WO2020096331A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2020096331A1
WO2020096331A1 PCT/KR2019/014941 KR2019014941W WO2020096331A1 WO 2020096331 A1 WO2020096331 A1 WO 2020096331A1 KR 2019014941 W KR2019014941 W KR 2019014941W WO 2020096331 A1 WO2020096331 A1 WO 2020096331A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
transition metal
sulfur
lithium
Prior art date
Application number
PCT/KR2019/014941
Other languages
French (fr)
Korean (ko)
Inventor
김민수
손권남
이동욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180135538A external-priority patent/KR102651785B1/en
Priority claimed from KR1020190139543A external-priority patent/KR20200052840A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19882101.9A priority Critical patent/EP3863080A4/en
Priority to CN201980068062.7A priority patent/CN112840478B/en
Priority to US17/283,395 priority patent/US11876227B2/en
Priority to JP2021521972A priority patent/JP7286764B2/en
Publication of WO2020096331A1 publication Critical patent/WO2020096331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery comprising a positive electrode catalyst that can facilitate the commercialization and high performance of the battery by promoting the chemical reaction occurring at the electrode.
  • Lithium metal compared to other electrochemical systems with lithium intercalated carbon anodes, and nickel or cadmium electrodes, for example, reducing the energy density of the cell by increasing the weight and volume of the anode in the presence of a non-electroactive material Since it has low weight and high capacity characteristics, it is very interesting as a negative electrode active material for electrochemical cells.
  • a lithium metal negative electrode, or a negative electrode mainly containing lithium metal provides an opportunity to construct a lighter and higher energy density battery than a battery such as a lithium-ion, nickel metal hydride, or nickel-cadmium battery.
  • Cathode active materials for lithium batteries of this type are known, and they contain a sulfur-containing positive electrode active material comprising a sulfur-sulfur bond, a high energy capacity from electrochemical cutting (reduction) and reforming (oxidation) of the sulfur-sulfur bond and Rechargeability is achieved.
  • Lithium-sulfur secondary batteries using lithium and alkali metal as the negative electrode active material and sulfur as the positive electrode active material have a theoretical energy density of 2,800 Wh / kg and a theoretical capacity of sulfur of 1,675 mAh / g, which is superior to other battery systems. High, sulfur is abundant in resources, it is inexpensive, and it is attracting attention as a portable electronic device due to its advantages as an environment-friendly material.
  • a precious metal catalyst such as platinum is expensive, it is not only a material that is difficult to commercialize, but also has a problem in that it is not easy to use it as a positive electrode material for a lithium-sulfur secondary battery due to the possibility of poisoning by the redox reaction of sulfur in the process of charging and discharging.
  • Patent Document 1 Korean Patent Publication No. 2013-0014650
  • Patent Document 2 International Publication Patent No. 2018-0013499
  • Patent Document 3 International Publication No. 2017-0023304
  • the present inventors conducted various studies to solve the above problems, and as a catalyst for the reduction reaction of sulfur generated in the positive electrode during discharge of a lithium secondary battery containing a sulfur-containing material in the positive electrode, the outer surface of the porous carbon and the inner surface of the pores Introducing a transition metal complex comprising a transition metal and a doping element, but among the transition metal complexes, four nitrogen is bonded to the transition metal to introduce a high stability transition metal complex, thereby improving the performance and life characteristics of a lithium secondary battery. It was confirmed that it can be done.
  • an object of the present invention is to provide a lithium secondary battery comprising a positive electrode catalyst suitable as a catalyst for the reduction reaction of sulfur.
  • the present invention in a lithium secondary battery comprising a positive electrode, a negative electrode containing a sulfur-containing material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, the positive electrode is bonded to the surface of the porous carbon
  • the positive electrode is bonded to the surface of the porous carbon
  • a lithium secondary battery including a positive electrode catalyst comprising a transition metal complex, wherein the transition metal complex comprises four nitrogen bonded to the transition metal.
  • the positive electrode is a current collector; And a positive electrode active material layer formed on the current collector, and the positive electrode catalyst may be included in the positive electrode active material layer.
  • the positive electrode catalyst may be 20 to 30% by weight based on the total weight of the positive electrode active material.
  • the transition metal may be one or more selected from the group consisting of Fe, Ni, Mn, Cu and Zn.
  • the transition metal complex may be contained in 1 to 20% by weight based on the total weight of the positive electrode catalyst.
  • the transition metal composite may be bonded to at least one of the porous carbon outer surface and the pore inner surface.
  • the transition metal complex may be adsorbed and bound to the surface of the porous carbon by ⁇ - ⁇ interaction.
  • the porous carbon includes at least one selected from the group consisting of activated carbon, carbon nanotube (CNT), graphene, carbon black, acetylene black, graphite, graphite nanofiber (GNF) and fullerene. May be
  • the pore size of the porous carbon may be 2 to 50 nm.
  • the lithium secondary battery according to the present invention contains a sulfur-containing material as a positive electrode active material, since a reduction reaction of sulfur occurs at the positive electrode when the battery is driven, a positive electrode catalyst capable of improving the reaction rate (kinetic) of the sulfur reduction reaction is appropriate By including the content, there is an effect of improving the initial discharge capacity and life characteristics of the battery.
  • the positive electrode catalyst according to the present invention can improve efficiency as a catalyst for the reduction reaction of sulfur due to a structure in which a transition metal complex having a stable structure in which four nitrogens are bonded to a transition metal is bonded.
  • the positive electrode catalyst can be prepared by a simple process without an additional process for bonding four nitrogens to the transition metal.
  • the transition metal complex is adsorbed by a ⁇ - ⁇ interaction on the surface of the porous carbon, and thus may exhibit an effect of maintaining physical and chemical properties of the porous carbon.
  • the positive electrode catalyst can be used as a catalyst for the reduction reaction of sulfur, and is advantageous for commercialization by replacing a relatively inexpensive transition metal on the surface of the porous carbon by replacing expensive platinum used as a conventional catalyst.
  • the positive electrode catalyst is a form in which a transition metal complex containing a transition metal and nitrogen is bonded to the outer surface of the porous carbon and the inner surface of the pores. Due to the material properties of the positive electrode catalyst, the possibility of toxicity to the redox reaction of sulfur is low. It is suitable for application as a positive electrode material of a lithium secondary battery, for example, a lithium-sulfur secondary battery. In particular, it can be applied as a positive electrode material of a lithium-sulfur secondary battery by supporting sulfur as a positive electrode active material in the pores of the porous carbon.
  • the transition metal complex is bonded to the pore inner surface of the porous carbon as a size of a molecular unit, it is possible to prevent the pore volume and size of the porous carbon from being reduced, and thus, lithium-sulfur secondary such as sulfur.
  • pore blocking can be prevented.
  • the lithium-sulfur secondary battery in which the positive electrode catalyst is introduced is capable of high performance due to activation of a reduction reaction of sulfur generated in the positive electrode.
  • FIG. 1 is a schematic view showing a longitudinal section of an anode catalyst according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a method of manufacturing a positive electrode catalyst according to an embodiment of the present invention.
  • FIG 3 is a schematic view showing a longitudinal section of a positive electrode active material according to an embodiment of the present invention.
  • FIG. 5 is a photograph showing a process in which the precursor (FePC) and porous carbon (CNT) of the transition metal complex in Preparation Example 1 are dissolved in an organic solvent (DMF) (FePC4-CNT mixture) and filtered.
  • DMF organic solvent
  • FIG. 8A and 8B are graphs showing initial discharge capacity (FIG. 8A) and Coulomb efficiency (FIG. 8B) of the lithium-sulfur secondary batteries prepared in Example 1 and Comparative Example 1, respectively.
  • FIGS. 9A and 9B are graphs showing the initial discharge capacity (FIG. 9A) and Coulomb efficiency (FIG. 9B) of the lithium-sulfur secondary batteries prepared in Example 2 and Comparative Example 1, respectively.
  • FIGS. 10A and 10B are graphs showing initial discharge capacity (FIG. 10A) and Coulomb efficiency (FIG. 10B) of the lithium-sulfur secondary batteries prepared in Example 3 and Comparative Example 1, respectively.
  • FIG. 11A and 11B are graphs showing initial discharge capacities (FIG. 11A) and Coulomb efficiency (FIG. 11B) of the lithium-sulfur secondary batteries prepared in Example 4 and Comparative Example 1, respectively.
  • FIG. 12A and 12B are graphs showing initial discharge capacities (FIG. 12A) and Coulomb efficiency (FIG. 12B) of the lithium-sulfur secondary batteries prepared in Example 5 and Comparative Example 1, respectively.
  • FIG. 13A and 13B are graphs showing initial discharge capacity (FIG. 13A) and Coulomb efficiency (FIG. 13B) of the lithium-sulfur secondary batteries prepared in Comparative Example 2 and Comparative Example 1, respectively.
  • the present invention is a lithium secondary battery comprising a positive electrode comprising a sulfur-containing material, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, the positive electrode comprising a transition metal composite bonded to the surface of the porous carbon Including a catalyst, the transition metal complex is related to a lithium secondary battery comprising four nitrogens bound to a transition metal.
  • the positive electrode catalyst may be included in 20 to 30% by weight, preferably 22 to 28% by weight based on the total weight of the positive electrode active material in the positive electrode of the lithium secondary battery. If it is less than the above range, the catalytic activity for the sulfur reduction reaction is lowered, so the effect of improving battery performance and life characteristics is negligible, and a capacity deterioration phenomenon of the battery may occur beyond the above range.
  • the lithium secondary battery may contain a sulfur-containing material in the positive electrode, and thus may be a lithium-sulfur secondary battery.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode current collector may be foamed aluminum having excellent conductivity, foamed nickel, or the like.
  • the positive electrode active material layer may include a positive electrode active material containing the sulfur-containing material and the positive electrode catalyst.
  • the positive electrode active material layer further includes a conductive material for smoothly moving electrons within the positive electrode together with the positive electrode active material, and a binder for increasing binding force between the positive electrode active material or between the positive electrode active material and the positive electrode current collector. can do.
  • the sulfur-containing material included in the positive electrode active material may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof.
  • the sulfur-based compound is Li 2 S n (n is a real number of 1 or more), an organic sulfur compound or a carbon-sulfur polymer ((C 2 S x ) n , x is a real number of 2.5 to 50, n is 2 This is a real mistake).
  • the positive electrode active material may be included in 60 to 90% by weight based on the total weight of the positive electrode active material layer. If it is less than the above range, the capacity of the battery decreases, and if it is above the above range, overvoltage may occur.
  • the conductive material is a carbon-based material, such as carbon black, acetylene black, Ketjen black; Or it may be a conductive polymer such as polyaniline, polythiophene, polyacetylene, and polypyrrole.
  • the conductive material may be preferably included in 5 to 20% by weight relative to the total weight of the positive electrode active material layer. If the content of the conductive material is less than 5% by weight, the effect of improving conductivity according to the use of the conductive material is insignificant, whereas when it exceeds 20% by weight, the content of the positive electrode active material is relatively small, and there is a fear that capacity characteristics are deteriorated.
  • the binder includes poly (vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide, polyvinyl ether, poly (methyl methacrylate), poly Copolymer of vinylidene fluoride, polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine , Polystyrene, their derivatives, blends, copolymers, and the like.
  • the binder may be preferably included in 5 to 20% by weight relative to the total weight of the positive electrode active material layer.
  • the content of the binder is less than 5% by weight, the effect of improving binding strength between the positive electrode active material or between the positive electrode active material and the positive electrode current collector according to the use of the binder is negligible, whereas when it exceeds 20% by weight, the content of the positive electrode active material is relatively small. There is a possibility that capacity characteristics are deteriorated.
  • the positive electrode as described above may be prepared according to a conventional method. Specifically, a positive electrode active material layer-forming composition prepared by mixing the positive electrode active material, positive electrode catalyst, conductive material, and binder on an organic solvent, on the positive electrode current collector After application, it can be prepared by drying and optionally rolling.
  • the organic solvent may uniformly disperse the positive electrode active material, the positive electrode catalyst, the binder, and the conductive material, and it is preferable to use one that is easily evaporated.
  • Specific examples include acetonitrile, methanol, ethanol, tetrahydrofuran, water, and isopropyl alcohol.
  • the negative electrode may be a lithium metal thin film, or may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • the negative electrode current collector may be selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a non-conductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
  • the negative electrode active material layer is a negative electrode active material composed of a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal and lithium alloy It may include those selected from the group.
  • a carbon-based negative electrode active material generally used in the lithium-sulfur secondary battery may be used, and specific examples include crystalline Carbon, amorphous carbon, or a combination of these may be used.
  • a typical example of a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion includes, but is not limited to, tin oxide (SnO 2 ), titanium nitrate, silicon (Si), and the like.
  • the lithium metal alloy may be specifically an alloy of lithium and Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, or Cd.
  • the negative electrode may further include a conductive material and a binder selectively together with the negative electrode active material.
  • the types and contents of the conductive material and the binder are the same as described above.
  • the separator is a physical separator having a function of physically separating an electrode, and can be used without particular limitation as long as it is used as a separator in a lithium secondary battery. It is preferable that it has excellent moisture permeability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer, alone It may be used as or by laminating them, or a conventional porous nonwoven fabric, for example, a high melting point glass fiber, a nonwoven fabric made of polyethylene terephthalate fiber, etc. may be used, but is not limited thereto.
  • the electrolyte solution may include an organic solvent and a lithium salt.
  • the organic solvent may be a polar solvent such as an aryl compound, bicyclic ether, acyclic carbonate, sulfoxide compound, lactone compound, ketone compound, ester compound, sulfate compound, sulfite compound, or the like.
  • a polar solvent such as an aryl compound, bicyclic ether, acyclic carbonate, sulfoxide compound, lactone compound, ketone compound, ester compound, sulfate compound, sulfite compound, or the like.
  • the organic solvent is 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, dioxolane (DOL), 1,4-dioxane, tetrahydrofuran , 2-methyltetrahydrofuran, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate, dipropyl carbonate, butyl ethyl carbonate, ethyl propano Eight (EP), toluene, xylene, dimethyl ether (DME), diethyl ether, triethylene glycol monomethyl ether (TEGME), triethylene glycol dimethyl ether (Triethylene glycol dimethyl ether, TEGDME ), Diglyme, tetraglyme, hexamethyl phosphoric triamide, gamma-butyrolactone (GB
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt includes LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 (Lithium bis (perfluoroethylsulfonyl) imide, BETI), LiN (CF 3 SO 2 ) 2 (Lithium bis (Trifluoromethanesulfonyl) imide, LiTFSI), LiN (C a F 2a + 1 SO 2 ) (C b F 2b + 1 SO 2 ) (where a and b are natural numbers, preferably 1 ⁇ a ⁇ 20 and 1 ⁇ b ⁇ 20), lithium poly [4,4 '
  • the lithium salt may be preferably included in 10 to 35% by weight relative to the total weight of the electrolyte.
  • the content of the lithium salt is less than 10% by weight, the conductivity of the electrolyte is lowered to degrade the electrolyte performance, and when it exceeds 35% by weight, the viscosity of the electrolyte is increased to decrease the mobility of lithium ions.
  • the positive electrode catalyst may be used as a catalyst for improving the reaction rate (kinetic) of the reduction reaction of sulfur in a lithium secondary battery containing a sulfur-containing material.
  • the positive electrode catalyst according to the present invention includes a transition metal complex bound to the surface of the porous carbon, and the transition metal complex includes a transition metal and four nitrogens bonded to the transition metal. At this time, since the catalytic activity can be controlled by the transition metal complex, the transition metal complex can be referred to as a catalytic site.
  • FIG. 1 is a schematic view showing a longitudinal section of an anode catalyst according to an embodiment of the present invention.
  • the positive electrode catalyst 1 is a porous carbon (10); And a transition metal complex 20 bonded to the surface of the porous carbon 10.
  • the porous carbon 10 is a particle-shaped structure in which a number of pores 11 are formed, and is made of a material having a large size and high electrical conductivity, and has a pore volume and a specific surface area sufficient to promote the redox reaction of sulfur. , As a support for the transition metal composite 20, it is possible to maintain or improve the performance, durability and efficiency of the transition metal composite 20.
  • the porous carbon 10 is at least one carbon selected from the group consisting of activated carbon, carbon nanotube (CNT), graphene, carbon black, acetylene black, graphite, graphite nanofiber (GNF) and fullerene. It may be made of material.
  • the pores 11 formed on the porous carbon 10 are partially formed in an open shape, and inside the pores 11, an active material of an electrode, specifically, a positive electrode active material of a lithium-sulfur secondary battery may be supported.
  • the porous carbon 10 may be particles having a particle diameter of 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m. If it is less than the above range, lithium ion transfer efficiency may be reduced due to penetration and wetting of the electrolyte, and if it is above the above range, the volume of the electrode pores may increase due to an increase in electrode pores compared to the electrode weight.
  • the pores 11 formed in the porous carbon 10 may be meso pores of 2 to 50 nm, preferably 2 to 45 nm, and more preferably 2 to 40 nm. If it is less than the above range, clogging of the pores 11 may occur in the process of impregnation of sulfur.
  • a lithium secondary battery for example, a lithium-sulfur secondary battery
  • impregnated liquid sulfur which is a positive electrode active material
  • pores 11 may be clogged, and sulfur may not be uniformly supported in each pore. Also, due to the volume limitation of the pores 11, the amount of sulfur supported in the pores 11 may be reduced.
  • the reactants may be eluted in the reduction reaction of sulfur by becoming macro pores, and in particular, when the positive electrode catalyst 1 is applied to a lithium secondary battery, for example, a lithium-sulfur secondary battery,
  • the intermediate product, poly sulfide can be eluted.
  • the volume of the pores 11 contained in the porous carbon 10 may be 0.5 to 3.5 cc / g, preferably 1.0 to 3.0 cc / g, more preferably 1.5 to 2.5 cc / g. If it is less than the above range, clogging of the pores 11 may occur in the process of impregnation of sulfur.
