • the mobile monitoring unit can comprise a residence tank 4 associated with a multi-parameter probe adapted to measure pH, turbidity, conductivity and redox potential.
  • the power supply for the monitoring unit can come from outside the container, through a three-phase female socket, weatherproof, which connects the electrical panel to the power source.
  • This power source can be either another electrical panel of equal nominal voltage, located in the plant where the unit is operating, or a diesel or gasoline generator, which will serve the unit in places where no other source is available.
  • the electrical panel was configured to operate with three different busbars: two 220 V, one for the components powered by the auxiliary power system (instruments, analyzers and pumps) and the other for the components not powered by the UPS (air conditioning, lighting and sockets); in addition to another 380 V for agitators in chemical tanks.
  • Figure 2 illustrates a schematic flowchart of a signal and data transmission system, according to a specific configuration of the invention.
  • Figure 3 illustrates a schematic flowchart of the data transmission of the mobile monitoring unit according to a specific configuration of the invention.
  • the automation of the unit allows the analyzers and other devices to operate as a remote data collection station.
  • the automation of the unit can be divided, for the purpose of understanding, into two systems: the control system, consisting mainly of the programmable logic controller, and the supervisory system.
  • the control system is installed in an automation panel, where the PLC is installed, the input and output modules (analog and digital), the power supply and the communication modules.
  • the data from the chlorine analyzers (amperometric and colorimetric), ammonia, biofilm formation, multiparameter probe and transmitters, as well as the valve and pump activation signals are received by the PLC and made available by the supervisory system, connected to the PLC via ethernet cable .
  • On the left side door of the automation panel there is an emergency stop button, which activation results in the total stop of the unit.
  • the supervisory system is installed on a computer, which works as a workstation inside the container, in which a proprietary application is installed which allows the creation of customized supervisory screens of the mobile monitoring unit, whose monitoring, in the field, allows the parameters selected and described previously, as well as auxiliary functions, such as activation of solenoid valves, alarms, etc. displayed.
  • the supervisory system receives all the data made available by the PLC and, through digital communication, the data from the deposition index analyzer and the corrosimetric probes.
  • the supervisory screens show the operating status of the analyzers, instruments and pumps, in addition to enabling the drive and control of the unit.
  • the supervisory also has manual entry for the insertion of the data necessary to calculate the corrosion rate by mass loss technique.
  • the data collected by the supervisor are configured in an appropriate format and sent remotely to an FTP server.
  • a routine for collecting data from the FTP server was created, passing it on to the SQL server (database).
  • SQL server database
  • This database stores in three different tables the data readings performed by the analytical instruments installed in the Mobile Monitoring Unit. This allows the monitoring of the monitored parameters in real time, in order to promote a corrective or preventive action in the process which makes use of the monitoring.
  • the mobile monitoring unit has the following main approaches: monitoring of corrosivity, physical-chemical parameters and biological; remote data collection and transmission; technology testing unit; validation of alternative water currents for cooling systems; and diagnosis and optimization of the chemical treatment employed.
  • the invention incorporates technologies for monitoring cooling water in an unprecedented way in order to provide the monitoring of the main physical-chemical parameters of quality control of cooling water in industrial plants.
  • Remote data collection was designed to allow the identification of disturbances in the control of the physical-chemical parameters monitored in response to events, such as deficiencies in the treatment with chemicals or increased corrosion rate due to unexpected contamination.
  • the data collection of the analyzers is centralized in an HMI (Human-Machine Interaction) whose supervisor is responsible for grouping the data and sending, in an appropriate format, via cell phone to the FTP area.
  • HMI Human-Machine Interaction
  • the mobile monitoring unit described in this report was also conceived as a pilot unit for testing technologies associated with the chemical treatment of water and effluents in order to minimize impacts on the industrial plant or identify remote monitoring technologies whose parameters are relevant for monitoring water and effluent quality. In this way, many features described here can be adapted, so that the scope of protection of the invention is not restricted to the embodiment described here.
  • the mobile monitoring unit was designed with two centrifugal pumps 2 that have the function of capturing water or effluent from the point of interest, such as, for example, cooling water in the cooling tower basins 1. Alternatively, it can be captured directly from any available bypass.
  • the water After collection, the water follows a defined circuit in order to meet the operational characteristics of each analyzer. A small volume can be discarded, depending on the operational characteristics of each analyzer.
  • the water stream after passing through the analyzers, returns to the cooling tower 1, through piping directed to the cooling tower basin.
  • the unit has flexible hoses that connect to the mobile monitoring unit that allow the positioning of the unit up to 50m away from the capture.
  • the mobile monitoring unit was designed in a container adapted with eight analytical instruments plus four test trees that enable the monitoring of up to eleven parameters related to the evaluation the physico-chemical characteristics of cooling systems, aiming mainly at the reuse of water and effluents in an autonomous way and independent of the monitoring equipment used by companies providing water treatment services.
  • the mobile monitoring unit of the present invention can also be used in different industrial plants that make use of cooling water in order to assess the quality of that water.
  • the cooling water effluent from cooling systems can present some contamination. This contamination can result in serious impacts to the equipment integrity of industrial plants, reducing the operational reliability and the useful life of the equipment.
  • the invention will be an essential tool in the selection of alternative sources of water for the replacement of cooling systems, making it possible to plan the reuse of water from different sources. It will also be possible to assess the impacts on the integrity of the equipment immediately after the introduction of water or effluent in the cooling system 1.
  • the mobile monitoring unit can also be used as a field research instrument, as it incorporates concepts of mobility, flexibility, automation and data transmission.
  • the designed arrangement will allow: immediate adjustments in the dosage of chemical products, from the monitoring of parameters; studies of evaluation and selection of chemical products in the field, allowing the use of replacement water from different sources, as well as the reuse of effluents in cooling systems.
  • the invention also proves to be an effective tool in facing scenarios of water scarcity, or zero disposal, since the mobile monitoring unit allows the reuse of water currents to the maximum, with the flexibility in the use of primary sources of water for application in industrial plants. [0075] Therefore, the mobile unit for continuous flow cooling water monitoring is a pioneer project in water reuse.
  • the invention allows a reduction in the demand for analysis in own or contracted laboratories, optimizing the monitoring and enabling a better diagnosis of the water quality, since the data collected by the monitoring unit will be important in the selection and combination of chemical water treatment technologies in industrial plants that need to reduce corrosion in equipment and pipes, especially when the water comes from alternative sources, such as water for industrial reuse.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Automation & Control Theory (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

