WO2019088805A2 - Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same - Google Patents

Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019088805A2
WO2019088805A2 PCT/KR2018/013403 KR2018013403W WO2019088805A2 WO 2019088805 A2 WO2019088805 A2 WO 2019088805A2 KR 2018013403 W KR2018013403 W KR 2018013403W WO 2019088805 A2 WO2019088805 A2 WO 2019088805A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
lithium manganese
cathode active
manganese
Prior art date
Application number
PCT/KR2018/013403
Other languages
French (fr)
Korean (ko)
Other versions
WO2019088805A3 (en
Inventor
백소라
정왕모
강민석
이상욱
노은솔
왕문수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/611,542 priority Critical patent/US11532807B2/en
Priority to EP18872440.5A priority patent/EP3609002A4/en
Priority to JP2019572586A priority patent/JP7045586B2/en
Priority to CN201880027952.9A priority patent/CN110574194B/en
Priority claimed from KR1020180135102A external-priority patent/KR102264736B1/en
Publication of WO2019088805A2 publication Critical patent/WO2019088805A2/en
Publication of WO2019088805A3 publication Critical patent/WO2019088805A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, a cathode including the cathode active material, and a lithium secondary battery. More specifically, the present invention relates to a lithium manganese-based cathode active material having a spinel structure, which is excellent in high-temperature storage characteristics and high-temperature lifetime characteristics by improving Mn elution, and a positive electrode and a lithium secondary battery comprising the same.
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
  • Lithium transition metal composite oxides are used as the positive electrode active material of lithium secondary batteries. Among them, LiCoO 2 Lithium cobalt composite metal oxide is mainly used. However, LiCoO 2 has a poor thermal characteristic due to destabilization of crystal structure due to depolythium, and is expensive, so that it can not be used as a power source in fields such as electric vehicles.
  • Lithium manganese oxide LiMnO 2 or LiMn 2 O 4
  • lithium iron phosphate compound LiFePO 4 or the like
  • lithium nickel composite metal oxide LiNiO 2 or the like
  • the lithium manganese oxide has an advantage of being excellent in thermal stability and output characteristics and being inexpensive.
  • a structural distortion Jahn-Teller distortion
  • the Mn elution occurs due to HF formed by the HF and the performance deteriorates abruptly.
  • a first technical object of the present invention is to provide a lithium manganese-based cathode active material having a spinel structure which is excellent in high-temperature storage characteristics and high-temperature lifetime characteristics by inhibiting elution of Mn.
  • a second technical object of the present invention is to provide a positive electrode for a lithium secondary battery which can realize excellent storage characteristics and lifetime characteristics at a high temperature by including the positive electrode active material.
  • a third object of the present invention is to provide a lithium secondary battery including the positive electrode according to the present invention and having excellent high-temperature storage characteristics and high-temperature lifetime characteristics.
  • the present invention relates to a lithium manganese oxide represented by the following formula (1); And a lithium manganese oxide which is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, And a coating layer comprising at least one coating element selected from the group consisting of Bi, Si, and S.
  • the present invention also provides a lithium manganese-based cathode active material having a spinel structure.
  • M 1 is at least one metal element containing Li and A is at least one element selected from the group consisting of F, Cl, Br, I, At and S, and 0? A? 0.2, 0 ⁇ b? 0.5, 0? C? 0.1)
  • the present invention also provides a cathode comprising a cathode current collector and a cathode active material layer formed on the cathode current collector, wherein the cathode active material layer comprises the lithium manganese cathode active material of the spinel structure according to the present invention will be.
  • a lithium secondary battery comprising a positive electrode according to the present invention.
  • the structural stability can be improved by doping a lithium manganese-based cathode active material having a spinel structure with a doping element.
  • the contact between the electrolyte and the cathode active material is minimized, so that manganese elution is suppressed at a high temperature, thereby exhibiting high-temperature storage characteristics and high- .
  • FIG. 1 is a graph showing a capacity and a resistance characteristic according to a cycle at a high temperature (45.degree. C.) of the secondary battery manufactured in Examples 1 to 5 and Comparative Examples 1 to 3 of the present invention.
  • FIG. 2 is a graph showing capacitance and resistance characteristics at the time of high temperature (60 ° C) storage of the secondary batteries manufactured in Examples 1 to 5 and Comparative Examples 1 to 3 of the present invention.
  • the average particle diameter (D 50 ) is defined herein as the particle diameter at the 50% reference of the particle diameter distribution and the average particle diameter (D 50 ) is measured using a laser diffraction method .
  • the average particle diameter (D 50 ) was measured by dispersing the target particles in a dispersion medium, introducing the particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000), irradiating ultrasound at about 28 kHz at an output of 60 W , It is possible to calculate the average particle size (D 50 ) at the 50% reference of the cumulative distribution of the particle volume according to the particle size in the measuring apparatus.
  • ICP analysis was conducted using an inductively coupled plasma emission spectrometer (ICP-OES; Optima 7300DV, PerkinElmer).
  • the "specific surface area" is measured by the BET method. Specifically, it can be calculated from the adsorption amount of nitrogen gas under the liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan.
  • the lithium manganese-based cathode active material of the present invention is a spinel-type cathode active material comprising a lithium manganese oxide represented by the following general formula (1) and a coating layer disposed on the surface of the lithium manganese oxide.
  • M 1 is a doping element substituted for a manganese site in the lithium manganese oxide, and may be one or more metal elements including Li.
  • the A is an element substituted for an oxygen site in the lithium oxynitride, and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
  • 1 + a represents the molar ratio of lithium in the lithium manganese oxide, and may be 0? A? 0.2, preferably 0? A? 0.1.
  • B represents the molar ratio of the doping element M 1 in the lithium manganese oxide, and may be 0 ⁇ b? 0.5, preferably 0.03? B? 0.25.
  • C represents the molar ratio of the element A in the lithium manganese oxide, and may be 0? C? 0.1, preferably 0.01? C? 0.05.
  • the lithium manganese oxide represented by Formula 1 is doped with a doping element M 1 having a lower oxidation number than Mn.
  • the lithium manganese oxide when the lithium manganese oxide is doped with an element having the same oxidation number as Mn or having an oxidation number higher than that of Mn, the average oxidation number of the Mn ion is decreased and the Mn 2 + Is increased. At this time, the generated Mn 2 + is dissolved in the electrolyte and then reduced at the time of charging / discharging and deposited on the surface of the negative electrode, which may affect the cell performance such as capacity degradation.
  • M 1 includes Li, and may further include at least one metal element selected from the group consisting of Al and Mg.
  • the lithium manganese oxide may be represented by the following formula (1).
  • M a is at least one metal element selected from the group consisting of Al and Mg, 0? A? 0.2, 0 ⁇ b1 + b2? 0.5, 0? C? 0.1, 0? B1 / b2? being.
  • the doping element M 1 may include a metal element represented by Li and M a .
  • b1 represents a molar ratio of Li as a doping element in the lithium manganese oxide
  • b2 represents a molar ratio of a metal element that can be additionally doped in addition to Li in the lithium manganese oxide.
  • the b1 + b2 will represent the molar ratio of the doping element M 1 in the lithium manganese oxide, and may be 0 ⁇ b ⁇ 0.5, preferably 0.03 ⁇ b ⁇ 0.25.
  • the molar ratio of b1 / b2 may be 0? B1 / b2? 1.3, preferably 0.5? B1 / b2? 1.2.
  • the coating layer prevents contact between the lithium manganese oxide and the electrolytic solution to prevent generation of gas upon charge and discharge, and prevents manganese (Mn) from leaching at a high temperature.
  • the coating layer is located on the surface of the lithium manganese oxide and contains at least one of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, (Hereinafter referred to as " coating element ") selected from the group consisting of Sb, Bi, Si,
  • the coating layer may include at least one element selected from the group consisting of W, Mg, B and Ti, and more preferably at least one element selected from the group consisting of W and B .
  • the lithium manganese-based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer contains WO 3 .
  • the lithium manganese based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer contains B 2 O 3 .
  • the lithium manganese-based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer comprises TiO 2 .
  • the lithium manganese-based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer contains MgO 2 .
  • the lithium manganese-based cathode active material having a spinel structure according to the present invention may include a lithium boron composite oxide and a lithium tungsten composite oxide.
  • the lithium manganese-based cathode active material of the spinel structure may have a lithium-boron composite oxide and a lithium-tungsten composite oxide on the surface of the lithium manganese-based cathode active material.
  • the lithium manganese-based cathode active material may have secondary particles, and more preferably lithium-boron composite oxide and lithium tungsten composite oxide may exist on the surface and inside of the secondary particle.
  • the lithium boron complex oxide may be preferably lithium borate, more preferably lithium borate, lithium tetraborate, lithium pentaborate, and most preferably Li 2 B 4 O 7 .
  • the lithium tungsten composite oxide may preferably be lithium tungstate, and most preferably Li 2 WO 4 .
  • boron raw material is mixed and fired in a raw material including a lithium raw material, a manganese raw material, and a tungsten raw material, and lithium boron oxide and lithium tungsten A complex oxide can be formed.
  • the formation of the lithium-boron composite oxide and the lithium-tungsten composite oxide in the lithium manganese-based cathode active material can reduce the battery resistance and inhibit the elution of manganese during high-temperature storage.
  • the coating layer may be formed continuously or discontinuously on the surface of the lithium manganese oxide represented by Formula 1.
  • the coating layer may be formed in an island shape in which particles including the coating elements are discontinuously adhered to the surface of the lithium manganese oxide.
  • the particles including the coating elements may be, for example, WO 3 , B 2 O 3 , ZnO, Al 2 O 3 , TiO 2 , MgO, CaO, NbO 2 , SrO, CrO, Mo 2 O 5 , Bi 2 O 3 , SiO, and the like.
  • the oxide particles capture and decompose HF formed by the reaction with the electrolyte, as shown in the following reaction formula 1, so that the Mn elution by HF is suppressed .
  • the coating layer may be formed in the form of a film containing the coating elements on the surface of the lithium manganese oxide.
  • the coating layer is formed in the form of a film, the effect of preventing the contact between the electrolyte and the lithium manganese oxide and the effect of inhibiting the manganese dissolution are more excellent.
  • the coating comprises at least one element selected from the group consisting of W, Mg, B and Ti.
  • the coating layer may be formed in a region corresponding to 50% to 100% of the total surface area of the lithium manganese oxide, preferably in a range of 80% to 100%, more preferably 90% to 100% .
  • the coating layer formation area satisfies the above range, the contact between the electrolytic solution and the lithium manganese oxide can be effectively blocked.
  • the thickness of the coating layer may be 1 nm to 1000 nm, for example, 1 nm to 100 nm or 10 nm to 1000 nm.
  • its thickness may be 1 nm to 100 nm, and when it is formed in the form of oxide particles, its thickness may be 10 nm to 1000 nm.
  • the thickness of the coating layer satisfies the above range, it is possible to effectively suppress occurrence of manganese elution and side reaction with the electrolyte while minimizing deterioration of electrical performance.
  • the lithium manganese-based cathode active material of the present invention contains 500 to 40,000 ppm, preferably 2,500 to 40,000 ppm, and more preferably 3,000 to 40,000 ppm of the doping element M 1 based on the total weight of the lithium manganese-based cathode active material can do.
  • the content of the doping element M 1 satisfies the above range, the dissolution of manganese at a high temperature is effectively suppressed, thereby realizing a lithium secondary battery excellent in high-temperature storability.
  • the lithium manganese-based cathode active material may include Li or Li, Al and Mg, or a combination thereof as a doping element, wherein the Al is present in an amount of 2500 to 40000 ppm based on the total weight of the lithium manganese- Preferably 7,000 to 20,000 ppm, and the Li may be contained in an amount of 500 to 12,000 ppm, preferably 1000 to 3000 ppm, based on the total weight of the lithium manganese-based positive electrode active material.
  • the Mg may be contained in an amount of 1000 to 20000 ppm, preferably 3000 to 10000 ppm based on the total weight of the lithium manganese-based cathode active material.
  • the lithium manganese-based cathode active material according to the present invention has an average particle diameter (D 50 ) of 1 to 20 ⁇ m, for example, 1 to 8 ⁇ m, 7 ⁇ m to 20 ⁇ m, 8 ⁇ m to 20 ⁇ m, Lt; / RTI >
  • the lithium manganese-based cathode active material according to the present invention may have an average particle diameter (D 50 ) of 1 to 8 ⁇ m.
  • D 50 average particle diameter
  • the content of the doping and coating elements is relatively increased and the specific surface area is reduced by controlling the firing conditions and the like, A lithium manganese-based cathode active material having excellent structural stability and less side reaction with an electrolyte can be produced.
  • the lithium manganese-based cathode active material according to the present invention may have an average particle diameter (D 50 ) of 8 to 20 ⁇ .
  • the lithium manganese-based cathode active material having a large average particle diameter (D 50 ) as described above is advantageous in that manganese dissolution is relatively small as compared with particles having a small average particle diameter.
  • the lithium manganese-based active material may have a specific surface area of 0.1 to 1.5 m 2 / g.
  • the specific surface area may be adjusted according to the particle size of the lithium manganese based active material. For example, when the lithium manganese based active material is used as small particle size particles in a cathode material to be described later, the specific surface area is 0.5 to 1.5 m 2 / g or 0.7 to 1.1 m 2 / g, and when used as large diameter particles, the specific surface area may be 0.1 to 1 m 2 / g or 0.25 to 0.7 m 2 / g.
  • the lithium manganese-based cathode active material may be in the form of a secondary particle formed by aggregating primary particles or a plurality of primary particles.
  • the secondary particles may be, for example, 2 to 100, or 2 to 50 primary particles formed.
  • the lithium manganese-based cathode active material may include impurities that are not included in the manufacturing process.
  • impurities may include, for example, Fe, Ni, Na, Cu, Zn, Cr, Ca, K, S, Mg, Co, Si, B or combinations thereof. If such an impurity content is high, the life of the battery may be deteriorated by inducing the negative electrode dendrite, and a low voltage failure due to an internal short circuit may occur.
  • impurities such as S or the like have a problem of corroding the Al current collector. Therefore, it is preferable that the impurities are controlled to a certain degree or less.
  • the lithium manganese-based cathode active material according to the present invention may have an S impurity content of 20000 ppm or less, preferably 15000 ppm or less, more preferably 1000 ppm or less, and the other impurity content may be 400 ppm or less, preferably 10 ppm or less have.
  • the total amount of magnetic impurities such as Fe, Cr, Ni, and Zn among the above-mentioned impurities is preferably not more than 800 ppb, specifically not more than 25 ppb. If the content of the magnetic impurities exceeds the above range, the life of the battery may be deteriorated by inducing the negative electrode dendrite, or a low voltage failure due to an internal short circuit may occur.
  • the lithium manganese-based cathode active material according to the present invention is characterized by comprising the steps of: forming a lithium manganese oxide doped with M 1 represented by Formula 1; and mixing the lithium manganese oxide represented by Formula 1 with the coating raw material, To form a coating layer.
  • the lithium manganese oxide doped with M 1 represented by Formula 1 may be prepared by mixing (i) a manganese raw material, a doping raw material containing M 1 , and a lithium raw material, followed by sintering, or (ii) and reacting the doping raw material containing M 1, it can be prepared by after the formation of the manganese precursor is doped with M 1, method of sintering by mixing the manganese precursor and the lithium source material is doped with the above M 1. That is, in the present invention, the doping element M 1 may be added in the step of forming the manganese precursor, or may be charged in the step of firing the manganese raw material and the lithium raw material.
  • the manganese raw material may be a manganese element-containing oxide, a hydroxide, an oxyhydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetate, a carboxylate or a combination thereof.
  • Specific examples thereof include MnO 2 , MnCl 2 , MnCO 3 , Mn 3 O 4 , MnSO 4 , Mn 2 O 3 , Mn (NO 3 ) 2 , and the like, but is not limited thereto.
  • Doping material source material containing the M 1 is, M 1 containing oxides, hydroxides, oxy-hydroxides, sulfates, carbonates, halides, sulfides, acetates, and carboxylate, or the like combinations thereof, for example, Li (OH ), LiCO 3, Li 2 O , Al 2 (SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , MgO, Mg (OH) 2, MgSO 4, Mg (NO 3 ) 2, etc.
  • the present invention is not limited thereto.
  • the lithium source material may be at least one selected from the group consisting of lithium containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) and the like), hydroxide (for example, For example, lithium nitrate (LiNO 3 ) or the like), chloride (for example, lithium chloride (LiCl) or the like), and the like.
  • lithium containing carbonate for example, lithium carbonate and the like
  • hydrate for example, lithium hydroxide I hydrate (LiOH.H 2 O) and the like
  • hydroxide for example, For example, lithium nitrate (LiNO 3 ) or the like
  • chloride for example, lithium chloride (LiCl) or the like
  • the lithium manganese oxide represented by Formula 1 may be prepared by mixing a manganese raw material, a doping raw material containing M 1 , and a lithium raw material and then firing (Method (i)). .
  • the manganese raw material, the doping raw material including M 1 , and the lithium raw material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li in the formula (1).
  • the mixing may be a solid-phase mixing or a liquid-phase mixing.
  • the firing process can be performed without a separate drying process.
  • the mixed components are spray dried and then subjected to the firing process.
  • the solid-phase mixing method a lithium manganese oxide having an average particle diameter (D 50 ) of less than 8 ⁇ m, preferably not more than 6 ⁇ m, and having a small specific surface area can be obtained.
  • a wet mixing method is used, a lithium manganese oxide having an average particle diameter (D 50 ) of 8 ⁇ m or larger can be obtained.
  • the firing may be performed at 600 to 900 ° C, preferably 700 to 800 ° C, for 5 to 24 hours, preferably 10 to 15 hours.
  • the calcination may be performed at 750 to 850 ⁇ , preferably at 780 to 830 ⁇ for 5 to 24 hours, preferably 10 to 15 hours.
  • the average particle size (D 50 ) of the primary particles is 1 ⁇ m or more, preferably 2 ⁇ m or more
  • a lithium manganese oxide having a thickness of 3 m can be obtained.
  • the lithium manganese oxide represented by Formula 1 by reacting a doping raw material including a manganese raw material and M 1, after the formation of the manganese precursor is doped with M 1, doped with the M 1 (Ii) mixing lithium manganese precursor with a lithium source material, followed by calcination.
  • the manganese precursor doped to said M 1 is, for example, be formed by co-precipitation reaction the doped raw material raw material containing manganese as a raw material M 1.
  • the manganese raw material and the doping raw material containing M & lt ; 1 > are the same as described above.
  • the coprecipitation reaction may be performed by a co-precipitation method well known in the art.
  • the manganese raw material and the doping element raw material are charged into the coprecipitation reactor at an appropriate ratio, and an aqueous ammonia solution as a complexing agent and an alkali And the reaction is allowed to proceed while the aqueous solution is added.
  • the manganese precursor doped with M 1 and the lithium source material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li in Formula 1.
  • the surface of the lithium manganese oxide of Formula 1 may be coated with Al, Ti, W, B, F, P, (Hereinafter referred to as "coating element") selected from the group consisting of Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, To form a coating layer.
  • coating element selected from the group consisting of Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, To form a coating layer.
  • a wet coating method for example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
  • ALD Atomic Layer Deposition
  • the wet coating method may be carried out by, for example, adding lithium manganese oxide and a coating material to an appropriate solvent such as ethanol, water, methanol, acetone, etc., and mixing the mixture until the solvent disappears.
  • an appropriate solvent such as ethanol, water, methanol, acetone, etc.
  • the dry coating method is a method of mixing a lithium manganese oxide and a coating raw material in a solid phase without a solvent, and for example, a grinder mixing method, a mechanofusion method, or the like can be used.
  • the coating material may be at least one selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, , Oxides, hydroxides, carbonates, sulfates, halides, sulfides, acetates, carboxylates or combinations thereof, including at least one element selected from the group consisting of may be, for example, ZnO, Al 2 O 3, Al (OH) 3, Al 2 (SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , TiO 2, WO 3, AlF, H 2 BO 3, HBO 2, H 3 BO 3, H 2 B 4 O 7, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, (CH 3 (CH 2) 3 O) 3 B, C 3 H 9 B 3 O 6, (C 3 H 7 O 3) B, Li 3 WO 4, (NH 4) 10 W 12 O
  • the coating layer can be formed through heat treatment.
  • the heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
  • the positive electrode according to the present invention includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector.
  • the positive electrode active material layer includes a lithium manganese-based positive electrode active material having a spinel structure, And optionally a conductive material and / or a binder.
  • cathode active material is the same as that described above, a detailed description thereof will be omitted and only the remaining constitution will be specifically described below.
  • the cathode active material layer may further include a lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 below.
  • M 2 is a doping element substituted for a transition metal (Ni, Co, Mn) site, and W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, And at least one element selected from the group consisting of Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B and Mo.
  • the M 2 may be at least one selected from the group consisting of Al, Zr, W, Ti, Nb and B.
  • the B is an oxygen-site-substituted element in the lithium nickel-manganese-cobalt cathode active material and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
  • 1 + x represents the lithium molar ratio in the lithium nickel-manganese-cobalt cathode active material, and may be 0? X? 0.3, preferably 0? X? 0.2, more preferably 0? X? .
  • Y represents the molar ratio of nickel in the lithium nickel-manganese-cobalt cathode active material and satisfies 0.5? Y ⁇ 1, preferably 0.65? Y ⁇ 1, more preferably 0.7? Y ⁇ 1, Lt; y ⁇ 1.
  • Z represents the molar ratio of cobalt in the lithium nickel-manganese-cobalt cathode active material, and may be 0 ⁇ z ⁇ 0.35, preferably 0 ⁇ z ⁇ 0.3.
  • the w represents the molar ratio of manganese in the lithium nickel-manganese-cobalt cathode active material, and may be 0 ⁇ w ⁇ 0.35, preferably 0 ⁇ w? 0.3.
  • V represents the molar ratio of the doping element M 2 in the lithium nickel-cobalt-manganese based oxide, and 0? V? 0.1, preferably 0.0005? V? 0.08, more preferably 0.001? V? 0.0 > v < / RTI >
  • a cathode active material having excellent high-temperature stability can be obtained.
  • P represents the molar ratio of the element B in the lithium nickel-cobalt-manganese oxide, and may be 0? P? 0.1, preferably 0? P? 0.05.
  • the lithium nickel-cobalt-manganese-based oxide represented by the above formula (2) is preferably Li 1 + x [Ni y Co z Mn w ] O 2 , Li 1 + x [Ni y Co z Mn w v ] O 2 , and the like, but is not limited thereto.
  • the lithium nickel-cobalt-manganese-based positive electrode active material represented by the above-mentioned Formula 2 is a lithium nickel-cobalt- At least one coating element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S may be further included.
  • the coating layer prevents contact between the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 and the electrolyte contained in the lithium secondary battery, thereby suppressing the occurrence of side reactions. And the filling density of the cathode active material can be increased.
  • the content of the coating element in the coating layer is preferably from 100 ppm to 10,000 ppm, more preferably from 100 ppm to 10000 ppm with respect to the total weight of the lithium nickel-cobalt- 200 ppm to 5,000 ppm.
  • the coating element is contained in the above range based on the total weight of the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2, the side reaction with the electrolyte is more effectively suppressed, The characteristics can be further improved.
  • the coating layer may be formed on the entire surface of the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2, or may be partially formed. Specifically, when the coating layer is partially formed on the surface of the lithium nickel-cobalt-manganese-based cathode active material represented by Chemical Formula 2, the total surface area of the lithium nickel-cobalt-manganese-based cathode active material represented by Chemical Formula 2 % To less than 100%, preferably 20% to less than 100%.
  • the average particle diameter (D 50 ) of the lithium nickel-cobalt-manganese-based positive electrode active material represented by Formula 2 may be 1 ⁇ m to 20 ⁇ m, 2 ⁇ m to 10 ⁇ m, or 8 to 20 ⁇ m.
  • the average particle diameter (D 50 ) of the lithium nickel-cobalt-manganese-based positive electrode active material represented by the above formula (2) satisfies the above range, excellent electrode density and energy density can be realized.
  • the crystal size of the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 may be 200 nm to 500 nm.
  • the grain size of the lithium nickel-cobalt-manganese-based positive electrode active material represented by the above formula (2) satisfies the above range, excellent electrode density and energy density can be realized.
  • the lithium nickel-cobalt-manganese-based cathode active material represented by the general formula (2) may have a constant content of transition metal elements in the active material particle regardless of its position, May be changing.
  • the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 may have a concentration gradient in which at least one of Ni, Mn, Co, and M 2 gradually changes, Concentration gradient means that the concentration of the components is present in a concentration distribution in which the concentration of the components changes continuously or stepwise in all or a specific region of the particle.
  • the lithium nickel-cobalt-manganese-based cathode active material represented by the above-described formula (2) can be obtained by using a commercially available lithium nickel-cobalt-manganese-based cathode active material or by using a lithium nickel- And may be one produced by a manufacturing method.
  • the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 may be prepared by mixing a nickel-cobalt-manganese-based precursor with a lithium source material, and optionally a doping source material, followed by firing.
  • the nickel-cobalt-manganese precursor may be a hydroxide of nickel-manganese-cobalt, a hydroxide, an oxide of hydroxide, a carbonate, an organic complex or a hydroxide of nickel-manganese-cobalt containing an element of doping M 2 , .
  • the nickel-cobalt-manganese-based precursor may be selected from the group consisting of [Ni y Co z Mn w ] (OH) 2 , [Ni y Co z Mn w Al v ] (OH) 2, [Ni y Co z Mn w ] O ⁇ OH, [Ni y Co z Mn w Al v ] O ⁇ OH, etc.
  • the present invention is not limited thereto.
  • the lithium source material may be at least one selected from the group consisting of lithium-containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) For example, lithium nitrate (LiNO 3 ) and the like), chlorides (e.g., lithium chloride (LiCl) and the like), and the like.
  • lithium-containing carbonate for example, lithium carbonate and the like
  • hydrate for example, lithium hydroxide I hydrate (LiOH.H 2 O)
  • LiNO 3 lithium nitrate
  • chlorides e.g., lithium chloride (LiCl) and the like
  • the doping material may be at least one of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, , B, and Mo, or an oxide, a hydroxide, a sulfide, an oxyhydroxide, a halide, or a mixture thereof.
  • the firing may be performed at 600 to 1000 ° C, preferably 700 to 900 ° C for 5 to 30 hours, preferably 10 to 20 hours.
  • the coating raw material may be further added after the firing, followed by heat treatment.
  • the coating material may be selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, A hydroxide, an oxide hydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetate, a carboxylate, or a combination thereof including at least one element selected from the group consisting of S , for example, ZnO, Al 2 O 3, Al (OH) 3, Al 2 (SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , TiO 2, WO 3, AlF, H 2 BO 3, HBO 2, H 3 BO 3, H 2 B 4 O 7, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, [(CH 3 ( CH 2) 3 O) 3 B , C 3 H 9 B 3 O 6, (C 3 H 7 O 3) B, Li
  • a wet coating method for example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
  • ALD Atomic Layer Deposition
  • the heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
  • the lithium nickel-cobalt-manganese-based cathode active material represented by the general formula (2) represented by the general formula (2) is a high nickel cathode active material having a nickel ratio of more than 50 mol%, and is excellent in energy density characteristics. Therefore, when the lithium manganese-based cathode active material of Formula 2 is mixed with the lithium manganese-based cathode active material of the spinel structure of the present invention, the disadvantage of the lithium manganese-based positive electrode active material can be solved.
  • the positive electrode material comprising the lithium manganese-based positive electrode active material and the lithium nickel-cobalt-manganese-based positive electrode active material is characterized in that the large-diameter particles having an average particle diameter (D 50 ) of 4 to 20 ⁇ m and an average particle diameter (D 50 ) May have a bimodal particle diameter distribution including small particle size particles of 10% to 75%, preferably 25% to 75% of the average particle size (D 50 ) of the hard particles.
  • a cathode material having a bimodal particle size distribution is used as described above, a cathode having a high electrode density and an energy density can be formed.
  • the average particle diameter (D 50 ) of the large diameter particles may be 8 ⁇ to 20 ⁇ , 8 ⁇ to 15 ⁇ , or 12 ⁇ to 20 ⁇ , and the average particle diameter (D 50 ) 1 ⁇ to 15 ⁇ , 2 ⁇ to 13 ⁇ , 2 ⁇ to 8 ⁇ , or 4 ⁇ to 13 ⁇ .
  • the cathode material according to the present invention may have a bimodal particle size distribution including large-diameter particles having an average particle diameter of 8 ⁇ to 15 ⁇ and small-particle particles having an average particle diameter of 1 ⁇ to 6 ⁇ .
  • the cathode material according to the present invention may have a bimodal particle diameter distribution including large-diameter particles having an average particle diameter of 12 to 20 ⁇ m and small-particle particles having an average particle diameter of 4 to 13 ⁇ m .
  • the kind of active material constituting the small particle size particles and large particle size particles is not particularly limited and may be the lithium manganese based active material and / or the lithium nickel-cobalt-manganese based active material.
  • the cathode material of the present invention may be such that the lithium manganese-based cathode active material constitutes large-diameter particles and the lithium nickel-cobalt-manganese-based cathode active material constitutes small particle size particles.
  • the average particle size (D50) of the lithium manganese-based positive electrode active material is about 8 to 20 m, preferably about 12 to 20 m, and the average particle size (D50) of the lithium nickel- May be about 1 mu m to 15 mu m, preferably about 4 mu m to 13 mu m.
  • the manganese elution in the lithium manganese-based cathode active material can be more effectively inhibited, and as a result, the high temperature stability of the battery can be further improved have.
  • the cathode material of the present invention may be such that the lithium manganese-based cathode active material forms small particle size particles and the lithium nickel-cobalt-manganese type cathode active material forms large particle particles.
  • the average particle size (D50) of the lithium manganese-based cathode active material is about 1 to 15 m, preferably about 1 to 8 m, and the average particle size (D50) of the lithium nickel- 8 mu m to 20 mu m, and preferably about 8 mu m to 15 mu m.
  • lithium manganese type cathode active material When the lithium manganese type cathode active material is used with small particle size satisfying the above range, it is possible to apply the doping and / or coating amount of the lithium manganese type cathode active material to a high level and to have a low BET value, Can be minimized.
  • the cathode material of the present invention is characterized in that at least one of the lithium manganese-based cathode active material and the lithium nickel-cobalt-manganese-based cathode active material has a bimodal particle size distribution including the large- .
  • the cathode material may include the lithium manganese-based cathode active material and the lithium nickel-cobalt-manganese-based cathode active material at a weight ratio of 10:90 to 90:10, preferably 40:60 to 60:40.
  • the mixing ratio of the lithium manganese-based cathode active material to the lithium nickel-cobalt-manganese-based cathode active material satisfies the above range, an electrode excellent in high temperature storability and capacity characteristics can be obtained.
  • the positive electrode active material may be contained in an amount of 80 to 99 parts by weight, more specifically 85 to 98.5 parts by weight, based on 100 parts by weight of the total weight of the positive electrode active material layer. When included in the above content range, excellent capacity characteristics can be exhibited.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium, , Silver or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be included in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material layer.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
  • the binder may be included in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material layer.
  • the positive electrode of the present invention can be produced by a conventional positive electrode manufacturing method, except that the lithium manganese-based positive electrode active material of the spinel structure described above is used. Specifically, the positive electrode active material and optionally the positive electrode mixture prepared by dissolving or dispersing the binder and / or the conductive material in a solvent may be coated on the positive electrode current collector, followed by drying and rolling.
  • the solvent examples include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like. Water and the like, and one kind or a mixture of two or more kinds can be used. It is sufficient that the amount of the solvent used can be adjusted so that the positive electrode mixture has an appropriate viscosity in consideration of the coating thickness of the slurry and the production yield.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone examples of the solvent
  • Water and the like, and one kind or a mixture of two or more kinds can be used. It is sufficient that the amount of the solvent used can be adjusted so that the positive electrode mixture has an appropriate viscosity in consideration of the coating thickness of the slurry and the production yield.
  • the positive electrode may be produced by casting the positive electrode composite material on a separate support, and then peeling off the support from the support to laminate a film on the positive electrode collector.
  • the lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive electrode is the same as the positive electrode according to the present invention. Therefore, a detailed description of the positive electrode will be omitted and only the remaining configuration will be described below.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the negative electrode active material various negative electrode active materials used in the related art can be used, and there is no particular limitation.
  • Specific examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and dedoping lithium such as SiO? (0 ⁇ ?
  • a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material both low crystalline carbon and highly crystalline carbon may be used. Examples of the low-crystalline carbon include soft carbon and hard carbon.
  • Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • the lithium secondary battery of the present invention it is preferable that a mixture of two or more kinds of carbon materials having specific specific surface area is used as the negative electrode active material.
  • the negative electrode active material layer may include natural graphite and soft carbon, and more specifically, natural graphite having a specific surface area (BET) of 2.5 to 4.0 m 2 / g and a specific surface area (BET ) Of 7 to 10 m < 2 > / g.
  • BET specific surface area
  • the anode active material layer may further include artificial graphite, and the artificial graphite may have a specific surface area (BET) of 0.1 to 1.2 m 2 / g.
  • the negative electrode active material layer may comprise from 70 to 95% by weight of natural graphite, from 0 to 25% by weight of artificial graphite and from 5 to 30% by weight of soft carbon, based on the total weight of the negative electrode active material have.
  • the negative electrode active material layer may include natural graphite and artificial graphite. Specifically, natural graphite having a specific surface area (BET) of 2.5 to 4.0 m 2 / g and a graphite having a specific surface area (BET) of 0.1 to 1.2 m 2 / g of artificial graphite.
  • the negative active material layer may further include soft carbon.
  • the soft carbon may have a specific surface area (BET) of 7 to 10 m 2 / g.
  • the negative electrode active material layer may comprise 10 to 50% by weight of natural graphite, 50 to 90% by weight of artificial graphite and 0 to 20% by weight of soft carbon based on the total weight of the negative electrode active material have. In this case, the cathode rate can be improved and a battery having excellent cell fast charging and resistance characteristics can be realized.
  • the negative electrode active material may include 80% by weight to 99% by weight based on the total weight of the negative electrode active material layer.
  • the binder is a component for assisting the bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 0.1% by weight to 10% by weight based on the total weight of the negative electrode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer, as a component for further improving the conductivity of the negative electrode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the negative electrode active material layer is prepared by applying and drying a composition for forming a negative electrode active material layer which is prepared by dissolving or dispersing a negative electrode active material on a negative electrode current collector and optionally a binder and a conductive material in a solvent and drying the composition for forming the negative electrode active material layer Casting the composition on a separate support, and then peeling the support from the support to laminate a film on the negative electrode collector.
  • the negative electrode active material layer may have a single layer structure or a multi-layer structure in which two or more layers are stacked.
  • the negative electrode may include a negative electrode collector, a first negative electrode active material layer formed on the negative electrode collector, and a second negative electrode active material layer formed on the first negative electrode active material layer,
  • the active material layer and the second negative electrode active material layer may have different compositions.
  • the first negative electrode active material layer may contain 5 to 100% by weight, preferably 80 to 100% by weight, of natural graphite among all the negative electrode active materials contained in the first negative electrode active material layer
  • the negative electrode active material layer may contain 15 to 95% by weight, preferably 15 to 65% by weight, of softened carbon among all the negative electrode active materials contained in the second negative electrode active material layer.
  • the loading amount of the negative electrode may be 300 to 500 mg / 25 cm 2 , preferably 300 to 400 mg / 25 cm 2 .
  • the loading amount of the negative electrode satisfies the above range, it is possible to secure a sufficient electrode bonding force, to facilitate a process, to realize a battery having excellent rapid charging performance and resistance performance, and to maximize energy density.
  • the separator separates the negative electrode and the positive electrode to provide a passage for lithium ion, and can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery.
  • the electrolyte membrane has a low resistance to water and an excellent ability to impregnate electrolytes.
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and the separator may be selectively used as a single layer or a multilayer structure.
  • an organic liquid electrolyte there can be used an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte which can be used for a lithium secondary battery, .
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Ra-CN (Ra is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohex
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
  • ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as an anion, and containing the Li + in the lithium salt cation is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -
  • the lithium salt may be LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , and LiCH 3 SO 3 , or a mixture of two or more thereof.
  • the lithium salt can be appropriately changed within a range that is usually usable, but it can be specifically contained in the electrolyte in an amount of 0.8 M to 3 M, specifically 0.1 M to 2.5 M.
  • various additives may be added to the electrolyte for the purpose of improving lifetime characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery.
  • the electrolyte may further include an additive, if necessary.
  • the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • the lithium secondary battery according to the present invention can be used for portable equipment such as mobile phones, notebook computers, and digital cameras, and electric vehicles such as hybrid electric vehicles (HEV).
  • portable equipment such as mobile phones, notebook computers, and digital cameras
  • electric vehicles such as hybrid electric vehicles (HEV).
  • HEV hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
  • MnSO 4 And Li 2 CO 3 were mixed at a weight ratio of 99: 1, and then MnSO 4 .7H 2 O containing Li 2 CO 3 having a concentration of 2M was prepared using distilled water subjected to N 2 purging. MnSO 4 .7H 2 O containing Li 2 CO 3 was added to the continuous stirred tank reactor (CSTR, manufactured by EMS Tech, product name: CSTR-L0) at a rate of 250 mL / h.
  • CSTR continuous stirred tank reactor
  • a 40% aqueous solution of sodium hydroxide was introduced as an alkalizing agent at a rate of 10 mL / h through an aqueous solution of sodium hydroxide in the reactor, and a 25% ammonia solution was fed through the ammonia solution supply portion of the reactor at a rate of 30 mL / And the pH of the solution was maintained at 10.5.
  • the temperature of the reactor was adjusted to 40 ⁇ , the retention time (RT) was adjusted to 10 hours, and the mixture was stirred at a speed of 1200 rpm to precipitate Mn 3 O 4 containing Li.
  • the obtained reaction solution was filtered through a filter, purified by distilled water and then dried to prepare a Li-doped manganese precursor (Mn 0.96 Li 0.04 ) 3 O 4 .
  • the Li-doped manganese precursor thus prepared was mixed with lithium raw material Li 2 CO 3 at a molar ratio of 1: 0.75 and then calcined at 810 ° C for 14 hours to obtain lithium manganese oxide Li 1.0 (Mn 1.92 Li 0.08 ) O 4 .
  • MnSO 4 a doping element Li 2 CO 3 and Al 2 (SO 4) 3 to 95: 0.5: 4.5 is used in a weight ratio of Li and Al doped with manganese precursor (Mn Li 0 .957 0 0 028 015 Al ) 3 O 4 .
  • MnSO 4 doping elements as Li 2 CO 3 and MgSO 4 to 98: 0.5: 1.5 was used in a weight ratio of Li and Mg doped with manganese precursor (.. Mn 0 .961 Li 0 021 Mg 0 018) to 3 O 4 .
  • lithium manganese oxide Li (Mn 1.922 Li 0.042 Mg 0.036 ) O 4 was prepared by mixing and firing the Li and Mg-doped manganese precursor thus prepared and the lithium raw material Respectively.
  • MnSO 4 a doping element Li 2 CO 3, Al 2 ( SO 4) 3 , and MgSO 4 to 96.4: 0.5: 2.3: using a weight ratio of 0.8 Li, Al and Mg-doped manganese precursor (Mn 0 96 Li 0. . 02 Al 0. 01 Mg 0 . 01) was prepared in a 3 O 4.
  • a Mg-doped manganese precursor (Mn 0.96 Mg 0.04 ) 3 O 4 was prepared using MgSO 4 instead of Li 2 CO 3 as the doping element.
  • the Mg-doped manganese precursor prepared as described above and the lithium source material were mixed and fired to obtain lithium manganese oxide Li 1 . 0 (Mn 1.92 Mg 0.08 ) O 4 was prepared in the same manner as in Production Example 1.
  • the thus prepared Al-doped manganese precursor and the lithium raw material were mixed and fired to obtain lithium manganese oxide Li 1 . 0 < / RTI > (Mn 1.92 Al 0.08 ) O 4 was prepared.
  • 5,000 ppm of WO 3 was added to 100 parts by weight of the lithium manganese oxide prepared in Preparation Example 1, and the mixture was heat-treated at 600 ° C for 5 hours to obtain a lithium manganese cathode active material A having a coating layer containing W.
  • a positive electrode active material A, a carbon black conductive material and a PVdF binder were mixed in a N-methylpyrrolidone solvent in a weight ratio of 95: 2.5: 2.5 to prepare a positive electrode mixture, which was then applied to an aluminum current collector, Dried, and rolled to prepare a positive electrode, and the positive electrode was used to prepare a coin cell.
  • a coin cell was prepared in the same manner as in Example 1 except that 3,000 ppm of H 3 BO 3 was added to 100 parts by weight of the lithium manganese oxide prepared in Preparation Example 1 and mixed.
  • a coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 2 was used as a cathode active material.
  • a coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 3 was used as a cathode active material.
  • a coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 4 was used as a cathode active material.
  • a coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Production Example 1 was used as a cathode active material.
  • a coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 5 was used.
  • a coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 6 was used.
  • the amounts of manganese leached out from the coin cells prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were measured. Specifically, the coin cell was charged and discharged once, and then discharged to 3.0 V. Subsequently, the coin cell was disassembled, kept in a sealed container for 4 weeks in 4 mL of the electrolyte, and the amount of dissolved Mn in the electrolyte solution was measured by ICP analysis.
  • the electrolyte solution was prepared by dissolving 1 M of LiPF 6 in an organic solvent prepared by mixing ethylene carbonate: dimethyl carbonate: diethyl carbonate in a volume ratio of 1: 2: 1, and mixing 2% by weight of vinylene carbonate.
  • each of the lithium secondary batteries prepared in Examples 1 to 5 and Comparative Examples 1 to 3 was charged at a constant current of 1 C at a temperature of 45 ° C to 4.3 V at a cut off of 0.05C. Then, discharging was performed until the voltage reached 3 V with a constant current of 1C.
  • the coin cells prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were fully charged to 4.3 V, and then stored at 60 ⁇ ⁇ for 4 weeks.
  • the coin cell was charged to 4.3 V with a constant current of 0.1 C and then discharged to 3.0 V with a constant current of 0.1 C and the discharge capacity and resistance at that time were measured.

