WO2020095964A1 - Rubber composition, vulcanized object, and vulcanized molded object - Google Patents

Rubber composition, vulcanized object, and vulcanized molded object Download PDF

Info

Publication number
WO2020095964A1
WO2020095964A1 PCT/JP2019/043557 JP2019043557W WO2020095964A1 WO 2020095964 A1 WO2020095964 A1 WO 2020095964A1 JP 2019043557 W JP2019043557 W JP 2019043557W WO 2020095964 A1 WO2020095964 A1 WO 2020095964A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
chloroprene
rubber
monomer
parts
Prior art date
Application number
PCT/JP2019/043557
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 砂田
敦典 近藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2020095964A1 publication Critical patent/WO2020095964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene

Definitions

  • the present invention relates to a rubber composition, a vulcanized product and a vulcanized molded product.
  • Chloroprene rubber is excellent in ozone resistance and chemical resistance, and by utilizing its characteristics, it is used in a wide range of fields such as automobile parts, adhesives, and various industrial rubber parts. Further, in recent years, the performance required for industrial rubber parts has remarkably increased, and in addition to the above-mentioned improvement in ozone resistance and chemical resistance, excellent rubber processing stability, heat resistance, compression set, etc. It has been demanded.
  • JP-A-11-323020 Japanese Patent No. 4092270
  • An object of one aspect of the present invention is to provide a rubber composition capable of obtaining a vulcanized molded article having excellent mechanical strength, heat resistance, oil resistance and cold resistance.
  • Another aspect of the present invention is to provide a vulcanized product and a vulcanized molded product of the rubber composition.
  • One aspect of the present invention comprises 100 parts by mass of chloroprene rubber, 20 to 80 parts by mass of carbon black, and 0.2 to 30 parts by mass of zinc powder, wherein the chloroprene rubber is an unsaturated nitrile unit amount.
  • a rubber composition having 3 to 20% by mass of a body-derived structural unit and having an average stacking height LC of 2 nm or more in the C-axis direction of the layer plane in the crystal lattice of the carbon black.
  • Another aspect of the present invention provides a vulcanized product of the above rubber composition.
  • Another aspect of the present invention provides a vulcanized molded product of the above rubber composition.
  • vulcanization molding in the field of chloroprene rubber, vulcanization molding that improves mechanical strength, heat resistance, oil resistance and cold resistance at the same time and is excellent in mechanical strength, heat resistance, oil resistance and cold resistance.
  • a rubber composition for obtaining a body can be provided.
  • a vulcanized product and a vulcanized molded product of the rubber composition can be provided.
  • These rubber compositions, vulcanized products, and vulcanized molded products include transmission belts, conveyor belts, hoses, wipers, sealing materials (packings, gaskets, etc.), rolls, air springs, vibration damping materials, adhesives, boots, rubbers. It can be used as a material for rubber products used for pulling cloth, sponge, rubber lining and the like.
  • the numerical range indicated by using “to” indicates the range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the materials exemplified in the present specification can be used alone or in combination of two or more kinds.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the rubber composition of the present embodiment is a chloroprene rubber having a structural unit derived from an unsaturated nitrile monomer (unsaturated nitrile monomer unit), a specific carbon black, and a zinc powder. And contain.
  • the rubber composition of the present embodiment contains 100 parts by mass of chloroprene rubber, 20 to 80 parts by mass of carbon black, and 0.2 to 30 parts by mass of zinc powder.
  • the above-mentioned chloroprene rubber has 3 to 20% by mass of structural units derived from an unsaturated nitrile monomer.
  • the average stacking height LC in the C-axis direction of the layer plane in the crystal lattice of the above carbon black is 2 nm or more.
  • the amount of the structural unit derived from the unsaturated nitrile monomer means the amount of the structural unit derived from the unsaturated nitrile monomer in the total amount of the chloroprene rubber contained in the rubber composition of the present embodiment.
  • the rubber composition of the present embodiment contains a plurality of chloroprene-based rubbers having different amounts of structural units derived from unsaturated nitrile monomers, the amount of structural units derived from unsaturated nitrile monomers described above is plural.
  • the average value of the amount of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber The same applies to the amounts of the structural units derived from the chloroprene monomer described below.
  • the chloroprene rubber is obtained by polymerizing a chloroprene monomer (a chloroprene monomer), and has a structural unit derived from the chloroprene monomer (chloroprene monomer unit).
  • the chloroprene rubber in the rubber composition of the present embodiment contains a chloroprene rubber A (chloroprene-unsaturated nitrile copolymer) obtained by copolymerizing a chloroprene monomer and an unsaturated nitrile monomer.
  • the chloroprene rubber A has a structural unit derived from a chloroprene monomer (chloroprene monomer unit) and a structural unit derived from an unsaturated nitrile monomer (unsaturated nitrile monomer unit).
  • the unsaturated nitrile monomer may, for example, be acrylonitrile, methacrylonitrile, ethacrylonitrile or phenylacrylonitrile.
  • the unsaturated nitrile monomer is preferably acrylonitrile (acrylonitrile monomer) from the viewpoint of easy production and excellent oil resistance.
  • the unsaturated nitrile monomer may be used alone or in combination of two or more.
  • the amount (copolymerization amount) of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber is 3 to 20 mass% based on the total amount of the chloroprene rubber contained in the rubber composition of the present embodiment. If the amount of the structural unit derived from the unsaturated nitrile monomer is less than 3% by mass, the oil resistance of the obtained vulcanized product and vulcanized molded product will not be improved. When the amount of the structural unit derived from the unsaturated nitrile monomer exceeds 20% by mass, the cold resistance of the obtained vulcanized product and vulcanized molded product decreases.
  • the amount of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably from the viewpoint of easily obtaining excellent oil resistance. Is 8% by mass or more, particularly preferably 9% by mass or more, and most preferably 10% by mass or more.
  • the amount of the structural unit derived from the unsaturated nitrile monomer is preferably less than 20% by mass, more preferably 17% by mass or less, and further preferably 15% by mass, from the viewpoint of easily obtaining excellent cold resistance. Or less, particularly preferably 12% by mass or less, and very preferably 10% by mass or less.
  • the amount of the structural unit derived from the unsaturated nitrile monomer is preferably 5 to 17% by mass, more preferably 9 to 17% by mass.
  • the amount of the structural unit derived from the unsaturated nitrile monomer may be preferably more than 10% by mass, more preferably 12% by mass or more, and further preferably 15 from the viewpoint of easily obtaining excellent mechanical strength. It is at least mass%, particularly preferably at least 18 mass%.
  • the amount of the structural unit derived from the unsaturated nitrile monomer is preferably less than 10% by mass, more preferably 8% by mass or less, and further preferably 6% by mass from the viewpoint that further excellent cold resistance can be easily obtained. % Or less, particularly preferably 5% by mass or less.
  • the amount of the structural unit derived from the unsaturated nitrile monomer contained in the chloroprene rubber can be calculated from the content of nitrogen atom in the polymer. Specifically, the content of nitrogen atoms in 100 mg of chloroprene rubber was measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Service Co., Ltd.), and the amount of structural units derived from unsaturated nitrile monomer was measured. Can be calculated. The elemental analysis can be performed under the following conditions.
  • the electric furnace temperature is set to 900 ° C.
  • the reduction furnace is 600 ° C.
  • the column temperature is 70 ° C.
  • the detector temperature is 100 ° C.
  • oxygen is 0.2 ml / min as a combustion gas
  • helium is 80 ml / min as a carrier gas.
  • the calibration curve can be prepared using aspartic acid (10.52%) having a known nitrogen content as a standard substance.
  • the amount of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber A is preferably within the following range based on the total amount of the chloroprene rubber A.
  • the amount of the structural unit derived from the unsaturated nitrile monomer is preferably 3% by mass or more, more preferably 4% by mass or more, and further preferably 5% by mass or more, from the viewpoint of easily obtaining excellent oil resistance. It is particularly preferably at least 7% by mass, very preferably at least 8% by mass, very preferably at least 9% by mass, and even more preferably at least 10% by mass.
  • the amount of the structural unit derived from the unsaturated nitrile monomer is preferably 40% by mass or less, more preferably 35% by mass or less, further preferably 30% by mass or less, particularly preferably from the viewpoint of easily obtaining excellent cold resistance. Is 25% by mass or less, very preferably 20% by mass or less, very preferably less than 20% by mass, still more preferably 17% by mass or less, further preferably 15% by mass or less, particularly preferably 12% by mass or less. % Or less, very preferably less than 11% and very preferably 10% or less. From these viewpoints, the amount of the structural unit derived from the unsaturated nitrile monomer is preferably 3 to 40% by mass, more preferably 4 to 40% by mass.
  • the amount of the structural unit derived from the unsaturated nitrile monomer may be preferably more than 10% by mass, more preferably 12% by mass or more, and further preferably 15 from the viewpoint of easily obtaining excellent mechanical strength. It is at least mass%, particularly preferably at least 18 mass%.
  • the amount of the structural unit derived from the unsaturated nitrile monomer is preferably less than 10% by mass, more preferably 8% by mass or less, and further preferably 6% by mass from the viewpoint that further excellent cold resistance can be easily obtained. % Or less, particularly preferably 5% by mass or less.
  • the chloroprene rubber A may have structural units derived from unsaturated nitrile monomers in the respective amounts described above in the main chain.
  • the amount of structural units derived from the chloroprene monomer in the chloroprene rubber is preferably within the following range based on the total amount of the chloroprene rubber.
  • the amount of the structural unit derived from the chloroprene monomer is preferably 80% by mass or more, more preferably more than 80% by mass, further preferably 83% by mass or more, from the viewpoint of easily obtaining excellent cold resistance. Is more preferable, 85% by mass or more is very preferable, 88% by mass or more is very preferable, 89% by mass or more is very preferable, and 90% by mass or more is even more preferable.
  • the amount of the structural unit derived from the chloroprene monomer is preferably 97% by mass or less, more preferably 95% by mass or less, and further preferably 93% by mass or less, from the viewpoint that excellent oil resistance is easily obtained. %, Particularly preferably 92% by mass or less, very preferably 91% by mass or less, and very preferably 90% by mass or less. From these viewpoints, the amount of the structural unit derived from the chloroprene monomer is preferably 80 to 97 mass%. The amount of the structural unit derived from the chloroprene monomer is preferably less than 90% by mass, more preferably 88% by mass or less, and further preferably 85% by mass or less, from the viewpoint that more excellent cold resistance can be easily obtained.
  • the amount of the structural unit derived from the chloroprene monomer is preferably 90% by mass or more, more preferably 92% by mass or more, and further preferably 94% by mass, from the viewpoint of easily obtaining excellent mechanical strength. It is above, and particularly preferably 95% by mass or more.
  • the amount of structural units derived from chloroprene monomer for example, when the chloroprene rubber is composed of structural units derived from chloroprene monomer and structural units derived from unsaturated nitrile monomer, from the total amount of chloroprene rubber It can be obtained by subtracting the amount of the structural unit derived from the unsaturated nitrile monomer.
  • the amount of the structural unit derived from the chloroprene monomer in the chloroprene rubber A is preferably in the following range based on the total amount of the chloroprene rubber A.
  • the amount of the structural unit derived from the chloroprene monomer is preferably 60% by mass or more, more preferably 65% by mass or more, and further preferably 70% by mass or more, from the viewpoint of easily obtaining excellent cold resistance. Yes, particularly preferably 75% by mass or more, very preferably 80% by mass or more, very preferably more than 80% by mass, even more preferably 83% by mass or more, further preferably 85% by mass. % Or more, particularly preferably 88% by mass or more, very preferably more than 89% by mass, and very preferably 90% by mass or more.
  • the amount of the structural unit derived from the chloroprene monomer is preferably 97% by mass or less, more preferably 96% by mass or less, and further preferably 95% by mass or less, from the viewpoint that excellent oil resistance is easily obtained. %, Particularly preferably 93% by mass or less, very preferably 92% by mass or less, very preferably 91% by mass or less, and even more preferably 90% by mass or less. From these viewpoints, the amount of the structural unit derived from the chloroprene monomer is preferably 60 to 97% by mass, more preferably 60 to 96% by mass.
  • the amount of the structural unit derived from the chloroprene monomer is preferably 90% by mass or more, more preferably 92% by mass or more, and further preferably 94% by mass, from the viewpoint that further excellent cold resistance can be easily obtained. More preferably, it is 95 mass% or more.
  • the amount of the structural unit derived from the chloroprene monomer is preferably less than 90% by mass, more preferably 88% by mass or less, and further preferably 85% by mass or less, from the viewpoint of easily obtaining excellent mechanical strength. And particularly preferably 82% by mass or less.
  • the chloroprene rubber A may have structural units derived from the above-mentioned amounts of the chloroprene monomer in the main chain.
  • the monomer copolymerizable with the chloroprene monomer is not limited to the unsaturated nitrile monomer.
  • Examples of monomers copolymerizable with the chloroprene monomer include 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, styrene, isoprene, butadiene, acrylic acid, and acrylic acid esters. And methacrylic acid, esters of methacrylic acid, and the like.
  • the amount of structural units derived from 1-chloro-1,3-butadiene contained in the chloroprene rubber may be less than 1% by mass based on the total amount of the chloroprene rubber.
  • the chloroprene rubber in the rubber composition of the present embodiment may include chloroprene rubber B having no structural unit derived from an unsaturated nitrile monomer.
  • the chloroprene-based rubber may be a mixture containing chloroprene-based rubber A and chloroprene-based rubber B (for example, a mixture of chloroprene-based rubber A and chloroprene-based rubber B).
  • the amount of the structural unit derived from the chloroprene monomer in the chloroprene rubber B is determined from the viewpoint that a vulcanized product and a vulcanized molded article having excellent mechanical strength, heat resistance, oil resistance and cold resistance can be easily obtained. Based on the total amount of B, preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more, and very preferably 99% by mass or more. It is at least mass%.
  • the structural units constituting the chloroprene rubber B are substantially composed of structural units derived from the chloroprene monomer (substantially 100% by mass of the structural units constituting the chloroprene rubber B are structural units derived from the chloroprene monomer).
  • the chloroprene rubber B may have structural units derived from the above-mentioned amounts of the chloroprene monomer in the main chain.
  • the chloroprene-based rubber in the rubber composition of the present embodiment is, as one aspect X, a chloroprene-based rubber A having 4 to 40% by mass of a structural unit derived from an unsaturated nitrile monomer, and an unsaturated nitrile monomer-derived rubber. It is preferable to include chloroprene rubber B having no structural unit.
  • the chloroprene rubber A may have 4 to 40% by mass of the structural unit derived from the unsaturated nitrile monomer and 60 to 96% by mass of the structural unit derived from the chloroprene monomer.
  • the chloroprene rubber A may have a structural unit derived from a monomer copolymerizable with the chloroprene monomer as a structural unit other than the structural unit derived from the unsaturated nitrile monomer.
  • the monomer copolymerizable with the chloroprene monomer the above-mentioned monomers can be used.
  • the chloroprene rubber B may have a structural unit derived from a chloroprene monomer of 80 to 100% by mass, and the structural unit derived from the chloroprene monomer is 80% by mass or more and less than 100% by mass, It may have a structural unit derived from a monomer copolymerizable with the chloroprene monomer in an amount of more than 0% by mass and 20% by mass or less.
  • the monomer copolymerizable with the chloroprene monomer the above-mentioned monomers can be used.
  • the amount of the structural unit derived from the chloroprene monomer in the chloroprene rubber B in the embodiment X each of the preferable ranges described above for the chloroprene rubber B can be used.
  • the polymer structure of the chloroprene copolymer having a structural unit derived from a chloroprene monomer and a structural unit derived from a monomer copolymerizable with the chloroprene monomer is not particularly limited, and a block copolymer Alternatively, it may be a statistical copolymer.
  • a statistical copolymer of a chloroprene monomer and an unsaturated nitrile monomer can be produced, for example, by continuously adding the chloroprene monomer or intermittently adding 10 times or more after the initiation of the polymerization reaction. At that time, the time at the start of the polymerization reaction is set to t (0), and n is an integer of 1 or more.
  • the following Mayo-Lewis formula (I) shows that the chloroprene monomer and acrylonitrile at the start of polymerization are
  • the ratio is d [M1] / d [M2] and the chloroprene monomer is M1 defined in the following Mayo-Lewis formula (I)
  • the reactivity ratios r1 and r2 are r0.
  • the range of 3 to 3000 and the range of r2 of 10 ⁇ 5 to 3.0 are preferable for obtaining the statistical copolymer.
  • the number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the chloroprene rubber (for example, chloroprene rubber A) contained in the rubber composition of the present embodiment are mechanical strength and heat resistance. From the viewpoint of easily obtaining a vulcanized product and a vulcanized molded article having excellent oil resistance and cold resistance, the following range is preferable.
  • the number average molecular weight, the weight average molecular weight and the molecular weight distribution can be measured by the methods described in Examples below.
  • the number average molecular weight is preferably 100 ⁇ 10 3 or more, more preferably 110 ⁇ 10 3 or more, further preferably 120 ⁇ 10 3 or more, and particularly preferably 130 ⁇ 10 3 or more.
  • the number average molecular weight is preferably 300 ⁇ 10 3 or less, more preferably 200 ⁇ 10 3 or less, further preferably 150 ⁇ 10 3 or less, and particularly preferably 140 ⁇ 10 3 or less. From these viewpoints, the number average molecular weight is preferably 100 ⁇ 10 3 to 300 ⁇ 10 3 .
  • the weight average molecular weight is preferably 200 ⁇ 10 3 or more, more preferably 300 ⁇ 10 3 or more, further preferably 350 ⁇ 10 3 or more, particularly preferably 400 ⁇ 10 3 or more, and very preferably Is 450 ⁇ 10 3 or more.
  • the weight average molecular weight is preferably 1000 ⁇ 10 3 or less, more preferably 800 ⁇ 10 3 or less, further preferably 600 ⁇ 10 3 or less, particularly preferably 500 ⁇ 10 3 or less, and very preferably Is 480 ⁇ 10 3 or less. From these viewpoints, the weight average molecular weight is preferably 200 ⁇ 10 3 to 1000 ⁇ 10 3 .
  • the molecular weight distribution is preferably 2 or more, more preferably 2.5 or more, even more preferably 3 or more, particularly preferably 3.1 or more, and most preferably 3.2 or more.
  • the molecular weight distribution is preferably 4 or less, more preferably 3.8 or less, further preferably 3.5 or less, and particularly preferably 3.4 or less. From these viewpoints, the molecular weight distribution is preferably 2-4.
  • Chloroprene rubber can be obtained by, for example, emulsion polymerization.
  • the polymerization initiator used in emulsion polymerization is not particularly limited, and known polymerization initiators generally used in emulsion polymerization of chloroprene monomer can be used.
  • Examples of the polymerization initiator include organic peroxides such as potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, and t-butyl hydroperoxide.
  • the emulsifier used in emulsion polymerization is not particularly limited, and a known emulsifier generally used in emulsion polymerization of chloroprene monomer can be used.
  • a known emulsifier generally used in emulsion polymerization of chloroprene monomer can be used.
  • the emulsifier an alkali metal salt of a saturated or unsaturated fatty acid having 6 to 22 carbon atoms, an alkali metal salt of rosin acid or disproportionated rosin acid (eg potassium rosinate), a formalin condensate of ⁇ -naphthalenesulfonic acid Alkali metal salts (for example, sodium salts) of
  • the molecular weight modifier used in emulsion polymerization is not particularly limited, and known molecular weight modifiers generally used in emulsion polymerization of chloroprene monomer can be used.
  • the molecular weight modifier include long-chain alkyl mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan and n-octyl mercaptan; xanthogen compounds such as diisopropylxanthogen disulfide and diethylxanthogen disulfide; iodoform; benzyl 1-pyrrole dithiocarbamate (alias) Benzyl 1-pyrrole carbodithioate), benzyl phenyl carbodithioate, 1-benzyl-N, N-dimethyl-4-aminodithiobenzoate, 1-benzyl-4-methoxydithiobenzoate, 1-phenyleth
  • the polymerization temperature and the final conversion rate of the monomer are not particularly limited, but the polymerization temperature is preferably 0 to 50 ° C, more preferably 20 to 50 ° C. It is preferable to carry out the polymerization so that the final conversion rate of the monomer falls within the range of 40 to 95% by mass.
  • the polymerization may be stopped by adding a polymerization inhibitor that stops the polymerization reaction when the desired conversion rate is reached.
  • the polymerization inhibitor is not particularly limited, and known polymerization inhibitors generally used in emulsion polymerization of chloroprene monomer can be used.
  • the polymerization inhibitor include phenothiazine (thiodiphenylamine), 4-tert-butylcatechol, and 2,2-methylenebis-4-methyl-6-tert-butylphenol.
  • the chloroprene rubber can be obtained, for example, by removing unreacted monomers by a steam stripping method, adjusting the pH of the latex, and then subjecting it to conventional freeze-coagulation, water washing, hot-air drying and other steps. ..
  • Chloroprene rubber is classified into mercaptan modified chloroprene rubber, xanthogen modified chloroprene rubber, sulfur modified chloroprene rubber, dithiocarbonate chloroprene rubber, trithiocarbonate chloroprene rubber and carbamate chloroprene rubber depending on the type of molecular weight modifier.
  • the above chloroprene rubber can be obtained by the above chloroprene rubber polymerization method, and the above chloroprene rubber A can be obtained by polymerizing without adding an unsaturated nitrile monomer.
  • a kneading device such as a conventionally known mixer, Banbury mixer, kneader mixer, or two roll can be used.
  • the rubber composition of this embodiment contains carbon black.
  • the rubber composition of the present embodiment contains carbon black (hereinafter, referred to as “specific carbon black”) having an average stacking height LC in the C-axis direction of the layer plane in the crystal lattice (crystallite) of 2 nm or more. If the average stacking height LC is less than 2 nm, the heat resistance of the vulcanized product and vulcanized molded product obtained by vulcanizing the rubber composition is not sufficient.
  • the average stacking height LC is preferably 2.5 nm or more from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded article having excellent heat resistance.
  • the average stacking height LC can be obtained by X-ray diffraction.
  • Lc (nm) ((K ⁇ ⁇ ) / ( ⁇ ⁇ cos ⁇ )) / 10.
  • K is a form factor constant of 0.9
  • is an X-ray wavelength of 0.154 nm
  • is an angle indicating a maximum value in the (002) diffraction line absorption band
  • is a half value in the (002) diffraction line absorption band.
  • the average particle size of the specific carbon black is preferably 60 nm or less from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance.
  • the average particle size of the specific carbon black is a value measured using an electron microscope in accordance with JIS Z8901.
  • the DBP (dibutyl phthalate) oil absorption of the specific carbon black is 100 to 350 ml / 100 g from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance. 120 to 300 ml / 100 g is more preferable, and 140 to 300 ml / 100 g is further preferable.
  • the specific carbon black has an average particle size of 60 nm or less, and a DBP oil absorption of these, from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance. The range is preferably.
  • the DBP oil absorption of the specific carbon black is a value measured by the oil absorption A method of JIS K 6217-4.
  • the rubber composition of the present embodiment may contain carbon black other than carbon black having an average stacking height LC of 2 nm or more in the C-axis direction of the layer plane in the crystal lattice, if necessary.
  • carbon black various carbon blacks conventionally used for rubber can be used.
  • thermal black by thermal decomposition method acetylene black, etc., furnace black by incomplete combustion method, channel black, etc.
  • acetylene black is a carbon black obtained by thermally decomposing acetylene gas, has a remarkable degree of crystallization, has a highly developed structure, and has a large oil absorption.
  • the specific carbon black is preferably acetylene black from the viewpoint of having a great effect of improving the heat resistance of the vulcanized product of the rubber composition and the vulcanized molded product.
  • the content of the specific carbon black is 20 to 80 parts by mass with respect to 100 parts by mass of the chloroprene rubber. If the content of the specific carbon black exceeds 80 parts by mass, scorch is likely to occur due to a decrease in processability, and a vulcanized molded product cannot be obtained. Further, the cold resistance of the vulcanized product and the vulcanized molded product is reduced. If the content of the specific carbon black is less than 20 parts by mass, the heat resistance of the vulcanized product and the vulcanized molded product will decrease.
  • the content of the specific carbon black is preferably in the following range with respect to 100 parts by mass of the chloroprene rubber. From the viewpoint of easily obtaining excellent mechanical strength and heat resistance, the content of the specific carbon black is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 35 parts by mass or more. It is particularly preferably 40 parts by mass or more.
  • the content of the specific carbon black is preferably less likely to cause scorch because the deterioration of the processability is easily suppressed, a vulcanized molded body is easily obtained, and, from the viewpoint of easily obtaining excellent heat resistance and cold resistance, preferably It is 70 parts by mass or less, more preferably 60 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 40 parts by mass or less. From these viewpoints, the content of the specific carbon black is preferably 25 to 70 parts by mass.
  • the content of the specific carbon black is the content of the carbon black (included in the rubber composition from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded article having excellent mechanical strength, heat resistance, oil resistance and cold resistance. Based on the total amount of carbon black), it is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more, and very preferably Is 99% by mass or more. It may be an aspect in which the carbon black is substantially composed of the specific carbon black (substantially 100% by mass of the carbon black is the specific carbon black).
  • the content of carbon black (the total amount of carbon black contained in the rubber composition) is preferably in the following range with respect to 100 parts by mass of the chloroprene rubber.
  • the content of carbon black is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, further preferably 30 parts by mass or more, from the viewpoint of easily obtaining excellent mechanical strength and heat resistance. It is particularly preferably 35 parts by mass or more, and most preferably 40 parts by mass or more.
  • the content of carbon black is preferably 80, from the viewpoint that scorch is unlikely to occur because a decrease in processability is easily suppressed, a vulcanized molded body is easily obtained, and that excellent heat resistance and cold resistance are easily obtained.
  • the amount is not more than 70 parts by mass, more preferably not more than 70 parts by mass, further preferably not more than 60 parts by mass, particularly preferably not more than 50 parts by mass, and most preferably not more than 40 parts by mass.
  • the content of carbon black is preferably 20 to 80 parts by mass, more preferably 25 to 70 parts by mass.
  • the rubber composition of the present embodiment contains zinc powder.
  • the particle size of the zinc powder is preferably 200 mesh.
  • the content of zinc powder is 0.2 to 30 parts by mass with respect to 100 parts by mass of chloroprene rubber. If the content of the zinc powder is less than 0.2 parts by mass, the heat resistance of the vulcanized product and the vulcanized molded product will not be sufficiently improved. When the content of the zinc powder exceeds 30 parts by mass, the mechanical properties of the vulcanized product and the vulcanized molded product deteriorate.
  • the zinc powder content is preferably in the following range with respect to 100 parts by mass of chloroprene rubber.
  • the content of the zinc powder is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 2 parts by mass or more, particularly from the viewpoint of easily obtaining excellent heat resistance. It is preferably 3 parts by mass or more, very preferably 4 parts by mass or more, and very preferably 5 parts by mass or more.
  • the content of the zinc powder is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, further preferably 15 parts by mass or less, and particularly preferably, from the viewpoint of easily obtaining excellent mechanical properties. Is 10 parts by mass or less, and most preferably 5 parts by mass or less. From these viewpoints, the content of zinc powder is preferably 0.5 to 25 parts by mass, more preferably 2 to 20 parts by mass.
  • the rubber composition of the present embodiment may contain various additives (chemicals) usually used in the rubber industry as components other than the chloroprene rubber, carbon black and zinc powder.
  • additives include vulcanizing agents, fillers, reinforcing agents, plasticizers, processing aids, lubricants, antioxidants, silane coupling agents, vulcanization accelerators, scorch inhibitors, and softeners.
  • vulcanizing agent components generally used for vulcanizing chloroprene rubber can be used.
  • vulcanizing agent sulfur; an organic vulcanizing agent such as thiourea-based, guanidine-based, thiuram-based, thiazole-based; a mixture of 3-methylthiazolidinethione-2-thiazole and phenylene dimaleimide; 1,2-dimercapto-1,3,4-thiadiazole derivative; beryllium, magnesium, zinc, calcium, barium, germanium, titanium, tin, zirconium, antimony, vanadium, bismuth, molybdenum, tungsten, tellurium, selenium, iron, nickel
  • metals such as cobalt, cobalt and osmium, oxides and hydroxides.
  • the vulcanizing agents may be used alone or in combination of two or more.
  • a thiourea-based organic vulcanizing agent is preferable.
  • the thiourea-based organic vulcanizing agent include ethylenethiourea, diethylthiourea, trimethylthiourea, triethylthiourea and N, N'-diphenylthiourea, and at least one selected from the group consisting of trimethylthiourea and ethylenethiourea is preferable.
  • the vulcanizing agent at least one selected from the group consisting of calcium oxide, zinc oxide, antimony dioxide, antimony trioxide and magnesium oxide is also preferable from the viewpoint of high vulcanization effect.
  • the content of the vulcanizing agent may be 0.1 to 15 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
  • the filler or reinforcing agent can be used for adjusting the hardness of the rubber composition or improving the mechanical strength.
  • a compound corresponding to a vulcanizing agent can also be used as the filler or the reinforcing agent.
  • silica silica; alumina such as ⁇ -alumina and ⁇ -alumina (Al 2 O 3 ); alumina monohydrate such as boehmite and diaspore (Al 2 O 3 .H 2 O); gibbsite, Aluminum hydroxide [Al (OH) 3 ] such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 2 ]; magnesium hydroxide [Mg (OH) 2 ]; magnesium carbonate (MgCO 3 ); talc (3MgO.4SiO) 2 ⁇ H 2 O); attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O); titanium white (TiO 2 ); titanium black (TiO 2n-1 ); calcium oxide (C
  • the content of the filler or the reinforcing agent may be adjusted according to the physical properties required in the rubber composition, the vulcanized product and the vulcanized molded product, and is not particularly limited.
  • the content of the filler or the reinforcing agent may be 15 to 200 parts by mass based on 100 parts by mass of the chloroprene rubber.
  • the plasticizer is not particularly limited as long as it is compatible with rubber.
  • examples of the plasticizer include vegetable oils such as rapeseed oil, linseed oil, castor oil, and coconut oil; phthalate plasticizers, DUP (diundecyl phthalate), DOS (dioctyl sebacate), DOA (dioctyl adipate), ester plasticizers, Examples include ether ester plasticizers, thioether plasticizers, aromatic oils, naphthene oils, lubricating oils, process oils, petroleum plasticizers such as paraffin, liquid paraffin, petrolatum and petroleum asphalt.
  • the plasticizers may be used alone or in combination of two or more, depending on the properties required in the rubber composition, vulcanized product and vulcanized molded product.
  • the content of the plasticizer is not particularly limited and may be 3 to 50 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
  • a processing aid or a lubricant is used for kneading or vulcanizing and molding a rubber composition so that it can be easily peeled off from a roll, a molding die, a screw of an extruder, or the like.
  • processing aids or lubricants include fatty acids such as stearic acid; paraffin-based processing aids such as polyethylene; and fatty acid amides.
  • the processing aids or lubricants may be used alone or in combination of two or more.
  • the content of the processing aid or the lubricant is not particularly limited and may be 0.5 to 5 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
  • Aging resistance can further improve heat resistance.
  • the anti-aging agent use a primary anti-aging agent that is used for ordinary rubber applications and that traps radicals to prevent autooxidation, and / or a secondary anti-aging agent that detoxifies hydroperoxide.
  • the content of the primary antioxidant, the content of the secondary antioxidant, and / or the content (total amount) of the antioxidant contained in the rubber composition is preferably 100 parts by mass of the chloroprene rubber. Is 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass.
  • the antioxidants can be used alone or in combination of two or more.
  • Examples of primary anti-aging agents include phenolic anti-aging agents, amine anti-aging agents, acrylate anti-aging agents, imidazole anti-aging agents, carbamic acid metal salts and waxes.
  • Examples of the secondary antiaging agent include phosphorus antiaging agents, sulfur antiaging agents, imidazole antiaging agents, and the like.
  • the antiaging agent is not particularly limited, but N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (p-toluenesulfonyl) Amido) diphenylamine, N, N'-di-2-naphthyl-p-phenylenediamine, N, N'-diphenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N-phenyl- N '-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N'-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, 1,1,3-tris- ( 2-Methyl-4-
  • the silane coupling agent can enhance the adhesiveness between the rubber component such as chloroprene rubber and the filler or the reinforcing agent, and further improve the mechanical strength.
  • the silane coupling agent may be added at the time of kneading the rubber composition or may be added in the form of a surface treatment with a filler or a reinforcing agent in advance.
  • the silane coupling agent may be used alone or in combination of two or more.
  • the silane coupling agent is not particularly limited, but is bis- (3-triethoxysilylpropyl) tetrasulfide, bis- (3-trimethoxynylpropyl) tetrasulfide, bis- (3-methyldimethoxysilylpropyl) tetrasulfide.
  • the rubber composition of this embodiment may include a compound represented by the following general formula (1).
  • Examples of the compound represented by the general formula (1) include polyethylene glycol dibenzoate, polyethylene glycol di-2-ethylhexoate, tetraethylene glycol di- (2-ethyl hexoate), polyethylene glycol bis ( 2-ethylhexoate), triethylene glycol dipelargonate, triethylene glycol diheptanoate, triethylene glycol caprate caprylate, tetraethylene glycol diheptanoate and the like.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 20 carbon atoms or a phenyl group, and n represents an integer of 1 to 20.
  • the content of the compound represented by the general formula (1) may be in the following range with respect to 100 parts by mass of the chloroprene rubber.
  • the content of the compound represented by the general formula (1) may be less than 0.1 parts by mass, 0.05 parts by mass or less, or 0.01 parts by mass or less.
  • the content of the compound represented by the general formula (1) may be 0 parts by mass or more, and may exceed 0 parts by mass.
  • the rubber composition of the present embodiment may not contain the compound represented by the general formula (1), and the content may be 0 parts by mass.
  • the rubber composition of the present embodiment can be manufactured by the same method as a normal rubber composition. Specifically, it can be obtained by kneading chloroprene rubber, carbon black, zinc powder and other components with a kneader, a Banbury, a roll or the like at a temperature not higher than the vulcanization temperature.
  • the rubber composition of the present embodiment uses a chloroprene rubber having a specific amount of a structural unit derived from an unsaturated nitrile monomer as a rubber component, and a specific amount of carbon black and zinc powder. Therefore, heat resistance and oil resistance can be improved without lowering mechanical strength and cold resistance. This makes it possible to realize a rubber composition capable of obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance, and cold resistance.
  • the vulcanized product of the present embodiment is a vulcanized product of the rubber composition of the present embodiment described above, and can be obtained by vulcanizing the rubber composition of the present embodiment described above.
  • the method for vulcanizing the rubber composition is not particularly limited, and examples thereof include press vulcanization, injection vulcanization, direct kettle vulcanization, indirect kettle vulcanization, direct steam continuous vulcanization, normal pressure continuous vulcanization, continuous vulcanization. It may be vulcanized by a vulcanizing method such as a vulcanizing press.
  • Vulcanization conditions such as vulcanization temperature and vulcanization time are not particularly limited and can be set as appropriate.
  • the vulcanization temperature is preferably 130 to 200 ° C., more preferably 140 to 190 ° C., from the viewpoint of easily obtaining excellent productivity and processing stability.
  • the vulcanized product of this embodiment uses the rubber composition of this embodiment, it has excellent mechanical strength, heat resistance, oil resistance, and cold resistance.
  • the molded body according to this embodiment is a molded body of the rubber composition according to this embodiment, and can be obtained by molding the rubber composition according to this embodiment into a shape according to the purpose.
  • the vulcanized molded product of the present embodiment is a vulcanized molded product of the rubber composition of the present embodiment.
  • the vulcanized molded article of this embodiment can be obtained by molding the rubber composition of this embodiment into a shape according to the purpose and vulcanizing it during or after molding. It can also be obtained by forming a vulcanized product into a shape suitable for the purpose.
  • the molding method is not particularly limited, but press molding, injection molding, extrusion molding or the like can be applied.
  • the molded body is a transmission belt, a conveyor belt, an air spring, a sealing material (packing, gasket, etc.), a vibration damping material, a hose, a roll, etc.
  • it may be formed by press molding, injection molding, extrusion molding, or the like. it can.
  • the vulcanized molded article of this embodiment uses the rubber composition of this embodiment, it has excellent mechanical strength, heat resistance, oil resistance, and cold resistance.
  • the vulcanized molded article of this embodiment includes a transmission belt, a conveyor belt, a hose, a wiper, a sealing material (packing, gasket, etc.), a roll, an air spring, a vibration isolator, an adhesive, a boot, a rubberized cloth, a sponge, and a rubber. It can be used as a lining.
  • the rubber composition and the vulcanized product of the present embodiment can be used to obtain a vulcanized molded product used for these applications.
  • the vulcanized molded article of the present embodiment is excellent in mechanical strength, heat resistance, oil resistance and cold resistance, and therefore, it can be suitably used in applications where it has been difficult to achieve with conventional CR (chloroprene rubber) and the like. it can.
  • the power transmission belt and the conveyor belt are mechanical elements used in the winding power transmission device, and are parts for transmitting power from the prime mover to the driven car.
  • the power transmission belt and the conveyor belt are often used around a pulley set on a shaft.
  • BACKGROUND ART Transmission belts and conveyor belts are widely used in a wide range of machines such as automobiles, general industrial belts, and various conveyor belts because of their light weight, quietness, and freedom of shaft angle.
  • the types of belts are diversifying, and transmission belts such as flat belts, timing belts, V belts, rib belts, and round belts; conveyor belts are used according to the application of the machine.
  • NR natural rubber
  • SBR styrene-butadiene rubber
  • CR CR
  • NBR Elastomer materials such as nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the transmission belt and the conveyor belt. This makes it possible to manufacture a belt that can be used even in an environment where it is exposed to splashed oil, which was difficult to achieve with conventional CR.
  • the hose is a bendable tube, and is freely bent and used for work (watering, etc.) that requires portability and mobility. Further, since the hose is less likely to cause fatigue fracture due to deformation as compared with a hard pipe (metal pipe or the like), the hose is used for pipes (portion of automobiles and the like) in a portion accompanied by vibration. The most common of these is the rubber hose. Rubber hoses are made of NR, CR, EPDM (ethylene / propylene / diene rubber), SBR, NBR, ACM (acrylic rubber), AEM (ethylene / acrylic rubber), HNBR, ECO (epichlorohydrin rubber), FKM (fluorine rubber), etc.
  • Examples thereof include a water supply hose, an oil supply hose, an air supply hose, a steam hose, a hydraulic high pressure hose, and a hydraulic low pressure hose.
  • CR is mainly used in high-pressure hydraulic hoses because of its good mechanical strength that can withstand the pressure of high-pressure fluid, but it is common to use NBR as the inner layer because of its lack of oil resistance. is there.
  • NBR NBR
  • the oil resistance of CR is insufficient, and improvement is essential.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the hose. This makes it possible to manufacture a hose that is in direct contact with a non-polar liquid, which was difficult to achieve with conventional CR.
  • a wiper For windshields and rear windshields of automobiles, trains, aircraft, ships, construction machines, etc., wipe or remove rainwater, muddy water, oil stains, seawater, ice, snow, dust, etc. adhering to the surface to improve visibility. Therefore, a wiper is usually provided to ensure driving safety.
  • a wiper blade is attached to a portion of the wiper that comes into contact with the glass surface, and NR, CR and the like are used as materials for the conventional wiper blade.
  • CR is used for a wiper for an automobile because it has mechanical strength and durability to withstand repeated deformation, and has excellent wiping properties. However, since CR has insufficient oil resistance, there is a problem that the wiping property deteriorates when the rubber material swells due to oil stains. Therefore, a wiper blade having excellent oil resistance is required in an environment where there is much oil stain.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the wiper. As a result, it is possible to manufacture a wiper that can be used even in an environment where there is much oil stain, which was difficult to achieve with conventional CR.
  • the sealing material is a component that prevents liquid or gas from leaking and prevents dust or foreign matter such as rainwater or dust from entering the inside of the machine, and plays an important role in maintaining the performance of the machine.
  • the sealing material include gaskets used for fixed applications, packing used for moving parts and movable parts, and the like.
  • various elastomers are used as materials for soft gaskets such as O-rings and rubber sheets depending on the purpose.
  • the packing is used for a shaft of a pump or a motor, a rotating part such as a movable part of a valve, a reciprocating part such as a piston, a connecting part of a coupler, and a water stop part of a water faucet.
  • the hydraulic equipment having a relatively low pressure or the oil seal used for sealing the lubricating oil ensures the hermeticity by the elasticity of the elastomer.
  • CR has good mechanical strength and is used as a polar gas or liquid seal material.
  • the CR oil resistance is insufficient for use as a seal material for non-polar liquids such as engine oil or gear oil, and improvement is essential.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the sealing material. This makes it possible to manufacture a non-polar liquid sealant such as engine oil or gear oil, which has been difficult to achieve with conventional CR.
  • Sealing materials for engine head cover gasket, oil pan gasket, oil seal, lip seal packing, O-ring, transmission seal gasket, crankshaft, camshaft seal gasket, valve stem, power steering seal belt cover seal, constant velocity joint examples include boot materials, rack and pinion boot materials, diaphragms, and the like.
  • the roll is manufactured by adhesively coating a metal core such as an iron core with rubber, and is generally manufactured by spirally winding a rubber sheet around a metal iron core.
  • rubber materials such as NBR, EPDM, and CR are used according to the required characteristics of various applications such as papermaking, various metal manufacturing, printing, general industry, agricultural machinery such as hulling, and food processing. .. CR is used in a wide range of roll applications because it has good mechanical strength to withstand the friction of the objects it conveys.
  • the oil resistance is insufficient as a roll used in an environment where oil adheres, such as when manufacturing industrial materials for iron making or paper making, products, etc., and improvement is required. Further, there is a problem that a roll that conveys a heavy load is deformed by a load, and improvement is required.
  • the rubber composition of the present embodiment can improve the mechanical strength and oil resistance of the roll. This makes it possible to manufacture a roll that is used in an environment where oil adheres, which was difficult to achieve with conventional CR.
  • Air spring is a spring device that utilizes the elasticity of compressed air. Used in air suspensions for automobiles, buses, trucks, etc.
  • Examples of the air spring include a bellows type and a sleeve type (a kind of diaphragm type), both of which can increase the air pressure by allowing the piston to enter the air chamber. In some cases, it is used in an environment where it is exposed to splashed oil, and improvement in oil resistance is required.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the air spring. As a result, it is possible to manufacture an air spring that can be used even in an environment where there is much oil stain, which was difficult to achieve with conventional CR.
  • the anti-vibration material is a rubber that prevents the transmission of vibrations, and is used, for example, for the purpose of soundproofing or shock absorption, and for the purpose of preventing the vibration generated from a machine from spreading to the outside.
  • a vibration damping material is used as a constituent material of a torsional damper, an engine mount, a muffler hanger, etc., in order to absorb noise when driving an engine and prevent noise.
  • Natural rubber having excellent vibration damping properties is widely used as the vibration damping material, but CR is used as the vibration damping material used in construction heavy machinery and the like where oil is scattered.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the vibration damping material. As a result, it is possible to manufacture a vibration-proof material (vibration-proof rubber) that can be used even in an environment where oil is scattered, which was difficult to achieve with conventional CR.
  • CR adheresive
  • materials such as civil engineering and construction, plywood, furniture, shoes, wet suits, and automobile interior materials because CR has contact properties and is excellent in initial adhesive strength.
  • CR has excellent initial adhesive strength and heat resistant adhesive strength
  • High aesthetics are required for the interior of automobiles, but the oil resistance of CR is insufficient. Therefore, if splashes of various oils or fuels used in automobiles adhere to the adherend, they may peel off at the interface, The surface of the adherend may be curved. Therefore, an adhesive material having a high oil resistance has been earnestly desired.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the adhesive. This makes it possible to manufacture an adhesive that is superior to the conventional CR.
  • the boot is a member having a bellows shape whose outer diameter gradually increases from one end to the other end, and is a boot for a constant velocity joint cover and a boot for a ball joint cover ( Dust cover boots) and rack and pinion gear boots.
  • CR is often used because physical strength required to withstand large deformation is required.
  • the operating space of boots has been narrowed with the progress of lightweight and compact technology for vehicles, so that the heat removal efficiency is reduced and the thermal environment is becoming more severe. Therefore, it is required to improve the reliability of the non-polar liquid such as oil and grease contained in the boot under a high temperature atmosphere.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the boot. This makes it possible to manufacture a boot that is more reliable than a conventional CR with respect to non-polar liquids such as oil and grease contained therein.
  • the rubberized cloth is a composite material of rubber and cloth woven fabric (fiber) in which rubber is attached to cloth, and is stronger than a rubber sheet, and is excellent in water resistance, airtightness and the like. Utilizing these characteristics, it is widely used for applications such as inflatable boats, tent materials, clothes such as rain fluff, architectural waterproof sheets, and cushioning materials.
  • As the rubber material used for the rubberized cloth CR, NBR, EPDM, etc. are generally used. Among them, CR is widely used for pulling cloths used outdoors such as inflatable boats because it has excellent mechanical strength and weather resistance.
  • the oil resistance is insufficient for use in a rubberized cloth sheet material used in an environment where oil is scattered, such as in an automobile or a construction site, and improvement is required.
  • the rubber composition of this embodiment can enhance the mechanical strength and oil resistance of the rubberized fabric. As a result, it is possible to manufacture a rubberized cloth that can be used even in an environment where oil is scattered, which was difficult to achieve with conventional CR.
  • a sponge is a porous substance with innumerable fine holes inside.
  • the pores can take the form of both open and closed cells.
  • the sponge When the pores are large enough and continuous, the sponge has the property of absorbing the liquid when it is immersed in the liquid and replacing the air in the pores, and releasing the liquid easily when external force is applied. Have. Also, if the pores are small, it can be used as an excellent cushioning material or heat insulating material. Since CR has excellent mechanical strength and rubber elasticity, it is widely used for sponges, and is used for anti-vibration members, sponge seal parts, wet suits, shoes and the like. In any application, improvement of oil resistance is required to prevent swelling deformation, discoloration, etc. due to oil.
  • the rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the sponge. As a result, it is possible to manufacture a sponge that is difficult to achieve with conventional CR and is unlikely to undergo swelling deformation, discoloration, etc. due to oil.
  • the rubber lining is used to prevent corrosion of metal by adhering a rubber sheet to a metal surface such as a pipe or a tank. Rubber linings are also used where electrical or abrasion resistance is required. As the conventional rubber lining, NR, CR, EPDM, SBR and the like are used, but the oil resistance may be insufficient, and it is required to improve the oil resistance.
  • the rubber composition of the present embodiment can improve oil resistance as a rubber lining. As a result, it is possible to prevent the corrosion of the pipe or tank with oil, which is difficult with the conventional rubber material.
  • the polymerization rate of the chloroprene-acrylonitrile copolymer latex was calculated from the dry mass of the chloroprene-acrylonitrile copolymer latex air-dried. Specifically, it was calculated from the following formula (II).
  • the solid content concentration means the concentration of solid content obtained by heating 2 g of sampled chloroprene-acrylonitrile copolymer latex at 130 ° C. and removing volatile components such as solvent (water), volatile chemicals and raw materials [mass %].
  • the total amount charged is the total amount of raw materials, reagents and solvent (water) charged in a polymerization vessel from the start of polymerization to a certain time.
  • the evaporation residue is the mass of the chemicals and raw materials charged from the start of the polymerization to a certain time and remaining as a solid content together with the polymer without being volatilized under the condition of 130 ° C.
  • the monomer charging amount is the total of the amount of the monomer initially charged in the polymerization vessel and the amount of the monomer added by a certain time from the start of polymerization.
  • the "monomer” referred to here is the total amount of the chloroprene monomer and the acrylonitrile monomer.
  • Polymerization rate [%] ⁇ (total charged amount [g] ⁇ solid content concentration [mass%] / 100) ⁇ (evaporation residue [g]) ⁇ / monomer charged amount [g] ⁇ 100 ( II)
  • a sheet was obtained by adjusting the pH of the above-mentioned chloroprene-acrylonitrile copolymer latex to pH 7.0 and freeze-coagulating it on a metal plate cooled to -20 ° C to break the emulsion. This sheet was washed with water and then dried at 130 ° C. for 15 minutes to obtain solid chloroprene rubber 1.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) of the chloroprene rubber 1 were measured at high speed after the chloroprene rubber 1 was made into a solution having a sample adjusted concentration of 0.1 mass% with THF. It was measured by a GPC device (TOSOH HLC-8320GPC: manufactured by Tosoh Corporation) (standard polystyrene conversion).
  • the TSK guard column HHR-H was used as a pre-column, three HSKgel GMHHR-H were used as an analytical column, and the sample pump pressure was 8.0 to 9.5 MPa, the flow rate was 1 ml / min, and the flow rate was 40 ° C. It was detected by the total.
  • the amount of structural units derived from the unsaturated nitrile monomer contained in the chloroprene rubber 1 was calculated from the content of nitrogen atoms in the chloroprene rubber 1. Specifically, the content of nitrogen atoms in 100 mg of chloroprene rubber 1 was measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Analytical Center Co., Ltd.), and the amount of structural units derived from an acrylonitrile monomer was calculated. did.
  • the elemental analysis was performed under the following conditions. The electric furnace temperature was set to 900 ° C. for the reaction furnace, 600 ° C. for the reduction furnace, 70 ° C. for the column temperature, and 100 ° C. for the detector temperature. ..
  • the calibration curve was prepared using aspartic acid (10.52%) with a known nitrogen content as a standard substance.
  • the chloroprene rubber 1 had a number average molecular weight (Mn) of 130 ⁇ 10 3 g / mol, a weight average molecular weight (Mw) of 442 ⁇ 10 3 g / mol, and a molecular weight distribution (Mw / Mn) of 3.4.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Solid chloroprene rubber 2 was obtained by freeze-coagulating, washing with water and drying the above chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
  • the chloroprene rubber 2 had a number average molecular weight (Mn) of 139 ⁇ 10 3 g / mol, a weight average molecular weight (Mw) of 480 ⁇ 10 3 g / mol, and a molecular weight distribution ( Mw / Mn) was 3.3.
  • the amount of structural units derived from the acrylonitrile monomer was 10% by mass.
  • Solid chloroprene rubber 3 was obtained by freeze-coagulating, washing with water and drying the above chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
  • the chloroprene rubber 3 had a number average molecular weight (Mn) of 131 ⁇ 10 3 g / mol, a weight average molecular weight (Mw) of 451 ⁇ 10 3 g / mol, and a molecular weight distribution ( Mw / Mn) was 3.4.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Solid chloroprene rubber 4 was obtained by freeze-coagulating, washing with water and drying the above-mentioned chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
  • the number average molecular weight (Mn) of the chloroprene rubber 4 was 135 ⁇ 10 3 g / mol
  • the weight average molecular weight (Mw) was 457 ⁇ 10 3 g / mol
  • the molecular weight distribution ( Mw / Mn) was 3.3.
  • the amount of structural units derived from the acrylonitrile monomer was 20% by mass.
  • Solid chloroprene rubber 5 was obtained by freeze-coagulating, washing with water and drying the above chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
  • the chloroprene rubber 5 had a number average molecular weight (Mn) of 136 ⁇ 10 3 g / mol, a weight average molecular weight (Mw) of 460 ⁇ 10 3 g / mol, and a molecular weight distribution ( Mw / Mn) was 3.2.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Solid chloroprene rubber 6 was obtained by freeze-coagulating, washing with water and drying the above-mentioned chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
  • the number average molecular weight (Mn) of the chloroprene rubber 6 was 135 ⁇ 10 3 g / mol
  • the weight average molecular weight (Mw) was 459 ⁇ 10 3 g / mol
  • the molecular weight distribution ( Mw / Mn) was 3.3.
  • the amount of structural units derived from the acrylonitrile monomer was 25% by mass.
  • Anti-aging agent Ouchi Shinko Chemical Co., Ltd., Nocrac (registered trademark) CD, 4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine Plasticizer: Daihachi Chemical Co., Ltd., dioctyl sebacate oxidation
  • Magnesium Kyowa Mag (registered trademark) 150 manufactured by Kyowa Chemical Industry Co., Ltd.
  • a test piece was prepared based on JIS K6250. The hardness of the test piece was measured by leaving the test piece in a gear oven at 120 ° C. for 72 hours. A hardness change of less than 8 is evaluated as "A (especially good)", a hardness change of 8 or more and less than 10 is evaluated as “B (good)”, and a hardness change of 10 or more and less than 12 is "C (somewhat good). "Good””was evaluated, and when 12 or more was evaluated as” D (bad) ".
  • a test piece was prepared based on JIS K6250. Based on JIS K 6258, an oil resistance test (test conditions: 100 ° C. ⁇ 72 hours) was performed using IRM903 oil, and the volume change rate ( ⁇ V) was measured. When the volume change rate is less than 30%, it is evaluated as "A (particularly good)", and when it is 30% or more and less than 45%, it is evaluated as "B (good)” and 45% or more and less than 60%. The case was evaluated as "C (somewhat good)", and the case of 60% or more was evaluated as "D (bad)”.
  • a test piece was prepared based on JIS K6250.
  • a low temperature twisting test (Geman twisting test) was performed based on JIS K 6261 to measure a twisting angle A at 23 ⁇ 2 ° C. Then, from the twist angle B corresponding to the modulus of 10 times the value of the twist angle A, the temperature T10 corresponding to the angle of the twist angle B was measured.
  • T10 is less than -25 ° C, it is evaluated as "A (especially good)", and when T10 is -25 ° C or more and less than -18 ° C, it is evaluated as "B (good)", -18 ° C or more and -10 ° C.
  • it was less than "C” (somewhat good) it was evaluated as "C (somewhat good)"
  • when it was -10 ° C or more it was evaluated as "D (bad)”.
  • a rubber composition containing 100 parts by mass of a chloroprene rubber having 3 to 20% by mass of a structural unit derived from an unsaturated nitrile monomer, and a specific amount of specific carbon black and zinc powder It was found that a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance can be obtained. Since the vulcanized product and the vulcanized molded product have these properties, they are a transmission belt, a conveyor belt, a hose, a wiper, a sealing material (packing, gasket, etc.), a roll, an air spring, a vibration isolator, an adhesive, a boot. It can be suitably used as a vulcanized molded product such as a rubberized cloth, a sponge, and a rubber lining.