A presente invenção provê uma unidade móvel de monitoramento contínuo de um fluxo de água de resfriamento que compreende: meios para captar um fluxo de água de resfriamento; meios para analisar uma pluralidade de parâmetros da água de resfriamento através de diversas técnicas analíticas, gerando resultados relacionados a cada um dos parâmetros analisados; e meios para retornar o fluxo de água de resfriamento ao sistema de resfriamento (1). Em adição, a invenção ainda provê um método de monitoramento contínuo de um fluxo de água de resfriamento, compreendendo as etapas de: captar um fluxo de água de resfriamento; analisar uma pluralidade de parâmetros da água de resfriamento através de diversas técnicas analíticas gerando resultados relacionados a cada um dos parâmetros analisados; e retornar a água de resfriamento ao sistema de resfriamento (1).

Description

“UNIDADE MÓVEL E MÉTODO DE MONITORAMENTO CONTÍNUO DE ÁGUA DE RESFRIAMENTO EM FLUXO”
CAMPO DA INVENÇÃO
[0001] A presente invenção está relacionada a tecnologias em tratamento e reuso de água. Mais particularmente, a presente invenção está relacionada a uma unidade de monitoramento de água de resfriamento de sistemas de resfriamento, e um método associado a ela.
FUNDAMENTOS DA INVENÇÃO
[0002] O monitoramento de sistemas de resfriamento, em especial da água de resfriamento, utilizado em sistemas de resfriamento, geralmente, é realizado por análises de laboratório em amostras coletadas rotineiramente e pela avaliação da corrosividade obtida por taxas de corrosão de corpos de prova em contato com determinado meio.
[0003] Entretanto, as análises químicas realizadas em amostras coletadas no campo retratam um evento no passado. O mesmo ocorre com a corrosividade, cuja avaliação é obtida após a exposição do corpo de prova em contato com a água por um período, normalmente, de cerca de 30 dias.
[0004] Assim, as perturbações operacionais que porventura ocorram durante os intervalos de amostragem, não podem ser observadas por essas técnicas.
[0005] Técnicas alternativas de monitoramento em tempo real estão disponíveis comercialmente, mas são pouco utilizadas devido ao custo associado ou quando aplicadas, são parcialmente integradas a outros parâmetros de monitoramento em tempo real como, por exemplo, a condutividade e o potencial de oxirredução.
[0006] O acompanhamento da qualidade da água de resfriamento é geralmente obtido após análises químicas em amostras coletadas no campo, que inclui o transporte, o recebimento, a execução e a emissão do resultado. Estas ações demandam disponibilidade de profissionais e de recursos.
[0007] Os testes analíticos, indispensáveis para garantir a qualidade e a adequação da água de resfriamento às necessidades operacionais, fazem parte da rotina de acompanhamento da qualidade da água de sistemas de resfriamento.
[0008] A correlação entre o processo corrosivo, os parâmetros físico-químicos e as mudanças operacionais é deficiente no atual cenário. Atualmente há uma grande defasagem no tempo de interpretação dos dados em função das limitações inerentes à execução de cada uma das técnicas.
[0009] A sinergia entre ambas as técnicas é fundamental para a adequada mitigação dos processos corrosivos, incrustantes ou microbiológicos. O acompanhamento da evolução, em tempo real, de parâmetros responsáveis por fenômenos de deterioração de equipamentos permitiria respostas corretivas no tratamento químico de sistemas de resfriamento. Isto possibilita o aumento indireto da vida útil de equipamentos através de ajustes imediatos na dosagem dos produtos químicos.
[0010] Atualmente, o tratamento químico de sistemas de resfriamento é completamente dependente de produtos comerciais disponibilizados por empresas prestadoras de serviços. As empresas atuantes nesta área, serviços terceirizados de tratamento de águas de resfriamento, estão focadas principalmente no acompanhamento do tratamento químico, com uma abordagem técnica limitada em relação aos impactos de contaminantes na integridade dos equipamentos, o que gera diagnósticos precários dos processos corrosivo, incrustante ou microbiológico, e pode também impactar na redução da confiabilidade operacional e reduzir a segurança operacional.
[001 1] O estado da técnica compreende alguns documentos que revelam dispositivos e sistemas que possibilitam realizar análises específicas em amostras de água, como será apresentado a seguir.
[0012] O documento WO2010086857A1 revela um cartucho descartável para uso em análise de amostras em um analisador automatizado de monitoramento de qualidade de água que possui reservatórios para reagentes e uma câmara de reação montados em uma plataforma. A câmara de reação é projetada de modo a movimentar-se na plataforma e assim receber os reagentes adequados para a realização da análise da água.
[0013] O documento EP497518A1 revela melhorias de procedimento analítico para monitoramento de água de resfriamento circulante em um sistema de arrefecimento de reator nuclear. A melhoria consiste no pré-condicionamento das amostras de água, através do ajuste do seu pH, de modo a estabilizá-la, mantendo em solução os íons que se deseja pesquisar. O ajuste de pH é feito, preferencialmente, com a injeção de dióxido de carbono (C02).
[0014] O documento WO1995003997A1 revela um sistema de automático para de injeção de produtos químicos e para“blown-down” da água de resfriamento. O sistema é constituído de dois sensores. O primeiro mede o potencial de oxirredução da água e atua diretamente na injeção de produtos químicos quando o potencial de oxirredução medido atinge um valor predeterminado. O segundo sensor mede a condutividade da água e aciona a abertura da válvula de “blown- down” do sistema quando a condutividade medida atinge um valor pré-determinado.
