WO2019128203A1 - 具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法 - Google Patents

具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法 Download PDF

Info

Publication number
WO2019128203A1
WO2019128203A1 PCT/CN2018/096368 CN2018096368W WO2019128203A1 WO 2019128203 A1 WO2019128203 A1 WO 2019128203A1 CN 2018096368 W CN2018096368 W CN 2018096368W WO 2019128203 A1 WO2019128203 A1 WO 2019128203A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
toxic
harmful gas
data
main control
Prior art date
Application number
PCT/CN2018/096368
Other languages
English (en)
French (fr)
Inventor
雷立改
武梦贤
张玲
王朋松
冯战榜
崔青松
Original Assignee
河北先河环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北先河环保科技股份有限公司 filed Critical 河北先河环保科技股份有限公司
Publication of WO2019128203A1 publication Critical patent/WO2019128203A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • G01N33/0032General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array using two or more different physical functioning modes

Definitions

  • the invention relates to the technical field of gas detection and analysis, in particular to a toxic and harmful gas network monitor with sensor detecting elements and a monitoring data processing method.
  • the mutual interference between the gases will cause the loss of the principal component characteristics, and the interference caused by the gas sensors used in the detection process due to the mixing of multiple gases will affect the detection results;
  • the gas sensor will be subject to cross-interference of temperature, humidity, and other factors during the long-term use, and the aging of the sensor element will cause the monitoring result to drift and the detection limit to decrease, resulting in low detection accuracy and unreliable data.
  • the present invention provides a toxic and harmful gas network monitor with a sensor detecting component and a monitoring data processing method, and the toxic and harmful gas network monitor with the sensor detecting component and the monitoring data processing method can directly mix the gas A variety of toxic and harmful gases are accurately detected, and the detection results are highly accurate.
  • the technical solution adopted by the invention is: a toxic and harmful gas network monitor with a sensor detecting component, which is used for real-time detection of toxic and harmful gases in an industrial park, including a casing, and a main control board is arranged in the casing. And a detection module, a data processing module and a power supply system respectively connected to the main control board; the detection module comprises two or more toxic and harmful gas sensors to realize real-time detection of a plurality of toxic and harmful gases; the main control board A signal acquisition unit, a wireless transmission unit, a GPS positioning unit, and a data storage unit are provided.
  • the main control board is connected to the Internet of Things-based management system through a wireless transmission unit for transmitting detection data to the management system through the Internet of Things.
  • the housing includes an upper housing and a bottom plate that is slidably coupled to the upper housing, and the main control board and the detecting module are fixed to the bottom plate.
  • the bottom plate of the casing is provided with a through hole penetrating through the bottom plate, and the toxic and harmful gas sensor is fixed to the bottom plate in the direction of the detecting head end toward the through hole, and is toxic and harmful gas sensor and A sealing strip is provided between the through holes to form a sealed structure.
  • the main control board is fixed to the bottom plate by a foldable bracket.
  • the outer casing is provided with an outer casing, and the bottom of the outer casing is provided with a honeycomb vent hole.
  • the detection module is further provided with a toxic and harmful gas sensor reserved interface.
  • the toxic and harmful gas sensor includes a hydrogen sulfide sensor, an ammonia gas sensor, a hydrogen chloride sensor, a chlorine gas sensor, a hydrogen fluoride sensor, and a volatile organic gas sensor.
  • the wireless transmission unit includes a GPRS communication module and an antenna connected to the GPRS communication module.
  • the power system includes a main power module and a backup battery, and the main power module and the backup battery are both connected to the main control board, and the main power module is rechargeable for connecting the solar controller. lithium battery.
  • a monitoring data processing method is used for the toxic and harmful gas network monitor based on the sensor detection described above, and the intelligent sensor big data platform is utilized according to the influence of temperature, humidity, cross gas and sensor signal attenuation factors of different sensors.
  • the machine learning algorithm automatically extracts the calibration model and calibrates the data detected by different sensors in real time to obtain the monitoring data results.
  • the calibration model is based on the sensor detection principle and the atmospheric environment chemistry knowledge, and after initially determining the factors affecting the detection accuracy of the sensor, the sensor detection parameters obtained by the real-time measurement and the obtained standard data are adopted, and the intelligence is adopted. Linear, non-linear factor values for various influencing factors obtained by machine learning algorithms.
  • the standard data is separately tested by a single sensor and a mixed gas in a sealed and controllable environment of the tooling laboratory, and obtained by data cleaning, data integration, data change, and data reduction. Cross-experiment data that affects sensor accuracy.
  • the calibration model is divided into a standard calibration and a transfer calibration
  • Standard calibration is the linear calibration of the sensor's real-time response signal using a single standard gas in a laboratory environment
  • the transfer calibration is a non-linear calibration of the sensor's real-time response signal through a portable standard instrument in an atmospheric environment.
  • the toxic and harmful gas network monitor and the monitoring data processing method with the sensor detecting component of the invention can simultaneously detect a plurality of toxic and harmful gases in real time, which can not only improve the detection efficiency, but also eliminate temperature, humidity interference and gas. Inter-interference, accurate and rapid detection of toxic and harmful gases, and the ability to store toxic and harmful gas detection data and location information at any time and anywhere, so that specific detection can be analyzed faster and better based on stored data.
  • the arrangement of the upper casing and the bottom plate of the invention is convenient for the bottom plate to be detached from the upper casing, thereby facilitating the installation and maintenance of the main control board and the detecting module fixed on the bottom plate, and also corresponding to The toxic and harmful gas sensor in the detection module is replaced and maintained.
  • the through hole on the bottom plate of the invention can make the gas in the environment to be detected contact with the toxic and harmful gas sensor through the through hole in the form of free diffusion, thereby realizing real-time detection of toxic and harmful gas; in addition, due to toxic and harmful gas
  • the detection head end of the sensor is close to the through hole, so the probe of the toxic and harmful gas sensor can quickly sense the air to be detected, so the reaction is fast; and compared with the conventional passive pumping sampling mode, the final detection result is no different, and the monitoring is the same.
  • the instrument has a simple structure and avoids corrosion of passive mechanisms by toxic and harmful gases in conventional passive pumping sampling.
  • the toxic and harmful gas sensor of the present invention is closely arranged with the bottom plate provided with the through hole, so that the casing can form a closed structure to prevent corrosive toxic and harmful gas from entering the inside of the casing and causing internal components of the casing. Corrosion, which affects the normal use of the monitor.