Abstract

A rubber composition which comprises 100 parts by mass of a chloroprene-based rubber, 20-80 parts by mass of carbon black, and 0.2-30 parts by mass of a zinc powder, wherein the chloroprene-based rubber includes structural units derived from an unsaturated nitrile monomer in an amount of 3-20 mass% and the carbon black has a crystal lattice in which the average C-axis-direction layer stack height LC is 2 nm or greater.

Description

ゴム組成物、加硫物及び加硫成形体Rubber composition, vulcanized product and vulcanized molded article
 本発明は、ゴム組成物、加硫物及び加硫成形体に関する。 The present invention relates to a rubber composition, a vulcanized product and a vulcanized molded product.
 クロロプレン系ゴムは、耐オゾン性及び耐薬品性に優れており、その特性を活かして自動車部品、接着剤、各種工業ゴム部品等の広範囲な分野に用いられている。また、近年、工業用ゴム部品に要求される性能が著しく高まっており、前述した耐オゾン性及び耐薬品性の向上に加えて、優れたゴムの加工安定性、耐熱性、圧縮永久歪み等も求められている。 Chloroprene rubber is excellent in ozone resistance and chemical resistance, and by utilizing its characteristics, it is used in a wide range of fields such as automobile parts, adhesives, and various industrial rubber parts. Further, in recent years, the performance required for industrial rubber parts has remarkably increased, and in addition to the above-mentioned improvement in ozone resistance and chemical resistance, excellent rubber processing stability, heat resistance, compression set, etc. It has been demanded.
 前述した要求特性を満たすため、例えば、クロロプレン系ゴムに特定のカーボンブラックと亜鉛粉を添加して耐熱性を改善する技術(例えば、下記特許文献1参照)、及び、特定の可塑剤を更に組み合わせることにより耐熱性を改善する技術(例えば、下記特許文献2参照)が提案されている。 In order to satisfy the above-mentioned required characteristics, for example, a technique of adding specific carbon black and zinc powder to chloroprene rubber to improve heat resistance (see, for example, Patent Document 1 below), and a specific plasticizer are further combined. Therefore, a technique for improving heat resistance (for example, see Patent Document 2 below) has been proposed.
特開平11-323020号公報JP-A-11-323020 特許第4092270号公報Japanese Patent No. 4092270
 クロロプレン系ゴム分野において、加硫成形体を得るためのゴム組成物に対しては、上述のとおり耐熱性を改善することに加えて、優れた耐油性を得ることが求められ、さらには、機械的強度及び耐寒性を低下させることなく優れた耐熱性及び耐油性を得ることが求められる。 In the field of chloroprene rubber, for a rubber composition for obtaining a vulcanized molded article, in addition to improving heat resistance as described above, it is required to obtain excellent oil resistance. It is required to obtain excellent heat resistance and oil resistance without lowering the mechanical strength and cold resistance.
 本発明の一側面は、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫成形体が得られるゴム組成物を提供することを目的とする。本発明の他の一側面は、前記ゴム組成物の加硫物及び加硫成形体を提供することを目的とする。 An object of one aspect of the present invention is to provide a rubber composition capable of obtaining a vulcanized molded article having excellent mechanical strength, heat resistance, oil resistance and cold resistance. Another aspect of the present invention is to provide a vulcanized product and a vulcanized molded product of the rubber composition.
 本発明の一側面は、クロロプレン系ゴム100質量部と、カーボンブラック20~80質量部と、亜鉛粉0.2~30質量部と、を含有し、前記クロロプレン系ゴムが、不飽和ニトリル単量体由来の構造単位を3~20質量%有し、前記カーボンブラックにおける結晶格子内の層平面のC軸方向の平均積み重なり高さLCが2nm以上である、ゴム組成物を提供する。 One aspect of the present invention comprises 100 parts by mass of chloroprene rubber, 20 to 80 parts by mass of carbon black, and 0.2 to 30 parts by mass of zinc powder, wherein the chloroprene rubber is an unsaturated nitrile unit amount. Provided is a rubber composition having 3 to 20% by mass of a body-derived structural unit and having an average stacking height LC of 2 nm or more in the C-axis direction of the layer plane in the crystal lattice of the carbon black.
 本発明の他の一側面は、上述のゴム組成物の加硫物を提供する。 Another aspect of the present invention provides a vulcanized product of the above rubber composition.
 本発明の他の一側面は、上述のゴム組成物の加硫成形体を提供する。 Another aspect of the present invention provides a vulcanized molded product of the above rubber composition.
 本発明の一側面によれば、クロロプレン系ゴム分野において、機械的強度、耐熱性、耐油性及び耐寒性を同時に向上させ、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫成形体が得られるゴム組成物を提供することができる。本発明の他の一側面によれば、前記ゴム組成物の加硫物及び加硫成形体を提供することができる。これらのゴム組成物、加硫物及び加硫成形体は、伝動ベルト、コンベアベルト、ホース、ワイパー、シール材(パッキン、ガスケット等)、ロール、空気バネ、防振材、接着剤、ブーツ、ゴム引布、スポンジ、ゴムライニングなどに用いられるゴム製品の材料として用いることができる。 According to one aspect of the present invention, in the field of chloroprene rubber, vulcanization molding that improves mechanical strength, heat resistance, oil resistance and cold resistance at the same time and is excellent in mechanical strength, heat resistance, oil resistance and cold resistance. A rubber composition for obtaining a body can be provided. According to another aspect of the present invention, a vulcanized product and a vulcanized molded product of the rubber composition can be provided. These rubber compositions, vulcanized products, and vulcanized molded products include transmission belts, conveyor belts, hoses, wipers, sealing materials (packings, gaskets, etc.), rolls, air springs, vibration damping materials, adhesives, boots, rubbers. It can be used as a material for rubber products used for pulling cloth, sponge, rubber lining and the like.
 以下、本発明を実施するための形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, modes for carrying out the present invention will be described. The embodiments described below are examples of typical embodiments of the present invention, and the scope of the present invention should not be construed narrowly.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In the present specification, the numerical range indicated by using "to" indicates the range including the numerical values before and after "to" as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. Unless otherwise specified, the materials exemplified in the present specification can be used alone or in combination of two or more kinds. The content of each component in the composition means the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
<ゴム組成物>
 本実施形態のゴム組成物(クロロプレン系ゴム組成物)は、不飽和ニトリル単量体由来の構造単位(不飽和ニトリル単量体単位)を有するクロロプレン系ゴムと、特定のカーボンブラックと、亜鉛粉と、を含有する。本実施形態のゴム組成物は、クロロプレン系ゴム100質量部と、カーボンブラック20~80質量部と、亜鉛粉0.2~30質量部と、を含有する。上述のクロロプレン系ゴムは、不飽和ニトリル単量体由来の構造単位を3~20質量%有する。上述のカーボンブラックにおける結晶格子内の層平面のC軸方向の平均積み重なり高さLCは、2nm以上である。上述の不飽和ニトリル単量体由来の構造単位の量は、本実施形態のゴム組成物に含まれるクロロプレン系ゴムの全量中における不飽和ニトリル単量体由来の構造単位の量を意味する。本実施形態のゴム組成物が、不飽和ニトリル単量体由来の構造単位の量が異なる複数のクロロプレン系ゴムを含有する場合、上述の不飽和ニトリル単量体由来の構造単位の量は、複数のクロロプレン系ゴムにおける不飽和ニトリル単量体由来の構造単位の量の平均値を指す。これらについて、後述するクロロプレン単量体由来の構造単位の量についても同様である。
<Rubber composition>
The rubber composition of the present embodiment (chloroprene rubber composition) is a chloroprene rubber having a structural unit derived from an unsaturated nitrile monomer (unsaturated nitrile monomer unit), a specific carbon black, and a zinc powder. And contain. The rubber composition of the present embodiment contains 100 parts by mass of chloroprene rubber, 20 to 80 parts by mass of carbon black, and 0.2 to 30 parts by mass of zinc powder. The above-mentioned chloroprene rubber has 3 to 20% by mass of structural units derived from an unsaturated nitrile monomer. The average stacking height LC in the C-axis direction of the layer plane in the crystal lattice of the above carbon black is 2 nm or more. The amount of the structural unit derived from the unsaturated nitrile monomer means the amount of the structural unit derived from the unsaturated nitrile monomer in the total amount of the chloroprene rubber contained in the rubber composition of the present embodiment. When the rubber composition of the present embodiment contains a plurality of chloroprene-based rubbers having different amounts of structural units derived from unsaturated nitrile monomers, the amount of structural units derived from unsaturated nitrile monomers described above is plural. The average value of the amount of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber. The same applies to the amounts of the structural units derived from the chloroprene monomer described below.
(クロロプレン系ゴム)
 クロロプレン系ゴムは、クロロプレン単量体(クロロプレンである単量体)を重合させて得られるものであり、クロロプレン単量体由来の構造単位(クロロプレン単量体単位)を有する。本実施形態のゴム組成物におけるクロロプレン系ゴムは、クロロプレン単量体と不飽和ニトリル単量体とを共重合させて得られるクロロプレン系ゴムA(クロロプレン-不飽和ニトリル共重合体)を含む。クロロプレン系ゴムAは、クロロプレン単量体由来の構造単位(クロロプレン単量体単位)と、不飽和ニトリル単量体由来の構造単位(不飽和ニトリル単量体単位)とを有する。
(Chloroprene rubber)
The chloroprene rubber is obtained by polymerizing a chloroprene monomer (a chloroprene monomer), and has a structural unit derived from the chloroprene monomer (chloroprene monomer unit). The chloroprene rubber in the rubber composition of the present embodiment contains a chloroprene rubber A (chloroprene-unsaturated nitrile copolymer) obtained by copolymerizing a chloroprene monomer and an unsaturated nitrile monomer. The chloroprene rubber A has a structural unit derived from a chloroprene monomer (chloroprene monomer unit) and a structural unit derived from an unsaturated nitrile monomer (unsaturated nitrile monomer unit).
 不飽和ニトリル単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル等が挙げられる。不飽和ニトリル単量体は、優れた製造容易性及び耐油性が得られやすい観点から、アクリロニトリル(アクリロニトリル単量体)であることが好ましい。不飽和ニトリル単量体は、1種単独で又は2種以上を組み合わせて用いることができる。 The unsaturated nitrile monomer may, for example, be acrylonitrile, methacrylonitrile, ethacrylonitrile or phenylacrylonitrile. The unsaturated nitrile monomer is preferably acrylonitrile (acrylonitrile monomer) from the viewpoint of easy production and excellent oil resistance. The unsaturated nitrile monomer may be used alone or in combination of two or more.
 クロロプレン系ゴムにおける不飽和ニトリル単量体由来の構造単位の量(共重合量)は、本実施形態のゴム組成物に含まれるクロロプレン系ゴムの全量を基準として3~20質量%である。不飽和ニトリル単量体由来の構造単位の量が3質量%に満たないと、得られる加硫物及び加硫成形体の耐油性が向上しない。不飽和ニトリル単量体由来の構造単位の量が20質量%を超えると、得られる加硫物及び加硫成形体の耐寒性が低下する。 The amount (copolymerization amount) of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber is 3 to 20 mass% based on the total amount of the chloroprene rubber contained in the rubber composition of the present embodiment. If the amount of the structural unit derived from the unsaturated nitrile monomer is less than 3% by mass, the oil resistance of the obtained vulcanized product and vulcanized molded product will not be improved. When the amount of the structural unit derived from the unsaturated nitrile monomer exceeds 20% by mass, the cold resistance of the obtained vulcanized product and vulcanized molded product decreases.
 クロロプレン系ゴムにおける不飽和ニトリル単量体由来の構造単位の量は、優れた耐油性が得られやすい観点から、好ましくは5質量%以上であり、より好ましくは7質量%以上であり、更に好ましくは8質量%以上であり、特に好ましくは9質量%以上であり、極めて好ましくは10質量%以上である。不飽和ニトリル単量体由来の構造単位の量は、優れた耐寒性が得られやすい観点から、好ましくは20質量%未満であり、より好ましくは17質量%以下であり、更に好ましくは15質量%以下であり、特に好ましくは12質量%以下であり、極めて好ましくは10質量%以下である。これらの観点から、不飽和ニトリル単量体由来の構造単位の量は、好ましくは5~17質量%であり、より好ましくは9~17質量%である。不飽和ニトリル単量体由来の構造単位の量は、優れた機械的強度が得られやすい観点から、好ましくは10質量%を超えてよく、より好ましくは12質量%以上であり、更に好ましくは15質量%以上であり、特に好ましくは18質量%以上である。不飽和ニトリル単量体由来の構造単位の量は、更に優れた耐寒性が得られやすい観点から、好ましくは10質量%未満であり、より好ましくは8質量%以下であり、更に好ましくは6質量%以下であり、特に好ましくは5質量%以下である。 The amount of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably from the viewpoint of easily obtaining excellent oil resistance. Is 8% by mass or more, particularly preferably 9% by mass or more, and most preferably 10% by mass or more. The amount of the structural unit derived from the unsaturated nitrile monomer is preferably less than 20% by mass, more preferably 17% by mass or less, and further preferably 15% by mass, from the viewpoint of easily obtaining excellent cold resistance. Or less, particularly preferably 12% by mass or less, and very preferably 10% by mass or less. From these viewpoints, the amount of the structural unit derived from the unsaturated nitrile monomer is preferably 5 to 17% by mass, more preferably 9 to 17% by mass. The amount of the structural unit derived from the unsaturated nitrile monomer may be preferably more than 10% by mass, more preferably 12% by mass or more, and further preferably 15 from the viewpoint of easily obtaining excellent mechanical strength. It is at least mass%, particularly preferably at least 18 mass%. The amount of the structural unit derived from the unsaturated nitrile monomer is preferably less than 10% by mass, more preferably 8% by mass or less, and further preferably 6% by mass from the viewpoint that further excellent cold resistance can be easily obtained. % Or less, particularly preferably 5% by mass or less.
 クロロプレン系ゴムに含まれる不飽和ニトリル単量体由来の構造単位の量は、ポリマー中の窒素原子の含有量から算出することができる。具体的には、元素分析装置(スミグラフ220F:株式会社住化分析センター製)を用いて100mgのクロロプレン系ゴムにおける窒素原子の含有量を測定し、不飽和ニトリル単量体由来の構造単位の量を算出できる。元素分析の測定は次の条件で行うことができる。例えば、電気炉温度として反応炉900℃、還元炉600℃、カラム温度70℃、検出器温度100℃に設定し、燃焼用ガスとして酸素を0.2ml/min、キャリアーガスとしてヘリウムを80ml/minフローする。検量線は、窒素含有量が既知のアスパラギン酸(10.52%)を標準物質として用いて作成できる。 The amount of the structural unit derived from the unsaturated nitrile monomer contained in the chloroprene rubber can be calculated from the content of nitrogen atom in the polymer. Specifically, the content of nitrogen atoms in 100 mg of chloroprene rubber was measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Service Co., Ltd.), and the amount of structural units derived from unsaturated nitrile monomer was measured. Can be calculated. The elemental analysis can be performed under the following conditions. For example, the electric furnace temperature is set to 900 ° C., the reduction furnace is 600 ° C., the column temperature is 70 ° C., and the detector temperature is 100 ° C., oxygen is 0.2 ml / min as a combustion gas, and helium is 80 ml / min as a carrier gas. Flow. The calibration curve can be prepared using aspartic acid (10.52%) having a known nitrogen content as a standard substance.
 クロロプレン系ゴムAにおける不飽和ニトリル単量体由来の構造単位の量は、クロロプレン系ゴムAの全量を基準として下記の範囲が好ましい。不飽和ニトリル単量体由来の構造単位の量は、優れた耐油性が得られやすい観点から、好ましくは3質量%以上、より好ましくは4質量%以上、更に好ましくは5質量%以上であり、特に好ましくは7質量%以上であり、極めて好ましくは8質量%以上であり、非常に好ましくは9質量%以上であり、より一層好ましくは10質量%以上である。不飽和ニトリル単量体由来の構造単位の量は、優れた耐寒性が得られやすい観点から、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下、特に好ましくは25質量%以下、極めて好ましくは20質量%以下、非常に好ましくは20質量%未満であり、より一層好ましくは17質量%以下であり、更に好ましくは15質量%以下であり、特に好ましくは12質量%以下であり、極めて好ましくは11質量%未満であり、非常に好ましくは10質量%以下である。これらの観点から、不飽和ニトリル単量体由来の構造単位の量は、好ましくは3~40質量%であり、より好ましくは4~40質量%である。不飽和ニトリル単量体由来の構造単位の量は、優れた機械的強度が得られやすい観点から、好ましくは10質量%を超えてよく、より好ましくは12質量%以上であり、更に好ましくは15質量%以上であり、特に好ましくは18質量%以上である。不飽和ニトリル単量体由来の構造単位の量は、更に優れた耐寒性が得られやすい観点から、好ましくは10質量%未満であり、より好ましくは8質量%以下であり、更に好ましくは6質量%以下であり、特に好ましくは5質量%以下である。クロロプレン系ゴムAは、上述の各量の不飽和ニトリル単量体由来の構造単位を主鎖に有してよい。 The amount of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber A is preferably within the following range based on the total amount of the chloroprene rubber A. The amount of the structural unit derived from the unsaturated nitrile monomer is preferably 3% by mass or more, more preferably 4% by mass or more, and further preferably 5% by mass or more, from the viewpoint of easily obtaining excellent oil resistance. It is particularly preferably at least 7% by mass, very preferably at least 8% by mass, very preferably at least 9% by mass, and even more preferably at least 10% by mass. The amount of the structural unit derived from the unsaturated nitrile monomer is preferably 40% by mass or less, more preferably 35% by mass or less, further preferably 30% by mass or less, particularly preferably from the viewpoint of easily obtaining excellent cold resistance. Is 25% by mass or less, very preferably 20% by mass or less, very preferably less than 20% by mass, still more preferably 17% by mass or less, further preferably 15% by mass or less, particularly preferably 12% by mass or less. % Or less, very preferably less than 11% and very preferably 10% or less. From these viewpoints, the amount of the structural unit derived from the unsaturated nitrile monomer is preferably 3 to 40% by mass, more preferably 4 to 40% by mass. The amount of the structural unit derived from the unsaturated nitrile monomer may be preferably more than 10% by mass, more preferably 12% by mass or more, and further preferably 15 from the viewpoint of easily obtaining excellent mechanical strength. It is at least mass%, particularly preferably at least 18 mass%. The amount of the structural unit derived from the unsaturated nitrile monomer is preferably less than 10% by mass, more preferably 8% by mass or less, and further preferably 6% by mass from the viewpoint that further excellent cold resistance can be easily obtained. % Or less, particularly preferably 5% by mass or less. The chloroprene rubber A may have structural units derived from unsaturated nitrile monomers in the respective amounts described above in the main chain.
 クロロプレン系ゴムにおけるクロロプレン単量体由来の構造単位の量は、クロロプレン系ゴムの全量を基準として下記の範囲が好ましい。クロロプレン単量体由来の構造単位の量は、優れた耐寒性が得られやすい観点から、好ましくは80質量%以上であり、より好ましくは80質量%を超えており、更に好ましくは83質量%以上であり、特に好ましくは85質量%以上であり、極めて好ましくは88質量%以上であり、非常に好ましくは89質量%を超えており、より一層好ましくは90質量%以上である。クロロプレン単量体由来の構造単位の量は、優れた耐油性が得られやすい観点から、好ましくは97質量%以下であり、より好ましくは95質量%以下であり、更に好ましくは93質量%以下であり、特に好ましくは92質量%以下であり、極めて好ましくは91質量%以下であり、非常に好ましくは90質量%以下である。これらの観点から、クロロプレン単量体由来の構造単位の量は、好ましくは80~97質量%である。クロロプレン単量体由来の構造単位の量は、更に優れた耐寒性が得られやすい観点から、好ましくは90質量%未満であり、より好ましくは88質量%以下であり、更に好ましくは85質量%以下であり、特に好ましくは82質量%以下である。クロロプレン単量体由来の構造単位の量は、優れた機械的強度が得られやすい観点から、好ましくは90質量%を超えてよく、より好ましくは92質量%以上であり、更に好ましくは94質量%以上であり、特に好ましくは95質量%以上である。クロロプレン単量体由来の構造単位の量は、例えば、クロロプレン系ゴムがクロロプレン単量体由来の構造単位及び不飽和ニトリル単量体由来の構造単位から構成されている場合、クロロプレン系ゴムの全量から不飽和ニトリル単量体由来の構造単位の量を差し引くことにより得ることができる。 The amount of structural units derived from the chloroprene monomer in the chloroprene rubber is preferably within the following range based on the total amount of the chloroprene rubber. The amount of the structural unit derived from the chloroprene monomer is preferably 80% by mass or more, more preferably more than 80% by mass, further preferably 83% by mass or more, from the viewpoint of easily obtaining excellent cold resistance. Is more preferable, 85% by mass or more is very preferable, 88% by mass or more is very preferable, 89% by mass or more is very preferable, and 90% by mass or more is even more preferable. The amount of the structural unit derived from the chloroprene monomer is preferably 97% by mass or less, more preferably 95% by mass or less, and further preferably 93% by mass or less, from the viewpoint that excellent oil resistance is easily obtained. %, Particularly preferably 92% by mass or less, very preferably 91% by mass or less, and very preferably 90% by mass or less. From these viewpoints, the amount of the structural unit derived from the chloroprene monomer is preferably 80 to 97 mass%. The amount of the structural unit derived from the chloroprene monomer is preferably less than 90% by mass, more preferably 88% by mass or less, and further preferably 85% by mass or less, from the viewpoint that more excellent cold resistance can be easily obtained. And particularly preferably 82% by mass or less. The amount of the structural unit derived from the chloroprene monomer is preferably 90% by mass or more, more preferably 92% by mass or more, and further preferably 94% by mass, from the viewpoint of easily obtaining excellent mechanical strength. It is above, and particularly preferably 95% by mass or more. The amount of structural units derived from chloroprene monomer, for example, when the chloroprene rubber is composed of structural units derived from chloroprene monomer and structural units derived from unsaturated nitrile monomer, from the total amount of chloroprene rubber It can be obtained by subtracting the amount of the structural unit derived from the unsaturated nitrile monomer.
 クロロプレン系ゴムAにおけるクロロプレン単量体由来の構造単位の量は、クロロプレン系ゴムAの全量を基準として下記の範囲が好ましい。クロロプレン単量体由来の構造単位の量は、優れた耐寒性が得られやすい観点から、好ましくは60質量%以上であり、より好ましくは65質量%以上であり、更に好ましくは70質量%以上であり、特に好ましくは75質量%以上であり、極めて好ましくは80質量%以上であり、非常に好ましくは80質量%を超えており、より一層好ましくは83質量%以上であり、更に好ましくは85質量%以上であり、特に好ましくは88質量%以上であり、極めて好ましくは89質量%を超えており、非常に好ましくは90質量%以上である。クロロプレン単量体由来の構造単位の量は、優れた耐油性が得られやすい観点から、好ましくは97質量%以下であり、より好ましくは96質量%以下であり、更に好ましくは95質量%以下であり、特に好ましくは93質量%以下であり、極めて好ましくは92質量%以下であり、非常に好ましくは91質量%以下であり、より一層好ましくは90質量%以下である。これらの観点から、クロロプレン単量体由来の構造単位の量は、好ましくは60~97質量%であり、より好ましくは60~96質量%である。クロロプレン単量体由来の構造単位の量は、更に優れた耐寒性が得られやすい観点から、好ましくは90質量%を超えてよく、より好ましくは92質量%以上であり、更に好ましくは94質量%以上、特に好ましくは95質量%以上である。クロロプレン単量体由来の構造単位の量は、優れた機械的強度が得られやすい観点から、好ましくは90質量%未満であり、より好ましくは88質量%以下であり、更に好ましくは85質量%以下であり、特に好ましくは82質量%以下である。クロロプレン系ゴムAは、上述の各量のクロロプレン単量体由来の構造単位を主鎖に有してよい。 The amount of the structural unit derived from the chloroprene monomer in the chloroprene rubber A is preferably in the following range based on the total amount of the chloroprene rubber A. The amount of the structural unit derived from the chloroprene monomer is preferably 60% by mass or more, more preferably 65% by mass or more, and further preferably 70% by mass or more, from the viewpoint of easily obtaining excellent cold resistance. Yes, particularly preferably 75% by mass or more, very preferably 80% by mass or more, very preferably more than 80% by mass, even more preferably 83% by mass or more, further preferably 85% by mass. % Or more, particularly preferably 88% by mass or more, very preferably more than 89% by mass, and very preferably 90% by mass or more. The amount of the structural unit derived from the chloroprene monomer is preferably 97% by mass or less, more preferably 96% by mass or less, and further preferably 95% by mass or less, from the viewpoint that excellent oil resistance is easily obtained. %, Particularly preferably 93% by mass or less, very preferably 92% by mass or less, very preferably 91% by mass or less, and even more preferably 90% by mass or less. From these viewpoints, the amount of the structural unit derived from the chloroprene monomer is preferably 60 to 97% by mass, more preferably 60 to 96% by mass. The amount of the structural unit derived from the chloroprene monomer is preferably 90% by mass or more, more preferably 92% by mass or more, and further preferably 94% by mass, from the viewpoint that further excellent cold resistance can be easily obtained. More preferably, it is 95 mass% or more. The amount of the structural unit derived from the chloroprene monomer is preferably less than 90% by mass, more preferably 88% by mass or less, and further preferably 85% by mass or less, from the viewpoint of easily obtaining excellent mechanical strength. And particularly preferably 82% by mass or less. The chloroprene rubber A may have structural units derived from the above-mentioned amounts of the chloroprene monomer in the main chain.
 クロロプレン単量体と共重合可能な単量体は、不飽和ニトリル単量体に限定されるものではない。クロロプレン単量体と共重合可能な単量体としては、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、スチレン、イソプレン、ブタジエン、アクリル酸、アクリル酸のエステル類、メタクリル酸、メタクリル酸のエステル類等が挙げられる。クロロプレン系ゴムに含まれる1-クロロ-1,3-ブタジエン由来の構造単位の量は、クロロプレン系ゴムの全量を基準として1質量%未満であってよい。 The monomer copolymerizable with the chloroprene monomer is not limited to the unsaturated nitrile monomer. Examples of monomers copolymerizable with the chloroprene monomer include 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, styrene, isoprene, butadiene, acrylic acid, and acrylic acid esters. And methacrylic acid, esters of methacrylic acid, and the like. The amount of structural units derived from 1-chloro-1,3-butadiene contained in the chloroprene rubber may be less than 1% by mass based on the total amount of the chloroprene rubber.
 本実施形態のゴム組成物におけるクロロプレン系ゴムは、不飽和ニトリル単量体由来の構造単位を有さないクロロプレン系ゴムBを含んでよい。クロロプレン系ゴムBをクロロプレン系ゴムAと併用することにより、本実施形態のゴム組成物におけるクロロプレン系ゴム中の不飽和ニトリル単量体由来の構造単位量を希釈調整しやすい。クロロプレン系ゴムは、クロロプレン系ゴムA及びクロロプレン系ゴムBを含む混合物(例えば、クロロプレン系ゴムA及びクロロプレン系ゴムBからなる混合物)であってよい。 The chloroprene rubber in the rubber composition of the present embodiment may include chloroprene rubber B having no structural unit derived from an unsaturated nitrile monomer. By using the chloroprene rubber B in combination with the chloroprene rubber A, the structural unit amount derived from the unsaturated nitrile monomer in the chloroprene rubber in the rubber composition of the present embodiment can be easily adjusted by dilution. The chloroprene-based rubber may be a mixture containing chloroprene-based rubber A and chloroprene-based rubber B (for example, a mixture of chloroprene-based rubber A and chloroprene-based rubber B).
 クロロプレン系ゴムBにおけるクロロプレン単量体由来の構造単位の量は、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られやすい観点から、クロロプレン系ゴムBの全量を基準として、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上であり、特に好ましくは98質量%以上であり、極めて好ましくは99質量%以上である。クロロプレン系ゴムBを構成する構造単位が実質的にクロロプレン単量体由来の構造単位からなる(クロロプレン系ゴムBを構成する構造単位の実質的に100質量%がクロロプレン単量体由来の構造単位である)態様であってもよい。クロロプレン系ゴムBは、上述の各量のクロロプレン単量体由来の構造単位を主鎖に有してよい。 The amount of the structural unit derived from the chloroprene monomer in the chloroprene rubber B is determined from the viewpoint that a vulcanized product and a vulcanized molded article having excellent mechanical strength, heat resistance, oil resistance and cold resistance can be easily obtained. Based on the total amount of B, preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more, and very preferably 99% by mass or more. It is at least mass%. The structural units constituting the chloroprene rubber B are substantially composed of structural units derived from the chloroprene monomer (substantially 100% by mass of the structural units constituting the chloroprene rubber B are structural units derived from the chloroprene monomer). A) embodiment. The chloroprene rubber B may have structural units derived from the above-mentioned amounts of the chloroprene monomer in the main chain.