[0015] No entanto, os dispositivos descritos em tais documentos não descrevem um equipamento móvel, capaz de monitorar até onze parâmetros relacionados à avaliação físico- química de sistemas de resfriamento, ajustar dosagem de produtos químicos, testar novas formulações de tratamento de água ou otimizar as dosagens dos produtos empregados.
[0016] Em adição, o estado da técnica demonstra uma demanda por um sistema de monitoramento de água de resfriamento que proporcione a potencial redução da quantidade de análises realizadas em laboratórios externos, otimizando o monitoramento, e a indicação em tempo real de eventuais desvios das características da água, possibilitando ações de antecipação a danos e/ou corretivas no sistema como um todo.
[0017] Como será melhor detalhado a seguir, a presente invenção visa a solução dos problemas do estado da técnica, acima descritos, de forma prática e eficiente.
SUMÁRIO DA INVENÇÃO
[0018] O objetivo da presente invenção é prover um sistema de monitoramento de líquidos que proporcione uma redução na demanda de análises em laboratórios externos e que indique em tempo real eventuais desvios das características do líquido, o que possibilitaria eventuais ações corretivas para evitar danos ao sistema.
[0019] De forma a alcançar o objetivo acima descrito, a presente invenção provê uma unidade móvel de monitoramento contínuo de água de resfriamento em fluxo que compreende: meios para captar um fluxo de água de resfriamento; meios para analisar uma pluralidade de parâmetros da água de resfriamento através de uma pluralidade de técnicas analíticas, gerando uma pluralidade de resultados relacionados a cada um dos parâmetros analisados; e meios para retornar o fluxo de água de resfriamento ao sistema de resfriamento.
[0020] Em adição, a invenção ainda provê um método de monitoramento contínuo de um fluxo de água de resfriamento, compreendendo as etapas de: captar um fluxo de água de resfriamento; analisar uma pluralidade de parâmetros da água de resfriamento através de diversas técnicas analíticas gerando resultados relacionados a cada um dos parâmetros analisados; e retornar o fluxo de água de resfriamento ao sistema de resfriamento. BREVE DESCRIÇÃO DAS FIGURAS
[0021] A descrição detalhada apresentada adiante faz referência às figuras anexas e seus respectivos números de referência.
[0022] A figura 1 ilustra um fluxograma esquemático de uma unidade móvel de monitoramento de água de resfriamento em fluxo, de acordo com uma configuração opcional da presente invenção.
[0023] A figura 2 ilustra um fluxograma esquemático de um sistema de transmissão de sinais e dados, de acordo com uma configuração especifica da invenção.
[0024] A figura 3 ilustra um fluxograma esquemático da transmissão de dados da unidade de monitoramento móvel de acordo com uma configuração específica da invenção.
DESCRIÇÃO DETALHADA DA INVENÇÃO
[0025] Preliminarmente, ressalta-se que a descrição que se segue partirá de uma concretização preferencial da invenção. Como ficará evidente para qualquer técnico no assunto, no entanto, a invenção não está limitada a essa concretização particular.
[0026] De uma forma mais ampla, em uma configuração específica, a unidade móvel de monitoramento contínuo de água de resfriamento consiste de um contêiner, onde estão instalados analisadores industriais, Controlador Lógico Programável (CLP), computador supervisório, painel elétrico, bombas dosadoras, tubulações e acessórios, além de duas bombas centrífugas.
[0027] A figura 1 ilustra um fluxograma esquemático de uma unidade móvel de monitoramento de água de resfriamento em fluxo, de acordo com uma configuração opcional da presente invenção.
[0028] A unidade móvel de monitoramento de água de resfriamento da invenção reúne, de forma integrada, os instrumentos necessários para aquisição de dados analíticos relacionados ao monitoramento de qualidade da água de resfriamento.
[0029] De um modo geral, a unidade móvel de monitoramento de um fluxo de água de resfriamento em fluxo opera em linha com o sistema de resfriamento 1 em que é aplicada, captando e retornando água de resfriamento, e integra diferentes técnicas analíticas, a fim de facilitar a aquisição de dados.
[0030] Em outras palavras, a unidade móvel de monitoramento contínuo de água de resfriamento em fluxo compreende meios para captar água de resfriamento, meios para analisar uma pluralidade de parâmetros da água de resfriamento através de diversas técnicas analíticas, gerando resultados relacionados a cada um dos parâmetros analisados, e meios para retornar a água de resfriamento ao sistema de resfriamento 1 .
[0031] Da mesma forma, a invenção também provê um método de monitoramento contínuo de água de resfriamento compreendendo as etapas de captar um fluxo de água de resfriamento, analisar uma pluralidade de parâmetros da água de resfriamento através de diversas técnicas analíticas, gerando resultados relacionados a cada um dos parâmetros analisados, e retornar a água de resfriamento ao sistema de resfriamento 1 . [0032] De acordo com uma configuração particular, os parâmetros analisados podem ser escolhidos dentre: perda de massa de corpos de prova; taxas de corrosão por sondas corrosimétricas; cloro residual livre; cloro residual total; oxigénio dissolvido; pH; potencial de oxirredução; condutividade; turbidez; formação de biofilme e índice de deposição.
[0033] O método de monitoramento contínuo de um fluxo de água de resfriamento em fluxo ainda prevê, opcionalmente, etapas de: verificar se o resultado da análise de cada parâmetro da água de resfriamento está de acordo com a especificação e executar uma ação corretiva para cada parâmetro da água de resfriamento que está fora do valor padrão estabelecido.
[0034] Para tal, a unidade de monitoramento pode compreender um sistema de controle adaptado para realizar todas as ações descritas no parágrafo anterior. O sistema de controle adotado pode ser qualquer um conhecido no estado da técnica e deve estar interligado, e controlando, uma pluralidade de válvulas, bombas 2 e sensores necessários para que o sistema funcione devidamente.
[0035] A este respeito, ressalta-se que os meios para analisar uma pluralidade de parâmetros da água de resfriamento podem compreender sensores específicos para analisar cada parâmetro da água de resfriamento. Os tipos e quantidades de sensores adotados podem variar de acordo com cada aplicação, em que mais de um sensor, de mais de uma técnica analítica, pode ser utilizado para analisar o mesmo parâmetro, se desejado.
[0036] Em adição, o método de monitoramento contínuo de um fluxo de água de resfriamento em fluxo pode compreender uma etapa de descartar uma porção de água de resfriamento coletada, após a realização de pelo menos uma análise de um parâmetro. Essa etapa pode ser necessária nos casos em que o processo de análise da água de resfriamento altere as características da água, podendo causar danos ao sistema de resfriamento 1.
[0037] Assim, o método da invenção possibilita que a água de resfriamento seja continuamente monitorada, de modo que, quando for identificado algum desvio nos parâmetros estabelecidos, uma ação corretiva seja executada.
[0038] Várias ações corretivas podem ser adotadas e, em geral, compreendem a injeção de algum agente físico/químico no fluxo de água de resfriamento, de preferência à jusante do ponto de retorno da água de resfriamento ao sistema de resfriamento 1.
[0039] Os parâmetros da água de resfriamento analisados, bem como as técnicas analíticas adotadas podem variar largamente, de modo que as opções descritas no presente relatório, não passam de sugestões, que poderão ser alteradas de acordo com cada aplicação da invenção.
[0040] Opcionalmente, a unidade móvel de monitoramento de água de resfriamento em fluxo, por ser construída em estrutura de contêiner habitável, possui possibilidade de mobilização. A unidade ainda permite o levantamento de dados em diferentes plantas industriais.
[0041] No caso específico ilustrado na figura 1 , os meios para analisar uma pluralidade de parâmetros da água de resfriamento da unidade móvel de monitoramento contínuo de água de resfriamento em fluxo compreendem cinco tanques de produtos químicos que permitem desenvolver testes de desempenho de produtos químicos comerciais ou testar formulações inovadoras na área de tratamento químico de águas de sistemas de resfriamento ou otimizar dosagens de produtos empregados. O número de tanques adotados, obviamente, pode variar de acordo com cada aplicação e o número de análises a serem realizadas.
[0042] Além dos instrumentos analíticos, o sistema de controle da unidade de monitoramento pode compreender um sistema de operação e supervisão constituído por painel de alimentação (Painel Elétrico), alimentação elétrica de emergência (nobreak), controlador lógico programável (CLP), sistema supervisório, computador e modem. Este sistema será responsável pela aquisição, tratamento, armazenamento e transmissão dos valores gerados pelos analisadores.
[0043] Conforme já descrito, a unidade de monitoramento é construída de forma a permitir o deslocamento da mesma opcionalmente através do içamento da unidade, completamente montada, e deslocamento por caminhão até o ponto de interesse. Uma vez posicionada, a unidade de monitoramento é conectada hidraulicamente ao sistema, em que a água de resfriamento é coletada à jusante do sistema de resfriamento 1 (torre de resfriamento) e retorna ao sistema em um ponto à montante do sistema de resfriamento ou na torre de resfriamento.
[0044] A Unidade de Monitoramento Móvel pode compreender diversos equipamentos para que a mesma funcione da maneira desejada. Esses equipamentos são comuns a diversos sistemas e podem compreender: bombas centrífugas 2 e mangueiras; tanques de produtos químicos 3; bombas dosadoras de produtos químicos 5; tanque de residência para sonda multiparâmetro 4; painel elétrico; sistema de energia auxiliar (nobreak); painel de controle; computador supervisório; ar condicionado e bancada com pia.
[0045] Opcionalmente, as bombas centrífugas 2 podem ser especificadas para permitir o deslocamento do fluido do ponto de captação ao contêiner com vazão de operação de 10m3/h, e mangueiras flexíveis de cerca de 50m compõem o conjunto.
[0046] Os tanques de produtos químicos 3 são, opcionalmente, em número de cinco e incluem misturadores, bombas dosadoras 5 e solenoides. Estes dispositivos permitem que a ação de produtos químicos seja testada, individualmente ou em conjunto, na água captada pela unidade de monitoramento. Isto permite que sejam desenvolvidos testes com produtos químicos comerciais ou com produtos químicos em fase de desenvolvimento.
[0047] Além dos tanques de produtos químicos 3, a unidade móvel de monitoramento pode compreender um tanque de residência 4 associado a uma sonda multiparâmetro adaptada para medir pH, turbidez, condutividade e potencial de oxirredução.