  • a lithium secondary battery for example, a lithium-sulfur secondary battery
  • impregnated liquid sulfur which is a positive electrode active material
  • pores 11 may be clogged, and sulfur may not be uniformly supported in each pore.
  • the amount of sulfur supported in the pores 11 may be reduced.
  • the reactants may be eluted in the reduction reaction of sulfur by becoming macro pores, and in particular, when the positive electrode catalyst 1 is applied to a lithium secondary battery, for example, a lithium-sulfur secondary battery,
  • the intermediate product, poly sulfide can be eluted.
  • the surface area of the porous carbon 10 increases, it is advantageous for catalytic activity, and specifically, it may be 100 to 1200 m 2 / g, preferably 150 to 500 m 2 / g. If it is less than the above range, the catalytic activity may decrease, and if it is above the above range, the durability of the anode catalyst may decrease.
  • the porous carbon 10 may be 80 to 99% by weight, preferably 80 to 95% by weight, more preferably 80 to 90% by weight based on the total content of the positive electrode catalyst (1). If it is less than the above range, the durability of the anode catalyst 1 may decrease, and if it is above the above range, the catalytic activity may decrease.
  • the transition metal complex 20 is a complex formed by bonding four nitrogens to a transition metal, and can act as a catalyst for the reduction reaction of sulfur to improve kinetic. Therefore, it can be suitable as a catalyst for a positive electrode of a lithium secondary battery, especially a lithium-sulfur secondary battery.
  • transition metal complex 20 when the number of nitrogens bound to the transition metal is less than 4, activity as a catalyst decreases, and when it exceeds 4, structural stability decreases, so that catalytic activity for sulfur reduction reaction It may degrade.
  • the transition metal when nitrogen is bonded to the transition metal, it is not only stable, but also exhibits excellent catalytic properties, and thus can exhibit high stability and catalytic effect compared to a transition metal complex formed by bonding different types of elements to the transition metal.
  • the transition metal composite 20 may be included in an amount of 1 to 20% by weight, preferably 4 to 16% by weight, based on the total content of the positive electrode catalyst 1. If it is less than the above range, the effect of improving the reaction rate of the reduction reaction of sulfur may be reduced, and thus the effect of improving the battery performance may be negligible. If the content of the transition metal complex 20 is increased, the reaction rate of the reduction reaction of sulfur may no longer increase. It may not.
  • the transition metal composite 20 may be bonded to one or more positions of the outer surface of the porous carbon 10 and the inner surface of the pores, and specifically, the transition metal composite 20 may have ⁇ - on the surface of the porous carbon 10. It may be adsorbed and bound by ⁇ interaction.
  • the ⁇ - ⁇ interaction has a binding form between a surface and a surface rather than a specific inter-element bond, and may exhibit strong adsorption compared to other types of bonds, and the transition metal complex 20 is bonded to the surface of the porous carbon 10 Even if it is, it is possible to maintain the characteristics of the porous carbon (10).
  • the molar ratio of transition metal and nitrogen may be 1: 2 to 10, preferably 1: 2 to 8, and more preferably 1: 3 to 5. If it is less than the above range, the surface of the porous carbon 10 cannot be sufficiently doped with the transition metal complex 20 as necessary, and if it is above the above range, the amount of nitrogen per unit weight of the anode catalyst 1 increases, thereby increasing the catalytic activity. This can degrade.
  • the size of the transition metal composite 20 is 0.1 to 1 nm, preferably 0.1 to 0.9 nm, and more preferably 0.1 to 0.8 nm, which is an atomic level composite, even when bonded on the inner surface of the porous carbon 10. Since there is no reduction in volume and size of 11), even if the active material is carried inside the pores 11, it is possible to prevent pore clogging.
  • the transition metal may be at least one selected from the group consisting of Fe, Ni, Mn, Cu, and Zn, but is not limited thereto as long as it is a transition metal capable of exhibiting catalytic activity for the reduction reaction of sulfur.
  • the positive electrode catalyst 1 as described above can be widely used as a catalyst for the general sulfur reduction reaction.
  • it can be used as a cathode material of a lithium secondary battery, in particular, it can also be applied as a cathode material of a lithium-sulfur secondary battery accompanied by a reduction reaction of sulfur to realize high performance of the battery, and can be advantageous for commercialization due to low cost. .
  • the present invention also relates to a method for preparing a positive electrode catalyst as described above, wherein the method for producing the positive electrode catalyst comprises: (S1) dissolving a precursor of a transition metal complex comprising a transition metal and nitrogen in a solvent; (S2) adding and mixing porous carbon to the precursor solution of the transition metal complex obtained in the step (S1); (S3) filtering the mixed solution obtained in the step (S2); And (S4) after the step (S3), drying the powder obtained in the upper layer of the mixture; may include, it will be described below in more detail for each step of the production method of the positive electrode catalyst according to the present invention.
  • the precursor of the transition metal complex containing the transition metal and nitrogen is dissolved in a solvent to prepare a precursor solution of the transition metal complex.
  • the precursor of the transition metal complex may be dispersed in a solvent and subjected to ultrasonic treatment to prepare a precursor solution of the transition metal complex.
  • the concentration of the precursor solution of the transition metal complex may be 5 to 15%, preferably 5 to 12%, and more preferably 5 to 10% based on the solid content weight. If it is less than the above range, the weight of the transition metal complex contained in the cathode catalyst to be produced is reduced, resulting in poor catalytic activity, and if it is above the above range, the weight of the transition metal complex contained in the cathode catalyst to be produced is increased to block the pores of the porous carbon. Symptoms may occur.
  • the precursor of the transition metal complex may be at least one metal-phthalocyanine (MePC) selected from the group consisting of iron phthalocyanine, nickel phthalocyanine, manganese phthalocyanine, copper phthalocyanine, and zinc phthalocyanine.
  • MePC metal-phthalocyanine
  • the metal-phthalocyanine is a type of macrocyclic compound having a structure in which a ring of nitrogen atoms and carbon atoms intersects, and has a chemical structure in which metal ions coordinate in the center.
  • the metal-phthalocyanine is used as a precursor of the transition metal complex, it is possible to manufacture a positive electrode catalyst including a transition metal complex having a stable structure in which four nitrogens are bonded to the transition metal.
  • a positive electrode catalyst including a transition metal complex having a stable structure in which four nitrogens are bonded to the transition metal.
  • it is necessary to undergo a process of several steps such as reacting with a precursor material containing N, and further reacting under an ammonia (NH 3 ) atmosphere.
  • a cathode catalyst comprising a transition metal complex having a stable structure in which four nitrogens are bonded to the transition metal as described above in a simple process is used. Can be produced.
  • the solvent is dimethyl carbonate, dimethyl formamide, N-methyl formamide, sulfolane (tetrahydrothiophene-1,1-dioxide), 3-methylsulfolan, N-butyl sulfone, dimethyl sulfoxide, pyridolinone ( HEP), dimethylpiperidone (DMPD), N-methyl pyrrolidinone (NMP), N-methyl acetamide, dimethyl acetamide (DMAc), N, N-dimethylformamide (DMF), diethyl acetamide (DEAc) ) Dipropylacetamide (DPAc), ethanol, propanol, butanol, hexanol, ethylene glycol, tetrachloroethylene, propylene glycol, toluene, trapentine, methyl acetate, ethyl acetate, petroleum ether, acetone, cresol and glycerol It may be at least one organic solvent selected from, preferably
  • porous carbon may be added to the precursor solution of the transition metal complex obtained in the step (S1) and mixed.
  • the material of the porous carbon ; And morphological characteristics such as pore size.
  • the porous carbon may be synthesized by a hard molding method, but is not limited thereto, and the porous carbon in the form described above may be synthesized by a conventional method for synthesizing porous carbon in the art.
  • porous carbon may be synthesized using a carbon material.
  • the carbon material used to synthesize the porous carbon and the shape of the produced porous carbon are as described above.
  • Figure 2 is a schematic diagram showing a method of manufacturing a positive electrode catalyst according to an embodiment of the present invention.
  • CNT is added as a porous carbon to a solution in which a metal-phthalocyanine (MePC), which is a precursor of a transition metal complex, is dissolved in an organic solvent, and a positive electrode catalyst (MePC-CNT) in which a transition metal complex is bonded to the surface of the CNT ) Can be prepared.
  • a metal-phthalocyanine MePC
  • MePC-CNT positive electrode catalyst
  • the amount of the transition metal composite and the porous carbon in the cathode catalyst to be produced can be used by appropriately adjusting the amount used in the manufacturing process, so as to satisfy the weight range as described above.
  • the mixed liquid obtained in the step (S2) can be filtered and washed to remove impurities.
  • the powder obtained in the upper layer of the mixed solution may be dried to obtain an anode catalyst.
  • the positive electrode catalyst has a structure including a transition metal complex bound to the surface of the porous carbon, in order to obtain the positively formed positive electrode catalyst, the drying is 60 to 100 ° C, preferably 65 to 95 ° C, more preferably It may be made at a temperature of 70 to 90 °C for 10 to 14 hours, preferably 10.5 to 13.5 hours, more preferably 11 to 13 hours.
  • the present invention also relates to a positive electrode active material applicable to the positive electrode of a lithium secondary battery.
  • the lithium secondary battery may be a lithium-sulfur secondary battery including a sulfur-containing material as a positive electrode active material.
  • FIG 3 is a schematic view showing a longitudinal section of a positive electrode active material according to an embodiment of the present invention.
  • the positive electrode active material 2 includes the positive electrode catalyst 1 as described above; And a sulfur-containing material 30 supported inside the pores 11 of the porous carbon 10 included in the positive electrode catalyst 1.
  • the structure and constituent materials of the anode catalyst 1 are as described above.
  • the sulfur-containing material 30 may be one or more selected from the group consisting of elemental sulfur (S 8 ) and sulfur compounds.
  • the sulfur compound is Li 2 S n (n is a real number of 1 or more), an organic sulfur compound or a carbon-sulfur polymer ((C 2 S x ) n , x is a real number of 2.5 to 50, n is 2 or more Real number).
  • the present invention also relates to a method for producing a positive electrode active material as described above, wherein the method for producing a positive electrode active material comprises: (P1) forming a mixed powder of the positive electrode catalyst and a sulfur or sulfur compound; (P2) mixing the solvent for dissolving sulfur in the mixed powder to form a mixture; And (P3) heat-treating the mixture under vacuum to support sulfur in the pores of the positive electrode catalyst. It may include.
  • the positive electrode catalyst for preparing the positive electrode active material may be prepared by a method for preparing a positive electrode catalyst including steps (S1) to (S4) as described above.
  • Both the positive electrode catalyst and sulfur can be mixed in a powder state to obtain a mixed powder.
  • the positive electrode catalyst and sulfur may be mixed so that the weight of sulfur may be 50 to 80% by weight, preferably 65 to 77% by weight based on the total weight of the positive electrode active material to be produced.
  • the solvent is mixed with the mixed powder obtained in the step (P1) to form a mixture, and the solvent dissolves sulfur contained in the mixed powder by using a solvent for dissolving sulfur having a high solubility of sulfur, so that the dissolved liquid sulfur is It can be carried in the pores contained in the porous carbon of the positive electrode catalyst.
  • the solvent for dissolving sulfur may be at least one selected from the group consisting of CS 2 solvent, ethylenediamine, acetone, and ethanol, and in particular, when using a CS 2 solvent, the selective solubility for sulfur contained in the mixed powder is high. It may be advantageous to dissolve sulfur so that it is supported inside the pores contained in the porous carbon.
  • step (P2) By heat-treating the mixture formed in step (P2) under vacuum, it is possible to fix the liquid sulfur supported inside the pores contained in the porous carbon of the positive electrode catalyst to the surface of the pores.
  • the steps (P1) to (P3) it is possible to prepare a positive electrode active material having a form in which sulfur is supported on the positive electrode catalyst.
  • the positive electrode active material can be applied to the positive electrode of a lithium secondary battery.
  • the lithium secondary battery may be a lithium-sulfur secondary battery.
  • the lithium-sulfur secondary battery can improve the kinetic of the reduction reaction of sulfur generated at the positive electrode during discharge by introducing the positive electrode catalyst as described above to the positive electrode, and consequently, the lithium-sulfur secondary battery. High performance can be implemented.
  • MePC used in Preparation Examples 1 to 6 are respectively called FePC, NiPC, MnPC, CuPC, ZnPC and FePC.
  • the mixed solution was filtered with a vacuum pump, and then washed with 1000 ml of ethanol.
  • the upper layer powder of the filtered and washed mixture was dried at 80 ° C. for 12 hours to prepare a positive electrode catalyst in which a transition metal complex (MePC) was bonded to CNTs.
  • a transition metal complex MoPC
  • a cathode catalyst was prepared in the same manner as in Preparation Example 1, using CoPC as a metal-phthalocyanine which is a precursor of the transition metal complex.
  • Precursor of transition metal complex Content of transition metal complex (included in anode catalyst)
  • Example 1 to 6 and Comparative example 1 to 2 lithium secondary battery production
  • a positive electrode active material, a conductive material, and a binder were mixed using a mixer to prepare a composition for forming a positive electrode active material layer.
  • sulfur as a positive electrode active material, carbon black as a conductive material, and polyvinyl alcohol as a binder were used respectively, and the mixing ratio was set so that the positive electrode active material: conductive material: binder was 75: 20: 5 by weight.
  • the prepared positive electrode active material layer-forming composition was applied to an aluminum current collector and dried to prepare a positive electrode (energy density of the positive electrode: 1.0 mAh / cm 2).
  • the positive electrode catalysts prepared in Preparation Examples 1 to 6 and Comparative Preparation Examples 1 to 2 were mixed together to prepare positive electrodes in Examples 1 to 6 and Comparative Examples 1 to 2, respectively.
  • the positive electrode catalyst was made to be 25% by weight based on the total weight of the positive electrode active material.
  • a lithium metal thin film was prepared as a negative electrode.
  • a lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that the content of the transition metal complex included in the positive electrode catalyst was 25% by weight.
  • the transition metal composite is a positive electrode catalyst of Preparation Examples 1 to 6, which is a positive electrode catalyst bonded to a porous carbon, and a comparative catalyst of Comparative Preparation Example 1, which is a positive electrode catalyst containing a porous carbon that is not bonded to a transition metal complex
  • the anode catalyst was found to have no difference on the SEM photograph.
  • the transition metal complex was evenly dispersed and bonded to the surface of the porous carbon through ⁇ - ⁇ interaction. That is, the transition metal complex has a size of several tens of ⁇ m, but it is confirmed that there is no difference between the SEM picture of the positive electrode catalyst in which the transition metal complex is bonded to the porous carbon and the SEM picture of the porous carbon to which the transition metal complex is not bonded. , It can be seen that the transition metal complex is evenly dispersed and bonded to the surface of the porous carbon.
  • FIG. 5 is a photograph showing a process in which the precursor (FePC) and porous carbon (CNT) of the transition metal complex in Preparation Example 1 are dissolved in an organic solvent (DMF) (FePC4-CNT mixture) and filtered.
  • DMF organic solvent
  • FePC is strongly adsorbed to CNT through ⁇ - ⁇ interaction.
  • FePC has a strong blue color even when only a small amount is dispersed in a solution.
  • the FePC4-CNT mixture was blue, but it was found that the blue color disappeared in the filtration solution, indicating that FePC was adsorbed to the CNT.
  • TGA Thermogravimetric analysis
  • Table 2 shows Elemental Analysis (EA) and Inductively coupled plasma (ICP) data for the positive electrode catalyst (FePC16-CNT) prepared in Preparation Example 6.
  • FIG. 8A and 8B are graphs showing initial discharge capacity (FIG. 8A) and Coulomb efficiency (FIG. 8B) of the lithium-sulfur secondary batteries prepared in Example 1 and Comparative Example 1, respectively.
  • Example 1 (S / FePC4-CNT) showed that the initial discharge capacity was significantly improved and the overvoltage was improved compared to Comparative Example 1 (ref).
  • FIGS. 9A and 9B are graphs showing the initial discharge capacity (FIG. 9A) and Coulomb efficiency (FIG. 9B) of the lithium-sulfur secondary batteries prepared in Example 2 and Comparative Example 1, respectively.
  • Example 2 (S / NiPC4-CNT) has increased initial discharge capacity, improved overvoltage, increased high rate capacity, and improved life characteristics compared to Comparative Example 1 (ref). Turned out to be.
  • FIGS. 10A and 10B are graphs showing initial discharge capacity (FIG. 10A) and Coulomb efficiency (FIG. 10B) of the lithium-sulfur secondary batteries prepared in Example 3 and Comparative Example 1, respectively.
  • Example 3 (S / MnPC4-CNT) showed that the initial discharge capacity increased, the overvoltage improved, and the high rate capacity increased significantly compared to Comparative Example 1 (ref).
  • FIG. 11A and 11B are graphs showing initial discharge capacities (FIG. 11A) and Coulomb efficiency (FIG. 11B) of the lithium-sulfur secondary batteries prepared in Example 4 and Comparative Example 1, respectively.
  • Example 4 (S / CuPC4-CNT) showed that the initial discharge capacity increased and the high rate capacity increased compared to Comparative Example 1 (ref).
  • FIG. 12A and 12B are graphs showing initial discharge capacities (FIG. 12A) and Coulomb efficiency (FIG. 12B) of the lithium-sulfur secondary batteries prepared in Example 5 and Comparative Example 1, respectively.
  • Example 5 (S / ZnPC4-CNT) showed that the initial discharge capacity increased compared to Comparative Example 1 (ref).
  • FIG. 13A and 13B are graphs showing initial discharge capacity (FIG. 13A) and Coulomb efficiency (FIG. 13B) of the lithium-sulfur secondary batteries prepared in Comparative Example 2 and Comparative Example 1, respectively.
  • Comparative Example 2 (S / CoPC4-CNT) showed no improvement compared to Comparative Example 1 (ref).
  • Example 1 the initial discharge capacity was significantly superior, in Example 2, the index of all parts was superior, and in Example 3, the high rate discharge capacity was significantly superior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a lithium secondary battery and, more specifically, to a lithium secondary battery comprising a cathode catalyst including a transition metal composite having a stable structure in which four nitrogens are bonded to the transition metal as a cathode catalyst for a reduction reaction of sulfur generated during operation of the lithium secondary battery having a sulfur-containing material included in a cathode thereof, thereby improving performance and longevity of the battery.

Description

리튬 이차전지Lithium secondary battery
본 출원은 2018년 11월 7일자 한국 특허 출원 제10-2018-0135536호, 2018년 11월 7일자 한국 특허 출원 제10-2018-0135538호 및 2019년 11월 4일자 한국 특허 출원 제10-2019-0139543호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application is for Korean Patent Application No. 10-2018-0135536 filed on November 7, 2018, Korean Patent Application No. 10-2018-0135538 for November 7, 2018 and Korean Patent Application No. 10-2019 for November 4, 2019 Claims the benefit of priority based on -0139543, and all content disclosed in the literature of the relevant Korean patent application is included as part of this specification.
본 발명은 전극에서 발생하는 화학반응을 촉진시켜 전지의 상용화 및 고성능화를 가능하게 할 수 있는 양극 촉매를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery comprising a positive electrode catalyst that can facilitate the commercialization and high performance of the battery by promoting the chemical reaction occurring at the electrode.
최근까지, 음극으로 리튬을 사용하는 고에너지 밀도 전지를 개발하는데 있어 상당한 관심이 있어 왔다. 예를 들어, 비-전기 활성 재료의 존재로 음극의 중량 및 부피를 증가시켜서 전지의 에너지 밀도를 감소시키는 리튬 삽입된 탄소 음극, 및 니켈 또는 카드뮴 전극을 갖는 다른 전기화학 시스템과 비교하여, 리튬 금속은 저중량 및 고용량 특성을 가지므로, 전기화학 전지의 음극 활물질로서 매우 관심을 끌고 있다. 리튬 금속 음극, 또는 리튬 금속을 주로 포함하는 음극은, 리튬-이온, 니켈 금속 수소화물 또는 니켈-카드뮴 전지와 같은 전지보다는 경량화되고 고에너지 밀도를 갖는 전지를 구성할 기회를 제공한다. 이러한 특징들은 프리미엄이 낮은 가중치로 지불되는, 휴대폰 및 랩-탑 컴퓨터와 같은 휴대용 전자 디바이스용 전지에 대해 매우 바람직하다.Until recently, there has been considerable interest in developing high energy density cells using lithium as the negative electrode. Lithium metal compared to other electrochemical systems with lithium intercalated carbon anodes, and nickel or cadmium electrodes, for example, reducing the energy density of the cell by increasing the weight and volume of the anode in the presence of a non-electroactive material Since it has low weight and high capacity characteristics, it is very interesting as a negative electrode active material for electrochemical cells. A lithium metal negative electrode, or a negative electrode mainly containing lithium metal, provides an opportunity to construct a lighter and higher energy density battery than a battery such as a lithium-ion, nickel metal hydride, or nickel-cadmium battery. These features are highly desirable for batteries for portable electronic devices such as cell phones and laptop computers, where the premium is paid at low weight.
이러한 유형의 리튬 전지용 양극 활물질들은 공지되어 있고, 이들은 황-황 결합을 포함하는 황 함유 양극 활물질을 포함하며, 황-황 결합의 전기화학적 절단(환원) 및 재형성(산화)으로부터 고에너지 용량 및 재충전능이 달성된다.Cathode active materials for lithium batteries of this type are known, and they contain a sulfur-containing positive electrode active material comprising a sulfur-sulfur bond, a high energy capacity from electrochemical cutting (reduction) and reforming (oxidation) of the sulfur-sulfur bond and Rechargeability is achieved.
상기와 같이 음극 활물질로 리튬과 알칼리 금속을, 양극 활물질로 황을 사용하는 리튬-황 이차전지는 이론 에너지 밀도가 2,800 Wh/kg, 황의 이론 용량이 1,675 mAh/g으로, 다른 전지 시스템에 비하여 월등히 높고, 황은 자원이 풍부하여 값이 싸며, 환경친화적인 물질이라는 장점 때문에, 휴대 전자기기로 주목을 받고 있다Lithium-sulfur secondary batteries using lithium and alkali metal as the negative electrode active material and sulfur as the positive electrode active material have a theoretical energy density of 2,800 Wh / kg and a theoretical capacity of sulfur of 1,675 mAh / g, which is superior to other battery systems. High, sulfur is abundant in resources, it is inexpensive, and it is attracting attention as a portable electronic device due to its advantages as an environment-friendly material.
그러나, 리튬-황 이차전지의 양극 활물질로 사용되는 황은 부도체이므로 전기화학 반응으로 생성된 전자의 이동이 어렵고, 충방전 과정에서 발생되는 폴리 설파이드(Li2S8 ~ Li2S4) 용출 문제 및 황과 리튬 설파이드(Li2S2/Li2S) 의 낮은 전기 전도성으로 인한 전기화학 반응의 느린 kinetic으로 인하여 전지 수명 특성과 속도 특성이 저해되는 문제들이 있었다.However, since the sulfur used as the positive electrode active material of the lithium-sulfur secondary battery is a non-conductor, the movement of electrons generated by the electrochemical reaction is difficult, and the polysulfide (Li 2 S 8 ~ Li 2 S 4 ) elution problem generated during the charging and discharging process and Due to the low electrical conductivity of sulfur and lithium sulfide (Li 2 S 2 / Li 2 S), there was a problem in that battery life characteristics and speed characteristics were inhibited due to the slow kinetic of the electrochemical reaction.
이와 관련하여, 최근에는 전기화학적 촉매로 많이 사용되었던 백금(Pt)을 사용하여 리튬-황 이차전지의 충방전 과정에서, 황의 산화환원 반응의 kinetic 을 향상시킴으로써 리튬-황 이차전지의 고성능화를 구현한 연구가 보고된 바 있다 (Hesham Al Salem et al.: "Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries": J.Am.Chem.Soc., 2015, 137, 11542).In this regard, in the process of charging and discharging a lithium-sulfur secondary battery using platinum (Pt), which has been recently used as an electrochemical catalyst, a high performance of the lithium-sulfur secondary battery is realized by improving the kinetic of the redox reaction of sulfur. Studies have been reported (Hesham Al Salem et al .: "Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries": J.Am.Chem.Soc., 2015, 137, 11542).
그러나, 백금과 같은 귀금속 촉매는 고가이므로 상업화가 힘든 소재일 뿐만 아니라, 충방전 과정에서 황의 산화환원 반응에 의해 피독 가능성이 있어 리튬-황 이차전지의 양극소재로 활용하기가 쉽지 않은 문제가 있다.However, since a precious metal catalyst such as platinum is expensive, it is not only a material that is difficult to commercialize, but also has a problem in that it is not easy to use it as a positive electrode material for a lithium-sulfur secondary battery due to the possibility of poisoning by the redox reaction of sulfur in the process of charging and discharging.
이에, 리튬-황 이차전지의 충방전시 전기화학 반응의 kinetic을 향상시킬 수 있고, 아울러, 비용 측면에서 상업화에 유리한 양극소재에 대한 기술 개발이 지속적으로 요구되고 있다.Accordingly, it is possible to improve the kinetic of the electrochemical reaction during charging and discharging of the lithium-sulfur secondary battery, and at the same time, it is continuously required to develop a technology for a positive electrode material that is advantageous for commercialization.
[선행기술문헌][Advanced technical literature]
[특허문헌][Patent Document]
(특허문헌 1) 한국공개특허 제2013-0014650호(Patent Document 1) Korean Patent Publication No. 2013-0014650
(특허문헌 2) 국제공개특허 제2018-0013499호(Patent Document 2) International Publication Patent No. 2018-0013499
(특허문헌 3) 국제공개특허 제2017-0023304호(Patent Document 3) International Publication No. 2017-0023304
본 발명자들은 상기 문제점을 해결하기 위해 다각적으로 연구를 수행한 결과, 양극에 황 함유 물질을 포함는 리튬 이차전지의 방전시 양극에서 발생되는 황의 환원 반응에 대한 촉매로서 다공성 탄소의 외부 표면 및 기공 내부 표면에 전이금속과 도핑원소를 포함하는 전이금속 복합체를 도입하되, 상기 전이금속 복합체 중에서도 전이금속에 4개의 질소가 결합되어 안정성이 높은 전이금속 복합체를 도입함으로써, 리튬 이차전지의 성능과 수명 특성을 개선할 수 있다는 것을 확인하였다.The present inventors conducted various studies to solve the above problems, and as a catalyst for the reduction reaction of sulfur generated in the positive electrode during discharge of a lithium secondary battery containing a sulfur-containing material in the positive electrode, the outer surface of the porous carbon and the inner surface of the pores Introducing a transition metal complex comprising a transition metal and a doping element, but among the transition metal complexes, four nitrogen is bonded to the transition metal to introduce a high stability transition metal complex, thereby improving the performance and life characteristics of a lithium secondary battery. It was confirmed that it can be done.
따라서, 본 발명의 목적은 황의 환원반응의 촉매로 적합한 양극 촉매를 포함하는 리튬 이차전지를 제공한다는 것이다.Accordingly, an object of the present invention is to provide a lithium secondary battery comprising a positive electrode catalyst suitable as a catalyst for the reduction reaction of sulfur.
상기 목적을 달성하기 위하여 본 발명은, 황 함유 물질을 포함하는 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막 및 전해액을 포함하는 리튬 이차전지에 있어서, 상기 양극은 다공성 탄소의 표면에 결합된 전이금속 복합체를 포함하는 양극 촉매을 포함하되, 상기 전이금속 복합체는 전이금속에 결합된 4개의 질소를 포함하는 것인, 리튬 이차전지를 제공한다.In order to achieve the above object, the present invention, in a lithium secondary battery comprising a positive electrode, a negative electrode containing a sulfur-containing material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, the positive electrode is bonded to the surface of the porous carbon It provides a lithium secondary battery, including a positive electrode catalyst comprising a transition metal complex, wherein the transition metal complex comprises four nitrogen bonded to the transition metal.
상기 양극은 집전체; 및 상기 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 촉매는 상기 양극 활물질층에 포함된 것일 수 있다.The positive electrode is a current collector; And a positive electrode active material layer formed on the current collector, and the positive electrode catalyst may be included in the positive electrode active material layer.
상기 양극 촉매는 상기 양극 활물질 전체 중량을 기준으로 20 내지 30 중량% 포함된 것일 수 있다.The positive electrode catalyst may be 20 to 30% by weight based on the total weight of the positive electrode active material.
상기 전이금속은 Fe, Ni, Mn, Cu 및 Zn으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.The transition metal may be one or more selected from the group consisting of Fe, Ni, Mn, Cu and Zn.
상기 전이금속 복합체는 상기 양극 촉매 전체 중량에 대해서 1 내지 20 중량% 포함된 것일 수 있다.The transition metal complex may be contained in 1 to 20% by weight based on the total weight of the positive electrode catalyst.
상기 전이금속 복합체는 상기 다공성 탄소의 외부 표면 및 기공 내부 표면 중 1종 이상의 위치에 결합된 것일 수 있다.The transition metal composite may be bonded to at least one of the porous carbon outer surface and the pore inner surface.
상기 전이금속 복합체는 π- π interaction에 의해 상기 다공성 탄소의 표면에 흡착되어 결합된 것일 수 있다.The transition metal complex may be adsorbed and bound to the surface of the porous carbon by π-π interaction.
상기 다공성 탄소는 활성탄, 탄소나노튜브(CNT; Carbon Nanotube), 그래핀, 카본 블랙, 아세틸렌 블랙, 흑연, 흑연 나노 섬유(GNF; Graphite Nanofiber) 및 플러렌으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것일 수 있다.The porous carbon includes at least one selected from the group consisting of activated carbon, carbon nanotube (CNT), graphene, carbon black, acetylene black, graphite, graphite nanofiber (GNF) and fullerene. May be
상기 다공성 탄소의 기공의 크기는 2 내지 50 nm인 것일 수 있다.The pore size of the porous carbon may be 2 to 50 nm.
본 발명에 따른 리튬 이차전지는 양극 활물질로서 황 함유 물질을 포함하고 있어, 전지 구동시 양극에서 황의 환원반응이 일어나므로, 상기 황의 환원반응의 반응속도(kinetic)을 향상시킬 수 있는 양극 촉매를 적정 함량으로 포함함으로써, 전지의 초기 방전 용량 및 수명 특성 개선 효과가 있다.Since the lithium secondary battery according to the present invention contains a sulfur-containing material as a positive electrode active material, since a reduction reaction of sulfur occurs at the positive electrode when the battery is driven, a positive electrode catalyst capable of improving the reaction rate (kinetic) of the sulfur reduction reaction is appropriate By including the content, there is an effect of improving the initial discharge capacity and life characteristics of the battery.
본 발명에 따른 양극 촉매는 전이금속에 4개의 질소가 결합되어 있는 안정적인 구조를 가지는 전이금속 복합체가 결합되어 있는 구조로 인하여, 황의 환원반응에 대한 촉매로서 효율이 향상될 수 있다.The positive electrode catalyst according to the present invention can improve efficiency as a catalyst for the reduction reaction of sulfur due to a structure in which a transition metal complex having a stable structure in which four nitrogens are bonded to a transition metal is bonded.
또한, 상기 양극 촉매 제조시, 금속-프탈로시아닌을 사용함으로써, 전이금속에 4개의 질소를 결합시키기 위한 추가적인 공정 없이도, 간소한 공정에 의해 양극 촉매를 제조할 수 있다.In addition, by using a metal-phthalocyanine in the preparation of the positive electrode catalyst, the positive electrode catalyst can be prepared by a simple process without an additional process for bonding four nitrogens to the transition metal.
또한, 상기 양극 촉매에서 상기 전이금속 복합체는 다공성 탄소의 표면에 π- π interaction에 의해 흡착되어 있어 다공성 탄소의 물리적 특성 및 화학적 특성을 그대로 유지하는 있는 효과를 나타낼 수 있다.In addition, in the positive electrode catalyst, the transition metal complex is adsorbed by a π-π interaction on the surface of the porous carbon, and thus may exhibit an effect of maintaining physical and chemical properties of the porous carbon.
또한, 상기 양극 촉매는 황의 환원반응에 대한 촉매로 사용될 수 있으며, 종래 촉매로 사용하던 고가의 백금을 대체하여 상대적으로 저가인 전이금속을 다공성 탄소의 표면에 결합시킴으로써 상업화에 유리하다.In addition, the positive electrode catalyst can be used as a catalyst for the reduction reaction of sulfur, and is advantageous for commercialization by replacing a relatively inexpensive transition metal on the surface of the porous carbon by replacing expensive platinum used as a conventional catalyst.
또한, 상기 양극 촉매는 전이금속과 질소를 포함하는 전이금속 복합체가 다공성 탄소의 외부 표면 및 기공 내부 표면에 결합된 형태로서, 상기 양극 촉매의 물질 특성상 황의 산화환원 반응에 대한 피독성 가능성이 낮아, 리튬 이차전지, 예컨대, 리튬-황 이차전지의 양극 소재로 적용하기에 적합하다. 특히, 상기 다공성 탄소의 기공에 양극 활물질인 황을 담지하여 리튬-황 이차전지의 양극재로 적용할 수 있다.In addition, the positive electrode catalyst is a form in which a transition metal complex containing a transition metal and nitrogen is bonded to the outer surface of the porous carbon and the inner surface of the pores. Due to the material properties of the positive electrode catalyst, the possibility of toxicity to the redox reaction of sulfur is low. It is suitable for application as a positive electrode material of a lithium secondary battery, for example, a lithium-sulfur secondary battery. In particular, it can be applied as a positive electrode material of a lithium-sulfur secondary battery by supporting sulfur as a positive electrode active material in the pores of the porous carbon.
또한, 상기 전이금속 복합체는 분자 단위의 크기로서 상기 다공성 탄소의 기공 내부 표면에 결합되더라도, 상기 다공성 탄소의 기공 부피와 크기가 감소되는 것을 방지할 수 있으며, 이에 따라, 황과 같은 리튬-황 이차전지의 양극 활물질 담지시 기공 막힘 현상을 방지할 수 있다. In addition, even if the transition metal complex is bonded to the pore inner surface of the porous carbon as a size of a molecular unit, it is possible to prevent the pore volume and size of the porous carbon from being reduced, and thus, lithium-sulfur secondary such as sulfur. When the positive electrode active material of the battery is supported, pore blocking can be prevented.
이와 같은 양극 촉매가 도입된 리튬-황 이차전지는 양극에서 발생하는 황의 환원반응의 활성화로 인하여 고성능화가 가능하다.The lithium-sulfur secondary battery in which the positive electrode catalyst is introduced is capable of high performance due to activation of a reduction reaction of sulfur generated in the positive electrode.
도 1은 본 발명의 일 구현예에 따른 양극 촉매의 종단면을 나타낸 모식도이다.1 is a schematic view showing a longitudinal section of an anode catalyst according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 양극 촉매의 제조방법을 나타낸 모식도이다.Figure 2 is a schematic diagram showing a method of manufacturing a positive electrode catalyst according to an embodiment of the present invention.
도 3은 본 발명의 일 구현예에 따른 양극 활물질의 종단면을 나타낸 모식도이다.3 is a schematic view showing a longitudinal section of a positive electrode active material according to an embodiment of the present invention.
도 4는 제조예 1 내지 6 및 비교 제조예 1 내지 2에서 각각 제조된 양극 촉매의 SEM(scanning electron microscope) 사진이다.4 is a scanning electron microscope (SEM) photograph of the positive electrode catalysts prepared in Preparation Examples 1 to 6 and Comparative Preparation Examples 1 to 2, respectively.
도 5는 제조예 1에서 전이금속 복합체의 전구체(FePC)와 다공성 탄소(CNT)가 유기 용매(DMF)에 용해된 혼합액(FePC4-CNT 혼합액) 및 여과(filtraion)시키는 과정을 나타낸 사진이다.FIG. 5 is a photograph showing a process in which the precursor (FePC) and porous carbon (CNT) of the transition metal complex in Preparation Example 1 are dissolved in an organic solvent (DMF) (FePC4-CNT mixture) and filtered.
도 6은 제조예 6에서 사용된 전이금속 복합체의 전구체(FePC) 및 양극 촉매(FePC16-CNT)에 대한 XRD(x-ray diffraction) 그래프이다.6 is an XRD (x-ray diffraction) graph for the precursor (FePC) and the positive electrode catalyst (FePC16-CNT) of the transition metal complex used in Preparation Example 6.
도 7은 제조예 6에서 제조된 양극 촉매(FePC16-CNT)에 대한 TGA(Thermogravimetric analysis) 그래프이다.7 is a TGA (Thermogravimetric analysis) graph for the positive electrode catalyst (FePC16-CNT) prepared in Preparation Example 6.
도 8a 및 도 8b는 실시예 1 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 8a) 및 쿨룡효율(도 8b)을 나타낸 그래프이다.8A and 8B are graphs showing initial discharge capacity (FIG. 8A) and Coulomb efficiency (FIG. 8B) of the lithium-sulfur secondary batteries prepared in Example 1 and Comparative Example 1, respectively.
도 9a 및 도 9b는 실시예 2 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 9a) 및 쿨룡효율(도 9b)을 나타낸 그래프이다.9A and 9B are graphs showing the initial discharge capacity (FIG. 9A) and Coulomb efficiency (FIG. 9B) of the lithium-sulfur secondary batteries prepared in Example 2 and Comparative Example 1, respectively.
도 10a 및 도 10b은 실시예 3 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 10a) 및 쿨룡효율(도 10b)을 나타낸 그래프이다.10A and 10B are graphs showing initial discharge capacity (FIG. 10A) and Coulomb efficiency (FIG. 10B) of the lithium-sulfur secondary batteries prepared in Example 3 and Comparative Example 1, respectively.
도 11a 및 도 11b은 실시예 4 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 11a) 및 쿨룡효율(도 11b)을 나타낸 그래프이다.11A and 11B are graphs showing initial discharge capacities (FIG. 11A) and Coulomb efficiency (FIG. 11B) of the lithium-sulfur secondary batteries prepared in Example 4 and Comparative Example 1, respectively.
도 12a 및 도 12b은 실시예 5 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 12a) 및 쿨룡효율(도 12b)을 나타낸 그래프이다.12A and 12B are graphs showing initial discharge capacities (FIG. 12A) and Coulomb efficiency (FIG. 12B) of the lithium-sulfur secondary batteries prepared in Example 5 and Comparative Example 1, respectively.
도 13a 및 도 13b는 비교예 2 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 13a) 및 쿨룡효율(도 13b)을 나타낸 그래프이다.13A and 13B are graphs showing initial discharge capacity (FIG. 13A) and Coulomb efficiency (FIG. 13B) of the lithium-sulfur secondary batteries prepared in Comparative Example 2 and Comparative Example 1, respectively.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid understanding of the present invention.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms or words used in the present specification and claims should not be interpreted as being limited to a conventional or dictionary meaning, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.
리튬 이차전지Lithium secondary battery
본 발명은 황 함유 물질을 포함하는 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막 및 전해액을 포함하는 리튬 이차전지에 있어서, 상기 양극은 다공성 탄소의 표면에 결합된 전이금속 복합체를 포함하는 양극 촉매을 포함하되, 상기 전이금속 복합체는 전이금속에 결합된 4개의 질소를 포함하는, 리튬 이차전지에 관한 것이다.The present invention is a lithium secondary battery comprising a positive electrode comprising a sulfur-containing material, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, the positive electrode comprising a transition metal composite bonded to the surface of the porous carbon Including a catalyst, the transition metal complex is related to a lithium secondary battery comprising four nitrogens bound to a transition metal.
상기 양극 촉매는 상기 리튬 이차전지의 양극에서 양극 활물질 전체 중량을 기준으로 20 내지 30 중량%, 바람직하게는 22 내지 28 중량%로 포함될 수 있다. 상기 범위 미만이면 황 환원반응에 대한 촉매 활성이 저하되어 전지 성능과 수명 특성 개선 효과가 미미하고, 상기 범위 초과하여 전지의 용량 저하 현상이 발생할 수 있다.The positive electrode catalyst may be included in 20 to 30% by weight, preferably 22 to 28% by weight based on the total weight of the positive electrode active material in the positive electrode of the lithium secondary battery. If it is less than the above range, the catalytic activity for the sulfur reduction reaction is lowered, so the effect of improving battery performance and life characteristics is negligible, and a capacity deterioration phenomenon of the battery may occur beyond the above range.
상기 리튬 이차전지는 양극에 황 함유 물질을 포함하고 있어, 리튬-황 이차전지일 수 있다.The lithium secondary battery may contain a sulfur-containing material in the positive electrode, and thus may be a lithium-sulfur secondary battery.
본 발명에 있어서, 상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다.In the present invention, the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
상기 양극 집전체는 우수한 도전성을 갖는 발포 알루미늄, 발포 니켈 등을 사용할 수 있다.The positive electrode current collector may be foamed aluminum having excellent conductivity, foamed nickel, or the like.
상기 양극 활물질층은 상기 황 함유 물질을 포함하는 양극 활물질과 상기 양극 촉매를 포함할 수 있다. 또한, 상기 양극 활물질층은 상기 양극 활물질과 함께 전자가 상기 양극 내에서 원활하게 이동하도록 하기 위한 도전재, 및 상기 양극 활물질간 또는 상기 양극 활물질과 양극 집전체와의 결착력을 높이기 위한 바인더를 더 포함할 수 있다.The positive electrode active material layer may include a positive electrode active material containing the sulfur-containing material and the positive electrode catalyst. In addition, the positive electrode active material layer further includes a conductive material for smoothly moving electrons within the positive electrode together with the positive electrode active material, and a binder for increasing binding force between the positive electrode active material or between the positive electrode active material and the positive electrode current collector. can do.
상기 양극 활물질에 포함된 황 함유 물질은 황 원소(elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n은 1 이상의 실수임), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n, x는 2.5 내지 50의 실수이고, n은 2 이상의 실수임) 등일 수 있다.The sulfur-containing material included in the positive electrode active material may include elemental sulfur (S8), a sulfur-based compound, or a mixture thereof. Specifically, the sulfur-based compound is Li 2 S n (n is a real number of 1 or more), an organic sulfur compound or a carbon-sulfur polymer ((C 2 S x ) n , x is a real number of 2.5 to 50, n is 2 This is a real mistake).
상기 양극 활물질은 상기 양극 활물질층 총 중량에 대하여 60 내지 90 중량%로 포함될 수 있다. 상기 범위 미만이면 전지의 용량이 저하되고, 상기 범위 초과이면 과전압이 발생할 수 있다.The positive electrode active material may be included in 60 to 90% by weight based on the total weight of the positive electrode active material layer. If it is less than the above range, the capacity of the battery decreases, and if it is above the above range, overvoltage may occur.
또한, 상기 도전재는 카본 블랙, 아세틸렌 블랙, 케첸 블랙과 같은 탄소계 물질; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤과 같은 전도성 고분자일 수 있다. 상기 도전재는 상기 양극 활물질층 총 중량에 대하여 5 내지 20중량%로 포함되는 것이 바람직할 수 있다. 상기 도전재의 함량이 5중량% 미만이면 상기 도전재 사용에 따른 도전성 향상효과가 미미하고, 반면 20중량%를 초과하면 양극 활물질의 함량이 상대적으로 적게 되어 용량 특성이 저하될 우려가 있다.In addition, the conductive material is a carbon-based material, such as carbon black, acetylene black, Ketjen black; Or it may be a conductive polymer such as polyaniline, polythiophene, polyacetylene, and polypyrrole. The conductive material may be preferably included in 5 to 20% by weight relative to the total weight of the positive electrode active material layer. If the content of the conductive material is less than 5% by weight, the effect of improving conductivity according to the use of the conductive material is insignificant, whereas when it exceeds 20% by weight, the content of the positive electrode active material is relatively small, and there is a fear that capacity characteristics are deteriorated.
또한, 상기 바인더로는 폴리(비닐 아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬레이티드 폴리에틸렌옥사이드, 가교결합된 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌과 폴리비닐리덴플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 이들의 유도체, 블랜드, 코폴리머 등이 사용될 수 있다. 상기 바인더는 상기 양극 활물질층 총 중량에 대하여 5 내지 20중량%로 포함되는 것이 바람직할 수 있다. 상기 바인더의 함량이 5중량% 미만이면 상기 바인더 사용에 따른 양극 활물질간 또는 양극 활물질과 양극 집전체간 결착력 개선효과가 미미하고, 반면 20중량%를 초과하면 상기 양극 활물질의 함량이 상대적으로 적게 되어 용량 특성이 저하될 우려가 있다.In addition, the binder includes poly (vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide, polyvinyl ether, poly (methyl methacrylate), poly Copolymer of vinylidene fluoride, polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine , Polystyrene, their derivatives, blends, copolymers, and the like. The binder may be preferably included in 5 to 20% by weight relative to the total weight of the positive electrode active material layer. When the content of the binder is less than 5% by weight, the effect of improving binding strength between the positive electrode active material or between the positive electrode active material and the positive electrode current collector according to the use of the binder is negligible, whereas when it exceeds 20% by weight, the content of the positive electrode active material is relatively small. There is a possibility that capacity characteristics are deteriorated.
상기와 같은 양극은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 상기 양극 활물질, 양극 촉매, 도전재 및 바인더를 유기용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을, 상기 양극집전체 위에 도포한 후 건조 및 선택적으로 압연하여 제조될 수 있다.The positive electrode as described above may be prepared according to a conventional method. Specifically, a positive electrode active material layer-forming composition prepared by mixing the positive electrode active material, positive electrode catalyst, conductive material, and binder on an organic solvent, on the positive electrode current collector After application, it can be prepared by drying and optionally rolling.
이때 상기 유기용매로는 상기 양극 활물질, 양극 촉매, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.At this time, the organic solvent may uniformly disperse the positive electrode active material, the positive electrode catalyst, the binder, and the conductive material, and it is preferable to use one that is easily evaporated. Specific examples include acetonitrile, methanol, ethanol, tetrahydrofuran, water, and isopropyl alcohol.
본 발명에 있어서, 상기 음극은 리튬 금속 박막이거나, 또는 음극 집전체 및 상기 음극 집전체 상에 형성된 음극 활물질층을 포함할 수 있다.In the present invention, the negative electrode may be a lithium metal thin film, or may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
상기 음극 집전체는 구리, 알루미늄, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.The negative electrode current collector may be selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof. The stainless steel may be surface treated with carbon, nickel, titanium or silver, and an aluminum-cadmium alloy may be used as the alloy. In addition, calcined carbon, a non-conductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
상기 음극 활물질층은 음극 활물질로서 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택되는 것을 포함할 수 있다. The negative electrode active material layer is a negative electrode active material composed of a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal and lithium alloy It may include those selected from the group.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 상기 리튬-황 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 구체적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 또한, 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 대표적인 예로는 산화 주석(SnO2), 티타늄 나이트레이트, 실리콘(Si) 등을 들 수 있으나 이에 한정되는 것은 아니다. 상기 리튬 금속의 합금은 구체적으로 리튬과 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, 또는 Cd의 금속과의 합금일 수 있다.As a material capable of reversibly intercalating / deintercalating the lithium ions, a carbon-based negative electrode active material generally used in the lithium-sulfur secondary battery may be used, and specific examples include crystalline Carbon, amorphous carbon, or a combination of these may be used. In addition, a typical example of a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion includes, but is not limited to, tin oxide (SnO 2 ), titanium nitrate, silicon (Si), and the like. The lithium metal alloy may be specifically an alloy of lithium and Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, or Cd.
또한, 상기 음극은 상기한 음극 활물질과 함께 선택적으로 도전재 및 바인더를 더 포함할 수 있다. 상기 도전재 및 바인더의 종류 및 함량은 앞서 설명한 바와 동일하다.In addition, the negative electrode may further include a conductive material and a binder selectively together with the negative electrode active material. The types and contents of the conductive material and the binder are the same as described above.
본 발명에 있어서, 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the separator is a physical separator having a function of physically separating an electrode, and can be used without particular limitation as long as it is used as a separator in a lithium secondary battery. It is preferable that it has excellent moisture permeability. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer, alone It may be used as or by laminating them, or a conventional porous nonwoven fabric, for example, a high melting point glass fiber, a nonwoven fabric made of polyethylene terephthalate fiber, etc. may be used, but is not limited thereto.
본 발명에 있어서, 상기 전해액은 유기용매와 리튬염을 포함할 수 있다.In the present invention, the electrolyte solution may include an organic solvent and a lithium salt.
상기 유기용매는 구체적으로, 아릴 화합물, 바이사이클릭 에테르, 비환형 카보네이트, 설폭사이드 화합물, 락톤 화합물, 케톤 화합물, 에스테르 화합물, 설페이트 화합물, 설파이트 화합물 등과 같은 극성 용매일 수 있다.Specifically, the organic solvent may be a polar solvent such as an aryl compound, bicyclic ether, acyclic carbonate, sulfoxide compound, lactone compound, ketone compound, ester compound, sulfate compound, sulfite compound, or the like.
보다 구체적으로는 상기 유기용매는 1,2-디메톡시에탄, 1,2-디에톡시에탄, 1,2-디부톡시에탄, 디옥솔란(Dioxolane, DOL), 1,4-디옥산, 테트라하이드로푸란, 2-메틸테트라하이드로퓨란, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트, 디프로필카보네이트, 부틸에틸카보네이트, 에틸프로파노에이트(EP), 톨루엔, 자일렌, 디메틸에테르(dimethyl ether, DME), 디에틸에테르, 트리에틸렌글리콜모노메틸에테르(Triethylene glycol monomethyl ether, TEGME), 트리에틸렌글리콜디메틸에테르(Triethylene glycol dimethyl ether, TEGDME), 디글라임, 테트라글라임, 헥사메틸 포스포릭 트리아마이드(hexamethyl phosphoric triamide), 감마부티로락톤(GBL), 아세토니트릴, 프로피오니트릴, 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 아세트산에스테르, 부티르산에스테르 및 프로피온산에스테르, 디메틸포름아마이드, 설포란(SL), 메틸설포란, 디메틸아세트아마이드, 디메틸설폭사이드, 디메틸설페이트, 에틸렌글리콜 디아세테이트, 디메틸설파이트, 또는 에틸렌글리콜설파이트 등을 들 수 있다. 이중에서도 트리에틸렌글리콜모노메틸에테르/디옥솔란/디메틸에테르의 혼합용매가 보다 바람직할 수 있다.More specifically, the organic solvent is 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, dioxolane (DOL), 1,4-dioxane, tetrahydrofuran , 2-methyltetrahydrofuran, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), ethyl propyl carbonate, dipropyl carbonate, butyl ethyl carbonate, ethyl propano Eight (EP), toluene, xylene, dimethyl ether (DME), diethyl ether, triethylene glycol monomethyl ether (TEGME), triethylene glycol dimethyl ether (Triethylene glycol dimethyl ether, TEGDME ), Diglyme, tetraglyme, hexamethyl phosphoric triamide, gamma-butyrolactone (GBL), acetonitrile, propionitrile, ethylene carbonate (EC), propylene carbonate (PC), N- Me Tilpyrrolidone, 3-methyl-2-oxazolidone, acetic acid ester, butyric acid ester and propionic acid ester, dimethylformamide, sulfolane (SL), methyl sulfolane, dimethylacetamide, dimethyl sulfoxide, dimethyl sulfate, ethylene glycol And diacetate, dimethyl sulfite, or ethylene glycol sulfite. Among them, a mixed solvent of triethylene glycol monomethyl ether / dioxolane / dimethyl ether may be more preferable.
또한, 상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용할 수 있다. 구체적으로 상기 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2(Lithium bis(perfluoroethylsulfonyl)imide, BETI), LiN(CF3SO2)2(Lithium bis(Trifluoromethanesulfonyl)imide, LiTFSI), LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수, 바람직하게는 1≤a≤20이고, 1≤b≤20임), 리튬 폴리[4,4'-(헥사플루오로이소프로필리덴)디페녹시]술포닐이미드(lithium poly[4,4'-(hexafluoroisopropylidene)diphenoxy]sulfonylimide, LiPHFIPSI), LiCl, LiI, LiB(C2O4)2 등이 사용될 수 있으며, 이중에서도 LiTFSI, BETI 또는 LiPHFIPSI 등과 같은 술포닐기-함유 이미드 리튬 화합물이 보다 바람직할 수 있다In addition, the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt includes LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 (Lithium bis (perfluoroethylsulfonyl) imide, BETI), LiN (CF 3 SO 2 ) 2 (Lithium bis (Trifluoromethanesulfonyl) imide, LiTFSI), LiN (C a F 2a + 1 SO 2 ) (C b F 2b + 1 SO 2 ) (where a and b are natural numbers, preferably 1≤a≤20 and 1≤b≤20), lithium poly [4,4 '-(hexahexafluor Loisopropylidene) diphenoxy] sulfonylimide (lithium poly [4,4 '-(hexafluoroisopropylidene) diphenoxy] sulfonylimide, LiPHFIPSI), LiCl, LiI, LiB (C 2 O 4 ) 2, etc. may be used, Among them, a sulfonyl group-containing imide lithium compound such as LiTFSI, BETI or LiPHFIPSI may be more preferable.
또한, 상기 리튬염은 상기 전해질 전체 중량에 대하여 10 내지 35 중량%로 포함되는 것이 바람직할 수 있다. 상기 리튬염의 함량이 10 중량% 미만이면 전해질의 전도도가 낮아져 전해질 성능이 저하되고, 35 중량%를 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있다.In addition, the lithium salt may be preferably included in 10 to 35% by weight relative to the total weight of the electrolyte. When the content of the lithium salt is less than 10% by weight, the conductivity of the electrolyte is lowered to degrade the electrolyte performance, and when it exceeds 35% by weight, the viscosity of the electrolyte is increased to decrease the mobility of lithium ions.
양극 촉매Anode catalyst
본 발명에 있어서, 상기 양극 촉매는 황 함유 물질을 포함하는 리튬 이차전지에서, 황의 환원반응의 반응속도(kinetic)를 향상시키기 위한 촉매로 사용될 수 있다. In the present invention, the positive electrode catalyst may be used as a catalyst for improving the reaction rate (kinetic) of the reduction reaction of sulfur in a lithium secondary battery containing a sulfur-containing material.
본 발명에 따른 양극 촉매는 다공성 탄소의 표면에 결합된 전이금속 복합체를 포함하며, 상기 전이금속 복합체는 전이금속과 상기 전이금속에 결합된 4개의 질소를 포함한다. 이때, 상기 전이금속 복합체에 의해 촉매 활성이 조절될 수 있으므로, 상기 전이금속 복합체를 촉매점(catalytic site)이라고 명명할 수 있다.The positive electrode catalyst according to the present invention includes a transition metal complex bound to the surface of the porous carbon, and the transition metal complex includes a transition metal and four nitrogens bonded to the transition metal. At this time, since the catalytic activity can be controlled by the transition metal complex, the transition metal complex can be referred to as a catalytic site.
이하, 도면을 참조하여 본 발명에 따른 양극 촉매를 보다 상세히 설명한다.Hereinafter, the positive electrode catalyst according to the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 일 구현예에 따른 양극 촉매의 종단면을 나타낸 모식도이다.1 is a schematic view showing a longitudinal section of an anode catalyst according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 구현예에 따른 양극 촉매(1)는 다공성 탄소(10); 및 다공성 탄소(10)의 표면에 결합된 전이금속 복합체(20);를 포함할 수 있다.Referring to Figure 1, the positive electrode catalyst 1 according to an embodiment of the present invention is a porous carbon (10); And a transition metal complex 20 bonded to the surface of the porous carbon 10.
다공성 탄소(10)는 다수의 기공(11)이 형성된 입자 형태의 구조체로서, 크기가 크며 전기 전도도가 높은 소재로 이루어져 황의 산화환원 반응을 촉진시킬 수 있을 만큼의 기공 부피 및 비표면적이 있으며, 또한, 전이금속 복합체(20)의 지지체 역할을 하여 전이금속 복합체(20)의 성능, 내구성 및 효율을 유지 또는 향상시킬 수 있다.The porous carbon 10 is a particle-shaped structure in which a number of pores 11 are formed, and is made of a material having a large size and high electrical conductivity, and has a pore volume and a specific surface area sufficient to promote the redox reaction of sulfur. , As a support for the transition metal composite 20, it is possible to maintain or improve the performance, durability and efficiency of the transition metal composite 20.
다공성 탄소(10)는 활성탄, 탄소나노튜브(CNT; Carbon Nanotube), 그래핀, 카본 블랙, 아세틸렌 블랙, 흑연, 흑연 나노 섬유(GNF; Graphite Nanofiber) 및 플러렌으로 이루어진 군에서 선택되는 1종 이상의 탄소 소재로 이루어진 것일 수 있다.The porous carbon 10 is at least one carbon selected from the group consisting of activated carbon, carbon nanotube (CNT), graphene, carbon black, acetylene black, graphite, graphite nanofiber (GNF) and fullerene. It may be made of material.
다공성 탄소(10)에 형성된 기공(11)은 일부가 개방된 형태로 형성되어 있으며, 기공(11) 내부에는 전극의 활물질, 구체적으로는 리튬-황 이차전지의 양극 활물질이 담지될 수 있다.The pores 11 formed on the porous carbon 10 are partially formed in an open shape, and inside the pores 11, an active material of an electrode, specifically, a positive electrode active material of a lithium-sulfur secondary battery may be supported.
다공성 탄소(10)는 입경 1 내지 50 ㎛, 바람직하게는 5 내지 30 ㎛ 인 입자일 수 있다. 상기 범위 미만이면 전해액의 침투와 웨팅(wetting)으로 인하여 리튬 이온 전달 효율이 저하될 수 있고, 상기 범위 초과이면 전극 중량 대비 전극 기공이 증가하여 부피가 커질 수 있다.The porous carbon 10 may be particles having a particle diameter of 1 to 50 μm, preferably 5 to 30 μm. If it is less than the above range, lithium ion transfer efficiency may be reduced due to penetration and wetting of the electrolyte, and if it is above the above range, the volume of the electrode pores may increase due to an increase in electrode pores compared to the electrode weight.
다공성 탄소(10)에 형성된 기공(11)은 2 내지 50 nm, 바람직하게는 2 내지 45 nm, 보다 바람직하게는 2 내지 40 nm의 메조 기공일 수 있다. 상기 범위 미만이면 황이 함침되는 과정에서 기공(11) 막힘 현상이 일어날 수 있고, 특히, 양극 촉매(1)를 리튬 이차전지, 예컨대, 리튬-황 이차전지에 적용시 양극 활물질인 액상의 황을 함침하는 과정에서 기공(11) 막힘 현상이 일어나 황이 각 기공에 균일하게 담지 되지 않을 수 있고, 또한, 기공(11) 부피 제한으로 인하여 기공(11) 내에 황의 담지량이 저하될 수 있다. 또한, 상기 범위 초과일 경우, 매크로 기공이 되어 황의 환원반응에서 반응물이 용출될 수 있고, 특히, 양극 촉매(1)를 리튬 이차전지, 예컨대, 리튬-황 이차전지에 적용시 충방전시 양극의 중간 생성물인 폴리 설파이드가 용출될 수 있다. The pores 11 formed in the porous carbon 10 may be meso pores of 2 to 50 nm, preferably 2 to 45 nm, and more preferably 2 to 40 nm. If it is less than the above range, clogging of the pores 11 may occur in the process of impregnation of sulfur. In particular, when the positive electrode catalyst 1 is applied to a lithium secondary battery, for example, a lithium-sulfur secondary battery, impregnated liquid sulfur, which is a positive electrode active material, is impregnated. During the process, pores 11 may be clogged, and sulfur may not be uniformly supported in each pore. Also, due to the volume limitation of the pores 11, the amount of sulfur supported in the pores 11 may be reduced. In addition, when it is more than the above range, the reactants may be eluted in the reduction reaction of sulfur by becoming macro pores, and in particular, when the positive electrode catalyst 1 is applied to a lithium secondary battery, for example, a lithium-sulfur secondary battery, The intermediate product, poly sulfide, can be eluted.
또한, 다공성 탄소(10)에 포함된 기공(11)의 부피는 0.5 내지 3.5 cc/g, 바람직하게는 1.0 내지 3.0 cc/g, 보다 바람직하게는 1.5 내지 2.5 cc/g 일 수 있다. 상기 범위 미만이면 황이 함침되는 과정에서 기공(11) 막힘 현상이 일어날 수 있고, 특히, 양극 촉매(1)를 리튬 이차전지, 예컨대, 리튬-황 이차전지에 적용시 양극 활물질인 액상의 황을 함침하는 과정에서 기공(11) 막힘 현상이 일어나 황이 각 기공에 균일하게 담지 되지 않을 수 있고, 또한, 기공(11) 부피 제한으로 인하여 기공(11) 내에 황의 담지량이 저하될 수 있다. 또한, 상기 범위 초과일 경우, 매크로 기공이 되어 황의 환원반응에서 반응물이 용출될 수 있고, 특히, 양극 촉매(1)를 리튬 이차전지, 예컨대, 리튬-황 이차전지에 적용시 충방전시 양극의 중간 생성물인 폴리 설파이드가 용출될 수 있다. In addition, the volume of the pores 11 contained in the porous carbon 10 may be 0.5 to 3.5 cc / g, preferably 1.0 to 3.0 cc / g, more preferably 1.5 to 2.5 cc / g. If it is less than the above range, clogging of the pores 11 may occur in the process of impregnation of sulfur. In particular, when the positive electrode catalyst 1 is applied to a lithium secondary battery, for example, a lithium-sulfur secondary battery, impregnated liquid sulfur, which is a positive electrode active material, is impregnated. During the process, pores 11 may be clogged, and sulfur may not be uniformly supported in each pore. Also, due to the volume limitation of the pores 11, the amount of sulfur supported in the pores 11 may be reduced. In addition, when it is more than the above range, the reactants may be eluted in the reduction reaction of sulfur by becoming macro pores, and in particular, when the positive electrode catalyst 1 is applied to a lithium secondary battery, for example, a lithium-sulfur secondary battery, The intermediate product, poly sulfide, can be eluted.
또한, 다공성 탄소(10)의 표면적은 증가할수록 촉매 활성에 유리하며, 구체적으로는 100 내지 1200 ㎡/g, 바람직하게는 150 내지 500 ㎡/g 일 수 있다. 상기 범위 미만이면 촉매 활성이 저하될 수 있고, 상기 범위 초과이면 양극 촉매의 내구성이 저하될 수 있다.In addition, as the surface area of the porous carbon 10 increases, it is advantageous for catalytic activity, and specifically, it may be 100 to 1200 m 2 / g, preferably 150 to 500 m 2 / g. If it is less than the above range, the catalytic activity may decrease, and if it is above the above range, the durability of the anode catalyst may decrease.
또한, 상기 다공성 탄소(10)는 양극 촉매(1) 전체 함량을 기준으로 80 내지 99 중량%, 바람직하게는 80 내지 95 중량%, 보다 바람직하게는 80 내지 90 중량% 일 수 있다. 상기 범위 미만이면 양극 촉매(1)의 내구성이 저하될 수 있고, 상기 범위 초과이면 촉매 활성이 저하될 수 있다.In addition, the porous carbon 10 may be 80 to 99% by weight, preferably 80 to 95% by weight, more preferably 80 to 90% by weight based on the total content of the positive electrode catalyst (1). If it is less than the above range, the durability of the anode catalyst 1 may decrease, and if it is above the above range, the catalytic activity may decrease.
전이금속 복합체(20)는 전이금속에 4개의 질소가 결합되어 형성된 복합체로서, 황의 환원반응에 대한 촉매 역할을 하여 kinetic을 향상시킬 수 있다. 따라서, 리튬 이차전지, 특히 리튬-황 이차전지의 양극용 촉매로서 적합할 수 있다.The transition metal complex 20 is a complex formed by bonding four nitrogens to a transition metal, and can act as a catalyst for the reduction reaction of sulfur to improve kinetic. Therefore, it can be suitable as a catalyst for a positive electrode of a lithium secondary battery, especially a lithium-sulfur secondary battery.
전이금속 복합체(20)에 있어서, 상기 전이금속에 결합된 질소의 개수가 4개 미만일 경우 촉매로서의 활성이 저하되고, 4개 초과일 경우 구조적인 안정성이 저하되어, 황의 환원반응에 대한 촉매 활성이 저하될 수 있다.In the transition metal complex 20, when the number of nitrogens bound to the transition metal is less than 4, activity as a catalyst decreases, and when it exceeds 4, structural stability decreases, so that catalytic activity for sulfur reduction reaction It may degrade.
또한, 전이금속에 질소가 결합되었을 경우, 안정할 뿐 아니라 촉매적으로 뛰어난 특성을 나타내므로, 다른 종류의 원소가 전이금속에 결합되어 형성된 전이금속 복합체에 비해 높은 안정성 및 촉매 효과를 나타낼 수 있다. In addition, when nitrogen is bonded to the transition metal, it is not only stable, but also exhibits excellent catalytic properties, and thus can exhibit high stability and catalytic effect compared to a transition metal complex formed by bonding different types of elements to the transition metal.
전이금속 복합체(20)는 양극 촉매(1) 전체 함량을 기준으로 내지 1 내지 20 중량%, 바람직하게는 4 내지 16 중량%로 포함될 수 있다. 상기 범위 미만이면 황의 환원반응의 반응속도 향상 효과가 저하되어 전지 성능 향상 효과가 미미할 수 있으며, 상기 범위 초과이면 전이금속 복합체(20)의 함량이 증가하더라도 황의 환원반응의 반응속도가 더 이상 증가하지 않을 수 있다.The transition metal composite 20 may be included in an amount of 1 to 20% by weight, preferably 4 to 16% by weight, based on the total content of the positive electrode catalyst 1. If it is less than the above range, the effect of improving the reaction rate of the reduction reaction of sulfur may be reduced, and thus the effect of improving the battery performance may be negligible. If the content of the transition metal complex 20 is increased, the reaction rate of the reduction reaction of sulfur may no longer increase. It may not.
전이금속 복합체(20)는 다공성 탄소(10)의 외부 표면 및 기공 내부 표면 중 1종 이상의 위치에 결합될 수 있으며, 구체적으로는 전이금속 복합체(20)는 다공성 탄소(10)의 표면에 π-π interaction에 의해 흡착되어 결합된 것일 수 있다. 상기 π-π interaction 특정 원소간 결합이 아니라 면과 면 사이의 결합 형태를 가져, 다른 종류의 결합에 비해 강한 흡착을 나타낼 수 있으며, 전이금속 복합체(20)가 다공성 탄소(10)의 표면에 결합하고 있더라도 다공성 탄소(10) 본연을 특성을 유지할 수 있게 할 수 있다.The transition metal composite 20 may be bonded to one or more positions of the outer surface of the porous carbon 10 and the inner surface of the pores, and specifically, the transition metal composite 20 may have π- on the surface of the porous carbon 10. It may be adsorbed and bound by π interaction. The π-π interaction has a binding form between a surface and a surface rather than a specific inter-element bond, and may exhibit strong adsorption compared to other types of bonds, and the transition metal complex 20 is bonded to the surface of the porous carbon 10 Even if it is, it is possible to maintain the characteristics of the porous carbon (10).
전이금속 복합체(20)에 있어서, 전이금속과 질소의 몰비는 1 : 2 내지 10, 바람직하게는 1 : 2 내지 8, 보다 바람직하게 1: 3 내지 5일 수 있다. 상기 범위 미만이면, 상기 다공성 탄소(10)의 표면에 전이금속 복합체(20)가 필요한 만큼 충분히 도핑될 수 없고, 상기 범위 초과이면 양극 촉매(1)의 단위 중량당 질소의 양이 많아져 촉매 활성이 저하될 수 있다.In the transition metal complex 20, the molar ratio of transition metal and nitrogen may be 1: 2 to 10, preferably 1: 2 to 8, and more preferably 1: 3 to 5. If it is less than the above range, the surface of the porous carbon 10 cannot be sufficiently doped with the transition metal complex 20 as necessary, and if it is above the above range, the amount of nitrogen per unit weight of the anode catalyst 1 increases, thereby increasing the catalytic activity. This can degrade.
전이금속 복합체(20)의 크기는 0.1 내지 1 nm, 바람직하게는 0.1 내지 0.9 nm, 보다 바람직하게는 0.1 내지 0.8 nm인 원자 수준의 복합체로서, 다공성 탄소(10) 내부표면 상에 결합되더라도 기공(11)의 부피와 크기 감소가 없어, 기공(11) 내부에 활물질이 담지 되더라도 기공 막힘 현상을 방지할 수 있다. The size of the transition metal composite 20 is 0.1 to 1 nm, preferably 0.1 to 0.9 nm, and more preferably 0.1 to 0.8 nm, which is an atomic level composite, even when bonded on the inner surface of the porous carbon 10. Since there is no reduction in volume and size of 11), even if the active material is carried inside the pores 11, it is possible to prevent pore clogging.
상기 전이금속은 Fe, Ni, Mn, Cu 및 Zn로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 황의 환원반응에 대한 촉매활성을 나타낼 수 있는 전이금속이라면 이에 제한되는 것은 아니다.The transition metal may be at least one selected from the group consisting of Fe, Ni, Mn, Cu, and Zn, but is not limited thereto as long as it is a transition metal capable of exhibiting catalytic activity for the reduction reaction of sulfur.
전술한 바와 같은 양극 촉매(1)은 일반적인 황의 환원반응에 대한 촉매로서 광범위하게 사용될 수 있다. 또한, 리튬 이차전지의 양극재로 사용될 수 있으며, 특히, 황의 환원반응이 수반되는 리튬-황 이차전지의 양극재로도 적용되어 전지의 고성능화를 구현할 수 있고, 저렴한 비용으로 인하여 상업화에 유리할 수 있다.The positive electrode catalyst 1 as described above can be widely used as a catalyst for the general sulfur reduction reaction. In addition, it can be used as a cathode material of a lithium secondary battery, in particular, it can also be applied as a cathode material of a lithium-sulfur secondary battery accompanied by a reduction reaction of sulfur to realize high performance of the battery, and can be advantageous for commercialization due to low cost. .
양극 촉매 제조방법Anode catalyst manufacturing method
본 발명은 또한, 전술한 바와 같은 양극 촉매의 제조방법에 관한 것으로, 상기 양극 촉매의 제조방법은 (S1) 전이금속과 질소를 포함하는 전이금속 복합체의 전구체를 용매에 용해시키는 단계; (S2) 상기 (S1) 단계에서 얻어진 전이금속 복합체의 전구체 용액에 다공성 탄소를 첨가하여 혼합하는 단계; (S3) 상기 (S2) 단계에서 얻어진 혼합액을 여과하는 단계; 및 (S4) 상기 (S3) 단계 후, 상기 혼합액의 상층에서 얻어진 파우더를 건조하는 단계;를 포함할 수 있으며, 이하, 본 발명에 따른 양극 촉매의 제조방법을 각 단계별로 보다 상세히 설명한다.The present invention also relates to a method for preparing a positive electrode catalyst as described above, wherein the method for producing the positive electrode catalyst comprises: (S1) dissolving a precursor of a transition metal complex comprising a transition metal and nitrogen in a solvent; (S2) adding and mixing porous carbon to the precursor solution of the transition metal complex obtained in the step (S1); (S3) filtering the mixed solution obtained in the step (S2); And (S4) after the step (S3), drying the powder obtained in the upper layer of the mixture; may include, it will be described below in more detail for each step of the production method of the positive electrode catalyst according to the present invention.
(S1) 단계(S1) step
(S1) 단계에서는, 전이금속과 질소를 포함하는 전이금속 복합체의 전구체를 용매에 용해시켜, 전이금속 복합체의 전구체 용액을 제조할 수 있다. 바람직하게는 상기 전이금속 복합체의 전구체를 용매에 분산시키고 초음파 처리하여 전이금속 복합체의 전구체 용액을 제조할 수 있다.In the step (S1), the precursor of the transition metal complex containing the transition metal and nitrogen is dissolved in a solvent to prepare a precursor solution of the transition metal complex. Preferably, the precursor of the transition metal complex may be dispersed in a solvent and subjected to ultrasonic treatment to prepare a precursor solution of the transition metal complex.
상기 전이금속 복합체의 전구체 용액의 농도는 고형분 중량을 기준으로 5 내지 15%, 바람직하게는 5 내지 12%, 보다 바람직하게는 5 내지 10%일 수 있다. 상기 범위 미만이면 제조되는 양극 촉매에 포함된 전이금속 복합체의 중량이 감소되어 촉매 활성이 좋지 않고, 상기 범위 초과이면 제조되는 양극 촉매에 포함된 전이금속 복합체의 중량이 증가하여 다공성 탄소의 기공이 막히는 현상을 발생할 수 있다.The concentration of the precursor solution of the transition metal complex may be 5 to 15%, preferably 5 to 12%, and more preferably 5 to 10% based on the solid content weight. If it is less than the above range, the weight of the transition metal complex contained in the cathode catalyst to be produced is reduced, resulting in poor catalytic activity, and if it is above the above range, the weight of the transition metal complex contained in the cathode catalyst to be produced is increased to block the pores of the porous carbon. Symptoms may occur.
상기 전이금속 복합체의 전구체는 철 프탈로시아닌(iron phthalocyanine), 니켈 프탈로시아닌, 망간 프탈로시아닌, 구리 프탈로시아닌, 및 아연 프탈로시아닌으로 이루어진 군에서 선택되는 1종 이상의 금속-프탈로시아닌(Metal-phthalocyanine, MePC)일 수 있다.The precursor of the transition metal complex may be at least one metal-phthalocyanine (MePC) selected from the group consisting of iron phthalocyanine, nickel phthalocyanine, manganese phthalocyanine, copper phthalocyanine, and zinc phthalocyanine.
상기 금속-프탈로시아닌은 질소 원자-탄소 원자의 고리가 교차하는 구조를 가진 거대 고리 화합물의 한 종류이며, 중심부에 금속 이온이 배위하고 있는 화학 구조를 가진다.The metal-phthalocyanine is a type of macrocyclic compound having a structure in which a ring of nitrogen atoms and carbon atoms intersects, and has a chemical structure in which metal ions coordinate in the center.
상기 금속-프탈로시아닌을 전이금속 복합체의 전구체로 사용하므로, 전이금속에 4개의 질소가 결합된 안정적인 구조를 가지는 전이금속 복합체를 포함하는 양극 촉매의 제조가 가능하다. 일반적으로, 전이금속에 4개의 질소를 결합시키기 위해서는 N을 포함하는 전구체 물질과 반응시키고, 또한, 암모니아(NH3) 분위기 하에서 추가적인 반응을 진행하는 등과 같은 여러 단계의 공정을 거쳐야 하나, 본 발명에서는 상술한 바와 같은 화학 구조를 가지는 금속-프탈로시아닌을 전이금속 복합체의 전구체로 사용함으로써, 간단한 공정으로 상술한 바와 같이 전이금속에 4개의 질소가 결합된 안정적인 구조를 가지는 전이금속 복합체를 포함하는 양극 촉매를 제조할 수 있다.Since the metal-phthalocyanine is used as a precursor of the transition metal complex, it is possible to manufacture a positive electrode catalyst including a transition metal complex having a stable structure in which four nitrogens are bonded to the transition metal. In general, in order to bond four nitrogens to the transition metal, it is necessary to undergo a process of several steps such as reacting with a precursor material containing N, and further reacting under an ammonia (NH 3 ) atmosphere. By using a metal-phthalocyanine having a chemical structure as described above as a precursor of a transition metal complex, a cathode catalyst comprising a transition metal complex having a stable structure in which four nitrogens are bonded to the transition metal as described above in a simple process is used. Can be produced.
상기 용매는 디메틸 카보네이트, 디메틸 포름아미드, N-메틸 포름아미드, 술폴란(테트라히드로티오펜-1,1-디옥사이드), 3-메틸술폴란, N-부틸 술폰, 디메틸 설폭사이드, 피로리디논(HEP), 디메틸피페리돈(DMPD), N-메틸 피롤리디논(NMP), N-메틸 아세트아미드, 디메틸 아세트아미드(DMAc), N,N-디메틸포름아미드(DMF), 디에틸아세트아마이드(DEAc) 디프로필아세트 아마이드(DPAc), 에탄올, 프로판올, 부탄올, 헥산올, 에틸렌글리콜, 테트라클로로에틸렌, 프로필렌글리콜, 톨루엔, 트르펜틴, 메틸 아세테이트, 에틸 아세테이트, 페트롤 에테르, 아세톤, 크레졸 및 글리세롤로 이루어진 군에서 선택되는 1종 이상의 유기 용매일 수 있으며, 바람직하게는, 상기 용매로서 DMF를 사용할 경우 상기 전이금속 복합체의 전구체의 용해도가 높을 수 있다.The solvent is dimethyl carbonate, dimethyl formamide, N-methyl formamide, sulfolane (tetrahydrothiophene-1,1-dioxide), 3-methylsulfolan, N-butyl sulfone, dimethyl sulfoxide, pyridolinone ( HEP), dimethylpiperidone (DMPD), N-methyl pyrrolidinone (NMP), N-methyl acetamide, dimethyl acetamide (DMAc), N, N-dimethylformamide (DMF), diethyl acetamide (DEAc) ) Dipropylacetamide (DPAc), ethanol, propanol, butanol, hexanol, ethylene glycol, tetrachloroethylene, propylene glycol, toluene, trapentine, methyl acetate, ethyl acetate, petroleum ether, acetone, cresol and glycerol It may be at least one organic solvent selected from, preferably, when using DMF as the solvent, the solubility of the precursor of the transition metal complex may be high.
(S2) 단계(S2) step
(S2) 단계에서는, 상기 (S1) 단계에서 얻어진 전이금속 복합체의 전구체 용액에 다공성 탄소를 첨가하여 혼합할 수 있다. 상기 다공성 탄소의 소재; 및 기공, 크기와 같은 형태적인 특성;은 앞서 설명한 바와 같다.In the step (S2), porous carbon may be added to the precursor solution of the transition metal complex obtained in the step (S1) and mixed. The material of the porous carbon; And morphological characteristics such as pore size.
이와 같은 다공성 탄소는 경질 주형법에 의해 합성될 수 있으나, 이에 제한되는 것은 아니며, 당업계에서 다공성 탄소를 합성하기 위한 통상적인 방법에 의해 전술한 바와 같은 형태의 다공성 탄소를 합성할 수 있다. The porous carbon may be synthesized by a hard molding method, but is not limited thereto, and the porous carbon in the form described above may be synthesized by a conventional method for synthesizing porous carbon in the art.
구체적으로, 탄소 소재를 이용하여 다공성 탄소를 합성할 수 있다. 이때, 다공성 탄소를 합성하는데 사용되는 탄소 소재 및 제조되는 다공성 탄소의 형상은 앞서 설명한 바와 같다.Specifically, porous carbon may be synthesized using a carbon material. At this time, the carbon material used to synthesize the porous carbon and the shape of the produced porous carbon are as described above.
상기 전이금속 복합체의 전구체 용액에 다공성 탄소를 첨가하여 혼합 시, 필요할 경우 초음파 처리 후 교반하여 혼합하여, 혼합액을 얻을 수 있다.When mixing by adding porous carbon to the precursor solution of the transition metal complex, if necessary, ultrasonic treatment is performed followed by stirring and mixing to obtain a mixed solution.
도 2는 본 발명의 일 구현예에 따른 양극 촉매의 제조방법을 나타낸 모식도이다.Figure 2 is a schematic diagram showing a method of manufacturing a positive electrode catalyst according to an embodiment of the present invention.
도 2를 참조하면, 전이금속 복합체의 전구체인 금속-프탈로시아닌(MePC)을 유기 용매로 용해시킨 용액에 다공성 탄소로서 CNT를 첨가하여, CNT의 표면에 전이금속 복합체가 결합된 양극 촉매(MePC-CNT)를 제조할 수 있다.Referring to FIG. 2, CNT is added as a porous carbon to a solution in which a metal-phthalocyanine (MePC), which is a precursor of a transition metal complex, is dissolved in an organic solvent, and a positive electrode catalyst (MePC-CNT) in which a transition metal complex is bonded to the surface of the CNT ) Can be prepared.
이때, 제조되는 양극 촉매 내에서 전이금속 복합체와 다공성 탄소의 함량이 전술한 바와 같은 중량 범위를 만족하도록, 제조 과정에서 사용량을 적절히 조절하여 사용할 수 있다.At this time, the amount of the transition metal composite and the porous carbon in the cathode catalyst to be produced can be used by appropriately adjusting the amount used in the manufacturing process, so as to satisfy the weight range as described above.
(S3) 단계(S3) step
(S3) 단계에서는, 상기 (S2) 단계에서 얻어진 혼합액을 여과 및 세정시켜, 불순물을 제거할 수 있다.In the step (S3), the mixed liquid obtained in the step (S2) can be filtered and washed to remove impurities.
(S4) 단계(S4) step
(S4) 단계에서는, 상기 (S3) 단계 후, 상기 혼합액의 상층에서 얻어진 파우더를 건조하여, 양극 촉매를 얻을 수 있다.In the step (S4), after the step (S3), the powder obtained in the upper layer of the mixed solution may be dried to obtain an anode catalyst.
상기 양극 촉매는 다공성 탄소의 표면에 결합된 전이금속 복합체를 포함하는 구조로서, 상기 결합이 잘 이루어진 양극 촉매를 얻기 위해서, 상기 건조는 60 내지 100 ℃, 바람직하게는 65 내지 95℃, 보다 바람직하게는 70 내지 90℃의 온도에서 10 내지 14시간, 바람직하게는 10.5 내지 13.5 시간, 보다 바람직하게는 11 내지 13 시간 동안 이루어지는 것일 수 있다. The positive electrode catalyst has a structure including a transition metal complex bound to the surface of the porous carbon, in order to obtain the positively formed positive electrode catalyst, the drying is 60 to 100 ° C, preferably 65 to 95 ° C, more preferably It may be made at a temperature of 70 to 90 ℃ for 10 to 14 hours, preferably 10.5 to 13.5 hours, more preferably 11 to 13 hours.
양극 활물질Anode active material
본 발명은 또한, 리튬 이차전지의 양극에 적용 가능한 양극 활물질에 관한 것이다. 바람직하게는 상기 리튬 이차전지는 양극 활물질로서 황 함유 물질을 포함하는 리튬-황 이차전지일 수 있다.The present invention also relates to a positive electrode active material applicable to the positive electrode of a lithium secondary battery. Preferably, the lithium secondary battery may be a lithium-sulfur secondary battery including a sulfur-containing material as a positive electrode active material.
도 3은 본 발명의 일 구현예에 따른 양극 활물질의 종단면을 나타낸 모식도이다.3 is a schematic view showing a longitudinal section of a positive electrode active material according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일 구현예에 따른 양극 활물질(2)은 전술한 바와 같은 양극 촉매(1); 및 양극 촉매(1)에 포함된 다공성 탄소(10)의 기공(11) 내부에 담지된 황 함유 물질(30);을 포함할 수 있다.3, the positive electrode active material 2 according to an embodiment of the present invention includes the positive electrode catalyst 1 as described above; And a sulfur-containing material 30 supported inside the pores 11 of the porous carbon 10 included in the positive electrode catalyst 1.
양극 촉매(1)의 구조 및 구성 물질은 앞서 설명한 바와 같다.The structure and constituent materials of the anode catalyst 1 are as described above.
황 함유 물질(30)은 황 원소(elemental sulfur, S8) 및 황 화합물로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 황 화합물은 구체적으로, Li2Sn(n은 1 이상의 실수임), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n, x는 2.5 내지 50의 실수이고, n은 2 이상의 실수임) 중에서 선택될 수 있다.The sulfur-containing material 30 may be one or more selected from the group consisting of elemental sulfur (S 8 ) and sulfur compounds. Specifically, the sulfur compound is Li 2 S n (n is a real number of 1 or more), an organic sulfur compound or a carbon-sulfur polymer ((C 2 S x ) n , x is a real number of 2.5 to 50, n is 2 or more Real number).
양극 활물질의 제조방법Manufacturing method of positive electrode active material
본 발명은 또한, 전술한 바와 같은 양극 활물질의 제조방법에 관한 것으로, 상기 양극 활물질의 제조방법은 (P1) 상기 양극 촉매와 황 또는 황 화합물의 혼합 분말을 형성하는 단계; (P2) 상기 혼합 분말에 황 용해용 용매를 혼합하여 혼합물을 형성하는 단계; 및 (P3) 진공 하에서 상기 혼합물을 열처리하여 황을 상기 양극 촉매의 기공에 담지 시키는 단계; 를 포함할 수 있다.The present invention also relates to a method for producing a positive electrode active material as described above, wherein the method for producing a positive electrode active material comprises: (P1) forming a mixed powder of the positive electrode catalyst and a sulfur or sulfur compound; (P2) mixing the solvent for dissolving sulfur in the mixed powder to form a mixture; And (P3) heat-treating the mixture under vacuum to support sulfur in the pores of the positive electrode catalyst. It may include.
이하, 본 발명에 따른 양극 활물질의 제조방법을 각 단계별로 보다 상세히 설명한다.Hereinafter, a method of manufacturing the positive electrode active material according to the present invention will be described in more detail for each step.
(P1) 단계(P1) step
상기 양극 활물질을 제조하기 위한 양극 촉매는 앞서 설명한 바와 같은 (S1) 내지 (S4) 단계를 포함하는 양극 촉매의 제조방법에 의해 제조될 수 있다.The positive electrode catalyst for preparing the positive electrode active material may be prepared by a method for preparing a positive electrode catalyst including steps (S1) to (S4) as described above.
상기 양극 촉매와 황은 모두 분말 상태로 혼합하여 혼합 분말을 얻을 수 있다. 이때, 제조되는 양극 활물질 전체 중량을 기준으로 황의 중량이 50 내지 80 중량%, 바람직하게는 65 내지 77 중량%가 될 수 있도록 상기 양극 촉매와 황을 혼합할 수 있다.Both the positive electrode catalyst and sulfur can be mixed in a powder state to obtain a mixed powder. At this time, the positive electrode catalyst and sulfur may be mixed so that the weight of sulfur may be 50 to 80% by weight, preferably 65 to 77% by weight based on the total weight of the positive electrode active material to be produced.
(P2) 단계(P2) step
상기 (P1) 단계에서 얻은 혼합 분말에 용매를 혼합하여 혼합물을 형성하되, 상기 용매는 황의 용해도가 높은 황 용해용 용매를 사용함으로써 상기 혼합 분말에 포함된 황을 용해시켜, 용해된 액상의 황이 상기 양극 촉매의 다공성 탄소에 포함된 기공 내부에 담지 되도록 할 수 있다.The solvent is mixed with the mixed powder obtained in the step (P1) to form a mixture, and the solvent dissolves sulfur contained in the mixed powder by using a solvent for dissolving sulfur having a high solubility of sulfur, so that the dissolved liquid sulfur is It can be carried in the pores contained in the porous carbon of the positive electrode catalyst.
이때, 상기 황 용해용 용매는 CS2 용매, 에틸렌디아민, 아세톤 및 에탄올로 이루어진 군에서 선택된 1종 이상일 수 있으며, 특히 CS2 용매를 사용할 경우 상기 혼합 분말 중에 포함된 황에 대한 선택적인 용해도가 높아 황을 용해시켜 상기 다공성 탄소에 포함된 기공 내부에 담지 되도록 하기에 유리할 수 있다.At this time, the solvent for dissolving sulfur may be at least one selected from the group consisting of CS 2 solvent, ethylenediamine, acetone, and ethanol, and in particular, when using a CS 2 solvent, the selective solubility for sulfur contained in the mixed powder is high. It may be advantageous to dissolve sulfur so that it is supported inside the pores contained in the porous carbon.
(P3) 단계(P3) step
상기 (P2) 단계에서 형성된 혼합물을 진공 하에서 열처리함으로써, 상기 양극 촉매의 다공성 탄소에 포함된 기공 내부에 담지 된 액상의 황이 상기 기공의 표면에 고착(fixation)되게 할 수 있다.By heat-treating the mixture formed in step (P2) under vacuum, it is possible to fix the liquid sulfur supported inside the pores contained in the porous carbon of the positive electrode catalyst to the surface of the pores.
상기 (P1) 내지 (P3) 단계에 의해 황이 양극 촉매에 담지된 형태를 가지는 양극 활물질을 제조할 수 있다. 상기 양극 활물질은 리튬 이차전지의 양극에 적용할 수 있다. 바람직하게는, 상기 리튬 이차전지는 리튬-황 이차전지일 수 있다.By the steps (P1) to (P3), it is possible to prepare a positive electrode active material having a form in which sulfur is supported on the positive electrode catalyst. The positive electrode active material can be applied to the positive electrode of a lithium secondary battery. Preferably, the lithium secondary battery may be a lithium-sulfur secondary battery.
본 발명에 따른 리튬 이차전지 중에서도 리튬-황 이차전지는 양극에 전술한 바와 같은 양극 촉매를 도입함으로써, 방전시 양극에서 발생하는 황의 환원반응의 kinetic을 향상시킬 수 있고, 결과적으로 리튬-황 이차전지의 고성능화를 구현할 수 있다.Among the lithium secondary batteries according to the present invention, the lithium-sulfur secondary battery can improve the kinetic of the reduction reaction of sulfur generated at the positive electrode during discharge by introducing the positive electrode catalyst as described above to the positive electrode, and consequently, the lithium-sulfur secondary battery. High performance can be implemented.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are only illustrative of the present invention, and it is apparent to those skilled in the art that various changes and modifications are possible within the scope and technical thought scope of the present invention. It is natural that changes and modifications fall within the scope of the appended claims.
제조예Manufacturing example 1 내지 6 1 to 6
(1)전이금속 복합체의 전구체 용액(MePC 용액) 제조(1) Preparation of the precursor solution (MePC solution) of the transition metal complex
하기 표 1에 기재된 바와 같은 전이금속 복합체의 전구체인 금속-프탈로시아닌(Metal-phthalocyanine, MePC, Metal= Fe, Ni, Mn, Cu, Zn, Aldrich社)을 용매인 N,N-디메틸포름아미드 (N,N-Dimethylformamide, DMF)에 분산시킨 후, 10 분 동안 bath sonication을 실시하여, MePC 용액을 제조하였다. 이때, 상기 MePC 40 mg을 DMF 500 mL에 용해시켜 MePC 용액을 제조하였다. Metal-phthalocyanine (Metal-phthalocyanine, MePC, Metal = Fe, Ni, Mn, Cu, Zn, Aldrich Co.), which is a precursor of the transition metal complex as described in Table 1 below, is a solvent N, N-dimethylformamide (N , N-Dimethylformamide, DMF), followed by bath sonication for 10 minutes to prepare a MePC solution. At this time, 40 mg of the MePC was dissolved in 500 mL of DMF to prepare a MePC solution.
이때, 제조예 1 내지 6에서 각각 사용된 MePC를 각각 FePC, NiPC, MnPC, CuPC, ZnPC 및 FePC라 한다.At this time, MePC used in Preparation Examples 1 to 6 are respectively called FePC, NiPC, MnPC, CuPC, ZnPC and FePC.
(2)다공성 탄소 혼합(2) Porous carbon mixture
상기 MePC 용액에 다공성 탄소인 CNT(CNano사) 960 mg을 첨가하고, 10분 동안 bath sonication을 실시하고, 4시간 동안 500 rpm으로 상온에서 교반시켜 혼합액을 얻었다.To the MePC solution, 960 mg of porous carbon CNT (CNano) was added, bath sonication was performed for 10 minutes, and the mixture was obtained by stirring at 500 rpm for 4 hours at room temperature.
(3)여과 및 세정(3) Filtration and cleaning
상기 혼합액을 진공펌프로 여과시킨 후, 에탄올 1000 ml로 세정하였다The mixed solution was filtered with a vacuum pump, and then washed with 1000 ml of ethanol.
(4)건조(4) Dry
상기 여과 및 세정된 혼합액의 상층 파우더를 80℃에서 12시간 동안 건조시켜, CNT에 전이금속 복합체(MePC)가 결합된 양극 촉매를 제조하였다.The upper layer powder of the filtered and washed mixture was dried at 80 ° C. for 12 hours to prepare a positive electrode catalyst in which a transition metal complex (MePC) was bonded to CNTs.
비교 compare 제조예Manufacturing example 1 One
제조예 1과 동일하게 실시하되, 전이금속 복합체의 전구체와 CNT로부터 형성된 양극 촉매를 사용하지 않고, CNT만을 사용하여 양극 촉매를 제조하였다.It carried out in the same manner as in Production Example 1, without using a positive electrode catalyst formed from the precursor of the transition metal complex and CNT, was prepared by using only CNT positive electrode catalyst.
비교 compare 제조예Manufacturing example 2 2
제조예 1과 동일하게 실시하되, 전이금속 복합체의 전구체인 금속-프탈로시아닌으로서 CoPC를 사용하여 양극 촉매를 제조하였다.A cathode catalyst was prepared in the same manner as in Preparation Example 1, using CoPC as a metal-phthalocyanine which is a precursor of the transition metal complex.
전이금속 복합체의 전구체Precursor of transition metal complex (양극 촉매에 포함된)전이금속 복합체 함량Content of transition metal complex (included in anode catalyst)
제조예1Preparation Example 1 FePC4-CNTFePC4-CNT FePCFePC 4 중량%4 wt%
제조예2Preparation Example 2 NiPC4-CNTNiPC4-CNT NiPCNiPC 4 중량%4 wt%
제조예3Preparation Example 3 MnPC4-CNTMnPC4-CNT MnPCMnPC 4 중량%4 wt%
제조예4Preparation Example 4 CuPC4-CNTCuPC4-CNT CuPCCuPC 4 중량%4 wt%
제조예5Preparation Example 5 ZnPC4-CNTZnPC4-CNT ZnPCZnPC 4 중량%4 wt%
제조예6Preparation Example 6 FePC16-CNTFePC16-CNT FePCFePC 16 중량%16% by weight
비교 제조예1Comparative Production Example 1 CNTCNT -- --
비교 제조예2Comparative Production Example 2 CoPC4-CNTCoPC4-CNT CoPCCoPC 4 중량%4 wt%
실시예Example 1 내지 6 및  1 to 6 and 비교예Comparative example 1 내지 2: 리튬 이차전지 제조 1 to 2: lithium secondary battery production
양극 활물질, 도전재 및 바인더를, 믹서를 사용하여 믹싱하여 양극 활물질층 형성용 조성물을 제조하였다. 이때, 양극 활물질로서 황, 도전재로서 카본블랙, 바인더로서 폴리비닐알코올을 각각 사용하였으며, 혼합비율은 중량비로 양극 활물질:도전재:바인더가 75:20:5가 되도록 하였다. 제조한 양극 활물질층 형성용 조성물을 알루미늄 집전체에 도포한 후 건조하여 양극을 제조하였다(양극의 에너지 밀도: 1.0mAh/㎠). A positive electrode active material, a conductive material, and a binder were mixed using a mixer to prepare a composition for forming a positive electrode active material layer. At this time, sulfur as a positive electrode active material, carbon black as a conductive material, and polyvinyl alcohol as a binder were used respectively, and the mixing ratio was set so that the positive electrode active material: conductive material: binder was 75: 20: 5 by weight. The prepared positive electrode active material layer-forming composition was applied to an aluminum current collector and dried to prepare a positive electrode (energy density of the positive electrode: 1.0 mAh / cm 2).
이때, 제조예 1 내지 6 및 비교 제조예 1 내지 2에서 각각 제조된 양극 촉매를 함께 믹싱하여 각각 실시예 1 내지 6 및 비교예 1 내지 2의 양극을 제조하였다. 상기 양극 촉매는 양극 활물질 전체 중량을 기준으로 25 중량%가 되도록 하였다.At this time, the positive electrode catalysts prepared in Preparation Examples 1 to 6 and Comparative Preparation Examples 1 to 2 were mixed together to prepare positive electrodes in Examples 1 to 6 and Comparative Examples 1 to 2, respectively. The positive electrode catalyst was made to be 25% by weight based on the total weight of the positive electrode active material.
또한, 음극으로는 리튬 금속 박막을 준비하였다.In addition, a lithium metal thin film was prepared as a negative electrode.
상기 양극과 음극을 대면하도록 위치시킨 후, 폴리에틸렌의 분리막을 상기 양극과 음극 사이에 개재하였다.After the positive electrode and the negative electrode were placed to face each other, a polyethylene separator was interposed between the positive electrode and the negative electrode.
그 후, 케이스 내부로 전해액을 주입하여 리튬-황 이차전지를 제조하였다. 이때, 상기 전해액은, 유기용매인 TEGDME/DOL/DME(1:1:1, vol%:vol%:vol%)에 리튬염인 LiTFSI를 혼합하되, LiTFSI:유기용매=1:3의 중량비로 혼합하고, LiNO3를 LiTFSI의 1/10의 중량비로 첨가한 전해액을 사용하였다.Thereafter, an electrolyte was injected into the case to prepare a lithium-sulfur secondary battery. At this time, the electrolyte solution, the organic solvent TEGDME / DOL / DME (1: 1: 1, vol%: vol%: vol%) is mixed with a lithium salt LiTFSI, LiTFSI: organic solvent = 1: 3 by weight ratio The electrolyte solution which mixed and added LiNO 3 in the weight ratio of 1/10 of LiTFSI was used.
비교예Comparative example 3  3
양극 촉매에 포함된 전이금속 복합체의 함량이 25 중량%인 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.A lithium-sulfur secondary battery was manufactured in the same manner as in Example 1, except that the content of the transition metal complex included in the positive electrode catalyst was 25% by weight.
실험예Experimental Example 1: 양극 촉매의 표면관찰 1: Surface observation of anode catalyst
제조예 및 비교 제조예에서 각각 제조된 양극 촉매의 표면을 관찰하였다.In the production examples and comparative production examples, the surfaces of the positive electrode catalysts respectively prepared were observed.
도 4는 제조예 1 내지 6 및 비교 제조예 1 내지 2에서 각각 제조된 양극 촉매의 SEM(scanning electron microscope) 사진이다.4 is a scanning electron microscope (SEM) photograph of the positive electrode catalysts prepared in Preparation Examples 1 to 6 and Comparative Preparation Examples 1 to 2, respectively.
도 4를 참조하면, 전이금속 복합체가 다공성 탄소에 결합되어 있는 양극 촉매인 제조예 1 내지 6의 양극 촉매와, 전이금속 복합체가 결합되어 있지 않은 다공성 탄소를 포함하는 양극 촉매인 비교 제조예 1의 양극 촉매는 SEM 사진 상의 차이가 없는 것으로 나타났다.Referring to Figure 4, the transition metal composite is a positive electrode catalyst of Preparation Examples 1 to 6, which is a positive electrode catalyst bonded to a porous carbon, and a comparative catalyst of Comparative Preparation Example 1, which is a positive electrode catalyst containing a porous carbon that is not bonded to a transition metal complex The anode catalyst was found to have no difference on the SEM photograph.
이로부터 제조예 1 내지 6의 양극 촉매에서, π-π interaction을 통해 전이금속 복합체가 다공성 탄소의 표면에 고르게 분산되어 결합된 것을 알 수 있다. 즉, 상기 전이금속 복합체는 수십 ㎛ 의 크기를 가지나, 전이금속 복합체가 다공성 탄소에 결합되어 있는 양극 촉매의 SEM 사진과 전이금속 복합체가 결합되어 있지 않은 다공성 탄소의 SEM 사진의 차이가 없는 것으로 확인되므로, 전이금속 복합체가 다공성 탄소의 표면에 고르게 분산되어 결합된 것을 확인할 수 있는 것이다.From this, it can be seen that in the positive electrode catalysts of Preparation Examples 1 to 6, the transition metal complex was evenly dispersed and bonded to the surface of the porous carbon through π-π interaction. That is, the transition metal complex has a size of several tens of μm, but it is confirmed that there is no difference between the SEM picture of the positive electrode catalyst in which the transition metal complex is bonded to the porous carbon and the SEM picture of the porous carbon to which the transition metal complex is not bonded. , It can be seen that the transition metal complex is evenly dispersed and bonded to the surface of the porous carbon.
실험예Experimental Example 2: 양극 촉매의 제조과정 관찰 2: Observation of anode catalyst manufacturing process
도 5는 제조예 1에서 전이금속 복합체의 전구체(FePC)와 다공성 탄소(CNT)가 유기 용매(DMF)에 용해된 혼합액(FePC4-CNT 혼합액) 및 여과(filtraion)시키는 과정을 나타낸 사진이다.FIG. 5 is a photograph showing a process in which the precursor (FePC) and porous carbon (CNT) of the transition metal complex in Preparation Example 1 are dissolved in an organic solvent (DMF) (FePC4-CNT mixture) and filtered.
도 5를 참조하면, FePC가 CNT에 π-π interaction을 통해 강하게 흡착되어 있음을 알 수 있다. 일반적으로, FePC는 소량만 용액에 분산되어 있어도 강한 푸른색을 띠는 특성을 가진다. FePC4-CNT 혼합액은 푸른빛을 띠지만 여과(filtraion) 용액에서는 푸른빛이 없어진 것을 보아, FePC가 CNT에 흡착된 것을 알 수 있다.Referring to FIG. 5, it can be seen that FePC is strongly adsorbed to CNT through π-π interaction. In general, FePC has a strong blue color even when only a small amount is dispersed in a solution. The FePC4-CNT mixture was blue, but it was found that the blue color disappeared in the filtration solution, indicating that FePC was adsorbed to the CNT.
실험예Experimental Example 3: 양극 촉매의 구조 및 성분 분석 3: Structure and composition analysis of anode catalyst
실시예 1에서 제조된 양극 촉매(FePC4-CNT)에 대한 구조 분석을 위한 실험을 실시하였다.An experiment for structural analysis of the positive electrode catalyst (FePC4-CNT) prepared in Example 1 was performed.
도 6은 제조예 6에서 사용된 전이금속 복합체의 전구체(FePC) 및 양극 촉매(FePC16-CNT)에 대한 XRD(x-ray diffraction) 그래프이다.6 is an XRD (x-ray diffraction) graph for the precursor (FePC) and the positive electrode catalyst (FePC16-CNT) of the transition metal complex used in Preparation Example 6.
도 6을 참조하면, 제조예 6에서 제조된 양극 촉매(FePC16-CNT)에서는 FePC가 단분자가 CNT 상에 고르게 분포하고 있으므로, FePC16-CNT의 XRD에서 FePC의 XRD 패턴이 나타나지 않는 것을 알 수 있다. Referring to FIG. 6, in the positive electrode catalyst (FePC16-CNT) prepared in Preparation Example 6, since FePC is a single molecule evenly distributed on CNT, it can be seen that the XRD pattern of FePC does not appear in the XRD of FePC16-CNT. .
또한, 제조예 6에서 제조된 양극 촉매(FePC16-CNT)에 대한 성분 분석을 위한 실험을 실시하였다.In addition, experiments for component analysis of the positive electrode catalyst (FePC16-CNT) prepared in Preparation Example 6 were performed.
TGA(Thermogravimetric analysis)는 air 또는 N2 분위기에서 온도를 높여가며 질량의 변화를 측정하는 기기로서, FePC를 air 조건에서 열처리 진행 시, Fe 주변에 있는 N이나 C와 같은 유기물은 날라가고, Fe가 산화되어 Fe2O3가 생성된다. 따라서, 하기에 기재된 바와 같이, Fe2O3의 무게를 확인한 후, 역으로 추적하여 FePC의 양을 도출하였다.TGA (Thermogravimetric analysis) is a device that measures the change in mass by increasing the temperature in an air or N 2 atmosphere. When heat treatment is performed in FePC under air conditions, organic substances such as N or C around Fe are blown away and Fe is Oxidation produces Fe 2 O 3 . Therefore, as described below, after confirming the weight of Fe 2 O 3 , the amount of FePC was derived by tracing in reverse.
도 7은 제조예 6에서 제조된 양극 촉매(FePC16-CNT)에 대한 TGA(Thermogravimetric analysis) 그래프이다.7 is a TGA (Thermogravimetric analysis) graph for the positive electrode catalyst (FePC16-CNT) prepared in Preparation Example 6.
하기 표 2는 제조예 6에서 제조된 양극 촉매(FePC16-CNT)에 대한 EA(Elemental analysis) 및 ICP(Inductively coupled plasma) 데이터를 나타낸 것이다.Table 2 shows Elemental Analysis (EA) and Inductively coupled plasma (ICP) data for the positive electrode catalyst (FePC16-CNT) prepared in Preparation Example 6.
EAEA ICPICP
CC NN OO FeFe
제조예 6(FePC16-CNT)Preparation Example 6 (FePC16-CNT) 93.493.4 2.72.7 1.91.9 1.61.6
도 7 및 표 2를 참조하면, 제조예 6의 양극 촉매에 포함된 FePc 함량은 TGA 결과 (2.3 wt% (Fe2O3) = ~FePC 16 wt%)와 ICP 결과 (1.6 wt% (Fe) = ~FePC 16 wt%)로 미루어 타겟 담지량 16 wt%와 일치한다.Referring to FIG. 7 and Table 2, the FePc content included in the positive electrode catalyst of Preparation Example 6 is a TGA result (2.3 wt% (Fe 2 O 3 ) = ~ FePC 16 wt%) and an ICP result (1.6 wt% (Fe) = ~ FePC 16 wt%), which matches the target loading amount of 16 wt%.
실험예Experimental Example 1: 리튬-황 이차전지의 초기 방전용량 및 수명 특성 실험 1: Experiment of initial discharge capacity and life characteristics of lithium-sulfur secondary battery
실시예 1 내지 6 및 비교예 1 내지 2에서 각각 제조된 리튬-황 이차전지의 초기 방전용량 및 수명 특성 실험을 실시하였다.Initial discharge capacity and life characteristics of the lithium-sulfur secondary batteries prepared in Examples 1 to 6 and Comparative Examples 1 to 2, respectively, were conducted.
각 리튬-황 이차전지에 대해서 0.1C (0.55 mA·cm-2) 충전/ 0.1C (0.55 mA·cm-2) 방전 2.5 사이클 후, 0.2C (1.1 mA·cm-2) 충전/ 0.2C (1.1 mA·cm- 2)방전 3 사이클 후, 0.3C (1.65 mA·cm-2) 충전/ 0.5C (2.65 mA·cm-2) 방전 조건으로 하여, 실험 결과를 측정하였다.For each lithium-sulfur secondary battery, charge 0.1C (0.55 mA · cm -2 ) / 0.1C (0.55 mA · cm -2 ) after 2.5 cycles of discharge, charge 0.2C (1.1 mA · cm -2 ) / 0.2C ( 1.1 mA · cm - 2 ) After 3 cycles of discharge, the experimental results were measured under 0.3C (1.65 mA · cm -2 ) charge / 0.5C (2.65 mA · cm -2 ) discharge conditions.
도 8a 및 도 8b는 실시예 1 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 8a) 및 쿨룡효율(도 8b)을 나타낸 그래프이다.8A and 8B are graphs showing initial discharge capacity (FIG. 8A) and Coulomb efficiency (FIG. 8B) of the lithium-sulfur secondary batteries prepared in Example 1 and Comparative Example 1, respectively.
도 8a 및 도 8b를 참조하면, 실시예 1(S/FePC4-CNT)은 비교예 1(ref)에 비해 초기 방전용량이 크게 개선되고, 과전압이 개선된 것으로 나타났다.8A and 8B, Example 1 (S / FePC4-CNT) showed that the initial discharge capacity was significantly improved and the overvoltage was improved compared to Comparative Example 1 (ref).
도 9a 및 도 9b는 실시예 2 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 9a) 및 쿨룡효율(도 9b)을 나타낸 그래프이다.9A and 9B are graphs showing the initial discharge capacity (FIG. 9A) and Coulomb efficiency (FIG. 9B) of the lithium-sulfur secondary batteries prepared in Example 2 and Comparative Example 1, respectively.
도 9a 및 도 9b를 참조하면, 실시예 2(S/NiPC4-CNT)는 비교예 1(ref)에 비해 초기 방전용량이 증가하고, 과전압이 개선되며, 고율용량이 증가하고, 수명특성이 개선된 것으로 나타났다.9A and 9B, Example 2 (S / NiPC4-CNT) has increased initial discharge capacity, improved overvoltage, increased high rate capacity, and improved life characteristics compared to Comparative Example 1 (ref). Turned out to be.
도 10a 및 도 10b은 실시예 3 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 10a) 및 쿨룡효율(도 10b)을 나타낸 그래프이다.10A and 10B are graphs showing initial discharge capacity (FIG. 10A) and Coulomb efficiency (FIG. 10B) of the lithium-sulfur secondary batteries prepared in Example 3 and Comparative Example 1, respectively.
도 10a 및 도 10b를 참조하면, 실시예 3(S/MnPC4-CNT)은 비교예 1(ref)에 비해 초기 방전용량이 증가하고, 과전압이 개선되며, 고율용량이 크게 증가한 것으로 나타났다.10A and 10B, Example 3 (S / MnPC4-CNT) showed that the initial discharge capacity increased, the overvoltage improved, and the high rate capacity increased significantly compared to Comparative Example 1 (ref).
도 11a 및 도 11b은 실시예 4 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 11a) 및 쿨룡효율(도 11b)을 나타낸 그래프이다.11A and 11B are graphs showing initial discharge capacities (FIG. 11A) and Coulomb efficiency (FIG. 11B) of the lithium-sulfur secondary batteries prepared in Example 4 and Comparative Example 1, respectively.
도 11a 및 도 11b를 참조하면, 실시예 4(S/CuPC4-CNT)는 비교예 1(ref)에 비해 초기 방전용량이 증가하고, 고율용량이 증가한 것으로 나타났다.11A and 11B, Example 4 (S / CuPC4-CNT) showed that the initial discharge capacity increased and the high rate capacity increased compared to Comparative Example 1 (ref).
도 12a 및 도 12b은 실시예 5 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 12a) 및 쿨룡효율(도 12b)을 나타낸 그래프이다.12A and 12B are graphs showing initial discharge capacities (FIG. 12A) and Coulomb efficiency (FIG. 12B) of the lithium-sulfur secondary batteries prepared in Example 5 and Comparative Example 1, respectively.
도 12a 및 도 12b를 참조하면, 실시예 5(S/ZnPC4-CNT)는 비교예 1(ref)에 비해 초기 방전용량이 증가한 것으로 나타났다.12A and 12B, Example 5 (S / ZnPC4-CNT) showed that the initial discharge capacity increased compared to Comparative Example 1 (ref).
도 13a 및 도 13b는 비교예 2 및 비교예 1에서 각각 제조된 리튬-황 이차전지의 초기 방전용량(도 13a) 및 쿨룡효율(도 13b)을 나타낸 그래프이다.13A and 13B are graphs showing initial discharge capacity (FIG. 13A) and Coulomb efficiency (FIG. 13B) of the lithium-sulfur secondary batteries prepared in Comparative Example 2 and Comparative Example 1, respectively.
도 13a 및 도 13b를 참조하면, 비교예 2(S/CoPC4-CNT)는 비교예 1(ref)에 비해 개선점이 없는 것으로 나타났다.13A and 13B, Comparative Example 2 (S / CoPC4-CNT) showed no improvement compared to Comparative Example 1 (ref).
하기 표 3은 실시예 1 내지 6 및 비교예 1 내지 3에 대한 상기 실험 결과를 정리한 것이다. 과전압은 비교예 1을 기준으로 하여 상대적인 우위, 열위 및 동등 정도를 평가한 것이다.Table 3 below summarizes the experimental results for Examples 1 to 6 and Comparative Examples 1 to 3. The overvoltage is a relative advantage, inferiority, and degree of equality based on Comparative Example 1.
초기방전mAh/g(active)Initial discharge mAh / g (active) 저율방전@0.2CLow rate discharge @ 0.2C 고율방전@0.5CHigh rate discharge @ 0.5C 방전용량@100cycleDischarge capacity @ 100cycle 과전압Overvoltage
실시예 1Example 1 792792 670670 557557 424424 우위predominance
실시예 2Example 2 770770 692692 581581 496496 우위predominance
실시예 3Example 3 783783 720720 600600 414414 우위predominance
실시예 4Example 4 774774 685685 577577 460460 열위Tenth
실시예 5Example 5 788788 690690 578578 382382 동등equal
실시예 6Example 6 800800 670670 555555 343343 우위predominance
비교예 1Comparative Example 1 745745 659659 533533 490490 --
비교예 2Comparative Example 2 755755 644644 546546 203203 열위Tenth
비교예 3Comparative Example 3 760760 665665 510510 278278 우위predominance
상기 표 2를 참조하면, 실시예 1이 초기 방전용량이 크게 우위이고, 실시예 2는 모든 부분의 지표가 우위이며, 실시예 3은 고율방전용량이 크게 우위인 것을 알 수 있다.Referring to Table 2, it can be seen that in Example 1, the initial discharge capacity was significantly superior, in Example 2, the index of all parts was superior, and in Example 3, the high rate discharge capacity was significantly superior.
[부호의 설명][Description of codes]
1: 양극 촉매1: anode catalyst
2: 양극 활물질2: positive electrode active material
10: 다공성 탄소10: porous carbon
11: 기공11: Qigong
20: 전이금속 복합체20: transition metal complex
30: 황 함유 물질30: sulfur-containing material

Claims (10)

  1. 황 함유 물질을 포함하는 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막 및 전해액을 포함하는 리튬 이차전지에 있어서,In the lithium secondary battery comprising a positive electrode, a negative electrode containing a sulfur-containing material, a separator interposed between the positive electrode and the negative electrode, and an electrolyte,
    상기 양극은 다공성 탄소의 표면에 결합된 전이금속 복합체를 포함하는 양극 촉매를 포함하되, 상기 전이금속 복합체는 전이금속에 결합된 4개의 질소를 포함하는, 리튬 이차전지.The positive electrode includes a positive electrode catalyst including a transition metal complex bound to the surface of the porous carbon, wherein the transition metal complex includes four nitrogen bound to the transition metal, lithium secondary battery.
  2. 제1항에 있어서,According to claim 1,
    상기 양극은 집전체; 및 상기 집전체 상에 형성된 양극 활물질층을 포함하며,The positive electrode is a current collector; And a positive electrode active material layer formed on the current collector,
    상기 양극 촉매는 상기 양극 활물질층에 포함된 것인, 리튬 이차전지.The positive electrode catalyst is included in the positive electrode active material layer, lithium secondary battery.
  3. 제1항에 있어서,According to claim 1,
    상기 양극 촉매는 상기 양극 활물질 전체 중량을 기준으로 20 내지 30 중량% 포함된 것인, 리튬 이차전지.The positive electrode catalyst is 20 to 30% by weight based on the total weight of the positive electrode active material, lithium secondary battery.
  4. 제1항에 있어서, According to claim 1,
    상기 전이금속은 Fe, Ni, Mn, Cu 및 Zn으로 이루어진 군에서 선택된 1종 이상인, 리튬 이차전지.The transition metal is at least one selected from the group consisting of Fe, Ni, Mn, Cu and Zn, lithium secondary battery.
  5. 제1항에 있어서, According to claim 1,
    상기 전이금속 복합체는 상기 양극 촉매 전체 중량에 대해서 1 내지 20 중량% 포함된, 리튬 이차전지.The transition metal composite is 1 to 20% by weight based on the total weight of the positive electrode catalyst, lithium secondary battery.
  6. 제1항에 있어서, According to claim 1,
    상기 전이금속 복합체는 상기 다공성 탄소의 외부 표면 및 기공 내부 표면 중 1종 이상의 위치에 결합된, 리튬 이차전지.The transition metal composite is a lithium secondary battery coupled to one or more positions of the outer surface of the porous carbon and the inner surface of the pore.
  7. 제1항에 있어서, According to claim 1,
    상기 전이금속 복합체는 π-π interaction에 의해 상기 다공성 탄소의 표면에 흡착되어 결합된 것인, 리튬 이차전지.The transition metal composite is a lithium secondary battery, which is adsorbed and bonded to the surface of the porous carbon by π-π interaction.
  8. 제1항에 있어서, According to claim 1,
    상기 다공성 탄소는 활성탄, 탄소나노튜브(CNT; Carbon Nanotube), 그래핀, 카본 블랙, 아세틸렌 블랙, 흑연, 흑연 나노 섬유(GNF; Graphite Nanofiber) 및 플러렌으로 이루어진 군에서 선택되는 1종 이상을 포함하는, 리튬 이차전지.The porous carbon includes at least one selected from the group consisting of activated carbon, carbon nanotube (CNT), graphene, carbon black, acetylene black, graphite, graphite nanofiber (GNF) and fullerene. , Lithium secondary battery.
  9. 제1항에 있어서, According to claim 1,
    상기 다공성 탄소의 기공의 크기는 2 내지 50 nm인, 리튬 이차전지.The pore size of the porous carbon is 2 to 50 nm, lithium secondary battery.
  10. 제1항에 있어서, According to claim 1,
    상기 리튬 이차전지는 리튬-황 이차전지인, 리튬 이차전지.The lithium secondary battery is a lithium-sulfur secondary battery, a lithium secondary battery.
PCT/KR2019/014941 2018-11-07 2019-11-06 Lithium secondary battery WO2020096331A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19882101.9A EP3863080A4 (en) 2018-11-07 2019-11-06 Lithium secondary battery
CN201980068062.7A CN112840478B (en) 2018-11-07 2019-11-06 Catalyst for positive electrode material for lithium secondary battery and lithium secondary battery comprising same
US17/283,395 US11876227B2 (en) 2018-11-07 2019-11-06 Lithium secondary battery
JP2021521972A JP7286764B2 (en) 2018-11-07 2019-11-06 Catalyst for positive electrode material for lithium secondary battery, and lithium secondary battery containing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0135538 2018-11-07
KR20180135536 2018-11-07
KR1020180135538A KR102651785B1 (en) 2018-11-07 2018-11-07 Lithium Secondary Battery
KR10-2018-0135536 2018-11-07
KR10-2019-0139543 2019-11-04
KR1020190139543A KR20200052840A (en) 2018-11-07 2019-11-04 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2020096331A1 true WO2020096331A1 (en) 2020-05-14

Family

ID=70611621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014941 WO2020096331A1 (en) 2018-11-07 2019-11-06 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2020096331A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014650A (en) 2011-07-26 2013-02-08 삼성전자주식회사 Porous carbonaceous composite material, cathode and lithium air battery comprsing the material, and preparation method thereof
KR20140140686A (en) * 2013-05-29 2014-12-10 삼성전자주식회사 Positive electrode for Lithium battery and lithium metal battery using the same
KR101654136B1 (en) * 2015-04-29 2016-09-05 포항공과대학교 산학협력단 Method for preparing mesoporous carbon catalyst composite
WO2017023304A1 (en) 2015-08-05 2017-02-09 Hewlett Packard Enterprise Development Lp Verification of a device identifier of a mobile device
WO2018013499A2 (en) 2016-07-13 2018-01-18 Skyworks Solutions, Inc. Temperature insensitive dielectric constant garnets
KR20180061034A (en) * 2016-11-28 2018-06-07 주식회사 엘지화학 Cathode active material comprising nano particle of metal sulfide and manufacturing method thereof
KR20180072122A (en) * 2016-12-21 2018-06-29 현대자동차주식회사 Non-noble metal based catalyst and method of manufacturing the same
KR20180133063A (en) * 2017-06-05 2018-12-13 주식회사 엘지화학 Catalytic site, positive electrode active material and lithium-sulfur battery comprising the same
KR20180135536A (en) 2017-06-13 2018-12-21 주식회사 엘지화학 A Drilling Apparatus for Removing Pluggings in a Drain Line
KR20180135538A (en) 2017-06-13 2018-12-21 한국생산기술연구원 Closed-loop sand reclaim type casting manufacturing system
KR20190139543A (en) 2018-06-08 2019-12-18 정태영 Folding chair for viewing having damping function

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014650A (en) 2011-07-26 2013-02-08 삼성전자주식회사 Porous carbonaceous composite material, cathode and lithium air battery comprsing the material, and preparation method thereof
KR20140140686A (en) * 2013-05-29 2014-12-10 삼성전자주식회사 Positive electrode for Lithium battery and lithium metal battery using the same
KR101654136B1 (en) * 2015-04-29 2016-09-05 포항공과대학교 산학협력단 Method for preparing mesoporous carbon catalyst composite
WO2017023304A1 (en) 2015-08-05 2017-02-09 Hewlett Packard Enterprise Development Lp Verification of a device identifier of a mobile device
WO2018013499A2 (en) 2016-07-13 2018-01-18 Skyworks Solutions, Inc. Temperature insensitive dielectric constant garnets
KR20180061034A (en) * 2016-11-28 2018-06-07 주식회사 엘지화학 Cathode active material comprising nano particle of metal sulfide and manufacturing method thereof
KR20180072122A (en) * 2016-12-21 2018-06-29 현대자동차주식회사 Non-noble metal based catalyst and method of manufacturing the same
KR20180133063A (en) * 2017-06-05 2018-12-13 주식회사 엘지화학 Catalytic site, positive electrode active material and lithium-sulfur battery comprising the same
KR20180135536A (en) 2017-06-13 2018-12-21 주식회사 엘지화학 A Drilling Apparatus for Removing Pluggings in a Drain Line
KR20180135538A (en) 2017-06-13 2018-12-21 한국생산기술연구원 Closed-loop sand reclaim type casting manufacturing system
KR20190139543A (en) 2018-06-08 2019-12-18 정태영 Folding chair for viewing having damping function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HESHAM AL SALEM ET AL.: "Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries", J.AM.CHEM.SOC., vol. 137, 2015, pages 11542, XP055539851, DOI: 10.1021/jacs.5b04472

Similar Documents

Publication Publication Date Title
WO2019088340A1 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery comprising same
WO2017196012A1 (en) Composition for polymer electrolyte and lithium secondary battery comprising same
WO2020080831A1 (en) Three-dimensional structure electrode and electrochemical element including same
WO2018135822A1 (en) Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
WO2020055017A1 (en) Sulfur-carbon composite, method for producing same, and lithium secondary battery including same
WO2021010625A1 (en) Lithium-sulfur secondary battery
WO2019088805A2 (en) Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same
WO2022211589A1 (en) Composite cathode active material, cathode and lithium battery employing same, and preparation method for same
WO2017209561A1 (en) Cathode active material, cathode comprising same, and lithium secondary battery comprising same
WO2020105980A1 (en) Lithium-sulfur secondary battery
WO2019088806A1 (en) Positive electrode material comprising lithium manganese positive electrode active material having spinel structure, positive electrode and lithium secondary battery
WO2019088807A2 (en) Lithium secondary battery
WO2024111906A1 (en) Anode for lithium secondary battery and method for manufacturing same
WO2021010626A1 (en) Lithium-sulfur secondary battery
WO2018164477A1 (en) Positive electrode active material for potassium secondary battery and potassium secondary battery containing same
WO2018236060A1 (en) Method for preparing iron hydroxide (feooh), and lithium-sulfur battery cathode comprising iron hydroxide
WO2020096331A1 (en) Lithium secondary battery
WO2019066403A2 (en) Electrode active material complex for lithium secondary battery, and method for producing electrode active material complex
WO2016052944A1 (en) Positive electrode active material and method for manufacturing same
WO2021118144A1 (en) Anode active material, preparation method therefor, and anode and secondary battery each comprising same
WO2024043673A1 (en) Composite negative electrode active material, negative electrode and lithium battery employing same, and preparation method therefor
WO2022203347A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising same
WO2022260412A1 (en) Electrode, lithium battery comprising same, and method for manufacturing same
WO2022149933A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising same
WO2022203348A1 (en) Cathode active material, and cathode and lithium secondary battery which comprise same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882101

Country of ref document: EP

Effective date: 20210504