Abstract

The present invention relates to a lithium manganese positive electrode active material having a spinel structure, a positive electrode and a lithium secondary battery comprising same, the lithium manganese positive electrode active material comprising: lithium manganese oxide represented by chemical formula [1] below; and a coating layer which is positioned on the surface of the lithium manganese oxide and comprises one or more coating elements selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, and S, and thus showing excellent high-temperature storage characteristics. Chemical formula [1]: Li1+aMn2-bM1 bO4-cAc (In chemical formula [1], M1 is one or more metal elements comprising Li, A is one or more elements selected from the group consisting of F, Cl, Br, I, At and S, 0≤a≤0.2, 0<b≤0.5, and 0≤c≤0.1.)

Description

스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지A lithium manganese-based cathode active material having a spinel structure, a positive electrode containing the lithium manganese-
관련출원과의 상호 인용Mutual citation with related application
본 출원은 2017년 11월 6일자 한국특허출원 제2017-0146924호 및 2018년 11월 6일자 한국특허출원 제2018-0135102호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority under Korean Patent Application No. 2017-0146924, dated November 6, 2017, and Korean Patent Application No. 2018-0135102, dated November 6, 2018, The contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 리튬 이차전지용 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지에 관한 것이다. 보다 구체적으로는, 본 발명은 Mn 용출을 개선하여, 고온 저장 특성 및 고온 수명 특성이 우수한 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지에 관한 것이다. The present invention relates to a cathode active material for a lithium secondary battery, a cathode including the cathode active material, and a lithium secondary battery. More specifically, the present invention relates to a lithium manganese-based cathode active material having a spinel structure, which is excellent in high-temperature storage characteristics and high-temperature lifetime characteristics by improving Mn elution, and a positive electrode and a lithium secondary battery comprising the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Among such secondary batteries, lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 복합 산화물이 이용되고 있으며, 이 중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2 등의 리튬 코발트 복합금속 산화물이 주로 사용되고 있다. 그러나, LiCoO2는 탈리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다. Lithium transition metal composite oxides are used as the positive electrode active material of lithium secondary batteries. Among them, LiCoO 2 Lithium cobalt composite metal oxide is mainly used. However, LiCoO 2 has a poor thermal characteristic due to destabilization of crystal structure due to depolythium, and is expensive, so that it can not be used as a power source in fields such as electric vehicles.
상기 LiCoO2를 대체하기 위한 재료로서, 리튬 망간계 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되고 있다. 이 중, 리튬 망간계 산화물은 열적 안정성, 출력 특성이 우수하고, 가격이 저렴하다는 장점이 있지만, 충방전시 Mn3 +로 인한 구조 변형(Jahn-Teller distortion)이 일어나고, 고온에서 전해액과의 반응에 의해 형성되는 HF에 의해 Mn 용출이 발생하여 급격하게 성능이 퇴화된다는 문제점이 있다. Lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 ), lithium iron phosphate compound (LiFePO 4 or the like) or lithium nickel composite metal oxide (LiNiO 2 or the like) and the like have been developed as materials for replacing LiCoO 2 . Among them, the lithium manganese oxide has an advantage of being excellent in thermal stability and output characteristics and being inexpensive. However, due to the Mn 3 + , a structural distortion (Jahn-Teller distortion) occurs during charging and discharging, There is a problem in that the Mn elution occurs due to HF formed by the HF and the performance deteriorates abruptly.
따라서, 리튬 망간계 산화물의 Mn 용출을 억제하여, 저비용으로 고온 특성이 우수한 이차전지를 제조할 수 있는 양극 활물질의 개발이 요구되고 있다.Therefore, development of a cathode active material capable of suppressing Mn elution of the lithium manganese-based oxide and producing a secondary battery excellent in high-temperature characteristics at low cost is required.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 Mn의 용출을 억제하여 고온 저장 특성 및 고온 수명 특성이 우수한 스피넬 구조의 리튬 망간계 양극 활물질을 제공하는 것이다. In order to solve the above-described problems, a first technical object of the present invention is to provide a lithium manganese-based cathode active material having a spinel structure which is excellent in high-temperature storage characteristics and high-temperature lifetime characteristics by inhibiting elution of Mn.
본 발명의 제2 기술적 과제는, 상기 양극 활물질을 포함함으로써, 고온에서 우수한 저장 특성 및 수명 특성을 구현할 수 있는 리튬 이차전지용 양극을 제공하는 것이다.A second technical object of the present invention is to provide a positive electrode for a lithium secondary battery which can realize excellent storage characteristics and lifetime characteristics at a high temperature by including the positive electrode active material.
본 발명에 따른 제3 기술적 과제는 상기 본 발명에 따른 양극을 포함하여 고온 저장 특성 및 고온 수명 특성이 우수한 리튬 이차전지를 제공하는 것이다. A third object of the present invention is to provide a lithium secondary battery including the positive electrode according to the present invention and having excellent high-temperature storage characteristics and high-temperature lifetime characteristics.
본 발명은 하기 화학식 1로 표시되는 리튬 망간 산화물; 및 상기 리튬 망간 산화물 표면에 위치하며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 코팅 원소를 포함하는 코팅층을 포함하는 스피넬 구조의 리튬 망간계 양극 활물질을 제공한다.The present invention relates to a lithium manganese oxide represented by the following formula (1); And a lithium manganese oxide which is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, And a coating layer comprising at least one coating element selected from the group consisting of Bi, Si, and S. The present invention also provides a lithium manganese-based cathode active material having a spinel structure.
[화학식 1][Chemical Formula 1]
Li1 + aMn2 - bM1 bO4 - cAc Li 1 + a Mn 2 - b M 1 b O 4 - ca c
(상기 화학식 1에서, M1은 Li을 포함하는 1종 이상의 금속 원소이고, A는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 0≤a≤0.2, 0<b≤0.5, 0≤c≤0.1임)Wherein M 1 is at least one metal element containing Li and A is at least one element selected from the group consisting of F, Cl, Br, I, At and S, and 0? A? 0.2, 0 < b? 0.5, 0? C? 0.1)
또한, 본 발명은 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함하는 양극을 제공하며, 이때 상기 양극 활물질층은 상기 본 발명에 따른 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 것이다.The present invention also provides a cathode comprising a cathode current collector and a cathode active material layer formed on the cathode current collector, wherein the cathode active material layer comprises the lithium manganese cathode active material of the spinel structure according to the present invention will be.
또한, 본 발명에 따른 양극을 포함하는, 리튬 이차전지를 제공한다.Further, there is provided a lithium secondary battery comprising a positive electrode according to the present invention.
본 발명에 따르면, 스피넬 구조의 리튬 망간계 양극 활물질에 도핑원소를 도핑함으로써 구조 안정성을 개선할 수 있다. According to the present invention, the structural stability can be improved by doping a lithium manganese-based cathode active material having a spinel structure with a doping element.
또한, 상기 스피넬 구조의 리튬 망간계 양극 활물질의 표면에 코팅층을 형성함으로써 전해액과 양극 활물질간의 접촉을 최소화하여 고온에서 망간 용출이 억제되며, 이로 인해 종래에 비해 우수한 고온 저장 특성 및 고온 수명 특성을 갖는다. Further, by forming a coating layer on the surface of the lithium manganese-based cathode active material having the spinel structure, the contact between the electrolyte and the cathode active material is minimized, so that manganese elution is suppressed at a high temperature, thereby exhibiting high-temperature storage characteristics and high- .
도 1은 본 발명의 실시예 1~5 및 비교예 1~3에서 제조한 이차전지의 고온(45℃)에서 사이클에 따른 용량 및 저항 특성을 나타낸 그래프이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a capacity and a resistance characteristic according to a cycle at a high temperature (45.degree. C.) of the secondary battery manufactured in Examples 1 to 5 and Comparative Examples 1 to 3 of the present invention.
도 2는 본 발명의 실시예 1~5 및 비교예 1~3에서 제조한 이차전지의 고온(60℃) 저장시의 용량 및 저항 특성을 나타낸 그래프이다. 2 is a graph showing capacitance and resistance characteristics at the time of high temperature (60 ° C) storage of the secondary batteries manufactured in Examples 1 to 5 and Comparative Examples 1 to 3 of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary meanings and the inventor can properly define the concept of the term to describe its invention in the best possible way And should be construed in accordance with the principles and meanings and concepts consistent with the technical idea of the present invention.
본 명세서에서 평균 입경(D50)은, 본 명세서에서 평균 입경(D50)은, 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 상기 평균 입경(D50)은, 대상 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경에 따른 입자 체적 누적 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.In the present specification, the average particle diameter (D 50 ) is defined herein as the particle diameter at the 50% reference of the particle diameter distribution and the average particle diameter (D 50 ) is measured using a laser diffraction method . Specifically, the average particle diameter (D 50 ) was measured by dispersing the target particles in a dispersion medium, introducing the particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000), irradiating ultrasound at about 28 kHz at an output of 60 W , It is possible to calculate the average particle size (D 50 ) at the 50% reference of the cumulative distribution of the particle volume according to the particle size in the measuring apparatus.
본 명세서에서, ICP 분석은 유도 결합 플라즈마 발광 분광분석기(ICP-OES; Optima 7300DV, PerkinElmer社)를 이용하여 진행하였다.In this specification, ICP analysis was conducted using an inductively coupled plasma emission spectrometer (ICP-OES; Optima 7300DV, PerkinElmer).
본 명세서에서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.In the present specification, the " specific surface area " is measured by the BET method. Specifically, it can be calculated from the adsorption amount of nitrogen gas under the liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan.
또한, 본 명세서에서 %는 별다른 언급이 없는 한 중량%를 의미한다.In the present specification, "%" means weight% unless otherwise specified.
양극 활물질Cathode active material
먼저, 본 발명에 따른 스피넬 구조의 리튬 망간계 양극 활물질에 대해 설명한다. First, a lithium manganese-based cathode active material having a spinel structure according to the present invention will be described.
본 발명의 리튬 망간계 양극 활물질은, 하기 화학식 1로 표시되는 리튬 망간 산화물 및 상기 리튬 망간 산화물의 표면에 위치하는 코팅층을 포함하는 스피넬 구조의 양극 활물질이다.The lithium manganese-based cathode active material of the present invention is a spinel-type cathode active material comprising a lithium manganese oxide represented by the following general formula (1) and a coating layer disposed on the surface of the lithium manganese oxide.
[화학식 1][Chemical Formula 1]
Li1 + aMn2 - bM1 bO4 - cAc Li 1 + a Mn 2 - b M 1 b O 4 - ca c
상기 화학식 1에서, 상기 M1은 리튬 망간 산화물 내의 망간 사이트(site)에 치환된 도핑원소이며, Li을 포함하는 1종 이상의 금속 원소일 수 있다. 상기 A는 리튬 망산 산화물 내의 산소 사이트(site)에 치환된 원소이며, F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다.In Formula 1, M 1 is a doping element substituted for a manganese site in the lithium manganese oxide, and may be one or more metal elements including Li. The A is an element substituted for an oxygen site in the lithium oxynitride, and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
한편, 상기 1+a는 리튬 망간 산화물 내의 리튬의 몰비를 나타내는 것으로, 0≤a≤0.2, 바람직하게는 0≤a≤0.1일 수 있다. Meanwhile, 1 + a represents the molar ratio of lithium in the lithium manganese oxide, and may be 0? A? 0.2, preferably 0? A? 0.1.
상기 b는 리튬 망간 산화물 내의 도핑원소 M1의 몰비를 나타내는 것으로, 0<b≤0.5, 바람직하게는 0.03≤b≤0.25일 수 있다. M1의 몰비 b가 상기 범위를 만족 할 때, 용량 저하를 최소화하면서 구조적으로 안정한 양극 활물질을 얻을 수 있다. B represents the molar ratio of the doping element M 1 in the lithium manganese oxide, and may be 0 < b? 0.5, preferably 0.03? B? 0.25. When the molar ratio b of M 1 satisfies the above range, a structurally stable cathode active material can be obtained while minimizing the capacity drop.
상기 c는 리튬 망간 산화물 내에서 A원소의 몰비를 나타내는 것으로, 0≤c≤0.1, 바람직하게는 0.01≤c≤0.05일 수 있다.C represents the molar ratio of the element A in the lithium manganese oxide, and may be 0? C? 0.1, preferably 0.01? C? 0.05.
상기 화학식 1로 표시되는 리튬 망간 산화물은, Mn 보다 산화수가 낮은 도핑원소 M1으로 도핑되는 것이다. The lithium manganese oxide represented by Formula 1 is doped with a doping element M 1 having a lower oxidation number than Mn.
상기 리튬 망간 산화물이, Mn 보다 산화수가 낮은 도핑원소 M1으로 도핑됨으로써, Mn 이온의 평균 산화수를 높여 충방전 시에 전극 표면의 Mn 이온의 불균형화 반응(2Mn3+ = Mn2 ++Mn4 +)에 의해 생성되는 Mn2 +를 감소시켜, 전해액에서 발생하는 HF와의 반응을 억제하여 Mn 용출을 억제할 수 있다.The lithium manganese oxide is doped with a doping element M 1 having a lower oxidation number than that of Mn, thereby increasing the average oxidation number of Mn ions, resulting in a disproportionation reaction of Mn ions on the electrode surface (2Mn 3+ = Mn 2 + + Mn 4 by reducing the Mn + 2 it is generated by the +), to inhibit the reaction between the HF generated in the electrolytic solution can be inhibited Mn dissolution.
본 발명에 있어서, 상기 리튬 망간 산화물이, Mn과 산화수가 같거나 또는 Mn보다 산화수가 높은 원소로 도핑될 경우, Mn 이온의 평균 산화수가 감소하게 되고, Mn 이온의 불균형화 반응으로 인한 Mn2 +의 양이 증가하게 된다. 이때 생성된 Mn2 +는 전해질에 용해된 후, 충방전 시 환원되어 음극의 표면에 침착되어 용량 퇴화 등 셀 성능에 영향을 미칠 수 있다. In the present invention, when the lithium manganese oxide is doped with an element having the same oxidation number as Mn or having an oxidation number higher than that of Mn, the average oxidation number of the Mn ion is decreased and the Mn 2 + Is increased. At this time, the generated Mn 2 + is dissolved in the electrolyte and then reduced at the time of charging / discharging and deposited on the surface of the negative electrode, which may affect the cell performance such as capacity degradation.
또한, 상기 도핑원소 M1은 Al, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군으로부터 선택된 1종 이상의 금속 원소를 추가적으로 포함할 수 있다. 바람직하게는 상기 M1은 Li을 포함하고, Al 및 Mg으로 이루어진 군으로부터 선택된 1종 이상의 금속 원소를 추가적으로 포함하는 것일 수 있다.The doping element M 1 may be one or more of Al, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au, and Si. &Lt; RTI ID = 0.0 &gt; [0050] &lt; / RTI &gt; Preferably, M 1 includes Li, and may further include at least one metal element selected from the group consisting of Al and Mg.
바람직하게는, 상기 리튬 망간 산화물은 하기 화학식 1로 표시될 수 있다. Preferably, the lithium manganese oxide may be represented by the following formula (1).
[화학식 1][Chemical Formula 1]
Li1+aMn2-bLib1Ma b2O4-cAc Li 1 + a Mn 2-b Li b1 M a b2 O 4-c A c
상기 화학식 1에서, Ma는 Al 및 Mg으로 이루어진 군으로부터 선택된 1종 이상의 금속 원소이고, 0≤a≤0.2, 0<b1+b2≤0.5, 0≤c≤0.1, 0≤b1/b2≤1.3임.Wherein M a is at least one metal element selected from the group consisting of Al and Mg, 0? A? 0.2, 0 <b1 + b2? 0.5, 0? C? 0.1, 0? B1 / b2? being.
상기 화학식 1과 같이, 바람직하게는 도핑원소 M1은 Li과 Ma로 표시되는 금속 원소를 포함할 수 있다. 이때, 상기 b1은 리튬 망간 산화물 내의 도핑원소로서의 Li의 몰비를 나타내는 것이고, b2는 리튬 망간 산화물 내의 Li 외에 추가적으로 도핑 가능한 금속 원소의 몰비를 나타내는 것이다. 상기 b1+b2는 리튬 망간 산화물 내의 도핑원소 M1의 몰비를 나타내는 것이며, 0<b≤0.5, 바람직하게는 0.03≤b≤0.25일 수 있다. 또한, 상기 b1/b2의 몰비는 0≤b1/b2≤1.3, 바람직하게는 0.5≤b1/b2≤1.2일 수 있다. 상기 Li 및 Ma를 포함하는 도핑원소 M1의 몰비 b1 및 b2가 상기 범위를 만족 할 때, 용량 저하를 최소화하면서 구조적으로 안정한 양극 활물질을 얻을 수 있다.As shown in Formula 1, preferably, the doping element M 1 may include a metal element represented by Li and M a . Here, b1 represents a molar ratio of Li as a doping element in the lithium manganese oxide, and b2 represents a molar ratio of a metal element that can be additionally doped in addition to Li in the lithium manganese oxide. The b1 + b2 will represent the molar ratio of the doping element M 1 in the lithium manganese oxide, and may be 0 <b≤0.5, preferably 0.03≤b≤0.25. The molar ratio of b1 / b2 may be 0? B1 / b2? 1.3, preferably 0.5? B1 / b2? 1.2. When the doping element M 1 molar ratio of b1 and b2 containing the Li and M a to satisfy the above range, it is possible to obtain a stable cathode active material while minimizing the structural capacity decreases.
다음으로, 상기 코팅층은 상기 리튬 망간 산화물과 전해액의 접촉을 차단하여 충방전 시 가스 발생을 억제하고, 고온에서 망간(Mn)이 용출되는 것을 방지하기 위한 것이다. 상기 코팅층은 상기 리튬 망간 산화물 표면에 위치하며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함한다. 바람직하게는 상기 코팅층은 W, Mg, B 및 Ti으로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함할 수 있으며, 더 바람직하게는, W 및 B로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함할 수 있다.Next, the coating layer prevents contact between the lithium manganese oxide and the electrolytic solution to prevent generation of gas upon charge and discharge, and prevents manganese (Mn) from leaching at a high temperature. The coating layer is located on the surface of the lithium manganese oxide and contains at least one of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, (Hereinafter referred to as &quot; coating element &quot;) selected from the group consisting of Sb, Bi, Si, Preferably, the coating layer may include at least one element selected from the group consisting of W, Mg, B and Ti, and more preferably at least one element selected from the group consisting of W and B .
일 구현예에 따르면, 본 발명에 따른 리튬 망간계 양극 활물질은 도핑원소 M1이 Li, Al 및 Mg을 포함하는 1종 이상의 금속 원소이고, 상기 코팅층이 WO3를 포함하는 것일 수 있다. According to one embodiment, the lithium manganese-based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer contains WO 3 .
다른 구현예에 따르면, 본 발명에 따른 리튬 망간계 양극 활물질은 도핑원소 M1이 Li, Al 및 Mg을 포함하는 1종 이상의 금속 원소이고, 상기 코팅층이 B2O3를 포함하는 것일 수 있다. According to another embodiment, the lithium manganese based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer contains B 2 O 3 .
다른 구현예에 따르면, 본 발명에 따른 리튬 망간계 양극 활물질은 도핑원소 M1이 Li, Al 및 Mg을 포함하는 1종 이상의 금속 원소이고, 상기 코팅층이 TiO2을 포함하는 것일 수 있다.According to another embodiment, the lithium manganese-based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer comprises TiO 2 .
또 다른 구현예에 따르면, 본 발명에 따른 리튬 망간계 양극 활물질은 도핑원소 M1이 Li, Al 및 Mg을 포함하는 1종 이상의 금속 원소이고, 상기 코팅층이 MgO2를 포함하는 것일 수 있다. According to another embodiment, the lithium manganese-based cathode active material according to the present invention may be one in which the doping element M 1 is at least one metal element including Li, Al and Mg, and the coating layer contains MgO 2 .
한편, 본 발명에 따른 스피넬 구조의 리튬 망간계 양극 활물질은 리튬 붕소 복합 산화물 및 리튬 텅스텐 복합 산화물을 포함할 수 있다.Meanwhile, the lithium manganese-based cathode active material having a spinel structure according to the present invention may include a lithium boron composite oxide and a lithium tungsten composite oxide.
예를 들면, 상기 스피넬 구조의 리튬 망간계 양극 활물질은, 상기 리튬 망간계 양극 활물질의 표면에 리튬 붕소 복합 산화물 및 리튬 텅스텐 복합 산화물이 존재하는 것일 수 있다. 바람직하게는 상기 리튬 망간계 양극 활물질은 2차 입자를 가지는 것일 수 있으며, 더 바람직하게는, 상기 2차 입자의 표면 및 내부에 리튬 붕소 복합 산화물 및 리튬 텅스텐 복합 산화물이 존재할 수 있다. For example, the lithium manganese-based cathode active material of the spinel structure may have a lithium-boron composite oxide and a lithium-tungsten composite oxide on the surface of the lithium manganese-based cathode active material. Preferably, the lithium manganese-based cathode active material may have secondary particles, and more preferably lithium-boron composite oxide and lithium tungsten composite oxide may exist on the surface and inside of the secondary particle.
상기 리튬 붕소 복합 산화물은 바람직하게는 붕산 리튬일 수 있고, 더 바람직하게는, 붕산 리튬, 4 붕산 리튬, 5 붕산 리튬일 수 있으며, 가장 바람직하게는 Li2B4O7일 수 있다. The lithium boron complex oxide may be preferably lithium borate, more preferably lithium borate, lithium tetraborate, lithium pentaborate, and most preferably Li 2 B 4 O 7 .
상기 리튬 텅스텐 복합 산화물은 바람직하게는 텅스텐산 리튬일 수 있고, 가장 바람직하게는 Li2WO4일 수 있다. The lithium tungsten composite oxide may preferably be lithium tungstate, and most preferably Li 2 WO 4 .
예를 들면, 리튬 망간계 양극 활물질 제조 시, 리튬 원료물질, 망간 원료물질 및 텅스텐 원료물질을 포함하는 원료 중에 붕소 원료물질을 혼합하고 소성함으로써, 상기 리튬 망간계 양극 활물질에 리튬 붕소 산화물 및 리튬 텅스텐 복합 산화물이 형성될 수 있다. 상기 리튬 망간계 양극 활물질에 리튬 붕소 복합 산화물 및 리튬 텅스텐 복합 산화물이 형성됨에 따라 전지 저항을 감소시킬 수 있고, 고온 보존시의 망간 용출을 억제할 수 있다.For example, in the production of a lithium manganese-based cathode active material, boron raw material is mixed and fired in a raw material including a lithium raw material, a manganese raw material, and a tungsten raw material, and lithium boron oxide and lithium tungsten A complex oxide can be formed. The formation of the lithium-boron composite oxide and the lithium-tungsten composite oxide in the lithium manganese-based cathode active material can reduce the battery resistance and inhibit the elution of manganese during high-temperature storage.
한편, 상기 코팅층은 상기 화학식 1로 표시되는 리튬 망간 산화물의 표면에 연속 또는 불연속적으로 형성될 수 있다.On the other hand, the coating layer may be formed continuously or discontinuously on the surface of the lithium manganese oxide represented by Formula 1.
예를 들면, 상기 코팅층은 상기 리튬 망간 산화물의 표면에 상기 코팅 원소들을 포함하는 입자들이 불연속적으로 부착된 아일랜드(island) 형태로 형성될 수 있다. 이때, 상기 코팅 원소들을 포함하는 입자들은 예를 들면, WO3, B2O3, ZnO, Al2O3, TiO2, MgO, CaO, NbO2, SrO, CrO, Mo2O5, Bi2O3, SiO와 같은 산화물 입자일 수 있다. 상기와 같은 산화물 입자들이 리튬 망간 산화물 입자 표면에 존재할 경우, 하기 반응식 1에 나타난 바와 같이 상기 산화물 입자들이 전해액과의 반응에 의해 형성되는 HF를 포착하여 분해시키기 때문에, HF에 의한 Mn 용출이 억제된다.For example, the coating layer may be formed in an island shape in which particles including the coating elements are discontinuously adhered to the surface of the lithium manganese oxide. In this case, the particles including the coating elements may be, for example, WO 3 , B 2 O 3 , ZnO, Al 2 O 3 , TiO 2 , MgO, CaO, NbO 2 , SrO, CrO, Mo 2 O 5 , Bi 2 O 3 , SiO, and the like. When the oxide particles are present on the surfaces of the lithium manganese oxide particles, the oxide particles capture and decompose HF formed by the reaction with the electrolyte, as shown in the following reaction formula 1, so that the Mn elution by HF is suppressed .
[반응식 1][Reaction Scheme 1]
ZnO +2HF → ZnF2+H2OZnO + 2HF -> ZnF 2 + H 2 O
Al2O3 + 6HF → 2AlF3+3H2OAl 2 O 3 + 6HF? 2AlF 3 + 3H 2 O
또는, 상기 코팅층은 리튬 망간 산화물 표면에 상기 코팅 원소들을 포함하는 피막(film) 형태로 형성될 수도 있다. 상기 코팅층이 피막 형태로 형성될 경우, 전해액과 리튬 망간 산화물의 접촉 차단 효과 및 망간 용출 억제 효과가 보다 더 우수하다. 바람직하게는, 상기 피막은 W, Mg, B 및 Ti으로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함한다. 리튬 망간 산화물 입자 표면에 상기와 같은 피막이 형성될 경우, 상기 막에 의해 전해액과의 접촉이 차단되어 전해액과의 부반응 및 가스 발생을 억제할 수 있다.Alternatively, the coating layer may be formed in the form of a film containing the coating elements on the surface of the lithium manganese oxide. When the coating layer is formed in the form of a film, the effect of preventing the contact between the electrolyte and the lithium manganese oxide and the effect of inhibiting the manganese dissolution are more excellent. Preferably, the coating comprises at least one element selected from the group consisting of W, Mg, B and Ti. When the above-mentioned coating is formed on the surface of the lithium manganese oxide particles, contact with the electrolytic solution is blocked by the film, and side reactions and gas generation with the electrolyte can be suppressed.
한편, 상기 코팅층은 리튬 망간 산화물의 전체 표면적의 50% 내지 100%에 해당하는 영역에 형성될 수 있으며, 바람직하게는 80% 내지 100%, 더 바람직하게는 90% 내지 100%에 해당되는 영역에 형성될 수 있다. 코팅층 형성 면적이 상기 범위를 만족하는 경우에, 전해액과 리튬 망간 산화물 간의 접촉이 효과적으로 차단될 수 있다. On the other hand, the coating layer may be formed in a region corresponding to 50% to 100% of the total surface area of the lithium manganese oxide, preferably in a range of 80% to 100%, more preferably 90% to 100% . When the coating layer formation area satisfies the above range, the contact between the electrolytic solution and the lithium manganese oxide can be effectively blocked.
또한, 상기 코팅층은 그 두께는 1nm 내지 1000nm, 예를 들면, 1nm 내지 100nm 또는 10nm 내지 1000nm일 수 있다. 코팅층이 피막(film) 형태로 형성될 경우에는 그 두께가 1nm 내지 100nm일 수 있으며, 산화물 입자상으로 형성될 경우에는 그 두께가 10nm 내지 1000nm일 수 있다. 코팅층의 두께가 상기 범위를 만족할 때, 전기적 성능의 저하를 최소화하면서 망간 용출 및 전해액과의 부반응 발생을 효과적으로 억제할 수 있다. Further, the thickness of the coating layer may be 1 nm to 1000 nm, for example, 1 nm to 100 nm or 10 nm to 1000 nm. When the coating layer is formed in the form of a film, its thickness may be 1 nm to 100 nm, and when it is formed in the form of oxide particles, its thickness may be 10 nm to 1000 nm. When the thickness of the coating layer satisfies the above range, it is possible to effectively suppress occurrence of manganese elution and side reaction with the electrolyte while minimizing deterioration of electrical performance.
한편, 본 발명의 리튬 망간계 양극 활물질은 상기 도핑원소 M1를 리튬 망간계 양극 활물질 전체 중량에 대하여 500 내지 40,000ppm, 바람직하게는 2,500 내지 40,000ppm, 더 바람직하게는, 3,000 내지 40,000ppm으로 포함할 수 있다. 도핑원소 M1의 함량이 상기 범위를 만족할 때, 고온에서의 망간 용출이 효과적으로 억제되며, 이에 따라 고온 저장성이 우수한 리튬이차전지를 구현할 수 있다. Meanwhile, the lithium manganese-based cathode active material of the present invention contains 500 to 40,000 ppm, preferably 2,500 to 40,000 ppm, and more preferably 3,000 to 40,000 ppm of the doping element M 1 based on the total weight of the lithium manganese-based cathode active material can do. When the content of the doping element M 1 satisfies the above range, the dissolution of manganese at a high temperature is effectively suppressed, thereby realizing a lithium secondary battery excellent in high-temperature storability.
일 구현예에 따르면, 리튬 망간계 양극 활물질은 도핑원소로 Li 또는 Li과 Al 및 Mg 또는 이들의 조합을 포함할 수 있으며, 이때, 상기 Al은 리튬 망간계 양극 활물질 전체 중량에 대하여 2500 내지 40000ppm, 바람직하게는 7000 내지 20000ppm으로 포함될 수 있으며, 상기 Li은 리튬 망간계 양극 활물질 전체 중량에 대하여 500 내지 12000ppm, 바람직하게는 1000 내지 3000ppm으로 포함될 수 있다. 또한, 상기 Mg은 리튬 망간계 양극 활물질 전체 중량에 대하여 1000 내지 20000ppm, 바람직하게는 3000 내지 10000ppm으로 포함될 수 있다. According to one embodiment, the lithium manganese-based cathode active material may include Li or Li, Al and Mg, or a combination thereof as a doping element, wherein the Al is present in an amount of 2500 to 40000 ppm based on the total weight of the lithium manganese- Preferably 7,000 to 20,000 ppm, and the Li may be contained in an amount of 500 to 12,000 ppm, preferably 1000 to 3000 ppm, based on the total weight of the lithium manganese-based positive electrode active material. The Mg may be contained in an amount of 1000 to 20000 ppm, preferably 3000 to 10000 ppm based on the total weight of the lithium manganese-based cathode active material.
한편, 상기 본 발명에 따른 리튬 망간계 양극 활물질은 평균 입경(D50)이 1 내지 20 ㎛, 예를 들면, 1 내지 8㎛, 7㎛ 내지 20㎛, 8㎛ 내지 20㎛ 또는 10㎛ 내지 20㎛일 수 있다. Meanwhile, the lithium manganese-based cathode active material according to the present invention has an average particle diameter (D 50 ) of 1 to 20 μm, for example, 1 to 8 μm, 7 μm to 20 μm, 8 μm to 20 μm, Lt; / RTI &gt;
일 구현예에 따르면, 본 발명에 따른 리튬 망간계 양극 활물질은 평균 입경(D50)이 1 내지 8㎛일 수 있다. 이와 같이 평균 입경(D50)이 작은 소입경의 리튬 망간계 양극 활물질의 경우, 평균 입경이 큰 입자에 비해 상대적으로 도핑 및 코팅 원소의 함량을 높이고 소성 조건 등을 조절하여 비표면적을 작게 함으로써, 구조 안정성이 우수하고, 전해액과의 부반응이 적은 리튬 망간계 양극 활물질을 제조할 수 있다. According to one embodiment, the lithium manganese-based cathode active material according to the present invention may have an average particle diameter (D 50 ) of 1 to 8 μm. In the case of the lithium manganese-based cathode active material having a small average particle diameter (D 50 ) as described above, the content of the doping and coating elements is relatively increased and the specific surface area is reduced by controlling the firing conditions and the like, A lithium manganese-based cathode active material having excellent structural stability and less side reaction with an electrolyte can be produced.
다른 구현예에 따르면, 본 발명에 따른 리튬 망간계 양극 활물질은 평균 입경(D50)이 8㎛ 내지 20㎛일 수 있다. 이와 같이 평균 입경(D50)이 큰 대입경의 리튬 망간계 양극 활물질의 경우, 평균 입경이 작은 입자에 비해 상대적으로 망간 용출이 적다는 장점이 있다. According to another embodiment, the lithium manganese-based cathode active material according to the present invention may have an average particle diameter (D 50 ) of 8 to 20 탆. The lithium manganese-based cathode active material having a large average particle diameter (D 50 ) as described above is advantageous in that manganese dissolution is relatively small as compared with particles having a small average particle diameter.
또한, 상기 리튬 망간계 활물질은 비표면적이 0.1 내지 1.5 m2/g일 수 있다. 상기 비표면적은 리튬 망간계 활물질의 입경 크기에 따라 조절될 수 있으며, 예를 들면, 상기 리튬 망간계 활물질이 후술할 양극재에서 소입경 입자로 사용되는 경우에는 비표면적이 0.5 내지 1.5m2/g 또는 0.7 내지 1.1m2/g 일 수 있으며, 대입경 입자로 사용되는 경우에는 비표면적이 0.1 내지 1m2/g 또는 0.25 내지 0.7m2/g일 수 있다. The lithium manganese-based active material may have a specific surface area of 0.1 to 1.5 m 2 / g. The specific surface area may be adjusted according to the particle size of the lithium manganese based active material. For example, when the lithium manganese based active material is used as small particle size particles in a cathode material to be described later, the specific surface area is 0.5 to 1.5 m 2 / g or 0.7 to 1.1 m 2 / g, and when used as large diameter particles, the specific surface area may be 0.1 to 1 m 2 / g or 0.25 to 0.7 m 2 / g.
또한, 상기 리튬 망간계 양극 활물질은 1차 입자 또는 복수개의 1차 입자가 응집되어 형성되는 2차 입자 형태일 수 있다. 상기 2차 입자는, 예를 들면, 2 내지 100개, 또는 2 내지 50개의 1차 입자들이 형성되는 것일 수 있다. The lithium manganese-based cathode active material may be in the form of a secondary particle formed by aggregating primary particles or a plurality of primary particles. The secondary particles may be, for example, 2 to 100, or 2 to 50 primary particles formed.
한편, 상기 리튬 망간계 양극 활물질에는 제조 공정 상에서 의도하지 않게 포함되는 불순물을 포함될 수 있다. 이러한 불순물에는, 예를 들면, Fe, Ni, Na, Cu, Zn, Cr, Ca, K, S, Mg, Co, Si, B 또는 이들의 조합이 포함될 수 있다. 이와 같은 불순물의 함량이 높을 경우, 음극 덴드라이트를 유도하여 전지 수명이 저하되고, 내부 단락에 의한 저전압 불량이 발생할 수 있다. 또한, 이들 불순물들 중 S 등과 같은 불순물은 Al 집전체를 부식시킨다는 문제점이 있다. 따라서, 불순물이 일정 정도 이하로 제어되는 것이 바람직하다.Meanwhile, the lithium manganese-based cathode active material may include impurities that are not included in the manufacturing process. These impurities may include, for example, Fe, Ni, Na, Cu, Zn, Cr, Ca, K, S, Mg, Co, Si, B or combinations thereof. If such an impurity content is high, the life of the battery may be deteriorated by inducing the negative electrode dendrite, and a low voltage failure due to an internal short circuit may occur. Among these impurities, impurities such as S or the like have a problem of corroding the Al current collector. Therefore, it is preferable that the impurities are controlled to a certain degree or less.
예를 들면, 본 발명에 따른 리튬 망간계 양극 활물질은 S 불순물 함량이 20000ppm 이하, 바람직하게는 15000ppm 이하, 더 바람직하게는 1000ppm 이하일 수 있으며, 그 외 불순물 함량이 400ppm 이하, 바람직하게는 10ppm 이하일 수 있다.For example, the lithium manganese-based cathode active material according to the present invention may have an S impurity content of 20000 ppm or less, preferably 15000 ppm or less, more preferably 1000 ppm or less, and the other impurity content may be 400 ppm or less, preferably 10 ppm or less have.
또한, 본 발명에 따른 리튬 망간계 양극 활물질은 상기 불순물들 중에서도 Fe, Cr, Ni, Zn 등과 같은 자성 불순물(magnetic impurity)의 총량이 800ppb 이하, 구체적으로는 25ppb 이하인 것이 바람직하다. 자성 불순물의 함량이 상기 범위를 초과하는 경우, 음극 덴드라이트를 유도하여 전지 수명이 저하되거나, 내부 단락에 의한 저전압 불량이 발생할 수 있다.In the lithium manganese-based cathode active material according to the present invention, the total amount of magnetic impurities such as Fe, Cr, Ni, and Zn among the above-mentioned impurities is preferably not more than 800 ppb, specifically not more than 25 ppb. If the content of the magnetic impurities exceeds the above range, the life of the battery may be deteriorated by inducing the negative electrode dendrite, or a low voltage failure due to an internal short circuit may occur.
양극 활물질의 제조 방법Method for producing cathode active material
다음으로, 본 발명에 따른 리튬 망간계 양극 활물질의 제조 방법에 대해 설명한다. Next, a method for producing the lithium manganese-based cathode active material according to the present invention will be described.
본 발명에 따른 리튬 망간계 양극 활물질은, 상기 화학식 1로 표시되는 M1으로 도핑된 리튬 망간 산화물을 형성하는 단계, 및 상기 화학식 1로 표시되는 리튬 망간 산화물과 코팅 원료 물질을 혼합한 후 열처리하여 코팅층을 형성하는 단계를 통해 제조될 수 있다. 이하, 본 발명에 따른 제조방법의 각 단계에 대해 구체적으로 설명한다.The lithium manganese-based cathode active material according to the present invention is characterized by comprising the steps of: forming a lithium manganese oxide doped with M 1 represented by Formula 1; and mixing the lithium manganese oxide represented by Formula 1 with the coating raw material, To form a coating layer. Hereinafter, each step of the manufacturing method according to the present invention will be described in detail.
(1) M1으로 (1) to M1 도핑된Doped 리튬 망간 산화물을 형성하는 단계 Step of forming lithium manganese oxide
상기 화학식 1로 표시되는 M1으로 도핑된 리튬 망간 산화물은, (i) 망간 원료물질, M1을 포함하는 도핑 원료 물질 및 리튬 원료 물질을 혼합한 후 소성하는 방법, 또는 (ii) 망간 원료물질과 M1을 포함하는 도핑 원료 물질을 반응시켜, M1으로 도핑된 망간 전구체를 형성한 후, 상기 M1으로 도핑된 망간 전구체와 리튬 원료 물질을 혼합한 후 소성하는 방법으로 제조될 수 있다. 즉, 본 발명에 있어서, 상기 도핑원소 M1은 망간 전구체 형성 단계에서 투입될 수도 있고, 망간 원료물질과 리튬 원료 물질의 소성 단계에서 투입될 수도 있다.The lithium manganese oxide doped with M 1 represented by Formula 1 may be prepared by mixing (i) a manganese raw material, a doping raw material containing M 1 , and a lithium raw material, followed by sintering, or (ii) and reacting the doping raw material containing M 1, it can be prepared by after the formation of the manganese precursor is doped with M 1, method of sintering by mixing the manganese precursor and the lithium source material is doped with the above M 1. That is, in the present invention, the doping element M 1 may be added in the step of forming the manganese precursor, or may be charged in the step of firing the manganese raw material and the lithium raw material.
이때, 상기 망간 원료물질은, 망간 원소 함유 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 구체적으로는, MnO2, MnCl2, MnCO3, Mn3O4, MnSO4, Mn2O3, Mn(NO3)2 등일 수 있으나, 이에 한정되는 것은 아니다. The manganese raw material may be a manganese element-containing oxide, a hydroxide, an oxyhydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetate, a carboxylate or a combination thereof. Specific examples thereof include MnO 2 , MnCl 2 , MnCO 3 , Mn 3 O 4 , MnSO 4 , Mn 2 O 3 , Mn (NO 3 ) 2 , and the like, but is not limited thereto.
상기 M1을 포함하는 도핑원료 원료 물질은, M1 함유 산화물, 수산화물, 옥시수산화물, 황산염, 탄산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, Li(OH), LiCO3 , Li2O, Al2(SO4)3, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, MgO, Mg(OH)2 , MgSO4, Mg(NO3)2 등일 수 있으나, 이에 한정되는 것은 아니다. Doping material source material containing the M 1 is, M 1 containing oxides, hydroxides, oxy-hydroxides, sulfates, carbonates, halides, sulfides, acetates, and carboxylate, or the like combinations thereof, for example, Li (OH ), LiCO 3, Li 2 O , Al 2 (SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , MgO, Mg (OH) 2, MgSO 4, Mg (NO 3 ) 2, etc. However, the present invention is not limited thereto.
상기 리튬 원료 물질은, 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등일 수 있으나, 이에 한정되는 것은 아니다. The lithium source material may be at least one selected from the group consisting of lithium containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) and the like), hydroxide (for example, For example, lithium nitrate (LiNO 3 ) or the like), chloride (for example, lithium chloride (LiCl) or the like), and the like.
일 구현예에 따르면, 상기 화학식 1로 표시되는 리튬 망간 산화물은, 망간 원료물질, M1을 포함하는 도핑 원료 물질 및 리튬 원료 물질을 혼합한 후, 소성함으로써 제조될 수 있다(방법 (i)). According to one embodiment, the lithium manganese oxide represented by Formula 1 may be prepared by mixing a manganese raw material, a doping raw material containing M 1 , and a lithium raw material and then firing (Method (i)). .
상기 망간 원료물질, M1을 포함하는 도핑 원료 물질 및 리튬 원료 물질은 화학식 1의 Mn, M1 및 Li의 몰비를 만족할 수 있는 양으로 혼합될 수 있다. The manganese raw material, the doping raw material including M 1 , and the lithium raw material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li in the formula (1).
또한, 상기 혼합은 고상 혼합 또는 액상 혼합으로 이루어질 수 있다. 고상 혼합을 통해 각 성분들을 혼합할 경우, 별도의 건조 공정 없이 소성 공정을 수행할 수 있으며, 액상 혼합을 통해 각 성분들을 혼합하는 경우에는 혼합된 성분들을 분무 건조시킨 후에 소성 공정을 진행한다. 고상 혼합법을 이용할 경우에는 평균 입경(D50)이 8㎛ 미만, 바람직하게는 6㎛ 이하이고, 비표면적이 낮은 소입경의 리튬 망간 산화물을 얻을 수 있다. 반면, 습식 혼합법을 이용할 경우에는 일반적으로 평균 입경(D50)이 8㎛ 이상인 대입경의 리튬 망간 산화물이 얻어진다.In addition, the mixing may be a solid-phase mixing or a liquid-phase mixing. When the components are mixed through the solid-phase mixing, the firing process can be performed without a separate drying process. In the case of mixing the components through the liquid phase mixing, the mixed components are spray dried and then subjected to the firing process. When the solid-phase mixing method is used, a lithium manganese oxide having an average particle diameter (D 50 ) of less than 8 μm, preferably not more than 6 μm, and having a small specific surface area can be obtained. On the other hand, when a wet mixing method is used, a lithium manganese oxide having an average particle diameter (D 50 ) of 8 μm or larger can be obtained.
한편, 상기 소성은 600 내지 900℃, 바람직하게는 700 내지 800 ℃에서 5 내지 24시간, 바람직하게는 10 내지 15 시간 동안 수행될 수 있다. On the other hand, the firing may be performed at 600 to 900 ° C, preferably 700 to 800 ° C, for 5 to 24 hours, preferably 10 to 15 hours.
예를 들면, 상기 소성은 750 내지 850℃, 바람직하게는 780 내지 830℃에서 5 내지 24시간, 바람직하게는 10 내지 15 시간 동안 수행될 수 있다. 상기 온도 및 소성 시간을 만족하는 경우에, 과소성이 발생하여 1차 입자 크기가 커지게 되며, 이에 따라 1차 입자의 평균 입경(D50)의 크기가 1㎛ 이상, 바람직하게는 2㎛ 내지 3㎛인 리튬 망간 산화물을 얻을 수 있다. For example, the calcination may be performed at 750 to 850 캜, preferably at 780 to 830 캜 for 5 to 24 hours, preferably 10 to 15 hours. When the temperature and the firing time are satisfied, undersize occurs to increase the primary particle size. Accordingly, the average particle size (D 50 ) of the primary particles is 1 μm or more, preferably 2 μm or more A lithium manganese oxide having a thickness of 3 m can be obtained.
다른 구현예에 따르면, 상기 화학식 1로 표시되는 리튬 망간 산화물은, 망간 원료물질과 M1을 포함하는 도핑 원료 물질을 반응시켜, M1으로 도핑된 망간 전구체를 형성한 후, 상기 M1으로 도핑된 망간 전구체와 리튬 원료 물질을 혼합한 후 소성함으로써 제조될 수 있다(방법 (ii)).According to other embodiments, the lithium manganese oxide represented by Formula 1, by reacting a doping raw material including a manganese raw material and M 1, after the formation of the manganese precursor is doped with M 1, doped with the M 1 (Ii) mixing lithium manganese precursor with a lithium source material, followed by calcination.
구체적으로는, 상기 M1으로 도핑된 망간 전구체는, 예를 들면, 망간 원료물질과 M1을 포함하는 도핑원료 원료 물질을 공침 반응시켜 형성될 수 있다. 망간 원료물질과 M1을 포함하는 도핑원료 원료 물질은 상기한 바와 동일하다. Specifically, the manganese precursor doped to said M 1 is, for example, be formed by co-precipitation reaction the doped raw material raw material containing manganese as a raw material M 1. The manganese raw material and the doping raw material containing M &lt; 1 &gt; are the same as described above.
상기 공침 반응은, 당해 기술 분야에 잘 알려진 공침법을 통해 이루어질 수 있으며, 예를 들면, 망간 원료물질과 도핑원소 원료 물질을 공침 반응기 내에 적절한 비율로 투입하고, 착화제인 암모니아 수용액 및 pH 조절제인 알칼리 수용액을 투입하면서 반응을 진행시키는 방식으로 수행될 수 있다. The coprecipitation reaction may be performed by a co-precipitation method well known in the art. For example, the manganese raw material and the doping element raw material are charged into the coprecipitation reactor at an appropriate ratio, and an aqueous ammonia solution as a complexing agent and an alkali And the reaction is allowed to proceed while the aqueous solution is added.
상기와 같은 공침 반응을 통해 M1으로 도핑된 망간 전구체가 생성되면, 상기 M1으로 도핑된 망간 전구체와 리튬 원료물질을 혼합한 후 소성하여 리튬 망간 산화물을 형성한다. When a manganese precursor doped with M 1 is generated through the above-mentioned coprecipitation reaction, the manganese precursor doped with M 1 and the lithium source material are mixed and then fired to form lithium manganese oxide.
상기 M1으로 도핑된 망간 전구체와 리튬 원료 물질은 상기 화학식 1의 Mn, M1 및 Li의 몰비를 만족할 수 있는 양으로 혼합될 수 있다. The manganese precursor doped with M 1 and the lithium source material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li in Formula 1.
한편, 상기 혼합 및 소성은 상기 방법 (i)에서 설명한 것과 동일한 방법으로 수행될 수 있다.On the other hand, the mixing and firing can be carried out in the same manner as described in method (i).
(2) 코팅층 형성 단계 (2) Coating layer formation step
상기와 같은 방법을 통해 상기 화학식 1로 표시되는 M1으로 도핑된 리튬 망간 산화물이 제조되면, 상기 화학식 1의 리튬 망간 산화물의 표면에 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함하는 코팅층을 형성한다. When the lithium manganese oxide doped with M 1 represented by Formula 1 is prepared through the above process, the surface of the lithium manganese oxide of Formula 1 may be coated with Al, Ti, W, B, F, P, (Hereinafter referred to as "coating element") selected from the group consisting of Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, To form a coating layer.
상기 코팅층 형성은 당해 기술 분야에 알려진 방법을 이용할 수 있으며, 예를 들면, 습식 코팅법, 건식 코팅법, 플라즈마 코팅법 또는 ALD(Atomic Layer Deposition) 등을 이용할 수 있다. For example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
상기 습식 코팅법은, 예를 들면, 리튬 망간 산화물과 코팅원료물질에 에탄올, 물, 메탄올, 아세톤 등과 같은 적절한 용매에 첨가한 후, 용매가 없어질 때까지 혼합하는 방법으로 수행될 수 있다. The wet coating method may be carried out by, for example, adding lithium manganese oxide and a coating material to an appropriate solvent such as ethanol, water, methanol, acetone, etc., and mixing the mixture until the solvent disappears.
상기 건식 코팅법은 리튬 망간 산화물과 코팅원료물질을 용매 없이 고상으로 혼합하는 방법으로, 예를 들면, 그라인더 혼합법이나 메카노 퓨전법 등이 사용될 수 있다. The dry coating method is a method of mixing a lithium manganese oxide and a coating raw material in a solid phase without a solvent, and for example, a grinder mixing method, a mechanofusion method, or the like can be used.
한편, 상기 코팅원료물질은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, ZnO, Al2O3, Al(OH)3, Al2(SO4)3, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, TiO2, WO3, AlF, H2BO3, HBO2, H3BO3, H2B4O7 , B2O3, C6H5B(OH)2, (C6H5O)3B, (CH3(CH2)3O)3B, C3H9B3O6, (C3H7O3)B, Li3WO4, (NH4)10W12O41·5H2O, NH4H2PO4 등일 수 있으나, 이에 제한되는 것은 아니다. The coating material may be at least one selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, , Oxides, hydroxides, carbonates, sulfates, halides, sulfides, acetates, carboxylates or combinations thereof, including at least one element selected from the group consisting of may be, for example, ZnO, Al 2 O 3, Al (OH) 3, Al 2 (SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , TiO 2, WO 3, AlF, H 2 BO 3, HBO 2, H 3 BO 3, H 2 B 4 O 7, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, (CH 3 (CH 2) 3 O) 3 B, C 3 H 9 B 3 O 6, (C 3 H 7 O 3) B, Li 3 WO 4, (NH 4) 10 W 12 O 41 · 5H 2 O, NH 4 H 2 PO 4 , and the like.
상기와 같은 방법을 통해 코팅원료물질이 리튬 망간 산화물의 표면에 부착된 후에 열처리를 통해 코팅층을 형성할 수 있다. 이때, 상기 열처리는 100℃ 내지 700℃, 바람직하게는 300℃ 내지 450℃에서 1 내지 15시간, 바람직하게는 3 내지 8시간 동안 수행될 수 있다. After the coating material is adhered to the surface of the lithium manganese oxide through the above-described method, the coating layer can be formed through heat treatment. At this time, the heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
양극anode
다음으로, 본 발명에 따른 리튬 이차전지용 양극에 대해서 설명한다. Next, a positive electrode for a lithium secondary battery according to the present invention will be described.
본 발명에 따른 양극은, 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함하며, 상기 양극 활물질층은 본 발명에 따른 양극 활물질을 스피넬 구조의 리튬 망간계 양극 활물질을 포함하며, 필요에 따라 도전재 및/또는 바인더를 포함한다. The positive electrode according to the present invention includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector. The positive electrode active material layer includes a lithium manganese-based positive electrode active material having a spinel structure, And optionally a conductive material and / or a binder.
이때, 상기 양극 활물질은 상술한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.Since the cathode active material is the same as that described above, a detailed description thereof will be omitted and only the remaining constitution will be specifically described below.
상기 양극 활물질층은 하기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질을 더 포함할 수 있다. The cathode active material layer may further include a lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 below.
[화학식 2] (2)
Li1+x[NiyCozMnwM2 v]O2-pBp Li 1 + x [Ni y Co z Mn w M 2 v ] O 2 - p B p
상기 화학식 2에서, M2는 전이금속(Ni, Co, Mn) 사이트(site)에 치환된 도핑원소이며, W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소일 수 있다. 바람직하게는, 상기 M2는 Al, Zr, W, Ti, Nb, 및 B로 이루어진 군에서 선택되는 1종 이상일 수 있다. M 2 is a doping element substituted for a transition metal (Ni, Co, Mn) site, and W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, And at least one element selected from the group consisting of Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B and Mo. Preferably, the M 2 may be at least one selected from the group consisting of Al, Zr, W, Ti, Nb and B.
상기 B는 리튬 니켈-망간-코발트계 양극 활물질 내의 산소 사이트(site) 치환된 원소이며, F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다. The B is an oxygen-site-substituted element in the lithium nickel-manganese-cobalt cathode active material and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
한편, 상기 1+x는 리튬 니켈-망간-코발트계 양극활물질 내의 리튬 몰비를 나타내는 것으로, 0≤x≤0.3, 바람직하게는 0≤x≤0.2, 더 바람직하게는 0≤x≤0.1일 수 있다. Meanwhile, 1 + x represents the lithium molar ratio in the lithium nickel-manganese-cobalt cathode active material, and may be 0? X? 0.3, preferably 0? X? 0.2, more preferably 0? X? .
상기 y는 리튬 니켈-망간-코발트계 양극활물질 내의 니켈 몰비를 나타내는 것으로, 0.5≤y<1, 바람직하게는 0.65≤y<1, 더 바람직하게는 0.7≤y<1, 보다 더 바람직하게는 0.75≤y<1일 수 있다. Y represents the molar ratio of nickel in the lithium nickel-manganese-cobalt cathode active material and satisfies 0.5? Y <1, preferably 0.65? Y <1, more preferably 0.7? Y <1, Lt; y < 1.
상기 z는 리튬 니켈-망간-코발트계 양극활물질 내의 코발트 몰비를 나타내는 것으로, 0<z<0.35, 바람직하게는, 0<z≤0.3일 수 있다. Z represents the molar ratio of cobalt in the lithium nickel-manganese-cobalt cathode active material, and may be 0 <z <0.35, preferably 0 <z≤0.3.
상기 w는 리튬 니켈-망간-코발트계 양극활물질 내의 망간 몰비를 나타내는 것으로, 0<w<0.35, 바람직하게는 0<w≤0.3일 수 있다. The w represents the molar ratio of manganese in the lithium nickel-manganese-cobalt cathode active material, and may be 0 <w <0.35, preferably 0 <w? 0.3.
리튬 니켈-코발트-망간계 산화물 내의 전이금속 몰비 y, z, w가 상기 범위를 만족할 때, 에너지 밀도가 우수한 양극 활물질을 얻을 수 있다. When the molar ratio y, z, and w of the transition metal in the lithium nickel-cobalt-manganese-based oxide satisfy the above range, a cathode active material having an excellent energy density can be obtained.
상기 v는 리튬 니켈-코발트-망간계 산화물 내의 도핑원소 M2의 몰비를 나타내는 것으로, 0≤v≤0.1, 바람직하게는 0.0005≤v≤0.08, 더 바람직하게는 0.001≤v≤0.02, 보다 더 바람직하게는 0.002≤v≤0.01 일 수 있다. 리튬 니켈-코발트-망간계 산화물 내의 도핑 원소 M2의 몰비가 상기 범위를 만족할 때, 고온 안정성이 우수한 양극 활물질을 얻을 수 있다. V represents the molar ratio of the doping element M 2 in the lithium nickel-cobalt-manganese based oxide, and 0? V? 0.1, preferably 0.0005? V? 0.08, more preferably 0.001? V? 0.0 &gt; v &lt; / RTI &gt; When the molar ratio of the doping element M 2 in the lithium nickel-cobalt-manganese oxide satisfies the above range, a cathode active material having excellent high-temperature stability can be obtained.
상기 p는 리튬 니켈-코발트-망간계 산화물 내의 B원소의 몰비를 나타내는 것으로, 0≤p≤0.1, 바람직하게는 0 ≤p≤0.05일 수 있다. P represents the molar ratio of the element B in the lithium nickel-cobalt-manganese oxide, and may be 0? P? 0.1, preferably 0? P? 0.05.
보다 구체적으로는, 상기 [화학식 2]로 표시되는 리튬 니켈-코발트-망간계 산화물은, Li1 + x[NiyCozMnw]O2 , Li1 + x[NiyCozMnwAlv]O2등일 수 있으나, 이에 한정되는 것은 아니다. More specifically, the lithium nickel-cobalt-manganese-based oxide represented by the above formula (2) is preferably Li 1 + x [Ni y Co z Mn w ] O 2 , Li 1 + x [Ni y Co z Mn w v ] O 2 , and the like, but is not limited thereto.
상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소로 이루어진 군에서 선택되는 적어도 하나 이상의 코팅 원소를 포함하는 코팅층을 더 포함할 수 있다. 예를 들면, 상기 코팅층에 의해 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질과 리튬 이차전지에 포함되는 전해액과의 접촉이 차단되어 부반응 발생이 억제되므로, 전지에 적용 시 수명 특성을 향상시킬 수 있고, 더불어 양극활물질의 충진 밀도를 증가시킬 수 있다.The lithium nickel-cobalt-manganese-based positive electrode active material represented by the above-mentioned Formula 2 is a lithium nickel-cobalt- At least one coating element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S may be further included. For example, the coating layer prevents contact between the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 and the electrolyte contained in the lithium secondary battery, thereby suppressing the occurrence of side reactions. And the filling density of the cathode active material can be increased.
상기와 같이, 코팅 원소를 추가로 포함할 경우, 상기 코팅층 내 코팅 원소의 함량은 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질 전체 중량에 대하여, 100 ppm 내지 10,000 ppm, 바람직하게는 200 ppm 내지 5,000 ppm일 수 있다. 예를 들면, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질 전체 중량에 대하여, 상기 범위로 코팅 원소를 포함할 경우, 전해액과의 부반응 발생이 더욱 효과적으로 억제되고, 전지에 적용 시 수명 특성이 더욱 향상될 수 있다.As described above, when the coating element is additionally included, the content of the coating element in the coating layer is preferably from 100 ppm to 10,000 ppm, more preferably from 100 ppm to 10000 ppm with respect to the total weight of the lithium nickel-cobalt- 200 ppm to 5,000 ppm. For example, when the coating element is contained in the above range based on the total weight of the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2, the side reaction with the electrolyte is more effectively suppressed, The characteristics can be further improved.
상기 코팅층은 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질의 표면 전체에 형성될 수도 있고, 부분적으로 형성될 수도 있다. 구체적으로, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질의 표면에 상기 코팅층이 부분적으로 형성될 경우, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질의 전체 표면적 중 5% 이상 100% 미만, 바람직하게는 20% 이상 100% 미만의 면적으로 형성될 수 있다. The coating layer may be formed on the entire surface of the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2, or may be partially formed. Specifically, when the coating layer is partially formed on the surface of the lithium nickel-cobalt-manganese-based cathode active material represented by Chemical Formula 2, the total surface area of the lithium nickel-cobalt-manganese-based cathode active material represented by Chemical Formula 2 % To less than 100%, preferably 20% to less than 100%.
상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질의 평균 입경(D50)은 1 ㎛ 내지 20㎛, 2㎛ 내지 10㎛, 또는 8 내지 20 ㎛일 수 있다. 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질의 평균 입경(D50)이 상기 범위를 만족할 경우, 우수한 전극 밀도 및 에너지 밀도를 구현할 수 있다. The average particle diameter (D 50 ) of the lithium nickel-cobalt-manganese-based positive electrode active material represented by Formula 2 may be 1 μm to 20 μm, 2 μm to 10 μm, or 8 to 20 μm. When the average particle diameter (D 50 ) of the lithium nickel-cobalt-manganese-based positive electrode active material represented by the above formula (2) satisfies the above range, excellent electrode density and energy density can be realized.
상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질의 결정립 크기는 200 nm 내지 500 nm일 수 있다. 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질의 결정립 크기가 상기 범위를 만족할 경우, 우수한 전극 밀도 및 에너지 밀도를 구현할 수 있다. The crystal size of the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 may be 200 nm to 500 nm. When the grain size of the lithium nickel-cobalt-manganese-based positive electrode active material represented by the above formula (2) satisfies the above range, excellent electrode density and energy density can be realized.
한편, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질은 활물질 입자 내에서 전이금속 원소들의 함량이 위치에 관계없이 일정할 수도 있고, 입자 내부의 위치에 따라 하나 이상 이상의 금속 원소의 함량이 변화되는 것일 수도 있다. 예를 들면, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질은 Ni, Mn, Co 및 M2 중 적어도 하나 이상의 성분이 점진적으로 변화하는 농도 구배를 가질 수 있으며, 상기 '점진적으로 변화하는 농도 구배는 상기 성분들의 농도가 입자 전체 또는 특정 영역에서 연속하여 단계적으로 변화하는 농도 분포로 존재하는 것을 의미한다. On the other hand, the lithium nickel-cobalt-manganese-based cathode active material represented by the general formula (2) may have a constant content of transition metal elements in the active material particle regardless of its position, May be changing. For example, the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 may have a concentration gradient in which at least one of Ni, Mn, Co, and M 2 gradually changes, Concentration gradient means that the concentration of the components is present in a concentration distribution in which the concentration of the components changes continuously or stepwise in all or a specific region of the particle.
한편, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질은 시판되는 리튬 니켈-코발트-망간계 양극 활물질을 구입하여 사용하거나, 당해 기술 분야에 알려진 리튬 니켈-코발트-망간계 양극 활물질의 제조방법에 의해 제조된 것일 수 있다. On the other hand, the lithium nickel-cobalt-manganese-based cathode active material represented by the above-described formula (2) can be obtained by using a commercially available lithium nickel-cobalt-manganese-based cathode active material or by using a lithium nickel- And may be one produced by a manufacturing method.
예를 들면, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질은 니켈-코발트-망간계 전구체와 리튬원료물질, 선택적으로 도핑원료물질을 혼합한 후 소성하는 방법으로 제조될 수 있다.For example, the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 may be prepared by mixing a nickel-cobalt-manganese-based precursor with a lithium source material, and optionally a doping source material, followed by firing.
상기 니켈-코발트-망간계 전구체는 니켈-망간-코발트의 수산화물, 옥시 수산화물, 카보네이트, 유기착물 또는 도핑 원소 M2를 포함하는 니켈-망간-코발트의 수산화물, 옥시 수산화물, 카보네이트, 유기 착물일 수 있다. 예를 들면, 상기 니켈-코발트-망간계 전구체는 [NiyCozMnw](OH)2, [NiyCozMnwAlv](OH)2, [NiyCozMnw]O·OH, [NiyCozMnwAlv]O·OH 등일 수 있으나, 이에 한정되는 것은 아니다. The nickel-cobalt-manganese precursor may be a hydroxide of nickel-manganese-cobalt, a hydroxide, an oxide of hydroxide, a carbonate, an organic complex or a hydroxide of nickel-manganese-cobalt containing an element of doping M 2 , . For example, the nickel-cobalt-manganese-based precursor may be selected from the group consisting of [Ni y Co z Mn w ] (OH) 2 , [Ni y Co z Mn w Al v ] (OH) 2, [Ni y Co z Mn w ] O · OH, [Ni y Co z Mn w Al v ] O · OH, etc. However, the present invention is not limited thereto.
상기 리튬원료물질은 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등일 수 있으나, 이에 한정되는 것은 아니다. The lithium source material may be at least one selected from the group consisting of lithium-containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) For example, lithium nitrate (LiNO 3 ) and the like), chlorides (e.g., lithium chloride (LiCl) and the like), and the like.
상기 도핑원료물질은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 산화물, 수산화물, 황화물, 옥시수산화물, 할로겐화물 또는 이들의 혼합물일 수 있다. The doping material may be at least one of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, , B, and Mo, or an oxide, a hydroxide, a sulfide, an oxyhydroxide, a halide, or a mixture thereof.
한편, 상기 소성은 600 내지 1000℃, 바람직하게는 700 내지 900℃에서 5 내지 30시간, 바람직하게는 10 내지 20 시간 동안 수행될 수 있다. On the other hand, the firing may be performed at 600 to 1000 ° C, preferably 700 to 900 ° C for 5 to 30 hours, preferably 10 to 20 hours.
한편, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극활물질이 코팅층을 포함할 경우, 상기 소성 이후에 코팅원료물질을 추가하여 혼합한 후 열처리를 수행하는 공정을 추가로 수행할 수 있다. Meanwhile, when the lithium nickel-cobalt-manganese-based cathode active material represented by Formula 2 includes a coating layer, the coating raw material may be further added after the firing, followed by heat treatment.
상기 코팅원료물질은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, ZnO, Al2O3, Al(OH)3, Al2(SO4)3, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, TiO2, WO3, AlF, H2BO3, HBO2, H3BO3, H2B4O7 , B2O3, C6H5B(OH)2, (C6H5O)3B, [(CH3(CH2)3O)3B, C3H9B3O6, (C3H7O3)B, Li3WO4, (NH4)10W12O41·5H2O, NH4H2PO4 등일 수 있으나, 이에 제한되는 것은 아니다. The coating material may be selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, A hydroxide, an oxide hydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetate, a carboxylate, or a combination thereof including at least one element selected from the group consisting of S , for example, ZnO, Al 2 O 3, Al (OH) 3, Al 2 (SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , TiO 2, WO 3, AlF, H 2 BO 3, HBO 2, H 3 BO 3, H 2 B 4 O 7, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, [(CH 3 ( CH 2) 3 O) 3 B , C 3 H 9 B 3 O 6, (C 3 H 7 O 3) B, Li 3 WO 4, (NH 4) 10 W 12 O 41 · 5H 2 O, NH 4 H 2 PO 4 And the like, but is not limited thereto.
상기 코팅층 형성은 당해 기술 분야에 알려진 방법을 이용할 수 있으며, 예를 들면, 습식 코팅법, 건식 코팅법, 플라즈마 코팅법 또는 ALD(Atomic Layer Deposition) 등을 이용할 수 있다.For example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
상기 열처리는 100℃ 내지 700℃, 바람직하게는 300℃ 내지 450℃에서 1 내지 15시간, 바람직하게는 3 내지 8시간 동안 수행될 수 있다. The heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
상기 [화학식 2]로 표시되는 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질은 니켈 비율이 50몰%를 초과하는 고니켈 양극 활물질로 에너지 밀도 특성이 우수하다. 따라서, 상기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질과 본 발명의 스피넬 구조의 리튬 망간계 양극 활물질을 혼합하여 사용할 경우, 리튬 망간계 양극 활물질의 단점인 용량 문제를 해결할 수 있다. The lithium nickel-cobalt-manganese-based cathode active material represented by the general formula (2) represented by the general formula (2) is a high nickel cathode active material having a nickel ratio of more than 50 mol%, and is excellent in energy density characteristics. Therefore, when the lithium manganese-based cathode active material of Formula 2 is mixed with the lithium manganese-based cathode active material of the spinel structure of the present invention, the disadvantage of the lithium manganese-based positive electrode active material can be solved.
상기 리튬 망간계 양극 활물질과, 리튬 니켈-코발트-망간계 양극 활물질을 포함하는 양극재는, 평균 입경(D50)이 4㎛ 내지 20㎛인 대입경 입자와, 평균 입경(D50)이 상기 대입경 입자의 평균입경(D50)의 10% 내지 75%, 바람직하게는 25% 내지 75%인 소입경 입자를 포함하는 바이모달(bimodal) 입경 분포를 갖는 것일 수 있다. 상기와 같이 바이모달 입경 분포를 갖는 양극재를 사용할 경우, 높은 전극 밀도 및 에너지 밀도를 갖는 양극을 형성할 수 있다.The positive electrode material comprising the lithium manganese-based positive electrode active material and the lithium nickel-cobalt-manganese-based positive electrode active material is characterized in that the large-diameter particles having an average particle diameter (D 50 ) of 4 to 20 μm and an average particle diameter (D 50 ) May have a bimodal particle diameter distribution including small particle size particles of 10% to 75%, preferably 25% to 75% of the average particle size (D 50 ) of the hard particles. When a cathode material having a bimodal particle size distribution is used as described above, a cathode having a high electrode density and an energy density can be formed.
바람직하게는, 상기 대입경 입자의 평균입경(D50)은 8㎛ 내지 20㎛, 8㎛ 내지 15㎛, 또는 12㎛ 내지 20㎛일 수 있으며, 상기 소입경 입자의 평균입경(D50)은 1㎛ 내지 15㎛, 2㎛ 내지 13㎛, 2㎛ 내지 8㎛ 또는 4㎛ 내지 13㎛일 수 있다. Preferably, the average particle diameter (D 50 ) of the large diameter particles may be 8 탆 to 20 탆, 8 탆 to 15 탆, or 12 탆 to 20 탆, and the average particle diameter (D 50 ) 1 탆 to 15 탆, 2 탆 to 13 탆, 2 탆 to 8 탆, or 4 탆 to 13 탆.
일 구현예에 따르면, 본 발명에 따른 양극재는, 평균 입경이 8㎛ 내지 15㎛인 대입경 입자와 평균 입경이 1㎛ 내지 6㎛인 소입경 입자를 포함하는 바이모달 입경 분포를 갖는 것일 수 있다. According to one embodiment, the cathode material according to the present invention may have a bimodal particle size distribution including large-diameter particles having an average particle diameter of 8 탆 to 15 탆 and small-particle particles having an average particle diameter of 1 탆 to 6 탆 .
다른 구현예에 따르면, 본 발명에 따른 양극재는, 평균 입경이 12㎛ 내지 20㎛인 대입경 입자와 평균 입경이 4㎛ 내지 13㎛인 소입경 입자를 포함하는 바이모달 입경 분포를 갖는 것일 수 있다. According to another embodiment, the cathode material according to the present invention may have a bimodal particle diameter distribution including large-diameter particles having an average particle diameter of 12 to 20 μm and small-particle particles having an average particle diameter of 4 to 13 μm .
한편, 상기 소입경 입자 및 대입경 입자를 구성하는 활물질의 종류는 특별히 제한되지 않으며, 상기 리튬 망간계 활물질 및/또는 리튬 니켈-코발트-망간계 활물질일 수 있다. On the other hand, the kind of active material constituting the small particle size particles and large particle size particles is not particularly limited and may be the lithium manganese based active material and / or the lithium nickel-cobalt-manganese based active material.
일 구현예에 따르면, 본 발명의 양극재는 리튬 망간계 양극 활물질이 대입경 입자를 구성하고, 리튬 니켈-코발트-망간계 양극 활물질이 소입경 입자를 구성하는 것일 수 있다. 이 경우, 상기 리튬 망간계 양극활물질의 평균 입경(D50)은 8㎛ 내지 20㎛, 바람직하게는, 12㎛ 내지 20㎛ 정도이고, 상기 리튬 니켈-코발트-망간계 양극 활물질의 평균 입경(D50)은 1㎛ 내지 15㎛, 바람직하게는 4㎛ 내지 13㎛ 정도일 수 있다. 리튬 망간계 양극활물질로 상기와 같은 범위를 만족하는 대입경 입자를 사용할 경우, 리튬 망간계 양극 활물질에서의 망간 용출을 보다 효과적으로 억제할 수 있으며, 그 결과, 전지의 고온 안정성을 보다 더 향상시킬 수 있다. According to one embodiment, the cathode material of the present invention may be such that the lithium manganese-based cathode active material constitutes large-diameter particles and the lithium nickel-cobalt-manganese-based cathode active material constitutes small particle size particles. In this case, the average particle size (D50) of the lithium manganese-based positive electrode active material is about 8 to 20 m, preferably about 12 to 20 m, and the average particle size (D50) of the lithium nickel- May be about 1 mu m to 15 mu m, preferably about 4 mu m to 13 mu m. In the case where large particle particles satisfying the above-described range are used as the lithium manganese-based cathode active material, the manganese elution in the lithium manganese-based cathode active material can be more effectively inhibited, and as a result, the high temperature stability of the battery can be further improved have.
다른 구현예에 따르면, 본 발명의 양극재는 리튬 망간계 양극 활물질이 소입경 입자를 구성하고, 리튬 니켈-코발트-망간계 양극 활물질이 대입경 입자를 구성하는 것일 수 있다. 이 경우, 상기 리튬 망간계 양극활물질의 평균 입경(D50)은 1㎛ 내지 15㎛, 바람직하게는 1㎛ 내지 8㎛ 정도이고, 상기 리튬 니켈-코발트-망간계 양극 활물질의 평균 입경(D50)은 8㎛ 내지 20㎛, 바람직하게는, 8㎛ 내지 15㎛ 정도일 수 있다. 리튬 망간계 양극활물질로 상기와 같은 범위를 만족하는 소입경 입자를 사용할 경우, 리튬 망간계 양극 활물질의 도핑 및/또는 코팅 함량을 높게 적용할 수 있으며, 낮은 BET 값을 갖도록 하여 전해액과의 부반응을 최소화할 수 있다. According to another embodiment, the cathode material of the present invention may be such that the lithium manganese-based cathode active material forms small particle size particles and the lithium nickel-cobalt-manganese type cathode active material forms large particle particles. In this case, the average particle size (D50) of the lithium manganese-based cathode active material is about 1 to 15 m, preferably about 1 to 8 m, and the average particle size (D50) of the lithium nickel- 8 mu m to 20 mu m, and preferably about 8 mu m to 15 mu m. When the lithium manganese type cathode active material is used with small particle size satisfying the above range, it is possible to apply the doping and / or coating amount of the lithium manganese type cathode active material to a high level and to have a low BET value, Can be minimized.
또 다른 구현예에 따르면, 본 발명의 양극재는 상기 리튬 망간계 양극활물질 및 리튬 니켈-코발트-망간계 양극 활물질 중 적어도 하나 이상이 상기 대입경 입자 및 상기 소입경 입자를 포함하는 바이모달 입경 분포를 갖는 것일 수도 있다. According to another embodiment, the cathode material of the present invention is characterized in that at least one of the lithium manganese-based cathode active material and the lithium nickel-cobalt-manganese-based cathode active material has a bimodal particle size distribution including the large- .
한편, 상기 양극재는 상기 리튬 망간계 양극 활물질 및 리튬 니켈-코발트-망간계 양극 활물질을 10:90 내지 90:10, 바람직하게는, 40 : 60 내지 60 : 40의 중량비율로 포함할 수 있다. 리튬 망간계 양극 활물질과 리튬 니켈-코발트-망간계 양극 활물질의 혼합비가 상기 범위를 만족할 때, 고온 저장성 및 용량 특성이 모두 우수한 전극을 얻을 수 있다.Meanwhile, the cathode material may include the lithium manganese-based cathode active material and the lithium nickel-cobalt-manganese-based cathode active material at a weight ratio of 10:90 to 90:10, preferably 40:60 to 60:40. When the mixing ratio of the lithium manganese-based cathode active material to the lithium nickel-cobalt-manganese-based cathode active material satisfies the above range, an electrode excellent in high temperature storability and capacity characteristics can be obtained.
상기 양극 활물질은 양극 활물질층 총 중량 100 중량부에 대하여 80 내지 99중량부, 보다 구체적으로는 85 내지 98.5중량부의 햠량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.The positive electrode active material may be contained in an amount of 80 to 99 parts by weight, more specifically 85 to 98.5 parts by weight, based on 100 parts by weight of the total weight of the positive electrode active material layer. When included in the above content range, excellent capacity characteristics can be exhibited.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, carbon, nickel, titanium, , Silver or the like may be used. In addition, the cathode current collector may have a thickness of 3 to 500 탆, and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량 100 중량부에 대하여 0.1 내지 15 중량부로 포함될 수 있다.The conductive material is used for imparting conductivity to the electrode. The conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more. The conductive material may be included in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material layer.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량 100 중량부에 대하여 0.1 내지 15 중량부로 포함될 수 있다.The binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof. One kind or a mixture of two or more kinds of them may be used. The binder may be included in an amount of 0.1 to 15 parts by weight based on 100 parts by weight of the total weight of the positive electrode active material layer.
본 발명의 양극은 상기한 스피넬 구조의 리튬 망간계 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및/또는 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 합재를 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다. The positive electrode of the present invention can be produced by a conventional positive electrode manufacturing method, except that the lithium manganese-based positive electrode active material of the spinel structure described above is used. Specifically, the positive electrode active material and optionally the positive electrode mixture prepared by dissolving or dispersing the binder and / or the conductive material in a solvent may be coated on the positive electrode current collector, followed by drying and rolling.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 합재가 적절한 점도를 갖도록 조절될 수 있는 정도면 충분하다.Examples of the solvent include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like. Water and the like, and one kind or a mixture of two or more kinds can be used. It is sufficient that the amount of the solvent used can be adjusted so that the positive electrode mixture has an appropriate viscosity in consideration of the coating thickness of the slurry and the production yield.
또한, 다른 방법으로, 상기 양극은 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.Alternatively, the positive electrode may be produced by casting the positive electrode composite material on a separate support, and then peeling off the support from the support to laminate a film on the positive electrode collector.
리튬 이차전지Lithium secondary battery
다음으로 본 발명에 따른 리튬이차전지에 대해 설명한다. Next, a lithium secondary battery according to the present invention will be described.
본 발명의 리튬이차전지는, 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막 및 전해질을 포함하며, 이때, 상기 양극은 상술한 본 발명에 따른 양극과 동일하다. 따라서, 이하에서는 양극에 대한 구체적인 설명은 생략하고 나머지 구성에 대해서만 설명한다. The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive electrode is the same as the positive electrode according to the present invention. Therefore, a detailed description of the positive electrode will be omitted and only the remaining configuration will be described below.
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.The negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode collector may have a thickness of 3 to 500 탆, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.The anode active material layer optionally includes a binder and a conductive material together with the anode active material.
상기 음극 활물질로는 당해 기술 분야에서 사용되는 다양한 음극 활물질이 사용될 수 있으며, 특별히 제한되지 않는다. 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the negative electrode active material, various negative electrode active materials used in the related art can be used, and there is no particular limitation. Specific examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and dedoping lithium such as SiO? (0 <? <2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Or a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used. Also, a metal lithium thin film may be used as the negative electrode active material. As the carbon material, both low crystalline carbon and highly crystalline carbon may be used. Examples of the low-crystalline carbon include soft carbon and hard carbon. Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
한편, 본 발명의 리튬이차전지에 있어서, 상기 음극 활물질로 특정 비표면적을 갖는 탄소재료를 2종 이상 혼합하여 사용하는 것이 바람직하다.On the other hand, in the lithium secondary battery of the present invention, it is preferable that a mixture of two or more kinds of carbon materials having specific specific surface area is used as the negative electrode active material.
예를 들면, 상기 음극 활물질층은 천연 흑연 및 연화 탄소(soft carbon)를 포함할 수 있으며, 보다 구체적으로는, 비표면적(BET)이 2.5 내지 4.0m2/g인 천연 흑연과 비표면적(BET)이 7 내지 10m2/g인 연화 탄소(soft carbon)를 포함할 수 있다. 상기 비표면적 범위를 만족하는 천연 흑연 및 연화 탄소를 포함하는 음극과 본 발명에 따른 양극을 조합하여 구성할 경우, 이차 전지의 고온 내구성을 보다 더 향상시킬 수 있다. 한편, 필요에 따라, 상기 음극 활물질층은 인조 흑연을 더 포함할 수 있으며, 이때, 상기 인조흑연은 비표면적(BET)이 0.1 내지 1.2m2/g일 수 있다. For example, the negative electrode active material layer may include natural graphite and soft carbon, and more specifically, natural graphite having a specific surface area (BET) of 2.5 to 4.0 m 2 / g and a specific surface area (BET ) Of 7 to 10 m &lt; 2 &gt; / g. When the negative electrode comprising the natural graphite and the softened carbon satisfying the specific surface area ranges and the positive electrode according to the present invention are combined, the high temperature durability of the secondary battery can be further improved. If necessary, the anode active material layer may further include artificial graphite, and the artificial graphite may have a specific surface area (BET) of 0.1 to 1.2 m 2 / g.
보다 구제적으로는, 상기 음극 활물질층은 음극 활물질 총 중량을 기준으로 천연 흑연 70 내지 95중량%, 인조 흑연 0 내지 25중량% 및 연화 탄소(soft carbon) 5 내지 30 중량%를 포함하는 것일 수 있다. More desirably, the negative electrode active material layer may comprise from 70 to 95% by weight of natural graphite, from 0 to 25% by weight of artificial graphite and from 5 to 30% by weight of soft carbon, based on the total weight of the negative electrode active material have.
또는, 상기 음극 활물질층은 천연 흑연 및 인조 흑연을 포함할 수 있으며, 구체적으로는, 비표면적(BET)이 2.5 내지 4.0m2/g인 천연 흑연, 및 비표면적(BET)이 0.1 내지 1.2m2/g인 인조 흑연을 포함할 수 있다. 필요에 따라, 상기 음극 활물질층은 연화 탄소(soft carbon)를 더 포함할 수 있으며, 이 경우, 상기 연화 탄소(soft carbon)는 비표면적(BET)이 7 내지 10m2/g일 수 있다. 보다 구제적으로는, 상기 음극 활물질층은 음극 활물질 총 중량을 기준으로 천연 흑연 10 내지 50중량%, 인조 흑연 50 내지 90중량% 및 연화 탄소(soft carbon) 0 내지 20중량%를 포함하는 것일 수 있다. 이 경우, 음극 레이트(rate)가 개선되어 셀 급속 충전 및 저항 특성이 우수한 전지를 구현할 수 있다.Alternatively, the negative electrode active material layer may include natural graphite and artificial graphite. Specifically, natural graphite having a specific surface area (BET) of 2.5 to 4.0 m 2 / g and a graphite having a specific surface area (BET) of 0.1 to 1.2 m 2 / g of artificial graphite. If necessary, the negative active material layer may further include soft carbon. In this case, the soft carbon may have a specific surface area (BET) of 7 to 10 m 2 / g. More desirably, the negative electrode active material layer may comprise 10 to 50% by weight of natural graphite, 50 to 90% by weight of artificial graphite and 0 to 20% by weight of soft carbon based on the total weight of the negative electrode active material have. In this case, the cathode rate can be improved and a battery having excellent cell fast charging and resistance characteristics can be realized.
한편, 상기 음극활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.On the other hand, the negative electrode active material may include 80% by weight to 99% by weight based on the total weight of the negative electrode active material layer.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component for assisting the bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 0.1% by weight to 10% by weight based on the total weight of the negative electrode active material layer. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene Examples thereof include ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluorine rubber and various copolymers thereof.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer, as a component for further improving the conductivity of the negative electrode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.The negative electrode active material layer is prepared by applying and drying a composition for forming a negative electrode active material layer which is prepared by dissolving or dispersing a negative electrode active material on a negative electrode current collector and optionally a binder and a conductive material in a solvent and drying the composition for forming the negative electrode active material layer Casting the composition on a separate support, and then peeling the support from the support to laminate a film on the negative electrode collector.
한편, 상기 음극 활물질층은 단일층 구조일 수도 있고, 2이상의 층이 적층된 다층 구조일 수도 있다. 예를 들면, 상기 음극은 음극 집전체, 상기 음극 집전체 상에 형성되는 제1음극 활물질층, 상기 제1음극 활물질층 상에 형성되는 제2음극 활물질층을 포함할 수 있으며, 상기 제1음극 활물질층 및 제2음극 활물질층은 그 조성이 상이할 수 있다. Meanwhile, the negative electrode active material layer may have a single layer structure or a multi-layer structure in which two or more layers are stacked. For example, the negative electrode may include a negative electrode collector, a first negative electrode active material layer formed on the negative electrode collector, and a second negative electrode active material layer formed on the first negative electrode active material layer, The active material layer and the second negative electrode active material layer may have different compositions.
예를 들면, 상기 제1음극 활물질층은 제1음극 활물질층에 포함되는 전체 음극 활물질 중 천연 흑연을 5 내지 100중량%, 바람직하게는 80 내지 100중량%로 포함하는 것일 수 있고, 상기 제2음극 활물질층은 제2음극 활물질층에 포함되는 전체 음극 활물질 중 연화 탄소를 15 내지 95중량%, 바람직하게는 15 내지 65중량%로 포함하는 것일 수 있다. 상기 구조 음극을 사용하였을 때 전극 접착력 개선을 통하여 공정성이 향상되며, 급속 충전 성능 및 저항 성능이 우수하고 고온 저장 특성이 우수한 전지를 만들 수 있다. For example, the first negative electrode active material layer may contain 5 to 100% by weight, preferably 80 to 100% by weight, of natural graphite among all the negative electrode active materials contained in the first negative electrode active material layer, The negative electrode active material layer may contain 15 to 95% by weight, preferably 15 to 65% by weight, of softened carbon among all the negative electrode active materials contained in the second negative electrode active material layer. When the structural anode is used, the improvement of the electrode adhesion improves the processability, and it is possible to produce a battery having excellent rapid charging performance and resistance performance and excellent high temperature storage characteristics.
한편, 상기 음극은 로딩량이 300 내지 500mg/25cm2, 바람직하게는 300 내지 400 mg/25cm2일 수 있다. 음극의 로딩량이 상기 범위를 만족할 때, 충분한 전극 접착력이 확보되어 공정에 용이하고, 급속 충전 성능 및 저항 성능이 우수한 전지를 구현할 수 있으며, 에너지밀도 극대화가 가능하다. On the other hand, the loading amount of the negative electrode may be 300 to 500 mg / 25 cm 2 , preferably 300 to 400 mg / 25 cm 2 . When the loading amount of the negative electrode satisfies the above range, it is possible to secure a sufficient electrode bonding force, to facilitate a process, to realize a battery having excellent rapid charging performance and resistance performance, and to maximize energy density.
한편, 상기 리튬 이차전지에 있어서, 상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.Meanwhile, in the lithium secondary battery, the separator separates the negative electrode and the positive electrode to provide a passage for lithium ion, and can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable that the electrolyte membrane has a low resistance to water and an excellent ability to impregnate electrolytes. Specifically, porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used. Further, a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used. In order to secure heat resistance or mechanical strength, a coated separator containing a ceramic component or a polymer material may be used, and the separator may be selectively used as a single layer or a multilayer structure.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지에 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 특별히 한정되지 않는다. As the electrolyte used in the present invention, there can be used an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte which can be used for a lithium secondary battery, .
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; Ra-CN(Ra는 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1 : 1 내지 9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and? -Caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Ra-CN (Ra is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used. Among these, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1: 1 to 9, the performance of the electrolytic solution may be excellent.
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, 및 LiCH3SO3으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. The lithium salt may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as an anion, and containing the Li + in the lithium salt cation is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - . Specifically, the lithium salt may be LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , and LiCH 3 SO 3 , or a mixture of two or more thereof.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 전해액 내에 0.8 M 내지 3M, 구체적으로 0.1M 내지 2.5M로 포함될 수 있다. The lithium salt can be appropriately changed within a range that is usually usable, but it can be specifically contained in the electrolyte in an amount of 0.8 M to 3 M, specifically 0.1 M to 2.5 M.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 다양한 첨가제들이 사용될 수 있다. In addition to the electrolyte components, various additives may be added to the electrolyte for the purpose of improving lifetime characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery.
또한, 상기 전해질에는, 필요에 따라, 첨가제가 더 포함될 수 있다. 이러한 첨가제로는 예를 들면, 디플루오로에틸렌 카보네이트 등과 같은 할로알킬렌 카보네이트계 화합물; 또는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬에테르, 암모늄염, 피롤, 2-메톡시에탄올 또는 삼염화 알루미늄 등이 포함될 수 있으며, 상기 첨가제들은 단독 또는 혼합하여 사용될 수 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다. Further, the electrolyte may further include an additive, if necessary. Such additives include, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate and the like; N, N &lt; RTI ID = 0.0 &gt; (N, &lt; / RTI &gt; N, N'-tetramethyluronium hexafluorophosphate), pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, Substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride, and the above additives may be used singly or in combination. The additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다. The lithium secondary battery according to the present invention can be used for portable equipment such as mobile phones, notebook computers, and digital cameras, and electric vehicles such as hybrid electric vehicles (HEV).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. According to another embodiment of the present invention, there is provided a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. The lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail by way of examples with reference to the following examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.
실시예Example
제조예Manufacturing example 1 One
MnSO4 및 Li2CO3를 99:1의 중량비로 혼합한 후, N2 퍼징을 거친 증류수를 이용하여 농도가 2M인 Li2CO3를 포함하는 MnSO4·7H2O를 제조하였다. 제조된 Li2CO3를 포함하는 MnSO4·7H2O을 연속교반탱크 반응기(CSTR, 제조사: EMS Tech, 제품명: CSTR-L0)에 250mL/h의 속도로 투입하였다. 알칼리화제로서 40% 수산화나트륨 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 10mL/h의 속도로 투입하고, 25% 암모니아 용액을 상기 반응기의 암모니아 용액 공급부를 통하여 30mL/h의 속도로 투입하면서, pH 미터와 제어부를 통해 pH 10.5로 유지되도록 하였다. 반응기의 온도는 40℃로 하고, 체류시간(RT)은 10시간으로 조절하였으며, 1200rpm의 속도로 교반하여 Li을 포함하는 Mn3O4로 침전시켰다. 상기 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후 건조하는 추가 공정을 거쳐, Li 도핑된 망간 전구체 (Mn0.96Li0.04)3O4를 제조하였다. MnSO 4 And Li 2 CO 3 were mixed at a weight ratio of 99: 1, and then MnSO 4 .7H 2 O containing Li 2 CO 3 having a concentration of 2M was prepared using distilled water subjected to N 2 purging. MnSO 4 .7H 2 O containing Li 2 CO 3 was added to the continuous stirred tank reactor (CSTR, manufactured by EMS Tech, product name: CSTR-L0) at a rate of 250 mL / h. A 40% aqueous solution of sodium hydroxide was introduced as an alkalizing agent at a rate of 10 mL / h through an aqueous solution of sodium hydroxide in the reactor, and a 25% ammonia solution was fed through the ammonia solution supply portion of the reactor at a rate of 30 mL / And the pH of the solution was maintained at 10.5. The temperature of the reactor was adjusted to 40 캜, the retention time (RT) was adjusted to 10 hours, and the mixture was stirred at a speed of 1200 rpm to precipitate Mn 3 O 4 containing Li. The obtained reaction solution was filtered through a filter, purified by distilled water and then dried to prepare a Li-doped manganese precursor (Mn 0.96 Li 0.04 ) 3 O 4 .
상기와 같이 제조된 Li 도핑된 망간 전구체와 리튬원료물질 Li2CO3을 1:0.75 몰비로 혼합한 후, 810℃에서 14 시간동안 소성하여 리튬망간산화물 Li1.0(Mn1.92Li0.08)O4을 얻었다.The Li-doped manganese precursor thus prepared was mixed with lithium raw material Li 2 CO 3 at a molar ratio of 1: 0.75 and then calcined at 810 ° C for 14 hours to obtain lithium manganese oxide Li 1.0 (Mn 1.92 Li 0.08 ) O 4 .
제조예Manufacturing example 2 2
MnSO4, 도핑원소로서 Li2CO3 및 Al2(SO4)3를 95:0.5:4.5의 중량비로 사용하여 Li 및 Al이 도핑된 망간 전구체 (Mn0 .957 Li0 . 015Al0 . 028)3O4를 제조하였다. MnSO 4, a doping element Li 2 CO 3 and Al 2 (SO 4) 3 to 95: 0.5: 4.5 is used in a weight ratio of Li and Al doped with manganese precursor (Mn Li 0 .957 0 0 028 015 Al ) 3 O 4 .
상기와 같이 제조된 Li 및 Al이 도핑된 망간 전구체와 리튬원료물질을 혼합하고 소성하여 리튬망간산화물 Li(Mn1.914 Li0.06Al0.056)O4을 제조하는 것을 제외하고는 상기 제조예 1과 동일하게 수행하였다. The same procedure as in Preparation Example 1 was carried out except that the lithium manganese oxide Li (Mn 1.914 Li 0.06 Al 0.056 ) O 4 was prepared by mixing and firing the Li and Al-doped manganese precursor thus prepared with the lithium source material Respectively.
제조예Manufacturing example 3  3
MnSO4, 도핑원소로서 Li2CO3 및 MgSO4를 98:0.5:1.5의 중량비로 사용하여 Li 및 Mg이 도핑된 망간 전구체 (Mn0 .961 Li0 . 021Mg0 . 018)3O4를 제조하였다.MnSO 4, doping elements as Li 2 CO 3 and MgSO 4 to 98: 0.5: 1.5 was used in a weight ratio of Li and Mg doped with manganese precursor (.. Mn 0 .961 Li 0 021 Mg 0 018) to 3 O 4 .
상기와 같이 제조된 Li 및 Mg이 도핑된 망간 전구체와 리튬원료물질을 혼합하고 소성하여 리튬망간산화물 Li(Mn1.922 Li0.042Mg0.036)O4을 제조하는 것을 제외하고는 상기 제조예 1과 동일하게 수행하였다. The same procedure as in Preparation Example 1 was conducted except that lithium manganese oxide Li (Mn 1.922 Li 0.042 Mg 0.036 ) O 4 was prepared by mixing and firing the Li and Mg-doped manganese precursor thus prepared and the lithium raw material Respectively.
제조예Manufacturing example 4 4
MnSO4, 도핑원소로서 Li2CO3, Al2(SO4)3 및 MgSO4를 96.4:0.5:2.3:0.8의 중량비로 사용하여 Li, Al 및 Mg 도핑된 망간 전구체 (Mn0 . 96Li0 . 02Al0 . 01Mg0 . 01)3O4를 제조하였다.MnSO 4, a doping element Li 2 CO 3, Al 2 ( SO 4) 3 , and MgSO 4 to 96.4: 0.5: 2.3: using a weight ratio of 0.8 Li, Al and Mg-doped manganese precursor (Mn 0 96 Li 0. . 02 Al 0. 01 Mg 0 . 01) was prepared in a 3 O 4.
상기와 같이 제조된 Li, Al 및 Mg 도핑된 망간 전구체와 리튬원료물질을 혼합하고 소성하여 리튬망간산화물 Li(Mn1 . 92Li0 . 04Al0 . 02Mg0 . 02)3O4를 제조하는 것을 제외하고는 상기 제조예 1과 동일하게 수행하였다. Prepared as described above, Li, Al, Mg and the lithium manganese oxide by mixing and firing the doped manganese precursor with a lithium raw material Li (Mn 1. 92 Li 0 . 04 Al 0. 02 Mg 0. 02) producing a 3 O 4 The procedure of Preparation Example 1 was repeated,
제조예Manufacturing example 5 5
도핑원소로서 Li2CO3 대신 MgSO4를 사용하여, Mg 도핑된 망간 전구체(Mn0.96Mg0.04)3O4를 제조하였다.A Mg-doped manganese precursor (Mn 0.96 Mg 0.04 ) 3 O 4 was prepared using MgSO 4 instead of Li 2 CO 3 as the doping element.
상기와 같이 제조된 Mg 도핑된 망간 전구체와 리튬원료물질을 혼합하고 소성하여 리튬망간산화물 Li1 . 0(Mn1.92Mg0.08)O4를 제조하는 것을 제외하고는 상기 제조예 1과 동일하게 수행하였다. The Mg-doped manganese precursor prepared as described above and the lithium source material were mixed and fired to obtain lithium manganese oxide Li 1 . 0 (Mn 1.92 Mg 0.08 ) O 4 was prepared in the same manner as in Production Example 1.
제조예Manufacturing example 6 6
도핑원소로서 Li2CO3 대신 Al2(SO4)3를 사용하여, Al 도핑된 망간 전구체(Mn0.96Al0.04)3O4를 제조하였다.As doping element use the Li 2 CO 3 instead of Al 2 (SO 4) 3, it was prepared in the Al-doped manganese precursor (Mn 0.96 Al 0.04) 3 O 4.
상기와 같이 제조된 Al 도핑된 망간 전구체와 리튬원료물질을 혼합하고 소성하여 리튬망간산화물 Li1 . 0(Mn1.92Al0.08)O4를 제조하는 것을 제외하고는 상기 제조예 1과 동일하게 수행하였다. The thus prepared Al-doped manganese precursor and the lithium raw material were mixed and fired to obtain lithium manganese oxide Li 1 . 0 &lt; / RTI &gt; (Mn 1.92 Al 0.08 ) O 4 was prepared.
실시예Example 1 One
상기 제조예 1에 의해 제조된 리튬 망간 산화물 100 중량부에 대하여 WO3를 5,000ppm 첨가하여 혼합한 후, 600℃로 5시간 열처리하여 W를 포함하는 코팅층이 형성된 리튬 망간계 양극 활물질 A를 얻었다.5,000 ppm of WO 3 was added to 100 parts by weight of the lithium manganese oxide prepared in Preparation Example 1, and the mixture was heat-treated at 600 ° C for 5 hours to obtain a lithium manganese cathode active material A having a coating layer containing W.
양극 활물질 A, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 합재를 제조하고, 이를 알루미늄 집전체에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였으며, 상기 양극을 이용하여 코인셀을 제조하였다. A positive electrode active material A, a carbon black conductive material and a PVdF binder were mixed in a N-methylpyrrolidone solvent in a weight ratio of 95: 2.5: 2.5 to prepare a positive electrode mixture, which was then applied to an aluminum current collector, Dried, and rolled to prepare a positive electrode, and the positive electrode was used to prepare a coin cell.
실시예Example 2 2
상기 제조예 1에 의해 제조된 리튬 망간 산화물 100 중량부에 대하여 H3BO3를 3,000ppm 첨가하여 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코인셀을 제조하였다. A coin cell was prepared in the same manner as in Example 1 except that 3,000 ppm of H 3 BO 3 was added to 100 parts by weight of the lithium manganese oxide prepared in Preparation Example 1 and mixed.
실시예Example 3 3
상기 제조예 2에 의해 제조된 리튬 망간 산화물을 양극 활물질로 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코인셀을 제조하였다. A coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 2 was used as a cathode active material.
실시예Example 4 4
상기 제조예 3에 의해 제조된 리튬 망간 산화물을 양극 활물질로 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코인셀을 제조하였다. A coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 3 was used as a cathode active material.
실시예Example 5 5
상기 제조예 4에 의해 제조된 리튬 망간 산화물을 양극 활물질로 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코인셀을 제조하였다. A coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 4 was used as a cathode active material.
비교예Comparative Example 1  One
제조예 1에 의해 제조된 리튬 망간 산화물을 양극 활물질로 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인셀을 제조하였다.A coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Production Example 1 was used as a cathode active material.
비교예Comparative Example 2 2
상기 제조예 5에 의해 제조된 리튬 망간 산화물을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인셀을 제조하였다. A coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 5 was used.
비교예Comparative Example 3 3
상기 제조예 6에 의해 제조된 리튬 망간 산화물을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코인셀을 제조하였다. A coin cell was prepared in the same manner as in Example 1, except that the lithium manganese oxide prepared in Preparation Example 6 was used.
실험예Experimental Example 1: 망간 용출 실험 1: Manganese dissolution experiment
상기 실시예 1~5 및 비교예 1~3에 의해 제조된 코인 셀의 망간 용출량을 측정하였다. 구체적으로, 상기 코인 셀을 1회 충방전한 후, 3.0V까지 만방전시켰다. 이어서, 코인 셀을 분해하고, 전해액 4 mL에 4 주 동안 밀봉 보관하고, ICP 분석을 통해 전해액 내에 용출된 Mn 함량을 측정하였다. 이때, 상기 전해액은 에틸렌 카보네이트:디메틸카보네이트:디에틸카보네이트를 1:2:1의 부피비로 혼합한 유기 용매에 1M의 LiPF6를 용해시키고, 비닐렌 카보네이트를 2 중량% 혼합하여 제조하였다.The amounts of manganese leached out from the coin cells prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were measured. Specifically, the coin cell was charged and discharged once, and then discharged to 3.0 V. Subsequently, the coin cell was disassembled, kept in a sealed container for 4 weeks in 4 mL of the electrolyte, and the amount of dissolved Mn in the electrolyte solution was measured by ICP analysis. The electrolyte solution was prepared by dissolving 1 M of LiPF 6 in an organic solvent prepared by mixing ethylene carbonate: dimethyl carbonate: diethyl carbonate in a volume ratio of 1: 2: 1, and mixing 2% by weight of vinylene carbonate.
측정 결과는 하기 표 1에 나타내었다.The measurement results are shown in Table 1 below.
망간 용출량 (ppm)Manganese elution (ppm)
실시예 1Example 1 4040
실시예 2Example 2 7676
실시예 3Example 3 6565
실시예 4Example 4 6060
실시예 5Example 5 6363
비교예 1Comparative Example 1 128128
비교예 2Comparative Example 2 125125
비교예 3Comparative Example 3 8383
상기 표 1에 나타난 바와 같이, 실시예 1~5에서 제조한 리튬 망간산화물의 망간 용출량이 비교예 1~3에 비해 현저하게 적었다. As shown in Table 1, the amounts of manganese elution of the lithium manganese oxides prepared in Examples 1 to 5 were significantly smaller than those of Comparative Examples 1 to 3.
실험예 2: 고온 수명 특성Experimental Example 2: High Temperature Life Characteristic
상기 실시예 1~5 및 비교예 1~3에 의해 제조된 코인 셀의 고온에서 수명 특성을 측정하였다. The lifespan characteristics of the coin cells prepared in Examples 1 to 5 and Comparative Examples 1 to 3 at high temperatures were measured.
구체적으로, 상기 실시예 1~5 및 비교예 1~3에서 제조한 리튬 이차전지 각각에 대하여 45℃에서 1C 정전류로 4.3V까지 0.05C cut off로 충전을 실시하였다. 이어서, 1C 정전류로 3V가 될 때까지 방전을 실시하였다. Specifically, each of the lithium secondary batteries prepared in Examples 1 to 5 and Comparative Examples 1 to 3 was charged at a constant current of 1 C at a temperature of 45 ° C to 4.3 V at a cut off of 0.05C. Then, discharging was performed until the voltage reached 3 V with a constant current of 1C.
상기 충전 및 방전 거동을 1 사이클로 하여, 이러한 사이클을 200회 반복 실시한 후, 상기 실시예 1~5 및 비교예 1~3에 따른 고온(45℃) 수명 특성을 측정하였고, 이를 하기 표 2 및 도 1에 나타내었다.The above charging and discharging behaviors were repeated one cycle, and these cycles were repeated 200 times. The high temperature (45 ° C) lifetime characteristics according to Examples 1 to 5 and Comparative Examples 1 to 3 were measured, Respectively.
용량 유지율 (%)Capacity retention rate (%) 저항 증가율 (%)Rate of resistance increase (%)
실시예 1Example 1 92.392.3 148148
실시예 2Example 2 83.583.5 198198
실시예 3Example 3 80.380.3 188188
실시예 4Example 4 82.782.7 183183
실시예 5Example 5 81.481.4 185185
비교예 1Comparative Example 1 69.269.2 245245
비교예 2Comparative Example 2 71.271.2 239239
비교예 3Comparative Example 3 79.279.2 215215
상기 표 2 및 도 1에 나타난 바와 같이, 실시예 1~5에서 제조한 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 코인셀의 경우, 비교예 1~3에서 제조한 리튬 망간계 양극 활물질을 포함하는 코인셀에 비해 고온에서 사이클에 따른 용량 유지율 및 저항 증가율이 현저하게 우수한 것을 확인할 수 있었다.As shown in Table 2 and FIG. 1, in the case of the coin cell comprising the lithium manganese-based cathode active material of the spinel structure prepared in Examples 1 to 5, the lithium manganese-based cathode active material prepared in Comparative Examples 1 to 3 It was confirmed that the capacity retention ratio and the rate of resistance increase according to the cycle were remarkably excellent at a high temperature as compared with the coin cell.
실험예 3: 고온 저장 특성 Experimental Example 3: High-temperature storage characteristics
상기 실시예 1~5 및 비교예 1~3에 의해 제조된 코인 셀의 고온에서 저장 특성을 측정하였다. The storage characteristics of the coin cells prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were measured at high temperature.
구체적으로, 상기 실시예 1~5 및 비교예 1~3에서 제조한 코인 셀을 4.3V까지 만충전한 후, 60℃에서 4주간 보존하였다. 4주간 보존하면서, 매 1주가 지날 때마다, 코인 셀을 0.1C 정전류로 4.3V까지 충전한 후, 0.1C 정전류로 3.0V까지 방전하고, 그때의 방전 용량 및 저항을 측정하였고, 이를 하기 표 3 및 도 2에 나타내었다. Specifically, the coin cells prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were fully charged to 4.3 V, and then stored at 60 占 폚 for 4 weeks. The coin cell was charged to 4.3 V with a constant current of 0.1 C and then discharged to 3.0 V with a constant current of 0.1 C and the discharge capacity and resistance at that time were measured. And Fig.
용량 유지율 (%)Capacity retention rate (%) 저항 증가율 (%)Rate of resistance increase (%)
실시예 1Example 1 90.390.3 167167
실시예 2Example 2 77.677.6 224224
실시예 3Example 3 80.880.8 199199
실시예 4Example 4 85.385.3 189189
실시예 5Example 5 82.182.1 194194
비교예 1Comparative Example 1 65.865.8 267267
비교예 2Comparative Example 2 70.170.1 254254
비교예 3Comparative Example 3 75.175.1 234234
상기 표 3 및 도 2에 나타난 바와 같이, 실시예 1~5에서 제조한 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 코인셀의 경우, 비교예 1~3에서 제조한 리튬 망간계 양극 활물질을 포함하는 코인셀에 비해 고온(60℃)에서 4주 동안 저장 시 용량 유지율 및 저항 증가율이 현저하게 우수한 것을 확인할 수 있었다.As shown in Table 3 and FIG. 2, in the case of the coin cell comprising the lithium manganese-based cathode active material of the spinel structure prepared in Examples 1 to 5, the lithium manganese-based cathode active material prepared in Comparative Examples 1 to 3 (60 ℃) for 4 weeks compared with coin cells.

Claims (14)

  1. 하기 화학식 1로 표시되는 리튬 망간 산화물; 및A lithium manganese oxide represented by the following formula (1); And
    상기 리튬 망간 산화물 표면에 위치하며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 코팅 원소를 포함하는 코팅층을 포함하는 스피넬 구조의 리튬 망간계 양극 활물질.The lithium manganese oxide may be at least one selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, And a coating layer containing at least one coating element selected from the group consisting of Si, S, and S. A lithium manganese-based cathode active material having a spinel structure.
    [화학식 1][Chemical Formula 1]
    Li1 + aMn2 - bM1 bO4 - cAc Li 1 + a Mn 2 - b M 1 b O 4 - ca c
    상기 화학식 1에서, In Formula 1,
    M1은 Li을 포함하는 1종 이상의 금속 원소이고, A는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 0≤a≤0.2, 0<b≤0.5, 0≤c≤0.1임.M 1 is at least one metal element containing Li and A is at least one element selected from the group consisting of F, Cl, Br, I, At and S, 0? A? 0.2, 0 <b? 0.5, 0? C? 0.1.
  2. 제1항에 있어서,The method according to claim 1,
    상기 도핑원소 M1은 Al, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군으로부터 선택된 1종 이상의 금속 원소를 추가적으로 포함하는 것인, 스피넬 구조의 리튬 망간계 양극 활물질.The doping element M 1 may be at least one selected from the group consisting of Al, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Wherein the lithium manganese-based positive electrode active material further comprises at least one metallic element selected from the group consisting of Si and Si.
  3. 제1항에 있어서,The method according to claim 1,
    상기 도핑원소 M1은 Al 및 Mg으로 이루어진 군으로부터 선택된 1종 이상의 금속 원소를 추가적으로 포함하는 것인, 스피넬 구조의 리튬 망간계 양극 활물질.Wherein the doping element M &lt; 1 &gt; further comprises at least one metal element selected from the group consisting of Al and Mg.
  4. 제1항에 있어서,The method according to claim 1,
    상기 리튬 망간 산화물은 하기 화학식 1로 표시되는 것인, 스피넬 구조의 리튬 망간계 양극 활물질.Wherein the lithium manganese oxide is represented by the following formula (1).
    [화학식 1] [Chemical Formula 1]
    Li1+aMn2-bLib1Ma b2O4-cAc Li 1 + a Mn 2-b Li b1 M a b2 O 4-c A c
    상기 화학식 1에서, Ma는 Al 및 Mg으로 이루어진 군으로부터 선택된 1종 이상의 금속 원소이고, 0≤a≤0.2, 0<b1+b2≤0.5, 0≤c≤0.1, 0≤b1/b2≤1.3임.Wherein M a is at least one metal element selected from the group consisting of Al and Mg, 0? A? 0.2, 0 <b1 + b2? 0.5, 0? C? 0.1, 0? B1 / b2? being.
  5. 제1항에 있어서,The method according to claim 1,
    상기 코팅층은 Mg, Ti, B 및 W으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인, 스피넬 구조의 리튬 망간계 양극 활물질. Wherein the coating layer comprises at least one selected from the group consisting of Mg, Ti, B, and W. The lithium manganese-based cathode active material of claim 1,
  6. 제1항에 있어서,The method according to claim 1,
    상기 코팅층은 1nm 내지 1,000nm의 두께를 가지는 스피넬 구조의 리튬 망간계 양극 활물질.Wherein the coating layer has a spinel structure having a thickness of 1 nm to 1,000 nm.
  7. 제1항에 있어서,The method according to claim 1,
    상기 리튬 망간계 양극 활물질은 평균 입경(D50)이 1㎛ 내지 20㎛인 스피넬 구조의 리튬 망간계 양극 활물질.The lithium manganese-based cathode active material has a spinel structure having an average particle diameter (D 50 ) of 1 탆 to 20 탆.
  8. 제1항에 있어서,The method according to claim 1,
    상기 리튬 망간계 양극 활물질은 비표면적이 0.1 내지 1.5m2/g인 스피넬 구조의 리튬 망간계 양극 활물질.The lithium manganese-based cathode active material has a spinel structure having a specific surface area of 0.1 to 1.5 m 2 / g.
  9. 제1항에 있어서,The method according to claim 1,
    상기 리튬 망간계 양극 활물질은 1차 입자 또는 복수개의 1차 입자가 응집되어 형성되는 2차 입자 형태인 스피넬 구조의 리튬 망간계 양극 활물질.The lithium manganese-based cathode active material is a lithium manganese-based cathode active material having a spinel structure in the form of a secondary particle formed by aggregating primary particles or a plurality of primary particles.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 2차 입자는 2 내지 50개의 1차 입자들이 형성되는 것인 스피넬 구조의 리튬 망간계 양극 활물질.Wherein the secondary particles are formed from 2 to 50 primary particles.
  11. 제2항에 있어서, 3. The method of claim 2,
    상기 스피넬 구조의 리튬 망간계 양극 활물질은 리튬 붕소 복합 산화물 및 리튬 텅스텐 복합 산화물을 포함하는 스피넬 구조의 리튬 망간계 양극 활물질.The lithium manganese-based cathode active material of the spinel structure includes a lithium-boron composite oxide and a lithium-tungsten composite oxide.
  12. 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함하며,A positive electrode collector, and a positive electrode active material layer formed on the positive electrode collector,
    상기 양극 활물질층은 제1항 내지 제11항 중 어느 한 항에 따른 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 것인 양극.Wherein the cathode active material layer comprises a lithium manganese-based cathode active material having a spinel structure according to any one of claims 1 to 11.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 양극 활물질층은 하기 화학식 2로 표시되는 리튬 니켈-코발트-망간계 양극 활물질을 더 포함하는 것인, 양극.Wherein the cathode active material layer further comprises a lithium nickel-cobalt-manganese-based cathode active material represented by the following formula (2).
    [화학식 2] (2)
    Li1+x[NiyCozMnwM2 v]O2-pBp Li 1 + x [Ni y Co z Mn w M 2 v ] O 2 - p B p
    상기 화학식 2에서, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고, B는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 0≤x≤0.3, 0.50≤y<1, 0<z<0.35, 0<w<0.35, 0≤v≤0.1, 0≤p≤0.1임.In Formula 2, M 2 is at least one element selected from the group consisting of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, B, at least one element selected from the group consisting of Nb, Mg, B and Mo; B is at least one element selected from the group consisting of F, Cl, Br, I, At and S; 0.50? Y <1, 0 <z <0.35, 0 <w <0.35, 0? V? 0.1, 0? P?
  14. 제12항에 따른 양극을 포함하는, 리튬 이차전지.A lithium secondary battery comprising the positive electrode according to claim 12.
PCT/KR2018/013403 2017-11-06 2018-11-06 Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same WO2019088805A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/611,542 US11532807B2 (en) 2017-11-06 2018-11-06 Spinel-structured lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery which include the positive electrode active material
EP18872440.5A EP3609002A4 (en) 2017-11-06 2018-11-06 Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same
JP2019572586A JP7045586B2 (en) 2017-11-06 2018-11-06 Lithium-manganese-based positive electrode active material with spinel structure, positive electrode containing this, and lithium secondary battery
CN201880027952.9A CN110574194B (en) 2017-11-06 2018-11-06 Spinel-structured lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170146924 2017-11-06
KR10-2017-0146924 2017-11-06
KR10-2018-0135102 2018-11-06
KR1020180135102A KR102264736B1 (en) 2017-11-06 2018-11-06 Lithium manganese-based positive electrode active material having spinel structure, positive electrode and lithium secondary battery including the same

Publications (2)

Publication Number Publication Date
WO2019088805A2 true WO2019088805A2 (en) 2019-05-09
WO2019088805A3 WO2019088805A3 (en) 2019-06-20

Family

ID=66332693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013403 WO2019088805A2 (en) 2017-11-06 2018-11-06 Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019088805A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525109A (en) * 2020-04-26 2020-08-11 陕西红马科技有限公司 Preparation method of layered nickel-manganese binary positive electrode material coated with titanium-cobalt coating
JP2021518049A (en) * 2018-05-23 2021-07-29 エルジー・ケム・リミテッド Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery including this, and lithium secondary battery
CN113451563A (en) * 2020-03-27 2021-09-28 艾可普罗 Bm 有限公司 Positive electrode active material and lithium secondary battery including the same
WO2022088151A1 (en) * 2020-10-31 2022-05-05 宁德时代新能源科技股份有限公司 Positive electrode active material and fabrication method therefor, secondary battery, battery module, battery pack, and apparatus
CN114512643A (en) * 2020-11-17 2022-05-17 松山湖材料实验室 Positive electrode active material, preparation method thereof, positive electrode and lithium ion secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783294B1 (en) * 2005-08-16 2007-12-10 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Containing Them
KR100801637B1 (en) * 2006-05-29 2008-02-11 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Containing Them
KR101264333B1 (en) * 2011-01-12 2013-05-14 삼성에스디아이 주식회사 Cathode active material, cathode and lithium battery containing the same, and preparation method thereof
KR101573421B1 (en) * 2012-07-23 2015-12-02 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method prepareing the same, and rechargeable lithium battery including the same
JP6137647B2 (en) * 2013-07-26 2017-05-31 エルジー・ケム・リミテッド Positive electrode active material and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171121B2 (en) 2018-05-23 2022-11-15 エルジー エナジー ソリューション リミテッド Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery containing the same
JP2021518049A (en) * 2018-05-23 2021-07-29 エルジー・ケム・リミテッド Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery including this, and lithium secondary battery
JP2021158105A (en) * 2020-03-27 2021-10-07 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same
KR20210154958A (en) * 2020-03-27 2021-12-21 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
KR102435944B1 (en) 2020-03-27 2022-08-24 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
KR20220122576A (en) * 2020-03-27 2022-09-02 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
CN113451563A (en) * 2020-03-27 2021-09-28 艾可普罗 Bm 有限公司 Positive electrode active material and lithium secondary battery including the same
KR102540267B1 (en) 2020-03-27 2023-06-07 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
US11695114B2 (en) 2020-03-27 2023-07-04 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same
JP7329489B2 (en) 2020-03-27 2023-08-18 エコプロ ビーエム カンパニー リミテッド Positive electrode active material and lithium secondary battery containing the same
CN111525109A (en) * 2020-04-26 2020-08-11 陕西红马科技有限公司 Preparation method of layered nickel-manganese binary positive electrode material coated with titanium-cobalt coating
CN111525109B (en) * 2020-04-26 2023-04-11 陕西红马科技有限公司 Preparation method of layered nickel-manganese binary positive electrode material coated with titanium-cobalt coating
WO2022088151A1 (en) * 2020-10-31 2022-05-05 宁德时代新能源科技股份有限公司 Positive electrode active material and fabrication method therefor, secondary battery, battery module, battery pack, and apparatus
CN114512643A (en) * 2020-11-17 2022-05-17 松山湖材料实验室 Positive electrode active material, preparation method thereof, positive electrode and lithium ion secondary battery
CN114512643B (en) * 2020-11-17 2023-10-20 松山湖材料实验室 Positive electrode active material, preparation method thereof, positive electrode and lithium ion secondary battery

Also Published As

Publication number Publication date
WO2019088805A3 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2019088805A2 (en) Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same
WO2019216694A1 (en) Cathode active material for lithium secondary battery, production method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery comprising same
WO2017111542A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery including same
WO2019078503A1 (en) Cathode material for lithium secondary battery, fabrication method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2020111543A1 (en) Octahedral lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery including same
WO2019117531A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2017095133A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2019088806A1 (en) Positive electrode material comprising lithium manganese positive electrode active material having spinel structure, positive electrode and lithium secondary battery
WO2019088807A2 (en) Lithium secondary battery
WO2022031116A1 (en) Positive electrode active material precursor and method for preparing same
WO2022039576A1 (en) Cathode active material preparation method
WO2021141463A1 (en) Method for preparing cathode active material for lithium secondary battery, cathode for lithium secondary battery, comprising cathode active material prepared by preparation method, and lithium secondary battery
WO2020180160A1 (en) Lithium secondary battery
WO2017095152A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2022240129A1 (en) Positive electrode active material and method for producing same
WO2019093864A2 (en) Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery
WO2022119313A1 (en) Positive electrode active material precursor, method for manufacturing same, and positive electrode active material
WO2022182162A1 (en) Cathode active material, cathode comprising same, and secondary battery
WO2020180125A1 (en) Lithium secondary battery
WO2022060104A1 (en) Negative electrode active material, and negative electrode and secondary battery comprising same
WO2022139516A1 (en) Positive electrode active material, method for manufacturing same, positive electrode material comprising same, positive electrode, and lithium secondary battery
WO2023224447A1 (en) Positive electrode active material precursor, method for preparing positive electrode active material by using same, and positive electrode active material
WO2023239144A1 (en) Method for preparing positive electrode active material and positive electrode active material
WO2023121365A1 (en) Cathode active material for lithium secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872440

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018872440

Country of ref document: EP

Effective date: 20191105

ENP Entry into the national phase

Ref document number: 2019572586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE