WO2019088807A2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2019088807A2
WO2019088807A2 PCT/KR2018/013411 KR2018013411W WO2019088807A2 WO 2019088807 A2 WO2019088807 A2 WO 2019088807A2 KR 2018013411 W KR2018013411 W KR 2018013411W WO 2019088807 A2 WO2019088807 A2 WO 2019088807A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
material layer
lithium
positive electrode
Prior art date
Application number
PCT/KR2018/013411
Other languages
French (fr)
Korean (ko)
Other versions
WO2019088807A3 (en
Inventor
서민원
김소연
윤난지
김여진
오세영
김휘경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18872343.1A priority Critical patent/EP3683873B1/en
Priority to JP2020541634A priority patent/JP7047217B2/en
Priority to US16/757,893 priority patent/US20200343536A1/en
Priority to CN201880066173.XA priority patent/CN111213264B/en
Priority claimed from KR1020180135104A external-priority patent/KR102460353B1/en
Publication of WO2019088807A2 publication Critical patent/WO2019088807A2/en
Publication of WO2019088807A3 publication Critical patent/WO2019088807A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery including a cathode active material having a spinel structure and excellent in high-temperature lifetime characteristics and high-temperature storage electrochemical characteristics.
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
  • LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4, or LiFePO 4 have been developed as a cathode active material of a lithium secondary battery.
  • LiMn 2 O 4 lithium-manganese oxide of spinel structure is thermal stability, output characteristics and life property is excellent, but the advantage that the price is low, the structure deformed (Jahn-Teller distortion) due to the Mn 3 + during the charge and discharge, such as And there is a problem that Mn elution occurs due to HF formed by reaction with an electrolytic solution at a high temperature, and performance deteriorates abruptly.
  • LiMn 2 O 4 In the case of LiMn 2 O 4 , it can be applied to a battery requiring a high capacity because the material itself has a high working voltage but low energy density per unit mass, such as about 110 mAh / g, and low density of the material itself There was a problem that it was difficult.
  • lithium secondary battery which has a spinel structure cathode active material and is excellent in electrochemical characteristics and high temperature lifetime characteristics after high temperature storage.
  • the present invention provides a lithium secondary battery comprising: a cathode comprising a lithium manganese-based first cathode active material having a spinel structure and a lithium-nickel-manganese-cobalt-based second cathode active material; A negative electrode comprising at least one selected from the group consisting of artificial graphite having a specific surface area (BET) of 0.1 to 1.2 m 2 / g and softened carbon and natural graphite having a larger specific surface area than the artificial graphite; A separator interposed between the anode and the cathode; And a lithium secondary battery including an electrolyte.
  • BET specific surface area
  • the first cathode active material is a lithium manganese oxide represented by the following Chemical Formula 1 and a lithium manganese oxide which is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, Co, , Cu, Ca, Zn, Zr, Nb. And a coating layer containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S.
  • M 1 is at least one element selected from the group consisting of Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, , Pt, Au and Si
  • A is at least one element selected from the group consisting of F, Cl, Br, I, At and S, and 0? A? 0.2, 0 ⁇ b? 0.5, 0? c? 0.1)
  • the first cathode active material of the spinel structure used in the lithium secondary battery according to the present invention has excellent structural stability including a doping element and has a coating layer formed on its surface to minimize the contact with the electrolyte, This makes it possible to obtain a high-temperature characteristic superior to the conventional one.
  • the lithium secondary battery according to the present invention can realize high energy density by using the first cathode active material having a spinel structure excellent in high temperature stability and the high nickel lithium nickel-cobalt-manganese based active material together.
  • the lithium secondary battery according to the present invention can exhibit resistance And it is possible to prevent degradation of the electrode due to removal of active material and the like, thereby realizing excellent electrochemical characteristics.
  • FIG. 1 is a graph showing the high-temperature storage characteristics of the coin cells prepared by Examples 1 and 5 and Comparative Examples 5 and 6.
  • FIG. 1 is a graph showing the high-temperature storage characteristics of the coin cells prepared by Examples 1 and 5 and Comparative Examples 5 and 6.
  • Fig. 2 is a graph showing the high-temperature lifetime characteristics of the coin cell manufactured by Examples 1 and 5 and Comparative Examples 5 and 6. Fig.
  • the average particle diameter (D 50 ) can be defined as the particle diameter at the 50% of the particle diameter distribution, and can be measured using a laser diffraction method. Specifically, the average particle diameter (D 50 ) is measured by dispersing the target particles in a dispersion medium, introducing the particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000) After the irradiation, the average particle diameter (D 50 ) of the 50% of the cumulative distribution of the particle volume according to the particle diameter in the measuring apparatus can be calculated.
  • a laser diffraction particle size analyzer for example, Microtrac MT 3000
  • ICP analysis was conducted using an inductively coupled plasma emission spectrometer (ICP-OES; Optima 7300DV, PerkinElmer).
  • the "specific surface area" is measured by the BET method. Specifically, it can be calculated from the adsorption amount of nitrogen gas under the liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan.
  • a spinel-type first cathode active material doped with a cathode active material and a lithium nickel cobalt manganese- Oxides are used in combination and one of the artificial graphite having a specific specific surface area as a negative electrode active material and one of natural graphite and softening carbon is used in combination to effectively prevent deterioration of electrochemical characteristics at high temperatures I can do it.
  • the lithium manganese-based positive active material, and the first lithium nickel spinel structure in which the lithium battery of the present invention-manganese-anode including a cobalt-based second positive active material the specific surface area (BET) is from 0.1 to 1.2m 2 / g and softened carbon and natural graphite having a specific surface area (BET) larger than that of the artificial graphite; a separator interposed between the anode and the cathode; And an electrolyte, wherein the cathode active material is a lithium manganese oxide represented by the following general formula (1) and a lithium manganese oxide which is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, , V, Cu, Ca, Zn, Zr, Nb. And a coating layer containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S.
  • the cathode active material is a lithium manganes
  • the positive electrode according to the present invention includes a lithium manganese-based first positive electrode active material having a spinel structure and a lithium-nickel-manganese-cobalt second positive electrode active material.
  • the first cathode active material is a cathode active material having a spinel structure including a lithium manganese oxide represented by the following general formula (1) and a coating layer positioned on the surface of the lithium manganese oxide.
  • M 1 is a doping element substituted for a manganese site in the lithium manganese oxide and is a doping element substituted by a metal element such as Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, And at least one element selected from the group consisting of Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au and Si.
  • a metal element such as Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, And at least one element selected from the group consisting of Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au and Si.
  • the M < 1 > Al, Li, Mg, and Zn are examples of the M < 1 > Al, Li, Mg, and Zn.
  • the A is an element substituted for an oxygen site in the lithium oxynitride, and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
  • 1 + a represents the molar ratio of lithium in the lithium manganese oxide, and may be 0? A? 0.2, preferably 0? A? 0.1.
  • B represents the molar ratio of the doping element M 1 in the lithium manganese oxide, and may be 0 ⁇ b? 0.5, preferably 0.03? B? 0.25.
  • C represents the molar ratio of the element A in the lithium manganese oxide, and may be 0? C? 0.1, preferably 0.01? C? 0.05.
  • the lithium manganese oxide represented by Formula 1 has a relatively low average oxidation number of Mn ions including a low-oxidation doping element M 1 , and consequently has a Jnn-Teller distortion due to Mn 3+ during charging and discharging, Can be minimized.
  • the coating layer prevents contact between the lithium manganese oxide and the electrolytic solution to prevent generation of gas upon charge and discharge, and prevents manganese (Mn) from leaching at a high temperature.
  • the coating layer is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, (Hereinafter referred to as "coating element") selected from the group consisting of Mo, Sr, Sb, Bi, Si and S.
  • the coating layer may contain at least one element selected from the group consisting of Al, Ti, Zn, W and B, more preferably at least one element selected from the group consisting of B, W and Al .
  • the first cathode active material may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains Al 2 O 3 .
  • the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from the group consisting of Al, Li, Mg and Zn, and the coating layer contains Ti.
  • the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains W.
  • the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains B.
  • the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains B and Al.
  • the coating layer may be formed continuously or discontinuously on the surface of the lithium manganese oxide represented by the formula (1).
  • the coating layer may be formed such that particles containing the coating elements are discontinuously attached to the surface of the lithium manganese oxide.
  • the particles comprising the coating elements include, for example, ZnO, Al 2 O 3, TiO 2, WO 3, MgO, CaO, B 2 O 3, NbO 2, SrO, CrO, Mo 2 O 5, Bi 2 O 3 , SiO, and the like.
  • the oxide particles capture and decompose HF formed by the reaction with the electrolyte, as shown in the following reaction formula 1, so that the Mn elution by HF is suppressed .
  • the coating layer may be formed in the form of a film containing the coating elements on the surface of the lithium manganese oxide.
  • the coating layer is formed in the form of a film, the effect of preventing the contact between the electrolyte and the lithium manganese oxide and the effect of inhibiting the manganese dissolution are more excellent.
  • the coating comprises at least one element selected from the group consisting of B, P, F, W, S, and Al.
  • the coating layer may be formed in a region corresponding to 50 to 100% of the total surface area of the lithium manganese oxide, preferably in a range of 80 to 100%, more preferably 90 to 100% have.
  • the coating layer formation area satisfies the above range, the contact between the electrolytic solution and the lithium manganese oxide can be effectively blocked.
  • the thickness of the coating layer may be 1 nm to 1000 nm, for example, 1 nm to 100 nm or 10 nm to 1000 nm.
  • its thickness may be 1 nm to 100 nm, and when it is formed in the form of oxide particles, its thickness may be 10 nm to 1000 nm.
  • the thickness of the coating layer satisfies the above range, it is possible to effectively suppress occurrence of manganese elution and side reaction with the electrolyte while minimizing deterioration of electrical performance.
  • the doping element M 1 is used in an amount of 500 to 40000 ppm, preferably 2500 to 40000 ppm, more preferably 5000 to 40000 ppm, and most preferably 7000 to 40000 ppm based on the total weight of the first cathode active material. 20000 ppm.
  • the content of the doping element M 1 satisfies the above range, the dissolution of manganese at a high temperature is effectively suppressed, thereby realizing a lithium secondary battery excellent in high-temperature storability.
  • the first cathode active material may include Al, Li, Mg, Zn, or a combination thereof as a doping element, wherein the Al is present in an amount of 2500 to 40000 ppm based on the total weight of the first cathode active material, May be included at 7000 to 20000 ppm, and Li may be included at 500 to 12000 ppm, preferably 1000 to 3000 ppm, based on the total weight of the first cathode active material.
  • the Mg may be contained in an amount of 1000 to 20000 ppm, preferably 3000 to 10000 ppm, based on the total weight of the first cathode active material, and the Zn may be added in an amount of 1000 to 20000 ppm, preferably 3000 to 10000 ppm, based on the total weight of the first cathode active material .
  • the first cathode active material according to the present invention has an average particle diameter (D 50 ) of 1 to 20 ⁇ , for example, 1 to 8 ⁇ , 7 ⁇ to 20 ⁇ , 8 ⁇ to 20 ⁇ , Lt; / RTI >
  • the first cathode active material according to the present invention may have an average particle diameter (D 50 ) of 1 to 8 ⁇ .
  • D 50 average particle diameter
  • the content of the doping and coating elements is relatively increased as compared with the particles having a large average particle diameter, and the specific surface area is controlled by controlling the firing conditions, The first positive electrode active material having a low side reaction can be produced.
  • the first cathode active material according to the present invention may have an average particle diameter (D 50 ) of 8 ⁇ to 20 ⁇ .
  • D 50 average particle diameter
  • the lithium manganese-based first cathode active material may have a specific surface area of 0.1 to 1.5 m 2 / g.
  • the specific surface area can be adjusted according to the particle size of the lithium manganese-based first cathode active material.
  • the lithium manganese-based first cathode active material has an average particle diameter (D 50 ) of 1 to 8 ⁇ m, is 0.5 to 1.5m 2 / g or 0.7 to 1.1m 2 / g may be, the average particle diameter (D 50) is not more than 20 ⁇ m 8 ⁇ m to have a specific surface area of 0.1 to 1m 2 / g, or from 0.25 to 0.7m 2 / g. < / RTI >
  • the first cathode active material may be in the form of a secondary particle formed by aggregating primary particles or a plurality of primary particles.
  • the secondary particles may be formed, for example, by agglomerating 2 to 100 or 2 to 50 primary particles.
  • the first cathode active material may include impurities that are not included in the manufacturing process.
  • impurities may include, for example, Fe, Ni, Na, Cu, Zn, Cr, Ca, K, S, Mg, Co, Si, B or combinations thereof. If such an impurity content is high, the life of the battery may be deteriorated by inducing the negative electrode dendrite, and a low voltage failure due to an internal short circuit may occur.
  • impurities such as S or the like have a problem of corroding the Al current collector. Therefore, it is preferable that the impurities are controlled to a certain degree or less.
  • the first cathode active material according to the present invention may have an S impurity content of 20000 ppm or less, preferably 15000 ppm or less, more preferably 1000 ppm or less, and the other impurity content may be 400 ppm or less, preferably 10 ppm or less .
  • the total amount of magnetic impurities such as Fe, Cr, Ni, Zn and the like among the above-mentioned impurities is preferably not more than 800 ppb, specifically not more than 25 ppb. If the content of the magnetic impurities exceeds the above range, the life of the battery may be deteriorated by inducing the negative electrode dendrite, or a low voltage failure due to an internal short circuit may occur.
  • the first lithium manganese-based cathode active material includes 1) a step of forming a lithium manganese oxide doped with M 1 represented by the formula 1, and 2) a step of forming lithium manganese And mixing the oxide and the coating material to form a coating layer by heat treatment.
  • M 1 represented by the formula 1
  • a method for producing the first cathode active material of the present invention will be described in more detail.
  • the lithium manganese oxide doped with M 1 represented by the above formula (1) can be obtained by (i) a method of mixing a raw material for manganese, a raw material for doping including M 1 and a raw material for lithium and then firing, or (ii) by reacting a doping raw material containing the raw material and M 1, can be prepared by after the formation of the manganese precursor is doped with M 1, method of sintering by mixing the manganese precursor and the lithium source material is doped with the M 1 have. That is, in the present invention, the doping element M 1 may be added in the step of forming the manganese precursor, or may be charged in the step of firing the manganese raw material and the lithium raw material.
  • the manganese raw material may be a manganese element-containing oxide, a hydroxide, an oxyhydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetate, a carboxylate or a combination thereof.
  • Specific examples thereof include MnO 2 , MnCl 2 , MnCO 3 , Mn 3 O 4 , MnSO 4 , Mn 2 O 3 , Mn (NO 3 ) 2 , and the like, but is not limited thereto.
  • Doping material source material containing the M 1 is, M 1 containing oxides, hydroxides, oxy-hydroxides, sulfates, carbonates, halides, sulfides, and the like acid salt, carboxylic acid salt, or a combination thereof, for example, Al 2 ( SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , Li (OH), LiCO 3, Li 2 O, MgO, Mg (OH) 2, MgSO 4, Mg (NO 3 ) 2, etc.
  • the present invention is not limited thereto.
  • the lithium source material may be at least one selected from the group consisting of lithium containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) and the like), hydroxide (for example, For example, lithium nitrate (LiNO 3 ) or the like), chloride (for example, lithium chloride (LiCl) or the like), and the like.
  • lithium containing carbonate for example, lithium carbonate and the like
  • hydrate for example, lithium hydroxide I hydrate (LiOH.H 2 O) and the like
  • hydroxide for example, For example, lithium nitrate (LiNO 3 ) or the like
  • chloride for example, lithium chloride (LiCl) or the like
  • the lithium manganese oxide represented by the formula (1) can be produced by mixing a raw material for manganese, a raw material for doping including M 1 , a raw material for lithium, and firing )).
  • the manganese raw material, the doping raw material containing M 1 , and the lithium raw material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li of Formula 1.
  • the mixing may be a solid-phase mixing or a liquid-phase mixing.
  • the firing process can be performed without a separate drying process.
  • the mixed components are spray dried and then subjected to the firing process.
  • the solid-phase mixing method a lithium manganese oxide having an average particle diameter (D 50 ) of less than 8 ⁇ m, preferably not more than 6 ⁇ m, and having a small specific surface area can be obtained.
  • a wet mixing method is used, a lithium manganese oxide having an average particle diameter (D 50 ) of 8 ⁇ m or larger can be obtained.
  • the firing may be performed at 600 to 900 ° C, preferably 700 to 800 ° C, for 5 to 24 hours, preferably 10 to 15 hours.
  • the calcination may be performed at 750 to 850 ⁇ , preferably at 780 to 830 ⁇ for 5 to 24 hours, preferably 10 to 15 hours.
  • the average particle size (D50) of the primary particles is 1 mu m or more, preferably 2 to 3 Mu m of lithium manganese oxide can be obtained.
  • the lithium manganese oxide represented by the above Formula 1 is, by reacting a doping raw material including a manganese raw material and M 1, after the formation of the manganese precursor is doped with M 1, wherein M 1 By mixing the lithium source material with a doped manganese precursor (method (ii)).
  • the manganese precursor doped to said M 1 is, for example, be formed by co-precipitation reaction the doped raw material raw material containing manganese as a raw material M 1.
  • the manganese raw material and the doping raw material containing M & lt ; 1 > are the same as described above.
  • the coprecipitation reaction may be performed by a co-precipitation method well known in the art.
  • the manganese raw material and the doping element raw material are charged into the coprecipitation reactor at an appropriate ratio, and an aqueous ammonia solution as a complexing agent and an alkali And the reaction is allowed to proceed while the aqueous solution is added.
  • the manganese precursor doped with M 1 and the lithium source material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li of Formula 1.
  • Ti, W, B, F, P, and Mg are formed on the surface of the lithium manganese oxide of Formula 1 by preparing the lithium manganese oxide doped with M 1 represented by Formula 1 through the above- , Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb.
  • a coating layer containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S (hereinafter referred to as a coating element) is formed.
  • a wet coating method for example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
  • ALD Atomic Layer Deposition
  • the wet coating method may be carried out by, for example, adding lithium manganese oxide and a coating material to an appropriate solvent such as ethanol, water, methanol, acetone, etc., and mixing the mixture until the solvent disappears.
  • an appropriate solvent such as ethanol, water, methanol, acetone, etc.
  • the dry coating method is a method of mixing a lithium manganese oxide and a coating raw material in a solid phase without a solvent, and for example, a grinder mixing method, a mechanofusion method, or the like can be used.
  • the coating material may be at least one selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, An oxide, a hydroxide, an oxyhydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetic acid, a nitrate, a nitrate, or a salt thereof containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si and S Al 2 O 3 , Al (OH) 3 , AlSO 4 , AlCl 3 , Al-isopropoxide, AlNO 3 , Al 2 O 3 , TiO 2, WO 3, AlF, H 2 BO 3, HBO 2, H 3 BO 3, H 2 B 4 O 7, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, [(CH 3 ( CH 2) 3 O) 3 B , C 3 H 9 B 3 O 6,
  • the coating layer can be formed through heat treatment.
  • the heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
  • the anode of the present invention includes the lithium-nickel-manganese-cobalt-based second cathode active material together with the first cathode active material.
  • the second cathode active material may be a lithium-titanium manganese cobalt oxide expressed by the following formula (2).
  • M 2 is a doping element substituted for a transition metal (Ni, Co, Mn) site, and W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, And at least one element selected from the group consisting of Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B and Mo.
  • the M 2 may be at least one selected from the group consisting of Al, Zr, W, Ti, Nb and B.
  • B is an oxygen-site-substituted element in the lithium nickel manganese cobalt cathode active material, and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
  • 1 + x represents the lithium molar ratio in the lithium nickel manganese cobalt cathode active material, and may be 0? X? 0.3, preferably 0? X? 0.2, more preferably 0? X?
  • Y represents the molar ratio of nickel in the lithium nickel manganese cobalt based positive electrode active material and satisfies 0.5? Y ⁇ 1, preferably 0.65? Y ⁇ 1, more preferably 0.7? Y ⁇ 1, ≪ 1.
  • Z represents the molar ratio of cobalt in the lithium nickel manganese cobalt-based cathode active material, and may be 0 ⁇ z ⁇ 0.35, preferably 0 ⁇ z? 0.3.
  • the w represents the molar ratio of manganese in the lithium nickel manganese cobalt cathode active material, and may be 0 ⁇ w ⁇ 0.35, preferably 0 ⁇ w? 0.3.
  • V represents the molar ratio of the doping element M 2 in the lithium nickel cobalt manganese based oxide, and 0? V? 0.1, preferably 0.0005? V? 0.08, more preferably 0.001? V? 0.002? V? 0.01.
  • the cathode active material having excellent high-temperature stability can be obtained.
  • P represents the molar ratio of element B in the lithium nickel cobalt manganese-based oxide, and may be 0? P? 0.1, preferably 0? P? 0.05.
  • the lithium nickel cobalt manganese oxide represented by the above formula (2) is preferably Li 1 + x [Ni y Co z Mn w ] O 2 , Li 1 + x [Ni y Co z Mn w Al v ] O 2 Or the like, but is not limited thereto.
  • the second cathode active material may be at least one selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, At least one coating element selected from the group consisting of one or more elements selected from the group consisting of Si, S, and S.
  • the coating layer is included as described above, the contact between the second cathode active material and the electrolyte contained in the lithium secondary battery is cut off and the occurrence of side reactions is suppressed. Therefore, the life characteristics can be improved when applied to a battery, The density can be increased.
  • the content of the coating element in the coating layer may be 100 ppm to 10,000 ppm, preferably 200 ppm to 5,000 ppm, based on the total weight of the second cathode active material.
  • the coating element is contained in the above range with respect to the total weight of the second cathode active material, occurrence of side reactions with the electrolyte can be more effectively suppressed, and life characteristics can be further improved when applied to a battery.
  • the coating layer may be formed on the entire surface of the second cathode active material, or may be partially formed. Specifically, when the coating layer is partially formed on the surface of the second cathode active material, an area of 5% or more and less than 100%, preferably 20% or more and less than 100% of the total surface area of the second cathode active material is formed .
  • the average particle diameter (D 50 ) of the second cathode active material may be 1 ⁇ to 20 ⁇ , 2 ⁇ to 10 ⁇ , or 8 to 20 ⁇ .
  • excellent electrode density and energy density can be realized.
  • the grain size of the second cathode active material may be 200 nm to 500 nm. When the grain size of the second cathode active material satisfies the above range, excellent electrode density and energy density can be realized.
  • the content of the transition metal elements may be constant in the active material particle of the second cathode active material, or the content of one or more metal elements may be changed depending on the position of the transition metal element in the particles.
  • the second cathode active material may have a concentration gradient in which at least one of Ni, Mn, Co, and M 2 gradually changes, and the gradually changing concentration gradient is a concentration gradient of the components Quot; means that there exists a concentration distribution continuously or stepwise changing in all or a specific region.
  • the second cathode active material may be a commercially available lithium nickel cobalt manganese-based cathode active material purchased or used, or may be one produced by a method for producing a lithium nickel cobalt manganese-based cathode active material known in the art.
  • the lithium nickel cobalt manganese-based cathode active material represented by Formula 2 may be prepared by mixing a nickel cobalt manganese-based precursor with a lithium source material, and optionally, a doping source material followed by sintering.
  • the nickel cobalt manganese precursor may be a hydroxide of nickel manganese cobalt, a hydroxide of nickel manganese cobalt, an oxide of hydroxide, a carbonate, an organic complex or a hydroxide of nickel manganese cobalt including an element M 2 , an oxide, a carbonate, or an organic complex.
  • the nickel-cobalt-manganese-based precursor [Ni y Co z Mn w] (OH) 2, [Ni y Co z Mn w Al v] (OH) 2, [Ni y Co z Mn w] O ⁇ OH , [Ni y Co z Mn w Al v ] O ⁇ OH, and the like, but the present invention is not limited thereto.
  • the lithium source material may be at least one selected from the group consisting of lithium-containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) For example, lithium nitrate (LiNO 3 ) and the like), chlorides (e.g., lithium chloride (LiCl) and the like), and the like.
  • lithium-containing carbonate for example, lithium carbonate and the like
  • hydrate for example, lithium hydroxide I hydrate (LiOH.H 2 O)
  • LiNO 3 lithium nitrate
  • chlorides e.g., lithium chloride (LiCl) and the like
  • the doping material may be at least one of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, , B, and Mo, or an oxide, a hydroxide, a sulfide, an oxyhydroxide, a halide, or a mixture thereof.
  • the firing may be performed at 600 to 1000 ° C, preferably 700 to 900 ° C for 5 to 30 hours, preferably 10 to 20 hours.
  • the coating raw material may be further added to the cathode active material after firing, followed by heat treatment.
  • the coating material may be Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb.
  • a wet coating method for example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
  • ALD Atomic Layer Deposition
  • the heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
  • the second cathode active material represented by Formula 2 is a high nickel cathode active material having a nickel ratio exceeding 50 mol%, and thus has excellent energy density characteristics. Therefore, when the second cathode active material represented by Formula 2 is mixed with the first lithium manganese-based cathode active material of the spinel structure of the present invention, the problem of capacity which is a disadvantage of the lithium manganese-based first cathode active material can be solved .
  • the anode may include a cathode active material having a bimodal particle diameter distribution including large-diameter particles and small particle size particles having different average particle diameters (D 50 ).
  • 10% to 75% of the positive electrode is the average particle diameter (D 50) to the 4 ⁇ m 20 ⁇ m the assignment particle diameter and average particle diameter (D 50) is the assigned light particles with a mean particle size (D 50) of, And preferably a bimodal particle size distribution including small particle diameters of 25% to 75%.
  • a cathode active material having a bimodal particle diameter distribution is used as described above, a cathode having a high electrode density and an energy density can be formed.
  • the average particle diameter (D 50 ) of the large diameter particles may be 8 ⁇ to 20 ⁇ , 8 ⁇ to 15 ⁇ , or 12 ⁇ to 20 ⁇ , and the average particle diameter (D 50 ) 1 ⁇ to 15 ⁇ , 2 ⁇ to 13 ⁇ , 2 ⁇ to 8 ⁇ , or 4 ⁇ to 13 ⁇ .
  • the cathode material according to the present invention may have a bimodal particle size distribution including large-diameter particles having an average particle diameter of 8 ⁇ to 15 ⁇ and small-particle particles having an average particle diameter of 1 ⁇ to 6 ⁇ .
  • the cathode material according to the present invention may have a bimodal particle diameter distribution including large-diameter particles having an average particle diameter of 12 to 20 ⁇ m and small-particle particles having an average particle diameter of 4 to 13 ⁇ m .
  • the kind of the active material constituting the small particle size particles and the large particle size particles is not particularly limited and may be the first positive electrode active material and / or the second positive electrode active material.
  • the first cathode active material may be a large particle and the second cathode active material may be a small particle.
  • the average particle diameter (D50) of the first cathode active material is about 8 to 20 ⁇ , preferably about 12 to 20 ⁇
  • the average particle diameter (D50) of the second cathode active material is 1 to 15 ⁇ , Preferably about 4 ⁇ to 13 ⁇ .
  • the manganese elution in the first cathode active material can be more effectively suppressed, and as a result, the high-temperature stability of the battery can be further improved.
  • the first positive electrode active material may be small particle size particles and the second positive electrode active material may be large diameter particles.
  • the average particle diameter (D50) of the first cathode active material is about 1 ⁇ to 15 ⁇ , preferably about 1 ⁇ to 8 ⁇
  • the average particle diameter (D50) of the second cathode active material is about 8 ⁇ to 20 ⁇ , Preferably, it may be about 8 ⁇ ⁇ to 15 ⁇ ⁇ .
  • the doping and / or coating amount of the first cathode active material can be applied at a high level and a low BET value can be obtained to minimize side reactions with the electrolyte .
  • At least one of the first cathode active material and the second cathode active material may have a bimodal particle diameter distribution including the large particle diameter and the small particle diameter .
  • the anode may include the first cathode active material and the second cathode active material in a weight ratio of 10:90 to 90:10, preferably 40:60 to 60:40.
  • the mixing ratio of the first cathode active material and the second cathode active material is in the above range, an electrode excellent in high temperature storability and capacity characteristics can be obtained.
  • the positive electrode according to the present invention includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector, wherein the positive electrode active material layer is a lithium manganese-based first positive electrode active material and lithium nickel manganese Cobalt-based second cathode active material.
  • the cathode active material layer may further include a binder and / or a conductive material if necessary.
  • the total weight of the first cathode active material and the second cathode active material may be 80 to 99 wt%, more particularly 85 to 98.5 wt%, based on the total weight of the cathode active material layer.
  • the cathode active material is included in the above range, excellent capacity characteristics can be exhibited.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium, , Silver or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine irregularities may be formed on the surface of the current collector to increase the adhesive strength of the cathode material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may include 0.1 to 15% by weight based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • specific examples of the binder include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, Polypropylene, ethylene-propylene-diene polymer (EPDM), sulphonated-EPDM, polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinylpyrrolidone, Styrene-butadiene rubber (SBR), fluorine rubber, and various copolymers thereof, and one kind or a mixture of two or more kinds of them may be used.
  • the binder may be contained in an amount of 0.1 to 15% by weight based on the total weight of the cathode active material layer.
  • the cathode active material layer may have a single layer structure or a multi-layer structure in which two or more layers are stacked.
  • the anode may include a first cathode active material layer formed on the cathode current collector, and a second cathode active material layer formed on the first cathode active material layer.
  • the first cathode active material and the second cathode active material may be included in the same layer or different layers.
  • the first cathode active material layer and the second cathode active material layer may have different compositions.
  • 'different in composition' means that the kind and / or the content of at least one of the components (for example, the cathode active material, the conductive material, the binder, etc.) contained in each layer is different.
  • the first cathode active material layer and the second cathode active material layer may have different mixing ratios of the first cathode active material and the second cathode active material contained in each layer.
  • the first cathode active material layer contains the first cathode active material in an amount larger than that of the second cathode active material
  • the second cathode active material layer contains a larger amount of the second cathode active material than the first cathode active material
  • the first cathode active material layer comprises 50 to 100% by weight, preferably 70 to 100% by weight, of the lithium manganese-based first cathode active material in the total cathode active material contained in the first cathode active material layer
  • the cathode active material layer may include lithium-nickel-cobalt-manganese-based second cathode active material in an amount of 50 to 100% by weight, preferably 70 to 100% by weight, of the total cathode active material contained in the second cathode active material layer.
  • the first cathode active material layer contains the second cathode active material in a larger amount than the first cathode active material
  • the second cathode active material layer contains the first cathode active material in a larger amount than the second cathode active material It is possible to do.
  • the first cathode active material layer comprises 50 to 100% by weight, preferably 70 to 100% by weight, of the lithium-nickel-cobalt-manganese-based second cathode active material in the total cathode active material contained in the first cathode active material layer
  • the second cathode active material layer may include a lithium manganese-based first cathode active material having a spinel structure in an amount of 50 to 100% by weight, preferably 70 to 100% by weight, of the total cathode active material contained in the second cathode active material layer.
  • the lithium nickel-cobalt manganese-based cathode active material has a high tap density and a high rolling rate, when the lithium-nickel-cobalt manganese-based cathode active material is contained in the first active material layer located at the bottom, , The output and the lifetime improvement effect can be obtained.
  • the first cathode active material layer and the second cathode active material layer may have different contents of binders contained in each layer.
  • the first cathode active material layer contains the binder in an amount of 1 to 4 wt%, preferably 1.5 to 4 wt%
  • the second cathode active material layer contains 3 wt% or less of the binder, 0.5 to 2% by weight.
  • the anode according to the present invention has a high loading density and a high electrode density, so that it has excellent energy density characteristics.
  • the anode has a loading amount of 3.0 mAh / cm < 2 > To be 20 mAh / cm 2, preferably from 3.6 to 6.0mAh / cm 2, more preferably from 4.0 to 5.0 mAh / cm 2.
  • the positive electrode of the present invention can be produced by a conventional positive electrode manufacturing method, except that a specific positive electrode active material according to the present invention is used. Specifically, the positive electrode active material, the binder and / or the conductive material may be dissolved or dispersed in a solvent to form a positive electrode current collector on the positive electrode current collector, followed by drying and rolling.
  • the solvent may be any solvent commonly used in the art and may be a solvent such as dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or water .
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone or water .
  • One of these may be used alone, or a mixture of two or more thereof may be used.
  • the amount of the solvent to be used is not particularly limited as long as it can be adjusted to have an appropriate viscosity in consideration of the coating thickness of the positive electrode composite material, the production yield, workability, and the like.
  • the positive electrode may be produced by casting the positive electrode composite material on a separate support, and then peeling off the support from the support to laminate a film on the positive electrode collector.
  • the negative electrode according to the present invention is characterized in that the negative electrode includes at least one selected from the group consisting of artificial graphite having a specific surface area (BET) of 0.1 to 1.2 m 2 / g and natural graphite and softened carbon having a specific surface area larger than that of the artificial graphite .
  • BET specific surface area
  • a lithium secondary battery using a positive electrode comprising a lithium manganese-based first cathode active material having a spinel structure doped and coated and a lithium-nickel-manganese-cobalt-based second cathode active material has a specific surface area ) was 0.1 to 1.2 m 2 / g, the battery characteristics at high temperature were superior to those in the case of using a negative electrode containing other types of negative active materials, The effect of suppressing the increase in resistance was also excellent.
  • the artificial graphite may have a specific surface area (BET) of 0.1 to 1.2 m 2 / g, preferably 0.3 to 1.0 m 2 / g, more preferably 0.5 to 1.0 m 2 / g.
  • BET specific surface area
  • the soft carbon may have a specific surface area (BET) of 7 to 10 m 2 / g, preferably 8 to 10 m 2 / g.
  • BET specific surface area
  • the natural graphite may have a specific surface area (BET) of 2 to 5 m 2 / g, preferably 2.5 to 4.0 m 2 / g, more preferably 2.5 to 3.5 m 2 / g.
  • BET specific surface area
  • the negative electrode comprises a mixture of artificial graphite and softened carbon in a weight ratio of 50:50 to 95: 5, preferably 60:40 to 95: 5, more preferably 70:30 to 90:10 .
  • the mixing ratio of the artificial graphite and the softened carbon satisfies the above range, the life improving effect and the effect of suppressing the increase in resistance after high temperature storage are more excellent.
  • the cathode contains artificial graphite and natural graphite in a weight ratio of 50:50 to 95: 5, preferably 60:40 to 95: 5, more preferably 70:30 to 90:10. can do.
  • the mixing ratio of artificial graphite and natural graphite satisfies the above range, the life improving effect and the effect of suppressing the increase in resistance after storage at high temperature are more excellent.
  • the negative electrode may include a negative electrode collector and a negative electrode active material layer positioned on the negative electrode collector.
  • the negative electrode active material layer may be a negative electrode active material, and may be a synthetic resin having a specific surface area (BET) of 0.1 to 1.2 m 2 / Graphite and at least one selected from the group consisting of natural graphite and softened carbon having a larger specific surface area than the artificial graphite.
  • the anode active material layer may further include a binder and a conductive material in addition to the artificial graphite, natural graphite, and softened carbon.
  • the total weight of the artificial graphite-softened carbon and the natural graphite may be about 80 to 99% by weight based on the total weight of the negative electrode active material layer. Since artificial graphite, natural graphite and softened carbon have been described above, the remaining components will be described below.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the binder is a component for assisting the bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 0.1% by weight to 10% by weight based on the total weight of the negative electrode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer, as a component for further improving the conductivity of the negative electrode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the negative electrode active material layer is prepared by applying and drying a negative electrode active material prepared by dissolving or dispersing a negative active material on a negative electrode current collector and optionally a binder and a conductive material in a solvent or by drying the negative electrode active material on a separate support And then laminating a film obtained by peeling from the support onto an anode current collector.
  • the negative electrode active material layer may have a single layer structure or a multi-layer structure in which two or more layers are stacked.
  • the negative electrode may include a negative electrode collector, a first negative electrode active material layer formed on the negative electrode collector, and a second negative electrode active material layer formed on the first negative electrode active material layer,
  • the active material layer and the second negative electrode active material layer may have different compositions. That is, the first anode active material layer and the second anode active material layer may have different kinds and / or contents of respective components in the anode active material layer.
  • the first anode active material layer and the second anode active material layer may have different contents of artificial graphite, softened carbon, natural graphite, and / or binder.
  • the loading amount of the negative electrode may be 300 to 500 mg / 25 cm 2 , preferably 300 to 400 mg / 25 cm 2 .
  • the loading amount of the negative electrode satisfies the above range, it is possible to secure a sufficient electrode bonding force, to facilitate a process, to realize a battery having excellent rapid charging performance and resistance performance, and to maximize energy density.
  • the separation membrane separates the cathode and the anode and provides a passage for lithium ion.
  • the separation membrane can be used without any particular limitation as long as it is used as a separation membrane in a lithium secondary battery. Particularly, the separation membrane has low resistance against electrolyte migration, Excellent.
  • a porous polymer film such as a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer Or a laminated structure of two or more thereof may be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and the separator may be selectively used as a single layer or a multilayer structure.
  • an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used for a lithium secondary battery, are not particularly limited.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Ra-CN (Ra is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohex
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate having a high ionic conductivity and a high dielectric constant
  • ethylene carbonate or propylene carbonate for example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as an anion, and containing the Li + in the lithium salt cation is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -
  • the lithium salt may be LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , and LiCH 3 SO 3 , or a mixture of two or more thereof.
  • the lithium salt can be appropriately changed within a range that is usually usable, but it can be specifically contained in the electrolyte in an amount of 0.8 M to 3 M, specifically 0.1 M to 2.5 M.
  • additives may be added to the electrolyte for the purpose of improving lifetime characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery.
  • the additive may be included in an amount of 0.1 wt% to 5 wt
  • the lithium secondary battery according to the present invention can be used for portable equipment such as mobile phones, notebook computers, and digital cameras, and electric vehicles such as hybrid electric vehicles (HEV).
  • portable equipment such as mobile phones, notebook computers, and digital cameras
  • electric vehicles such as hybrid electric vehicles (HEV).
  • HEV hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
  • CSTR continuous stirred tank reactor
  • a 40% aqueous solution of sodium hydroxide was introduced as an alkalizing agent at a rate of 10 mL / h through an aqueous solution of sodium hydroxide in the reactor, and a 25% ammonia solution was fed through the ammonia solution supply portion of the reactor at a rate of 30 mL / And the pH of the solution was maintained at 10.5.
  • the temperature of the reactor was adjusted to 40 ° C., the residence time (RT) was adjusted to 10 hours, and the mixture was stirred at a speed of 1200 rpm to precipitate Mn 3 O 4 containing Al and Mg.
  • WO 3 3000 parts by weight of WO 3 was added to 100 parts by weight of the lithium manganese oxide prepared as described above, followed by dry mixing, followed by heat treatment at 600 ° C for 5 hours to obtain a first cathode active material A having a coating layer containing W formed thereon.
  • Lithium manganese oxide Li (Mn 1.88 Al 0.06 Mg 0.06 ) O 4 prepared according to the method of Production Example 1 1000 parts by weight of TiO 2 was added to 100 parts by weight of WO 3 instead of WO 3 , and the mixture was heat-treated at 600 ° C. for 5 hours to obtain a first cathode active material B having a coating layer containing Ti.
  • Li 2 CO 3 (MnSO 4 .7H 2 O) containing Li 2 CO 3 and Al 2 (SO 4 ) 3 was prepared by mixing Al 2 (SO 4 ) 3 and Al 2 (SO 4 ) 3 in a weight ratio of 95: 0.5: (Mn 0.957 Li 0.015 Al 0.028 ) 3 O 4 doped with Li and Al was prepared in the same manner as in Production Example 1.
  • the Li-doped manganese precursor thus prepared and the lithium source material Li 2 CO 3 were mixed at a molar ratio of 1: 0.75 and then fired at 810 ° C for 14 hours to obtain lithium manganese oxide Li (Mn 1.914 Li 0.06 Al 0.056 ) O 4 was obtained.
  • WO 3 5000 parts by weight of WO 3 was added to 100 parts by weight of lithium manganese oxide prepared as described above, followed by dry mixing, followed by heat treatment at 600 ° C for 5 hours to obtain a first cathode active material C in which a coating layer containing W was formed.
  • MnSO 4 Li 2 CO 3 And MgSO 4 were mixed in a weight ratio of 98: 0.5: 1.5 to prepare (MnSO 4 .7H 2 O) containing Li 2 CO 3 and MgSO 4 , Li And a Mg-doped manganese precursor (Mn 0.961 Li 0.021 Mg 0.018 ) 3 O 4 were prepared.
  • the Li-doped manganese precursor thus prepared and the lithium source material Li 2 CO 3 were mixed at a molar ratio of 1: 0.75 and then calcined at 810 ° C for 14 hours to obtain lithium manganese oxide Li (Mn 1.922 Li 0.042 Mg 0.036 ) O 4 was obtained.
  • WO 3 5000 parts by weight of WO 3 was added to 100 parts by weight of lithium manganese oxide prepared as described above, followed by dry mixing and then heat treatment at 600 ° C for 5 hours to obtain a first cathode active material D having a coating layer containing W.
  • Li (Mn 1.88 Al 0.06 Mg 0.06 ) O 4 produced in Production Example 1 was used as the cathode active material E without forming a coating layer.
  • a positive electrode active material, a conductive material and a binder were mixed in a weight ratio of 96.25: 1.0: 1.5 in an N-methylpyrrolidone solvent to prepare a positive electrode mixture.
  • the cathode active material the cathode active material A and Li [Ni 0 . 86 Co 0 . 07 Mn 0 . 35 Al 0 . 35 ] O 2 were mixed in a weight ratio of 55:45.
  • As the conductive material Li435 of Denka Co. was used. KF9700 of Kureha and BM-730H of ZEON were mixed in a weight ratio of 90:10 Respectively.
  • the prepared positive electrode material was applied to an aluminum current collector (trade name: A1100, manufactured by Sanya Aluminum Co., Ltd.) having a thickness of 12 ⁇ , dried at 130 ⁇ and rolled to prepare a positive electrode.
  • a negative electrode active material, a binder, a CMC and a conductive material were mixed in a weight ratio of 96.1: 2.3: 1.1: 0.5 in N-methylpyrrolidone solvent to prepare a negative electrode material.
  • the negative electrode active material as is the artificial graphite having a BET specific surface area of 0.740m 2 / g (model name: GT, Manufacturer: Zichen) and a BET specific surface area of 9.5 m 2 / g of carbon softening (model number: PCT-240R, Manufacturer: Power Carbon Technology) were mixed at a weight ratio of 90:10.
  • BM-L203 of Zeon Co., Ltd., Super C65 of Imerys Co., Ltd. and Daicel of Daicel Co., Ltd. were used as the binder.
  • the prepared negative electrode composite was applied to a copper collector (manufactured by LS Mtron) having a thickness of 82 ⁇ , dried at 65 ⁇ and rolled to prepare a negative electrode.
  • a coin cell was prepared by interposing a separator between the positive and negative electrodes and injecting an electrolyte solution.
  • cathode active material D prepared in Preparation Example 4 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as the cathode active material in the same manner as in Example 1 Coin cells were prepared.
  • Natural graphite (model: PAS-C3B, manufactured by POSCO Chemtech) having a BET specific surface area of 0.740 m 2 / g and a BET specific surface area of 2.680 m 2 / g was used as the anode active material. Were mixed in a weight ratio of 90:10, to prepare a coin cell.
  • cathode active material E prepared in Preparation Example 5 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as a cathode active material in the same manner as in Example 1 Coin cells were prepared.
  • cathode active material F prepared in Preparation Example 6 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 55: 45 were mixed in the weight ratio of the cathode active material to prepare a coin Cells were prepared.
  • cathode active material G prepared in Preparation Example 7 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as the cathode active material in the same manner as in Example 1 Coin cells were prepared.
  • LiMn 2 O 4 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 which were not doped and coated with a cathode active material, were mixed in a weight ratio of 55:45, and the same method as in Example 1 To prepare a coin cell.
  • a coin cell was prepared in the same manner as in Example 1 except that natural graphite (PAS-C3B, manufactured by POSCO Chemtech) having a BET specific surface area of 2.680 m 2 / g was used alone as the negative electrode active material.
  • natural graphite PAS-C3B, manufactured by POSCO Chemtech
  • the coin cells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were stored at 60 DEG C for 4 weeks, and the capacity retention rate and the rate of increase in resistance were measured.
  • the coin cells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were fully charged to 4.2 V and stored at 60 ° C. for 4 weeks. After every one week, the coin cells were charged at a constant current of 0.33 C After discharging to 4.2 V with a constant current of 0.33 C, the discharging capacity and the resistance at that time were measured. Then, the discharging capacity and resistance after the storage for 4 weeks were compared with the initial discharging capacity and the initial resistance, Growth rate. The measurement results are shown in Table 1 below.
  • the coin cells of Examples 1 to 4 had the same capacity retention ratios as those of the coin cells of Comparative Examples 1 to 4 after storage for 4 weeks at 60 ° C, ⁇ 4 coin cells.
  • the coin cells prepared in Examples 1 and 5 and Comparative Examples 5 and 6 were stored at 60 DEG C for 6 weeks, and the capacity retention rate and the rate of resistance increase were measured.
  • the coin cells prepared in Examples 1 and 5 and Comparative Examples 5 and 6 were fully charged to 4.2 V, and then stored at 60 ° C. for 6 weeks. After every one week, the coin cells were subjected to a constant current of 0.1 C The battery was charged to 4.2 V, discharged to 3.0 V with a constant current of 0.1 C, and the discharge capacity and resistance at that time were measured. Then, the capacity retention rate and the rate of increase in resistance were measured by comparing the initial discharge capacity and the initial resistance.
  • each of the coin cells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 was charged at a constant current of 0.33 C at a temperature of 45 ⁇ to a voltage of 4.2 V at a cut off of 0.05C. Then, discharging was performed until the voltage reached 2.5 V at a constant current of 0.33C.
  • the charging and discharging behaviors were repeated one cycle, and the cycle was repeated 200 times.
  • the discharge capacity and the resistance after 200 cycles were compared with the initial discharge capacity and the initial resistance to measure the capacity retention rate and the resistance increase rate. The measurement results are shown in Table 2 below.
  • the coin cells of Examples 1 to 4 had the same capacity retention ratios as those of the coin cells of Comparative Examples 1 to 4 after charging and discharging for 200 cycles at 45 ° C, ⁇ 4 coin cells.
  • the coin cells prepared in Examples 1 and 5 and Comparative Examples 5 and 6 were charged at a constant current of 0.1 C at a temperature of 45 ° C to 4.2 V at a cut off of 0.05C. Then, discharging was performed until the voltage reached 3.0 V with a constant current of 0.1C.
  • the charging and discharging behaviors were set as one cycle, and the cycle was repeated 300 times. Then, the discharge capacity after 300 cycles was compared with the initial discharge capacity to measure the capacity retention rate. The measurement results are shown in Fig.

Abstract

The present invention relates to a lithium secondary battery comprising: a positive electrode comprising a first positive electrode active material with a spinel structured lithium manganese base, to which doping and coating are applied, and a second positive electrode active material with a lithium nickel manganese cobalt base; a negative electrode comprising at least one selected from the group consisting of artificial graphite having a specific surface area (BET) of 0.1-1.2 m2/g, and temper carbon and natural graphite each having a larger specific surface area than the artificial graphite; a separator interposed between the positive electrode and the negative electrode; and an electrolyte.

Description

리튬 이차전지Lithium secondary battery
[관련출원과의 상호인용][Mutual quotation with related application]
본 출원은 2017년 11월 6일에 출원된 한국특허출원 제10-2017-0146924호 및 2018년 11월 6일에 출원된 한국특허출원 제10-2018-0135104호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims priority from Korean Patent Application No. 10-2017-0146924 filed on November 6, 2017, and Korean Patent Application No. 10-2018-0135104 filed November 6, 2018 , The contents of which are incorporated herein by reference.
[기술분야][TECHNICAL FIELD]
본 발명은 스피넬 구조의 양극 활물질을 포함하며, 고온 수명 특성과 고온 저장 후 전기화학 특성이 우수한 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery including a cathode active material having a spinel structure and excellent in high-temperature lifetime characteristics and high-temperature storage electrochemical characteristics.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Among such secondary batteries, lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
리튬 이차전지의 양극 활물질로 LiCoO2 , LiNiO2, LiMnO2, LiMn2O4 또는 LiFePO4 등의 다양한 리튬 전이금속 산화물이 개발되고 있다. 이 중. LiMn2O4 등과 같은 스피넬 구조의 리튬 망간계 산화물은 열적 안정성, 출력 특성 및 수명 특성이 우수하고, 가격이 저렴하다는 장점이 있지만, 충방전시 Mn3 +로 인한 구조변형(Jahn-Teller distortion)이 일어나고, 고온에서 전해액과의 반응에 의해 형성되는 HF에 의해 Mn 용출이 발생하여 급격하게 성능이 퇴화된다는 문제점이 있다. Various lithium transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4, or LiFePO 4 have been developed as a cathode active material of a lithium secondary battery. double. LiMn 2 O 4 lithium-manganese oxide of spinel structure is thermal stability, output characteristics and life property is excellent, but the advantage that the price is low, the structure deformed (Jahn-Teller distortion) due to the Mn 3 + during the charge and discharge, such as And there is a problem that Mn elution occurs due to HF formed by reaction with an electrolytic solution at a high temperature, and performance deteriorates abruptly.
또한, LiMn2O4의 경우, 재료 자체의 사용 전압은 높지만, 단위 질량당 용량에 약 110mAh/g 이하의 수준으로 낮고, 재료 자체의 밀도도 낮아 에너지 밀도가 떨어져 고용량이 요구되는 전지에 적용하기 어렵다는 문제점이 있었다. In the case of LiMn 2 O 4 , it can be applied to a battery requiring a high capacity because the material itself has a high working voltage but low energy density per unit mass, such as about 110 mAh / g, and low density of the material itself There was a problem that it was difficult.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 스피넬 구조의 양극 활물질을 포함하면서도 고온 저장 후 전기화학 특성 및 고온 수명 특성이 우수한 리튬 이차전지를 제공하고자 한다. In order to solve the above problems, it is an object of the present invention to provide a lithium secondary battery which has a spinel structure cathode active material and is excellent in electrochemical characteristics and high temperature lifetime characteristics after high temperature storage.
일 측면에서, 본 발명은 스피넬 구조의 리튬 망간계 제1양극 활물질 및 리튬 니켈-망간-코발트계 제2양극 활물질을 포함하는 양극; 비표면적(BET)이 0.1 내지 1.2m2/g인 인조 흑연과, 상기 인조 흑연보다 큰 비표면적을 갖는 연화 탄소 및 천연 흑연으로 이루어진 군으로부터 선택된 적어도 1종을 포함하는 음극; 상기 양극 및 음극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬이차전지를 제공한다. In one aspect, the present invention provides a lithium secondary battery comprising: a cathode comprising a lithium manganese-based first cathode active material having a spinel structure and a lithium-nickel-manganese-cobalt-based second cathode active material; A negative electrode comprising at least one selected from the group consisting of artificial graphite having a specific surface area (BET) of 0.1 to 1.2 m 2 / g and softened carbon and natural graphite having a larger specific surface area than the artificial graphite; A separator interposed between the anode and the cathode; And a lithium secondary battery including an electrolyte.
이때, 상기 제1양극 활물질은 하기 화학식 1로 표시되는 리튬 망간 산화물 및 상기 리튬 망간 산화물 표면에 위치하며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함한다. The first cathode active material is a lithium manganese oxide represented by the following Chemical Formula 1 and a lithium manganese oxide which is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, Co, , Cu, Ca, Zn, Zr, Nb. And a coating layer containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S.
[화학식 1][Chemical Formula 1]
Li1+aMn2-bM1 bO4-cAc Li 1 + a Mn 2-b M 1 b O 4 -c A c
(상기 화학식 1에서, M1은 Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군으로부터 선택된 1종 이상의 도핑 원소이고, A는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 0≤a≤0.2, 0<b≤0.5, 0≤c≤0.1임)M 1 is at least one element selected from the group consisting of Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, , Pt, Au and Si, A is at least one element selected from the group consisting of F, Cl, Br, I, At and S, and 0? A? 0.2, 0 < b? 0.5, 0? c? 0.1)
본 발명에 따른 리튬이차전지에 적용되는 스피넬 구조의 제1양극 활물질은 도핑원소를 포함하여 구조 안정성이 우수하고, 표면에 코팅층이 형성되어 전해액과의 접촉이 최소화되어 고온에서 망간 용출이 억제되며, 이로 인해 종래에 비해 우수한 고온 특성을 갖는다.The first cathode active material of the spinel structure used in the lithium secondary battery according to the present invention has excellent structural stability including a doping element and has a coating layer formed on its surface to minimize the contact with the electrolyte, This makes it possible to obtain a high-temperature characteristic superior to the conventional one.
또한, 본 발명에 따른 리튬이차전지는 상기와 같이 고온 안정성이 우수한 스피넬 구조의 제1양극 활물질과 고니켈 리튬 니켈-코발트-망간계 활물질을 함께 사용함으로써, 높은 에너지 밀도를 구현할 수 있다.Further, the lithium secondary battery according to the present invention can realize high energy density by using the first cathode active material having a spinel structure excellent in high temperature stability and the high nickel lithium nickel-cobalt-manganese based active material together.
또한, 본 발명에 따른 리튬이차전지는 음극 활물질로 특정 비표면적을 갖는 인조 흑연과, 상기 인조 흑연보다 큰 비표면적을 갖는 천연흑연 및/또는 연화 탄소의 혼합물을 사용함으로써, 고온 장기 저장 시의 저항 증가를 억제하고, 활물질 탈리 등으로 인한 전극 퇴화를 방지할 수 있으며, 이로 인해 우수한 전기화학적 특성을 구현할 수 있다. Further, by using a mixture of artificial graphite having a specific specific surface area as a negative electrode active material and natural graphite and / or softened carbon having a specific surface area larger than that of the artificial graphite, the lithium secondary battery according to the present invention can exhibit resistance And it is possible to prevent degradation of the electrode due to removal of active material and the like, thereby realizing excellent electrochemical characteristics.
도 1은 실시예 1 및 5, 비교예 5 및 6에 의해 제조된 코인셀의 고온 저장특성을 보여주는 그래프이다.FIG. 1 is a graph showing the high-temperature storage characteristics of the coin cells prepared by Examples 1 and 5 and Comparative Examples 5 and 6. FIG.
도 2는 실시예 1 및 5, 비교예 5 및 6에 의해 제조된 코인셀의 고온 수명특성을 보여주는 그래프이다.Fig. 2 is a graph showing the high-temperature lifetime characteristics of the coin cell manufactured by Examples 1 and 5 and Comparative Examples 5 and 6. Fig.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may properly define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
본 명세서에서 평균 입경(D50)은, 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 상기 평균 입자 직경(D50)은, 대상 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경에 따른 입자 체적 누적 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.In the present specification, the average particle diameter (D 50 ) can be defined as the particle diameter at the 50% of the particle diameter distribution, and can be measured using a laser diffraction method. Specifically, the average particle diameter (D 50 ) is measured by dispersing the target particles in a dispersion medium, introducing the particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000) After the irradiation, the average particle diameter (D 50 ) of the 50% of the cumulative distribution of the particle volume according to the particle diameter in the measuring apparatus can be calculated.
본 명세서에서, ICP 분석은 유도 결합 플라즈마 발광 분광분석기(ICP-OES; Optima 7300DV, PerkinElmer社)를 이용하여 진행하였다. In this specification, ICP analysis was conducted using an inductively coupled plasma emission spectrometer (ICP-OES; Optima 7300DV, PerkinElmer).
본 명세서에서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.In the present specification, the " specific surface area " is measured by the BET method. Specifically, it can be calculated from the adsorption amount of nitrogen gas under the liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan.
또한, 본 명세서에서 %는 별다른 언급이 없는 한 중량%를 의미한다. In the present specification, "%" means weight% unless otherwise specified.
본 발명자들은 스피넬 구조의 제1양극 활물질을 적용한 리튬이차전지의 고온 특성을 개선하기 위해 부단한 연구를 진행한 결과, 양극 활물질로 도핑 및 코팅이 적용된 스피넬 구조의 제1양극 활물질과 리튬 니켈코발트망간계 산화물을 혼합하여 사용하고, 음극 활물질로 특정 비표면적을 갖는 인조 흑연과 천연 흑연 및 연화 탄소 중 1종을 혼합하여 사용하여 리튬이차전지를 제조할 경우, 고온에서의 전기화학 특성의 열화를 효과적으로 방지할 수 있음을 알아내었다.As a result of intensive research to improve the high-temperature characteristics of a lithium secondary battery using a spinel-structured first cathode active material, the inventors have found that a spinel-type first cathode active material doped with a cathode active material and a lithium nickel cobalt manganese- Oxides are used in combination and one of the artificial graphite having a specific specific surface area as a negative electrode active material and one of natural graphite and softening carbon is used in combination to effectively prevent deterioration of electrochemical characteristics at high temperatures I can do it.
구체적으로는, 본 발명의 리튬이차전지는, 스피넬 구조의 리튬 망간계 제1양극 활물질 및 리튬 니켈-망간-코발트계 제2양극 활물질을 포함하는 양극, 비표면적(BET)이 0.1 내지 1.2m2/g인 인조 흑연 및 상기 인조 흑연보다 큰 비표면적(BET)를 갖는 연화 탄소 및 천연흑연으로 이루어진 군에서 선택되는 1종 이상을 포함하는 음극, 상기 양극 및 음극 사이에 개재되는 분리막; 및 전해질을 포함하며, 상기 양극 활물질이 하기 화학식 1로 표시되는 리튬 망간 산화물 및 상기 리튬 망간 산화물 표면에 위치하며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함하는 것을 특징으로 한다. Specifically, the lithium manganese-based positive active material, and the first lithium nickel spinel structure in which the lithium battery of the present invention-manganese-anode including a cobalt-based second positive active material, the specific surface area (BET) is from 0.1 to 1.2m 2 / g and softened carbon and natural graphite having a specific surface area (BET) larger than that of the artificial graphite; a separator interposed between the anode and the cathode; And an electrolyte, wherein the cathode active material is a lithium manganese oxide represented by the following general formula (1) and a lithium manganese oxide which is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, , V, Cu, Ca, Zn, Zr, Nb. And a coating layer containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S.
이하, 본 발명의 리튬이차전지의 각 구성요소에 대해 보다 자세히 설명한다.Hereinafter, each component of the lithium secondary battery of the present invention will be described in more detail.
양극anode
본 발명에 따른 양극은 스피넬 구조의 리튬 망간계 제1양극 활물질 및 리튬 니켈망간코발트계 제2양극 활물질을 포함한다. The positive electrode according to the present invention includes a lithium manganese-based first positive electrode active material having a spinel structure and a lithium-nickel-manganese-cobalt second positive electrode active material.
(1) 제1양극 활물질(1) First cathode active material
상기 제1양극 활물질은, 하기 화학식 1로 표시되는 리튬 망간 산화물 및 상기 리튬 망간 산화물의 표면에 위치하는 코팅층을 포함하는 스피넬 구조의 양극 활물질이다. The first cathode active material is a cathode active material having a spinel structure including a lithium manganese oxide represented by the following general formula (1) and a coating layer positioned on the surface of the lithium manganese oxide.
[화학식 1][Chemical Formula 1]
Li1+aMn2-bM1 bO4-cAc Li 1 + a Mn 2-b M 1 b O 4 -c A c
상기 화학식 1에서, 상기 M1은 리튬 망간 산화물 내의 망간 사이트(site)에 치환된 도핑원소이며, Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다. 바람직하게는, 상기 M1 Al, Li, Mg 및 Zn으로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다.Wherein M 1 is a doping element substituted for a manganese site in the lithium manganese oxide and is a doping element substituted by a metal element such as Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, And at least one element selected from the group consisting of Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au and Si. Preferably, the M &lt; 1 &gt; Al, Li, Mg, and Zn.
상기 A는 리튬 망산 산화물 내의 산소 사이트(site)에 치환된 원소이며, F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다.The A is an element substituted for an oxygen site in the lithium oxynitride, and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
한편, 상기 1+a는 리튬 망간 산화물 내의 리튬의 몰비를 나타내는 것으로, 0≤a≤0.2, 바람직하게는 0≤a≤0.1일 수 있다. Meanwhile, 1 + a represents the molar ratio of lithium in the lithium manganese oxide, and may be 0? A? 0.2, preferably 0? A? 0.1.
상기 b는 리튬 망간 산화물 내의 도핑원소 M1의 몰비를 나타내는 것으로, 0<b≤0.5, 바람직하게는 0.03≤b≤0.25일 수 있다. M1의 몰비 b가 상기 범위를 만족 할 때, 용량 저하를 최소화하면서 구조적으로 안정한 양극 활물질을 얻을 수 있다. B represents the molar ratio of the doping element M 1 in the lithium manganese oxide, and may be 0 < b? 0.5, preferably 0.03? B? 0.25. When the molar ratio b of M 1 satisfies the above range, a structurally stable cathode active material can be obtained while minimizing the capacity drop.
상기 c는 리튬 망간 산화물 내에서 A원소의 몰비를 나타내는 것으로, 0≤c≤0.1, 바람직하게는 0.01≤c≤0.05일 수 있다. C represents the molar ratio of the element A in the lithium manganese oxide, and may be 0? C? 0.1, preferably 0.01? C? 0.05.
상기 화학식 1로 표시되는 리튬 망간 산화물은 산화수가 낮은 도핑원소 M1을 포함하여 상대적으로 Mn 이온의 평균 산화수가 높아지게 되고, 이로 인해 충방전 시에 Mn3+로 인한 구조변형(Jahn-Teller distortion)을 최소화할 수 있다. The lithium manganese oxide represented by Formula 1 has a relatively low average oxidation number of Mn ions including a low-oxidation doping element M 1 , and consequently has a Jnn-Teller distortion due to Mn 3+ during charging and discharging, Can be minimized.
다음으로, 상기 코팅층은 상기 리튬 망간 산화물과 전해액의 접촉을 차단하여 충방전 시 가스 발생을 억제하고, 고온에서 망간(Mn)이 용출되는 것을 방지하기 위한 것이다. 상기 코팅층은 상기 리튬 망간 산화물 표면에 위치하며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함한다. 바람직하게는 상기 코팅층은 Al, Ti, Zn, W 및 B으로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함할 수 있으며, 더 바람직하게는, B, W 및 Al로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함할 수 있다.Next, the coating layer prevents contact between the lithium manganese oxide and the electrolytic solution to prevent generation of gas upon charge and discharge, and prevents manganese (Mn) from leaching at a high temperature. The coating layer is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, (Hereinafter referred to as "coating element") selected from the group consisting of Mo, Sr, Sb, Bi, Si and S. Preferably, the coating layer may contain at least one element selected from the group consisting of Al, Ti, Zn, W and B, more preferably at least one element selected from the group consisting of B, W and Al .
일 구현예에 따르면, 상기 제1양극 활물질은 도핑원소 M1이 Al, Li, Mg 및 Zn 중에서 선택된 1종 이상이고, 상기 코팅층이 Al2O3을 포함하는 것일 수 있다. According to one embodiment, the first cathode active material may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains Al 2 O 3 .
다른 구현예에 따르면, 본 발명에 따른 제1양극 활물질은 도핑원소 M1이 Al, Li, Mg 및 Zn 중에서 선택된 1종 이상이고, 상기 코팅층이 Ti을 포함하는 것일 수 있다. According to another embodiment, the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from the group consisting of Al, Li, Mg and Zn, and the coating layer contains Ti.
또 다른 구현예에 따르면, 본 발명에 따른 제1양극 활물질은 도핑원소 M1이 Al, Li, Mg 및 Zn 중에서 선택된 1종 이상이고, 상기 코팅층이 W을 포함하는 것일 수 있다. According to another embodiment, the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains W.
또 다른 구현예에 따르면, 본 발명에 따른 제1양극 활물질은 도핑원소 M1이 Al, Li, Mg 및 Zn 중에서 선택된 1종 이상이고, 상기 코팅층이 B를 포함하는 것일 수 있다. According to another embodiment, the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains B.
또 다른 구현예에 따르면, 본 발명에 따른 제1양극 활물질은 도핑원소 M1이 Al, Li, Mg 및 Zn 중에서 선택된 1종 이상이고, 상기 코팅층이 B 및 Al을 포함하는 것일 수 있다. According to another embodiment, the first cathode active material according to the present invention may be one in which the doping element M 1 is at least one selected from Al, Li, Mg and Zn, and the coating layer contains B and Al.
한편, 상기 코팅층은, 상기 [화학식 1]로 표시되는 리튬 망간 산화물 표면 상에 연속 또는 불연속적으로 형성될 수 있다. On the other hand, the coating layer may be formed continuously or discontinuously on the surface of the lithium manganese oxide represented by the formula (1).
예를 들면, 상기 코팅층은 리튬 망간 산화물 표면에 상기 코팅 원소들을 포함하는 입자들이 불연속적으로 부착된 형태로 형성될 수 있다. 이때, 상기 코팅 원소들을 포함하는 입자들은 예를 들면, ZnO, Al2O3, TiO2, WO3, MgO, CaO, B2O3, NbO2, SrO, CrO, Mo2O5, Bi2O3, SiO와 같은 산화물 입자일 수 있다. 상기와 같은 산화물 입자들이 리튬 망간 산화물 입자 표면에 존재할 경우, 하기 반응식 1에 나타난 바와 같이 상기 산화물 입자들이 전해액과의 반응에 의해 형성되는 HF를 포착하여 분해시키기 때문에, HF에 의한 Mn 용출이 억제된다. For example, the coating layer may be formed such that particles containing the coating elements are discontinuously attached to the surface of the lithium manganese oxide. At this time, the particles comprising the coating elements include, for example, ZnO, Al 2 O 3, TiO 2, WO 3, MgO, CaO, B 2 O 3, NbO 2, SrO, CrO, Mo 2 O 5, Bi 2 O 3 , SiO, and the like. When the oxide particles are present on the surfaces of the lithium manganese oxide particles, the oxide particles capture and decompose HF formed by the reaction with the electrolyte, as shown in the following reaction formula 1, so that the Mn elution by HF is suppressed .
[반응식 1][Reaction Scheme 1]
ZnO +2HF → ZnF2+H2OZnO + 2HF -> ZnF 2 + H 2 O
Al2O3 + 6HF → 2AlF3+3H2OAl 2 O 3 + 6HF? 2AlF 3 + 3H 2 O
또는, 상기 코팅층은 리튬 망간 산화물 표면에 상기 코팅 원소들을 포함하는 피막(film) 형태로 형성될 수도 있다. 코팅층이 피막 형태로 형성될 경우, 전해액과 리튬 망간 산화물의 접촉 차단 효과 및 망간 용출 억제 효과가 보다 더 우수하다. 바람직하게는, 상기 피막은 B, P, F, W, S, 및 Al으로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함한다. 리튬 망간 산화물 입자 표면에 상기와 같은 피막이 형성될 경우, 상기 막에 의해 전해액과의 접촉이 차단되어 전해액과의 부반응 및 가스 발생을 억제할 수 있다. Alternatively, the coating layer may be formed in the form of a film containing the coating elements on the surface of the lithium manganese oxide. When the coating layer is formed in the form of a film, the effect of preventing the contact between the electrolyte and the lithium manganese oxide and the effect of inhibiting the manganese dissolution are more excellent. Preferably, the coating comprises at least one element selected from the group consisting of B, P, F, W, S, and Al. When the above-mentioned coating is formed on the surface of the lithium manganese oxide particles, contact with the electrolytic solution is blocked by the film, and side reactions and gas generation with the electrolyte can be suppressed.
한편, 상기 코팅층은 리튬 망간 산화물의 전체 표면적의 50 내지 100%에 해당하는 영역에 형성될 수 있으며, 바람직하게는 80 내지 100%, 더 바람직하게는 90 내지 100%에 해당되는 영역에 형성될 수 있다. 코팅층 형성 면적이 상기 범위를 만족하는 경우에, 전해액과 리튬 망간 산화물 간의 접촉이 효과적으로 차단될 수 있다. On the other hand, the coating layer may be formed in a region corresponding to 50 to 100% of the total surface area of the lithium manganese oxide, preferably in a range of 80 to 100%, more preferably 90 to 100% have. When the coating layer formation area satisfies the above range, the contact between the electrolytic solution and the lithium manganese oxide can be effectively blocked.
또한, 상기 코팅층은 그 두께는 1nm 내지 1000nm, 예를 들면, 1nm 내지 100nm 또는 10nm 내지 1000nm일 수 있다. 코팅층이 피막(film) 형태로 형성될 경우에는 그 두께가 1nm 내지 100nm일 수 있으며, 산화물 입자상으로 형성될 경우에는 그 두께가 10nm 내지 1000nm일 수 있다. 코팅층의 두께가 상기 범위를 만족할 때, 전기적 성능의 저하를 최소화하면서 망간 용출 및 전해액과의 부반응 발생을 효과적으로 억제할 수 있다. Further, the thickness of the coating layer may be 1 nm to 1000 nm, for example, 1 nm to 100 nm or 10 nm to 1000 nm. When the coating layer is formed in the form of a film, its thickness may be 1 nm to 100 nm, and when it is formed in the form of oxide particles, its thickness may be 10 nm to 1000 nm. When the thickness of the coating layer satisfies the above range, it is possible to effectively suppress occurrence of manganese elution and side reaction with the electrolyte while minimizing deterioration of electrical performance.
한편, 본 발명의 제1양극 활물질은 상기 도핑원소 M1를 제1양극 활물질 전체 중량에 대하여 500 내지 40000ppm, 바람직하게는 2500 내지 40000ppm, 더 바람직하게는, 5000 내지 40000ppm, 가장 바람직하게는 7000 내지 20000ppm으로 포함할 수 있다. 도핑원소 M1의 함량이 상기 범위를 만족할 때, 고온에서의 망간 용출이 효과적으로 억제되며, 이에 따라 고온 저장성이 우수한 리튬이차전지를 구현할 수 있다. Meanwhile, in the first cathode active material of the present invention, the doping element M 1 is used in an amount of 500 to 40000 ppm, preferably 2500 to 40000 ppm, more preferably 5000 to 40000 ppm, and most preferably 7000 to 40000 ppm based on the total weight of the first cathode active material. 20000 ppm. When the content of the doping element M 1 satisfies the above range, the dissolution of manganese at a high temperature is effectively suppressed, thereby realizing a lithium secondary battery excellent in high-temperature storability.
일 구현예에 따르면, 제1양극 활물질은 도핑원소로 Al, Li, Mg, Zn 또는 이들의 조합을 포함할 수 있으며, 이때, 상기 Al은 제1양극 활물질 전체 중량에 대하여 2500 내지 40000ppm, 바람직하게는 7000 내지 20000ppm으로 포함될 수 있으며, 상기 Li은 제1양극 활물질 전체 중량에 대하여 500 내지 12000ppm, 바람직하게는 1000 내지 3000ppm으로 포함될 수 있다. 또한, 상기 Mg은 제1양극 활물질 전체 중량에 대하여 1000 내지 20000ppm, 바람직하게는 3000 내지 10000ppm으로 포함될 수 있으며, 상기 Zn은 제1양극 활물질 전체 중량에 대하여 1000 내지 20000ppm, 바람직하게는 3000 내지 10000ppm으로 포함될 수 있다.According to one embodiment, the first cathode active material may include Al, Li, Mg, Zn, or a combination thereof as a doping element, wherein the Al is present in an amount of 2500 to 40000 ppm based on the total weight of the first cathode active material, May be included at 7000 to 20000 ppm, and Li may be included at 500 to 12000 ppm, preferably 1000 to 3000 ppm, based on the total weight of the first cathode active material. The Mg may be contained in an amount of 1000 to 20000 ppm, preferably 3000 to 10000 ppm, based on the total weight of the first cathode active material, and the Zn may be added in an amount of 1000 to 20000 ppm, preferably 3000 to 10000 ppm, based on the total weight of the first cathode active material .
한편, 상기 본 발명에 따른 제1양극 활물질은 평균 입경(D50)이 1 내지 20 ㎛, 예를 들면, 1 내지 8㎛, 7㎛ 내지 20㎛, 8㎛ 내지 20㎛ 또는 10㎛ 내지 20㎛일 수 있다. On the other hand, the first cathode active material according to the present invention has an average particle diameter (D 50 ) of 1 to 20 탆, for example, 1 to 8 탆, 7 탆 to 20 탆, 8 탆 to 20 탆, Lt; / RTI &gt;
일 구현예에 따르면, 본 발명에 따른 제1양극 활물질은 평균 입경(D50)이 1 내지 8㎛일 수 있다. 평균 입경(D50)이 상기 범위를 만족할 경우, 평균 입경이 큰 입자에 비해 상대적으로 도핑 및 코팅 원소의 함량을 높이고 소성 조건 등을 조절하여 비표면적을 작게 함으로써, 구조 안정성이 우수하고, 전해액과의 부반응이 적은 제1양극 활물질을 제조할 수 있다. According to one embodiment, the first cathode active material according to the present invention may have an average particle diameter (D 50 ) of 1 to 8 탆. When the average particle diameter (D 50 ) satisfies the above range, the content of the doping and coating elements is relatively increased as compared with the particles having a large average particle diameter, and the specific surface area is controlled by controlling the firing conditions, The first positive electrode active material having a low side reaction can be produced.
다른 구현예에 따르면, 본 발명에 따른 제1양극 활물질은 평균 입경(D50)이 8㎛ 내지 20㎛일 수 있다. 평균 입경(D50)이 상기 범위를 만족할 경우, 평균 입경이 작은 입자에 비해 상대적으로 망간 용출이 적다는 장점이 있다. According to another embodiment, the first cathode active material according to the present invention may have an average particle diameter (D 50 ) of 8 탆 to 20 탆. When the average particle diameter (D 50 ) satisfies the above range, there is an advantage that the manganese dissolution is relatively small as compared with the particles having a small average particle diameter.
또한, 상기 리튬 망간계 제1양극 활물질은 비표면적이 0.1 내지 1.5 m2/g일 수 있다. 상기 비표면적은 리튬 망간계 제1양극 활물질의 입경 크기에 따라 조절될 수 있으며, 예를 들면, 상기 리튬 망간계 제1양극 활물질이 평균 입경(D50)이 1 내지 8㎛인 경우에는 비표면적이 0.5 내지 1.5m2/g 또는 0.7 내지 1.1m2/g 일 수 있으며, 평균 입경(D50)이 8㎛ 내지 20㎛ 이하인 경우에는 비표면적이 0.1 내지 1m2/g 또는 0.25 내지 0.7m2/g일 수 있다. In addition, the lithium manganese-based first cathode active material may have a specific surface area of 0.1 to 1.5 m 2 / g. The specific surface area can be adjusted according to the particle size of the lithium manganese-based first cathode active material. For example, when the lithium manganese-based first cathode active material has an average particle diameter (D 50 ) of 1 to 8 μm, is 0.5 to 1.5m 2 / g or 0.7 to 1.1m 2 / g may be, the average particle diameter (D 50) is not more than 20 8㎛ to have a specific surface area of 0.1 to 1m 2 / g, or from 0.25 to 0.7m 2 / g. &lt; / RTI &gt;
또한, 상기 제1양극 활물질은 1차 입자 또는 복수개의 1차 입자가 응집되어 형성되는 2차 입자 형태일 수 있다. 상기 2차 입자는, 예를 들면, 2 내지 100개, 또는 2 내지 50개의 1차 입자들이 응집되어 형성되는 것일 수 있다. The first cathode active material may be in the form of a secondary particle formed by aggregating primary particles or a plurality of primary particles. The secondary particles may be formed, for example, by agglomerating 2 to 100 or 2 to 50 primary particles.
한편, 상기 제1양극 활물질에는 제조 공정 상에서 의도하지 않게 포함되는 불순물이 포함될 수 있다. 이러한 불순물에는, 예를 들면, Fe, Ni, Na, Cu, Zn, Cr, Ca, K, S, Mg, Co, Si, B 또는 이들의 조합이 포함될 수 있다. 이와 같은 불순물의 함량이 높을 경우, 음극 덴드라이트를 유도하여 전지 수명이 저하되고, 내부 단락에 의한 저전압 불량이 발생할 수 있다. 또한, 이들 불순물들 중 S 등과 같은 불순물은 Al 집전체를 부식시킨다는 문제점이 있다. 따라서, 불순물이 일정 정도 이하로 제어되는 것이 바람직하다.Meanwhile, the first cathode active material may include impurities that are not included in the manufacturing process. These impurities may include, for example, Fe, Ni, Na, Cu, Zn, Cr, Ca, K, S, Mg, Co, Si, B or combinations thereof. If such an impurity content is high, the life of the battery may be deteriorated by inducing the negative electrode dendrite, and a low voltage failure due to an internal short circuit may occur. Among these impurities, impurities such as S or the like have a problem of corroding the Al current collector. Therefore, it is preferable that the impurities are controlled to a certain degree or less.
예를 들면, 본 발명에 따른 제1양극 활물질은 S 불순물 함량이 20000ppm 이하, 바람직하게는 15000ppm 이하, 더 바람직하게는 1000ppm 이하일 수 있으며, 그 외 불순물 함량이 400ppm 이하, 바람직하게는 10ppm 이하일 수 있다.For example, the first cathode active material according to the present invention may have an S impurity content of 20000 ppm or less, preferably 15000 ppm or less, more preferably 1000 ppm or less, and the other impurity content may be 400 ppm or less, preferably 10 ppm or less .
또한, 본 발명에 따른 제1양극 활물질은 상기 불순물들 중에서도 Fe, Cr, Ni, Zn 등과 같은 자성 불순물(magnetic impurity)의 총량이 800ppb 이하, 구체적으로는 25ppb 이하인 것이 바람직하다. 자성 불순물의 함량이 상기 범위를 초과하는 경우, 음극 덴드라이트를 유도하여 전지 수명이 저하되거나, 내부 단락에 의한 저전압 불량이 발생할 수 있다. In the first cathode active material according to the present invention, the total amount of magnetic impurities such as Fe, Cr, Ni, Zn and the like among the above-mentioned impurities is preferably not more than 800 ppb, specifically not more than 25 ppb. If the content of the magnetic impurities exceeds the above range, the life of the battery may be deteriorated by inducing the negative electrode dendrite, or a low voltage failure due to an internal short circuit may occur.
한편, 상기와 같은 리튬 망간계 제1양극 활물질은, 1) 상기 [화학식 1]로 표시되는 M1으로 도핑된 리튬 망간 산화물을 형성하는 단계, 및 2) 상기 [화학식 1]로 표시되는 리튬 망간 산화물과 코팅 원료 물질을 혼합한 후 열처리하여 코팅층을 형성하는 단계를 통해 제조될 수 있다. 이하, 본 발명의 제1양극 활물질의 제조 방법을 보다 자세히 설명한다. On the other hand, the first lithium manganese-based cathode active material includes 1) a step of forming a lithium manganese oxide doped with M 1 represented by the formula 1, and 2) a step of forming lithium manganese And mixing the oxide and the coating material to form a coating layer by heat treatment. Hereinafter, a method for producing the first cathode active material of the present invention will be described in more detail.
1) M1으로 도핑된 리튬 망간 산화물을 형성하는 단계1) forming a lithium manganese oxide doped with M 1
상기 [화학식 1]로 표시되는 M1으로 도핑된 리튬 망간 산화물은, (i) 망간 원료물질, M1을 포함하는 도핑 원료 물질 및 리튬 원료 물질을 혼합한 후 소성하는 방법, 또는 (ii) 망간 원료물질과 M1을 포함하는 도핑 원료 물질을 반응시켜, M1으로 도핑된 망간 전구체를 형성한 후, 상기 M1으로 도핑된 망간 전구체와 리튬 원료 물질을 혼합한 후 소성하는 방법으로 제조될 수 있다. 즉, 본 발명에 있어서, 상기 도핑원소 M1은 망간 전구체 형성 단계에서 투입될 수도 있고, 망간 원료물질과 리튬 원료 물질의 소성 단계에서 투입될 수도 있다.The lithium manganese oxide doped with M 1 represented by the above formula (1) can be obtained by (i) a method of mixing a raw material for manganese, a raw material for doping including M 1 and a raw material for lithium and then firing, or (ii) by reacting a doping raw material containing the raw material and M 1, can be prepared by after the formation of the manganese precursor is doped with M 1, method of sintering by mixing the manganese precursor and the lithium source material is doped with the M 1 have. That is, in the present invention, the doping element M 1 may be added in the step of forming the manganese precursor, or may be charged in the step of firing the manganese raw material and the lithium raw material.
이때, 상기 망간 원료물질은, 망간 원소 함유 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 구체적으로는, MnO2, MnCl2, MnCO3, Mn3O4, MnSO4, Mn2O3, Mn(NO3)2 등일 수 있으나, 이에 한정되는 것은 아니다. The manganese raw material may be a manganese element-containing oxide, a hydroxide, an oxyhydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetate, a carboxylate or a combination thereof. Specific examples thereof include MnO 2 , MnCl 2 , MnCO 3 , Mn 3 O 4 , MnSO 4 , Mn 2 O 3 , Mn (NO 3 ) 2 , and the like, but is not limited thereto.
상기 M1을 포함하는 도핑원료 원료 물질은, M1 함유 산화물, 수산화물, 옥시수산화물, 황산염, 탄산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, Al2(SO4)3, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, Li(OH), LiCO3 , Li2O, MgO, Mg(OH)2 , MgSO4, Mg(NO3)2등일 수 있으나, 이에 한정되는 것은 아니다. Doping material source material containing the M 1 is, M 1 containing oxides, hydroxides, oxy-hydroxides, sulfates, carbonates, halides, sulfides, and the like acid salt, carboxylic acid salt, or a combination thereof, for example, Al 2 ( SO 4) 3, AlCl 3, Al- isopropoxide (Al-isopropoxide), AlNO 3 , Li (OH), LiCO 3, Li 2 O, MgO, Mg (OH) 2, MgSO 4, Mg (NO 3 ) 2, etc. However, the present invention is not limited thereto.
상기 리튬 원료 물질은, 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등일 수 있으나, 이에 한정되는 것은 아니다. The lithium source material may be at least one selected from the group consisting of lithium containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) and the like), hydroxide (for example, For example, lithium nitrate (LiNO 3 ) or the like), chloride (for example, lithium chloride (LiCl) or the like), and the like.
일 구현예에 따르면, 상기 [화학식 1]로 표시되는 리튬 망간 산화물은, 망간 원료물질, M1을 포함하는 도핑 원료 물질 및 리튬 원료 물질을 혼합한 후, 소성함으로써 제조될 수 있다(방법 (i)). According to one embodiment, the lithium manganese oxide represented by the formula (1) can be produced by mixing a raw material for manganese, a raw material for doping including M 1 , a raw material for lithium, and firing )).
상기 망간 원료물질, M1을 포함하는 도핑 원료 물질 및 리튬 원료 물질은 [화학식 1]의 Mn, M1 및 Li의 몰비를 만족할 수 있는 양으로 혼합될 수 있다. The manganese raw material, the doping raw material containing M 1 , and the lithium raw material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li of Formula 1.
또한, 상기 혼합은 고상 혼합 또는 액상 혼합으로 이루어질 수 있다. 고상 혼합을 통해 각 성분들을 혼합할 경우, 별도의 건조 공정 없이 소성 공정을 수행할 수 있으며, 액상 혼합을 통해 각 성분들을 혼합하는 경우에는 혼합된 성분들을 분무 건조시킨 후에 소성 공정을 진행한다. 고상 혼합법을 이용할 경우에는 평균 입경(D50)이 8㎛ 미만, 바람직하게는 6㎛ 이하이고, 비표면적이 낮은 소입경의 리튬 망간 산화물을 얻을 수 있다. 반면, 습식 혼합법을 이용할 경우에는 일반적으로 평균 입경(D50)이 8㎛ 이상인 대입경의 리튬 망간 산화물이 얻어진다. In addition, the mixing may be a solid-phase mixing or a liquid-phase mixing. When the components are mixed through the solid-phase mixing, the firing process can be performed without a separate drying process. In the case of mixing the components through the liquid phase mixing, the mixed components are spray dried and then subjected to the firing process. When the solid-phase mixing method is used, a lithium manganese oxide having an average particle diameter (D 50 ) of less than 8 μm, preferably not more than 6 μm, and having a small specific surface area can be obtained. On the other hand, when a wet mixing method is used, a lithium manganese oxide having an average particle diameter (D 50 ) of 8 μm or larger can be obtained.
한편, 상기 소성은 600 내지 900℃, 바람직하게는 700 내지 800 ℃에서 5 내지 24시간, 바람직하게는 10 내지 15 시간 동안 수행될 수 있다. On the other hand, the firing may be performed at 600 to 900 ° C, preferably 700 to 800 ° C, for 5 to 24 hours, preferably 10 to 15 hours.
예를 들면, 상기 소성은 750 내지 850℃, 바람직하게는 780 내지 830℃에서 5 내지 24시간, 바람직하게는 10 내지 15 시간 동안 수행될 수 있다. 상기 온도 및 소성 시간을 만족하는 경우에, 과소성이 발생하여 1차 입자 크기가 커지게 되며, 이에 따라 1차 입자의 평균 입경(D50)의 크기가 1㎛ 이상, 바람직하게는 2㎛ 내지 3㎛인 리튬 망간 산화물을 얻을 수 있다. For example, the calcination may be performed at 750 to 850 캜, preferably at 780 to 830 캜 for 5 to 24 hours, preferably 10 to 15 hours. When the temperature and the firing time are satisfied, undersize occurs and the primary particle size becomes large. Accordingly, the average particle size (D50) of the primary particles is 1 mu m or more, preferably 2 to 3 Mu m of lithium manganese oxide can be obtained.
다른 구현예에 따르면, 상기 [화학식 1]로 표시되는 리튬 망간 산화물은, 망간 원료물질과 M1을 포함하는 도핑 원료 물질을 반응시켜, M1으로 도핑된 망간 전구체를 형성한 후, 상기 M1으로 도핑된 망간 전구체와 리튬 원료 물질을 혼합한 후 소성함으로써 제조될 수 있다(방법 (ii)).According to other embodiments, the lithium manganese oxide represented by the above Formula 1 is, by reacting a doping raw material including a manganese raw material and M 1, after the formation of the manganese precursor is doped with M 1, wherein M 1 By mixing the lithium source material with a doped manganese precursor (method (ii)).
구체적으로는, 상기 M1으로 도핑된 망간 전구체는, 예를 들면, 망간 원료물질과 M1을 포함하는 도핑원료 원료 물질을 공침 반응시켜 형성될 수 있다. 망간 원료물질과 M1을 포함하는 도핑원료 원료 물질은 상기한 바와 동일하다. Specifically, the manganese precursor doped to said M 1 is, for example, be formed by co-precipitation reaction the doped raw material raw material containing manganese as a raw material M 1. The manganese raw material and the doping raw material containing M &lt; 1 &gt; are the same as described above.
상기 공침 반응은, 당해 기술 분야에 잘 알려진 공침법을 통해 이루어질 수 있으며, 예를 들면, 망간 원료물질과 도핑원소 원료 물질을 공침 반응기 내에 적절한 비율로 투입하고, 착화제인 암모니아 수용액 및 pH 조절제인 알칼리 수용액을 투입하면서 반응을 진행시키는 방식으로 수행될 수 있다. The coprecipitation reaction may be performed by a co-precipitation method well known in the art. For example, the manganese raw material and the doping element raw material are charged into the coprecipitation reactor at an appropriate ratio, and an aqueous ammonia solution as a complexing agent and an alkali And the reaction is allowed to proceed while the aqueous solution is added.
상기와 같은 공침 반응을 통해 M1으로 도핑된 망간 전구체가 생성되면, 상기 M1으로 도핑된 망간 전구체와 리튬 원료물질을 혼합한 후 소성하여 리튬 망간 산화물을 형성한다. When a manganese precursor doped with M 1 is generated through the above-mentioned coprecipitation reaction, the manganese precursor doped with M 1 and the lithium source material are mixed and then fired to form lithium manganese oxide.
상기 M1으로 도핑된 망간 전구체와 리튬 원료 물질은 [화학식 1]의 Mn, M1 및 Li의 몰비를 만족할 수 있는 양으로 혼합될 수 있다. The manganese precursor doped with M 1 and the lithium source material may be mixed in an amount that satisfies the molar ratio of Mn, M 1, and Li of Formula 1.
한편, 상기 혼합 및 소성은 상기 방법 (i)에서 설명한 것과 동일한 방법으로 수행될 수 있다.On the other hand, the mixing and firing can be carried out in the same manner as described in method (i).
2) 코팅층 형성 단계 2) Coating layer formation step
상기와 같은 방법을 통해 [화학식 1]로 표시되는 M1으로 도핑된 리튬 망간 산화물이 제조되면, 상기 [화학식 1]의 리튬 망간 산화물의 표면에 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함하는 코팅층을 형성한다. Ti, W, B, F, P, and Mg are formed on the surface of the lithium manganese oxide of Formula 1 by preparing the lithium manganese oxide doped with M 1 represented by Formula 1 through the above- , Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. A coating layer containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S (hereinafter referred to as a coating element) is formed.
상기 코팅층 형성은 당해 기술 분야에 알려진 방법을 이용할 수 있으며, 예를 들면, 습식 코팅법, 건식 코팅법, 플라즈마 코팅법 또는 ALD(Atomic Layer Deposition) 등을 이용할 수 있다. For example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
상기 습식 코팅법은, 예를 들면, 리튬 망간 산화물과 코팅원료물질에 에탄올, 물, 메탄올, 아세톤 등과 같은 적절한 용매에 첨가한 후, 용매가 없어질 때까지 혼합하는 방법으로 수행될 수 있다. The wet coating method may be carried out by, for example, adding lithium manganese oxide and a coating material to an appropriate solvent such as ethanol, water, methanol, acetone, etc., and mixing the mixture until the solvent disappears.
상기 건식 코팅법은 리튬 망간 산화물과 코팅원료물질을 용매 없이 고상으로 혼합하는 방법으로, 예를 들면, 그라인더 혼합법이나 메카노 퓨전법 등이 사용될 수 있다. The dry coating method is a method of mixing a lithium manganese oxide and a coating raw material in a solid phase without a solvent, and for example, a grinder mixing method, a mechanofusion method, or the like can be used.
한편, 상기 코팅원료물질은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, ZnO, Al2O3, Al(OH)3, AlSO4, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, TiO2, WO3, AlF, H2BO3, HBO2, H3BO3, H2B4O7 , B2O3, C6H5B(OH)2, (C6H5O)3B, [(CH3(CH2)3O)3B, C3H9B3O6, (C3H7O3)B, Li3WO4, (NH4)10W12O41·5H2O, NH4H2PO4 등일 수 있으나, 이에 제한되는 것은 아니다. The coating material may be at least one selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, An oxide, a hydroxide, an oxyhydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetic acid, a nitrate, a nitrate, or a salt thereof containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si and S Al 2 O 3 , Al (OH) 3 , AlSO 4 , AlCl 3 , Al-isopropoxide, AlNO 3 , Al 2 O 3 , TiO 2, WO 3, AlF, H 2 BO 3, HBO 2, H 3 BO 3, H 2 B 4 O 7, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, [(CH 3 ( CH 2) 3 O) 3 B , C 3 H 9 B 3 O 6, (C 3 H 7 O 3) B, Li 3 WO 4, (NH 4) 10 W 12 O 41 · 5H 2 O, NH 4 H 2 PO 4 , and the like.
상기와 같은 방법을 통해 코팅원료물질이 리튬 망간 산화물의 표면에 부착된 후에 열처리를 통해 코팅층을 형성할 수 있다. 이때, 상기 열처리는 100℃ 내지 700℃, 바람직하게는 300℃ 내지 450℃에서 1 내지 15시간, 바람직하게는 3 내지 8시간 동안 수행될 수 있다. After the coating material is adhered to the surface of the lithium manganese oxide through the above-described method, the coating layer can be formed through heat treatment. At this time, the heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
(2) 제2양극 활물질(2) Second cathode active material
본 발명의 양극은 상기 제1양극 활물질과 함께 리튬 니켈망간코발트계 제2양극 활물질을 포함한다. The anode of the present invention includes the lithium-nickel-manganese-cobalt-based second cathode active material together with the first cathode active material.
구체적으로는, 상기 제2양극 활물질은 하기 [화학식 2]로 표시되는 리튬 티켈망간코발트 산화물일 수 있다. Specifically, the second cathode active material may be a lithium-titanium manganese cobalt oxide expressed by the following formula (2).
[화학식 2](2)
Li1+x[NiyCozMnwM2 v]O2-pBp Li 1 + x [Ni y Co z Mn w M 2 v ] O 2 - p B p
상기 화학식 2에서, M2는 전이금속(Ni, Co, Mn) 사이트(site)에 치환된 도핑원소이며, W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소일 수 있다. 바람직하게는, 상기 M2는 Al, Zr, W, Ti, Nb, 및 B로 이루어진 군에서 선택되는 1종 이상일 수 있다. M 2 is a doping element substituted for a transition metal (Ni, Co, Mn) site, and W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, And at least one element selected from the group consisting of Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B and Mo. Preferably, the M 2 may be at least one selected from the group consisting of Al, Zr, W, Ti, Nb and B.
상기 B는 리튬 니켈망간코발트계 양극 활물질 내의 산소 사이트(site) 치환된 원소이며, F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다. B is an oxygen-site-substituted element in the lithium nickel manganese cobalt cathode active material, and may be at least one element selected from the group consisting of F, Cl, Br, I, At and S.
한편, 상기 1+x는 리튬 니켈망간코발트계 양극활물질 내의 리튬 몰비를 나타내는 것으로, 0≤x≤0.3, 바람직하게는 0≤x≤0.2, 더 바람직하게는 0≤x≤0.1일 수 있다. Meanwhile, 1 + x represents the lithium molar ratio in the lithium nickel manganese cobalt cathode active material, and may be 0? X? 0.3, preferably 0? X? 0.2, more preferably 0? X?
상기 y는 리튬 니켈망간코발트계 양극활물질 내의 니켈 몰비를 나타내는 것으로, 0.5≤y<1, 바람직하게는 0.65≤y<1, 더 바람직하게는 0.7≤y<1, 보다 더 바람직하게는 0.75≤y<1일 수 있다. Y represents the molar ratio of nickel in the lithium nickel manganese cobalt based positive electrode active material and satisfies 0.5? Y <1, preferably 0.65? Y <1, more preferably 0.7? Y <1, &Lt; 1.
상기 z는 리튬 니켈망간코발트계 양극활물질 내의 코발트 몰비를 나타내는 것으로, 0<z<0.35, 바람직하게는, 0<z≤0.3일 수 있다. Z represents the molar ratio of cobalt in the lithium nickel manganese cobalt-based cathode active material, and may be 0 <z <0.35, preferably 0 <z? 0.3.
상기 w는 리튬 니켈망간코발트계 양극활물질 내의 망간 몰비를 나타내는 것으로, 0<w<0.35, 바람직하게는 0<w≤0.3일 수 있다. The w represents the molar ratio of manganese in the lithium nickel manganese cobalt cathode active material, and may be 0 <w <0.35, preferably 0 <w? 0.3.
리튬 니켈코발트망간계 산화물 내의 전이금속 몰비 y, z, w가 상기 범위를 만족할 때, 에너지 밀도가 우수한 양극 활물질을 얻을 수 있다. When the molar ratio y, z and w of the transition metal in the lithium nickel cobalt manganese oxide satisfies the above range, a cathode active material having an excellent energy density can be obtained.
상기 v는 리튬 니켈코발트망간계 산화물 내의 도핑원소 M2의 몰비를 나타내는 것으로, 0≤v≤0.1, 바람직하게는 0.0005≤v≤0.08, 더 바람직하게는 0.001≤v≤0.02, 보다 더 바람직하게는 0.002≤v≤0.01 일 수 있다. 리튬 니켈코발트망간계 산화물 내의 도핑 원소 M2의 몰비가 상기 범위를 만족할 때, 고온 안정성이 우수한 양극 활물질을 얻을 수 있다. V represents the molar ratio of the doping element M 2 in the lithium nickel cobalt manganese based oxide, and 0? V? 0.1, preferably 0.0005? V? 0.08, more preferably 0.001? V? 0.002? V? 0.01. When the molar ratio of the doping element M 2 in the lithium nickel cobalt manganese oxide satisfies the above range, the cathode active material having excellent high-temperature stability can be obtained.
상기 p는 리튬 니켈코발트망간계 산화물 내의 B원소의 몰비를 나타내는 것으로, 0≤p≤0.1, 바람직하게는 0 ≤p≤0.05일 수 있다. P represents the molar ratio of element B in the lithium nickel cobalt manganese-based oxide, and may be 0? P? 0.1, preferably 0? P? 0.05.
보다 구체적으로는, 상기 [화학식 2]로 표시되는 리튬 니켈코발트망간계 산화물은, Li1 + x[NiyCozMnw]O2 , Li1 + x[NiyCozMnwAlv]O2 등일 수 있으나, 이에 한정되는 것은 아니다. More specifically, the lithium nickel cobalt manganese oxide represented by the above formula (2) is preferably Li 1 + x [Ni y Co z Mn w ] O 2 , Li 1 + x [Ni y Co z Mn w Al v ] O 2 Or the like, but is not limited thereto.
한편, 상기 제2 양극 활물질은, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb, Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소로 이루어진 군에서 선택되는 적어도 하나 이상의 코팅 원소를 포함하는 코팅층을 더 포함할 수 있다. 상기와 같이 코팅층이 포함될 경우, 상기 제2 양극 활물질과 리튬 이차전지에 포함되는 전해액과의 접촉이 차단되어 부반응 발생이 억제되므로, 전지에 적용 시 수명 특성을 향상시킬 수 있고, 더불어 양극활물질의 충진 밀도를 증가시킬 수 있다.The second cathode active material may be at least one selected from the group consisting of Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, At least one coating element selected from the group consisting of one or more elements selected from the group consisting of Si, S, and S. When the coating layer is included as described above, the contact between the second cathode active material and the electrolyte contained in the lithium secondary battery is cut off and the occurrence of side reactions is suppressed. Therefore, the life characteristics can be improved when applied to a battery, The density can be increased.
상기와 같이, 코팅 원소를 추가로 포함할 경우, 상기 코팅층 내 코팅 원소의 함량은 제2 양극 활물질 전체 중량에 대하여, 100 ppm 내지 10,000 ppm, 바람직하게는 200 ppm 내지 5,000 ppm일 수 있다. 예를 들면, 상기 제2 양극 활물질 전체 중량에 대하여, 상기 범위로 코팅 원소를 포함할 경우, 전해액과의 부반응 발생이 더욱 효과적으로 억제되고, 전지에 적용 시 수명 특성이 더욱 향상될 수 있다.As described above, when the coating element is further included, the content of the coating element in the coating layer may be 100 ppm to 10,000 ppm, preferably 200 ppm to 5,000 ppm, based on the total weight of the second cathode active material. For example, when the coating element is contained in the above range with respect to the total weight of the second cathode active material, occurrence of side reactions with the electrolyte can be more effectively suppressed, and life characteristics can be further improved when applied to a battery.
상기 코팅층은 제2 양극 활물질의 표면 전체에 형성될 수도 있고, 부분적으로 형성될 수도 있다. 구체적으로, 상기 제2 양극 활물질의 표면에 상기 코팅층이 부분적으로 형성될 경우, 상기 제2 양극 활물질의 전체 표면적 중 5% 이상 100% 미만, 바람직하게는 20% 이상 100% 미만의 면적으로 형성될 수 있다. The coating layer may be formed on the entire surface of the second cathode active material, or may be partially formed. Specifically, when the coating layer is partially formed on the surface of the second cathode active material, an area of 5% or more and less than 100%, preferably 20% or more and less than 100% of the total surface area of the second cathode active material is formed .
상기 제2 양극 활물질의 평균 입경(D50)은 1 ㎛ 내지 20㎛, 2㎛ 내지 10㎛, 또는 8 내지 20 ㎛일 수 있다. 상기 제2 양극 활물질의 평균 입경(D50)이 상기 범위를 만족할 경우, 우수한 전극 밀도 및 에너지 밀도를 구현할 수 있다. The average particle diameter (D 50 ) of the second cathode active material may be 1 탆 to 20 탆, 2 탆 to 10 탆, or 8 to 20 탆. When the average particle diameter (D 50 ) of the second cathode active material satisfies the above range, excellent electrode density and energy density can be realized.
상기 제2 양극 활물질의 결정립 크기는 200 nm 내지 500 nm일 수 있다. 상기 제2 양극 활물질의 결정립 크기가 상기 범위를 만족할 경우, 우수한 전극 밀도 및 에너지 밀도를 구현할 수 있다. The grain size of the second cathode active material may be 200 nm to 500 nm. When the grain size of the second cathode active material satisfies the above range, excellent electrode density and energy density can be realized.
한편, 상기 제2양극 활물질은 활물질 입자 내에서 전이금속 원소들의 함량이 위치에 관계없이 일정할 수도 있고, 입자 내부의 위치에 따라 하나 이상 이상의 금속 원소의 함량이 변화되는 것일 수도 있다. 예를 들면, 상기 제2양극 활물질은 Ni, Mn, Co 및 M2 중 적어도 하나 이상의 성분이 점진적으로 변화하는 농도 구배를 가질 수 있으며, 상기 '점진적으로 변화하는 농도 구배는 상기 성분들의 농도가 입자 전체 또는 특정 영역에서 연속하여 단계적으로 변화하는 농도 분포로 존재하는 것을 의미한다. Meanwhile, the content of the transition metal elements may be constant in the active material particle of the second cathode active material, or the content of one or more metal elements may be changed depending on the position of the transition metal element in the particles. For example, the second cathode active material may have a concentration gradient in which at least one of Ni, Mn, Co, and M 2 gradually changes, and the gradually changing concentration gradient is a concentration gradient of the components Quot; means that there exists a concentration distribution continuously or stepwise changing in all or a specific region.
한편, 상기 제2양극 활물질은 시판되는 리튬 니켈코발트망간계 양극 활물질을 구입하여 사용하거나, 당해 기술 분야에 알려진 리튬 니켈코발트망간계 양극 활물질의 제조방법에 의해 제조된 것일 수 있다. Meanwhile, the second cathode active material may be a commercially available lithium nickel cobalt manganese-based cathode active material purchased or used, or may be one produced by a method for producing a lithium nickel cobalt manganese-based cathode active material known in the art.
예를 들면, 상기 화학식 2로 표시되는 리튬 니켈코발트망간계 양극 활물질은 니켈코발트망간계 전구체와 리튬원료물질, 선택적으로 도핑원료물질을 혼합한 후 소성하는 방법으로 제조될 수 있다.For example, the lithium nickel cobalt manganese-based cathode active material represented by Formula 2 may be prepared by mixing a nickel cobalt manganese-based precursor with a lithium source material, and optionally, a doping source material followed by sintering.
상기 니켈코발트망간계 전구체는 니켈망간코발트의 수산화물, 옥시 수산화물, 카보네이트, 유기착물 또는 도핑 원소 M2를 포함하는 니켈망간코발트의 수산화물, 옥시 수산화물, 카보네이트, 유기 착물일 수 있다. 예를 들면, 상기 니켈코발트망간계 전구체는 [NiyCozMnw](OH)2, [NiyCozMnwAlv](OH)2, [NiyCozMnw]O·OH, [NiyCozMnwAlv]O·OH 등일 수 있으나, 이에 한정되는 것은 아니다. The nickel cobalt manganese precursor may be a hydroxide of nickel manganese cobalt, a hydroxide of nickel manganese cobalt, an oxide of hydroxide, a carbonate, an organic complex or a hydroxide of nickel manganese cobalt including an element M 2 , an oxide, a carbonate, or an organic complex. For example, the nickel-cobalt-manganese-based precursor [Ni y Co z Mn w] (OH) 2, [Ni y Co z Mn w Al v] (OH) 2, [Ni y Co z Mn w] O · OH , [Ni y Co z Mn w Al v ] O · OH, and the like, but the present invention is not limited thereto.
상기 리튬원료물질은 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등일 수 있으나, 이에 한정되는 것은 아니다. The lithium source material may be at least one selected from the group consisting of lithium-containing carbonate (for example, lithium carbonate and the like), hydrate (for example, lithium hydroxide I hydrate (LiOH.H 2 O) For example, lithium nitrate (LiNO 3 ) and the like), chlorides (e.g., lithium chloride (LiCl) and the like), and the like.
상기 도핑원료물질은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 산화물, 수산화물, 황화물, 옥시수산화물, 할로겐화물 또는 이들의 혼합물일 수 있다. The doping material may be at least one of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, , B, and Mo, or an oxide, a hydroxide, a sulfide, an oxyhydroxide, a halide, or a mixture thereof.
한편, 상기 소성은 600 내지 1000℃, 바람직하게는 700 내지 900℃에서 5 내지 30시간, 바람직하게는 10 내지 20 시간 동안 수행될 수 있다. On the other hand, the firing may be performed at 600 to 1000 ° C, preferably 700 to 900 ° C for 5 to 30 hours, preferably 10 to 20 hours.
한편, 상기 제2양극활물질이 코팅층을 포함할 경우, 상기 소성 이후에 코팅원료물질을 추가하여 혼합한 후 열처리를 수행하는 공정을 추가로 수행할 수 있다. If the second cathode active material includes a coating layer, the coating raw material may be further added to the cathode active material after firing, followed by heat treatment.
상기 코팅원료물질은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소(이하, '코팅 원소'라 함)를 포함하는 산화물, 수산화물, 옥시수산화물, 탄산염, 황산염, 할라이드, 황화물, 아세트산염, 카르복시산염 또는 이들의 조합 등일 수 있으며, 예를 들면, ZnO, Al2O3, Al(OH)3, Al2(SO4)3, AlCl3, Al-이소프로폭사이드(Al-isopropoxide), AlNO3, TiO2, WO3, AlF, H2BO3, HBO2, H3BO3, H2B4O7 , B2O3, C6H5B(OH)2, (C6H5O)3B, [(CH3(CH2)3O)3B, C3H9B3O6, (C3H7O3)B, Li3WO4, (NH4)10W12O41·5H2O, NH4H2PO4 등일 수 있으나, 이에 제한되는 것은 아니다. The coating material may be Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. An oxide, a hydroxide, an oxyhydroxide, a carbonate, a sulfate, a halide, a sulfide, an acetic acid, a nitrate, a nitrate, or a salt thereof containing at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si and S For example, ZnO, Al 2 O 3 , Al (OH) 3 , Al 2 (SO 4 ) 3 , AlCl 3 , Al-isopropoxide ), AlNO 3, TiO 2, WO 3, AlF, H 2 BO 3, HBO 2, H 3 BO 3, H 2 B 4 O 7, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, [(CH 3 ( CH 2) 3 O) 3 B , C 3 H 9 B 3 O 6, (C 3 H 7 O 3) B, Li 3 WO 4, (NH 4) 10 W 12 O 41 · 5H 2 O, NH 4 H 2 PO 4 , and the like.
상기 코팅층 형성은 당해 기술 분야에 알려진 방법을 이용할 수 있으며, 예를 들면, 습식 코팅법, 건식 코팅법, 플라즈마 코팅법 또는 ALD(Atomic Layer Deposition) 등을 이용할 수 있다.For example, a wet coating method, a dry coating method, a plasma coating method, or an ALD (Atomic Layer Deposition) method can be used for forming the coating layer.
상기 열처리는 100℃ 내지 700℃, 바람직하게는 300℃ 내지 450℃에서 1 내지 15시간, 바람직하게는 3 내지 8시간 동안 수행될 수 있다. The heat treatment may be performed at 100 ° C to 700 ° C, preferably 300 ° C to 450 ° C, for 1 to 15 hours, preferably 3 to 8 hours.
상기 [화학식 2]로 표시되는 제2양극 활물질은 니켈 비율이 50몰%를 초과하는 고니켈 양극 활물질로 에너지 밀도 특성이 우수하다. 따라서, 상기 [화학식 2]로 표시되는 제2양극 활물질과 본 발명의 스피넬 구조의 리튬 망간계 제1양극 활물질을 혼합하여 사용할 경우, 리튬 망간계 제1양극 활물질의 단점인 용량 문제를 해결할 수 있다. The second cathode active material represented by Formula 2 is a high nickel cathode active material having a nickel ratio exceeding 50 mol%, and thus has excellent energy density characteristics. Therefore, when the second cathode active material represented by Formula 2 is mixed with the first lithium manganese-based cathode active material of the spinel structure of the present invention, the problem of capacity which is a disadvantage of the lithium manganese-based first cathode active material can be solved .
한편, 본 발명에 있어서, 상기 양극은 평균 입경(D50)이 상이한 대입경 입자와 소입경 입자를 포함하는 바이모달(bimodal) 입경 분포를 갖는 양극 활물질을 포함하는 것일 수 있다. Meanwhile, in the present invention, the anode may include a cathode active material having a bimodal particle diameter distribution including large-diameter particles and small particle size particles having different average particle diameters (D 50 ).
구체적으로는, 상기 양극은 평균 입경(D50)이 4㎛ 내지 20㎛인 대입경 입자와, 평균 입경(D50)이 상기 대입경 입자의 평균입경(D50)의 10% 내지 75%, 바람직하게는 25% 내지 75%인 소입경 입자를 포함하는 바이모달(bimodal) 입경 분포를 갖는 양극 활물질을 포함할 수 있다. 상기와 같이 바이모달 입경 분포를 갖는 양극 활물질을 사용할 경우, 높은 전극 밀도 및 에너지 밀도를 갖는 양극을 형성할 수 있다. More specifically, 10% to 75% of the positive electrode is the average particle diameter (D 50) to the 4㎛ 20㎛ the assignment particle diameter and average particle diameter (D 50) is the assigned light particles with a mean particle size (D 50) of, And preferably a bimodal particle size distribution including small particle diameters of 25% to 75%. When a cathode active material having a bimodal particle diameter distribution is used as described above, a cathode having a high electrode density and an energy density can be formed.
바람직하게는, 상기 대입경 입자의 평균입경(D50)은 8㎛ 내지 20㎛, 8㎛ 내지 15㎛, 또는 12㎛ 내지 20㎛일 수 있으며, 상기 소입경 입자의 평균입경(D50)은 1㎛ 내지 15㎛, 2㎛ 내지 13㎛, 2㎛ 내지 8㎛ 또는 4㎛ 내지 13㎛일 수 있다. Preferably, the average particle diameter (D 50 ) of the large diameter particles may be 8 탆 to 20 탆, 8 탆 to 15 탆, or 12 탆 to 20 탆, and the average particle diameter (D 50 ) 1 탆 to 15 탆, 2 탆 to 13 탆, 2 탆 to 8 탆, or 4 탆 to 13 탆.
일 구현예에 따르면, 본 발명에 따른 양극재는, 평균 입경이 8㎛ 내지 15㎛인 대입경 입자와 평균 입경이 1㎛ 내지 6㎛인 소입경 입자를 포함하는 바이모달 입경 분포를 갖는 것일 수 있다. According to one embodiment, the cathode material according to the present invention may have a bimodal particle size distribution including large-diameter particles having an average particle diameter of 8 탆 to 15 탆 and small-particle particles having an average particle diameter of 1 탆 to 6 탆 .
다른 구현예에 따르면, 본 발명에 따른 양극재는, 평균 입경이 12㎛ 내지 20㎛인 대입경 입자와 평균 입경이 4㎛ 내지 13㎛인 소입경 입자를 포함하는 바이모달 입경 분포를 갖는 것일 수 있다. According to another embodiment, the cathode material according to the present invention may have a bimodal particle diameter distribution including large-diameter particles having an average particle diameter of 12 to 20 μm and small-particle particles having an average particle diameter of 4 to 13 μm .
한편, 상기 소입경 입자 및 대입경 입자를 구성하는 활물질의 종류는 특별히 제한되지 않으며, 상기 제1양극 활물질 및/또는 제2양극 활물질일 수 있다. On the other hand, the kind of the active material constituting the small particle size particles and the large particle size particles is not particularly limited and may be the first positive electrode active material and / or the second positive electrode active material.
일 구현예에 따르면, 본 발명의 양극에 있어서, 상기 제1양극활물질이 대입경 입자이고, 상기 제2양극 활물질이 소입경 입자인 것일 수 있다. 이 경우, 상기 제1양극활물질의 평균 입경(D50)은 8㎛ 내지 20㎛, 바람직하게는, 12㎛ 내지 20㎛ 정도이고, 상기 제2양극활물질의 평균 입경(D50)은 1㎛ 내지 15㎛, 바람직하게는 4㎛ 내지 13㎛ 정도일 수 있다. 제1양극활물질로 상기와 같은 범위를 만족하는 대입경 입자를 사용할 경우, 제1양극 활물질에서의 망간 용출을 보다 효과적으로 억제할 수 있으며, 그 결과, 전지의 고온 안정성을 보다 더 향상시킬 수 있다. According to one embodiment, in the anode of the present invention, the first cathode active material may be a large particle and the second cathode active material may be a small particle. In this case, the average particle diameter (D50) of the first cathode active material is about 8 to 20 탆, preferably about 12 to 20 탆, and the average particle diameter (D50) of the second cathode active material is 1 to 15 탆 , Preferably about 4 탆 to 13 탆. When the large-diameter particles satisfying the above-mentioned range are used as the first cathode active material, the manganese elution in the first cathode active material can be more effectively suppressed, and as a result, the high-temperature stability of the battery can be further improved.
다른 구현예에 따르면, 본 발명의 양극에 있어서, 상기 제1양극활물질이 소입경 입자이고, 제2양극 활물질이 대입경 입자인 것일 수 있다. 이 경우, 상기 제1양극 활물질의 평균 입경(D50)은 1㎛ 내지 15㎛, 바람직하게는 1㎛ 내지 8㎛ 정도이고, 상기 제2양극활물질의 평균 입경(D50)은 8㎛ 내지 20㎛, 바람직하게는, 8㎛ 내지 15㎛ 정도일 수 있다. 제1양극활물질로 상기와 같은 범위를 만족하는 소입경 입자를 사용할 경우, 제1양극 활물질의 도핑 및/또는 코팅 함량을 높게 적용할 수 있으며, 낮은 BET 값을 갖도록 하여 전해액과의 부반응을 최소화할 수 있다. According to another embodiment, in the positive electrode of the present invention, the first positive electrode active material may be small particle size particles and the second positive electrode active material may be large diameter particles. In this case, the average particle diameter (D50) of the first cathode active material is about 1 탆 to 15 탆, preferably about 1 탆 to 8 탆, the average particle diameter (D50) of the second cathode active material is about 8 탆 to 20 탆, Preferably, it may be about 8 占 퐉 to 15 占 퐉. In the case of using small particle size particles satisfying the above range as the first cathode active material, the doping and / or coating amount of the first cathode active material can be applied at a high level and a low BET value can be obtained to minimize side reactions with the electrolyte .
또 다른 구현예에 따르면, 본 발명의 양극에 있어서, 상기 제1양극활물질 및 제2양극 활물질 중 적어도 하나 이상이 상기 대입경 입자 및 상기 소입경 입자를 포함하는 바이모달 입경 분포를 갖는 것일 수도 있다. According to another embodiment, in the anode of the present invention, at least one of the first cathode active material and the second cathode active material may have a bimodal particle diameter distribution including the large particle diameter and the small particle diameter .
한편, 상기 양극은 상기 제1양극 활물질 및 제2양극 활물질을 10:90 내지 90:10, 바람직하게는, 40 : 60 내지 60 : 40의 중량비율로 포함할 수 있다. 제1양극 활물질과 제2양극활물질의 혼합비가 상기 범위를 만족할 때, 고온 저장성 및 용량 특성이 모두 우수한 전극을 얻을 수 있다. Meanwhile, the anode may include the first cathode active material and the second cathode active material in a weight ratio of 10:90 to 90:10, preferably 40:60 to 60:40. When the mixing ratio of the first cathode active material and the second cathode active material is in the above range, an electrode excellent in high temperature storability and capacity characteristics can be obtained.
한편, 일 구현예에 따르면, 본 발명에 따른 양극은, 양극 집전체, 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함하며, 상기 양극 활물질층이 리튬 망간계 제1양극 활물질 및 리튬 니켈망간코발트계 제2양극 활물질을 포함하는 것일 수 있다. 이때, 상기 양극 활물질층은 필요에 따라 바인더 및/또는 도전재를 더 포함할 수 있다. According to one embodiment, the positive electrode according to the present invention includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector, wherein the positive electrode active material layer is a lithium manganese-based first positive electrode active material and lithium nickel manganese Cobalt-based second cathode active material. At this time, the cathode active material layer may further include a binder and / or a conductive material if necessary.
상기 제1양극 활물질 및 제2양극 활물질의 구체적인 내용은 상술한 바와 동일하므로, 구체적인 설명은 생략한다. Since the specific contents of the first cathode active material and the second cathode active material are the same as those described above, a detailed description thereof will be omitted.
상기 제1양극 활물질과 제2양극 활물질을 합한 총 중량은 양극 활물질층 전체 중량을 기준으로 80 내지 99중량%, 보다 구체적으로는 85 내지 98.5중량%일 수 있다. 양극 활물질이 상기 범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.The total weight of the first cathode active material and the second cathode active material may be 80 to 99 wt%, more particularly 85 to 98.5 wt%, based on the total weight of the cathode active material layer. When the cathode active material is included in the above range, excellent capacity characteristics can be exhibited.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극재의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, carbon, nickel, titanium, , Silver or the like may be used. In addition, the cathode current collector may have a thickness of 3 to 500 탆, and fine irregularities may be formed on the surface of the current collector to increase the adhesive strength of the cathode material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량을 기준으로 0.1 내지 15 중량%로 포함될 수 있다.The conductive material is used for imparting conductivity to the electrode. The conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more. The conductive material may include 0.1 to 15% by weight based on the total weight of the cathode active material layer.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 상기 바인더의 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량을 기준으로 0.1 내지 15 중량%로 포함될 수 있다.The binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector. Specific examples of the binder include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, Polypropylene, ethylene-propylene-diene polymer (EPDM), sulphonated-EPDM, polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinylpyrrolidone, Styrene-butadiene rubber (SBR), fluorine rubber, and various copolymers thereof, and one kind or a mixture of two or more kinds of them may be used. The binder may be contained in an amount of 0.1 to 15% by weight based on the total weight of the cathode active material layer.
한편, 본 발명에 있어서, 상기 양극 활물질층은 단일층 구조일 수도 있고, 2이상의 층이 적층된 다층 구조일 수도 있다. 예를 들면, 상기 양극은 양극 집전체 상에 형성되는 제1양극 활물질층과, 상기 제1양극 활물질층 상에 형성되는 제2양극 활물질층을 포함할 수 있다. Meanwhile, in the present invention, the cathode active material layer may have a single layer structure or a multi-layer structure in which two or more layers are stacked. For example, the anode may include a first cathode active material layer formed on the cathode current collector, and a second cathode active material layer formed on the first cathode active material layer.
또한, 본 발명에 있어서, 상기 제1양극활물질과 상기 제2양극활물질은 동일 층(layer) 또는 서로 다른 층(layer)에 포함될 수 있다. Also, in the present invention, the first cathode active material and the second cathode active material may be included in the same layer or different layers.
또한, 상기 제1양극활물질층과 제2양극활물질층은 그 조성이 상이할 수 있다. 여기서, '조성이 상이하다'는 것은 각각의 층에 포함되는 성분들(예를 들면, 양극활물질, 도전재, 바인더 등) 중 하나 이상의 성분의 종류 및/또는 함량이 다르다는 것을 의미한다. The first cathode active material layer and the second cathode active material layer may have different compositions. Here, 'different in composition' means that the kind and / or the content of at least one of the components (for example, the cathode active material, the conductive material, the binder, etc.) contained in each layer is different.
일 구현예에 따르면, 상기 제1양극활물질층과 제2양극활물질층은 각 층에 포함되는 제1양극활물질과 제2양극활물질의 혼합비가 상이한 것일 수 있다. According to one embodiment, the first cathode active material layer and the second cathode active material layer may have different mixing ratios of the first cathode active material and the second cathode active material contained in each layer.
예를 들면, 상기 제1양극활물질층은 상기 제1양극 활물질을 상기 제2양극활물질보다 더 많은 함량으로 포함하고, 상기 제2양극활물질층은 제2양극 활물질을 제1양극 활물질보다 더 많은 함량으로 포함하는 것일 수 있다. 즉, 상기 제1양극활물질층은 리튬 망간계 제1양극 활물질을 제1양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%, 바람직하게는 70 내지 100중량%로 포함하고, 상기 제2양극활물질층은 리튬 니켈코발트망간계 제2양극 활물질을 제2양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%, 바람직하게는 70 내지 100중량%로 포함하는 것일 수 있다. 이와 같이 리튬 이온 이동 경로가 긴 하부에 위치하는 제1양극활물질층에 스피넬 구조의 리튬 망간계 활물질이 높은 함량으로 함유될 경우, 출력 특성을 보다 향상시킬 수 있다. For example, the first cathode active material layer contains the first cathode active material in an amount larger than that of the second cathode active material, and the second cathode active material layer contains a larger amount of the second cathode active material than the first cathode active material . &Lt; / RTI &gt; That is, the first cathode active material layer comprises 50 to 100% by weight, preferably 70 to 100% by weight, of the lithium manganese-based first cathode active material in the total cathode active material contained in the first cathode active material layer, The cathode active material layer may include lithium-nickel-cobalt-manganese-based second cathode active material in an amount of 50 to 100% by weight, preferably 70 to 100% by weight, of the total cathode active material contained in the second cathode active material layer. When the lithium manganese-based active material having a spinel structure is contained in a high content in the first positive electrode active material layer positioned at a lower portion of the long lithium ion migration path, the output characteristics can be further improved.
또는, 상기 제1양극활물질층은 상기 제2양극 활물질을 상기 제1양극 활물질보다 더 많은 함량으로 포함하고, 상기 제2양극활물질층은 제1양극 활물질을 제2양극 활물질보다 더 많은 함량으로 포함하는 것일 수도 있다. 즉, 상기 제1양극활물질층은 리튬 니켈코발트망간계 제2양극 활물질을 제1양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%, 바람직하게는 70 내지 100중량%로 포함하고, 상기 제2양극활물질층은 스피넬 구조의 리튬 망간계 제1 양극 활물질을 제2양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%, 바람직하게는 70 내지 100중량%로 포함하는 것일 수 있다. 리튬 니켈코발트망간계 양극 활물질은 탭 밀도가 높아 압연율이 우수하기 때문에, 하부에 위치하는 제1활물질층에 리튬 니켈코발트망간계 양극 활물질이 높은 함량으로 포함될 경우, 집전체와의 접착력이 향상되고, 그에 따른 출력 및 수명 개선 효과를 얻을 수 있다. Alternatively, the first cathode active material layer contains the second cathode active material in a larger amount than the first cathode active material, and the second cathode active material layer contains the first cathode active material in a larger amount than the second cathode active material It is possible to do. That is, the first cathode active material layer comprises 50 to 100% by weight, preferably 70 to 100% by weight, of the lithium-nickel-cobalt-manganese-based second cathode active material in the total cathode active material contained in the first cathode active material layer, The second cathode active material layer may include a lithium manganese-based first cathode active material having a spinel structure in an amount of 50 to 100% by weight, preferably 70 to 100% by weight, of the total cathode active material contained in the second cathode active material layer. Since the lithium nickel-cobalt manganese-based cathode active material has a high tap density and a high rolling rate, when the lithium-nickel-cobalt manganese-based cathode active material is contained in the first active material layer located at the bottom, , The output and the lifetime improvement effect can be obtained.
다른 구현예에 따르면, 상기 제1양극활물질층과 제2양극활물질층은 각 층에 포함되는 바인더의 함량이 상이한 것일 수 있다. 구체적으로는, 상기 제1양극 활물질층은 바인더를 1 내지 4중량%, 바람직하게는 1.5 내지 4 중량%의 함량으로 포함하고, 상기 제2양극 활물질층은 바인더를 3중량% 이하, 바람직하게는 0.5 내지 2중량%의 함량으로 포함할 수 있다. According to another embodiment, the first cathode active material layer and the second cathode active material layer may have different contents of binders contained in each layer. Specifically, the first cathode active material layer contains the binder in an amount of 1 to 4 wt%, preferably 1.5 to 4 wt%, and the second cathode active material layer contains 3 wt% or less of the binder, 0.5 to 2% by weight.
상기와 같은 본 발명에 따른 양극은 로딩량이 높고, 전극 밀도가 높아 우수한 에너지 밀도 특성을 갖는다. 구체적으로는, 상기 양극은 로딩량이 3.0 mAh/cm2 내지 20 mAh/cm2, 바람직하게는 3.6 내지 6.0mAh/cm2, 더 바람직하게는 4.0 내지 5.0 mAh/cm2일 수 있다. The anode according to the present invention has a high loading density and a high electrode density, so that it has excellent energy density characteristics. Specifically, the anode has a loading amount of 3.0 mAh / cm &lt; 2 &gt; To be 20 mAh / cm 2, preferably from 3.6 to 6.0mAh / cm 2, more preferably from 4.0 to 5.0 mAh / cm 2.
본 발명의 양극은 본 발명에 따른 특정 양극 활물질을 사용한다는 점을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 양극 활물질, 바인더 및/또는 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 합재를 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다. The positive electrode of the present invention can be produced by a conventional positive electrode manufacturing method, except that a specific positive electrode active material according to the present invention is used. Specifically, the positive electrode active material, the binder and / or the conductive material may be dissolved or dispersed in a solvent to form a positive electrode current collector on the positive electrode current collector, followed by drying and rolling.
상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 양극 합재의 도포 두께, 제조 수율, 작업성 등을 고려하여 양극 합재가 적절한 점도를 갖도록 조절될 수 있는 정도이면 되고, 특별히 한정되지 않는다. The solvent may be any solvent commonly used in the art and may be a solvent such as dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or water . One of these may be used alone, or a mixture of two or more thereof may be used. The amount of the solvent to be used is not particularly limited as long as it can be adjusted to have an appropriate viscosity in consideration of the coating thickness of the positive electrode composite material, the production yield, workability, and the like.
또한, 다른 방법으로, 상기 양극은 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.Alternatively, the positive electrode may be produced by casting the positive electrode composite material on a separate support, and then peeling off the support from the support to laminate a film on the positive electrode collector.
(2) 음극(2) cathode
다음으로 음극에 대해 설명한다. Next, the cathode will be described.
본 발명에 따른 음극은, 음극 활물질로 비표면적(BET)이 0.1 내지 1.2m2/g인 인조 흑연과, 상기 인조 흑연보다 큰 비표면적을 갖는 천연 흑연 및 연화탄소로 이루어진 군에서 선택된 1종 이상을 포함한다. The negative electrode according to the present invention is characterized in that the negative electrode includes at least one selected from the group consisting of artificial graphite having a specific surface area (BET) of 0.1 to 1.2 m 2 / g and natural graphite and softened carbon having a specific surface area larger than that of the artificial graphite .
본 발명자들의 연구에 따르면, 도핑 및 코팅이 적용된 스피넬 구조의 리튬 망간계 제1양극 활물질 및 리튬 니켈-망간-코발트계 제2양극 활물질을 포함하는 양극을 적용한 리튬이차전지의 음극으로 비표면적(BET)이 0.1 내지 1.2m2/g인 인조 흑연을 포함하는 음극을 사용할 경우, 다른 종류의 음극 활물질을 포함하는 음극을 사용한 경우에 비해 고온에서의 전지 특성이 우수하게 나타났으며, 특히 장기간 고온 저장 후에도 저항 증가 억제 효과가 뛰어난 것으로 나타났다. According to research conducted by the present inventors, it has been found that a lithium secondary battery using a positive electrode comprising a lithium manganese-based first cathode active material having a spinel structure doped and coated and a lithium-nickel-manganese-cobalt-based second cathode active material has a specific surface area ) Was 0.1 to 1.2 m 2 / g, the battery characteristics at high temperature were superior to those in the case of using a negative electrode containing other types of negative active materials, The effect of suppressing the increase in resistance was also excellent.
구체적으로는, 상기 인조 흑연은 비표면적(BET)이 0.1 내지 1.2m2/g, 바람직하게는 0.3 내지 1.0m2/g, 더 바람직하게는 0.5 내지 1.0m2/g인 것일 수 있다. 인조 흑연의 비표면적이 0.12m2/g 미만이거나, 1.2m2/g를 초과하는 경우에는 장기간 고온 저장 시의 저항 증가 억제 효과가 미미한 것으로 나타났다. Specifically, the artificial graphite may have a specific surface area (BET) of 0.1 to 1.2 m 2 / g, preferably 0.3 to 1.0 m 2 / g, more preferably 0.5 to 1.0 m 2 / g. When the specific surface area of the artificial graphite exceeds 0.12m 2 / g or less, 1.2m 2 / g, the increase in resistance appeared to be insignificant the inhibitory effect of long-term high-temperature storage.
또한, 상기와 같이 특정한 비표면적을 갖는 인조 흑연과 함께, 상기 인조 흑연보다 큰 비표면적을 갖는 천연 흑연 및 연화탄소로 이루어진 군에서 선택된 1종 이상을 혼합하여 사용할 경우, 음극 접착력이 상승되어 활물질 탈리 등으로 인해 전극 성능이 퇴화되는 것을 효과적으로 방지할 수 있다. In addition, when at least one selected from the group consisting of natural graphite and softened carbon having a specific surface area larger than that of the artificial graphite is used together with artificial graphite having a specific specific surface area as described above, the negative electrode adhesive strength is increased, It is possible to effectively prevent degradation of the electrode performance.
이때 상기 연화 탄소(soft carbon)는 비표면적(BET)이 7 내지 10m2/g, 바람직하게는 8 내지 10 m2/g인 것일 수 있다. 연화 탄소의 비표면적이 상기 범위를 만족할 때, 고온 저장 특성 및 고온 수명 특성 향상 효과가 보다 더 우수하다. In this case, the soft carbon may have a specific surface area (BET) of 7 to 10 m 2 / g, preferably 8 to 10 m 2 / g. When the specific surface area of the softened carbon satisfies the above range, the effect of improving high-temperature storage characteristics and high-temperature lifetime characteristics is more excellent.
또한, 상기 천연 흑연은 비표면적(BET)이 2 내지 5 m2/g, 바람직하게는 2.5 내지 4.0m2/g, 더 바람직하게는 2.5 내지 3.5m2/g인 것일 수 있다. 천연 흑연의 비표면적이 상기 범위를 만족할 때, 고온 저장 특성 및 고온 수명 특성 향상 효과가 보다 더 우수하다. The natural graphite may have a specific surface area (BET) of 2 to 5 m 2 / g, preferably 2.5 to 4.0 m 2 / g, more preferably 2.5 to 3.5 m 2 / g. When the specific surface area of natural graphite satisfies the above range, the effect of improving high-temperature storage characteristics and high-temperature lifetime characteristics is more excellent.
일 구현예에 따르면, 상기 음극은 상기 인조 흑연과 연화 탄소를 50 : 50 내지 95 : 5, 바람직하게는 60 : 40 내지 95 : 5, 더 바람직하게는 70 : 30 내지 90 : 10의 중량비율로 포함할 수 있다. 인조 흑연 및 연화 탄소의 혼합비가 상기 범위를 만족할 때, 수명 개선 효과 및 고온 저장 후의 저항 증가 억제 효과가 보다 더 우수하다. According to one embodiment, the negative electrode comprises a mixture of artificial graphite and softened carbon in a weight ratio of 50:50 to 95: 5, preferably 60:40 to 95: 5, more preferably 70:30 to 90:10 . When the mixing ratio of the artificial graphite and the softened carbon satisfies the above range, the life improving effect and the effect of suppressing the increase in resistance after high temperature storage are more excellent.
다른 구현예에 따르면, 상기 음극은 인조 흑연과 천연 흑연을 50 : 50 내지 95 : 5, 바람직하게는 60 : 40 내지 95 : 5, 더 바람직하게는 70 : 30 내지 90 : 10의 중량비율로 포함할 수 있다. 인조 흑연 및 천연 흑연의 혼합비가 상기 범위를 만족할 때, 수명 개선 효과 및 고온 저장 후의 저항 증가 억제 효과가 보다 더 우수하다. According to another embodiment, the cathode contains artificial graphite and natural graphite in a weight ratio of 50:50 to 95: 5, preferably 60:40 to 95: 5, more preferably 70:30 to 90:10. can do. When the mixing ratio of artificial graphite and natural graphite satisfies the above range, the life improving effect and the effect of suppressing the increase in resistance after storage at high temperature are more excellent.
한편, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함할 수 있으며, 상기 음극 활물질층은 음극 활물질로, 비표면적(BET)이 0.1 내지 1.2m2/g인 인조 흑연과, 상기 인조 흑연보다 비표면적이 큰 천연 흑연 및 연화탄소로 이루어진 군으로부터 선택된 적어도 1종을 포함할 수 있다. 또한, 상기 음극 활물질층은 상기 인조 흑연, 천연 흑연, 연화 탄소 이외에 선택적으로 바인더 및 도전재를 더 포함할 수 있다. The negative electrode may include a negative electrode collector and a negative electrode active material layer positioned on the negative electrode collector. The negative electrode active material layer may be a negative electrode active material, and may be a synthetic resin having a specific surface area (BET) of 0.1 to 1.2 m 2 / Graphite and at least one selected from the group consisting of natural graphite and softened carbon having a larger specific surface area than the artificial graphite. In addition, the anode active material layer may further include a binder and a conductive material in addition to the artificial graphite, natural graphite, and softened carbon.
이때, 상기 인조 흑연 연화 탄소 및 천연 흑연을 합한 총 중량은 음극활물질층 총 중량을 기준으로 80 내지 99중량% 정도일 수 있다. 인조 흑연, 천연 흑연 및 연화 탄소에 대해서는 상술하였으므로, 이하에서는 나머지 구성요소에 대해 설명한다. At this time, the total weight of the artificial graphite-softened carbon and the natural graphite may be about 80 to 99% by weight based on the total weight of the negative electrode active material layer. Since artificial graphite, natural graphite and softened carbon have been described above, the remaining components will be described below.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode collector may have a thickness of 3 to 500 탆, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component for assisting the bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 0.1% by weight to 10% by weight based on the total weight of the negative electrode active material layer. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene Examples thereof include ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluorine rubber and various copolymers thereof.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer, as a component for further improving the conductivity of the negative electrode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합재를 도포하고 건조함으로써 제조되거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.The negative electrode active material layer is prepared by applying and drying a negative electrode active material prepared by dissolving or dispersing a negative active material on a negative electrode current collector and optionally a binder and a conductive material in a solvent or by drying the negative electrode active material on a separate support And then laminating a film obtained by peeling from the support onto an anode current collector.
한편, 상기 음극 활물질층은 단일층 구조일 수도 있고, 2 이상의 층이 적층된 다층 구조일 수도 있다. 예를 들면, 상기 음극은 음극 집전체, 상기 음극 집전체 상에 형성되는 제1음극 활물질층, 상기 제1음극 활물질층 상에 형성되는 제2음극 활물질층을 포함할 수 있으며, 상기 제1음극 활물질층 및 제2음극 활물질층은 그 조성이 상이할 수 있다. 즉, 상기 제1음극 활물질층과 제2음극 활물질층은 음극활물질층 내의 각 성분의 종류 및/또는 함량이 서로 상이할 수 있다. 예를 들면, 상기 제1음극 활물질층과 제2음극활물질층은 인조 흑연, 연화 탄소, 천연흑연 및/또는 바인더의 함량이 서로 다를 수 있다. Meanwhile, the negative electrode active material layer may have a single layer structure or a multi-layer structure in which two or more layers are stacked. For example, the negative electrode may include a negative electrode collector, a first negative electrode active material layer formed on the negative electrode collector, and a second negative electrode active material layer formed on the first negative electrode active material layer, The active material layer and the second negative electrode active material layer may have different compositions. That is, the first anode active material layer and the second anode active material layer may have different kinds and / or contents of respective components in the anode active material layer. For example, the first anode active material layer and the second anode active material layer may have different contents of artificial graphite, softened carbon, natural graphite, and / or binder.
한편, 상기 음극은 로딩량이 300 내지 500mg/25cm2, 바람직하게는 300 내지 400 mg/25cm2일 수 있다. 음극의 로딩량이 상기 범위를 만족할 때, 충분한 전극 접착력이 확보되어 공정에 용이하고, 급속 충전 성능 및 저항 성능이 우수한 전지를 구현할 수 있으며, 에너지밀도 극대화가 가능하다. On the other hand, the loading amount of the negative electrode may be 300 to 500 mg / 25 cm 2 , preferably 300 to 400 mg / 25 cm 2 . When the loading amount of the negative electrode satisfies the above range, it is possible to secure a sufficient electrode bonding force, to facilitate a process, to realize a battery having excellent rapid charging performance and resistance performance, and to maximize energy density.
(3) 분리막(3) The membrane
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. The separation membrane separates the cathode and the anode and provides a passage for lithium ion. The separation membrane can be used without any particular limitation as long as it is used as a separation membrane in a lithium secondary battery. Particularly, the separation membrane has low resistance against electrolyte migration, Excellent.
구체적으로는 분리막으로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.Specifically, a porous polymer film such as a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer Or a laminated structure of two or more thereof may be used. Further, a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used. In order to secure heat resistance or mechanical strength, a coated separator containing a ceramic component or a polymer material may be used, and the separator may be selectively used as a single layer or a multilayer structure.
(4) 전해질(4) electrolyte
본 발명에서 사용되는 전해질로는 리튬 이차전지에 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 특별히 한정되지 않는다. As the electrolyte used in the present invention, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used for a lithium secondary battery, are not particularly limited.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; Ra-CN(Ra는 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. The organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and? -Caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Ra-CN (Ra is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used. Among these, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, 및 LiCH3SO3으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. The lithium salt may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as an anion, and containing the Li + in the lithium salt cation is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - . Specifically, the lithium salt may be LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , and LiCH 3 SO 3 , or a mixture of two or more thereof.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 전해액 내에 0.8 M 내지 3M, 구체적으로 0.1M 내지 2.5M로 포함될 수 있다. The lithium salt can be appropriately changed within a range that is usually usable, but it can be specifically contained in the electrolyte in an amount of 0.8 M to 3 M, specifically 0.1 M to 2.5 M.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 다양한 첨가제들이 사용될 수 있다. 이러한 첨가제로는 예를 들면, 디플루오로에틸렌 카보네이트 등과 같은 할로알킬렌 카보네이트계 화합물; 또는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬에테르, 암모늄염, 피롤, 2-메톡시에탄올 또는 삼염화 알루미늄 등이 포함될 수 있으며, 상기 첨가제들은 단독 또는 혼합하여 사용될 수 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다. In addition to the electrolyte components, various additives may be added to the electrolyte for the purpose of improving lifetime characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery. Such additives include, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate and the like; N, N &lt; RTI ID = 0.0 &gt; (N, &lt; / RTI &gt; N, N'-tetramethyluronium hexafluorophosphate), pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, Substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride, and the above additives may be used singly or in combination. The additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다. The lithium secondary battery according to the present invention can be used for portable equipment such as mobile phones, notebook computers, and digital cameras, and electric vehicles such as hybrid electric vehicles (HEV).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. According to another embodiment of the present invention, there is provided a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. The lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail by way of examples with reference to the following examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.
실시예Example
제조예 1 Production Example 1
MnSO4 , Al2(SO4)3 및 MgO를 94.2 : 3.4: 2.4의 중량비로 혼합한 후, N2 퍼징을 거친 증류수를 이용하여 Al2(SO4)3 및 MgO를 포함하는 MnSO4ㆍ7H2O를 제조하였다. 제조된 MnSO4ㆍ7H2O를 연속교반탱크 반응기(CSTR, 제조사: EMS Tech, 제품명: CSTR-L0)에 250mL/h의 속도로 투입하였다. 알칼리화제로서 40% 수산화나트륨 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 10mL/h의 속도로 투입하고, 25% 암모니아 용액을 상기 반응기의 암모니아 용액 공급부를 통하여 30mL/h의 속도로 투입하면서, pH 미터와 제어부를 통해 pH 10.5로 유지되도록 하였다. 반응기의 온도는 40℃로 하고, 체류시간(RT)은 10시간으로 조절하였으며, 1200rpm의 속도로 교반하여 Al 및 Mg을 포함하는 Mn3O4 로 침전시켰다. 상기 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후 건조하는 추가 공정을 거쳐, Al 및 Mg이 도핑된 망간 전구체 (Mn0 . 94Al0 . 03Mg0 . 03)3O4를 제조하였다. 상기와 같이 제조된 Al 및 Mg 이 도핑된 망간 전구체와 리튬원료물질 Li2CO3을 1 : 0.75 몰비로 혼합한 후, 810℃에서 14시간동안 소성하여 리튬망간산화물 Li(Mn1.88Al0.06Mg0.06)O4을 얻었다. MnSO 4, Al 2 (SO 4) 3 and MgO to 94.2: 3.4: were mixed in a weight ratio of 2.4, MnSO containing Al 2 (SO 4) 3 and MgO with distilled water via a N 2 purged 4 and 7H 2 &lt; / RTI &gt; MnSO 4 .7H 2 O was added to the continuous stirred tank reactor (CSTR, manufacturer: EMS Tech, product name: CSTR-L0) at a rate of 250 mL / h. A 40% aqueous solution of sodium hydroxide was introduced as an alkalizing agent at a rate of 10 mL / h through an aqueous solution of sodium hydroxide in the reactor, and a 25% ammonia solution was fed through the ammonia solution supply portion of the reactor at a rate of 30 mL / And the pH of the solution was maintained at 10.5. The temperature of the reactor was adjusted to 40 ° C., the residence time (RT) was adjusted to 10 hours, and the mixture was stirred at a speed of 1200 rpm to precipitate Mn 3 O 4 containing Al and Mg. Through the additional step of the resulting reaction solution was filtered through a filter, dried and then purified with distilled water, Al and Mg-doped manganese precursor (Mn 0. 94 Al 0. 03 Mg 0. 03) was prepared in a 3 O 4 . The thus prepared manganese precursor doped with Al and Mg was mixed with Li 2 CO 3 at a molar ratio of 1: 0.75 and then calcined at 810 ° C. for 14 hours to obtain lithium manganese oxide Li (Mn 1.88 Al 0.06 Mg 0.06 ) O 4 was obtained.
상기와 같이 제조된 리튬 망간 산화물 100 중량부에 대하여 WO3를 3000 ppm 첨가하여 건식 혼합한 후, 600℃로 5시간 열처리하여 W를 포함하는 코팅층이 형성된 제1양극 활물질 A를 얻었다.3000 parts by weight of WO 3 was added to 100 parts by weight of the lithium manganese oxide prepared as described above, followed by dry mixing, followed by heat treatment at 600 ° C for 5 hours to obtain a first cathode active material A having a coating layer containing W formed thereon.
제조예 2 Production Example 2
제조예 1의 방법에 따라 제조된 리튬망간산화물 Li(Mn1.88Al0.06Mg0.06)O4 100중량부에 대하여 WO3 대신 TiO2 1000ppm을 첨가하여 건식 혼합한 후, 600℃로 5시간 열처리하여 Ti을 포함하는 코팅층이 형성된 제1양극 활물질 B를 얻었다.Lithium manganese oxide Li (Mn 1.88 Al 0.06 Mg 0.06 ) O 4 prepared according to the method of Production Example 1 1000 parts by weight of TiO 2 was added to 100 parts by weight of WO 3 instead of WO 3 , and the mixture was heat-treated at 600 ° C. for 5 hours to obtain a first cathode active material B having a coating layer containing Ti.
제조예 3 Production Example 3
MnSO4, Li2CO3 및 Al2(SO4)3를 95 : 0.5 : 4.5의 중량비로 혼합하여 Li2CO3 및 Al2(SO4)3가 포함된 (MnSO4ㆍ7H2O)를 제조한 점을 제외하고는 제조예 1과 동일한 공정을 거쳐, Li 및 Al이 도핑된 망간 전구체 (Mn0.957 Li0.015Al0.028)3O4를 제조하였다. MnSO 4, Li 2 CO 3 (MnSO 4 .7H 2 O) containing Li 2 CO 3 and Al 2 (SO 4 ) 3 was prepared by mixing Al 2 (SO 4 ) 3 and Al 2 (SO 4 ) 3 in a weight ratio of 95: 0.5: (Mn 0.957 Li 0.015 Al 0.028 ) 3 O 4 doped with Li and Al was prepared in the same manner as in Production Example 1.
상기와 같이 제조된 Li 도핑된 망간 전구체와 리튬원료물질 Li2CO3을 1: 0.75의 몰비로 혼합한 후, 810℃에서 14시간동안 소성하여 리튬망간산화물 Li(Mn1.914 Li0.06Al0.056)O4을 얻었다.The Li-doped manganese precursor thus prepared and the lithium source material Li 2 CO 3 were mixed at a molar ratio of 1: 0.75 and then fired at 810 ° C for 14 hours to obtain lithium manganese oxide Li (Mn 1.914 Li 0.06 Al 0.056 ) O 4 was obtained.
상기와 같이 제조된 리튬 망간 산화물 100 중량부에 대하여 WO3를 5000 ppm 첨가하여 건식 혼합한 후, 600℃로 5시간 열처리하여 W를 포함하는 코팅층이 형성된 제1양극 활물질 C를 얻었다.5000 parts by weight of WO 3 was added to 100 parts by weight of lithium manganese oxide prepared as described above, followed by dry mixing, followed by heat treatment at 600 ° C for 5 hours to obtain a first cathode active material C in which a coating layer containing W was formed.
제조예 4 Production Example 4
MnSO4, Li2CO3 및 MgSO4를 98 : 0.5 : 1.5의 중량비로 혼합하여 Li2CO3 및 MgSO4가 포함된 (MnSO4ㆍ7H2O)를 제조한 점을 제외하고는 제조예 1과 동일한 공정을 거쳐, Li 및 Mg이 도핑된 망간 전구체 (Mn0.961Li0.021Mg0.018)3O4를 제조하였다. MnSO 4, Li 2 CO 3 And MgSO 4 were mixed in a weight ratio of 98: 0.5: 1.5 to prepare (MnSO 4 .7H 2 O) containing Li 2 CO 3 and MgSO 4 , Li And a Mg-doped manganese precursor (Mn 0.961 Li 0.021 Mg 0.018 ) 3 O 4 were prepared.
상기와 같이 제조된 Li 도핑된 망간 전구체와 리튬원료물질 Li2CO3을 1: 0.75의 몰비로 혼합한 후, 810℃에서 14시간동안 소성하여 리튬망간산화물 Li(Mn1.922 Li0.042Mg0.036)O4을 얻었다.The Li-doped manganese precursor thus prepared and the lithium source material Li 2 CO 3 were mixed at a molar ratio of 1: 0.75 and then calcined at 810 ° C for 14 hours to obtain lithium manganese oxide Li (Mn 1.922 Li 0.042 Mg 0.036 ) O 4 was obtained.
상기와 같이 제조된 리튬 망간 산화물 100 중량부에 대하여 WO3를 5000 ppm 첨가하여 건식 혼합한 후, 600℃로 5시간 열처리하여 W를 포함하는 코팅층이 형성된 제1양극 활물질 D를 얻었다.5000 parts by weight of WO 3 was added to 100 parts by weight of lithium manganese oxide prepared as described above, followed by dry mixing and then heat treatment at 600 ° C for 5 hours to obtain a first cathode active material D having a coating layer containing W.
제조예 5 Production Example 5
제조예 1에서 제조된 Li(Mn1.88Al0.06Mg0.06)O4을 코팅층을 형성하지 않고, 양극 활물질 E로 사용하였다.Li (Mn 1.88 Al 0.06 Mg 0.06 ) O 4 produced in Production Example 1 was used as the cathode active material E without forming a coating layer.
제조예 6 Production Example 6
MnSO4 , Al2(SO4)3 및 MgO를 93.9 : 4.5 : 1.6의 중량비로 혼합한 점을 제외하고는 제조예 1과 동일한 공정을 거쳐, 리튬망간산화물 Li(Mn1.88Al0.08Mg0.04)O4을 제조하였으며, 코팅층을 형성하지 않고, 양극 활물질 F로 사용하였다. (Mn 1.88 Al 0.08 Mg 0.04 ) O (2) was prepared in the same manner as in Production Example 1 except that MnSO 4 , Al 2 (SO 4 ) 3 and MgO were mixed at a weight ratio of 93.9: 4 was prepared and used as the cathode active material F without forming a coating layer.
제조예 7 Production Example 7
리튬 망간 산화물 LiMn2O4 100 중량부에 대하여 WO3를 5000 ppm 첨가하여 혼합한 후, 600℃로 5시간 열처리하여 W를 포함하는 코팅층이 형성된 제1양극 활물질 G를 얻었다.5000 ppm of WO 3 was added to 100 parts by weight of lithium manganese oxide LiMn 2 O 4, and the mixture was heat-treated at 600 ° C for 5 hours to obtain a first cathode active material G having a coating layer containing W formed thereon.
실시예 1Example 1
N-메틸피롤리돈 용매 중에서 양극 활물질, 도전재 및 바인더를 96.25 : 1.0 : 1.5의 중량비율로 혼합하여 양극 합재를 제조하였다. 이때, 양극활물질로는 제조예 1에 의해 제조된 양극활물질 A와 Li[Ni0 . 86Co0 . 07Mn0 . 35Al0 . 35]O2를 55 : 45의 중량비율로 혼합하여 사용하고, 도전재로는 Denka사의 Li435를 사용하였으며, 바인더로는 Kureha 사의 KF9700 및 ZEON사의 BM-730H를 90 : 10의 중량비율로 혼합하여 사용하였다. 제조된 양극 합재를 12μm 두께의 알루미늄 집전체(상품명: A1100, 제조사: 삼아 알미늄)에 도포한 후, 130℃에서 건조한 후, 압연하여 양극을 제조하였다.A positive electrode active material, a conductive material and a binder were mixed in a weight ratio of 96.25: 1.0: 1.5 in an N-methylpyrrolidone solvent to prepare a positive electrode mixture. At this time, as the cathode active material, the cathode active material A and Li [Ni 0 . 86 Co 0 . 07 Mn 0 . 35 Al 0 . 35 ] O 2 were mixed in a weight ratio of 55:45. As the conductive material, Li435 of Denka Co. was used. KF9700 of Kureha and BM-730H of ZEON were mixed in a weight ratio of 90:10 Respectively. The prepared positive electrode material was applied to an aluminum current collector (trade name: A1100, manufactured by Sanya Aluminum Co., Ltd.) having a thickness of 12 탆, dried at 130 캜 and rolled to prepare a positive electrode.
N-메틸피롤리돈 용매 중에서 음극 활물질, 바인더, CMC 및 도전재를 96.1 : 2.3 : 1.1 : 0.5의 중량비율로 혼합하여 음극 합재를 제조하였다. 이때, 음극 활물질로는 BET 비표면적이 0.740m2/g인 인조흑연(모델명: GT, 제조사: Zichen)과 BET 비표면적이 9.5 m2/g인 연화 탄소(모델명: PCT-240R, 제조사: 파워카본테크놀로지)를 90 : 10의 중량비율로 혼합하여 사용하였으며, 바인더로는 Zeon사의 BM-L203, 도전재로는 Imerys사의 Super C65, CMC로는 Daicel사의 Daicell을 사용하였다. 제조된 음극 합재를 82μm 두께의 구리 집전체(제조사: LS 엠트론)에 도포한 후, 65℃에서 건조한 후, 압연하여 음극을 제조하였다.A negative electrode active material, a binder, a CMC and a conductive material were mixed in a weight ratio of 96.1: 2.3: 1.1: 0.5 in N-methylpyrrolidone solvent to prepare a negative electrode material. At this time, the negative electrode active material as is the artificial graphite having a BET specific surface area of 0.740m 2 / g (model name: GT, Manufacturer: Zichen) and a BET specific surface area of 9.5 m 2 / g of carbon softening (model number: PCT-240R, Manufacturer: Power Carbon Technology) were mixed at a weight ratio of 90:10. BM-L203 of Zeon Co., Ltd., Super C65 of Imerys Co., Ltd. and Daicel of Daicel Co., Ltd. were used as the binder. The prepared negative electrode composite was applied to a copper collector (manufactured by LS Mtron) having a thickness of 82 탆, dried at 65 캜 and rolled to prepare a negative electrode.
상기와 같이 제조된 양극 및 음극 사이에 분리막을 개재하고, 전해액을 주입하여 코인셀을 제조하였다.A coin cell was prepared by interposing a separator between the positive and negative electrodes and injecting an electrolyte solution.
실시예 2Example 2
양극 활물질로 제조예 2에 의해 제조된 양극 활물질 B와 Li[Ni0.86Co0.07Mn0.35Al0.35]O2를 55 : 45의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Except that the cathode active material B prepared in Preparation Example 2 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as the cathode active material, Coin cells were prepared.
실시예 3Example 3
양극 활물질로 제조예 3에 의해 제조된 양극 활물질 C와 Li[Ni0.86Co0.07Mn0.35Al0.35]O2를 55 : 45의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Except that the cathode active material C prepared in Preparation Example 3 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as the cathode active material in the same manner as in Example 1 Coin cells were prepared.
실시예 4Example 4
양극 활물질로 제조예 4에 의해 제조된 양극 활물질 D와 Li[Ni0.86Co0.07Mn0.35Al0.35]O2를 55 : 45의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Except that the cathode active material D prepared in Preparation Example 4 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as the cathode active material in the same manner as in Example 1 Coin cells were prepared.
실시예 5Example 5
음극 활물질로는 BET 비표면적이 0.740m2/g인 인조흑연(모델명: GT, 제조사: Zichen)과 BET 비표면적이 2.680m2/g인 천연 흑연(모델명: PAS-C3B, 제조사: 포스코켐텍)를 90 : 10의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Natural graphite (model: PAS-C3B, manufactured by POSCO Chemtech) having a BET specific surface area of 0.740 m 2 / g and a BET specific surface area of 2.680 m 2 / g was used as the anode active material. Were mixed in a weight ratio of 90:10, to prepare a coin cell.
비교예 1Comparative Example 1
양극 활물질로 제조예 5에 의해 제조된 양극 활물질 E와 Li[Ni0.86Co0.07Mn0.35Al0.35]O2를 55 : 45의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Except that the cathode active material E prepared in Preparation Example 5 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as a cathode active material in the same manner as in Example 1 Coin cells were prepared.
비교예 2Comparative Example 2
양극 활물질로 제조예 6에 의해 제조된 양극 활물질 F와 Li[Ni0.86Co0.07Mn0.35Al0.35]O255 : 45의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Except that the cathode active material F prepared in Preparation Example 6 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 55: 45 were mixed in the weight ratio of the cathode active material to prepare a coin Cells were prepared.
비교예 3Comparative Example 3
양극 활물질로 제조예 7에 의해 제조된 양극 활물질 G와 Li[Ni0.86Co0.07Mn0.35Al0.35]O2를 55 : 45의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Except that the cathode active material G prepared in Preparation Example 7 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 were mixed in a weight ratio of 55:45 and used as the cathode active material in the same manner as in Example 1 Coin cells were prepared.
비교예 4Comparative Example 4
양극 활물질로 도핑 및 코팅이 적용되지 않은 LiMn2O4와 Li[Ni0.86Co0.07Mn0.35Al0.35]O2를 55 : 45의 중량비율로 혼합하여 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. Except that LiMn 2 O 4 and Li [Ni 0.86 Co 0.07 Mn 0.35 Al 0.35 ] O 2 , which were not doped and coated with a cathode active material, were mixed in a weight ratio of 55:45, and the same method as in Example 1 To prepare a coin cell.
비교예 5Comparative Example 5
음극 활물질로 BET 비표면적이 2.680m2/g인 천연 흑연(모델명: PAS-C3B, 제조사: 포스코켐텍)를 단독으로 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 코인셀을 제조하였다. A coin cell was prepared in the same manner as in Example 1 except that natural graphite (PAS-C3B, manufactured by POSCO Chemtech) having a BET specific surface area of 2.680 m 2 / g was used alone as the negative electrode active material.
비교예 6Comparative Example 6
음극 활물질로 BET 비표면적이 2.680m2/g인 천연 흑연(모델명: PAS-C3B, 제조사: 포스코켐텍)과 BET 비표면적이 9.5 m2/g인 연화 탄소(모델명: PCT-240R, 파워카본테크놀로지)를 90 : 10의 중량비율로 혼합하여 사용한 점을 제외하고는, 실시예 1과 동일한 방법으로 코인셀을 제조하였다.Is a BET specific surface area of 2.680m 2 / g as a negative active material of natural graphite in the carbon softening (model:: PAS-C3B, manufacturer POSCO Chemtech) and the BET specific surface area of 9.5 m 2 / g (model name: PCT-240R, Power Carbon Technology ) Were mixed at a weight ratio of 90:10, to prepare a coin cell.
실험예 1: 고온 저장 특성 (1)Experimental Example 1: High-temperature storage characteristics (1)
상기 실시예 1~4 및 비교예 1~4에 의해 제조된 코인 셀의 60℃에서 4주간 보관한 후, 용량 유지율 및 저항 증가율을 측정하였다.The coin cells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were stored at 60 DEG C for 4 weeks, and the capacity retention rate and the rate of increase in resistance were measured.
구체적으로, 상기 실시예 1~4 및 비교예 1~4에서 제조한 코인 셀을 4.2V까지 만충전한 후, 60℃에서 4주간 보존하면서, 매 1주가 지날 때마다, 코인 셀을 0.33C 정전류로 4.2V까지 충전한 후, 0.33C 정전류로 2.5V까지 방전하고, 그때의 방전 용량 및 저항을 측정한 후, 4주 보관 후의 방전 용량 및 저항을 초기 방전 용량 및 초기 저항과 비교하여 용량 유지율 및 저항증가율을 측정하였다. 측정 결과는 하기 표 1에 나타내었다. Specifically, the coin cells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were fully charged to 4.2 V and stored at 60 ° C. for 4 weeks. After every one week, the coin cells were charged at a constant current of 0.33 C After discharging to 4.2 V with a constant current of 0.33 C, the discharging capacity and the resistance at that time were measured. Then, the discharging capacity and resistance after the storage for 4 weeks were compared with the initial discharging capacity and the initial resistance, Growth rate. The measurement results are shown in Table 1 below.
용량 유지율(%)Capacity retention rate (%) 저항증가율(%)Rate of resistance increase (%)
실시예 1Example 1 7272 185185
실시예 2Example 2 6868 215215
실시예 3Example 3 6767 219219
실시예 4Example 4 6666 218218
비교예 1Comparative Example 1 6969 221221
비교예 2Comparative Example 2 6767 250250
비교예 3Comparative Example 3 6363 257257
비교예 4Comparative Example 4 6262 261261
상기 표 1에 나타난 바와 같이, 실시예 1 ~ 4의 코인셀은 60℃에서 4주간 보관한 후의 용량 유지율이 비교예 1 ~ 4의 코인셀과 동등 수준 또는 그 이상이었으며, 저항 증가율은 비교예 1 ~ 4의 코인셀에 비해 낮음을 확인할 수 있다. As shown in Table 1, the coin cells of Examples 1 to 4 had the same capacity retention ratios as those of the coin cells of Comparative Examples 1 to 4 after storage for 4 weeks at 60 ° C, ~ 4 coin cells.
실험예Experimental Example 2: 2: 고온 저장 특성 (2)High Temperature Storage Characteristics (2)
상기 실시예 1, 5 및 비교예 5 및 6에 의해 제조된 코인 셀의 60℃에서 6주간 보관한 후, 용량 유지율 및 저항 증가율을 측정하였다.The coin cells prepared in Examples 1 and 5 and Comparative Examples 5 and 6 were stored at 60 DEG C for 6 weeks, and the capacity retention rate and the rate of resistance increase were measured.
구체적으로, 상기 실시예 1, 5 및 비교예 5 및 6에서 제조한 코인 셀을 4.2V까지 만충전한 후, 60℃에서 6주간 보존하면서, 매 1주가 지날 때마다, 코인 셀을 0.1C 정전류로 4.2V까지 충전한 후, 0.1C 정전류로 3.0V까지 방전하고, 그때의 방전 용량 및 저항을 측정한 후, 초기 방전 용량 및 초기 저항과 비교하여 용량 유지율 및 저항증가율을 측정하였다.Specifically, the coin cells prepared in Examples 1 and 5 and Comparative Examples 5 and 6 were fully charged to 4.2 V, and then stored at 60 ° C. for 6 weeks. After every one week, the coin cells were subjected to a constant current of 0.1 C The battery was charged to 4.2 V, discharged to 3.0 V with a constant current of 0.1 C, and the discharge capacity and resistance at that time were measured. Then, the capacity retention rate and the rate of increase in resistance were measured by comparing the initial discharge capacity and the initial resistance.
측정 결과는 도 1에 나타내었다. 도 1에 도시된 바와 같이, 4주 보관까지는 실시예 1 및 5와 비교예 5 및 6의 코인셀 사이에 저항 증가율이 크게 다르지 않았으나, 6주 이상 보관하였을 경우, 실시예 1, 5의 코인셀 저항 증가율이 비교예 5 및 6에 비해 현저하게 적음을 확인할 수 있다. The measurement results are shown in Fig. As shown in FIG. 1, the resistance increase rates between the coin cells of Examples 1 and 5 and Comparative Examples 5 and 6 were not significantly different up to 4 weeks storage. However, when stored for 6 weeks or more, It can be confirmed that the rate of increase in resistance is significantly smaller than that in Comparative Examples 5 and 6. [
실험예 3: 고온 수명 특성 (1)EXPERIMENTAL EXAMPLE 3: High Temperature Life Characteristics (1)
상기 실시예 1~4 및 비교예 1~4에 의해 제조된 코인 셀의 고온에서 수명 특성을 측정하였다. The life characteristics of the coin cells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 were measured at a high temperature.
구체적으로, 상기 실시예 1~4 및 비교예 1~4에서 제조한 코인셀 각각에 대해 45℃에서 0.33C 정전류로 4.2V까지 0.05C cut off로 충전을 실시하였다. 이어서, 0.33C 정전류로 2.5V가 될 때까지 방전을 실시하였다. Specifically, each of the coin cells prepared in Examples 1 to 4 and Comparative Examples 1 to 4 was charged at a constant current of 0.33 C at a temperature of 45 캜 to a voltage of 4.2 V at a cut off of 0.05C. Then, discharging was performed until the voltage reached 2.5 V at a constant current of 0.33C.
상기 충전 및 방전 거동을 1 사이클로 하여, 이러한 사이클을 200회 반복 실시한 후, 200 사이클 후의 방전 용량 및 저항과 초기 방전 용량 및 초기 저항을 비교하여 용량 유지율 및 저항 증가율을 측정하였다. 측정 결과는 하기 표 2에 기재하였다. The charging and discharging behaviors were repeated one cycle, and the cycle was repeated 200 times. The discharge capacity and the resistance after 200 cycles were compared with the initial discharge capacity and the initial resistance to measure the capacity retention rate and the resistance increase rate. The measurement results are shown in Table 2 below.
용량 유지율(%)Capacity retention rate (%) 저항 증가율(%)Rate of resistance increase (%)
실시예 1Example 1 8686 176176
실시예 2Example 2 8282 194194
실시예 3Example 3 7979 201201
실시예 4Example 4 8080 198198
비교예 1Comparative Example 1 8585 210210
비교예 2Comparative Example 2 8484 222222
비교예 3Comparative Example 3 7777 225225
비교예 4Comparative Example 4 7171 232232
상기 표 2에 나타난 바와 같이, 실시예 1 ~ 4의 코인셀은 45℃에서 200사이클 충방전 후의 용량 유지율이 비교예 1 ~ 4의 코인셀과 동등 수준 또는 그 이상이었으며, 저항 증가율은 비교예 1 ~ 4의 코인셀에 비해 낮음을 확인할 수 있다. As shown in Table 2, the coin cells of Examples 1 to 4 had the same capacity retention ratios as those of the coin cells of Comparative Examples 1 to 4 after charging and discharging for 200 cycles at 45 ° C, ~ 4 coin cells.
실험예Experimental Example 4: 고온 수명 특성 (2) 4: High temperature lifetime characteristics (2)
상기 실시예 1, 5 및 비교예 5 및 6에 의해 제조된 코인 셀의 고온에서 수명 특성을 측정하였다. The life characteristics of the coin cells prepared in Examples 1 and 5 and Comparative Examples 5 and 6 were measured at high temperature.
구체적으로, 상기 실시예 1, 5 및 비교예 5, 6에서 제조한 코인셀 각각에 대해 45℃에서 0.1C 정전류로 4.2V까지 0.05C cut off로 충전을 실시하였다. 이어서, 0.1C 정전류로 3.0V가 될 때까지 방전을 실시하였다. Specifically, the coin cells prepared in Examples 1 and 5 and Comparative Examples 5 and 6 were charged at a constant current of 0.1 C at a temperature of 45 ° C to 4.2 V at a cut off of 0.05C. Then, discharging was performed until the voltage reached 3.0 V with a constant current of 0.1C.
상기 충전 및 방전 거동을 1 사이클로 하여, 이러한 사이클을 300회 반복 실시한 후, 300 사이클 후의 방전 용량과 초기 방전 용량을 비교하여 용량 유지율을 측정하였다. 측정 결과는 도 2에 도시하였다.The charging and discharging behaviors were set as one cycle, and the cycle was repeated 300 times. Then, the discharge capacity after 300 cycles was compared with the initial discharge capacity to measure the capacity retention rate. The measurement results are shown in Fig.
도 2에 도시된 바와 같이, 실시예 1, 5의 코인셀의 비교예 5 및 6의 코인셀에 비해 상대적으로 높은 용량 유지율을 나타냄을 확인할 수 있다. As shown in FIG. 2, it can be confirmed that the capacity retention ratio is relatively higher than that of the coin cells of Comparative Example 5 and 6 of the coin cells of Examples 1 and 5.

Claims (20)

  1. 스피넬 구조의 리튬 망간계 제1양극 활물질 및 리튬 니켈망간코발트계 제2양극 활물질을 포함하는 양극;A cathode comprising a lithium manganese-based first cathode active material having a spinel structure and a lithium-nickel-manganese-cobalt-based second cathode active material;
    비표면적(BET)이 0.1 내지 1.2m2/g인 인조 흑연과, 상기 인조 흑연보다 큰 비표면적을 갖는 연화 탄소 및 천연 흑연으로 이루어진 군으로부터 선택된 적어도 1종을 포함하는 음극; A negative electrode comprising at least one selected from the group consisting of artificial graphite having a specific surface area (BET) of 0.1 to 1.2 m 2 / g and softened carbon and natural graphite having a larger specific surface area than the artificial graphite;
    상기 양극 및 음극 사이에 개재되는 분리막; 및 A separator interposed between the anode and the cathode; And
    전해질을 포함하며,An electrolyte,
    상기 제1양극 활물질은 하기 화학식 1로 표시되는 리튬 망간 산화물 및 상기 리튬 망간 산화물 표면에 위치하며, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si, 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소를 포함하는 코팅층을 포함하는 것인 리튬이차전지:Wherein the first cathode active material is a lithium manganese oxide represented by the following formula 1 and a lithium manganese oxide which is located on the surface of the lithium manganese oxide and contains Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, , Ca, Zn, Zr, Nb. And a coating layer comprising at least one element selected from the group consisting of Mo, Sr, Sb, Bi, Si, and S. A lithium secondary battery comprising:
    [화학식 1][Chemical Formula 1]
    Li1+aMn2-bM1 bO4-cAc Li 1 + a Mn 2-b M 1 b O 4 -c A c
    (상기 화학식 1에서, M1은 Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, Sc, Ga, In, As, Sb, Pt, Au 및 Si로 이루어진 군으로부터 선택된 1종 이상의 도핑 원소이고, A는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 0≤a≤0.2, 0<b≤0.5, 0≤c≤0.1임)M 1 is at least one element selected from the group consisting of Al, Li, Mg, Zn, B, W, Ni, Co, Fe, Cr, V, Ru, Cu, Cd, Ag, Y, , Pt, Au and Si, A is at least one element selected from the group consisting of F, Cl, Br, I, At and S, and 0? A? 0.2, 0 < b? 0.5, 0? c? 0.1)
  2. 제1항에 있어서,The method according to claim 1,
    상기 도핑원소 M1은 Al, Li, Mg 및 Zn으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 리튬이차전지.Wherein the doping element M 1 comprises at least one selected from the group consisting of Al, Li, Mg, and Zn.
  3. 제1항에 있어서,The method according to claim 1,
    상기 코팅층은 Al, Ti, Zn, W 및 B으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 리튬이차전지.Wherein the coating layer comprises at least one selected from the group consisting of Al, Ti, Zn, W and B.
  4. 제1항에 있어서,The method according to claim 1,
    상기 제2양극 활물질은 하기 화학식 2로 표시되는 리튬 니켈망간코발트계 양극 활물질인 리튬이차전지:Wherein the second cathode active material is a lithium nickel manganese cobalt-based cathode active material represented by the following Formula 2:
    [화학식 2](2)
    Li1+x [NiyCozMnwM2 v]O2-pBp Li 1 + x [Ni y Co z Mn w M 2 v ] O 2 - p B p
    상기 화학식 2에서, M2는 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B, 및 Mo로 이루어진 군에서 선택되는 1종 이상의 원소이고, B는 F, Cl, Br, I, At 및 S로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 0≤x≤0.3, 0.50≤y<1, 0<z<0.35, 0<w<0.35, 0≤v≤0.1, 0≤p≤0.1임.In Formula 2, M 2 is at least one element selected from the group consisting of W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, In, La, Sr, Ga, Sc, Gd, B, at least one element selected from the group consisting of Nb, Mg, B and Mo; B is at least one element selected from the group consisting of F, Cl, Br, I, At and S; 0.50? Y <1, 0 <z <0.35, 0 <w <0.35, 0? V? 0.1, 0? P?
  5. 제1항에 있어서,The method according to claim 1,
    상기 제1양극 활물질 및 제2양극 활물질이 10 : 90 내지 90 : 10의 중량비율로 포함되는 리튬이차전지. Wherein the first cathode active material and the second cathode active material are contained in a weight ratio of 10:90 to 90:10.
  6. 제1항에 있어서,The method according to claim 1,
    상기 양극은 평균 입경(D50)이 상이한 대입경 입자와 소입경 입자를 포함하는 바이모달(bimodal) 입경 분포를 갖는 양극 활물질을 포함하는 것인 리튬이차전지.Wherein the positive electrode includes a positive electrode active material having a bimodal particle diameter distribution including large diameter particles and small particle diameter particles having different average particle diameters (D50).
  7. 제6항에 있어서, The method according to claim 6,
    상기 제1양극 활물질이 상기 소입경 입자이고, 상기 제2양극 활물질이 상기 대입경 입자인 리튬이차전지.Wherein the first positive electrode active material is the small particle size particle and the second positive electrode active material is the large diameter particle.
  8. 제6항에 있어서,The method according to claim 6,
    상기 제1양극 활물질이 상기 대입경 입자이고, 상기 제2양극 활물질이 상기 소입경 입자인 리튬이차전지.Wherein the first cathode active material is the large particle particle and the second cathode active material is the small particle particle.
  9. 제6항에 있어서,The method according to claim 6,
    상기 제1양극활물질 및 제2양극 활물질 중 적어도 하나 이상이 상기 대입경 입자 및 상기 소입경 입자를 포함하는 바이모달 입경 분포를 갖는 것인 리튬이차전지.Wherein at least one of the first cathode active material and the second cathode active material has a bimodal particle size distribution including the large-diameter particles and the small particle size particles.
  10. 제1항에 있어서,The method according to claim 1,
    상기 양극은 양극 집전체, 상기 양극 집전체 상에 형성되는 제1양극 활물질층 및 상기 제1양극 활물질층 상에 형성되는 제2양극 활물질층을 포함하는 리튬이차전지.Wherein the positive electrode comprises a positive electrode collector, a first positive electrode active material layer formed on the positive electrode collector, and a second positive electrode active material layer formed on the first positive electrode active material layer.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 제1양극활물질과 상기 제2양극활물질이 서로 다른 층(layer)에 포함되는 것인 리튬이차전지.Wherein the first cathode active material and the second cathode active material are contained in different layers.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 제1양극 활물질층과 제2양극 활물질층은 조성이 상이한 것인 리튬이차전지.Wherein the first cathode active material layer and the second cathode active material layer have different compositions.
  13. 제10항에 있어서,11. The method of claim 10,
    상기 제1양극활물질층은 상기 제1양극 활물질을 제1양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%으로 포함하고, Wherein the first cathode active material layer comprises the first cathode active material in an amount of 50 to 100% by weight of the total cathode active material contained in the first cathode active material layer,
    상기 제2양극활물질층은 상기 제2양극 활물질을 제2양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%으로 포함하는 것인 리튬이차전지.Wherein the second cathode active material layer comprises 50 to 100% by weight of the second cathode active material in the total cathode active material contained in the second cathode active material layer.
  14. 제10항에 있어서,11. The method of claim 10,
    상기 제1양극활물질층은 상기 제2양극 활물질을 제1양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%으로 포함하고, Wherein the first cathode active material layer comprises 50 to 100% by weight of the second cathode active material in the total cathode active material contained in the first cathode active material layer,
    상기 제2양극활물질층은 상기 제1양극 활물질을 제2양극활물질층에 포함되는 전체 양극 활물질 중 50 내지 100 중량%으로 포함하는 것인 리튬이차전지.Wherein the second cathode active material layer comprises 50 to 100% by weight of the first cathode active material in the total cathode active material contained in the second cathode active material layer.
  15. 제10항에 있어서, 11. The method of claim 10,
    상기 제1양극 활물질층 및 상기 제2양극 활물질층은 바인더를 포함하며,Wherein the first cathode active material layer and the second cathode active material layer include a binder,
    상기 제1양극 활물질층은 바인더를 1 내지 4중량%의 함량으로 포함하고, Wherein the first cathode active material layer contains the binder in an amount of 1 to 4 wt%
    상기 제2양극 활물질층은 바인더를 3중량% 이하의 함량으로 포함하는 것인 리튬이차전지. And the second cathode active material layer contains a binder in an amount of 3 wt% or less.
  16. 제1항에 있어서,The method according to claim 1,
    상기 음극은 인조 흑연 및 연화 탄소를 50 : 50 내지 95 : 5의 중량비율로 포함하는 것인 리튬이차전지.Wherein the negative electrode comprises artificial graphite and softened carbon in a weight ratio of 50:50 to 95: 5.
  17. 제1항에 있어서, The method according to claim 1,
    상기 음극은 인조 흑연 및 천연 흑연을 50 : 50 내지 95 : 5의 중량비율로 포함하는 것인 리튬이차전지.Wherein the negative electrode comprises artificial graphite and natural graphite in a weight ratio of 50:50 to 95: 5.
  18. 제1항에 있어서,The method according to claim 1,
    상기 천연 흑연은 비표면적(BET)이 2 내지 5m2/g인 리튬이차전지.The natural graphite has a specific surface area (BET) of 2 to 5 m 2 / g.
  19. 제1항에 있어서,The method according to claim 1,
    상기 연화 탄소는 비표면적(BET)이 7 내지 10m2/g인 리튬이차전지.The softened carbon has a specific surface area (BET) of 7 to 10 m 2 / g.
  20. 제1항에 있어서,The method according to claim 1,
    상기 음극은 음극 집전체, 상기 음극 집전체 상에 형성되는 제1음극 활물질층, 및 상기 제1음극 활물질층 상에 형성되는 제2음극 활물질층을 포함하는 것인 리튬이차전지.Wherein the negative electrode comprises a negative electrode collector, a first negative electrode active material layer formed on the negative electrode collector, and a second negative electrode active material layer formed on the first negative electrode active material layer.
PCT/KR2018/013411 2017-11-06 2018-11-06 Lithium secondary battery WO2019088807A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18872343.1A EP3683873B1 (en) 2017-11-06 2018-11-06 Lithium secondary battery
JP2020541634A JP7047217B2 (en) 2017-11-06 2018-11-06 Lithium secondary battery
US16/757,893 US20200343536A1 (en) 2017-11-06 2018-11-06 Lithium Secondary Battery
CN201880066173.XA CN111213264B (en) 2017-11-06 2018-11-06 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170146924 2017-11-06
KR10-2017-0146924 2017-11-06
KR10-2018-0135104 2018-11-06
KR1020180135104A KR102460353B1 (en) 2017-11-06 2018-11-06 Lithium secondary battery

Publications (2)

Publication Number Publication Date
WO2019088807A2 true WO2019088807A2 (en) 2019-05-09
WO2019088807A3 WO2019088807A3 (en) 2019-06-20

Family

ID=66332220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013411 WO2019088807A2 (en) 2017-11-06 2018-11-06 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2019088807A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795940A (en) * 2019-09-10 2021-12-14 株式会社Lg新能源 Positive electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
CN114497442A (en) * 2022-01-17 2022-05-13 东莞新能安科技有限公司 Electrochemical device and electronic device
JP2022087470A (en) * 2020-12-01 2022-06-13 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material, and nonaqueous electrolyte secondary battery including the positive electrode active material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801637B1 (en) * 2006-05-29 2008-02-11 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Containing Them
KR101669113B1 (en) * 2012-05-08 2016-10-25 삼성에스디아이 주식회사 Composite cathode active material, and cathode and lithium battery containing the material
KR101577889B1 (en) * 2013-01-25 2015-12-16 주식회사 엘지화학 Anode active material for lithium secondary battery and anode comprising the same
JP6137647B2 (en) * 2013-07-26 2017-05-31 エルジー・ケム・リミテッド Positive electrode active material and method for producing the same
KR101684276B1 (en) * 2013-09-06 2016-12-08 주식회사 엘지화학 Electrode having multi layered active material layer, preparation method thereof and electrochemical cell containing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795940A (en) * 2019-09-10 2021-12-14 株式会社Lg新能源 Positive electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
JP2022087470A (en) * 2020-12-01 2022-06-13 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material, and nonaqueous electrolyte secondary battery including the positive electrode active material
JP7275092B2 (en) 2020-12-01 2023-05-17 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery comprising said positive electrode active material
CN114497442A (en) * 2022-01-17 2022-05-13 东莞新能安科技有限公司 Electrochemical device and electronic device

Also Published As

Publication number Publication date
WO2019088807A3 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2019088805A2 (en) Lithium manganese positive electrode active material having spinel structure, and positive electrode and lithium secondary battery comprising same
WO2019216694A1 (en) Cathode active material for lithium secondary battery, production method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery comprising same
WO2012148157A9 (en) Positive electrode active material for a rechargeable lithium battery, method for preparing same and rechargeable lithium battery including same
WO2019078503A1 (en) Cathode material for lithium secondary battery, fabrication method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2020111543A1 (en) Octahedral lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery including same
WO2010030131A2 (en) Positive electrode active substance for lithium secondary battery
WO2019117531A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
WO2019088807A2 (en) Lithium secondary battery
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2017095133A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2018236168A1 (en) Lithium secondary battery
WO2019088806A1 (en) Positive electrode material comprising lithium manganese positive electrode active material having spinel structure, positive electrode and lithium secondary battery
WO2022031116A1 (en) Positive electrode active material precursor and method for preparing same
WO2020180160A1 (en) Lithium secondary battery
WO2022039576A1 (en) Cathode active material preparation method
WO2017095152A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2022119313A1 (en) Positive electrode active material precursor, method for manufacturing same, and positive electrode active material
WO2022182162A1 (en) Cathode active material, cathode comprising same, and secondary battery
WO2021125898A2 (en) Cathode active material and lithium secondary battery comprising same
WO2020180125A1 (en) Lithium secondary battery
WO2022010281A1 (en) Nonaqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2022139516A1 (en) Positive electrode active material, method for manufacturing same, positive electrode material comprising same, positive electrode, and lithium secondary battery
WO2023224447A1 (en) Positive electrode active material precursor, method for preparing positive electrode active material by using same, and positive electrode active material
WO2022015072A1 (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
WO2022119158A1 (en) Cathode active material and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872343

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020541634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872343

Country of ref document: EP

Effective date: 20200416