  • the arrangement of the foldable bracket of the invention can make the volume occupied by the main control board in the casing smaller, thereby facilitating the setting of the remaining components, and also making the overall structure of the monitor small.
  • the arrangement of the outer casing of the invention can isolate and protect the internal environment of the casing, and is used for reducing the interference and influence of the external environment on the internal environment of the casing; the honeycomb vent hole provided at the bottom of the casing can be treated
  • the air in the detection environment enters between the outer casing and the bottom plate through the honeycomb vent hole, preventing the influence of the ambient air disturbance to be detected and the sampling effect, and the vent hole also ensures the air flow between the outer casing and the bottom plate, thereby being effective Ensure the real-time sampling of toxic and harmful gas sensors.
  • the wireless data transmission unit of the present invention can transmit all the data detected by the monitor to the management system, so that the industrial park management unit can query the detection data of the toxic and harmful gas and the specific location of the detection in different areas. Therefore, remote control can be realized, which makes the flexibility higher; in addition, the wirelessly built monitoring network also has the advantages of convenient, safe and accurate networking.
  • the setting of the GPS positioning unit of the invention can locate the specific position of the monitoring area, thereby facilitating quick locking of the position of the pollution source.
  • the backup battery of the present invention can continue to supply power to the toxic and harmful gas sensor in the detection module when the main power module is out of power, so that the toxic and harmful gas sensor in the detection module is kept in a power-on state, so as to be in the main power source. After the module is powered on, the toxic and harmful gas sensor in the detection module can work normally without time and stability, and the waiting time is saved.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • Figure 2 is a bottom plan view of an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a structure of a separate embodiment of the present invention.
  • Figure 4 is a schematic view of the bracket of Figure 3 after folding
  • FIG. 5 is a schematic block diagram of an embodiment of the present invention.
  • the embodiment relates to a toxic and harmful gas network monitor with a sensor detecting component, and the monitoring data processing method of the toxic and harmful gas network monitor with the sensor detecting component can effectively eliminate temperature, humidity, gas crossover, sensor signal attenuation, etc. The influence of factors on the test results ensures the stability and accuracy of the measured data.
  • the monitoring data processing method is specifically:
  • Obtain standard data Perform single and mixed gas tests on different sensors in a sealed and controllable environment in the tooling laboratory.
  • the tooling laboratory can control the number of factors affecting the sensor and create a combination of various influencing factors in real time.
  • intelligent machine learning algorithm for data cleaning, data integration, data transformation, data reduction, thereby obtaining standard data;
  • the formed calibration model is divided into standard calibration and transfer calibration;
  • the standard calibration is a linear calibration of the sensor's real-time response signal using a single standard gas in a laboratory environment, and the calibration is in the atmospheric environment.
  • Non-linear calibration of the sensor's real-time response signal through a portable standard instrument the calibration of the standard can effectively remove the micro-station from the human experience, and the transfer calibration can be enhanced by artificial intelligence based on the end-to-end linear depth.
  • the interconnection, data and intelligence of the cloud calibration platform help the microstation to generate a calibration model framework in different sources of pollution, enabling the calibration model to monitor different environments.
  • Sensor data calibration According to the artificial intelligence big data platform, according to the influence of temperature, humidity, cross gas and sensor signal attenuation factors, the intelligent machine learning algorithm is used to make the sensor automatically extract the calibration model and then perform the real-time detection data of the sensor. calibration.
  • the platform algorithm is a linear algorithm, and the calibration model has a one-to-one relationship, that is, calibration of the standard; if the acquired sensor and various influencing factors are passed Portable standard instruments, mobile monitoring vehicles or other standard monitoring equipment, the platform automatically determines such data, start different algorithms for different parameters, this is the transfer calibration.
  • the calibration of the standard in the tooling laboratory uses a linear regression algorithm to establish the relationship between the raw data measured by the sensor and the standard gas concentration value, and to correct the effects of sensor signal drift and temperature and humidity on the sensor.
  • the machine learning algorithm used for the transfer calibration is an artificial neural network.
  • the sensor detection parameters obtained by the device measurement are taken as input samples, the standard data measured by the standard monitoring device is an output tag, a calibration model is established, and the original value measured by the sensor is input into the model for correction output. .
  • This algorithm has powerful data feature learning ability and generalization ability, which can make the linear and nonlinear conditions appearing in the calibration process have a more perfect processing mechanism, thus having better anti-interference characteristics for complex external influences, which can effectively guarantee Detect the accuracy and stability of the data.
  • the monitoring data processing method of the above-mentioned toxic and harmful gas network monitor with sensor detecting elements is used in a toxic and harmful gas network monitor with sensor detecting elements to perform real-time detection of toxic and harmful gases in industrial parks.
  • the toxic and harmful gas network monitor with a sensor detecting component includes a housing 1 including an upper housing 11 and a bottom plate that is detachably coupled to the upper housing 11 12. The bottom plate 12 is thus detachable from the upper casing 11.
  • a main control board 2 and a detection module 3, a data processing module 4, and a power supply system 5 respectively connected to the main control board 2 are disposed in the casing 1.
  • the power system 5 is used to supply power to the monitor so that the monitor can work normally; the detecting module 3 is used for correlating detection of toxic and harmful gases, and then the detecting module 3 transmits the detected data to the data processing module via the main control board 2 4 Perform calculation processing, and finally obtain the final detection result by the data processing module 4.
  • the main control board 2 and the detecting module 3 are fixedly connected to the bottom plate 12. Therefore, when the main control board 2 and the detecting module 3 need to be maintained or the detecting module 3 is replaced, the bottom board 12 only needs to be from the upper housing 11. After disassembly, the main control board 2 and the detecting module 3 are exposed from the inside of the housing 1 with the bottom plate 12, so that it is very convenient to maintain or replace.
  • the detection module 3 includes six toxic and harmful gas sensors 31, so that the monitor can simultaneously monitor six kinds of toxic and harmful gases in real time, which can effectively improve the detection efficiency. Moreover, the monitor can freely combine the toxic and harmful gas sensors 31 according to the actual needs of the monitoring site during use, and can also increase or change the number and type of the toxic and harmful gas sensors 31, thus making the monitor more applicable.
  • the detection module 3 is further provided with a reserved interface of the toxic and harmful gas sensor 31 for adding the number of toxic and harmful gases to be monitored according to actual conditions in the actual application process.
  • the toxic and harmful gas sensor 31 specifically includes a hydrogen sulfide sensor, an ammonia gas sensor, a hydrogen chloride sensor, a chlorine gas sensor, a hydrogen fluoride sensor, and a volatile organic gas sensor.
  • the bottom plate 12 of the housing 1 is provided with a through hole 13 extending through the bottom plate 12, and the toxic and harmful gas sensor 31 in the detecting module 3 is fixed to the bottom plate 12 in the direction of the detecting head end toward the through hole 13, so that the environment is detected.
  • the gas can be freely diffused through the through hole 13 to contact the probe head end of the toxic and harmful gas sensor 31 in the detecting module 3, thereby realizing real-time monitoring of toxic and harmful gases.
  • the probe end of the toxic and harmful gas sensor 31 is close to the through hole 13
  • the probe of the toxic and harmful gas sensor 31 can sense the air to be detected relatively quickly, and therefore the reaction is fast; meanwhile, compared with the conventional passive pumping sampling method,
  • the final test result of the monitor is no different, and the monitor has a simple structure and avoids corrosion of the passive mechanism by the toxic and harmful gas in the conventional passive pumping sampling.
  • a sealing strip is disposed between the toxic and harmful gas sensor 31 and the through hole 13 to form a sealed structure of the casing 1 for preventing corrosive toxic and harmful gas from entering the interior of the casing 1 and causing corrosion to internal components of the casing 1. This affects the normal use of the monitor.
  • the main control board 2 is fixed to the bottom plate 12 by the foldable bracket 14.
  • the main control board 2 is provided with a signal acquisition unit 21, a wireless transmission unit 22, a GPS positioning unit 23, and a data storage unit 24.
  • the wireless transmission unit 22 includes a GPRS communication module and an antenna connected to the GPRS communication module.
  • the main control board 2 can be connected to the IoT-based management system through the wireless transmission unit 22 for transmitting data to the management system through the Internet of Things, for the industrial park management unit to detect and detect toxic and harmful gases in different areas.
  • the specific location is queried, so that remote control can be realized, which makes the flexibility higher.
  • the monitoring network of the wireless component has the advantages of convenient, safe and accurate networking.
  • the signal acquisition unit 21 in the main control board 2 is configured to receive the data detected by the toxic and harmful sensor 31 in the detection module 3; the GPS positioning unit 23 is configured to locate the specific location of the monitoring area, so as to facilitate the occurrence of toxic and harmful gas pollution.
  • the location of the pollution source can be quickly locked, so that the pollution source can be processed in time; the data storage unit 24 can completely store all the data anytime and anywhere, to help the industrial park management unit to be faster and better according to the stored data.
  • the analysis of the current environmental conditions in the detection area greatly improves the speed of judging the emergency situations that may occur, so that toxic and harmful gases can be processed in time.
  • the housing 1 is provided with an outer casing, and the bottom of the outer casing is provided with a honeycomb vent hole.
  • the arrangement of the outer casing can isolate and protect the internal environment of the casing 1 to reduce the interference and influence of the external environment on the internal environment of the casing 1; and the honeycomb vent hole provided at the bottom of the casing can be detected
  • the ambient air enters between the outer casing and the bottom plate 12 of the casing 1 through the honeycomb vent hole, so that the air to be inspected has a long stay between the outer casing and the bottom plate 12 of the casing 1 so that the toxic and harmful gas sensor 31 can be It is in full contact with the air to be inspected to ensure the accuracy of the detection result.
  • the outer casing can also prevent the external air from being too fluid and disturb the air to be detected between the outer casing and the bottom plate 12 of the casing 1, thereby affecting sampling and causing Deviation of test results.
  • the power system 5 includes a main power module 51 and a backup battery 52, and the main power module 51 and the backup battery 52 are both connected to the main control board 2.
  • the main power module 51 is a rechargeable lithium battery connected to the solar controller, and the solar controller can automatically control the charging and discharging process of the lithium battery to protect the lithium battery from malfunction caused by overcharging or overdischarging.
  • the main power module 51 uses a lithium battery as a power source, and the power is flexible, and there is no need to worry about the use occasion, and the lithium battery is light in weight, which can effectively reduce the overall weight of the monitor, and therefore facilitates the suspension arrangement of the monitor; in addition, the lithium battery is green and environmentally friendly.
  • the backup battery 52 is used to automatically cut off the power supply of the main power module 51 by the main control board 2 when the main power module 51 is low in power, and use the backup battery 52 to supply power, and at the same time, the monitor enters a sleep state.
  • the backup battery 52 supplies power only to the toxic and harmful gas sensor 31 in the detecting module 3, so that the toxic and harmful gas sensor 31 in the detecting module 3 is kept in a power-on state, so as to be in the detecting module 3 after switching to the power supply of the main power module 51.
  • the toxic and harmful gas sensor 31 can operate normally without time-consuming stabilization, eliminating the waiting time.
  • the toxic and harmful gas network monitor and the monitoring data calculation method with the sensor detecting component of the invention can detect real-time detection of various toxic and harmful gases in the environment to be inspected by detecting at least six toxic and harmful gas sensors 31 in the detecting module 3, detecting The efficiency is high, and the GPS positioning unit 23 locates the specific location of the detection area, and the detected information and the positioning information can be transmitted to the management system via the wireless transmission unit 22 on the main control board 2, so that the monitoring area can be detected by the management system.
  • the data is viewed; the data of the detecting module 3 can be automatically calibrated by the standard data and the calibration model in the data processing module 4, thereby effectively eliminating the mutual interference between temperature, humidity and gas, and making the detection result more accurate;
  • the monitor is small in size and can be deployed in a high-density and wide-area industrial park. Therefore, a monitoring network can be formed.
  • the data obtained by all monitors can reflect the real-time environmental trends in different time periods in the monitoring area, which can facilitate the management of the industrial park.
  • the environment of the industrial park is monitored in real time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种具有传感器检测元件的有毒有害气体网络监测仪及监测数据计算方法,该监测仪包括壳体,所述壳体内设有主控板,及与主控板分别连接的检测模块、数据处理模块、电源系统;所述检测模块包括两个以上的有毒有害气体传感器,以实现对多种有毒有害气体的实时检测;所述主控板上设有信号采集单元、无线传输单元、GPS定位单元、及数据存储单元,所述主控板通过无线传输单元与基于物联网的管理系统相连,用于通过物联网将检测模块数据传输至管理系统。本发明获得的具有传感器检测元件的有毒有害气体网络监测仪及监测数据计算方法可实时对混合气体中的多种有毒有害气体进行准确检测,且检测结果准确性高。

Description

具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法 技术领域
本发明涉及气体检测分析技术领域,尤其涉及一种具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法。
背景技术
随着社会的发展,近代工业规模也在不断扩大,在工业生产中会产生大量的的硫化氢、氯化氢、氨气、氯气、氟化氢、以及VOC等多种有毒有害气体,这些有毒有害气体浓度若是大大超过国家规定标准,不仅严重威胁作业人员的安全与身体健康,而且污染周边环境。特别是设备陈旧、工艺落后的生产过程,有毒气体危害的问题显得尤为突出。为了控制有毒有害气体对作业人员健康的影响以及对环境的污染,必须首先对有毒有害气体进行采样和定量检测后以对有毒有害气体进行定性识别,随后则可采取针对性的措施进行治理。但是在定性识别时,因多种有毒有害气体发生混合,气体之间相互干扰会造成主成分特征丢失,而检测过程中使用的气体传感器因多种气体混合造成的干扰会对检测结果造成影响;另外气体传感器在长时间的使用过程中还会受到温度、湿度、以及其他因素的交叉干扰和传感器元件老化均会引起监测结果漂移和检测限下降,致使检测精确度不高、数据不可靠。
发明内容
为了解决上述问题,本发明提供了一种具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法,该具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法可实时对混合气体中的多种有毒有 害气体进行准确检测,且检测结果准确性高。
本发明采用的技术方案是:一种具有传感器检测元件的有毒有害气体网络监测仪,用于对工业园区内的有毒有害气体进行实时检测,包括壳体,所述壳体内设有主控板,及与主控板分别连接的检测模块、数据处理模块、电源系统;所述检测模块包括两个以上的有毒有害气体传感器,以实现对多种有毒有害气体的实时检测;所述主控板上设有信号采集单元、无线传输单元、GPS定位单元、及数据存储单元,所述主控板通过无线传输单元与基于物联网的管理系统相连,用于通过物联网将检测数据传输至管理系统。
作为对上述技术方案的进一步限定,所述壳体包括上壳体、及与上壳体可扣合连接为一体的底板,所述主控板和检测模块固连在底板上。
作为对上述技术方案的进一步限定,所述壳体的底板上设有贯穿底板的通孔,所述有毒有害气体传感器以探测头端朝向通孔方向与底板固连,且于有毒有害气体传感器与通孔之间设有密封条,以使壳体形成密闭结构。
作为对上述技术方案的进一步限定,所述主控板通过可折叠的支架固连于底板上。
作为对上述技术方案的进一步限定,所述壳体外设有外壳,且外壳的底部设有蜂窝状的透气孔。
作为对上述技术方案的进一步限定,所述检测模块内还设有有毒有害气体传感器预留接口。
作为对上述技术方案的进一步限定,所述有毒有害气体传感器包括硫化氢传感器、氨气传感器、氯化氢传感器、氯气传感器、氟化氢传感器、挥发性有机气体传感器。
作为对上述技术方案的进一步限定,所述无线传输单元包括GPRS通信 模块、及与GPRS通信模块连接的天线。
作为对上述技术方案的进一步限定,所述电源系统包括主电源模块、及备用电池,所述主电源模块和备用电池均与主控板相连,所述主电源模块为连接太阳能控制器的可充电锂电池。
一种监测数据处理方法,用于上述所述基于传感器检测的有毒有害气体网络监测仪,通过人工智能大数据平台,依据不同传感器受温度、湿度、交叉气体和传感器信号衰减因素的影响,利用智能机器学习算法自动提取校准模型后对不同传感器实时检测的数据进行校准,从而得到监测数据结果。
作为对上述技术方案的进一步限定,所述校准模型为根据传感器检测原理及大气环境化学知识,初步确定影响传感器检测精度的因素后,通过实时测量获得的传感器检测参数和获取的标准数据,采用智能机器学习算法而获得的各个影响因素的线性、非线性因子数值。
作为对上述技术方案的进一步限定,所述标准数据为不同传感器于工装实验室密封可控的环境中进行单一及混合气体分别测试后,并经数据清理、数据集成、数据变化、数据归约获得的对传感器精度产生影响的交叉实验数据。
作为对上述技术方案的进一步限定,所述校准模型分为标物校准和传递校准;
标物校准即在实验室环境下利用单一标准气体对传感器的实时响应信号进行的线性校准;
传递校准即在大气环境下通过便携式标准仪器对传感器的实时响应信号进行的非线性校准。
采用上述技术,本发明的优点在于:
本发明所述的具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法,可同时对多种有毒有害气体进行实时检测,不仅可提高检测效率,且可消除温度、湿度干扰及气体之间的相互干扰,准确、快速的实现对有毒有害气体的检测,并能够随时随地完整的将有毒有害气体检测数据及位置信息进行存储,因此可根据存储数据更快、更好的分析出具体检测区域的环境状况,从而可及时找出污染源,并可对污染源进行相应处理;该监测仪可于工业园区内高密度、大范围进行布设,最终可形成监测网络,所有监测仪得到的数据能够反映监测区域内不同时间段的实时环境趋势,因此可便于工业园区管理部门对工业园区的环境进行实时监测。
本发明所述上壳体与底板扣合连接的设置,可方便底板从上壳体上拆卸,从而便于固连于底板上的主控板和检测模块的安装及维护,且也比那与对检测模块中的有毒有害气体传感器进行更换及维护。
本发明所述底板上通孔的设置,可使待检测环境中的气体以自由扩散的形式通过通孔与有毒有害气体传感器相接触,从而实现有毒有害气体的实时检测;另外,因有毒有害气体传感器的探测头端紧挨通孔,所以有毒有害气体传感器的探测头可较快感应到待检测空气,因此反应快;且相对传统的被动抽气采样方式,最终检测结果无异,且该监测仪结构简单,也避免了传统被动抽气采样中有毒有害气体对被动机构的腐蚀。
本发明所述有毒有害气体传感器与设有通孔处的底板紧密贴合的设置,可使壳体形成密闭结构,用以防止具有腐蚀性的有毒有害气体进入壳体内部对壳体内部元件造成腐蚀,从而影响监测仪的正常使用。
本发明所述可折叠支架的设置,可使主控板于壳体内所占体积变小, 从而便于设置其余元件,且也可使监测仪整体结构小巧。
本发明所述外壳的设置,可对壳体内部环境起到隔绝和保温的作用,用以减少外界环境对壳体内部环境造成的干扰及影响;外壳底部设置的蜂窝状透气孔,可使待检测环境的空气通过蜂窝状透气孔进入外壳与底板之间,防止了待检测环境空气扰动过强而对采样造成的影响,同时透气孔还保证了外壳与底板之间空气的流动,因此可有效保证有毒有害气体传感器采样的实时性。
本发明所述无线数据传输单元的设置,可将监测仪检测的所有数据传输给管理系统,如此则可供工业园区管理单位在不同区域对有毒有害气体的检测数据以及检测的具体位置进行查询,从而可实现远程控制,使得灵活度较高;另外,利用无线组建的监测网络,还具有组网方便、安全、精确等优点。
本发明所述GPS定位单元的设置,可对监测区域的具体位置进行定位,从而便于对污染源的位置进行快速锁定。
本发明所述备用电池的设置,可在主电源模块没电的情况下继续对检测模块中的有毒有害气体传感器供电,使检测模块中的有毒有害气体传感器保持上电状态,以便于在主电源模块通电后检测模块中的有毒有害气体传感器无需耗费时间稳定即可正常工作,省去了等待时间。
附图说明
图1为本发明实施例的结构示意图;
图2为本发明实施例的仰视图;
图3为本发明实施例的结构分体示意图;
图4为图3中支架折叠后的示意图;
图5为本发明实施例的原理框图。
图中:1-壳体;2-主控板;3-检测模块;4-数据处理模块;5-电源系统;11-上壳体;12-底板;13-通孔;14-支架;21-信号采集单元;22-无线传输单元;23-GPS定位单元;24-数据存储单元;31-有毒有害气体传感器;51-主电源模块;52-备用电池。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细说明。
本实施例涉及一种具有传感器检测元件的有毒有害气体网络监测仪,该具有传感器检测元件的有毒有害气体网络监测仪的监测数据处理方法,可有效排除温度、湿度、气体交叉以及传感器信号衰减等因素对检测结果的影响,保证测量数据的稳定性和准确性。该监测数据处理方法具体为:
a、获取标准数据:预先于工装实验室密封可控的环境中对不同传感器进行单一、混合气体测试,工装实验室可以控制对传感器具有影响的因素个数,实时创造各种影响因素的组合方式,以获取对传感器测量精度产生影响的参数的交叉实验数据,结合智能机器学习算法对数据进行数据清理、数据集成、数据变换、数据归约,从而得到标准数据;
b、建立传感器校准模型:根据传感器检测原理及大气环境化学知识,初步确定影响传感器检测精度的因素,通过实时测量获得的传感器检测参数和获取的标准数据,输入智能机器学习算法,获得各个影响因素的线性、非线性因子数值;
根据获取的不同标准数据,形成的校准模型分为标物校准和传递校准;标物校准即在实验室环境下利用单一标准气体对传感器的实时响应信号进行的线性校准,传递校准即在大气环境下通过便携式标准仪器对传感器的 实时响应信号进行的非线性校准,标物校准可使微型站有效脱离人类的经验指导,而传递校准则可通过人工智能基于端对端的线性深度进行强化学习,利用云校准平台的互联化、数据化和智能化帮助微型站能在不同的污染源区域中生成一套校准模型框架,从而使校准模型能够对不同的环境进行监测。
c、传感器数据校准:通过人工智能大数据平台,依据不同传感器受温度、湿度、交叉气体和传感器信号衰减因素的影响,利用智能机器学习算法使传感器自动提取校准模型后对传感器实时检测的数据进行校准。
若在工装实验室中获取的各个影响因素是单一标准气体,此时平台算法是线性算法,校准模型中是一对一的关系,即为标物校准;若获取的传感器和各个影响因素是通过便携式标准仪器、移动监测车或其他标准监测设备,则平台自动判断此类数据,针对不同参数启动不同算法,此即为传递校准。
工装实验室中标物校准使用线性回归算法,建立传感器所测原始数据与标准气体浓度值之间的关系,对传感器信号漂移和温湿度对传感器的影响进行修正。
传递校准采用的机器学习算法为人工神经网络,将设备测量获得的传感器检测参数作为输入样本,标准监测设备所测标准数据为输出标签,建立校准模型,将传感器所测原始值输入模型进行校正输出。
此算法具有强大的数据特征学习能力和泛化能力,使校准过程中出现的线性和非线性情况能够有更完善的处理机制,从而对外界复杂的影响具有更好的抗干扰特性,可有效保证检测数据的准确性和稳定性。
上述所述具有传感器检测元件的有毒有害气体网络监测仪的监测数据 处理方法用于具有传感器检测元件的有毒有害气体网络监测仪中,以对工业园区内的有毒有害气体进行实时检测。如图1-5所示,该具有传感器检测元件的有毒有害气体网络监测仪包括壳体1,所述壳体1包括上壳体11、及与上壳体11可扣合连接为一体的底板12,如此底板12可方便于上壳体11上拆卸。所述壳体1内设有主控板2,以及与主控板2分别连接的检测模块3、数据处理模块4、电源系统5。电源系统5用于为监测仪供电,以使监测仪可正常工作;检测模块3用于对有毒有害气体进行相关检测,随后检测模块3将检测得到的数据经主控板2传送至数据处理模块4进行计算处理,最后由数据处理模块4得到最终检测结果。其中主控板2和检测模块3固连于底板12上,因此,在需要对主控板2和检测模块3维护或对检测模块3进行更换时,只需将底板12从上壳体11上拆卸,主控板2和检测模块3就会随着底板12从壳体1内暴露出来,因此维护或更换就显得十分方便。
所述检测模块3包括六个有毒有害气体传感器31,这样该监测仪可同时对六种有毒有害气体进行实时监测,可有效提高检测效率。且该监测仪在使用时可根据监测现场的实际需求对有毒有害气体传感器31进行自由组合,也可以增加或改变有毒有害气体传感器31的数量及种类,因此使得该监测仪适用面更广。所述检测模块3内还设有有毒有害气体传感器31预留接口,以用于在实际应用过程中可根据实际情况增设监测有毒有害气体的种数。所述有毒有害气体传感器31具体包括硫化氢传感器、氨气传感器、氯化氢传感器、氯气传感器、氟化氢传感器、及挥发性有机气体传感器。
所述壳体1的底板12上设有贯穿底板12的通孔13,所述检测模块3中的有毒有害气体传感器31以探测头端朝向通孔13方向与底板12固连, 如此检测环境中的气体可以自由扩散的形式通过通孔13与检测模块3中的有毒有害气体传感器31探测头端相接触,从而实现有毒有害气体的实时监测。另外,因有毒有害气体传感器31的探测头端靠近通孔13,所以有毒有害气体传感器31的探测头可较快感应到待检测空气,因此反应快;同时,相对传统的被动抽气采样方式,该监测仪最终检测结果与之无异,且该监测仪结构简单,也避免了传统被动抽气采样中有毒有害气体对被动机构的腐蚀。于有毒有害气体传感器31与通孔13之间设有密封条,以使壳体1形成密闭结构,可用以防止具有腐蚀性的有毒有害气体进入壳体1内部对壳体1内部元件造成腐蚀,从而影响监测仪的正常使用。
另外,主控板2通过可折叠的支架14固连于底板12上,如此,通过支架14的可折叠设置,可使主控板2于壳体1内所占体积变小,从而便于设置其余元件,且也可使监测仪整体结构小巧。主控板2上设有信号采集单元21、无线传输单元22、GPS定位单元23、及数据存储单元24,所述无线传输单元22包括GPRS通信模块、及与GPRS通信模块连接的天线,如此,主控板2通过无线传输单元22可与基于物联网的管理系统相连,用于通过物联网将数据传输至管理系统,以供工业园区管理单位在不同区域对有毒有害气体的检测数据以及检测的具体位置进行查询,从而可实现远程控制,使得灵活度较高;同时,利用无线组件的监控网络,还具有组网方便、安全、精确等优点。而主控板2中的信号采集单元21用于接收检测模块3中有毒有害传感器31检测的数据;GPS定位单元23用于对监测区域的具体位置进行定位,以便于在发生有毒有害气体污染时,可对污染源的位置进行快速锁定,从而可及时对污染源进行处理;数据存储单元24则可随时随地完整的将所有数据进行存储,用以帮助工业园区管理单位根据存储数据能 够更快、更好的分析出检测区域当前的环境状况,大大提高了应对可能发生的紧急情况的判断速度,从而可及时对有毒有害气体进行处理。
进一步的,所述壳体1外设有外壳,且外壳的底部设有蜂窝状的透气孔。外壳的设置可对壳体1内部环境起到隔绝和保温的作用,用以减少外界环境对壳体1内部环境造成的干扰和影响;而外壳底部设置的蜂窝状透气孔,则可使待检测环境的空气通过蜂窝状透气孔进入外壳与壳体1的底板12之间,使待检空气于外壳与壳体1的底板12之间具有较长时间的停留,以使有毒有害气体传感器31可与待检空气充分接触,保证检测结果的准确性;同时,外壳还可防止外界空气流动性过强而对外壳与壳体1底板12之间的待检测空气产生扰动影响,从而影响采样,造成检测结果偏差。
另外,电源系统5包括主电源模块51及备用电池52,主电源模块51和备用电池52均与主控板2相连接。所述主电源模块51为连接太阳能控制器的可充电锂电池,太阳能控制器可自动控制锂电池的充电和放电过程,以保护锂电池免于过充或过放造成的故障。主电源模块51采用锂电池作为电源,取电灵活,无需顾虑使用场合,且锂电池重量较轻,可有效减轻监测仪整体重量,因此也便于对监测仪悬挂布置;另外,锂电池绿色环保,无论是在使用过程中或是报废后都不会含有、也不产生任何铅、汞、镉等有毒有害重金属元素和物质。而备用电池52则用于在主电源模块51电量不足的情况下,由主控板2自动切断主电源模块51的供电,并改用备用电池52进行供电,与此同时,监测仪进入休眠状态,备用电池52仅对检测模块3内的有毒有害气体传感器31供电,使检测模块3中的有毒有害气体传感器31保持上电状态,以便于在切换至主电源模块51供电后检测模块3中的有毒有害气体传感器31无需耗费时间稳定即可正常工作,省去了等待 时间。
本发明的具有传感器检测元件的有毒有害气体网络监测仪及监测数据计算方法,通过检测模块3中的至少六个有毒有害气体传感器31可对待检环境中的多种有毒有害气体进行实时检测,检测效率高,同时GPS定位单元23对检测区域具体位置进行定位,检测得到的信息以及定位信息可经主控板2上的无线传输单元22传输至管理系统,因此可通过管理系统对监测区域内检测数据进行查看;检测模块3的数据可经数据处理模块4中的标准数据及校准模型进行自动校准,从而可有效消除温度、湿度以及气体之间的相互干扰,使检测结果更准确;另外,该监测仪体积小巧,可于工业园区内高密度、大范围进行布设,因此可形成监测网络,所有监测仪得到的数据能够反映监测区域内不同时间段的实时环境趋势,可便于工业园区管理部门对工业园区的环境进行实时监测。
以上所述仅为本发明较佳实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明揭露的技术范围内,根据本发明的技术构思加以等同替换或改变所得的技术方案,都应涵盖于本发明的保护范围内。

Claims (13)

  1. 一种具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:包括壳体,所述壳体内设有主控板,及与主控板分别连接的检测模块、数据处理模块、电源系统;所述检测模块包括两个以上的有毒有害气体传感器,以实现对多种有毒有害气体的实时检测;所述主控板上设有信号采集单元、无线传输单元、GPS定位单元、及数据存储单元,所述主控板通过无线传输单元与基于物联网的管理系统相连,用于通过物联网将检测数据传输至管理系统。
  2. 根据权利要求1所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述壳体包括上壳体、及与上壳体可扣合连接为一体的底板,所述主控板和检测模块固连在底板上。
  3. 根据权利要求2所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述壳体的底板上设有贯穿底板的通孔,所述有毒有害气体传感器以探测头端朝向通孔方向与底板固连,且于有毒有害气体传感器与通孔之间设有密封条,以使壳体形成密闭结构。
  4. 根据权利要求2所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述主控板通过可折叠的支架固连于底板上。
  5. 根据权利要求2所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述壳体外设有外壳,且外壳的底部设有蜂窝状的透气孔。
  6. 根据权利要求1所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述检测模块内还设有有毒有害气体传感器预留接口。
  7. 根据权利要求1所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述有毒有害气体传感器包括硫化氢传感器、氨气传 感器、氯化氢传感器、氯气传感器、氟化氢传感器、挥发性有机气体传感器。
  8. 根据权利要求1所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述无线传输单元包括GPRS通信模块、及与GPRS通信模块连接的天线。
  9. 根据权利要求1所述的具有传感器检测元件的有毒有害气体网络监测仪,其特征在于:所述电源系统包括主电源模块、及备用电池,所述主电源模块和备用电池均与主控板相连,所述主电源模块为连接太阳能控制器的可充电锂电池。
  10. 一种监测数据处理方法,用于如权利要求1至8任一所述的具有传感器检测元件的有毒有害气体网络监测仪中,其特征在于:通过人工智能大数据平台,依据不同传感器受温度、湿度、交叉气体和传感器信号衰减因素的影响,利用智能机器学习算法自动提取校准模型后对不同传感器实时检测的数据进行校准,从而得到监测数据结果。
  11. 根据权利要求10所述的监测数据处理方法,其特征在于:所述校准模型为根据传感器检测原理及大气环境化学知识,初步确定影响传感器检测精度的因素后,通过实时测量获得的传感器检测参数和获取的标准数据,采用智能机器学习算法而获得的各个影响因素的线性、非线性因子数值。
  12. 根据权利要求11所述的监测数据处理方法,其特征在于:所述标准数据为不同传感器于工装实验室密封可控的环境中进行单一及混合气体分别测试后,并经数据清理、数据集成、数据变化、数据归约获得的对传感器精度产生影响的交叉实验数据。
  13. 根据权利要求10所述的监测数据处理方法,其特征在于:所述校准模型分为标物校准和传递校准;
    标物校准即在实验室环境下利用单一标准气体对传感器的实时响应信号进行的线性校准;
    传递校准即在大气环境下通过便携式标准仪器对传感器的实时响应信号进行的非线性校准。
PCT/CN2018/096368 2017-12-25 2018-07-20 具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法 WO2019128203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711422383.1A CN107966534A (zh) 2017-12-25 2017-12-25 具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法
CN201711422383.1 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019128203A1 true WO2019128203A1 (zh) 2019-07-04

Family

ID=61994730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096368 WO2019128203A1 (zh) 2017-12-25 2018-07-20 具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法

Country Status (2)

Country Link
CN (1) CN107966534A (zh)
WO (1) WO2019128203A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123443A1 (de) * 2019-12-20 2021-06-24 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines gassensors
EP3964825A1 (de) * 2020-09-03 2022-03-09 Robert Bosch GmbH Verfahren zur erfassung mindestens einer eigenschaft eines fluiden mediums in mindestens einem messraum
EP4080202A1 (en) * 2021-04-21 2022-10-26 Infineon Technologies AG Gas sensing device and method for determining a calibrated measurement value of a concentration of a target gas
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324188B (zh) * 2018-10-11 2022-04-08 珠海沃姆电子有限公司 一种精准化动态尿液测量方法和系统
CN111458455A (zh) * 2019-01-21 2020-07-28 程学勇 一种氨气和硫化氢在线检测仪
CN110687547A (zh) * 2019-09-27 2020-01-14 北京航天环境工程有限公司 一种基于遥感雷达的有毒有害气体环境风险预警监测方法
CN111103403B (zh) * 2019-12-18 2022-06-03 北京蛙鸣华清环保科技有限公司 一种基于分布式网络的气体交叉干扰修正系统及方法
CN111398377A (zh) * 2020-04-16 2020-07-10 北方工业大学 轨道交通车站气体环境监测系统及方法
CN111596006A (zh) * 2020-04-29 2020-08-28 北京雪迪龙科技股份有限公司 一种大气在线监测仪的校准方法及监测仪
CN111551613A (zh) * 2020-04-30 2020-08-18 利晟(杭州)科技有限公司 一种基于线性回归的气体监测校准方法及系统
CN113092681B (zh) * 2021-04-02 2023-01-17 河北先河环保科技股份有限公司 用于网格化监控网络的传感器配对方法及系统
CN113219130B (zh) * 2021-04-16 2022-08-02 中国农业大学 一种多参数气体传感器的校准方法及测试平台
CN113466414A (zh) * 2021-07-09 2021-10-01 河南省保时安电子科技有限公司 一种基于物联网的多气体检测系统
CN113960250A (zh) * 2021-09-27 2022-01-21 山东大学 一种盾构隧道的混合气体检测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7139222B1 (en) * 2004-01-20 2006-11-21 Kevin Baxter System and method for protecting the location of an acoustic event detector
CN203386399U (zh) * 2013-05-24 2014-01-08 无锡商业职业技术学院 物联网环境监测实验系统
CN204495689U (zh) * 2015-04-07 2015-07-22 重庆文理学院 一种空气检测系统
CN105094097A (zh) * 2015-08-20 2015-11-25 天津十壹维度科技有限公司 基于物联网的工厂危险源实时监测控制系统及控制方法
CN205280697U (zh) * 2015-12-28 2016-06-01 宁波达鹏无人机科技有限公司 高精度便携式大气污染物监测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7139222B1 (en) * 2004-01-20 2006-11-21 Kevin Baxter System and method for protecting the location of an acoustic event detector
CN203386399U (zh) * 2013-05-24 2014-01-08 无锡商业职业技术学院 物联网环境监测实验系统
CN204495689U (zh) * 2015-04-07 2015-07-22 重庆文理学院 一种空气检测系统
CN105094097A (zh) * 2015-08-20 2015-11-25 天津十壹维度科技有限公司 基于物联网的工厂危险源实时监测控制系统及控制方法
CN205280697U (zh) * 2015-12-28 2016-06-01 宁波达鹏无人机科技有限公司 高精度便携式大气污染物监测装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123443A1 (de) * 2019-12-20 2021-06-24 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines gassensors
CN114787623A (zh) * 2019-12-20 2022-07-22 罗伯特·博世有限公司 用于运行气体传感器的方法和设备
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
EP3964825A1 (de) * 2020-09-03 2022-03-09 Robert Bosch GmbH Verfahren zur erfassung mindestens einer eigenschaft eines fluiden mediums in mindestens einem messraum
EP4080202A1 (en) * 2021-04-21 2022-10-26 Infineon Technologies AG Gas sensing device and method for determining a calibrated measurement value of a concentration of a target gas

Also Published As

Publication number Publication date
CN107966534A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2019128203A1 (zh) 具有传感器检测元件的有毒有害气体网络监测仪及监测数据处理方法
CN203443606U (zh) 一种室内污染气体浓度监测装置
CN203259191U (zh) 一种车载环境应急监测系统
CN103399555B (zh) 可燃、有毒气体无线智能监控系统
CN103364530B (zh) 远程气体监测系统及方法
KR20130017992A (ko) Usn 기반 실시간 수질 모니터링을 위한 다항목 수질측정기
AU2020102518A4 (en) A method of gas sensor calibration based on linear optimization
Poma et al. Remote monitoring of seawater temperature and pH by low cost sensors
Ustad et al. Zigbee based wireless air pollution monitoring system using low cost and energy efficient sensors
CA2704148A1 (en) Device for monitoring water quality
CN109458568A (zh) 一种VOCs泄漏微型监测器及在线监测系统
CN107328899B (zh) 一种防爆tvoc气体泄漏区域监测装置
KR102592931B1 (ko) 사물인터넷 수질 측정 장치를 이용한 위치 기반의 지능형 수질 모니터링 시스템 및 그 방법
CN106706854A (zh) 一种空气检测系统
CN106770532A (zh) 一种气体浓度预测装置、及气体浓度实时检测和预测系统
CN207067090U (zh) 一种防爆tvoc气体泄漏区域监测装置
CN109814643A (zh) 一种基于物联网平台的涂料生产安全监测系统
Zhao et al. Intelligent system for monitoring and controlling of the grain condition based on ARM9
RU2531061C1 (ru) Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации
Xibo et al. Development of ammonia gas leak detection and location method
CN207182613U (zh) 一种测量室内物理环境多参数的测量仪器
CN216117496U (zh) 一种环境空气质量及气象要素便携式测量与数据管理系统
Brkic et al. Quality assessment of system for automated multi-node environmental water parameter monitoring
US20240053312A1 (en) System and method for detecting methane and other gases using a remotely deployable, off-grid system
CN113376107B (zh) 基于云平台的水质监测系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896554

Country of ref document: EP

Kind code of ref document: A1