[0048] A fonte de alimentação da unidade de monitoramento pode ser proveniente de parte externa ao contêiner, por tomada trifásica fêmea, a prova de tempo, que conecta o painel elétrico a fonte de energia. Essa fonte de energia pode ser tanto outro painel elétrico de igual tensão nominal, localizado na planta onde a unidade estiver operando, quanto um gerador a diesel ou a gasolina, que atenderá a unidade em locais onde não existir outra fonte disponível.
[0049] O painel elétrico foi configurado para operar com três barramentos diferentes: dois de 220 V, sendo que um para os componentes alimentados pelo sistema de energia auxiliar (instrumentos, analisadores e bombas) e outro para os componentes não alimentados pelo nobreak (ar condicionado, iluminação e tomadas); além de outro de 380 V para os agitadores dos tanques de produtos químicos.
[0050] Essas características de alimentação foram utilizadas no modelo ilustrado, no entanto, um técnico no assunto saberá determinar a melhor configuração para cada caso. Assim, essa característica não representa um limitante ao escopo de proteção da presente invenção.
[0051] A figura 2 ilustra um fluxograma esquemático de um sistema de transmissão de sinais e dados, de acordo com uma configuração especifica da invenção.
[0052] A figura 3 ilustra um fluxograma esquemático da transmissão de dados da unidade de monitoramento móvel de acordo com uma configuração específica da invenção.
[0053] A automação da unidade permite que os analisadores e demais dispositivos operem como uma estação de coleta de dados remota. Pode-se dividir a automação da unidade, para fins de entendimento, em dois sistemas: o de controle, constituído principalmente pelo controlador lógico programável, e o sistema supervisório.
[0054] O sistema de controle é instalado em painel de automação, onde está instalado o CLP, os módulos de entradas e saídas (analógicas e digitais), a fonte de alimentação e os módulos de comunicação. Os dados dos analisadores de cloro (amperométrico e colorimétrico), amónia, formação de biofilme, sonda multiparâmetro e transmissores, bem como os sinais de acionamento das válvulas e bombas são recebidos pelo CLP e disponibilizados pelo sistema supervisório, conectado ao CLP através de cabo ethernet. Na porta lateral esquerda do painel de automação existe uma botoeira de parada emergência, cujo acionamento resulta na parada total da unidade.
[0055] Em uma concretização possível, o sistema supervisório é instalado em computador, que funciona como estação de trabalho no interior do contêiner, em que é instalado um aplicativo proprietário que permite a criação de telas supervisórias customizadas da unidade de monitoramento móvel, cujo acompanhamento, no campo, possibilita que os parâmetros selecionados e descritos anteriormente, assim como funções auxiliares, como acionamento de válvulas solenoides, alarmes, etc. sejam visualizados.
[0056] O sistema supervisório recebe todos os dados disponibilizados pelo CLP e, através de comunicação digital, os dados do analisador de índice de deposição e das sondas corrosimétricas. As telas do supervisório apresentam o status de funcionamento dos analisadores, dos instrumentos e das bombas, além de permitir o acionamento e o controle da unidade. O supervisório possui ainda entrada manual para a inserção dos dados necessários ao cálculo de taxa de corrosão por técnica de perda de massa.
[0057] Os dados coletados pelo supervisório são configurados em formato adequado e enviados por via remota para servidor FTP. No servidor de aplicação foi criada uma rotina de coleta de dados do servidor FTP, repassando-os ao servidor SQL (banco de dados). Este banco de dados armazena em três tabelas diferentes as leituras de dados realizadas pelos instrumentos analíticos instalados na Unidade de Monitoramento Móvel. Isto permite o acompanhamento em tempo real dos parâmetros monitorados, de forma a promover uma ação corretiva ou preventiva no processo o qual faz uso do monitoramento.
[0058] Outro componente a ser destacado é o controle de temperatura interna da unidade de monitoramento. A ação eventual de técnicos na manipulação de amostras e de líquidos é possível através de bancada (pia).
[0059] Pelo exposto até agora, fica claro que a unidade de monitoramento móvel possui as seguintes abordagens principais: monitoramento de corrosividade, parâmetros físico-químicos e biológicos; coleta e transmissão de dados remotos; unidade de testes de tecnologias; validação de correntes alternativas de águas para sistemas de resfriamento; e diagnóstico e otimização do tratamento químico empregado.
[0060] Portanto, a invenção incorpora tecnologias de monitoramento de água de resfriamento de forma inédita de forma a proporcionar o monitoramento dos principais parâmetros físico- químicos de controle da qualidade de água de resfriamento em plantas industriais.
[0061] A coleta dos dados remota foi idealizada de forma a permitir a identificação de perturbações no controle dos parâmetros físico-químicos monitorados em resposta a eventos, como por exemplo, deficiências no tratamento com produtos químicos ou aumento da taxa de corrosão por contaminação inesperada. A coleta de dados dos analisadores é centralizada em uma IHM (Interação Homem-Máquina) cujo supervisório é responsável pelo agrupamento dos dados e o envio, em formato adequado, via celular para área de FTP.
[0062] A unidade de monitoramento móvel descrita no presente relatório ainda foi concebida como uma unidade piloto de testes de tecnologias associadas ao tratamento químico de água e de efluentes de forma a minimizar os impactos na planta industrial ou identificar tecnologias de monitoramento remoto cujos parâmetros sejam relevantes para o acompanhamento da qualidade de águas e de efluentes. Deste modo, muitas características ora descritas podem ser adaptadas, de forma que o escopo de proteção da invenção não se restringe à concretização ora descrita.
[0063] Ainda, a unidade de monitoramento móvel foi concebida com duas bombas centrífugas 2 que tem a função de captar água ou efluente do ponto de interesse, como por exemplo, água de resfriamento nas bacias de torres de resfriamento 1. Alternativamente, pode-se captar diretamente de alguma derivação disponível.
[0064] Após a captação, a água segue um circuito definido de forma a atender as características operacionais de cada analisador. Um pequeno volume pode ser descartado, em função das características operacionais de cada analisador. A corrente de água, após passagem pelos analisadores, retorna à torre de resfriamento 1 , através de tubulação direcionada à bacia da torre de resfriamento.
[0065] A unidade possui mangueiras flexíveis que se conectam à unidade de monitoramento móvel que permitem o posicionamento da unidade em até 50m de distância da captação.
[0066] Também é previsto o fornecimento de energia elétrica direta ou de gerador alternativo. Eventuais preparos de corpos de prova ou de soluções reagentes poderão ser executados na bancada com pia.
[0067] Novamente com referência à figura 1 , observa-se que, na configuração ilustrada, a unidade de monitoramento móvel foi concebida em um contêiner adaptado com oito instrumentos analíticos mais quatro árvores de testes que possibilitam o monitoramento de até onze parâmetros relacionados à avaliação das características físico-químicas de sistemas de resfriamento visando, principalmente, o reuso de água e de efluentes de forma autónoma e independente dos equipamentos de monitoramento empregados por empresas prestadoras dos serviços de tratamento de água.
[0068] Devido às características demonstradas acima, a unidade de monitoramento móvel da presente invenção pode ainda ser utilizada em diferentes plantas industriais que fazem uso de água de resfriamento com o objetivo de avaliar a qualidade dessa água. [0069] A água de resfriamento efluente de sistemas de resfriamento pode apresentar alguma contaminação. Esta contaminação pode resultar em impactos graves à integridade de equipamentos de plantas industriais, reduzindo a confiabilidade operacional e a vida útil dos equipamentos.
[0070] Assim, a invenção será uma ferramenta essencial na seleção de fontes alternativas de água para a reposição de sistemas de resfriamento, possibilitando o planejamento do reuso de água de diferentes origens. Também será possível avaliar os impactos na integridade dos equipamentos imediatamente após a introdução de água ou de efluente no sistema de resfriamento 1.
[0071] Ajustes específicos no tratamento químico da água de resfriamento também serão possíveis, de modo a garantir a sua eficácia, simulando as condições operacionais específicas para as diferentes características de águas e de efluentes.
[0072] Em adição, a unidade de monitoramento móvel também pode ser usada como um instrumento de pesquisa de campo, pois incorpora conceitos de mobilidade, flexibilidade, automação e transmissão de dados.
[0073] O arranjo concebido permitirá: ajustes imediatos na dosagem de produtos químicos, a partir do monitoramento de parâmetros; estudos de avaliação e de seleção de produtos químicos em campo, permitindo a utilização de água de reposição de diversas origens, bem como o reuso de efluentes em sistemas de resfriamento.
[0074] A invenção também se revela uma ferramenta eficaz no enfrentamento de cenários de escassez hídrica, ou descarte zero, uma vez que a unidade de monitoramento móvel possibilita a reutilização, ao máximo, de correntes aquosas, com a flexibilidade no uso de fontes primárias de água para aplicação em plantas industriais. [0075] Portanto, a unidade móvel de monitoramento contínuo de água de resfriamento em fluxo é um projeto pioneiro em reuso de água.
[0076] Vantajosamente, a implantação de unidade de monitoramento móvel dentro de plantas industriais foi concebida de forma a não impactar na rotina operacional, através de uma estrutura compacta, viabilizando testes rápidos e integrados.
[0077] Adicionalmente, a invenção possibilita uma redução na demanda de análises em laboratórios próprios ou contratados, otimizando o monitoramento e possibilitando um melhor diagnóstico da qualidade da água, uma vez que os dados coletados pela unidade de monitoramento serão importantes na seleção e na combinação de tecnologias de tratamento químico da água em plantas industriais que necessitem reduzir a corrosão em equipamentos e tubulações, principalmente quando a água é proveniente de fontes alternativas, como água de reuso industrial.
[0078] A disponibilização desse sistema favorecerá ainda os processos de auditoria e de acompanhamento dos serviços prestados em águas dos sistemas de resfriamento, uma vez que a invenção inclui sensores e equipamentos para o monitoramento em tempo real da qualidade das águas. O sistema de monitoramento é também importante ferramenta de pesquisa para validação e viabilização de redução de custos com o reuso de águas com foco em regiões onde haja escassez hídrica, suprindo uma carência técnica nessa área.
[0079] Inúmeras variações incidindo no escopo de proteção do presente pedido são permitidas. Dessa forma, reforça-se o fato de que a presente invenção não está limitada às configurações/concretizações particulares acima descritas.

Claims

REIVINDICAÇÕES
1. Unidade móvel de monitoramento de água de resfriamento em fluxo, caracterizada por compreender:
meios para captar um fluxo de água de resfriamento; meios para analisar uma pluralidade de parâmetros da água de resfriamento através de diversas técnicas analíticas, gerando resultados relacionados a cada um dos parâmetros analisados; e
meios para retornar a água de resfriamento ao sistema de resfriamento (1 ).
2. Unidade móvel de monitoramento, de acordo com a reivindicação 1 , caracterizada por os parâmetros analisados serem escolhidos dentre: perda de massa de corpos de prova; taxas de corrosão por sondas corrosimétricas; cloro residual livre; cloro residual total; oxigénio dissolvido; pH; potencial de oxirredução; condutividade; turbidez; formação de biofilme e índice de deposição.
3. Unidade móvel de monitoramento, de acordo com a reivindicação 1 e 2, caracterizada por compreender: meios para verificar se o resultado da análise de cada parâmetro da água de resfriamento está de acordo com a especificação; e meios para recomendar uma ação corretiva para cada parâmetro da água de resfriamento que está fora do valor padrão estabelecido.
4. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 3, caracterizada por compreender um sistema de controle interligado com, e controlando, uma pluralidade de válvulas, bombas e sensores adaptados para gerenciarem a unidade móvel de monitoramento.
5. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 4, caracterizada por os meios para analisar uma pluralidade de parâmetros da água de resfriamento compreenderem uma pluralidade de sensores.
6. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 5, caracterizada por ser construída em estrutura de contêiner habitável.
7. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 6, caracterizada por os meios para analisar uma pluralidade de parâmetros da água de resfriamento compreenderem tanques de produtos químicos adaptados para desenvolver testes de desempenho de produtos químicos.
8. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 7, caracterizada por compreender um sistema de operação e supervisão constituído de pelo menos um de: painel de alimentação; alimentação elétrica de emergência; controlador lógico programável; sistema supervisório; computador; e modem.
9. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 8, caracterizada por a água de resfriamento ser coletada à jusante do sistema de resfriamento (1 ), e retornar ao sistema em um ponto à montante ou à jusante do sistema de resfriamento (1 ).
10. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 9, caracterizada por compreender pelo menos um de: bombas centrífugas (2); mangueiras; bombas dosadoras (5) de produtos químicos; ar condicionado; e bancada com pia.
1 1 . Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 10, caracterizada por compreender um tanque de residência (4) associado a uma sonda multiparâmetro, em que a sonda multiparâmetro é adaptada para medir pH, turbidez, condutividade e potencial de oxirredução.
12. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 1 1 , caracterizada por o sistema de controle ser instalado em um painel de automação, no qual está instalado: um CLP; módulos de entradas e saídas analógicas e digitais; fonte de alimentação; e módulos de comunicação, em que o CLP é adaptado para receber os dados dos analisadores de cloro - amperométrico e colorimétrico, dos analisadores de amónia, dos analisadores de formação de biofilme, da sonda multiparâmetro e dos transmissores, bem como os sinais de acionamento das válvulas e bombas.
13. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 12, caracterizado por o sistema supervisório ser adaptado para receber todos os dados disponibilizados pelo CLP e os dados do analisador de índice de deposição e das sondas corrosimétricas.
14. Unidade móvel de monitoramento, de acordo com qualquer uma das reivindicações 1 a 12, caracterizado por compreender um meio de controle de temperatura interna.
15. Método de monitoramento contínuo de água de resfriamento em fluxo, caracterizado por compreender as etapas de:
captar um fluxo de água de resfriamento;
analisar uma pluralidade de parâmetros da água de resfriamento através de diversas técnicas analíticas gerando resultados relacionados a cada um dos parâmetros analisados; e
retornar o fluxo de água de resfriamento ao sistema de resfriamento (1 ).
16. Método, de acordo com a reivindicação 15, caracterizado por os parâmetros analisados serem escolhidos dentre: perda de massa de corpos de prova; taxas de corrosão por sondas corrosimétricas; cloro residual livre; cloro residual total; oxigénio dissolvido; pH; potencial de oxirredução; condutividade; turbidez; formação de biofilme; e índice de deposição.
17. Método, de acordo com a reivindicação 15 ou 16, caracterizado por compreender as etapas de: verificar se o resultado da análise de cada parâmetro da água de resfriamento está de acordo com a especificação; e executar uma ação corretiva para cada parâmetro da água de resfriamento que está fora do valor padrão estabelecido, em que cada ação corretiva compreende a injeção de algum agente físico-químico no fluxo de água de resfriamento.
18. Método, de acordo com qualquer uma das reivindicações 15 a17, caracterizado por compreender uma etapa de descartar uma porção de água de resfriamento coletada após a realização de pelo menos uma análise de um parâmetro da água de resfriamento.
19. Método, de acordo com qualquer uma das reivindicações 15 a18, caracterizado por compreender a etapa de medir pH, turbidez, condutividade e potencial de oxirredução.
20. Método, de acordo com qualquer uma das reivindicações 15 a19, caracterizado por compreender uma etapa de controle da temperatura interna de uma unidade móvel de monitoramento.
PCT/BR2019/050486 2018-11-12 2019-11-11 Unidade móvel e método de monitoramento contínuo de água de resfriamento em fluxo WO2020097705A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/292,833 US20210405013A1 (en) 2018-11-12 2019-11-11 Mobile unit and method for continuously monitoring flowing cooling water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102018073233-1 2018-11-12
BR102018073233-1A BR102018073233A2 (pt) 2018-11-12 2018-11-12 Unidade móvel e método de monitoramento contínuo de água de resfriamento em fluxo

Publications (1)

Publication Number Publication Date
WO2020097705A1 true WO2020097705A1 (pt) 2020-05-22

Family

ID=70730971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050486 WO2020097705A1 (pt) 2018-11-12 2019-11-11 Unidade móvel e método de monitoramento contínuo de água de resfriamento em fluxo

Country Status (3)

Country Link
US (1) US20210405013A1 (pt)
BR (1) BR102018073233A2 (pt)
WO (1) WO2020097705A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180858A (zh) * 2020-09-21 2021-01-05 河南华东工控技术有限公司 一种基于大数据的多污染源废水分类处理系统的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383920A (en) * 1981-05-29 1983-05-17 Ecolochem, Inc. Mobile fluid purification system
WO2009123749A2 (en) * 2008-04-04 2009-10-08 Delano Roger A System and method of water treatment
WO2010086857A1 (en) * 2009-01-29 2010-08-05 Check Light Ltd Disposable cartridge for automatic and continuous water quality monitoring
US8211296B2 (en) * 2010-04-09 2012-07-03 Nch Ecoservices, Llc Portable water treatment system and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383920A (en) * 1981-05-29 1983-05-17 Ecolochem, Inc. Mobile fluid purification system
WO2009123749A2 (en) * 2008-04-04 2009-10-08 Delano Roger A System and method of water treatment
WO2010086857A1 (en) * 2009-01-29 2010-08-05 Check Light Ltd Disposable cartridge for automatic and continuous water quality monitoring
US8211296B2 (en) * 2010-04-09 2012-07-03 Nch Ecoservices, Llc Portable water treatment system and apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Agua na Petrobras", BR PETROBRAS, 20 March 2018 (2018-03-20), pages 26 ; 27, Retrieved from the Internet <URL:https://www.google.com/search?client=firefox-b-d&q=inurl%3Ahttp%3A%2F%2Fwww.petrobras.com.br+%E2%80%BA+lumis+%E2%80%BA+portal+%E2%80%BA+file+%E2%80%BA+fileDownload%C3%81GUA+NA+PETROBRAS&as_qdr=y15> [retrieved on 20200122] *
"Programação e Projeto Fisico de Unidade Movel Para o Apoio ao Controle da Qualidade da Agua Para Consumo Humano", UMCQA- FUNDAÇÃO NACIONAL DE SAUDE, 2012, Brasilia, pages 19 ; 23 - 40 ; 41, Retrieved from the Internet <URL:http://bvsms.saude.gov.br/bvs/publicacoes/programacao_projeto_fisico_movel_controle_qualidade_agua_humano.pdf> [retrieved on 20200122] *
Retrieved from the Internet <URL:https://www.google.com/search?client=firefox-b-d&q=inurl%3Ahttp%3A%2F%2Fwww.petrobras.com.br+%E2%80%BA+lumis+%E2%80%BA+portal+%E2%80%BA+file+%E2%80%BA+fileDownload%C3%81GUA+NA+PETROBRAS&as_qdr=y15> [retrieved on 20200122] *
TROVATI , JOUBERT ET AL.: "Tratamento de água de resfriamento", TRATAMENTO DE ÁGUA DE SISTEMAS DE RESFRIAMENTO - ON-LINE COURSE, September 2004 (2004-09-01), pages 80 - 89, XP055708487, Retrieved from the Internet <URL:http://www.snatural.com.br/PDF_arquivos/Torre-Caldeira-Tratamento-Agua.pdf> [retrieved on 20200122] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180858A (zh) * 2020-09-21 2021-01-05 河南华东工控技术有限公司 一种基于大数据的多污染源废水分类处理系统的控制方法
CN112180858B (zh) * 2020-09-21 2024-04-26 河南华东工控技术有限公司 一种基于大数据的多污染源废水分类处理系统的控制方法

Also Published As

Publication number Publication date
BR102018073233A2 (pt) 2020-06-02
US20210405013A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2019128203A1 (zh) 具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法
US11846596B2 (en) Mobile system for continuous, automatic, online monitoring of water quality and particle sampling in a drinking water distribution network
CN104849422A (zh) 一种氨氮在线监测系统及方法
CN206248652U (zh) 实时原位水质监测仪
BR112020016080A2 (pt) Sistema de diagnóstico médico no ponto de atendimento.
JP2022523745A (ja) 水質を監視するためのシステム
CN112960867A (zh) 一种一体化污水处理动态调控系统
CN205484299U (zh) 水质在线检测装置
CN107748149B (zh) 基于紫外荧光法的在线含油污水检测装置及检测方法
WO2020097705A1 (pt) Unidade móvel e método de monitoramento contínuo de água de resfriamento em fluxo
CN107796794A (zh) 基于紫外荧光法的在线含油污水检测方法
CN109060786A (zh) 测定工业废水硫酸浓度含量的检测方法
CN108254521A (zh) 一种组合式cod水质在线分析仪及其检测系统和方法
Zaev et al. SCADA system for real-time measuring and evaluation of river water quality
CN106645619A (zh) 一种实时原位水质监测仪及其监测方法
CN108896629B (zh) 一种钠离子浓度计三点流动式标定装置及其标定方法
Rieger et al. In-situ measurement of ammonium and nitrate in the activated sludge process
CN217359845U (zh) 一种核电厂水化学智能在线监测装置
KR102592931B1 (ko) 사물인터넷 수질 측정 장치를 이용한 위치 기반의 지능형 수질 모니터링 시스템 및 그 방법
CN214473276U (zh) 一种在线化学仪表智慧校验维护系统
CN212989338U (zh) 一种自来水管网多参数智能控制装置
CN113588617A (zh) 水质多特征预警溯源系统及方法
CN205015331U (zh) 一种基于物联网的水质重金属在线监测仪器
CN207408304U (zh) 基于紫外荧光法的在线含油污水检测装置
JP3315772B2 (ja) 試料水採取装置用水質分析計の異常監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885716

Country of ref document: EP

Kind code of ref document: A1