 本実施形態のゴム組成物におけるクロロプレン系ゴムは、一の態様Xとして、不飽和ニトリル単量体由来の構造単位を4~40質量%有するクロロプレン系ゴムAと、不飽和ニトリル単量体由来の構造単位を有さないクロロプレン系ゴムBと、を含むことが好ましい。クロロプレン系ゴムA中の不飽和ニトリル単量体由来の構造単位の量をこの範囲に調整することにより、クロロプレン系ゴムAを製造効率良く得やすいと共に、本実施形態のゴム組成物におけるクロロプレン系ゴム中の不飽和ニトリル単量体由来の構造単位量を希釈調整しやすいことから、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られやすい。態様Xにおいてクロロプレン系ゴムAは、不飽和ニトリル単量体由来の構造単位4~40質量%と、クロロプレン単量体由来の構造単位60~96質量%と、を有してよい。クロロプレン系ゴムA中の不飽和ニトリル単量体由来の構造単位の量及びクロロプレン単量体由来の構造単位の量は、クロロプレン系ゴムAに関して上述した好ましい範囲のそれぞれを用いることができる。態様Xにおいてクロロプレン系ゴムAは、不飽和ニトリル単量体由来の構造単位以外の構造単位として、クロロプレン単量体と共重合可能な単量体由来の構造単位を有してよい。クロロプレン単量体と共重合可能な単量体としては、上述の単量体を用いることができる。 The chloroprene-based rubber in the rubber composition of the present embodiment is, as one aspect X, a chloroprene-based rubber A having 4 to 40% by mass of a structural unit derived from an unsaturated nitrile monomer, and an unsaturated nitrile monomer-derived rubber. It is preferable to include chloroprene rubber B having no structural unit. By adjusting the amount of the structural unit derived from the unsaturated nitrile monomer in the chloroprene rubber A within this range, the chloroprene rubber A can be easily obtained with good production efficiency, and the chloroprene rubber in the rubber composition of the present embodiment can be easily obtained. Since the amount of the structural unit derived from the unsaturated nitrile monomer therein can be easily adjusted, a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance can be easily obtained. In the embodiment X, the chloroprene rubber A may have 4 to 40% by mass of the structural unit derived from the unsaturated nitrile monomer and 60 to 96% by mass of the structural unit derived from the chloroprene monomer. As the amount of the structural unit derived from the unsaturated nitrile monomer and the amount of the structural unit derived from the chloroprene monomer in the chloroprene rubber A, each of the preferable ranges described above for the chloroprene rubber A can be used. In Aspect X, the chloroprene rubber A may have a structural unit derived from a monomer copolymerizable with the chloroprene monomer as a structural unit other than the structural unit derived from the unsaturated nitrile monomer. As the monomer copolymerizable with the chloroprene monomer, the above-mentioned monomers can be used.
 上述の態様Xにおいて、クロロプレン系ゴムBは、クロロプレン単量体由来の構造単位80~100質量%を有してよく、クロロプレン単量体由来の構造単位を80質量%以上100質量%未満と、クロロプレン単量体と共重合可能な単量体由来の構造単位を0質量%超え20質量%以下と、を有してよい。クロロプレン単量体と共重合可能な単量体としては、上述の単量体を用いることができる。態様Xにおけるクロロプレン系ゴムB中のクロロプレン単量体由来の構造単位の量は、クロロプレン系ゴムBに関して上述した好ましい範囲のそれぞれを用いることができる。 In the above aspect X, the chloroprene rubber B may have a structural unit derived from a chloroprene monomer of 80 to 100% by mass, and the structural unit derived from the chloroprene monomer is 80% by mass or more and less than 100% by mass, It may have a structural unit derived from a monomer copolymerizable with the chloroprene monomer in an amount of more than 0% by mass and 20% by mass or less. As the monomer copolymerizable with the chloroprene monomer, the above-mentioned monomers can be used. As the amount of the structural unit derived from the chloroprene monomer in the chloroprene rubber B in the embodiment X, each of the preferable ranges described above for the chloroprene rubber B can be used.
 クロロプレン単量体由来の構造単位と、クロロプレン単量体と共重合可能な単量体由来の構造単位とを有するクロロプレン共重合体のポリマー構造は、特に限定されるものではなく、ブロック共重合体又は統計的共重合体であってもよい。 The polymer structure of the chloroprene copolymer having a structural unit derived from a chloroprene monomer and a structural unit derived from a monomer copolymerizable with the chloroprene monomer is not particularly limited, and a block copolymer Alternatively, it may be a statistical copolymer.
 クロロプレン単量体と不飽和ニトリル単量体(例えばアクリロニトリル)との統計的共重合体は、例えば、重合反応開始後にクロロプレン単量体を連続添加又は10回以上間欠分添することにより製造できる。その際、重合反応開始時の時刻をt(0)とすると共にnを1以上の整数として、時刻t(n-1)と時刻t(n)との間の時間dt(n)におけるクロロプレン単量体及び不飽和ニトリル単量体の重合転換量の総量に基づいて時刻t(n)と時刻t(n+1)との間の時間dt(n+1)におけるクロロプレン単量体の添加量を決定し、未反応のクロロプレン単量体と不飽和ニトリル単量体との比を一定に保つことができる。 A statistical copolymer of a chloroprene monomer and an unsaturated nitrile monomer (eg, acrylonitrile) can be produced, for example, by continuously adding the chloroprene monomer or intermittently adding 10 times or more after the initiation of the polymerization reaction. At that time, the time at the start of the polymerization reaction is set to t (0), and n is an integer of 1 or more. Determining the amount of chloroprene monomer added at time dt (n + 1) between time t (n) and time t (n + 1) based on the total amount of polymerization conversion of the monomer and unsaturated nitrile monomer, The ratio of unreacted chloroprene monomer to unsaturated nitrile monomer can be kept constant.
 統計的共重合体とは、J.C.Randall 「POLYMER SEQUENCE DETERMINATION, Carbon-13 NMR Method」 Academic Press, New York, 1977, 71-78ページに記述されているように、ベルヌーイの統計モデル、又は、一次若しくは二次のマルコフの統計モデルにより記述できる共重合体であることを意味する。例えば、クロロプレン単量体とアクリロニトリルとの統計的共重合体が2元系の単量体から構成される場合、下記Mayo-Lewis式(I)において重合開始時のクロロプレン単量体とアクリロニトリルとの比をd[M1]/d[M2]とすると共に、クロロプレン単量体を、下記Mayo-Lewis式(I)において定義されたM1としたときの反応性比r1及びr2について、r1が0.3~3000の範囲であり、r2が10-5~3.0の範囲であることが統計的共重合体を得るのに好ましい。 Statistical copolymers are described in J. C. Randall, as described in POLYMER SEQUENCE DETERMINATION, Carbon-13 NMR Methods, Academic Press, New York, 1977, pp. 71-78, by Bernoulli's statistical model, or by the primary or secondary model of Markov. It means that it is a copolymer. For example, when the statistical copolymer of a chloroprene monomer and acrylonitrile is composed of a binary monomer, the following Mayo-Lewis formula (I) shows that the chloroprene monomer and acrylonitrile at the start of polymerization are When the ratio is d [M1] / d [M2] and the chloroprene monomer is M1 defined in the following Mayo-Lewis formula (I), the reactivity ratios r1 and r2 are r0. The range of 3 to 3000 and the range of r2 of 10 −5 to 3.0 are preferable for obtaining the statistical copolymer.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本実施形態のゴム組成物に含まれるクロロプレン系ゴム(例えばクロロプレン系ゴムA)の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られやすい観点から、下記の範囲が好ましい。数平均分子量、重量平均分子量及び分子量分布は、後述の実施例に記載の方法により測定できる。 The number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the chloroprene rubber (for example, chloroprene rubber A) contained in the rubber composition of the present embodiment are mechanical strength and heat resistance. From the viewpoint of easily obtaining a vulcanized product and a vulcanized molded article having excellent oil resistance and cold resistance, the following range is preferable. The number average molecular weight, the weight average molecular weight and the molecular weight distribution can be measured by the methods described in Examples below.
 数平均分子量は、好ましくは100×10以上であり、より好ましくは110×10以上であり、更に好ましくは120×10以上であり、特に好ましくは130×10以上である。数平均分子量は、好ましくは300×10以下であり、より好ましくは200×10以下であり、更に好ましくは150×10以下であり、特に好ましくは140×10以下である。これらの観点から、数平均分子量は、好ましくは100×10~300×10である。 The number average molecular weight is preferably 100 × 10 3 or more, more preferably 110 × 10 3 or more, further preferably 120 × 10 3 or more, and particularly preferably 130 × 10 3 or more. The number average molecular weight is preferably 300 × 10 3 or less, more preferably 200 × 10 3 or less, further preferably 150 × 10 3 or less, and particularly preferably 140 × 10 3 or less. From these viewpoints, the number average molecular weight is preferably 100 × 10 3 to 300 × 10 3 .
 重量平均分子量は、好ましくは200×10以上であり、より好ましくは300×10以上であり、更に好ましくは350×10以上であり、特に好ましくは400×10以上であり、極めて好ましくは450×10以上である。重量平均分子量は、好ましくは1000×10以下であり、より好ましくは800×10以下であり、更に好ましくは600×10以下であり、特に好ましくは500×10以下であり、極めて好ましくは480×10以下である。これらの観点から、重量平均分子量は、好ましくは200×10~1000×10である。 The weight average molecular weight is preferably 200 × 10 3 or more, more preferably 300 × 10 3 or more, further preferably 350 × 10 3 or more, particularly preferably 400 × 10 3 or more, and very preferably Is 450 × 10 3 or more. The weight average molecular weight is preferably 1000 × 10 3 or less, more preferably 800 × 10 3 or less, further preferably 600 × 10 3 or less, particularly preferably 500 × 10 3 or less, and very preferably Is 480 × 10 3 or less. From these viewpoints, the weight average molecular weight is preferably 200 × 10 3 to 1000 × 10 3 .
 分子量分布は、好ましくは2以上であり、より好ましくは2.5以上であり、更に好ましくは3以上であり、特に好ましくは3.1以上であり、極めて好ましくは3.2以上である。分子量分布は、好ましくは4以下であり、より好ましくは3.8以下であり、更に好ましくは3.5以下であり、特に好ましくは3.4以下である。これらの観点から、分子量分布は、好ましくは2~4である。 The molecular weight distribution is preferably 2 or more, more preferably 2.5 or more, even more preferably 3 or more, particularly preferably 3.1 or more, and most preferably 3.2 or more. The molecular weight distribution is preferably 4 or less, more preferably 3.8 or less, further preferably 3.5 or less, and particularly preferably 3.4 or less. From these viewpoints, the molecular weight distribution is preferably 2-4.
 クロロプレン系ゴムは、例えば乳化重合により得ることができる。乳化重合する場合に用いる重合開始剤としては、特に限定はなく、クロロプレン単量体の乳化重合に一般に用いられる公知の重合開始剤を用いることができる。重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素、t-ブチルハイドロパーオキサイド等の有機過酸化物類などが挙げられる。 Chloroprene rubber can be obtained by, for example, emulsion polymerization. The polymerization initiator used in emulsion polymerization is not particularly limited, and known polymerization initiators generally used in emulsion polymerization of chloroprene monomer can be used. Examples of the polymerization initiator include organic peroxides such as potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, and t-butyl hydroperoxide.
 乳化重合する場合に用いる乳化剤としては、特に限定はなく、クロロプレン単量体の乳化重合に一般に用いられる公知の乳化剤を用いることができる。乳化剤としては、炭素数が6~22の飽和又は不飽和の脂肪酸のアルカリ金属塩、ロジン酸又は不均化ロジン酸のアルカリ金属塩(例えばロジン酸カリウム)、β-ナフタレンスルホン酸のホルマリン縮合物のアルカリ金属塩(例えばナトリウム塩)等が挙げられる。 The emulsifier used in emulsion polymerization is not particularly limited, and a known emulsifier generally used in emulsion polymerization of chloroprene monomer can be used. As the emulsifier, an alkali metal salt of a saturated or unsaturated fatty acid having 6 to 22 carbon atoms, an alkali metal salt of rosin acid or disproportionated rosin acid (eg potassium rosinate), a formalin condensate of β-naphthalenesulfonic acid Alkali metal salts (for example, sodium salts) of
 乳化重合する場合に用いる分子量調整剤としては、特に限定はなく、クロロプレン単量体の乳化重合に一般に用いられる公知の分子量調整剤を用いることができる。分子量調整剤としては、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン等の長鎖アルキルメルカプタン類;ジイソプロピルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド等のキサントゲン化合物;ヨードホルム;ベンジル1-ピロールジチオカルバメート(別名ベンジル1-ピロールカルボジチオエート)、ベンジルフェニルカルボジチオエート、1-ベンジル-N,N-ジメチル-4-アミノジチオベンゾエート、1-ベンジル-4-メトキシジチオベンゾエート、1-フェニルエチルイミダゾールジチオカルバメート(別名1-フェニルエチルイミダゾールカルボジチオエート)、ベンジル-1-(2-ピロリジノン)ジチオカルバメート(別名ベンジル-1-(2-ピロリジノン)カルボジチオエート)、ベンジルフタルイミジルジチオカルバメート(別名ベンジルフタルイミジルカルボジチオエート)、2-シアノプロプ-2-イル-1-ピロールジチオカルバメート(別名2-シアノプロプ-2-イル-1-ピロールカルボジチオエート)、2-シアノブト-2-イル-1-ピロールジチオカルバメート(別名2-シアノブト-2-イル-1-ピロールカルボジチオエート)、ベンジル-1-イミダゾールジチオカルバメート(別名ベンジル-1-イミダゾールカルボジチオエート)、2-シアノプロプ-2-イル-N,N-ジメチルジチオカルバメート、ベンジル-N,N-ジエチルジチオカルバメート、シアノメチル-1-(2-ピロリドン)ジチオカルバメート、2-(エトキシカルボニルベンジル)プロプ-2-イル-N,N-ジエチルジチオカルバメート、1-フェニルエチルジチオベンゾエート、2-フェニルプロプ-2-イルジチオベンゾエート、1-酢酸-1-イル-エチルジチオベンゾエート、1-(4-メトキシフェニル)エチルジチオベンゾエート、ベンジルジチオアセテート、エトキシカルボニルメチルジチオアセタート、2-(エトキシカルボニル)プロプ-2-イルジチオベンゾエート、2-シアノプロプ-2-イルジチオベンゾエート、t-ブチルジチオベンゾエート、2,4,4-トリメチルペンタ-2-イルジチオベンゾエート、2-(4-クロロフェニル)-プロプ-2-イルジチオベンゾエート、3-ビニルベンジルジチオベンゾエート、4-ビニルベンジルジチオベンゾエート、ベンジルジエトキシホスフィニルジチオフォルマート、t-ブチルトリチオペルベンゾエート、2-フェニルプロプ-2-イル-4-クロロジチオベンゾエート、ナフタレン-1-カルボン酸-1-メチル-1-フェニル-エチルエステル、4-シアノ-4-メチル-4-チオベンジルスルファニル酪酸、ジベンジルテトラチオテレフタラート、カルボキシメチルジチオベンゾエート、ジチオベンゾエート末端基を持つポリ(酸化エチレン)、4-シアノ-4-メチル-4-チオベンジルスルファニル酪酸末端基を持つポリ(酸化エチレン)、2-[(2-フェニルエタンチオイル)スルファニル]プロパン酸、2-[(2-フェニルエタンチオイル)スルファニル]コハク酸、3,5-ジメチル-1H-ピラゾール-1-カルボジチオエートカリウム、シアノメチル-3,5-ジメチル-1Hピラゾール-1-カルボジチオエート、シアノメチルメチル-(フェニル)ジチオカルバメート、ベンジル-4-クロロジチオベンゾエート、フェニルメチル-4-クロロジチオベンゾエート、4-ニトロベンジル-4-クロロジチオベンゾエート、フェニルプロプ-2-イル-4-クロロジチオベンゾエート、1-シアノ-1-メチルエチル-4-クロロジチオベンゾエート、3-クロロ-2-ブテニル-4-クロロジチオベンゾエート、2-クロロ-2-ブテニルジチオベンゾエート、ベンジルジチオアセテート、3-クロロ-2-ブテニル-1H-ピロール-1-ジチオカルボン酸、2-シアノブタン-2-イル-4-クロロ-3,5-ジメチル-1H-ピラゾール-1-カルボジチオエート、シアノメチルメチル(フェニル)カルバモジチオエート、2-シアノ-2-プロピルドデシルトリチオカルボナート、ジベンジルトリチオカルボナート、ブチルベンジルトリチオカルボナート、2-[[(ブチルチオ)チオキソメチル]チオ]プロピオン酸、2-[[(ドデシルチオ)チオキソメチル]チオ]プロピオン酸、2-[[(ブチルチオ)チオキソメチル]チオ]コハク酸、2-[[(ドデシルチオ)チオキソメチル]チオ]コハク酸、2-[[(ドデシルチオ)チオキソメチル]チオ]-2-メチルプロピオン酸、2,2’-[カルボノチオイルビス(チオ)]ビス[2-メチルプロピオン酸]、2-アミノ-1-メチル-2-オキソエチルブチルトリチオカルボナート、ベンジル-2-[(2-ヒドロキシエチル)アミノ]-1-メチル-2-オキソエチルトリチオカルボナート、3-[[[(t-ブチル)チオ]チオキソメチル]チオ]プロピオン酸、シアノメチルドデシルトリチオカルボナート、ジエチルアミノベンジルトリチオカルボナート、ジブチルアミノベンジルトリチオカルボナート等のチオカルボニル化合物などが挙げられる。 The molecular weight modifier used in emulsion polymerization is not particularly limited, and known molecular weight modifiers generally used in emulsion polymerization of chloroprene monomer can be used. Examples of the molecular weight modifier include long-chain alkyl mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan and n-octyl mercaptan; xanthogen compounds such as diisopropylxanthogen disulfide and diethylxanthogen disulfide; iodoform; benzyl 1-pyrrole dithiocarbamate (alias) Benzyl 1-pyrrole carbodithioate), benzyl phenyl carbodithioate, 1-benzyl-N, N-dimethyl-4-aminodithiobenzoate, 1-benzyl-4-methoxydithiobenzoate, 1-phenylethylimidazole dithiocarbamate (alias) 1-phenylethylimidazole carbodithioate), benzyl-1- (2-pyrrolidinone) dithiocarbamate (also known as benzyl-1- (2-pyrrolidinone) Carbodithioate), benzylphthalimidyldithiocarbamate (also known as benzylphthalimidylcarbodithioate), 2-cyanoprop-2-yl-1-pyrroledithiocarbamate (also known as 2-cyanoprop-2-yl-1-pyrrolecarbodithio) Ate), 2-cyanobut-2-yl-1-pyrroledithiocarbamate (also known as 2-cyanobut-2-yl-1-pyrrolecarbodithioate), benzyl-1-imidazoledithiocarbamate (also known as benzyl-1-imidazolecarbodithio) A)), 2-cyanoprop-2-yl-N, N-dimethyldithiocarbamate, benzyl-N, N-diethyldithiocarbamate, cyanomethyl-1- (2-pyrrolidone) dithiocarbamate, 2- (ethoxycarbonylbenzyl) prop 2-yl-N, N-diethyldithiocarbamate, 1-phenylethyldithiobenzoate, 2-phenylprop-2-yldithiobenzoate, 1-acetic acid-1-yl-ethyldithiobenzoate, 1- (4-methoxyphenyl) Ethyldithiobenzoate, benzyldithioacetate, ethoxycarbonylmethyldithioacetate, 2- (ethoxycarbonyl) prop-2-yldithiobenzoate, 2-cyanoprop-2-yldithiobenzoate, t-butyldithiobenzoate, 2,4,4 -Trimethylpent-2-yldithiobenzoate, 2- (4-chlorophenyl) -prop-2-yldithiobenzoate, 3-vinylbenzyldithiobenzoate, 4-vinylbenzyldithiobenzoate, benzyldiethoxyphosphinyl Dithioformate, t-butyltrithioperbenzoate, 2-phenylprop-2-yl-4-chlorodithiobenzoate, naphthalene-1-carboxylic acid-1-methyl-1-phenyl-ethyl ester, 4-cyano-4- Methyl-4-thiobenzylsulfanyl butyric acid, dibenzyl tetrathioterephthalate, carboxymethyl dithiobenzoate, poly (ethylene oxide) with dithiobenzoate end groups, 4-cyano-4-methyl-4-thiobenzylsulfanyl butyric acid end group Having poly (ethylene oxide), 2-[(2-phenylethanethioyl) sulfanyl] propanoic acid, 2-[(2-phenylethanethioyl) sulfanyl] succinic acid, 3,5-dimethyl-1H-pyrazole-1 -Potassium carbodithioate, cyanomethyl-3, -Dimethyl-1H pyrazole-1-carbodithioate, cyanomethylmethyl- (phenyl) dithiocarbamate, benzyl-4-chlorodithiobenzoate, phenylmethyl-4-chlorodithiobenzoate, 4-nitrobenzyl-4-chlorodithiobenzoate, Phenylprop-2-yl-4-chlorodithiobenzoate, 1-cyano-1-methylethyl-4-chlorodithiobenzoate, 3-chloro-2-butenyl-4-chlorodithiobenzoate, 2-chloro-2-butenyl Dithiobenzoate, benzyl dithioacetate, 3-chloro-2-butenyl-1H-pyrrole-1-dithiocarboxylic acid, 2-cyanobutan-2-yl-4-chloro-3,5-dimethyl-1H-pyrazole-1-carbo Dithioate, cyanomethylmethyl Phenyl) carbamodithioate, 2-cyano-2-propyldodecyltrithiocarbonate, dibenzyltrithiocarbonate, butylbenzyltrithiocarbonate, 2-[[(butylthio) thioxomethyl] thio] propionic acid, 2- [[(Dodecylthio) thioxomethyl] thio] propionic acid, 2-[[(butylthio) thioxomethyl] thio] succinic acid, 2-[[(dodecylthio) thioxomethyl] thio] succinic acid, 2-[[(dodecylthio) thioxomethyl] thio ] -2-Methylpropionic acid, 2,2 ′-[carbonothioylbis (thio)] bis [2-methylpropionic acid], 2-amino-1-methyl-2-oxoethylbutyltrithiocarbonate, benzyl -2-[(2-hydroxyethyl) amino] -1-methyl-2-oxy Thioethyltrithiocarbonate, 3-[[[(t-butyl) thio] thioxomethyl] thio] propionic acid, cyanomethyldodecyltrithiocarbonate, diethylaminobenzyltrithiocarbonate, dibutylaminobenzyltrithiocarbonate, etc. Examples thereof include carbonyl compounds.
 重合温度及び単量体の最終転化率は特に限定するものではないが、重合温度は、好ましくは0~50℃であり、より好ましくは20~50℃である。単量体の最終転化率が40~95質量%の範囲に入るように重合を行うことが好ましい。最終転化率を調整するためには、所望する転化率になった時に、重合反応を停止させる重合禁止剤を添加して重合を停止させればよい。 The polymerization temperature and the final conversion rate of the monomer are not particularly limited, but the polymerization temperature is preferably 0 to 50 ° C, more preferably 20 to 50 ° C. It is preferable to carry out the polymerization so that the final conversion rate of the monomer falls within the range of 40 to 95% by mass. In order to adjust the final conversion rate, the polymerization may be stopped by adding a polymerization inhibitor that stops the polymerization reaction when the desired conversion rate is reached.
 重合禁止剤としては、特に限定はなく、クロロプレン単量体の乳化重合に一般に用いられる公知の重合禁止剤を用いることができる。重合禁止剤としては、フェノチアジン(チオジフェニルアミン)、4-ターシャリーブチルカテコール、2,2-メチレンビス-4-メチル-6-ターシャリーブチルフェノール等が挙げられる。 The polymerization inhibitor is not particularly limited, and known polymerization inhibitors generally used in emulsion polymerization of chloroprene monomer can be used. Examples of the polymerization inhibitor include phenothiazine (thiodiphenylamine), 4-tert-butylcatechol, and 2,2-methylenebis-4-methyl-6-tert-butylphenol.
 クロロプレン系ゴムは、例えば、スチームストリッピング法によって未反応の単量体を除去し、その後、ラテックスのpHを調整し、常法の凍結凝固、水洗、熱風乾燥等の工程を経て得ることができる。 The chloroprene rubber can be obtained, for example, by removing unreacted monomers by a steam stripping method, adjusting the pH of the latex, and then subjecting it to conventional freeze-coagulation, water washing, hot-air drying and other steps. ..
 クロロプレン系ゴムは、分子量調整剤の種類によりメルカプタン変性クロロプレンゴム、キサントゲン変性クロロプレンゴム、硫黄変性クロロプレンゴム、ジチオカルボナート系クロロプレンゴム、トリチオカルボナート系クロロプレンゴム及びカルバメート系クロロプレンゴムに分類される。 Chloroprene rubber is classified into mercaptan modified chloroprene rubber, xanthogen modified chloroprene rubber, sulfur modified chloroprene rubber, dithiocarbonate chloroprene rubber, trithiocarbonate chloroprene rubber and carbamate chloroprene rubber depending on the type of molecular weight modifier.
 以上のクロロプレン系ゴムの重合方法により、上述のクロロプレン系ゴムを得ることが可能であり、不飽和ニトリル単量体を添加せずに重合させることにより上述のクロロプレン系ゴムAを得ることができる。クロロプレン系ゴムAとクロロプレン系ゴムBを混合するには、従来公知のミキサー、バンバリーミキサー、ニーダーミキサー、二本ロール等の混練装置を用いることができる。 The above chloroprene rubber can be obtained by the above chloroprene rubber polymerization method, and the above chloroprene rubber A can be obtained by polymerizing without adding an unsaturated nitrile monomer. In order to mix the chloroprene rubber A and the chloroprene rubber B, a kneading device such as a conventionally known mixer, Banbury mixer, kneader mixer, or two roll can be used.
(カーボンブラック)
 本実施形態のゴム組成物は、カーボンブラックを含有する。本実施形態のゴム組成物は、結晶格子(結晶子)内の層平面のC軸方向の平均積み重なり高さLCが2nm以上のカーボンブラック(以下、「特定カーボンブラック」という)を含有する。平均積み重なり高さLCが2nmより小さいと、ゴム組成物を加硫して得られる加硫物及び加硫成形体の耐熱性が十分ではない。平均積み重なり高さLCは、耐熱性に優れた加硫物及び加硫成形体が得られやすい観点から、2.5nm以上が好ましい。平均積み重なり高さLCは、X線回折により求めることができる。具体的には、CuKα線を用い、測定範囲2θ=10~40゜、スリット幅0.5゜の条件でX線回折を行う。得られた(002)面の回折線を用いて、Scherrerの式:Lc(nm)=((K×λ)/(β×cosθ))/10により結晶子サイズLcを求めることができる。ここで、Kは形状因子定数0.9、λはX線の波長0.154nm、θは(002)回折線吸収バンドにおける極大値を示す角度、βは(002)回折線吸収バンドにおける半価幅(ラジアン)である。
(Carbon black)
The rubber composition of this embodiment contains carbon black. The rubber composition of the present embodiment contains carbon black (hereinafter, referred to as “specific carbon black”) having an average stacking height LC in the C-axis direction of the layer plane in the crystal lattice (crystallite) of 2 nm or more. If the average stacking height LC is less than 2 nm, the heat resistance of the vulcanized product and vulcanized molded product obtained by vulcanizing the rubber composition is not sufficient. The average stacking height LC is preferably 2.5 nm or more from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded article having excellent heat resistance. The average stacking height LC can be obtained by X-ray diffraction. Specifically, X-ray diffraction is performed using CuKα rays under the conditions of measurement range 2θ = 10 to 40 ° and slit width 0.5 °. Using the obtained diffraction line of the (002) plane, the crystallite size Lc can be obtained by the Scherrer's formula: Lc (nm) = ((K × λ) / (β × cos θ)) / 10. Here, K is a form factor constant of 0.9, λ is an X-ray wavelength of 0.154 nm, θ is an angle indicating a maximum value in the (002) diffraction line absorption band, and β is a half value in the (002) diffraction line absorption band. The width (radian).
 特定カーボンブラックの平均粒径は、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られやすい観点から、60nm以下が好ましい。特定カーボンブラックの平均粒径は、JIS Z 8901に準拠して電子顕微鏡を用いて測定した値である。 The average particle size of the specific carbon black is preferably 60 nm or less from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance. The average particle size of the specific carbon black is a value measured using an electron microscope in accordance with JIS Z8901.
 特定カーボンブラックのDBP(フタル酸ジブチル)吸油量は、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られやすい観点から、100~350ml/100gが好ましく、120~300ml/100gがより好ましく、140~300ml/100gが更に好ましい。特定カーボンブラックでは、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られやすい観点から、平均粒径が60nm以下で、かつ、DBP吸油量がこれらの範囲であることが好ましい。特定カーボンブラックのDBP吸油量は、JIS K 6217-4の吸油量A法により測定した値である。 The DBP (dibutyl phthalate) oil absorption of the specific carbon black is 100 to 350 ml / 100 g from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance. 120 to 300 ml / 100 g is more preferable, and 140 to 300 ml / 100 g is further preferable. The specific carbon black has an average particle size of 60 nm or less, and a DBP oil absorption of these, from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance. The range is preferably. The DBP oil absorption of the specific carbon black is a value measured by the oil absorption A method of JIS K 6217-4.
 本実施形態のゴム組成物は、必要に応じて、結晶格子内の層平面のC軸方向の平均積み重なり高さLCが2nm以上のカーボンブラック以外のカーボンブラックを含有してもよい。このようなカーボンブラックとしては、従来よりゴム用に使用されている各種カーボンブラックを用いることができる。 The rubber composition of the present embodiment may contain carbon black other than carbon black having an average stacking height LC of 2 nm or more in the C-axis direction of the layer plane in the crystal lattice, if necessary. As such carbon black, various carbon blacks conventionally used for rubber can be used.
 本実施形態のゴム組成物中に配合されるカーボンブラックとしては、熱分解法によるサーマルブラック、アセチレンブラック等、及び、不完全燃焼法によるファーネスブラック、チャンネルブラック等のいずれも使用可能である。カーボンブラックの中でもアセチレンブラックは、アセチレンガスを熱分解して得られるカーボンブラックであり、結晶化が著しく進み、しかも、ストラクチャーも高度に発達し、吸油量も大きい。特定カーボンブラックは、ゴム組成物の加硫物及び加硫成形体の耐熱性の改善効果が大きい観点から、アセチレンブラックであることが好ましい。 As the carbon black blended in the rubber composition of the present embodiment, thermal black by thermal decomposition method, acetylene black, etc., furnace black by incomplete combustion method, channel black, etc. can all be used. Among the carbon blacks, acetylene black is a carbon black obtained by thermally decomposing acetylene gas, has a remarkable degree of crystallization, has a highly developed structure, and has a large oil absorption. The specific carbon black is preferably acetylene black from the viewpoint of having a great effect of improving the heat resistance of the vulcanized product of the rubber composition and the vulcanized molded product.
 特定カーボンブラックの含有量は、クロロプレン系ゴム100質量部に対して20~80質量部である。特定カーボンブラックの含有量が80質量部を越えると、加工性が低下することによりスコーチが起こりやすくなり、加硫成形体が得られない。また、加硫物及び加硫成形体の耐寒性が低下する。特定カーボンブラックの含有量が20質量部より少ないと、加硫物及び加硫成形体の耐熱性が低下する。 The content of the specific carbon black is 20 to 80 parts by mass with respect to 100 parts by mass of the chloroprene rubber. If the content of the specific carbon black exceeds 80 parts by mass, scorch is likely to occur due to a decrease in processability, and a vulcanized molded product cannot be obtained. Further, the cold resistance of the vulcanized product and the vulcanized molded product is reduced. If the content of the specific carbon black is less than 20 parts by mass, the heat resistance of the vulcanized product and the vulcanized molded product will decrease.
 特定カーボンブラックの含有量は、クロロプレン系ゴム100質量部に対して下記の範囲が好ましい。特定カーボンブラックの含有量は、優れた機械的強度及び耐熱性を得やすい観点から、好ましくは25質量部以上であり、より好ましくは30質量部以上であり、更に好ましくは35質量部以上であり、特に好ましくは40質量部以上である。特定カーボンブラックの含有量は、加工性の低下が抑制されやすいことからスコーチを起こしにくく、加硫成形体が得られやすい観点、並びに、優れた耐熱性及び耐寒性を得やすい観点から、好ましくは70質量部以下であり、より好ましくは60質量部以下であり、更に好ましくは50質量部以下であり、特に好ましくは40質量部以下である。これらの観点から、特定カーボンブラックの含有量は、好ましくは25~70質量部である。 The content of the specific carbon black is preferably in the following range with respect to 100 parts by mass of the chloroprene rubber. From the viewpoint of easily obtaining excellent mechanical strength and heat resistance, the content of the specific carbon black is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 35 parts by mass or more. It is particularly preferably 40 parts by mass or more. The content of the specific carbon black is preferably less likely to cause scorch because the deterioration of the processability is easily suppressed, a vulcanized molded body is easily obtained, and, from the viewpoint of easily obtaining excellent heat resistance and cold resistance, preferably It is 70 parts by mass or less, more preferably 60 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 40 parts by mass or less. From these viewpoints, the content of the specific carbon black is preferably 25 to 70 parts by mass.
 特定カーボンブラックの含有量は、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られやすい観点から、カーボンブラックの含有量(ゴム組成物に含まれるカーボンブラックの全量)を基準として、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上であり、特に好ましくは98質量%以上であり、極めて好ましくは99質量%以上である。カーボンブラックが実質的に特定カーボンブラックからなる(カーボンブラックの実質的に100質量%が特定カーボンブラックである)態様であってもよい。 The content of the specific carbon black is the content of the carbon black (included in the rubber composition from the viewpoint of easily obtaining a vulcanized product and a vulcanized molded article having excellent mechanical strength, heat resistance, oil resistance and cold resistance. Based on the total amount of carbon black), it is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more, and very preferably Is 99% by mass or more. It may be an aspect in which the carbon black is substantially composed of the specific carbon black (substantially 100% by mass of the carbon black is the specific carbon black).
 カーボンブラックの含有量(ゴム組成物に含まれるカーボンブラックの全量)は、クロロプレン系ゴム100質量部に対して下記の範囲が好ましい。カーボンブラックの含有量は、優れた機械的強度及び耐熱性を得やすい観点から、好ましくは20質量部以上であり、より好ましくは25質量部以上であり、更に好ましくは30質量部以上であり、特に好ましくは35質量部以上であり、極めて好ましくは40質量部以上である。カーボンブラックの含有量は、加工性の低下が抑制されやすいことからスコーチを起こしにくく、加硫成形体が得られやすい観点、並びに、優れた耐熱性及び耐寒性を得やすい観点から、好ましくは80質量部以下であり、より好ましくは70質量部以下であり、更に好ましくは60質量部以下であり、特に好ましくは50質量部以下であり、極めて好ましくは40質量部以下である。これらの観点から、カーボンブラックの含有量は、好ましくは20~80質量部であり、より好ましくは25~70質量部である。 The content of carbon black (the total amount of carbon black contained in the rubber composition) is preferably in the following range with respect to 100 parts by mass of the chloroprene rubber. The content of carbon black is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, further preferably 30 parts by mass or more, from the viewpoint of easily obtaining excellent mechanical strength and heat resistance. It is particularly preferably 35 parts by mass or more, and most preferably 40 parts by mass or more. The content of carbon black is preferably 80, from the viewpoint that scorch is unlikely to occur because a decrease in processability is easily suppressed, a vulcanized molded body is easily obtained, and that excellent heat resistance and cold resistance are easily obtained. The amount is not more than 70 parts by mass, more preferably not more than 70 parts by mass, further preferably not more than 60 parts by mass, particularly preferably not more than 50 parts by mass, and most preferably not more than 40 parts by mass. From these viewpoints, the content of carbon black is preferably 20 to 80 parts by mass, more preferably 25 to 70 parts by mass.
(亜鉛粉)
 本実施形態のゴム組成物は、亜鉛粉を含有する。亜鉛粉の粒度としては、200メッシュ通過の粒度が好ましい。
(Zinc powder)
The rubber composition of the present embodiment contains zinc powder. The particle size of the zinc powder is preferably 200 mesh.
 亜鉛粉の含有量は、クロロプレン系ゴム100質量部に対して0.2~30質量部である。亜鉛粉の含有量が0.2質量部より少ないと、加硫物及び加硫成形体の耐熱性が十分改良されない。亜鉛粉の含有量が30質量部を超えると、加硫物及び加硫成形体の機械的特性が低下する。 The content of zinc powder is 0.2 to 30 parts by mass with respect to 100 parts by mass of chloroprene rubber. If the content of the zinc powder is less than 0.2 parts by mass, the heat resistance of the vulcanized product and the vulcanized molded product will not be sufficiently improved. When the content of the zinc powder exceeds 30 parts by mass, the mechanical properties of the vulcanized product and the vulcanized molded product deteriorate.
 亜鉛粉の含有量は、クロロプレン系ゴム100質量部に対して下記の範囲が好ましい。亜鉛粉の含有量は、優れた耐熱性が得られやすい観点から、好ましくは0.5質量部以上であり、より好ましくは1質量部以上であり、更に好ましくは2質量部以上であり、特に好ましくは3質量部以上であり、極めて好ましくは4質量部以上であり、非常に好ましくは5質量部以上である。亜鉛粉の含有量は、優れた機械的特性が得られやすい観点から、好ましくは25質量部以下であり、より好ましくは20質量部以下であり、更に好ましくは15質量部以下であり、特に好ましくは10質量部以下であり、極めて好ましくは5質量部以下である。これらの観点から、亜鉛粉の含有量は、好ましくは0.5~25質量部であり、より好ましくは2~20質量部である。 The zinc powder content is preferably in the following range with respect to 100 parts by mass of chloroprene rubber. The content of the zinc powder is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 2 parts by mass or more, particularly from the viewpoint of easily obtaining excellent heat resistance. It is preferably 3 parts by mass or more, very preferably 4 parts by mass or more, and very preferably 5 parts by mass or more. The content of the zinc powder is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, further preferably 15 parts by mass or less, and particularly preferably, from the viewpoint of easily obtaining excellent mechanical properties. Is 10 parts by mass or less, and most preferably 5 parts by mass or less. From these viewpoints, the content of zinc powder is preferably 0.5 to 25 parts by mass, more preferably 2 to 20 parts by mass.
(その他の成分)
 本実施形態のゴム組成物は、クロロプレン系ゴム、カーボンブラック及び亜鉛粉以外の成分として、通常ゴム工業界で用いられる各種添加剤(薬品)を含有してよい。添加剤としては、加硫剤、充填剤、補強剤、可塑剤、加工助剤、滑剤、老化防止剤、シランカップリング剤、加硫促進剤、スコーチ防止剤、軟化剤等が挙げられる。
(Other ingredients)
The rubber composition of the present embodiment may contain various additives (chemicals) usually used in the rubber industry as components other than the chloroprene rubber, carbon black and zinc powder. Examples of additives include vulcanizing agents, fillers, reinforcing agents, plasticizers, processing aids, lubricants, antioxidants, silane coupling agents, vulcanization accelerators, scorch inhibitors, and softeners.
 加硫剤としては、クロロプレン系ゴムの加硫に一般に用いられる成分を用いることができる。加硫剤としては、硫黄;チオウレア系、グアニジン系、チウラム系、チアゾール系等の有機加硫剤;3-メチルチアゾリジンチオン-2-チアゾールとフェニレンジマレイミドとの混合物;ジメチルアンモニウムハイドロジエンイソフタレート;1,2-ジメルカプト-1,3,4-チアジアゾール誘導体;ベリリウム、マグネシウム、亜鉛、カルシウム、バリウム、ゲルマニウム、チタニウム、錫、ジルコニウム、アンチモン、バナジウム、ビスマス、モリブデン、タングステン、テルル、セレン、鉄、ニッケル、コバルト、オスミウム等の金属の単体、酸化物及び水酸化物などが挙げられる。加硫剤は、1種単独で又は2種以上を組み合わせて用いることができる。加硫剤としては、チオウレア系の有機加硫剤が好ましい。チオウレア系の有機加硫剤としては、エチレンチオウレア、ジエチルチオウレア、トリメチルチオウレア、トリエチルチオウレア、N,N’-ジフェニルチオウレア等が挙げられ、トリメチルチオウレア及びエチレンチオウレアからなる群より選ばれる少なくとも一種が好ましい。加硫剤としては、加硫効果が高い観点から、酸化カルシウム、酸化亜鉛、二酸化アンチモン、三酸化アンチモン及び酸化マグネシウムからなる群より選ばれる少なくとも一種も好ましい。加硫剤の含有量は、クロロプレン系ゴム100質量部に対して0.1~15質量部であってよい。 As the vulcanizing agent, components generally used for vulcanizing chloroprene rubber can be used. As the vulcanizing agent, sulfur; an organic vulcanizing agent such as thiourea-based, guanidine-based, thiuram-based, thiazole-based; a mixture of 3-methylthiazolidinethione-2-thiazole and phenylene dimaleimide; 1,2-dimercapto-1,3,4-thiadiazole derivative; beryllium, magnesium, zinc, calcium, barium, germanium, titanium, tin, zirconium, antimony, vanadium, bismuth, molybdenum, tungsten, tellurium, selenium, iron, nickel Examples include simple substances of metals such as cobalt, cobalt and osmium, oxides and hydroxides. The vulcanizing agents may be used alone or in combination of two or more. As the vulcanizing agent, a thiourea-based organic vulcanizing agent is preferable. Examples of the thiourea-based organic vulcanizing agent include ethylenethiourea, diethylthiourea, trimethylthiourea, triethylthiourea and N, N'-diphenylthiourea, and at least one selected from the group consisting of trimethylthiourea and ethylenethiourea is preferable. As the vulcanizing agent, at least one selected from the group consisting of calcium oxide, zinc oxide, antimony dioxide, antimony trioxide and magnesium oxide is also preferable from the viewpoint of high vulcanization effect. The content of the vulcanizing agent may be 0.1 to 15 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
 充填剤又は補強剤は、ゴム組成物の硬さの調整又は機械的強度の向上のために用いることができる。充填剤又は補強剤としては、加硫剤に該当する化合物も用いることができる。充填剤又は補強剤としては、シリカ;γ-アルミナ、α-アルミナ等のアルミナ(Al);ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO);ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)];炭酸アルミニウム[Al(CO];水酸化マグネシウム[Mg(OH)];炭酸マグネシウム(MgCO);タルク(3MgO・4SiO・HO);アタパルジャイト(5MgO・8SiO・9HO);チタン白(TiO);チタン黒(TiO2n-1);酸化カルシウム(CaO);水酸化カルシウム[Ca(OH)];酸化アルミニウムマグネシウム(MgO・Al);クレー(Al・2SiO);カオリン(Al・2SiO・2HO);パイロフィライト(Al・4SiO・HO);ベントナイト(Al・4SiO・2HO);ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等);ケイ酸マグネシウム(MgSiO、MgSiO等);ケイ酸カルシウム(CaSiO等);ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等);ケイ酸マグネシウムカルシウム(CaMgSiO);炭酸カルシウム(CaCO);酸化ジルコニウム(ZrO);水酸化ジルコニウム[ZrO(OH)・nHO];炭酸ジルコニウム[Zr(CO];各種ゼオライトのように、電荷を補正する水素原子、及び、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩などが挙げられる。充填剤又は補強剤は、1種単独で又は2種以上を組み合わせて用いることができる。充填剤又は補強剤の含有量は、ゴム組成物、加硫物及び加硫成形体において要求される物性に応じて調整すればよく、特に限定するものではない。充填剤又は補強剤の含有量は、クロロプレン系ゴム100質量部に対して15~200質量部であってよい。 The filler or reinforcing agent can be used for adjusting the hardness of the rubber composition or improving the mechanical strength. A compound corresponding to a vulcanizing agent can also be used as the filler or the reinforcing agent. As the filler or the reinforcing agent, silica; alumina such as γ-alumina and α-alumina (Al 2 O 3 ); alumina monohydrate such as boehmite and diaspore (Al 2 O 3 .H 2 O); gibbsite, Aluminum hydroxide [Al (OH) 3 ] such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 2 ]; magnesium hydroxide [Mg (OH) 2 ]; magnesium carbonate (MgCO 3 ); talc (3MgO.4SiO) 2 · H 2 O); attapulgite (5MgO · 8SiO 2 · 9H 2 O); titanium white (TiO 2 ); titanium black (TiO 2n-1 ); calcium oxide (CaO); calcium hydroxide [Ca (OH) 2 ]; magnesium aluminum oxide (MgO · Al 2 O 3) ; clay (Al 2 O 3 · 2SiO 2 ); kaolin (Al 2 3 · 2SiO 2 · 2H 2 O ); pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O); bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O); aluminum silicate (Al 2 SiO 5 , Al 4 .3SiO 4 .5H 2 O etc.); magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.); calcium silicate (Ca 2 SiO 4 etc.); aluminum calcium silicate (Al 2 O 3 .CaO. 2SiO 2 ); magnesium calcium silicate (CaMgSiO 4 ); calcium carbonate (CaCO 3 ); zirconium oxide (ZrO 2 ); zirconium hydroxide [ZrO (OH) 2 · nH 2 O]; zirconium carbonate [Zr (CO 3). ) 2]; as various zeolites, hydrogen atom for correcting the charge, and the alkali metal or alka Such as crystalline aluminosilicates including earth metals. The filler or the reinforcing agent may be used alone or in combination of two or more. The content of the filler or the reinforcing agent may be adjusted according to the physical properties required in the rubber composition, the vulcanized product and the vulcanized molded product, and is not particularly limited. The content of the filler or the reinforcing agent may be 15 to 200 parts by mass based on 100 parts by mass of the chloroprene rubber.
 可塑剤は、ゴムと相溶性のある可塑剤であれば特に限定はない。可塑剤としては、菜種油、アマニ油、ヒマシ油、ヤシ油等の植物油;フタレート系可塑剤、DUP(フタル酸ジウンデシル)、DOS(セバシン酸ジオクチル)、DOA(アジピン酸ジオクチル)、エステル系可塑剤、エーテルエステル系可塑剤、チオエーテル系可塑剤、アロマ系オイル、ナフテン系オイル、潤滑油、プロセスオイル、パラフィン、流動パラフィン、ワセリン、石油アスファルト等の石油系可塑剤などが挙げられる。可塑剤は、ゴム組成物、加硫物及び加硫成形体において要求される特性に応じて、1種単独で又は2種以上を組み合わせて用いることができる。可塑剤の含有量は、特に限定はなく、クロロプレン系ゴム100質量部に対して3~50質量部であってよい。 The plasticizer is not particularly limited as long as it is compatible with rubber. Examples of the plasticizer include vegetable oils such as rapeseed oil, linseed oil, castor oil, and coconut oil; phthalate plasticizers, DUP (diundecyl phthalate), DOS (dioctyl sebacate), DOA (dioctyl adipate), ester plasticizers, Examples include ether ester plasticizers, thioether plasticizers, aromatic oils, naphthene oils, lubricating oils, process oils, petroleum plasticizers such as paraffin, liquid paraffin, petrolatum and petroleum asphalt. The plasticizers may be used alone or in combination of two or more, depending on the properties required in the rubber composition, vulcanized product and vulcanized molded product. The content of the plasticizer is not particularly limited and may be 3 to 50 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
 加工助剤又は滑剤は、ゴム組成物を混練したり加硫成形したりする際に、ロール、成形金型、押出機のスクリュー等から剥離しやすくなるようにするなど、加工性及び表面滑性を向上させるために用いることができる。加工助剤又は滑剤としては、ステアリン酸等の脂肪酸;ポリエチレン等のパラフィン系加工助剤;脂肪酸アミドなどが挙げられる。加工助剤又は滑剤は、1種単独で又は2種以上を組み合わせて用いることができる。加工助剤又は滑剤の含有量は、特に限定はなく、クロロプレン系ゴム100質量部に対して0.5~5質量部であってよい。 A processing aid or a lubricant is used for kneading or vulcanizing and molding a rubber composition so that it can be easily peeled off from a roll, a molding die, a screw of an extruder, or the like. Can be used to improve Examples of processing aids or lubricants include fatty acids such as stearic acid; paraffin-based processing aids such as polyethylene; and fatty acid amides. The processing aids or lubricants may be used alone or in combination of two or more. The content of the processing aid or the lubricant is not particularly limited and may be 0.5 to 5 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
 老化防止剤は、耐熱性を更に向上させることができる。老化防止剤としては、通常のゴム用途に使用されている、ラジカルを捕捉して自動酸化を防止する一次老化防止剤、及び/又は、ハイドロパーオキサイドを無害化する二次老化防止剤を用いることができる。一次老化防止剤の含有量、二次老化防止剤の含有量、及び/又は、ゴム組成物に含まれる老化防止剤の含有量(合計量)は、クロロプレン系ゴム100質量部に対して、好ましくは0.1~10質量部、より好ましくは1~5質量部である。老化防止剤は、1種単独で又は2種以上を組み合わせて用いることができる。 Aging resistance can further improve heat resistance. As the anti-aging agent, use a primary anti-aging agent that is used for ordinary rubber applications and that traps radicals to prevent autooxidation, and / or a secondary anti-aging agent that detoxifies hydroperoxide. You can The content of the primary antioxidant, the content of the secondary antioxidant, and / or the content (total amount) of the antioxidant contained in the rubber composition is preferably 100 parts by mass of the chloroprene rubber. Is 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass. The antioxidants can be used alone or in combination of two or more.
 一次老化防止剤としては、フェノール系老化防止剤、アミン系老化防止剤、アクリレート系老化防止剤、イミダゾール系老化防止剤、カルバミン酸金属塩、ワックス等が挙げられる。二次老化防止剤としては、リン系老化防止剤、硫黄系老化防止剤、イミダゾール系老化防止剤等が挙げられる。老化防止剤としては、特に限定されないが、N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N,N’-ジフェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、N-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、4,4’-ブチリデンビス-(3-メチル-6-tert-ブチルフェノール)、2,2-チオビス(4-メチル-6-tert-ブチルフェノール)、7-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)プロピオネート、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、2,2-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ)-ヒドロシンナアミド、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジル-ホスホネート-ジエチルエステル、テトラキス[メチレン(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナメイト)]メタン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸エステル、3,9-ビス[2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリス(ノニル・フェニル)フォスファイト、トリス(混合モノ-及びジ-ノニルフェニル)フォスファイト、ジフェニル・モノ(2-エチルヘキシル)フォスファイト、ジフェニル・モノトリデシル・フォスファイト、ジフェニル・イソデシル・フォスファイト、ジフェニル・イソオクチル・フォスファイト、ジフェニル・ノニルフェニル・フォスファイト、トリフェニルフォスファイト、トリス(トリデシル)フォスファイト、トリイソデシルフォスファイト、トリス(2-エチルヘキシル)フォスファイト、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、テトラフェニルジプロピレングリコール・ジフォスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラフォスファイト、1,1,3-トリス(2-メチル-4-ジ-トリデシルフォスファイト-5-tert-ブチルフェニル)ブタン、4,4’-ブチリデンビス-(3-メチル-6-tert-ブチル-ジ-トリデシルフォスファイト)、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェノール)フルオロフォスファイト、4,4’-イソプロピリデン-ジフェノールアルキル(C12~C15)フォスファイト、環状ネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニルフォスファイト)、環状ネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-フェニルフォスファイト)、環状ネオペンタンテトライルビス(ノニルフェニルフォスファイト)、ビス(ノニルフェニル)ペンタエリスリトールジフォスファイト、ジブチルハイドロゲンフォスファイト、ジステアリル・ペンタエリスリトール・ジフォスファイト、水添ビスフェノールA・ペンタエリスリトールフォスファイト・ポリマー等が挙げられる。 Examples of primary anti-aging agents include phenolic anti-aging agents, amine anti-aging agents, acrylate anti-aging agents, imidazole anti-aging agents, carbamic acid metal salts and waxes. Examples of the secondary antiaging agent include phosphorus antiaging agents, sulfur antiaging agents, imidazole antiaging agents, and the like. The antiaging agent is not particularly limited, but N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, p- (p-toluenesulfonyl) Amido) diphenylamine, N, N'-di-2-naphthyl-p-phenylenediamine, N, N'-diphenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N-phenyl- N '-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N'-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, 1,1,3-tris- ( 2-Methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′- Butylidene bis- (3-methyl-6-tert-butylphenol), 2,2-thiobis (4-methyl-6-tert-butylphenol), 7-octadecyl-3- (4'-hydroxy-3 ', 5'-di -Tert-butylphenyl) propionate, tetrakis- [methylene-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate] methane, pentaerythritol-tetrakis [3- (3,5- Di-tert-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [bis 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propio , 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butylanilino) -1,3,5-triazine, tris- (3,5-di- tert-Butyl-4-hydroxybenzyl) -isocyanurate, 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylene Bis (3,5-di-tert-butyl-4-hydroxy) -hydrocinnamide, 2,4-bis [(octylthio) methyl] -o-cresol, 3,5-di-tert-butyl-4-hydroxy Benzyl-phosphonate-diethyl ester, tetrakis [methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane, octade 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid ester, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, tris (nonylphenyl) phosphite, tris (mixed mono- and di-nonylphenyl) ) Phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monotridecyl phosphite, diphenyl isodecyl phosphite, diphenyl isooctyl phosphite, diphenyl nonylphenyl phosphite, triphenyl phosphite, tris (Tridecyl) Phosphate, To Liisodecyl phosphite, tris (2-ethylhexyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tetraphenyl dipropylene glycol diphosphite, tetraphenyl tetra (tridecyl) pentaerythritol tetra Phosphite, 1,1,3-tris (2-methyl-4-di-tridecylphosphite-5-tert-butylphenyl) butane, 4,4'-butylidenebis- (3-methyl-6-tert-butyl) -Di-tridecyl phosphite), 2,2'-ethylidene bis (4,6-di-tert-butylphenol) fluorophosphite, 4,4'-isopropylidene-diphenol alkyl (C12-C15) phosphite, Cyclic neopentane tetrayl bis 2,4-di-tert-butylphenylphosphite), cyclic neopentanetetraylbis (2,6-di-tert-butyl-4-phenylphosphite), cyclic neopentanetetraylbis (nonylphenylphosphite) , Bis (nonylphenyl) pentaerythritol diphosphite, dibutyl hydrogen phosphite, distearyl pentaerythritol diphosphite, hydrogenated bisphenol A pentaerythritol phosphite polymer and the like.
 シランカップリング剤は、クロロプレン系ゴム等のゴム成分と充填剤又は補強剤との接着性を高め、機械的強度を更に向上させることができる。シランカップリング剤は、ゴム組成物を混練する際に加えても、充填剤又は補強剤を予め表面処理する形で加えても、どちらでも構わない。シランカップリング剤は、1種単独で又は2種以上を組み合わせて用いることができる。シランカップリング剤としては、特に限定されないが、ビス-(3-トリエトキシシリルプロピル)テトラスルフィド、ビス-(3-トリメトキシンリルプロピル)テトラスルフィド、ビス-(3-メチルジメトキシシリルプロピル)テトラスルフィド、ビス-(2-トリエトキシシリルエチル)テトラスルフィド、ビス-(3-トリエトキシシリルプロピル)ジスルフィド、ビス-(3-トリメトキシシリルプロピル)ジスルフィド、ビス-(3-トリエトキシシリルプロピル)トリスルフィド、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、γ-グリンドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリメトキシシリルプロピルメタクリロイルモノスルフィド、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、イソブチルトリメトキシシラン、n-デシルトリメトキシシラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、ジフエニルジメトキシシラン、ジフエニルジエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルメチルジメトキシシラン、オクタデシルトリメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリッフエニルクロロシラン、ヘプタデカフルオロデシルメチルジクロロシラン、ヘプタデカフルオロデシルトリクロロシラン、トリエチルクロロシラン等が挙げられる。 The silane coupling agent can enhance the adhesiveness between the rubber component such as chloroprene rubber and the filler or the reinforcing agent, and further improve the mechanical strength. The silane coupling agent may be added at the time of kneading the rubber composition or may be added in the form of a surface treatment with a filler or a reinforcing agent in advance. The silane coupling agent may be used alone or in combination of two or more. The silane coupling agent is not particularly limited, but is bis- (3-triethoxysilylpropyl) tetrasulfide, bis- (3-trimethoxynylpropyl) tetrasulfide, bis- (3-methyldimethoxysilylpropyl) tetrasulfide. , Bis- (2-triethoxysilylethyl) tetrasulfide, bis- (3-triethoxysilylpropyl) disulfide, bis- (3-trimethoxysilylpropyl) disulfide, bis- (3-triethoxysilylpropyl) trisulfide , 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3-lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltri Toxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane , 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, 2-octanoylthioethyltrimethoxysilane, 2-decanoylthioethyltrimethoxysilane, 2-lauroylthioethyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-aminopropyl Remethoxysilane, 3-aminopropyltriethoxysilane, γ-grindoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropyl benzothiazolyl tetrasulfide, 3-trimethoxysilylpropyl methacryloyl monosulfide, methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, Isobutyltrimethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldi Toxysilane, hexyltrimethoxysilane, octadecylmethyldimethoxysilane, octadecyltrimethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, triphenylphenylsilane, heptadecafluorodecylmethyldichlorosilane, heptadecafluorodecyltrichlorosilane, triethylchlorosilane and the like. Be done.
 本実施形態のゴム組成物は、下記一般式(1)で表される化合物を含んでよい。一般式(1)で表される化合物としては、ポリエチレングリコール・ジベンゾエート、ポリエチレングリコール・ジ-2-エチルヘキソエート、テトラエチレングリコール・ジ-(2-エチル・へキソエート)、ポリエチレングリコールビス(2-エチルへキソエート)、トリエチレングリコール・ジペラルゴネート、トリエチレングリコールジヘプタノエート、トリエチレングリコール・カプレートカプリレート、テトラエチレングリコールジヘプタノエート等が挙げられる。 The rubber composition of this embodiment may include a compound represented by the following general formula (1). Examples of the compound represented by the general formula (1) include polyethylene glycol dibenzoate, polyethylene glycol di-2-ethylhexoate, tetraethylene glycol di- (2-ethyl hexoate), polyethylene glycol bis ( 2-ethylhexoate), triethylene glycol dipelargonate, triethylene glycol diheptanoate, triethylene glycol caprate caprylate, tetraethylene glycol diheptanoate and the like.
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、それぞれ独立に、炭素数1~20のアルキル基又はフェニル基を表し、nは、1~20の整数を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 and R 2 each independently represent an alkyl group having 1 to 20 carbon atoms or a phenyl group, and n represents an integer of 1 to 20.)
 一般式(1)で表される化合物の含有量は、クロロプレン系ゴム100質量部に対して下記の範囲であってよい。一般式(1)で表される化合物の含有量は、0.1質量部未満、0.05質量部以下、又は、0.01質量部以下であってよい。一般式(1)で表される化合物の含有量は、0質量部以上であってよく、0質量部を超えてよい。本実施形態のゴム組成物は、一般式(1)で表される化合物を含まなくてよく、上述の含有量は0質量部であってよい。 The content of the compound represented by the general formula (1) may be in the following range with respect to 100 parts by mass of the chloroprene rubber. The content of the compound represented by the general formula (1) may be less than 0.1 parts by mass, 0.05 parts by mass or less, or 0.01 parts by mass or less. The content of the compound represented by the general formula (1) may be 0 parts by mass or more, and may exceed 0 parts by mass. The rubber composition of the present embodiment may not contain the compound represented by the general formula (1), and the content may be 0 parts by mass.
 本実施形態のゴム組成物は、通常のゴム組成物と同様の方法で製造することができる。具体的には、クロロプレン系ゴム、カーボンブラック、亜鉛粉及びその他の成分を、ニーダー、バンバリー、ロール等の混練り機によって、加硫温度以下の温度で混練することにより得ることができる。 The rubber composition of the present embodiment can be manufactured by the same method as a normal rubber composition. Specifically, it can be obtained by kneading chloroprene rubber, carbon black, zinc powder and other components with a kneader, a Banbury, a roll or the like at a temperature not higher than the vulcanization temperature.
 以上詳述したように、本実施形態のゴム組成物は、不飽和ニトリル単量体由来の構造単位を特定量有するクロロプレン系ゴムをゴム成分として用い、特定のカーボンブラック及び亜鉛粉を特定量用いているため、機械的強度及び耐寒性を低下させることなく、耐熱性及び耐油性を向上させることができる。これにより、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られるゴム組成物を実現することができる。 As described in detail above, the rubber composition of the present embodiment uses a chloroprene rubber having a specific amount of a structural unit derived from an unsaturated nitrile monomer as a rubber component, and a specific amount of carbon black and zinc powder. Therefore, heat resistance and oil resistance can be improved without lowering mechanical strength and cold resistance. This makes it possible to realize a rubber composition capable of obtaining a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance, and cold resistance.
<加硫物>
 本実施形態の加硫物は、前述した本実施形態のゴム組成物の加硫物であり、前述した本実施形態のゴム組成物を加硫して得ることができる。ゴム組成物の加硫方法は特に限定されるものではなく、例えば、プレス加硫、インジェクション加硫、直接釜加硫、間接釜加硫、直接蒸気連続加硫、常圧連続加硫、連続加硫プレス等の加硫方法により加硫すればよい。
<Vulcanized product>
The vulcanized product of the present embodiment is a vulcanized product of the rubber composition of the present embodiment described above, and can be obtained by vulcanizing the rubber composition of the present embodiment described above. The method for vulcanizing the rubber composition is not particularly limited, and examples thereof include press vulcanization, injection vulcanization, direct kettle vulcanization, indirect kettle vulcanization, direct steam continuous vulcanization, normal pressure continuous vulcanization, continuous vulcanization. It may be vulcanized by a vulcanizing method such as a vulcanizing press.
 加硫温度、加硫時間等の加硫条件も、特に限定されるものではなく、適宜設定することができる。加硫温度は、優れた生産性及び加工安定性を得やすい観点から、130~200℃が好ましく、140~190℃がより好ましい。 Vulcanization conditions such as vulcanization temperature and vulcanization time are not particularly limited and can be set as appropriate. The vulcanization temperature is preferably 130 to 200 ° C., more preferably 140 to 190 ° C., from the viewpoint of easily obtaining excellent productivity and processing stability.
 本実施形態の加硫物は、本実施形態のゴム組成物を使用しているため、機械的強度、耐熱性、耐油性及び耐寒性に優れる。 Since the vulcanized product of this embodiment uses the rubber composition of this embodiment, it has excellent mechanical strength, heat resistance, oil resistance, and cold resistance.
<成形体>
 本実施形態に係る成形体は、本実施形態に係るゴム組成物の成形体であり、本実施形態に係るゴム組成物を、目的に応じた形状に成形加工して得ることができる。本実施形態の加硫成形体は、本実施形態のゴム組成物の加硫成形体である。本実施形態の加硫成形体は、本実施形態のゴム組成物を、目的に応じた形状に成形加工し、成形時又は成形後に加硫して得ることが可能であり、本実施形態の加硫物を、目的に応じた形状に成形加工することにより得ることもできる。
<Molded body>
The molded body according to this embodiment is a molded body of the rubber composition according to this embodiment, and can be obtained by molding the rubber composition according to this embodiment into a shape according to the purpose. The vulcanized molded product of the present embodiment is a vulcanized molded product of the rubber composition of the present embodiment. The vulcanized molded article of this embodiment can be obtained by molding the rubber composition of this embodiment into a shape according to the purpose and vulcanizing it during or after molding. It can also be obtained by forming a vulcanized product into a shape suitable for the purpose.
 成形方法は、特に限定されるものではないが、プレス成形、射出成形、押出成形等を適用することができる。例えば、成形体が伝動ベルト、コンベアベルト、空気バネ、シール材(パッキン、ガスケット等)、防振材、ホース、ロール等である場合は、プレス成形、射出成形、押出成形等により形成することができる。 The molding method is not particularly limited, but press molding, injection molding, extrusion molding or the like can be applied. For example, when the molded body is a transmission belt, a conveyor belt, an air spring, a sealing material (packing, gasket, etc.), a vibration damping material, a hose, a roll, etc., it may be formed by press molding, injection molding, extrusion molding, or the like. it can.
 本実施形態の加硫成形体は、本実施形態のゴム組成物を使用しているため、機械的強度、耐熱性、耐油性及び耐寒性に優れる。本実施形態の加硫成形体は、伝動ベルト、コンベアベルト、ホース、ワイパー、シール材(パッキン、ガスケット等)、ロール、空気バネ、防振材、接着剤、ブーツ、ゴム引布、スポンジ、ゴムライニングなどとして用いることができる。本実施形態のゴム組成物及び加硫物は、これらの用途に用いられる加硫成形体を得るために用いることができる。本実施形態の加硫成形体は、機械的強度、耐熱性、耐油性及び耐寒性に優れることから、従来のCR(クロロプレンゴム)等では達成が困難であった用途においても好適に用いることができる。 Since the vulcanized molded article of this embodiment uses the rubber composition of this embodiment, it has excellent mechanical strength, heat resistance, oil resistance, and cold resistance. The vulcanized molded article of this embodiment includes a transmission belt, a conveyor belt, a hose, a wiper, a sealing material (packing, gasket, etc.), a roll, an air spring, a vibration isolator, an adhesive, a boot, a rubberized cloth, a sponge, and a rubber. It can be used as a lining. The rubber composition and the vulcanized product of the present embodiment can be used to obtain a vulcanized molded product used for these applications. The vulcanized molded article of the present embodiment is excellent in mechanical strength, heat resistance, oil resistance and cold resistance, and therefore, it can be suitably used in applications where it has been difficult to achieve with conventional CR (chloroprene rubber) and the like. it can.
(伝動ベルト及びコンベアベルト)
 伝動ベルト及びコンベアベルトは、巻掛け伝動装置に使われる機械要素であり、原動車から従動車に動力を伝達する部品である。伝動ベルト及びコンベアベルトは、軸にセットされたプーリーにかけて用いられることが多い。伝動ベルト及びコンベアベルトは、軽量性、静音性、軸角度の自由度等に優れるため、自動車、一般産業用ベルト、各種コンベアベルト等の機械全般に幅広く使用されている。ベルトの種類は多様化しており、平ベルト、タイミングベルト、Vベルト、リブベルト、丸ベルト等の伝動ベルト;コンベアベルトなどが機械の用途に応じて使い分けられている。効率的に動力を伝達するため、高い張力でかけられたベルトが回転変形を繰り返すことから、従来の伝動ベルト及びコンベアベルトでは、NR(天然ゴム)、SBR(スチレン・ブタジエンゴム)、CR、NBR(ニトリルゴム)、HNBR(水素化ニトリルゴム)等のエラストマー材料が使用されている。CRは、優れたゴム物性を有するため、自動車、一般産業用ベルト、各種コンベアベルト等に採用されているが、高い張力に耐えるため機械的強度を向上させることは不断の技術課題である。また、建設現場で使用される工作機器のベルト等は、飛散した油にさらされる環境で使用されることもあり、耐油性の改良が求められる。
(Transmission belt and conveyor belt)
The power transmission belt and the conveyor belt are mechanical elements used in the winding power transmission device, and are parts for transmitting power from the prime mover to the driven car. The power transmission belt and the conveyor belt are often used around a pulley set on a shaft. BACKGROUND ART Transmission belts and conveyor belts are widely used in a wide range of machines such as automobiles, general industrial belts, and various conveyor belts because of their light weight, quietness, and freedom of shaft angle. The types of belts are diversifying, and transmission belts such as flat belts, timing belts, V belts, rib belts, and round belts; conveyor belts are used according to the application of the machine. In order to efficiently transmit power, the belt applied with a high tension repeats rotational deformation. Therefore, in conventional transmission belts and conveyor belts, NR (natural rubber), SBR (styrene-butadiene rubber), CR, NBR ( Elastomer materials such as nitrile rubber) and HNBR (hydrogenated nitrile rubber) are used. Since CR has excellent rubber physical properties, it is used in automobiles, general industrial belts, various conveyor belts, etc. However, it is a constant technical problem to improve mechanical strength in order to withstand high tension. Further, belts and the like of machine tools used at construction sites are sometimes used in an environment where they are exposed to splashed oil, so improvement in oil resistance is required.
 本実施形態のゴム組成物は、伝動ベルト及びコンベアベルトの機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、飛散した油にさらされる環境等においても使用可能なベルトを製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the transmission belt and the conveyor belt. This makes it possible to manufacture a belt that can be used even in an environment where it is exposed to splashed oil, which was difficult to achieve with conventional CR.
(ホース)
 ホースは、屈曲可能な管であり、自由に屈曲して、可搬性及び移動性を必要とする作業(水まき等)に用いられる。また、ホースは、硬質な管(金属パイプ等)と比較して、変形による疲労破壊を起こしにくいことから、振動を伴う部位の配管(自動車の配管等)に使用される。中でも、最も一般的であるのがゴムホースである。ゴムホースは、NR、CR、EPDM(エチレン・プロピレン・ジエンゴム)、SBR、NBR、ACM(アクリルゴム)、AEM(エチレン・アクリルゴム)、HNBR、ECO(エピクロルヒドリンゴム)、FKM(フッ素ゴム)等で作られ、送水用ホース、送油用ホース、送気用ホース、蒸気用ホース、油圧用高圧ホース、油圧用低圧ホース等が挙げられる。CRは、高圧の流体の圧力に耐え得る良好な機械的強度を理由として、主として油圧用高圧ホースに使用されているが、耐油性の不足を理由として、内層はNBRとするのが一般的である。しかしながら、化学構造の大きく異なるCR及びNBRを接着させることは困難であり、接着が不十分であると、界面で剥離するという課題がある。このため、良好な機械的強度及び耐油性を有する材料が切望されている。また、非極性液体と直接接するホースとして、CRの耐油性は不十分であり、改良が不可欠であった。
(hose)
The hose is a bendable tube, and is freely bent and used for work (watering, etc.) that requires portability and mobility. Further, since the hose is less likely to cause fatigue fracture due to deformation as compared with a hard pipe (metal pipe or the like), the hose is used for pipes (portion of automobiles and the like) in a portion accompanied by vibration. The most common of these is the rubber hose. Rubber hoses are made of NR, CR, EPDM (ethylene / propylene / diene rubber), SBR, NBR, ACM (acrylic rubber), AEM (ethylene / acrylic rubber), HNBR, ECO (epichlorohydrin rubber), FKM (fluorine rubber), etc. Examples thereof include a water supply hose, an oil supply hose, an air supply hose, a steam hose, a hydraulic high pressure hose, and a hydraulic low pressure hose. CR is mainly used in high-pressure hydraulic hoses because of its good mechanical strength that can withstand the pressure of high-pressure fluid, but it is common to use NBR as the inner layer because of its lack of oil resistance. is there. However, it is difficult to bond CR and NBR having greatly different chemical structures, and if bonding is insufficient, there is a problem of peeling at the interface. Therefore, a material having good mechanical strength and oil resistance is eagerly desired. Further, as a hose that is in direct contact with a non-polar liquid, the oil resistance of CR is insufficient, and improvement is essential.
 本実施形態のゴム組成物は、ホースの機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、非極性液体と直接接するホースを製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the hose. This makes it possible to manufacture a hose that is in direct contact with a non-polar liquid, which was difficult to achieve with conventional CR.
(ワイパー)
 自動車、電車、航空機、船舶、建設機械等のフロントガラス、リアガラス等には、表面に付着した雨水、泥水、油汚れ、海水、氷、雪、埃等を払拭又は除去して視界を良くすることにより運転の安全を確保するために通常ワイパーが設けられている。このワイパーのガラス面と接触する部分にはワイパーブレードが取り付けられており、従来のワイパーブレードの材料としては、NR、CR等が用いられている。CRは、繰り返し変形に耐える機械的強度及び耐久疲労性を有し、払拭性等に優れるため自動車用ワイパーに使用されている。しかしながら、CRは、耐油性が不十分であるため、油汚れによりゴム材料が膨潤すると、払拭性が低下してしまう問題がある。このため、油汚れが多い環境下においては、耐油性に優れたワイパーブレードが要求されている。
(Wiper)
For windshields and rear windshields of automobiles, trains, aircraft, ships, construction machines, etc., wipe or remove rainwater, muddy water, oil stains, seawater, ice, snow, dust, etc. adhering to the surface to improve visibility. Therefore, a wiper is usually provided to ensure driving safety. A wiper blade is attached to a portion of the wiper that comes into contact with the glass surface, and NR, CR and the like are used as materials for the conventional wiper blade. CR is used for a wiper for an automobile because it has mechanical strength and durability to withstand repeated deformation, and has excellent wiping properties. However, since CR has insufficient oil resistance, there is a problem that the wiping property deteriorates when the rubber material swells due to oil stains. Therefore, a wiper blade having excellent oil resistance is required in an environment where there is much oil stain.
 本実施形態のゴム組成物は、ワイパーの機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、油汚れが多い環境下でも使用できるワイパーを製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the wiper. As a result, it is possible to manufacture a wiper that can be used even in an environment where there is much oil stain, which was difficult to achieve with conventional CR.
(シール材)
 シール材は、機械において、液体又は気体の漏れを防ぐと共に、雨水、埃等のごみ又は異物が内部に侵入するのを防ぐ部品であり、機械の性能維持に重要な役割を果たしている。シール材としては、固定用途に使われるガスケット、運動部分・可動部分に使用されるパッキン等が挙げられる。シール部分がボルト等で固定されているガスケットでは、Oリング、ゴムシート等のソフトガスケットの材料として、目的に応じた各種エラストマーが使用されている。また、パッキンは、ポンプ又はモーターの軸、バルブの可動部等のような回転部分、ピストンのような往復運動部分、カプラーの接続部、水道蛇口の止水部などに使われる。比較的低い圧力の油圧機器、又は、潤滑油の密閉に使われるオイルシールは、エラストマーの弾性で密閉性を確保している。これらエラストマーのシール材において、CRは、良好な機械的強度を有し、極性の気体又は液体のシール材に使用されている。一方、エンジンオイル又はギアーオイルのような非極性液体のシール材に使用するためには、CRの耐油性は不十分であり、改良が不可欠であった。
(Seal material)
The sealing material is a component that prevents liquid or gas from leaking and prevents dust or foreign matter such as rainwater or dust from entering the inside of the machine, and plays an important role in maintaining the performance of the machine. Examples of the sealing material include gaskets used for fixed applications, packing used for moving parts and movable parts, and the like. In a gasket whose seal portion is fixed by bolts or the like, various elastomers are used as materials for soft gaskets such as O-rings and rubber sheets depending on the purpose. Further, the packing is used for a shaft of a pump or a motor, a rotating part such as a movable part of a valve, a reciprocating part such as a piston, a connecting part of a coupler, and a water stop part of a water faucet. The hydraulic equipment having a relatively low pressure or the oil seal used for sealing the lubricating oil ensures the hermeticity by the elasticity of the elastomer. In these elastomer seal materials, CR has good mechanical strength and is used as a polar gas or liquid seal material. On the other hand, the CR oil resistance is insufficient for use as a seal material for non-polar liquids such as engine oil or gear oil, and improvement is essential.
 本実施形態のゴム組成物は、シール材の機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、エンジンオイル又はギアーオイルのような非極性液体のシール材を製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the sealing material. This makes it possible to manufacture a non-polar liquid sealant such as engine oil or gear oil, which has been difficult to achieve with conventional CR.
 シール材としては、エンジンヘッドカバーガスケット、オイルパンガスケット、オイルシール、リップシールパッキン、O-リング、トランスミッションシールガスケット、クランクシャフト、カムシャフトシールガスケット、バルブステム、パワーステアリングシールベルトカバーシール、等速ジョイント用ブーツ材、ラックアンドピニオンブーツ材、ダイヤフラム等が挙げられる。 Sealing materials for engine head cover gasket, oil pan gasket, oil seal, lip seal packing, O-ring, transmission seal gasket, crankshaft, camshaft seal gasket, valve stem, power steering seal belt cover seal, constant velocity joint Examples include boot materials, rack and pinion boot materials, diaphragms, and the like.
(ロール)
 ロールは、鉄芯等の金属製の芯をゴムで接着被覆することによって製造されるものであり、一般に金属鉄芯にゴムシートを渦巻き状に巻き付けて製造される。ロールには、製紙、各種金属製造、印刷、一般産業用、籾摺り等の農機具用、食品加工用などの種々の用途の要求特性に応じてNBR、EPDM、CR等のゴム材料が用いられている。CRは、搬送する物体の摩擦に耐え得る良好な機械的強度を有していることから、ロールにおける幅広い用途に使用されている。一方で、製鉄用又は製紙用の工業用材料、製品等の製造時など、油が付着する環境下で用いられるロールとしては耐油性が不十分であり、改良が求められる。さらに、重量物を搬送するロールは荷重により変形するという課題があり、改良を求められる。
(roll)
The roll is manufactured by adhesively coating a metal core such as an iron core with rubber, and is generally manufactured by spirally winding a rubber sheet around a metal iron core. For the rolls, rubber materials such as NBR, EPDM, and CR are used according to the required characteristics of various applications such as papermaking, various metal manufacturing, printing, general industry, agricultural machinery such as hulling, and food processing. .. CR is used in a wide range of roll applications because it has good mechanical strength to withstand the friction of the objects it conveys. On the other hand, the oil resistance is insufficient as a roll used in an environment where oil adheres, such as when manufacturing industrial materials for iron making or paper making, products, etc., and improvement is required. Further, there is a problem that a roll that conveys a heavy load is deformed by a load, and improvement is required.
 本実施形態のゴム組成物は、ロールの機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、油が付着する環境下で用いられるロールを製造することができる。 The rubber composition of the present embodiment can improve the mechanical strength and oil resistance of the roll. This makes it possible to manufacture a roll that is used in an environment where oil adheres, which was difficult to achieve with conventional CR.
(空気バネ)
 空気バネは、圧縮空気の弾力性を利用したバネ装置である。自動車、バス、トラック等のエアサスペンションなどに利用される。空気バネとしては、ベローズ型及びスリーブ型(ダイヤフラム型の一種)が挙げられ、いずれもピストンを空気室内に侵入させて空気圧を高めることができる。飛散した油にさらされる環境で使用される場合もあり、耐油性の改良が求められる。
(Air spring)
The air spring is a spring device that utilizes the elasticity of compressed air. Used in air suspensions for automobiles, buses, trucks, etc. Examples of the air spring include a bellows type and a sleeve type (a kind of diaphragm type), both of which can increase the air pressure by allowing the piston to enter the air chamber. In some cases, it is used in an environment where it is exposed to splashed oil, and improvement in oil resistance is required.
 本実施形態のゴム組成物は、空気バネの機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、油汚れが多い環境下でも使用できる空気バネを製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the air spring. As a result, it is possible to manufacture an air spring that can be used even in an environment where there is much oil stain, which was difficult to achieve with conventional CR.
(防振材)
 防振材とは、振動の伝達波及を防止するゴムのことであり、例えば、防音又は衝撃の緩衝の用途、機械から発生する振動が外部に波及することを防ぐ用途等に用いられる。例えば自動車又は各種車両では、エンジン駆動時の振動を吸収して騒音を防止するために、トーショナルダンパー、エンジンマウント、マフラーハンガー等の構成材料に防振材が用いられている。防振材には、防振特性に優れた天然ゴムが広く使用されているが、建設重機用等、油の飛散する環境で使用される防振材にはCRが使用されている。防振材に油が付着することで膨潤すると、機械的な強度が低下し、早期に破壊するという問題があるため、改良が求められる。
(Vibration isolator)
The anti-vibration material is a rubber that prevents the transmission of vibrations, and is used, for example, for the purpose of soundproofing or shock absorption, and for the purpose of preventing the vibration generated from a machine from spreading to the outside. For example, in automobiles or various vehicles, a vibration damping material is used as a constituent material of a torsional damper, an engine mount, a muffler hanger, etc., in order to absorb noise when driving an engine and prevent noise. Natural rubber having excellent vibration damping properties is widely used as the vibration damping material, but CR is used as the vibration damping material used in construction heavy machinery and the like where oil is scattered. When the vibration-proof material swells due to the adhesion of oil, the mechanical strength is lowered, and the vibration-proof material is broken at an early stage. Therefore, improvement is required.
 本実施形態のゴム組成物は、防振材の機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、油の飛散する環境でも使用できる防振材(防振ゴム)を製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the vibration damping material. As a result, it is possible to manufacture a vibration-proof material (vibration-proof rubber) that can be used even in an environment where oil is scattered, which was difficult to achieve with conventional CR.
(接着剤)
 CRは、コンタクト性を有し、初期接着強度に優れることから、土木建築、合板、家具、靴、ウェットスーツ、自動車内装材等の幅広い材料の接着剤として利用されている。これらの中でも、CRの初期接着強度及び耐熱接着強度が優れることから、家具又は自動車内装材の素材として汎用されるポリウレタンフォーム用の一液型接着剤としての需要が大幅に拡大している。自動車の内装には、高い審美性が求められるが、CRの耐油性が不十分なため、自動車等に用いる各種オイル類又は燃料類の飛沫が被着体に付着すると、界面で剥離したり、被着体の表面が湾曲したりすることがある。このため、高い耐油性を有する接着剤材料が切望されている。
(adhesive)
CR is used as an adhesive for a wide range of materials such as civil engineering and construction, plywood, furniture, shoes, wet suits, and automobile interior materials because CR has contact properties and is excellent in initial adhesive strength. Among these, since CR has excellent initial adhesive strength and heat resistant adhesive strength, the demand as a one-component adhesive for polyurethane foam, which is widely used as a material for furniture or automobile interior materials, is greatly expanding. High aesthetics are required for the interior of automobiles, but the oil resistance of CR is insufficient. Therefore, if splashes of various oils or fuels used in automobiles adhere to the adherend, they may peel off at the interface, The surface of the adherend may be curved. Therefore, an adhesive material having a high oil resistance has been earnestly desired.
 本実施形態のゴム組成物は、接着剤の機械的強度及び耐油性を高めることができる。これにより、従来のCRよりも優れた接着剤を製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the adhesive. This makes it possible to manufacture an adhesive that is superior to the conventional CR.
(ブーツ)
 ブーツとは、一端から他端に向けて外径が次第に大きくなる蛇腹状をなす部材であり、自動車駆動系等の駆動部を保護するための等速ジョイントカバー用ブーツ、ボールジョイントカバー用ブーツ(ダストカバーブーツ)、ラックアンドピニオンギア用ブーツなどがある。ブーツでは、大変形に耐えられる物理的強度が要求されるため、CRが多く使用されている。近年、車の軽量コンパクト化技術の進展に伴ってブーツの稼動空間が狭まっているため、除熱効率が低下し熱環境が過酷さを増している。このため、高温雰囲気下において、ブーツ内部に含有する油、グリース等の非極性液体に対する信頼性の向上が求められる。
(boots)
The boot is a member having a bellows shape whose outer diameter gradually increases from one end to the other end, and is a boot for a constant velocity joint cover and a boot for a ball joint cover ( Dust cover boots) and rack and pinion gear boots. In boots, CR is often used because physical strength required to withstand large deformation is required. In recent years, the operating space of boots has been narrowed with the progress of lightweight and compact technology for vehicles, so that the heat removal efficiency is reduced and the thermal environment is becoming more severe. Therefore, it is required to improve the reliability of the non-polar liquid such as oil and grease contained in the boot under a high temperature atmosphere.
 本実施形態のゴム組成物は、ブーツの機械的強度及び耐油性を高めることができる。これにより、従来のCRよりも、内部に含有する油、グリース等の非極性液体に対する信頼性に優れたブーツを製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the boot. This makes it possible to manufacture a boot that is more reliable than a conventional CR with respect to non-polar liquids such as oil and grease contained therein.
(ゴム引布)
 ゴム引布は、ゴムを布に貼り合わせた、ゴムと布織物(繊維)の複合材料であり、ゴムシートに比べて強度が強く、耐水性、気密性等に優れている。これらの特徴を活かし、ゴムボート、テント材料、雨合羽等の衣類、建築防水用シート、緩衝材などの用途に広く用いられている。ゴム引布に使用されるゴム材料としては、一般的には、CR、NBR、EPDM等が用いられている。中でも、CRは、優れた機械的強度及び耐候性を有することから、ゴムボート等の屋外で使用される引布に広く使用されている。一方で、自動車、建設現場等のような、油が飛散する環境下で使用されるゴム引布シート材に使用するためには耐油性が不十分であり、改良が求められる。
(Rubber cloth)
The rubberized cloth is a composite material of rubber and cloth woven fabric (fiber) in which rubber is attached to cloth, and is stronger than a rubber sheet, and is excellent in water resistance, airtightness and the like. Utilizing these characteristics, it is widely used for applications such as inflatable boats, tent materials, clothes such as rain fluff, architectural waterproof sheets, and cushioning materials. As the rubber material used for the rubberized cloth, CR, NBR, EPDM, etc. are generally used. Among them, CR is widely used for pulling cloths used outdoors such as inflatable boats because it has excellent mechanical strength and weather resistance. On the other hand, the oil resistance is insufficient for use in a rubberized cloth sheet material used in an environment where oil is scattered, such as in an automobile or a construction site, and improvement is required.
 本実施形態のゴム組成物は、ゴム引布の機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、油が飛散する環境下でも使用できるゴム引布を製造することができる。 The rubber composition of this embodiment can enhance the mechanical strength and oil resistance of the rubberized fabric. As a result, it is possible to manufacture a rubberized cloth that can be used even in an environment where oil is scattered, which was difficult to achieve with conventional CR.
(スポンジ)
 スポンジは、内部に細かい孔が無数に空いた多孔質の物質である。孔は、連続泡及び独立泡の形態のいずれも取り得る。孔が十分大きく、連続している場合、スポンジは、液体にひたすと、孔内の空気と置換される形で液体を吸い取り、また、外部から力を加えると、容易に液体を放出する特性を有する。また、孔が小さい場合は、優れた緩衝材又は断熱材として使用することができる。CRは、優れた機械的強度及びゴム弾性を有するため、スポンジに幅広く使用されており、防振部材、スポンジシール部品、ウェットスーツ、靴等に用いられる。何れの用途においても、油による膨潤変形、変色等を防ぐため耐油性の改良が求められる。
(sponge)
A sponge is a porous substance with innumerable fine holes inside. The pores can take the form of both open and closed cells. When the pores are large enough and continuous, the sponge has the property of absorbing the liquid when it is immersed in the liquid and replacing the air in the pores, and releasing the liquid easily when external force is applied. Have. Also, if the pores are small, it can be used as an excellent cushioning material or heat insulating material. Since CR has excellent mechanical strength and rubber elasticity, it is widely used for sponges, and is used for anti-vibration members, sponge seal parts, wet suits, shoes and the like. In any application, improvement of oil resistance is required to prevent swelling deformation, discoloration, etc. due to oil.
 本実施形態のゴム組成物は、スポンジの機械的強度及び耐油性を高めることができる。これにより、従来のCRでは達成が困難であった、油による膨潤変形、変色等を起こしにくいスポンジを製造することができる。 The rubber composition of the present embodiment can enhance the mechanical strength and oil resistance of the sponge. As a result, it is possible to manufacture a sponge that is difficult to achieve with conventional CR and is unlikely to undergo swelling deformation, discoloration, etc. due to oil.
(ゴムライニング)
 ゴムライニングとは、配管、タンク等の金属面にゴムシートを接着させて金属の防食目的で使われるものである。また、ゴムライニングは、耐電気又は耐摩耗が必要とされる箇所にも使われる。従来のゴムライニングとしては、NR、CR、EPDM、SBR等が使用されるが、耐油性が不足する場合があり、耐油性を向上させることが求められる。
(Rubber lining)
The rubber lining is used to prevent corrosion of metal by adhering a rubber sheet to a metal surface such as a pipe or a tank. Rubber linings are also used where electrical or abrasion resistance is required. As the conventional rubber lining, NR, CR, EPDM, SBR and the like are used, but the oil resistance may be insufficient, and it is required to improve the oil resistance.
 本実施形態のゴム組成物は、ゴムライニングとしての耐油性を高めることができる。これにより、従来のゴム材料では困難であった、油による配管又はタンクの防食が可能である。 The rubber composition of the present embodiment can improve oil resistance as a rubber lining. As a result, it is possible to prevent the corrosion of the pipe or tank with oil, which is difficult with the conventional rubber material.
 以下、実施例に基づいて本発明を更に詳細に説明する。なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, the present invention will be described in more detail based on examples. The embodiments described below are examples of typical embodiments of the present invention, and the scope of the present invention should not be construed narrowly.
<クロロプレン系ゴムの製造>
(製造例1:クロロプレン系ゴム1(アクリロニトリル共重合量:5質量%))
 加熱冷却ジャケット及び攪拌機を備えた内容積3リットルの重合缶に、クロロプレン単量体32質量部、アクリロニトリル単量体14質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。クロロプレン単量体の分添は、重合開始20秒後から開始し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン単量体及びアクリロニトリル単量体の合計量に対する重合率が50%となった時点で、重合禁止剤であるフェノチアジンを加えて重合を停止させた。そして、減圧下で反応溶液中の未反応単量体を除去することでクロロプレン-アクリロニトリル共重合体ラテックスを得た。
<Manufacture of chloroprene rubber>
(Production Example 1: Chloroprene rubber 1 (acrylonitrile copolymerization amount: 5% by mass))
In a polymerization vessel having an internal volume of 3 liter equipped with a heating / cooling jacket and a stirrer, 32 parts by mass of chloroprene monomer, 14 parts by mass of acrylonitrile monomer, 0.5 part by mass of diethylxanthogen disulfide, 200 parts by mass of pure water, rosin acid 5.00 parts by mass of potassium (manufactured by Harima Kasei Co., Ltd.), 0.40 parts by mass of sodium hydroxide, and 2.0 parts by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Co., Ltd.) were added. .. Next, 0.1 part by mass of potassium persulfate was added as a polymerization initiator, and then emulsion polymerization was carried out at a polymerization temperature of 40 ° C. under a nitrogen stream. The addition of the chloroprene monomer started 20 seconds after the start of the polymerization, and the addition flow rate was adjusted with a solenoid valve based on the change in the amount of heat of the refrigerant for 10 seconds after the start of the polymerization. It was performed continuously by adjusting. When the polymerization rate with respect to the total amount of the chloroprene monomer and the acrylonitrile monomer reached 50%, phenothiazine as a polymerization inhibitor was added to terminate the polymerization. Then, the unreacted monomer in the reaction solution was removed under reduced pressure to obtain a chloroprene-acrylonitrile copolymer latex.
 クロロプレン-アクリロニトリル共重合体ラテックスの重合率は、クロロプレン-アクリロニトリル共重合体ラテックスを風乾した乾燥質量から算出した。具体的には、下記式(II)より計算した。式中、固形分濃度とは、サンプリングしたクロロプレン-アクリロニトリル共重合体ラテックス2gを130℃で加熱して、溶媒(水)、揮発性薬品、原料等の揮発成分を除いた固形分の濃度[質量%]である。総仕込み量とは、重合開始から、ある時刻までに重合缶に仕込んだ原料、試薬及び溶媒(水)の総量である。蒸発残分とは、重合開始から、ある時刻までに仕込んだ薬品及び原料のうち、130℃の条件下で揮発せずにポリマーと共に固形分として残留する薬品の質量である。単量体仕込み量は、重合缶に初期に仕込んだ単量体、及び、重合開始から、ある時刻までに分添した単量体の量の合計である。なお、ここでいう「単量体」とはクロロプレン単量体とアクリロニトリル単量体の合計量である。
 重合率[%]={(総仕込み量[g]×固形分濃度[質量%]/100)-(蒸発残分[g])}/単量体仕込み量[g]×100   ・・・(II)
The polymerization rate of the chloroprene-acrylonitrile copolymer latex was calculated from the dry mass of the chloroprene-acrylonitrile copolymer latex air-dried. Specifically, it was calculated from the following formula (II). In the formula, the solid content concentration means the concentration of solid content obtained by heating 2 g of sampled chloroprene-acrylonitrile copolymer latex at 130 ° C. and removing volatile components such as solvent (water), volatile chemicals and raw materials [mass %]. The total amount charged is the total amount of raw materials, reagents and solvent (water) charged in a polymerization vessel from the start of polymerization to a certain time. The evaporation residue is the mass of the chemicals and raw materials charged from the start of the polymerization to a certain time and remaining as a solid content together with the polymer without being volatilized under the condition of 130 ° C. The monomer charging amount is the total of the amount of the monomer initially charged in the polymerization vessel and the amount of the monomer added by a certain time from the start of polymerization. The "monomer" referred to here is the total amount of the chloroprene monomer and the acrylonitrile monomer.
Polymerization rate [%] = {(total charged amount [g] × solid content concentration [mass%] / 100) − (evaporation residue [g])} / monomer charged amount [g] × 100 ( II)
 上述のクロロプレン-アクリロニトリル共重合体ラテックスをpH7.0に調整し、-20℃に冷やした金属板上で凍結凝固させることで乳化破壊することによりシートを得た。このシートを水洗した後、130℃で15分間乾燥させることにより固形状のクロロプレン系ゴム1を得た。 A sheet was obtained by adjusting the pH of the above-mentioned chloroprene-acrylonitrile copolymer latex to pH 7.0 and freeze-coagulating it on a metal plate cooled to -20 ° C to break the emulsion. This sheet was washed with water and then dried at 130 ° C. for 15 minutes to obtain solid chloroprene rubber 1.
 クロロプレン系ゴム1の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、クロロプレン系ゴム1をTHFでサンプル調整濃度0.1質量%の溶液とした後、高速GPC装置(TOSOH HLC-8320GPC:東ソー株式会社製)により測定した(標準ポリスチレン換算)。その際、プレカラムとしてTSKガードカラムHHR-Hを使用し、分析カラムとしてHSKgelGMHHR-H3本を使用し、サンプルポンプ圧8.0~9.5MPa、流量1ml/min、40℃で流出させ、示差屈折計で検出した。 The number average molecular weight (Mn), the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) of the chloroprene rubber 1 were measured at high speed after the chloroprene rubber 1 was made into a solution having a sample adjusted concentration of 0.1 mass% with THF. It was measured by a GPC device (TOSOH HLC-8320GPC: manufactured by Tosoh Corporation) (standard polystyrene conversion). At that time, the TSK guard column HHR-H was used as a pre-column, three HSKgel GMHHR-H were used as an analytical column, and the sample pump pressure was 8.0 to 9.5 MPa, the flow rate was 1 ml / min, and the flow rate was 40 ° C. It was detected by the total.
 流出時間と分子量は、以下に挙げる分子量既知の標準ポリスチレンサンプル計9点を測定して作成した校正曲線を用いて得た。
 Mw=8.42×10、1.09×10、7.06×10、4.27×10、1.90×10、9.64×10、3.79×10、1.74×10、2.63×10
The outflow time and the molecular weight were obtained using a calibration curve prepared by measuring 9 points of standard polystyrene samples with known molecular weights as shown below.
Mw = 8.42 × 10 6 , 1.09 × 10 6 , 7.06 × 10 5 , 4.27 × 10 5 , 1.90 × 10 5 , 9.64 × 10 4 , 3.79 × 10 4. 1,74 × 10 4 , 2.63 × 10 3
 クロロプレン系ゴム1に含まれる不飽和ニトリル単量体由来の構造単位量は、クロロプレン系ゴム1中の窒素原子の含有量から算出した。具体的には、元素分析装置(スミグラフ220F:株式会社住化分析センター製)を用いて100mgのクロロプレン系ゴム1の窒素原子の含有量を測定し、アクリロニトリル単量体由来の構造単位量を算出した。元素分析の測定は次の条件で行った。電気炉温度として反応炉900℃、還元炉600℃、カラム温度70℃、検出器温度100℃に設定し、燃焼用ガスとして酸素を0.2ml/min、キャリアーガスとしてヘリウムを80ml/minフローした。検量線は、窒素含有量が既知のアスパラギン酸(10.52%)を標準物質に用いて作成した。 The amount of structural units derived from the unsaturated nitrile monomer contained in the chloroprene rubber 1 was calculated from the content of nitrogen atoms in the chloroprene rubber 1. Specifically, the content of nitrogen atoms in 100 mg of chloroprene rubber 1 was measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Analytical Center Co., Ltd.), and the amount of structural units derived from an acrylonitrile monomer was calculated. did. The elemental analysis was performed under the following conditions. The electric furnace temperature was set to 900 ° C. for the reaction furnace, 600 ° C. for the reduction furnace, 70 ° C. for the column temperature, and 100 ° C. for the detector temperature. .. The calibration curve was prepared using aspartic acid (10.52%) with a known nitrogen content as a standard substance.
 クロロプレン系ゴム1の数平均分子量(Mn)は130×10g/mol、重量平均分子量(Mw)は442×10g/mol、分子量分布(Mw/Mn)は3.4であった。また、アクリロニトリル単量体由来の構造単位量は5質量%であった。 The chloroprene rubber 1 had a number average molecular weight (Mn) of 130 × 10 3 g / mol, a weight average molecular weight (Mw) of 442 × 10 3 g / mol, and a molecular weight distribution (Mw / Mn) of 3.4. The amount of structural units derived from the acrylonitrile monomer was 5% by mass.
(製造例2:クロロプレン系ゴム2(アクリロニトリル共重合量:10質量%))
 加熱冷却ジャケット及び攪拌機を備えた内容積3リットルの重合缶に、クロロプレン単量体24質量部、アクリロニトリル単量体24質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。クロロプレン単量体の分添は、重合開始20秒後から開始し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン単量体及びアクリロニトリル単量体の合計量に対する重合率が50%となった時点で、重合禁止剤であるフェノチアジンを加えて重合を停止させた。そして、減圧下で反応溶液中の未反応単量体を除去することでクロロプレン-アクリロニトリル共重合体ラテックスを得た。
(Production Example 2: Chloroprene rubber 2 (acrylonitrile copolymerization amount: 10% by mass))
In a polymerization vessel having an internal volume of 3 liters equipped with a heating / cooling jacket and a stirrer, 24 parts by mass of chloroprene monomer, 24 parts by mass of acrylonitrile monomer, 0.5 part by mass of diethylxanthogen disulfide, 200 parts by mass of pure water, rosin acid 5.00 parts by mass of potassium (manufactured by Harima Kasei Co., Ltd.), 0.40 parts by mass of sodium hydroxide, and 2.0 parts by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Co., Ltd.) were added. .. Next, 0.1 part by mass of potassium persulfate was added as a polymerization initiator, and then emulsion polymerization was carried out at a polymerization temperature of 40 ° C. under a nitrogen stream. The addition of the chloroprene monomer started 20 seconds after the start of the polymerization, and the addition flow rate was adjusted with a solenoid valve based on the change in the amount of heat of the refrigerant for 10 seconds after the start of the polymerization. It was performed continuously by adjusting. When the polymerization rate with respect to the total amount of the chloroprene monomer and the acrylonitrile monomer reached 50%, phenothiazine as a polymerization inhibitor was added to terminate the polymerization. Then, the unreacted monomer in the reaction solution was removed under reduced pressure to obtain a chloroprene-acrylonitrile copolymer latex.
 上述のクロロプレン-アクリロニトリル共重合体ラテックスを製造例1と同様の方法で凍結凝固、水洗及び乾燥させることにより固形状のクロロプレン系ゴム2を得た。 Solid chloroprene rubber 2 was obtained by freeze-coagulating, washing with water and drying the above chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
 製造例1と同様の方法により分析した結果、クロロプレン系ゴム2の数平均分子量(Mn)は139×10g/mol、重量平均分子量(Mw)は480×10g/mol、分子量分布(Mw/Mn)は3.3であった。また、アクリロニトリル単量体由来の構造単位量は10質量%であった。 As a result of analysis in the same manner as in Production Example 1, the chloroprene rubber 2 had a number average molecular weight (Mn) of 139 × 10 3 g / mol, a weight average molecular weight (Mw) of 480 × 10 3 g / mol, and a molecular weight distribution ( Mw / Mn) was 3.3. The amount of structural units derived from the acrylonitrile monomer was 10% by mass.
(製造例3:クロロプレン系ゴム3(アクリロニトリル共重合量:15質量%))
 加熱冷却ジャケット及び攪拌機を備えた内容積3リットルの重合缶に、クロロプレン単量体16質量部、アクリロニトリル単量体33質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。クロロプレン単量体の分添は、重合開始20秒後から開始し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン単量体及びアクリロニトリル単量体の合計量に対する重合率が50%となった時点で、重合禁止剤であるフェノチアジンを加えて重合を停止させた。そして、減圧下で反応溶液中の未反応単量体を除去することでクロロプレン-アクリロニトリル共重合体ラテックスを得た。
(Production Example 3: Chloroprene rubber 3 (acrylonitrile copolymerization amount: 15% by mass))
In a polymerization vessel having an internal volume of 3 liters equipped with a heating / cooling jacket and a stirrer, 16 parts by mass of chloroprene monomer, 33 parts by mass of acrylonitrile monomer, 0.5 parts by mass of diethylxanthogen disulfide, 200 parts by mass of pure water, rosin acid 5.00 parts by mass of potassium (manufactured by Harima Kasei Co., Ltd.), 0.40 parts by mass of sodium hydroxide, and 2.0 parts by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Co., Ltd.) were added. .. Next, 0.1 part by mass of potassium persulfate was added as a polymerization initiator, and then emulsion polymerization was carried out at a polymerization temperature of 40 ° C. under a nitrogen stream. The addition of the chloroprene monomer started 20 seconds after the start of the polymerization, and the addition flow rate was adjusted with a solenoid valve based on the change in the amount of heat of the refrigerant for 10 seconds after the start of the polymerization. It was performed continuously by adjusting. When the polymerization rate with respect to the total amount of the chloroprene monomer and the acrylonitrile monomer reached 50%, phenothiazine as a polymerization inhibitor was added to terminate the polymerization. Then, the unreacted monomer in the reaction solution was removed under reduced pressure to obtain a chloroprene-acrylonitrile copolymer latex.
 上述のクロロプレン-アクリロニトリル共重合体ラテックスを製造例1と同様の方法で凍結凝固、水洗及び乾燥させることにより固形状のクロロプレン系ゴム3を得た。 Solid chloroprene rubber 3 was obtained by freeze-coagulating, washing with water and drying the above chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
 製造例1と同様の方法により分析した結果、クロロプレン系ゴム3の数平均分子量(Mn)は131×10g/mol、重量平均分子量(Mw)は451×10g/mol、分子量分布(Mw/Mn)は3.4であった。また、アクリロニトリル単量体由来の構造単位量は15質量%であった。 As a result of analysis by the same method as in Production Example 1, the chloroprene rubber 3 had a number average molecular weight (Mn) of 131 × 10 3 g / mol, a weight average molecular weight (Mw) of 451 × 10 3 g / mol, and a molecular weight distribution ( Mw / Mn) was 3.4. The amount of structural units derived from the acrylonitrile monomer was 15% by mass.
(製造例4:クロロプレン系ゴム4(アクリロニトリル共重合量:20質量%))
 加熱冷却ジャケット及び攪拌機を備えた内容積3リットルの重合缶に、クロロプレン単量体10質量部、アクリロニトリル単量体40質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。クロロプレン単量体の分添は、重合開始20秒後から開始し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン単量体及びアクリロニトリル単量体の合計量に対する重合率が50%となった時点で、重合禁止剤であるフェノチアジンを加えて重合を停止させた。そして、減圧下で反応溶液中の未反応単量体を除去することでクロロプレン-アクリロニトリル共重合体ラテックスを得た。
(Production Example 4: Chloroprene rubber 4 (acrylonitrile copolymerization amount: 20% by mass))
In a polymerization vessel having an internal volume of 3 liter equipped with a heating / cooling jacket and a stirrer, 10 parts by mass of chloroprene monomer, 40 parts by mass of acrylonitrile monomer, 0.5 part by mass of diethylxanthogen disulfide, 200 parts by mass of pure water, rosin acid 5.00 parts by mass of potassium (manufactured by Harima Kasei Co., Ltd.), 0.40 parts by mass of sodium hydroxide, and 2.0 parts by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Co., Ltd.) were added. .. Next, 0.1 part by mass of potassium persulfate was added as a polymerization initiator, and then emulsion polymerization was carried out at a polymerization temperature of 40 ° C. under a nitrogen stream. The addition of the chloroprene monomer started 20 seconds after the start of the polymerization, and the addition flow rate was adjusted with a solenoid valve based on the change in the amount of heat of the refrigerant for 10 seconds after the start of the polymerization. It was performed continuously by adjusting. When the polymerization rate with respect to the total amount of the chloroprene monomer and the acrylonitrile monomer reached 50%, phenothiazine as a polymerization inhibitor was added to terminate the polymerization. Then, the unreacted monomer in the reaction solution was removed under reduced pressure to obtain a chloroprene-acrylonitrile copolymer latex.
 上述のクロロプレン-アクリロニトリル共重合体ラテックスを製造例1と同様の方法で凍結凝固、水洗及び乾燥させることにより固形状のクロロプレン系ゴム4を得た。 Solid chloroprene rubber 4 was obtained by freeze-coagulating, washing with water and drying the above-mentioned chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
 製造例1と同様の方法により分析した結果、クロロプレン系ゴム4の数平均分子量(Mn)は135×10g/mol、重量平均分子量(Mw)は457×10g/mol、分子量分布(Mw/Mn)は3.3であった。また、アクリロニトリル単量体由来の構造単位量は20質量%であった。 As a result of analysis by the same method as in Production Example 1, the number average molecular weight (Mn) of the chloroprene rubber 4 was 135 × 10 3 g / mol, the weight average molecular weight (Mw) was 457 × 10 3 g / mol, and the molecular weight distribution ( Mw / Mn) was 3.3. The amount of structural units derived from the acrylonitrile monomer was 20% by mass.
(製造例5:クロロプレン系ゴム5(アクリロニトリル共重合量:1質量%))
 加熱冷却ジャケット及び攪拌機を備えた内容積3リットルの重合缶に、クロロプレン単量体37質量部、アクリロニトリル単量体4質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。クロロプレン単量体の分添は、重合開始20秒後から開始し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン単量体及びアクリロニトリル単量体の合計量に対する重合率が50%となった時点で、重合禁止剤であるフェノチアジンを加えて重合を停止させた。そして、減圧下で反応溶液中の未反応単量体を除去することでクロロプレン-アクリロニトリル共重合体ラテックスを得た。
(Production Example 5: Chloroprene rubber 5 (acrylonitrile copolymerization amount: 1% by mass))
In a polymerization vessel having an internal volume of 3 liters equipped with a heating / cooling jacket and a stirrer, 37 parts by mass of chloroprene monomer, 4 parts by mass of acrylonitrile monomer, 0.5 part by mass of diethylxanthogen disulfide, 200 parts by mass of pure water, rosin acid 5.00 parts by mass of potassium (manufactured by Harima Kasei Co., Ltd.), 0.40 part by mass of sodium hydroxide, and 2.0 parts by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Co., Ltd.) were added. .. Next, 0.1 part by mass of potassium persulfate was added as a polymerization initiator, and then emulsion polymerization was carried out at a polymerization temperature of 40 ° C. under a nitrogen stream. The addition of the chloroprene monomer started 20 seconds after the start of the polymerization, and the addition flow rate was adjusted with a solenoid valve based on the change in the amount of heat of the refrigerant for 10 seconds after the start of the polymerization. It was performed continuously by adjusting. When the polymerization rate with respect to the total amount of the chloroprene monomer and the acrylonitrile monomer reached 50%, phenothiazine as a polymerization inhibitor was added to terminate the polymerization. Then, the unreacted monomer in the reaction solution was removed under reduced pressure to obtain a chloroprene-acrylonitrile copolymer latex.
 上述のクロロプレン-アクリロニトリル共重合体ラテックスを製造例1と同様の方法で凍結凝固、水洗及び乾燥させることにより固形状のクロロプレン系ゴム5を得た。 Solid chloroprene rubber 5 was obtained by freeze-coagulating, washing with water and drying the above chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
 製造例1と同様の方法により分析した結果、クロロプレン系ゴム5の数平均分子量(Mn)は136×10g/mol、重量平均分子量(Mw)は460×10g/mol、分子量分布(Mw/Mn)は3.2であった。また、アクリロニトリル単量体由来の構造単位量は1質量%であった。 As a result of analysis in the same manner as in Production Example 1, the chloroprene rubber 5 had a number average molecular weight (Mn) of 136 × 10 3 g / mol, a weight average molecular weight (Mw) of 460 × 10 3 g / mol, and a molecular weight distribution ( Mw / Mn) was 3.2. The amount of structural units derived from the acrylonitrile monomer was 1% by mass.
(製造例6:クロロプレン系ゴム6(アクリロニトリル共重合量:25質量%))
 加熱冷却ジャケット及び攪拌機を備えた内容積3リットルの重合缶に、クロロプレン単量体7質量部、アクリロニトリル単量体45質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。クロロプレン単量体の分添は、重合開始20秒後から開始し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン単量体及びアクリロニトリル単量体の合計量に対する重合率が50%となった時点で、重合禁止剤であるフェノチアジンを加えて重合を停止させた。そして、減圧下で反応溶液中の未反応単量体を除去することでクロロプレン-アクリロニトリル共重合体ラテックスを得た。
(Production Example 6: Chloroprene rubber 6 (acrylonitrile copolymerization amount: 25% by mass))
In a polymerization vessel having an internal volume of 3 liter equipped with a heating / cooling jacket and a stirrer, 7 parts by mass of chloroprene monomer, 45 parts by mass of acrylonitrile monomer, 0.5 part by mass of diethylxanthogen disulfide, 200 parts by mass of pure water, rosin acid 5.00 parts by mass of potassium (manufactured by Harima Kasei Co., Ltd.), 0.40 parts by mass of sodium hydroxide, and 2.0 parts by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Co., Ltd.) were added. .. Next, 0.1 part by mass of potassium persulfate was added as a polymerization initiator, and then emulsion polymerization was carried out at a polymerization temperature of 40 ° C. under a nitrogen stream. The addition of the chloroprene monomer started 20 seconds after the start of the polymerization, and the addition flow rate was adjusted with a solenoid valve based on the change in the amount of heat of the refrigerant for 10 seconds after the start of the polymerization. It was performed continuously by adjusting. When the polymerization rate with respect to the total amount of the chloroprene monomer and the acrylonitrile monomer reached 50%, phenothiazine as a polymerization inhibitor was added to terminate the polymerization. Then, the unreacted monomer in the reaction solution was removed under reduced pressure to obtain a chloroprene-acrylonitrile copolymer latex.
 上述のクロロプレン-アクリロニトリル共重合体ラテックスを製造例1と同様の方法で凍結凝固、水洗及び乾燥させることにより固形状のクロロプレン系ゴム6を得た。 Solid chloroprene rubber 6 was obtained by freeze-coagulating, washing with water and drying the above-mentioned chloroprene-acrylonitrile copolymer latex in the same manner as in Production Example 1.
 製造例1と同様の方法により分析した結果、クロロプレン系ゴム6の数平均分子量(Mn)は135×10g/mol、重量平均分子量(Mw)は459×10g/mol、分子量分布(Mw/Mn)は3.3であった。また、アクリロニトリル単量体由来の構造単位量は25質量%であった。 As a result of analysis by the same method as in Production Example 1, the number average molecular weight (Mn) of the chloroprene rubber 6 was 135 × 10 3 g / mol, the weight average molecular weight (Mw) was 459 × 10 3 g / mol, and the molecular weight distribution ( Mw / Mn) was 3.3. The amount of structural units derived from the acrylonitrile monomer was 25% by mass.
<評価シートの作製>
 上述のクロロプレン系ゴム(クロロプレン-アクリロニトリル共重合体)1~6と、表1~表2に示した化合物とを、8インチロールを用いて混合した後に分出ししてゴム組成物を得た。そして、このゴム組成物に対してプレス加硫を160℃×20分間行うことにより、シート長200mm、シート幅15mm、厚さ2.1mmの評価用のゴムシート(評価シート)を作製した。表1~表2に示した酸化亜鉛の使用量は、2種の酸化亜鉛の合計量である。
<Production of evaluation sheet>
The above-mentioned chloroprene rubber (chloroprene-acrylonitrile copolymer) 1 to 6 and the compounds shown in Tables 1 and 2 were mixed using an 8-inch roll and then dispensed to obtain a rubber composition. Then, this rubber composition was subjected to press vulcanization at 160 ° C. for 20 minutes to prepare a rubber sheet for evaluation (evaluation sheet) having a sheet length of 200 mm, a sheet width of 15 mm and a thickness of 2.1 mm. The amounts of zinc oxide used shown in Tables 1 and 2 are the total amounts of the two types of zinc oxide.
 表1~表2で用いた化合物は以下のとおりである。
 メルカプタン変性クロロプレンゴム:デンカ株式会社製、生ゴムムーニー粘度ML1+4(100℃)=60
 カーボンブラックA:アセチレンブラック、デンカ株式会社製、デンカブラック粒状品、結晶格子内の層平面のC軸方向の平均積み重なり高さ=3.5nm、平均粒径=35nm、DBP吸油量=210ml/100g
 カーボンブラックB:東海カーボン株式会社製、シーストSO、FEFカーボン、結晶格子内の層平面のC軸方向の平均積み重なり高さ=1.6nm、平均粒径=43nm、DBP吸油量=115ml/100g
 亜鉛粉:堺化学工業株式会社製、亜鉛末#7、平均粒径=4μm
 加硫剤(酸化亜鉛):堺化学工業株式会社製、酸化亜鉛2種、
 加硫促進剤:川口化学工業株式会社製、アクセル(登録商標)22-S、エチレンチオウレア
 滑剤・加工助剤:新日本理化株式会社製、ステアリン酸50S
 老化防止剤:大内新興化学工業株式会社製、ノクラック(登録商標)CD、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン
 可塑剤:大八化学工業株式会社製、ジオクチルセバケート
 酸化マグネシウム:協和化学工業株式会社製、キョーワマグ(登録商標)150
The compounds used in Tables 1 and 2 are as follows.
Mercaptan-modified chloroprene rubber: Denka Co., Ltd., raw rubber Mooney viscosity ML 1 + 4 (100 ° C.) = 60
Carbon black A: acetylene black, manufactured by Denka Co., Ltd., Denka Black granular product, average stacking height in the C-axis direction of the layer plane in the crystal lattice = 3.5 nm, average particle size = 35 nm, DBP oil absorption = 210 ml / 100 g
Carbon black B: manufactured by Tokai Carbon Co., Ltd., SEAST SO, FEF carbon, average stacking height in the C-axis direction of the layer plane in the crystal lattice = 1.6 nm, average particle size = 43 nm, DBP oil absorption = 115 ml / 100 g.
Zinc powder: Sakai Chemical Industry Co., Ltd., zinc powder # 7, average particle size = 4 μm
Vulcanizing agent (zinc oxide): Sakai Chemical Industry Co., Ltd., 2 types of zinc oxide,
Vulcanization accelerator: Kawaguchi Chemical Industry Co., Ltd., Accel (registered trademark) 22-S, ethylene thiourea Lubricant / processing aid: Shin Nippon Rika Co., Ltd., stearic acid 50S
Anti-aging agent: Ouchi Shinko Chemical Co., Ltd., Nocrac (registered trademark) CD, 4,4'-bis (α, α-dimethylbenzyl) diphenylamine Plasticizer: Daihachi Chemical Co., Ltd., dioctyl sebacate oxidation Magnesium: Kyowa Mag (registered trademark) 150 manufactured by Kyowa Chemical Industry Co., Ltd.
<評価>
 上述の評価シートを用いて以下の評価を行った。評価結果を表1~表2に示す。
<Evaluation>
The following evaluation was performed using the above-mentioned evaluation sheet. The evaluation results are shown in Tables 1 and 2.
(機械的強度(引張り強度(TB)))
 JIS K 6250に基づいてテストピースを作製した。JIS K 6251に基づいて引張試験を行い、各テストピース(加硫物)の機械的強度として引張り強度(TB)を測定した。引張り強度(TB)が22MPa以上である場合を「A(特に良好)」と評価し、18MPa以上22MPa未満である場合を「B(良好)」と評価し、15MPa以上18MPa未満である場合を「C(やや良好)」と評価し、15MPa未満である場合を「D(不良)」と評価した。
(Mechanical strength (tensile strength (TB)))
A test piece was prepared based on JIS K6250. A tensile test was performed based on JIS K 6251, and the tensile strength (TB) was measured as the mechanical strength of each test piece (vulcanized product). When the tensile strength (TB) is 22 MPa or more, it is evaluated as "A (especially good)", when it is 18 MPa or more and less than 22 MPa, it is evaluated as "B (good)", and when it is 15 MPa or more and less than 18 MPa. C (somewhat good) was evaluated, and when it was less than 15 MPa, it was evaluated as "D (bad)".
(耐熱性)
 JIS K 6250に基づいてテストピースを作製した。120℃、72時間の条件でギヤーオーブン中にテストピースを放置して硬度変化を測定した。硬度変化が8未満である場合を「A(特に良好)」と評価し、8以上10未満である場合を「B(良好)」と評価し、10以上12未満である場合を「C(やや良好)」と評価し、12以上である場合を「D(不良)」と評価した。
(Heat-resistant)
A test piece was prepared based on JIS K6250. The hardness of the test piece was measured by leaving the test piece in a gear oven at 120 ° C. for 72 hours. A hardness change of less than 8 is evaluated as "A (especially good)", a hardness change of 8 or more and less than 10 is evaluated as "B (good)", and a hardness change of 10 or more and less than 12 is "C (somewhat good). "Good""was evaluated, and when 12 or more was evaluated as" D (bad) ".
(耐油性)
 JIS K 6250に基づいてテストピースを作製した。JIS K 6258に基づいて、IRM903オイルを用いて耐油試験(試験条件:100℃×72時間)を行い、体積変化率(ΔV)を測定した。体積変化率が30%未満である場合を「A(特に良好)」と評価し、30%以上45%未満である場合を「B(良好)」と評価し、45%以上60%未満である場合を「C(やや良好)」と評価し、60%以上である場合を「D(不良)」と評価した。
(Oil resistance)
A test piece was prepared based on JIS K6250. Based on JIS K 6258, an oil resistance test (test conditions: 100 ° C. × 72 hours) was performed using IRM903 oil, and the volume change rate (ΔV) was measured. When the volume change rate is less than 30%, it is evaluated as "A (particularly good)", and when it is 30% or more and less than 45%, it is evaluated as "B (good)" and 45% or more and less than 60%. The case was evaluated as "C (somewhat good)", and the case of 60% or more was evaluated as "D (bad)".
(耐寒性)
 JIS K 6250に基づいてテストピースを作製した。JIS K 6261に基づいて低温ねじり試験(ゲーマンねじり試験)を行い、23±2℃におけるねじり角Aを測定した。そして、このねじり角Aの値に対して10倍のモジュラスに相当するねじれ角Bから、このねじれ角Bの角度に相当する温度T10を測定した。T10が-25℃未満である場合を「A(特に良好)」と評価し、-25℃以上-18℃未満である場合を「B(良好)」と評価し、-18℃以上-10℃未満である場合を「C(やや良好)」と評価し、-10℃以上である場合を「D(不良)」と評価した。
(Cold resistance)
A test piece was prepared based on JIS K6250. A low temperature twisting test (Geman twisting test) was performed based on JIS K 6261 to measure a twisting angle A at 23 ± 2 ° C. Then, from the twist angle B corresponding to the modulus of 10 times the value of the twist angle A, the temperature T10 corresponding to the angle of the twist angle B was measured. When T10 is less than -25 ° C, it is evaluated as "A (especially good)", and when T10 is -25 ° C or more and less than -18 ° C, it is evaluated as "B (good)", -18 ° C or more and -10 ° C. When it was less than "C" (somewhat good), it was evaluated as "C (somewhat good)", and when it was -10 ° C or more, it was evaluated as "D (bad)".
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表2に示した結果から、不飽和ニトリル単量体由来の構造単位を3~20質量%有するクロロプレン系ゴム100質量部と、特定のカーボンブラック及び亜鉛粉を特定量含有するゴム組成物によれば、機械的強度、耐熱性、耐油性及び耐寒性に優れた加硫物及び加硫成形体が得られることがわかった。当該加硫物及び加硫成形体は、これらの性質を有するため、伝動ベルト、コンベアベルト、ホース、ワイパー、シール材(パッキン、ガスケット等)、ロール、空気バネ、防振材、接着剤、ブーツ、ゴム引布、スポンジ、ゴムライニングなどの加硫成形品として好適に使用できる。 From the results shown in Table 1 and Table 2, a rubber composition containing 100 parts by mass of a chloroprene rubber having 3 to 20% by mass of a structural unit derived from an unsaturated nitrile monomer, and a specific amount of specific carbon black and zinc powder. It was found that a vulcanized product and a vulcanized molded product having excellent mechanical strength, heat resistance, oil resistance and cold resistance can be obtained. Since the vulcanized product and the vulcanized molded product have these properties, they are a transmission belt, a conveyor belt, a hose, a wiper, a sealing material (packing, gasket, etc.), a roll, an air spring, a vibration isolator, an adhesive, a boot. It can be suitably used as a vulcanized molded product such as a rubberized cloth, a sponge, and a rubber lining.

Claims (6)

  1.  クロロプレン系ゴム100質量部と、カーボンブラック20~80質量部と、亜鉛粉0.2~30質量部と、を含有し、
     前記クロロプレン系ゴムが、不飽和ニトリル単量体由来の構造単位を3~20質量%有し、
     前記カーボンブラックにおける結晶格子内の層平面のC軸方向の平均積み重なり高さLCが2nm以上である、ゴム組成物。
    Contains 100 parts by mass of chloroprene rubber, 20 to 80 parts by mass of carbon black, and 0.2 to 30 parts by mass of zinc powder,
    The chloroprene rubber has 3 to 20% by mass of a structural unit derived from an unsaturated nitrile monomer,
    A rubber composition in which the average stacking height LC in the C-axis direction of the layer plane in the crystal lattice of the carbon black is 2 nm or more.
  2.  前記クロロプレン系ゴムが、不飽和ニトリル単量体由来の構造単位を4~40質量%有するクロロプレン系ゴムAと、不飽和ニトリル単量体由来の構造単位を有さないクロロプレン系ゴムBと、を含む、請求項1に記載のゴム組成物。 The chloroprene rubber comprises a chloroprene rubber A having 4 to 40% by mass of a structural unit derived from an unsaturated nitrile monomer, and a chloroprene rubber B having no structural unit derived from an unsaturated nitrile monomer. The rubber composition according to claim 1, which comprises:
  3.  前記カーボンブラックがアセチレンブラックである、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the carbon black is acetylene black.
  4.  前記不飽和ニトリル単量体がアクリロニトリルである、請求項1~3のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the unsaturated nitrile monomer is acrylonitrile.
  5.  請求項1~4のいずれか一項に記載のゴム組成物の加硫物。 A vulcanized product of the rubber composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか一項に記載のゴム組成物の加硫成形体。 A vulcanized molded product of the rubber composition according to any one of claims 1 to 4.
PCT/JP2019/043557 2018-11-09 2019-11-06 Rubber composition, vulcanized object, and vulcanized molded object WO2020095964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018211378A JP2022013964A (en) 2018-11-09 2018-11-09 Rubber composition, vulcanized product and vulcanized molded product of the rubber composition
JP2018-211378 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020095964A1 true WO2020095964A1 (en) 2020-05-14

Family

ID=70612055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043557 WO2020095964A1 (en) 2018-11-09 2019-11-06 Rubber composition, vulcanized object, and vulcanized molded object

Country Status (2)

Country Link
JP (1) JP2022013964A (en)
WO (1) WO2020095964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4223837A4 (en) * 2020-10-23 2024-04-03 Denka Company Ltd Rubber composition, vulcanized product, and vulcanized molded article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4643094B1 (en) * 1968-11-21 1971-12-20
JPS62106913A (en) * 1985-11-04 1987-05-18 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Chloroprene copolymer
JPH11323020A (en) * 1998-05-08 1999-11-26 Denki Kagaku Kogyo Kk Chloroprene rubber composition
WO2001032768A1 (en) * 1999-11-02 2001-05-10 Denki Kagaku Kogyo Kabushiki Kaisha Chloroprene-based rubber composition
WO2014041649A1 (en) * 2012-09-13 2014-03-20 電気化学工業株式会社 Rubber composition, and vulcanizate and molded article thereof
WO2018207940A1 (en) * 2017-05-12 2018-11-15 デンカ株式会社 Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4643094B1 (en) * 1968-11-21 1971-12-20
JPS62106913A (en) * 1985-11-04 1987-05-18 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Chloroprene copolymer
JPH11323020A (en) * 1998-05-08 1999-11-26 Denki Kagaku Kogyo Kk Chloroprene rubber composition
WO2001032768A1 (en) * 1999-11-02 2001-05-10 Denki Kagaku Kogyo Kabushiki Kaisha Chloroprene-based rubber composition
WO2014041649A1 (en) * 2012-09-13 2014-03-20 電気化学工業株式会社 Rubber composition, and vulcanizate and molded article thereof
WO2018207940A1 (en) * 2017-05-12 2018-11-15 デンカ株式会社 Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4223837A4 (en) * 2020-10-23 2024-04-03 Denka Company Ltd Rubber composition, vulcanized product, and vulcanized molded article

Also Published As

Publication number Publication date
JP2022013964A (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP7223013B2 (en) Copolymer of chloroprene monomer and unsaturated nitrile compound, composition containing copolymer, vulcanized molded article of composition, and use of vulcanized molded article
CN104662078B (en) Rubber composition, its sulfide and products formed
KR102574679B1 (en) Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use thereof
CN110036048B (en) Xanthan-modified chloroprene rubber, rubber composition thereof, and vulcanized molded body thereof
CA2752723C (en) Polychloroprene elastomer composition and production method and the vulcanized and molded articles thereof
JP7319998B2 (en) Chloroprene/unsaturated nitrile copolymer, chloroprene/unsaturated nitrile copolymer composition and vulcanized molding
JP7263386B2 (en) Chloroprene/unsaturated nitrile copolymer composition and vulcanized molding
JP6896546B2 (en) Rubber composition, vulcanized product of the rubber composition and vulcanized molded article
WO2001032768A1 (en) Chloroprene-based rubber composition
WO2020095964A1 (en) Rubber composition, vulcanized object, and vulcanized molded object
JP4092053B2 (en) Automotive engine mount using vulcanized chloroprene rubber composition
WO2023042728A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
JP4450482B2 (en) Rubber composition for engine mount
JP5180996B2 (en) Chloroprene rubber composition
WO2023042727A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
WO2023210519A1 (en) Rubber composition, vulcanized molded body, and vulcanizate
WO2023136318A1 (en) Composition, vulcanizate, and vulcanized molded body
KR20240055120A (en) Rubber compositions, vulcanizates, and vulcanized molded bodies
WO2023153405A1 (en) Rubber composition, vulcanizate, and vulcanized molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP