WO2023153405A1 - Rubber composition, vulcanizate, and vulcanized molded body - Google Patents

Rubber composition, vulcanizate, and vulcanized molded body Download PDF

Info

Publication number
WO2023153405A1
WO2023153405A1 PCT/JP2023/004016 JP2023004016W WO2023153405A1 WO 2023153405 A1 WO2023153405 A1 WO 2023153405A1 JP 2023004016 W JP2023004016 W JP 2023004016W WO 2023153405 A1 WO2023153405 A1 WO 2023153405A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
rubber composition
rubber
chloroprene
Prior art date
Application number
PCT/JP2023/004016
Other languages
French (fr)
Japanese (ja)
Inventor
和也 樋口
友貴 坂井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023153405A1 publication Critical patent/WO2023153405A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene

Definitions

  • the present invention relates to rubber compositions, vulcanizates, and vulcanized moldings.
  • Chloroprene rubber has excellent mechanical strength, weather resistance, chemical resistance, heat resistance, cold resistance, and oil resistance. , wipers, dipping products, sealing parts, adhesives, boots, rubberized fabrics, rubber rolls and other materials.
  • Patent Document 1 100 parts by mass of a chloroprene rubber, 20 to 80 parts by mass of a silica filler, 0.5 to 4 parts by mass of a maleimide compound, and 0.1 to 3 parts by mass of an organic peroxide.
  • the present invention has been made in view of such circumstances, and provides a rubber composition that can obtain a vulcanized product and a vulcanized molded product that are excellent in both elongation at break and compression set after heating. It is.
  • a chloroprene rubber 100 parts by mass of a chloroprene rubber, 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g, 0.1 to 8 parts by mass of a maleimide compound, and 0 parts by mass of an organic peroxide. and 1 to 15 parts by weight of a silane coupling agent per 100 parts by weight of said silica.
  • the rubber composition contains 100 parts by mass of chloroprene rubber, 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g, and 0.1 maleimide compound. ⁇ 8 parts by mass, 0.1 to 5 parts by mass of an organic peroxide, and 1 to 15 parts by mass of a silane coupling agent with respect to 100 parts by mass of the silica, elongation at break and compression after heating
  • the present inventors have found that it is possible to obtain a rubber composition from which a vulcanized product and a vulcanized molding excellent in both permanent set can be obtained, and have completed the present invention.
  • a vulcanizate of the rubber composition described above there is provided a vulcanized molding of the rubber composition described above.
  • Various embodiments of the present invention are illustrated below. The embodiments shown below can be combined with each other.
  • a rubber composition comprising 5 parts by mass and 1 to 15 parts by mass of a silane coupling agent with respect to 100 parts by mass of the silica.
  • the chloroprene rubber is a homopolymer of 2-chloro-1,3-butadiene, or at least one monomer selected from 2,3-dichloro-1,3-butadiene and unsaturated nitrile monomers.
  • the silane coupling agent is at least selected from a silane coupling agent having a double bond in its structure, a silane coupling agent having an amino group, and a silane coupling agent having a double bond and an amino group
  • the silane coupling agent is vinyltrimethoxysilane, vinyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth) At least one silane coupling agent selected from acryloxypropylmethyldiethoxysilane, 3-(meth)acryloxypropylmethyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane [1] to [ 3].
  • the rubber composition according to any one of the above items.
  • the maleimide compound is N,N'-o-phenylenebismaleimide, N,N'-m-phenylenebismaleimide, N,N'-p-phenylenebismaleimide, N,N'-(4,4' -diphenylmethane)bismaleimide, 2,2-bis-[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 4-methyl-1,3-
  • the organic peroxide is dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, tert-butyl ⁇ -cumyl peroxide, 2,5-dimethyl-2,5-bis selected from (t-butylperoxy)hexane, 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne and butyl 4,4-bis[(t-butyl)peroxy]pentanoate
  • the rubber composition according to any one of [1] to [6], which is at least one organic peroxide.
  • the rubber composition of the present invention it is possible to obtain a rubber composition from which a vulcanizate and a vulcanized molded article which are excellent in both elongation at break and compression set after heating can be obtained. Furthermore, the obtained vulcanizates and vulcanized moldings can be used as various members that require excellent heat resistance and/or excellent compression set by taking advantage of their properties, especially sealing materials. , gaskets, packings, and the like.
  • the rubber composition according to the present invention comprises 100 parts by mass of a chloroprene rubber, 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g, and 0.1 to 8 parts by mass of a maleimide compound. , 0.1 to 5 parts by weight of an organic peroxide, and 1 to 15 parts by weight of a silane coupling agent per 100 parts by weight of the silica.
  • the rubber composition according to the present invention is a rubber composition from which a vulcanizate and a vulcanized molded article which are excellent in both elongation at break and compression set after heating can be obtained.
  • the polymer structure of the chloroprene-based polymer is not particularly limited.
  • 2-chloro-1,3-butadiene may contain a small amount of 1-chloro-1,3-butadiene as an impurity.
  • 2-Chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene monomer in the present embodiment.
  • a chloroprene-based rubber according to one embodiment of the present invention is a homopolymer of 2-chloro-1,3-butadiene (hereinafter referred to as chloroprene), or a monopolymer of 2,3-dichloro-1,3-butadiene and an unsaturated nitrile.
  • chloroprene 2-chloro-1,3-butadiene
  • a copolymer of at least one monomer selected from monomers and 2-chloro-1,3-butadiene can be included.
  • a chloroprene-based rubber according to one embodiment of the present invention comprises a chloroprene homopolymer and at least one monomer selected from 2,3-dichloro-1,3-butadiene and unsaturated nitrile monomers.
  • It may consist of a rubber containing a copolymer with chloroprene, or it may consist of a rubber containing a homopolymer of chloroprene, 2,3-dichloro-1,3-butadiene and an unsaturated nitrile. It can also be made of a rubber containing a copolymer of at least one monomer selected from monomers and chloroprene.
  • a chloroprene-based rubber according to one embodiment of the present invention contains a copolymer containing a monomer unit derived from a 2,3-dichloro-1,3-butadiene monomer unit and an unsaturated nitrile monomer. can be done.
  • the chloroprene-based rubber according to one embodiment of the present invention has a total content of 2,3-dichloro-1,3-butadiene monomer units and unsaturated nitrile monomer units when the rubber is 100% by mass. can be less than 25% by mass, preferably 1% by mass or more and less than 25% by mass.
  • the contents of 2,3-dichloro-1,3-butadiene monomer units and unsaturated nitrile monomer units in the chloroprene-based rubber according to one embodiment of the present invention are, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 mass%, less than 25 mass% , within a range between any two of the numerical values exemplified herein.
  • the chloroprene-based rubber according to one embodiment of the present invention preferably contains a copolymer containing monomer units derived from unsaturated nitrile monomers.
  • the content of unsaturated nitrile monomer units in the chloroprene-based rubber according to one embodiment of the present invention is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24% by mass, less than 25% by mass and within a range between any two of the numerical values exemplified here There may be.
  • the obtained rubber composition has sufficient cold resistance.
  • the obtained rubber composition has sufficient oil resistance, and the tensile strength and cold resistance are well balanced. It is possible to obtain a vulcanized molded article excellent in
  • Unsaturated nitriles include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile and the like.
  • An unsaturated nitrile can be used individually by 1 type or in combination of 2 or more types.
  • the unsaturated nitrile may contain acrylonitrile from the viewpoint of easily obtaining excellent moldability, and from the viewpoint of easily obtaining excellent breaking strength, breaking elongation, hardness, tear strength, and oil resistance in the vulcanized molded product. preferable.
  • the content of unsaturated nitrile monomer units contained in the chloroprene-based rubber can be calculated from the content of nitrogen atoms in the chloroprene-based rubber. Specifically, the content of nitrogen atoms in 100 mg of chloroprene-based rubber is measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Service, Ltd.), and the content of structural units derived from unsaturated nitrile monomers You can calculate the amount. Elemental analysis can be measured under the following conditions. For example, the electric furnace temperature is set to 900° C. for the reactor, 600° C.
  • the column temperature is 70° C.
  • the detector temperature is 100° C.
  • oxygen as the combustion gas is 0.2 mL/min
  • helium is 80 mL/min as the carrier gas. to flow.
  • a calibration curve can be constructed using aspartic acid (10.52%) with a known nitrogen content as a standard.
  • the chloroprene-based rubber according to one embodiment of the present invention preferably contains 60 to 100% by mass of chloroprene monomer units when the chloroprene-based rubber is taken as 100% by mass.
  • the content of chloroprene monomer units in the rubber is, for example, 60, 65, 70, 75, 80, 85, 90, 95, 99, 100% by mass, and any two of the numerical values exemplified here may be within the range.
  • a chloroprene-based rubber according to one embodiment of the present invention shall have monomer units other than a chloroprene monomer, a 2,3-dichloro-1,3-butadiene monomer and an unsaturated nitrile monomer.
  • Monomer units other than chloroprene monomer, 2,3-dichloro-1,3-butadiene monomer and unsaturated nitrile monomer include chloroprene monomer, 2,3-dichloro-1,3- Although there is no particular limitation as long as it can be copolymerized with butadiene monomers and unsaturated nitrile monomers, esters of (meth) acrylic acid (methyl (meth) acrylate, butyl (meth) acrylate, (meth) ) 2-ethylhexyl acrylate, etc.), hydroxyalkyl (meth)acrylates (2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, etc.), 1-chloro-1 , 3-butadiene, butadiene, isoprene, ethylene, styrene, sulfur and the like.
  • the chloroprene-based rubber according to one embodiment of the present invention can contain 0 to 20% by mass of monomer units other than the chloroprene monomer and the unsaturated nitrile monomer when the rubber is 100% by mass. .
  • the content of monomer units other than the chloroprene monomer and the unsaturated nitrile monomer in the rubber is, for example, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20% by mass. Yes, and may be in a range between any two of the values exemplified here.
  • chloroprene-based rubber according to one embodiment of the present invention may consist of only chloroprene monomer units and unsaturated nitrile monomer units, and may consist of only chloroprene monomer units.
  • the rubber composition according to the present invention can use chloroprene-based rubbers singly or in combination of two or more.
  • the rubber composition according to one embodiment of the present invention contains two or more chloroprene-based rubbers, unsaturated nitrile monomer units contained in the two or more chloroprene-based rubbers contained in the rubber composition and 2,
  • the total content of 3-dichloro-1,3-butadiene is preferably less than 25% by weight.
  • the chloroprene-based polymer (chloroprene homopolymer, chloroprene copolymer, etc.) contained in the chloroprene-based rubber according to the present invention includes sulfur-modified chloroprene polymer, mercaptan-modified chloroprene polymer, xanthogen-modified chloroprene polymer, dithiocarbohydrate It may be a nato-based chloroprene polymer, a trithiocarbonate-based chloroprene polymer, a carbamate-based chloroprene polymer, or the like.
  • the method for producing the chloroprene-based rubber according to the present invention is not particularly limited. can.
  • a chloroprene monomer optionally a monomer containing 2,3-dichloro-1,3-butadiene and an unsaturated nitrile monomer, is added as an emulsifier or A latex containing a chloroprene-based polymer containing chloroprene monomer units by emulsification polymerization using an appropriate dispersant, catalyst, chain transfer agent, etc., and adding a polymerization terminator when the desired final conversion is reached. can be obtained.
  • unreacted monomers can be removed from the polymerization liquid obtained by the emulsion polymerization step.
  • the method is not particularly limited, and includes, for example, a steam stripping method. Thereafter, the pH is adjusted, and the chloroprene-based rubber containing the chloroprene-based polymer can be obtained through conventional steps such as freezing and coagulation, washing with water, and drying with hot air.
  • the polymerization initiator used for emulsion polymerization is not particularly limited, and known polymerization initiators generally used for emulsion polymerization of chloroprene can be used.
  • polymerization initiators include potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, and organic peroxides such as t-butyl hydroperoxide.
  • the emulsifier used for emulsion polymerization is not particularly limited, and known emulsifiers generally used for emulsion polymerization of chloroprene can be used.
  • emulsifiers include alkali metal salts of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, alkali metal salts of rosin acid or disproportionated rosin acid (eg, potassium rosinate), and formalin condensates of ⁇ -naphthalenesulfonic acid. and alkali metal salts (for example, sodium salts) of.
  • the molecular weight modifier used for emulsion polymerization is not particularly limited, and known molecular weight modifiers generally used for emulsion polymerization of chloroprene can be used. compounds, trithiocarbonate-based compounds and carbamate-based compounds. Xanthogen-based compounds, dithiocarbonate-based compounds, trithiocarbonate-based compounds and carbamate-based compounds can be suitably used as the molecular weight modifier for the chloroprene-based rubber according to one embodiment of the present invention.
  • the polymerization temperature and the final conversion rate of the monomers are not particularly limited, the polymerization temperature may be, for example, 0 to 50°C or 10 to 50°C.
  • the polymerization may be carried out so that the final conversion of monomer is in the range of 40-95% by weight.
  • the polymerization may be terminated by adding a polymerization terminator for terminating the polymerization reaction when the desired conversion is achieved.
  • the polymerization terminator is not particularly limited, and known polymerization terminator generally used for emulsion polymerization of chloroprene can be used.
  • Examples of the polymerization terminator include phenothiazine (thiodiphenylamine), 4-t-butylcatechol, 2,2-methylenebis-4-methyl-6-t-butylphenol and the like.
  • the chloroprene-based rubber according to one embodiment of the present invention can be prepared, for example, by removing unreacted monomers by a steam stripping method, adjusting the pH of the latex, freezing and coagulating by a conventional method, washing with water, drying with hot air, etc. can be obtained through the process of
  • Chloroprene-based rubbers are classified into mercaptan-modified type, xanthogen-modified type, sulfur-modified type, dithiocarbonate-based type, trithiocarbonate-based type and carbamate-based type according to the type of molecular weight modifier.
  • the rubber composition according to the present invention contains 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g with respect to 100 parts by mass of chloroprene rubber.
  • Silica is commonly added to rubber compositions as a filler.
  • Silica forms a covalent bond with a chloroprene-based polymer through a surface functional group (e.g., OH group) present on the surface of silica and a silane coupling agent. It is thought that the system polymer is strongly restrained, the elasticity is improved, and the compression set is improved.
  • silica for example, a wet silica filler (silicic acid hydrate), a dry silica filler (anhydrous silicic acid), and a colloidal silica filler can be used, and a wet silica filler is preferable.
  • silica surface unmodified silica can be used.
  • silica surface-modified silica can also be used.
  • the silica contained in the rubber composition according to the present invention has a BET specific surface area of 10 to 120 m 2 /g.
  • the BET specific surface area is, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 m 2 /g, and within the range between any two of the numerical values exemplified here may be
  • the rubber composition according to the present invention can obtain a vulcanized product and a vulcanized molding that are excellent in both elongation at break and compression set after heating. It becomes a rubber composition.
  • the BET specific surface area of silica By setting the BET specific surface area of silica to the above upper limit or less, the number per unit mass of surface functional groups present on the surface of silica is defined, and specific surface functional groups (e.g., OH groups) present on the surface of silica It is presumed that the increase in reactivity with the chloroprene-based rubber, the decrease in compatibility between silica and the chloroprene-based rubber, and the aggregation of silica particles caused by heating are suppressed.
  • the BET specific surface area of silica by setting the BET specific surface area of silica to the above upper limit or less, the amount of surface functional groups per silica particle increases, the number of reaction points with the silane coupling agent possessed by one particle of silica increases, and the vicinity of silica increases. It is thought that the chloroprene-based polymer can be strongly restrained and the compression set is improved. Further, by making the BET specific surface area of silica equal to or
  • the specific surface area of silica can be measured by a vapor-phase adsorption method using nitrogen gas as the adsorption gas using, for example, a rapid surface area measuring device SA-1000 manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd.
  • the rubber composition according to the present invention contains 2 to 80 parts by mass of silica with respect to 100 parts by mass of chloroprene rubber.
  • the content of silica is, for example, 95 and 100 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • Silica can be used individually by 1 type or in combination of 2 or more types.
  • the specific surface area in a state in which multiple types of silica contained in the rubber composition of the present invention are mixed satisfies the above numerical range.
  • the rubber composition according to the present invention contains 1 to 15 parts by mass of a silane coupling agent per 100 parts by mass of silica.
  • a silane coupling agent is added to improve the dispersibility of silica in rubber and the reinforcing effect between rubber and silica.
  • the silane coupling agent is not particularly limited, and those used in commercially available rubber compositions can be used. Examples include vinyl coupling agents, epoxy coupling agents, styryl coupling agents, methacrylic coupling agents. Ring agents, acrylic coupling agents, amino coupling agents, polysulfide coupling agents, and mercapto coupling agents can be mentioned.
  • a silane coupling agent according to one embodiment of the present invention includes a silane coupling agent having a double bond in the structure, a silane coupling agent having an amino group, and a silane coupling agent having a double bond and an amino group. It is preferable to include at least one selected.
  • a silane coupling agent can be used individually by 1 type or in combination of 2 or more types.
  • the silane coupling agent having a double bond in its structure is not particularly limited except that it has a double bond in its structure.
  • Examples include vinyl coupling agents, styryl coupling agents, and methacrylic coupling agents. , and acrylic coupling agents.
  • vinyl coupling agents, methacrylic coupling agents, and acrylic coupling agents are preferable from the viewpoint of processability and reinforcing effect.
  • a silane coupling agent having a double bond in its structure preferably has a (meth)acrylic group in its structure, and even more preferably has a methacrylic group.
  • silane coupling agent having a double bond in its structure examples include vinyltrimethoxysilane, vinyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyl Mention may be made of trimethoxysilane, 3-(meth)acryloxypropylmethyldiethoxysilane, 3-(meth)acryloxypropylmethyltriethoxysilane, vinyltriacetoxysilane, allyltrimethoxysilane.
  • the silane coupling agent having an amino group is not particularly limited as long as it has an amino group in its structure, and those used in commercially available rubber compositions can be used.
  • a silane coupling agent having an amino group can be an amino-based coupling agent.
  • the silane coupling agent having an amino group can be a silane coupling agent having a primary amino group and/or a secondary amino group, and is more preferably a silane coupling agent having a secondary amino group.
  • Silane coupling agents having an amino group include N-phenyl-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3 -aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride. .
  • the rubber composition according to one embodiment of the present invention can also contain a silane coupling agent that has neither double bonds nor amino groups in its structure.
  • the content of silane coupling agents having neither double bonds nor amino groups in their structures includes silane coupling agents having double bonds in their structures, silane coupling agents having amino groups in their structures, and double bonds and amino groups. It is preferably less than the total content of silane coupling groups.
  • the rubber composition according to one embodiment of the present invention includes a silane coupling agent having a double bond in the structure and an amino group, when the total amount of silane coupling agents contained in the rubber composition is 100% by mass. and the silane coupling agent having a double bond and an amino group. It is even more preferred to have A rubber composition according to an embodiment of the present invention may not contain a silane coupling agent having neither double bonds nor amino groups in its structure.
  • the rubber composition according to the present invention contains 1 to 15 silane coupling agents per 100 parts by mass of silica.
  • the content of the silane coupling agent can be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 parts by mass, where It may be in a range between any two of the numerical values given.
  • the chloroprene-based rubber composition according to one embodiment of the present invention contains 0.1 to 8 parts by mass of a maleimide compound with respect to 100 parts by mass of the chloroprene-based rubber.
  • a maleimide compound can be used individually by 1 type or in combination of 2 or more types.
  • the maleimide compound can contribute to vulcanization of the rubber composition as a co-crosslinking agent.
  • maleimide compounds include N,N'-o-phenylenebismaleimide, N,N'-m-phenylenebismaleimide, N,N'-p-phenylenebismaleimide, N,N'-(4,4' -diphenylmethane) bismaleimide, 2,2-bis-[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bisphenol A diphenyl ether bismaleimide, 3, 3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6'-bismaleimide-(2,2,4-trimethyl) Hexane can be mentioned.
  • N,N'-m-phenylenebismaleimide
  • a rubber composition according to one embodiment of the present invention contains 0.1 to 8 parts by mass of a maleimide compound with respect to 100 parts by mass of a chloroprene rubber.
  • the content of the maleimide compound is, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8 parts by mass, and the numerical values exemplified here may be in the range between any two of
  • the vulcanization of the obtained rubber composition proceeds more sufficiently, and a vulcanized molded article having good compression set resistance and elongation at break after heating is obtained. be able to.
  • the content of the maleimide compound equal to or less than the above upper limit, the rubber elasticity of the obtained vulcanized molded product can be sufficiently maintained, and deterioration of resistance to compression set can be suppressed.
  • Organic Peroxide The rubber composition according to the present invention contains 0.1 to 5 parts by mass of an organic peroxide.
  • Organic peroxides can be used as vulcanizing agents.
  • An organic peroxide can be used individually by 1 type or in combination of 2 or more types.
  • organic peroxides examples include dicumyl peroxide, benzoyl peroxide, 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, diisobutyryl peroxide, and cumylperoxy neodeca.
  • the rubber composition according to the present invention can contain 0.1 to 5 parts by mass of an organic peroxide with respect to 100 parts by mass of the chloroprene rubber.
  • the amount of organic peroxide added is, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2 , 3, 4, 5 parts by weight, and may be within a range between any two of the values exemplified herein.
  • the rubber composition according to the present invention may contain 0.1 to 20 parts by mass of a hydrotalcite compound per 100 parts by mass of the chloroprene rubber.
  • a hydrotalcite compound can function as an acid acceptor.
  • the hydrotalcite compound those represented by the following formula can be used. [M 2+ 1 ⁇ x M 3+ x (OH) 2 ] x+ [A n ⁇ x/n ⁇ mH 2 O] x ⁇
  • M 2+ at least one divalent metal ion selected from Mg 2+ , Zn 2+ etc.
  • M 3+ at least one trivalent metal ion selected from Al 3+ , Fe 3+ etc.
  • a n ⁇ CO 3 2 ⁇ , Cl ⁇ , At least one n-type anion selected from NO 3 2- , etc.
  • X 0 ⁇ X ⁇ 0.33.
  • hydrotalcite compounds examples include Mg4.3Al2 ( OH) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O , Mg4.5Al2 ( OH ) 13CO3.3.5H2O , Mg4.5Al2 ( OH ) 13CO3 , Mg4Al2 (OH ) 12CO3.3.5H2O , Mg6Al2 ( OH ) 16 CO3.4H2O , Mg5Al2 ( OH ) 14CO3.4H2O , Mg3Al2 ( OH ) 10CO3.1.7H2O , Mg0.7Al0.3O 1 . 15 , and particularly preferably Mg4.3Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O , Mg0.7 Al 0.3 O 1.15 .
  • the amount of the hydrotalcite compound added can be 0.1 to 20 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
  • the amount of the hydrotalcite compound added is, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 13, 14, 15, 16, 17, 18, 19, 20 parts by weight, and may be within a range between any two of the numerical values exemplified herein.
  • a hydrotalcite compound can be used individually by 1 type or in combination of 2 or more types.
  • the chloroprene-based rubber composition according to one embodiment of the present invention can contain 1 to 30 parts by mass of a compound having a thioether structure with respect to 100 parts by mass of the chloroprene-based rubber.
  • a compound having a thioether structure together with an organic peroxide, the vulcanization can be sufficiently progressed within the specified vulcanization time, and a vulcanizate with excellent compression set resistance and heat resistance can be obtained.
  • the organic peroxide remaining after crosslinking and the hydroperoxide generated by thermal deterioration are decomposed, and the heat resistance of the obtained vulcanized molding is further improved.
  • a compound having a thioether structure according to one embodiment of the present invention can be represented, for example, by the following formula (1), or can have a structural unit represented by formula (2).
  • R 1 , R 2 , R 3 and R 4 can be any organic group which may have a substituent.
  • R 1 and R 2 preferably contains an ether structure.
  • R 3 and R 4 preferably contains an ether structure.
  • n is an arbitrary natural number of 1 or more.
  • the compound having one or more thioether structures according to one embodiment of the present invention preferably has two or more ether structures.
  • R 1 , R 2 , R 3 and R 4 preferably have an alkylene group with 2 to 20 carbon atoms, more preferably an alkylene group with 2 to 11 carbon atoms. In one aspect, R 1 , R 2 , R 3 and R 4 may have a carbonyl group.
  • the amount of the compound having a thioether structure added can be 1 to 30 parts by mass with respect to 100 parts by mass of the chloroprene rubber.
  • the added amount of the compound having a thioether structure is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30 parts by mass. and may be in the range between any two of the numerical values exemplified here.
  • the vulcanization proceeds sufficiently, and the vulcanized molded article having sufficient moldability, compression set resistance, and heat resistance is obtained. It becomes a rubber composition.
  • the rubber composition according to one embodiment of the present invention may contain a vulcanizing agent in addition to the above compounds.
  • a metal oxide can be mentioned as a vulcanizing agent.
  • metal oxides include zinc oxide, magnesium oxide, lead oxide, trilead tetroxide, iron trioxide, titanium dioxide, and calcium oxide.
  • the metal oxide preferably includes at least one of zinc oxide and magnesium oxide, may include zinc oxide and magnesium oxide, and preferably includes at least zinc oxide.
  • the rubber composition according to the present invention can contain 0.1 to 15 parts by mass of the vulcanizing agent per 100 parts by mass of the chloroprene rubber.
  • the content of the vulcanizing agent is, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • a vulcanizing agent can be used individually by 1 type or in combination of 2 or more types.
  • the rubber composition according to the present invention can also contain a filler (reinforcing material) other than silica.
  • Fillers and reinforcing materials include furnace carbon black such as SAF, ISAF, HAF, EPC, XCF, FEF, GPF, HMF, SRF, modified carbon black such as hydrophilic carbon black, channel black, soot black, FT, Thermal carbon such as MT, acetylene black, ketjen black, clay, talc, and calcium carbonate can be mentioned. These can be used individually by 1 type or in combination of 2 or more types.
  • the total amount of silica and fillers (reinforcing materials) other than silica contained in the rubber composition is 2 to 100 parts by mass.
  • the rubber composition according to one embodiment of the present invention contains fillers and reinforcing materials other than silica when the total amount of silica and fillers (reinforcing materials) other than silica contained in the rubber composition is 100% by mass. ratio can be 50% by mass or less.
  • the content of the filler/reinforcing material other than silica is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50% by mass, and any one of the numerical values exemplified here is 2 It may be within a range between two.
  • the rubber composition according to one embodiment of the present invention may contain no filler (reinforcement) other than silica.
  • the rubber composition according to one embodiment of the present invention maintains the effects of the present invention by setting the content of the filler other than silica within the above numerical range, while maintaining the hardness of the vulcanized product / vulcanized molded product. can be improved.
  • the rubber composition according to the present invention may further contain a lubricant/processing aid.
  • Lubricants and processing aids are mainly added to improve processability, such as making it easier for the rubber composition to separate from rolls, molding dies, extruder screws, and the like.
  • lubricants and processing aids include fatty acids such as stearic acid, paraffin-based processing aids such as polyethylene, fatty acid amides, vaseline, and factice. These can be used individually by 1 type or in combination of 2 or more types.
  • the rubber composition according to the present invention can contain 15 parts by mass or less of a lubricant/processing aid when the chloroprene rubber contained in the rubber composition is 100 parts by mass, and can also be 10 parts by mass or less.
  • the content of the lubricant/processing aid is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 parts by mass, where It may be in a range between any two of the numerical values given.
  • the rubber composition according to the present invention may contain no lubricant/processing aid.
  • the rubber composition according to the present invention may contain sulfur and a vulcanization accelerator. Also, the rubber composition according to the present invention may be free of sulfur and vulcanization accelerator. When the chloroprene rubber contained in the rubber composition is 100 parts by mass, the sulfur/vulcanization accelerator can be included in 5.0 parts by mass or less.
  • the content of sulfur/vulcanization accelerator is, for example, 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 , 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the type of vulcanization accelerator is not particularly limited as long as it does not impair the effects of the present invention.
  • the vulcanization accelerator is preferably a vulcanization accelerator that can be used for vulcanization of chloroprene rubber.
  • One or more vulcanization accelerators can be freely selected and used. Examples of vulcanization accelerators include thiuram-based, dithiocarbamate-based, thiourea-based, guanidine-based, xanthate-based, and thiazole-based accelerators.
  • Thiuram-based vulcanization accelerators include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide. mentioned.
  • Dithiocarbamate-based vulcanization accelerators include sodium dibutyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, and copper dimethyldithiocarbamate. , ferric dimethyldithiocarbamate, tellurium diethyldithiocarbamate, and the like.
  • Thiourea-based vulcanization accelerators include ethylenethiourea, diethylthiourea (N,N'-diethylthiourea), trimethylthiourea, diphenylthiourea (N,N'-diphenylthiourea), 1,3-trimethylene-2-thiourea, and the like. and thiourea compounds.
  • Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and dicatechol borate di-o-tolylguanidine salts. .
  • Examples of xanthate-based vulcanization accelerators include zinc butylxanthate and zinc isopropylxanthate.
  • Thiazole-based vulcanization accelerators include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, cyclohexylamine salt of 2-mercaptobenzothiazole, 2-(4'- morpholinodithio)benzothiazole, N-cyclohexylbenzothiazole-2-sulfenamide and the like.
  • Examples of triazine-based vulcanization accelerators include 2,4,6-trimercapto-s-triazine. These can be used individually by 1 type or in combination of 2 or more types.
  • the rubber composition according to the present invention may contain a plasticizer/softener.
  • the plasticizer/softener is added to adjust the processability of the unvulcanized rubber composition and the flexibility of the vulcanized product and vulcanized molding after vulcanization.
  • the plasticizer/softener is not particularly limited as long as it is compatible with rubber.
  • Plasticizers and softeners include vegetable oils such as rapeseed oil, linseed oil, castor oil and coconut oil, phthalate plasticizers, DUP (diundecyl phthalate), DOP (dioctyl phthalate), DINP (diisononyl phthalate), DOTP ( dioctyl terephthalate), DOS (dioctyl sebacate), DBS (dibutyl sebacate), DOA (dioctyl adipate), DINCH (diisononyl 1,2-cyclohexanedicarboxylate), TOP (trioctyl phosphate), TBP (tributyl phosphate) phate), ether ester compounds, aromatic oils, naphthenic oils, lubricating oils, process oils, paraffin, liquid paraffin, vaseline, and petroleum plasticizers such as petroleum asphalt. These can be used individually by 1 type or in combination of 2 or more types.
  • the rubber composition according to one embodiment of the present invention can contain 50 parts by mass or less of a plasticizer/softener per 100 parts by mass of the chloroprene rubber contained in the rubber composition.
  • the content of the plasticizer/softener is, for example, 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 parts by mass. It may be in a range between any two of the numbers.
  • a rubber composition according to an embodiment of the present invention may also be free of plasticizer.
  • the rubber composition according to the present invention may contain components such as anti-aging agents, antioxidants, stabilizers, flame retardants, vulcanization retarders, etc. to the extent that the effects of the present invention are not impaired.
  • Anti-aging agents and antioxidants include ozone anti-aging agents, phenol anti-aging agents, amine anti-aging agents, acrylate anti-aging agents, imidazole anti-aging agents, metal carbamates, waxes, and phosphorus anti-aging agents. agents, sulfur-based antioxidants, and the like.
  • Examples of imidazole antioxidants include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole and zinc salts of 2-mercaptobenzimidazole.
  • the rubber composition according to the present invention can contain 0.1 to 10 parts by mass of an anti-aging agent and an antioxidant per 100 parts by mass of the chloroprene rubber contained in the rubber composition.
  • a rubber composition according to one embodiment of the present invention comprises a chloroprene rubber, silica, a maleimide compound, an organic peroxide, a silane coupling agent, and other required components at a vulcanization temperature. It is obtained by kneading at the following temperature.
  • kneading devices such as a mixer, a Banbury mixer, a kneader mixer, and an open roll can be used.
  • the rubber composition according to one embodiment of the present invention is a vulcanized molded article molded according to JIS K6299 with an elongation at break EB 0 measured based on JIS K6251, and the vulcanized molded article is heated at 150 ° C. for 144 hours.
  • the change in elongation at break ⁇ EB calculated by the following formula is preferably ⁇ 68 or more, where the elongation at break measured according to JIS K6251 after slicing is EB i .
  • ⁇ EB (EB i - EB 0 )/EB 0 ⁇ 100
  • the change in elongation at break ⁇ EB is, for example, ⁇ 68, ⁇ 67, ⁇ 66, ⁇ 65, ⁇ 60, ⁇ 55, ⁇ 50, ⁇ 45, ⁇ 40. may be within the range of
  • the rubber composition according to one embodiment of the present invention is a vulcanized molded body obtained by press vulcanization molding under the conditions of 180 ° C. x 30 minutes, based on JIS K 6262: 2013, 150 ° C., 72 hours test.
  • the compression set measured under the conditions is preferably 34 or less.
  • the compression set is, for example, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, within the range between any two of the numerical values exemplified herein. There may be.
  • the unvulcanized molded article according to the present embodiment uses the rubber composition according to the present embodiment. It is a molded product (molded product) in a sulfuric state).
  • the method for producing an unvulcanized molded article according to this embodiment includes a step of molding the rubber composition (unvulcanized state) according to this embodiment.
  • the unvulcanized molded article according to this embodiment is made of the rubber composition (unvulcanized state) according to this embodiment.
  • the vulcanizate according to this embodiment is a vulcanizate of the rubber composition according to this embodiment.
  • a method for producing a vulcanizate according to the present embodiment includes a step of vulcanizing the rubber composition according to the present embodiment.
  • the vulcanized molded article according to this embodiment is a vulcanized molded article of the rubber composition according to this embodiment.
  • the vulcanized molded article according to the present embodiment uses the vulcanized material according to the present embodiment, and is a molded article (molded article) of the vulcanized material according to the present embodiment.
  • the vulcanized molding according to this embodiment is made of the vulcanizate according to this embodiment.
  • the vulcanized molded article according to the present embodiment can be obtained by molding a vulcanized product obtained by vulcanizing the rubber composition (unvulcanized state) according to the present embodiment. It can also be obtained by vulcanizing the molded article obtained by molding the rubber composition (unvulcanized state) according to.
  • the vulcanized molded article according to this embodiment can be obtained by vulcanizing the rubber composition according to this embodiment after or during molding.
  • a method for manufacturing a vulcanized molded article according to the present embodiment includes a step of molding a vulcanized article according to the present embodiment or a step of vulcanizing an unvulcanized molded article according to the present embodiment.
  • the vulcanizate and the vulcanized molded product according to one embodiment of the present invention preferably have a change in elongation at break ⁇ EB and a permanent compression set within the above numerical ranges.
  • the unvulcanized molded article, vulcanized article and vulcanized molded article according to the present embodiment can be used as rubber parts in various industrial fields such as buildings, constructions, ships, railroads, coal mines and automobiles.
  • a vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating, and therefore can be used as various members requiring these properties.
  • the rubber composition according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railroads, coal mines, automobiles, etc. , hose materials, rubber molds, gaskets, rubber rolls, industrial cables, industrial conveyor belts, sponges and other rubber parts.
  • the rubber composition according to one embodiment of the present invention can be used for various members that require excellent heat resistance and/or excellent compression set, especially sealing materials and gaskets, by taking advantage of its properties. , can be suitably used for packing, etc.
  • Automotive rubber members include gaskets, oil seals, packings, and the like, and are parts in machines and devices that prevent the leakage of liquids and gases, and the intrusion of dirt and foreign matter such as rainwater and dust.
  • gaskets used for stationary applications, and oil seals and packings used for moving parts.
  • various materials are used depending on the purpose, as opposed to soft gaskets such as O-rings and rubber sheets.
  • Packings are also used for shafts of pumps and motors, rotating parts such as the movable parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water shut-off parts of faucets, and the like.
  • the vulcanizate of the rubber composition according to one embodiment of the present invention is not observed to bleed and has excellent elongation at break and compression set after heating. It is possible to manufacture a seal that is
  • the hose material is a bendable tube, and specifically includes high/low pressure hoses for water, oil, air, steam, and hydraulic pressure. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating, for example, it is possible to manufacture a hose material that is used by taking advantage of these properties. .
  • Rubber molds include anti-vibration rubber, damping materials, and boots.
  • Anti-vibration rubber and damping material are rubbers that prevent transmission of vibration. Damper, engine mount, muffler hanger, etc.
  • the rubber composition of the present invention can increase the tensile strength of vibration-isolating rubbers and vibration-damping materials. As a result, it is possible to produce vibration-isolating rubbers and vibration-damping materials that can be used even in applications where high load is applied, which has been difficult with conventional rubber compositions.
  • the boot is a bellows-shaped member whose outer diameter gradually increases from one end to the other end. There are boots for ball joint covers (dust cover boots) and boots for rack and pinion gears. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set, it is possible to manufacture boots that are used by taking advantage of these properties.
  • Gaskets, oil seals, and packings are parts used in machinery and equipment to prevent leaks of liquids and gases, rainwater, dust, and other dirt and foreign matter from entering the interior. Specifically, they are used for stationary applications. There are gaskets and oil seals and packings used for moving parts and movable parts. For gaskets whose sealing portions are fixed with bolts or the like, various materials are used depending on the purpose, as opposed to soft gaskets such as O-rings and rubber sheets. Packings are also used for shafts of pumps and motors, rotating parts such as the movable parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water shut-off parts of faucets, and the like. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set, it is possible to manufacture, for example, seals that are used by taking advantage of these properties.
  • a rubber roll is manufactured by adhesively coating a metal core such as an iron core with rubber, and is generally manufactured by spirally winding a rubber sheet around a metal iron core.
  • rubber materials such as NBR, EPDM, CR, etc. are used according to the required characteristics of various applications such as paper manufacturing, various metal manufacturing, film manufacturing, printing, general industrial use, agricultural equipment such as hulling, and food processing. used. Since CR has good mechanical strength to withstand the friction of objects to be conveyed, it is used for a wide range of rubber roll applications. Since the rubber composition of the present invention is excellent in elongation at break and compression set, it is possible to manufacture a rubber roll by taking advantage of these properties.
  • Industrial cables are linear members for transmitting electrical and optical signals.
  • a good conductor such as copper or copper alloy or an optical fiber is coated with an insulating coating layer, and a wide variety of industrial cables are manufactured depending on the structure and installation location. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating, for example, it is possible to manufacture industrial cables that are used by taking advantage of these characteristics. can.
  • Industrial conveyor belts come in rubber, resin, and metal belts, and are selected according to a wide variety of usage methods. Among these, rubber conveyor belts are inexpensive and widely used.
  • the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating. can be done.
  • the rubber composition of the present invention can increase the tensile strength of sponge. In addition, it is possible to improve the flame retardancy of the sponge because chlorine-based rubber is used.
  • the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating. sponge can be produced. Furthermore, the hardness of the resulting sponge can be adjusted as appropriate by adjusting the content of the foaming agent.
  • Methods for molding the rubber composition (unvulcanized state) and the vulcanized product according to the present embodiment include press molding, extrusion molding, calendar molding, and the like.
  • the temperature for vulcanizing the rubber composition may be appropriately set according to the composition of the rubber composition, and may be 140 to 220°C or 160 to 190°C.
  • the vulcanization time for vulcanizing the rubber composition may be appropriately set depending on the composition of the rubber composition, the shape of the unvulcanized molding, etc., and may be 10 to 60 minutes.
  • ⁇ Method for producing acrylonitrile-containing chloroprene rubber 24 parts by mass of chloroprene (monomer), 24 parts by mass of acrylonitrile (monomer), 0.5 parts by mass of diethylxanthogen disulfide, and 200 parts by mass of pure water were placed in a 3 L polymerization vessel equipped with a heating/cooling jacket and a stirrer.
  • Potassium rosinate manufactured by Harima Chemicals Co., Ltd.
  • sodium hydroxide 0.40 parts by weight sodium salt of ⁇ -naphthalenesulfonic acid formalin condensate (manufactured by Kao Corporation) 2.0 parts by weight was added.
  • emulsion polymerization was carried out at a polymerization temperature of 40° C. under a nitrogen stream.
  • the above-mentioned chloroprene is added in portions from 20 seconds after the start of polymerization, the amount of added portions is adjusted with a solenoid valve based on the change in the heat quantity of the refrigerant for 10 seconds from the start of polymerization, and the flow rate is readjusted every 10 seconds thereafter. continuously.
  • the above-mentioned polymerization rate [%] of the acrylonitrile-containing chloroprene-based latex was calculated from the dry mass when the chloroprene-based latex was air-dried. Specifically, it was calculated from the following formula (A).
  • the "solid content concentration” is the solid content concentration [% by mass] after heating 2 g of the sampled chloroprene-based latex at 130 ° C. and excluding volatile components such as solvent (water), volatile chemicals, and raw materials. is.
  • the "total charged amount” is the total amount [g] of raw materials, reagents and solvent (water) charged into the polymerization vessel from the start of polymerization to a certain time.
  • the “evaporation residue” is the mass [g] of chemicals remaining as solid content together with the polymer without being volatilized under conditions of 130°C among the chemicals and raw materials charged up to a certain time from the start of polymerization.
  • the “amount of monomer charged” is the total amount [g] of the amount of the monomer initially charged in the polymerization vessel and the amount of the monomer gradually added from the start of the polymerization to a certain time.
  • the “monomer” here is the total amount of chloroprene and acrylonitrile.
  • Polymerization rate ⁇ [(total charged amount x solid content concentration/100) - evaporation residue]/ charged amount of monomer ⁇ x 100 (A)
  • the acrylonitrile-containing chloroprene-based latex After adjusting the pH of the above acrylonitrile-containing chloroprene-based latex to 7.0 using acetic acid or sodium hydroxide, the acrylonitrile-containing chloroprene-based latex is frozen and coagulated on a metal plate cooled to -20 ° C. to break emulsification. A sheet was obtained by After the sheet was washed with water, it was dried at 130° C. for 15 minutes to obtain a solid acrylonitrile-containing chloroprene rubber.
  • the content of acrylonitrile monomer units contained in the acrylonitrile-containing chloroprene rubber was calculated from the content of nitrogen atoms in the chloroprene-acrylonitrile copolymer rubber. Specifically, using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Service, Ltd.), the content of nitrogen atoms in 100 mg of chloroprene-based rubber was measured, and the content of acrylonitrile monomer units was determined. Calculated.
  • the elemental analysis described above was performed as follows.
  • the electric furnace temperature was set to 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column temperature, and 100°C for the detector temperature. flowed.
  • a calibration curve was prepared using aspartic acid (10.52%) with a known nitrogen content as a standard substance.
  • the acrylonitrile monomer unit content of the acrylonitrile-containing chloroprene rubber obtained by the above production method was 10.0% by mass.
  • Each component used to obtain the rubber composition is as follows.
  • ⁇ Chloroprene rubber> ⁇ Acrylonitrile (AN)-containing chloroprene rubber: Acrylonitrile-containing chloroprene rubber prepared by the above-described manufacturing method ⁇ Mercaptan-modified chloroprene rubber: Mercaptan-modified chloroprene rubber, “S-40V” manufactured by Denka Co., Ltd.
  • Silica “ULTRASIL360” manufactured by Evonik Industries AG BET specific surface area: 55 m 2 /g Silica: “Nipsil E-74P” manufactured by Tosoh Silica Co., Ltd. BET specific surface area: 50 m 2 /g Silica: “Nipsil ER-R” manufactured by Tosoh Silica Co., Ltd. BET specific surface area: 78 m 2 /g
  • Silane coupling agent 3-methacryloxypropylmethoxysilane, "KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd. Silane coupling agent having a double bond
  • Silane coupling agent N-phenyl-3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. "KBM-573" Silane coupling agent having a secondary amine
  • Silane coupling agent (3-mercaptopropyl)trimethoxysilane, Dow Corning Toray “Z-6062” Mercapto-based
  • Carbon black FEF, manufactured by Asahi Carbon Co., Ltd., "Asahi #60” Organic peroxide: 1,4-bis[(t-butylperoxy)isopropyl]benzene, NOF Corporation, "Perbutyl P-40” Organic peroxide: butyl 4,4-bis[(t-butyl)peroxy]pentanoate, NOF Corporation, "Perhexa V-40” Vulcanization accelerator: Trimethylthiourea, Ouchi Shinko Kagaku Kogyo Co., Ltd., "Noccellar TMU” Maleimide compound (co-crosslinking agent): m-phenylenedimaleimide, Ouchi Shinko Kagaku Kogyo Co., Ltd., "Balnok PM” Compounds having a thioether structure: thioether plasticizer, Lanxess "Vulkanol OT” (compound A containing one or more thioether structures and two or more ether structures, and
  • Hydrotalcite (acid acceptor): Mg 0.7 Al 0.3 O 1.15 , Kyowa Chemical Industry Co., Ltd. “KW-2100”
  • Antiaging agent 4,4'-bis( ⁇ , ⁇ -dimethylbenzyl)diphenylamine, Ouchi Shinko Kagaku Kogyo Co., Ltd., "Nocrac CD”
  • Lubricant/processing aid Stearic acid: “Stearic acid 50S” manufactured by New Japan Chemical Co., Ltd.
  • Vulcanized moldings were produced using the rubber compositions described above and evaluated as follows. The results are shown in Tables 1-3.
  • the obtained rubber composition was subjected to press vulcanization under conditions of 180° C. for 20 minutes according to JIS K6299 to prepare a sheet-like vulcanization molding having a thickness of 2 mm.
  • the obtained sheet was formed into a dumbbell-shaped No. 3 test piece, and the elongation at break EB 0 was measured based on JIS K6251.
  • the elongation at break EB i was measured again based on JIS K6251.
  • compression set The obtained rubber composition was press-vulcanized under the conditions of 180° C. for 30 minutes to prepare a cylindrical vulcanized molding having a diameter of 29 mm and a height of 12.5 mm.
  • the obtained vulcanized molding was measured for compression set under test conditions of 150° C. for 72 hours based on JIS K 6262:2013.

Abstract

Provided is a rubber composition with which it is possible to obtain a vulcanizate and a vulcanized molded body that is exceptional in terms of both elongation at break and compression permanent set after heating. According to the present invention, there is provided a rubber composition containing 100 parts by mass of chloroprene rubber, 2-100 parts by mass of silica having a BET specific surface area of 10-120 m2/g, 0.1-8 parts by mass of a maleimide compound, 0.1-5 parts by mass of an organic peroxide, and 1-15 parts by mass of a silane coupling agent per 100 parts by mass of the silica.

Description

ゴム組成物、加硫物、及び加硫成形体Rubber composition, vulcanizate, and vulcanized molding
本発明は、ゴム組成物、加硫物、及び加硫成形体に関する。 TECHNICAL FIELD The present invention relates to rubber compositions, vulcanizates, and vulcanized moldings.
クロロプレン系ゴムは、優れた機械的強度・耐候性・耐薬品性・耐熱性・耐寒性・耐油性を有するため、一般産業用の伝動ベルトやコンベアベルト、自動車用空気バネ、防振ゴム、ホース、ワイパー、浸漬製品、シール部品、接着剤、ブーツ、ゴム引布、ゴムロールなどの材料として広く使用されている。 Chloroprene rubber has excellent mechanical strength, weather resistance, chemical resistance, heat resistance, cold resistance, and oil resistance. , wipers, dipping products, sealing parts, adhesives, boots, rubberized fabrics, rubber rolls and other materials.
例えば、特許文献1には、クロロプレン系ゴム100質量部と、シリカフィラー20~80質量部と、マレイミド化合物0.5~4質量部と、有機過酸化物0.1~3質量部と、を有するゴム組成物が開示されている。 For example, in Patent Document 1, 100 parts by mass of a chloroprene rubber, 20 to 80 parts by mass of a silica filler, 0.5 to 4 parts by mass of a maleimide compound, and 0.1 to 3 parts by mass of an organic peroxide. A rubber composition having
特開2021-95493号公報JP 2021-95493 A
しかしながら、従来のクロロプレン系ゴム組成物は、該クロロプレン系ゴムを含むゴム組成物の加硫成形体における耐熱性及び圧縮永久ひずみに改善の余地があり、具体的には、加熱後の切断時伸び及び圧縮永久ひずみの両方に優れる加硫物及び加硫成形体を得ることができるゴム組成物を得ることは困難であった。 However, conventional chloroprene-based rubber compositions have room for improvement in heat resistance and compression set in vulcanized moldings of rubber compositions containing the chloroprene-based rubber. It has been difficult to obtain a rubber composition from which a vulcanized product and a vulcanized molded product can be obtained which are excellent in both compression set and compression set.
本発明は、このような事情に鑑みてなされたものであり、加熱後の切断時伸び及び圧縮永久ひずみの両方に優れる加硫物及び加硫成形体を得ることができるゴム組成物を提供するものである。 The present invention has been made in view of such circumstances, and provides a rubber composition that can obtain a vulcanized product and a vulcanized molded product that are excellent in both elongation at break and compression set after heating. It is.
本発明によれば、クロロプレン系ゴム100質量部と、BET比表面積が10~120m/gであるシリカ2~100質量部と、マレイミド化合物0.1~8質量部と、有機過酸化物0.1~5質量部と、前記シリカ100質量部に対してシランカップリング剤1~15質量部を含有する、ゴム組成物が提供される。 According to the present invention, 100 parts by mass of a chloroprene rubber, 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g, 0.1 to 8 parts by mass of a maleimide compound, and 0 parts by mass of an organic peroxide. and 1 to 15 parts by weight of a silane coupling agent per 100 parts by weight of said silica.
本発明者は、鋭意検討を行ったところ、ゴム組成物に、クロロプレン系ゴム100質量部と、BET比表面積が10~120m/gであるシリカ2~100質量部と、マレイミド化合物0.1~8質量部と、有機過酸化物0.1~5質量部と、前記シリカ100質量部に対してシランカップリング剤1~15質量部を配合することによって、加熱後の切断時伸び及び圧縮永久ひずみの両方に優れる加硫物及び加硫成形体を得ることができるゴム組成物を得ることができることを見出し、本発明の完成に至った。 As a result of extensive studies, the present inventors found that the rubber composition contains 100 parts by mass of chloroprene rubber, 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g, and 0.1 maleimide compound. ~ 8 parts by mass, 0.1 to 5 parts by mass of an organic peroxide, and 1 to 15 parts by mass of a silane coupling agent with respect to 100 parts by mass of the silica, elongation at break and compression after heating The present inventors have found that it is possible to obtain a rubber composition from which a vulcanized product and a vulcanized molding excellent in both permanent set can be obtained, and have completed the present invention.
本発明の別の観点によれば、前記記載のゴム組成物の加硫物が提供される。
また、本発明の別の観点によれば、前記記載のゴム組成物の加硫成形体が提供される。
以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
According to another aspect of the present invention, there is provided a vulcanizate of the rubber composition described above.
Moreover, according to another aspect of the present invention, there is provided a vulcanized molding of the rubber composition described above.
Various embodiments of the present invention are illustrated below. The embodiments shown below can be combined with each other.
[1]クロロプレン系ゴム100質量部と、BET比表面積が10~120m/gであるシリカ2~100質量部と、マレイミド化合物0.1~8質量部と、有機過酸化物0.1~5質量部と、前記シリカ100質量部に対してシランカップリング剤1~15質量部を含有する、ゴム組成物。
[2]前記クロロプレン系ゴムが2-クロロ-1,3-ブタジエンの単独重合体、又は、2,3-ジクロロ-1,3-ブタジエン及び不飽和ニトリル単量体から選ばれる少なくとも1種の単量体と2-クロロ-1,3-ブタジエンとの共重合体を含む、[1]記載のゴム組成物。
[3]前記シランカップリング剤が、構造中に二重結合を有するシランカップリング剤、アミノ基を有するシランカップリング剤、並びに、二重結合及びアミノ基を有するシランカップリングから選択される少なくとも1つを含む、[1]又は[2]に記載のゴム組成物。
[4]前記シランカップリング剤が、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)-アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランから選ばれる少なくとも1種のシランカップリング剤である[1]~[3]のいずれかに記載のゴム組成物。
[5]前記クロロプレン系ゴム100質量部に対し、ハイドロタルサイト化合物0.1~20質量部を更に含有する、[1]~[4]のいずれかに記載のゴム組成物。
[6]前記マレイミド化合物がN,N'-o-フェニレンビスマレイミド、N,N'-m-フェニレンビスマレイミド、N,N'-p-フェニレンビスマレイミド、N,N'-(4,4'-ジフェニルメタン)ビスマレイミド、2,2-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、4-メチル-1,3-フェニレンビスマレイミド、1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサンから選ばれる少なくとも1種のマレイミド化合物である、[1]~[5]のいずれかに記載のゴム組成物。
[7]前記有機過酸化物がジクミルパーオキサイド、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、tert-ブチルα-クミルペルオキシド、2,5-ジメチルー2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ビス(tert-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン、4,4-ビス[(t-ブチル)ペルオキシ]ペンタン酸ブチルから選ばれる少なくとも1種の有機過酸化物である[1]~[6]のいずれかに記載のゴム組成物。
[8]前記クロロプレン系ゴム100質量部に対し、チオエーテル構造を有する化合物1~30質量部を更に含有する、[1]~[7]のいずれかに記載のゴム組成物。
[9][1]~[8]のいずれか一項に記載のゴム組成物の加硫物。
[10][1]~[8]のいずれか一項に記載のゴム組成物の加硫成形体。
[1] 100 parts by mass of chloroprene-based rubber, 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g, 0.1 to 8 parts by mass of a maleimide compound, and 0.1 to 0.1 part of an organic peroxide A rubber composition comprising 5 parts by mass and 1 to 15 parts by mass of a silane coupling agent with respect to 100 parts by mass of the silica.
[2] The chloroprene rubber is a homopolymer of 2-chloro-1,3-butadiene, or at least one monomer selected from 2,3-dichloro-1,3-butadiene and unsaturated nitrile monomers. The rubber composition according to [1], which contains a copolymer of a monomer and 2-chloro-1,3-butadiene.
[3] The silane coupling agent is at least selected from a silane coupling agent having a double bond in its structure, a silane coupling agent having an amino group, and a silane coupling agent having a double bond and an amino group The rubber composition according to [1] or [2], comprising one.
[4] The silane coupling agent is vinyltrimethoxysilane, vinyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth) At least one silane coupling agent selected from acryloxypropylmethyldiethoxysilane, 3-(meth)acryloxypropylmethyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane [1] to [ 3]. The rubber composition according to any one of the above items.
[5] The rubber composition according to any one of [1] to [4], further containing 0.1 to 20 parts by mass of a hydrotalcite compound with respect to 100 parts by mass of the chloroprene rubber.
[6] The maleimide compound is N,N'-o-phenylenebismaleimide, N,N'-m-phenylenebismaleimide, N,N'-p-phenylenebismaleimide, N,N'-(4,4' -diphenylmethane)bismaleimide, 2,2-bis-[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 4-methyl-1,3- The rubber composition according to any one of [1] to [5], which is at least one maleimide compound selected from phenylene bismaleimide and 1,6'-bismaleimide-(2,2,4-trimethyl)hexane. .
[7] The organic peroxide is dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, tert-butyl α-cumyl peroxide, 2,5-dimethyl-2,5-bis selected from (t-butylperoxy)hexane, 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne and butyl 4,4-bis[(t-butyl)peroxy]pentanoate The rubber composition according to any one of [1] to [6], which is at least one organic peroxide.
[8] The rubber composition according to any one of [1] to [7], which further contains 1 to 30 parts by mass of a compound having a thioether structure with respect to 100 parts by mass of the chloroprene rubber.
[9] A vulcanizate of the rubber composition according to any one of [1] to [8].
[10] A vulcanized molded article of the rubber composition according to any one of [1] to [8].
本発明に係るゴム組成物によれば、加熱後の切断時伸び及び圧縮永久ひずみの両方に優れる加硫物及び加硫成形体を得ることができるゴム組成物を得ることができる。さらに、得られた加硫物及び加硫成形体は、その特性を活かし、優れた耐熱性及び/又は優れた圧縮永久ひずみが必要とされる様々な部材として用いることができ、特に、シール材やガスケット、パッキン等に好適に使用することができる。 According to the rubber composition of the present invention, it is possible to obtain a rubber composition from which a vulcanizate and a vulcanized molded article which are excellent in both elongation at break and compression set after heating can be obtained. Furthermore, the obtained vulcanizates and vulcanized moldings can be used as various members that require excellent heat resistance and/or excellent compression set by taking advantage of their properties, especially sealing materials. , gaskets, packings, and the like.
以下、本発明の実施形態を例示して本発明について詳細な説明をする。本発明は、これらの記載によりなんら限定されるものではない。以下に示す本発明の実施形態の各特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, the present invention will be described in detail by exemplifying embodiments of the present invention. The present invention is not limited in any way by these descriptions. Each feature of the embodiments of the invention described below can be combined with each other. In addition, the invention is established independently for each characteristic item.
1.ゴム組成物
本発明に係るゴム組成物は、クロロプレン系ゴム100質量部と、BET比表面積が10~120m/gであるシリカ2~100質量部と、マレイミド化合物0.1~8質量部と、有機過酸化物0.1~5質量部と、前記シリカ100質量部に対してシランカップリング剤1~15質量部を含有する。また、本発明に係るゴム組成物は、加熱後の切断時伸び及び圧縮永久ひずみの両方に優れる加硫物及び加硫成形体を得ることができるゴム組成物となる。
1. Rubber Composition The rubber composition according to the present invention comprises 100 parts by mass of a chloroprene rubber, 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g, and 0.1 to 8 parts by mass of a maleimide compound. , 0.1 to 5 parts by weight of an organic peroxide, and 1 to 15 parts by weight of a silane coupling agent per 100 parts by weight of the silica. Moreover, the rubber composition according to the present invention is a rubber composition from which a vulcanizate and a vulcanized molded article which are excellent in both elongation at break and compression set after heating can be obtained.
1.1 クロロプレン系ゴム
本発明に係るクロロプレン系ゴムは、クロロプレン(2-クロロ-1,3-ブタジエン)を単量体単位(単量体単位=構造単位)として有するクロロプレン系重合体を含むゴムを示す。クロロプレン系重合体としては、クロロプレンの単独重合体、クロロプレンの共重合体(クロロプレンと、クロロプレンに共重合可能な単量体との共重合体)等が挙げられる。クロロプレン系重合体のポリマー構造は、特に限定されるものではない。
1.1 Chloroprene-based rubber The chloroprene-based rubber according to the present invention is a rubber containing a chloroprene-based polymer having chloroprene (2-chloro-1,3-butadiene) as a monomer unit (monomer unit = structural unit). indicates Examples of the chloroprene-based polymer include chloroprene homopolymers and chloroprene copolymers (copolymers of chloroprene and a monomer that can be copolymerized with chloroprene). The polymer structure of the chloroprene-based polymer is not particularly limited.
なお、市販品の2-クロロ-1,3-ブタジエンには不純物として少量の1-クロロ-1,3-ブタジエンが含まれる場合がある。このような少量の1-クロロ-1,3-ブタジエンを含む2-クロロ-1,3-ブタジエンを、本実施形態のクロロプレン単量体として用いることもできる。 Incidentally, commercially available 2-chloro-1,3-butadiene may contain a small amount of 1-chloro-1,3-butadiene as an impurity. 2-Chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene monomer in the present embodiment.
本発明の一実施形態に係るクロロプレン系ゴムは、2-クロロ-1,3-ブタジエン(以下、クロロプレン)の単独重合体、又は、2,3-ジクロロ-1,3-ブタジエン及び不飽和ニトリル単量体から選ばれる少なくとも1種の単量体と2-クロロ-1,3-ブタジエンとの共重合体を含むことができる。本発明の一実施形態に係るクロロプレン系ゴムは、クロロプレンの単独重合体、及び、2,3-ジクロロ-1,3-ブタジエン及び不飽和ニトリル単量体から選ばれる少なくとも1種の単量体とクロロプレンとの共重合体を含むゴムからなるものとすることもでき、クロロプレンの単独重合体を含むゴムからなるものとすることもでき、2,3-ジクロロ-1,3-ブタジエン及び不飽和ニトリル単量体から選ばれる少なくとも1種の単量体とクロロプレンとの共重合体を含むゴムからなるものとすることもできる。 A chloroprene-based rubber according to one embodiment of the present invention is a homopolymer of 2-chloro-1,3-butadiene (hereinafter referred to as chloroprene), or a monopolymer of 2,3-dichloro-1,3-butadiene and an unsaturated nitrile. A copolymer of at least one monomer selected from monomers and 2-chloro-1,3-butadiene can be included. A chloroprene-based rubber according to one embodiment of the present invention comprises a chloroprene homopolymer and at least one monomer selected from 2,3-dichloro-1,3-butadiene and unsaturated nitrile monomers. It may consist of a rubber containing a copolymer with chloroprene, or it may consist of a rubber containing a homopolymer of chloroprene, 2,3-dichloro-1,3-butadiene and an unsaturated nitrile. It can also be made of a rubber containing a copolymer of at least one monomer selected from monomers and chloroprene.
本発明の一実施形態に係るクロロプレン系ゴムは、2,3-ジクロロ-1,3-ブタジエン単量体単位及び不飽和ニトリル単量体に由来する単量体単位を含む共重合体を含むことができる。本発明の一実施形態に係るクロロプレン系ゴムは、当該ゴムを100質量%としたとき、2,3-ジクロロ-1,3-ブタジエン単量体単位及び不飽和ニトリル単量体単位の合計含有率を25質量%未満とでき、1質量%以上、25質量%未満であることが好ましい。
本発明の一実施形態に係るクロロプレン系ゴムにおける2,3-ジクロロ-1,3-ブタジエン単量体単位及び不飽和ニトリル単量体単位の含有率は、例えば、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24質量%、25質量%未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
A chloroprene-based rubber according to one embodiment of the present invention contains a copolymer containing a monomer unit derived from a 2,3-dichloro-1,3-butadiene monomer unit and an unsaturated nitrile monomer. can be done. The chloroprene-based rubber according to one embodiment of the present invention has a total content of 2,3-dichloro-1,3-butadiene monomer units and unsaturated nitrile monomer units when the rubber is 100% by mass. can be less than 25% by mass, preferably 1% by mass or more and less than 25% by mass.
The contents of 2,3-dichloro-1,3-butadiene monomer units and unsaturated nitrile monomer units in the chloroprene-based rubber according to one embodiment of the present invention are, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 mass%, less than 25 mass% , within a range between any two of the numerical values exemplified herein.
本発明の一実施形態に係るクロロプレン系ゴムは、不飽和ニトリル単量体に由来する単量体単位を含む共重合体を含むこと好ましい。本発明の一実施形態に係るクロロプレン系ゴムにおける不飽和ニトリル単量体単位の含有率は、例えば、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24質量%、25質量%未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。不飽和ニトリル単量体単位の含有率を25質量%未満とすることにより、得られるゴム組成物は十分な耐寒性を有するものとなる。また、特には、不飽和ニトリル単量体単位の含有率を1質量%以上とすることにより、得られるゴム組成物は十分な耐油性を有するものとなり、かつ、引張強度、及び耐寒性のバランスに優れる加硫成形体を得ることができる。 The chloroprene-based rubber according to one embodiment of the present invention preferably contains a copolymer containing monomer units derived from unsaturated nitrile monomers. The content of unsaturated nitrile monomer units in the chloroprene-based rubber according to one embodiment of the present invention is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24% by mass, less than 25% by mass and within a range between any two of the numerical values exemplified here There may be. By setting the unsaturated nitrile monomer unit content to less than 25% by mass, the obtained rubber composition has sufficient cold resistance. In particular, by setting the content of the unsaturated nitrile monomer unit to 1% by mass or more, the obtained rubber composition has sufficient oil resistance, and the tensile strength and cold resistance are well balanced. It is possible to obtain a vulcanized molded article excellent in
不飽和ニトリルとしては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル等が挙げられる。不飽和ニトリルは、1種単独で又は2種以上を組み合わせて用いることができる。不飽和ニトリルは、優れた成形性が得られやすい観点、並びに、加硫成形体において優れた破断強度、破断伸び、硬さ、引き裂き強度、耐油性が得られやすい観点から、アクリロニトリルを含むことが好ましい。 Unsaturated nitriles include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile and the like. An unsaturated nitrile can be used individually by 1 type or in combination of 2 or more types. The unsaturated nitrile may contain acrylonitrile from the viewpoint of easily obtaining excellent moldability, and from the viewpoint of easily obtaining excellent breaking strength, breaking elongation, hardness, tear strength, and oil resistance in the vulcanized molded product. preferable.
クロロプレン系ゴムに含まれる不飽和ニトリル単量体単位の含有量は、クロロプレン系ゴム中の窒素原子の含有量から算出することができる。具体的には、元素分析装置(スミグラフ220F:株式会社住化分析センター製)を用いて100mgのクロロプレン系ゴムにおける窒素原子の含有量を測定し、不飽和ニトリル単量体由来の構造単位の含有量を算出できる。元素分析の測定は次の条件で行うことができる。例えば、電気炉温度として反応炉900℃、還元炉600℃、カラム温度70℃、検出器温度100℃に設定し、燃焼用ガスとして酸素を0.2mL/min、キャリアーガスとしてヘリウムを80mL/minフローする。検量線は、窒素含有量が既知のアスパラギン酸(10.52%)を標準物質として用いて作成できる。 The content of unsaturated nitrile monomer units contained in the chloroprene-based rubber can be calculated from the content of nitrogen atoms in the chloroprene-based rubber. Specifically, the content of nitrogen atoms in 100 mg of chloroprene-based rubber is measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Service, Ltd.), and the content of structural units derived from unsaturated nitrile monomers You can calculate the amount. Elemental analysis can be measured under the following conditions. For example, the electric furnace temperature is set to 900° C. for the reactor, 600° C. for the reduction furnace, the column temperature is 70° C., and the detector temperature is 100° C., oxygen as the combustion gas is 0.2 mL/min, and helium is 80 mL/min as the carrier gas. to flow. A calibration curve can be constructed using aspartic acid (10.52%) with a known nitrogen content as a standard.
本発明の一実施形態に係るクロロプレン系ゴムは、クロロプレン系ゴムを100質量%としたとき、クロロプレン単量体単位を60~100質量%含むことが好ましい。ゴムにおけるクロロプレン単量体単位の含有率は、例えば、60、65、70、75、80、85、90、95、99、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。クロロプレン単量体単位の含有率を上記数値範囲内とすることにより、硬度、引張強度、及び耐寒性のバランスに優れる成形体を得ることができるゴム組成物とすることができる。 The chloroprene-based rubber according to one embodiment of the present invention preferably contains 60 to 100% by mass of chloroprene monomer units when the chloroprene-based rubber is taken as 100% by mass. The content of chloroprene monomer units in the rubber is, for example, 60, 65, 70, 75, 80, 85, 90, 95, 99, 100% by mass, and any two of the numerical values exemplified here may be within the range. By setting the content of the chloroprene monomer unit within the above numerical range, it is possible to obtain a rubber composition that can give a molded article having an excellent balance of hardness, tensile strength, and cold resistance.
本発明の一実施形態に係るクロロプレン系ゴムは、クロロプレン単量体、2,3-ジクロロ-1,3-ブタジエン単量体及び不飽和ニトリル単量体以外の単量体単位を有するものとすることもできる。クロロプレン単量体、2,3-ジクロロ-1,3-ブタジエン単量体及び不飽和ニトリル単量体以外の単量体単位としては、クロロプレン単量体、2,3-ジクロロ-1,3-ブタジエン単量体、及び不飽和ニトリル単量体と共重合可能であれば特に制限はないが、(メタ)アクリル酸のエステル類((メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等)、ヒドロキシアルキル(メタ)アクリレート(2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等)、1-クロロ-1,3-ブタジエン、ブタジエン、イソプレン、エチレン、スチレン、硫黄等が挙げられる。 A chloroprene-based rubber according to one embodiment of the present invention shall have monomer units other than a chloroprene monomer, a 2,3-dichloro-1,3-butadiene monomer and an unsaturated nitrile monomer. can also Monomer units other than chloroprene monomer, 2,3-dichloro-1,3-butadiene monomer and unsaturated nitrile monomer include chloroprene monomer, 2,3-dichloro-1,3- Although there is no particular limitation as long as it can be copolymerized with butadiene monomers and unsaturated nitrile monomers, esters of (meth) acrylic acid (methyl (meth) acrylate, butyl (meth) acrylate, (meth) ) 2-ethylhexyl acrylate, etc.), hydroxyalkyl (meth)acrylates (2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, etc.), 1-chloro-1 , 3-butadiene, butadiene, isoprene, ethylene, styrene, sulfur and the like.
本発明の一実施形態に係るクロロプレン系ゴムは、ゴムを100質量%としたとき、クロロプレン単量体及び不飽和ニトリル単量体以外の単量体単位を0~20質量%含むものとすることができる。ゴムおけるクロロプレン単量体及び不飽和ニトリル単量体以外の単量体単位の含有率は、例えば、0、2、4、6、8、10、12、14、16、18、20質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。クロロプレン単量体及び不飽和ニトリル単量体以外の単量体の共重合量をこの範囲に調整することで、得られるゴム組成物の特性を損なわずに、これら単量体を共重合させたことによる効果を発現することができる。
また、本発明の一実施形態に係るクロロプレン系ゴムは、クロロプレン単量体単位及び不飽和ニトリル単量体単位のみからなるものとすることもでき、クロロプレン単量体単位のみからなるものとすることもできる。
The chloroprene-based rubber according to one embodiment of the present invention can contain 0 to 20% by mass of monomer units other than the chloroprene monomer and the unsaturated nitrile monomer when the rubber is 100% by mass. . The content of monomer units other than the chloroprene monomer and the unsaturated nitrile monomer in the rubber is, for example, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20% by mass. Yes, and may be in a range between any two of the values exemplified here. By adjusting the copolymerization amount of the monomer other than the chloroprene monomer and the unsaturated nitrile monomer to this range, these monomers were copolymerized without impairing the properties of the resulting rubber composition. The effect of this can be expressed.
In addition, the chloroprene-based rubber according to one embodiment of the present invention may consist of only chloroprene monomer units and unsaturated nitrile monomer units, and may consist of only chloroprene monomer units. can also
本発明に係るゴム組成物は、クロロプレン系ゴムを、1種単独で又は2種以上を組み合わせて用いることができる。
本発明の一実施形態に係るゴム組成物が、2種以上のクロロプレン系ゴムを含む場合、ゴム組成物に含まれる2種以上のクロロプレン系ゴムに含まれる不飽和ニトリル単量体単位及び2,3-ジクロロ-1,3-ブタジエンの合計含有率が25質量%未満であることが好ましい。
The rubber composition according to the present invention can use chloroprene-based rubbers singly or in combination of two or more.
When the rubber composition according to one embodiment of the present invention contains two or more chloroprene-based rubbers, unsaturated nitrile monomer units contained in the two or more chloroprene-based rubbers contained in the rubber composition and 2, The total content of 3-dichloro-1,3-butadiene is preferably less than 25% by weight.
本発明に係るクロロプレン系ゴムに含まれるクロロプレン系重合体(クロロプレンの単独重合体、クロロプレンの共重合体等)は、硫黄変性クロロプレン重合体、メルカプタン変性クロロプレン重合体、キサントゲン変性クロロプレン重合体、ジチオカルボナート系クロロプレン重合体、トリチオカルボナート系クロロプレン重合体、カルバメート系クロロプレン重合体などであってよい。 The chloroprene-based polymer (chloroprene homopolymer, chloroprene copolymer, etc.) contained in the chloroprene-based rubber according to the present invention includes sulfur-modified chloroprene polymer, mercaptan-modified chloroprene polymer, xanthogen-modified chloroprene polymer, dithiocarbohydrate It may be a nato-based chloroprene polymer, a trithiocarbonate-based chloroprene polymer, a carbamate-based chloroprene polymer, or the like.
1.2 クロロプレン系ゴムの製造方法
本発明に係るクロロプレン系ゴムの製造方法は特に限定されないが、クロロプレン単量体を含む原料単量体を乳化重合する乳化重合工程を含む製造方法によって得ることができる。
本発明の一実施形態に係る乳化重合工程では、クロロプレン単量体、必要に応じて、2,3-ジクロロ-1,3-ブタジエン、不飽和ニトリル単量体を含む単量体を、乳化剤や分散剤や触媒や連鎖移動剤等を適宜に用いて乳化重合させ、目的とする最終転化率に達した際に重合停止剤を添加してクロロプレン単量体単位を含むクロロプレン系重合体を含むラテックスを得ることができる。
次に、乳化重合工程により得られた重合液から、未反応単量体の除去を行うことができる。その方法は、特に限定されるものではなく、例えば、スチームストリッピング法が挙げられる。
その後、pHを調整し、常法の凍結凝固、水洗、熱風乾燥などの工程を経て、クロロプレン系重合体を含むクロロプレン系ゴムを得ることができる。
1.2 Method for producing chloroprene-based rubber The method for producing the chloroprene-based rubber according to the present invention is not particularly limited. can.
In the emulsion polymerization step according to one embodiment of the present invention, a chloroprene monomer, optionally a monomer containing 2,3-dichloro-1,3-butadiene and an unsaturated nitrile monomer, is added as an emulsifier or A latex containing a chloroprene-based polymer containing chloroprene monomer units by emulsification polymerization using an appropriate dispersant, catalyst, chain transfer agent, etc., and adding a polymerization terminator when the desired final conversion is reached. can be obtained.
Next, unreacted monomers can be removed from the polymerization liquid obtained by the emulsion polymerization step. The method is not particularly limited, and includes, for example, a steam stripping method.
Thereafter, the pH is adjusted, and the chloroprene-based rubber containing the chloroprene-based polymer can be obtained through conventional steps such as freezing and coagulation, washing with water, and drying with hot air.
乳化重合する場合に用いる重合開始剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の重合開始剤を用いることができる。重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素、t-ブチルハイドロパーオキサイド等の有機過酸化物などが挙げられる。 The polymerization initiator used for emulsion polymerization is not particularly limited, and known polymerization initiators generally used for emulsion polymerization of chloroprene can be used. Examples of polymerization initiators include potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, and organic peroxides such as t-butyl hydroperoxide.
乳化重合する場合に用いる乳化剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の乳化剤を用いることができる。乳化剤としては、炭素数が6~22の飽和又は不飽和の脂肪酸のアルカリ金属塩、ロジン酸又は不均化ロジン酸のアルカリ金属塩(例えばロジン酸カリウム)、β-ナフタレンスルホン酸のホルマリン縮合物のアルカリ金属塩(例えばナトリウム塩)等が挙げられる。 The emulsifier used for emulsion polymerization is not particularly limited, and known emulsifiers generally used for emulsion polymerization of chloroprene can be used. Examples of emulsifiers include alkali metal salts of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, alkali metal salts of rosin acid or disproportionated rosin acid (eg, potassium rosinate), and formalin condensates of β-naphthalenesulfonic acid. and alkali metal salts (for example, sodium salts) of.
乳化重合する場合に用いる分子量調整剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の分子量調整剤を用いることができ、例えば、メルカプタン系化合物、キサントゲン系化合物、ジチオカルボナート系化合物、トリチオカルボナート系化合物及びカルバメート系化合物がある。本発明の一実施形態に係るクロロプレン系ゴムの分子量調整剤としては、キサントゲン系化合物、ジチオカルボナート系化合物、トリチオカルボナート系化合物及びカルバメート系化合物を好適に使用できる。 The molecular weight modifier used for emulsion polymerization is not particularly limited, and known molecular weight modifiers generally used for emulsion polymerization of chloroprene can be used. compounds, trithiocarbonate-based compounds and carbamate-based compounds. Xanthogen-based compounds, dithiocarbonate-based compounds, trithiocarbonate-based compounds and carbamate-based compounds can be suitably used as the molecular weight modifier for the chloroprene-based rubber according to one embodiment of the present invention.
重合温度及び単量体の最終転化率は特に制限するものではないが、重合温度は、例えば0~50℃又は10~50℃であってよい。単量体の最終転化率が40~95質量%の範囲に入るように重合を行ってよい。最終転化率を調整するためには、所望する転化率になった時に、重合反応を停止させる重合停止剤を添加して重合を停止させればよい。 Although the polymerization temperature and the final conversion rate of the monomers are not particularly limited, the polymerization temperature may be, for example, 0 to 50°C or 10 to 50°C. The polymerization may be carried out so that the final conversion of monomer is in the range of 40-95% by weight. In order to adjust the final conversion, the polymerization may be terminated by adding a polymerization terminator for terminating the polymerization reaction when the desired conversion is achieved.
重合停止剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の重合停止剤を用いることができる。重合停止剤としては、フェノチアジン(チオジフェニルアミン)、4-t-ブチルカテコール、2,2-メチレンビス-4-メチル-6-t-ブチルフェノール等が挙げられる。 The polymerization terminator is not particularly limited, and known polymerization terminator generally used for emulsion polymerization of chloroprene can be used. Examples of the polymerization terminator include phenothiazine (thiodiphenylamine), 4-t-butylcatechol, 2,2-methylenebis-4-methyl-6-t-butylphenol and the like.
本発明の一実施形態に係るクロロプレン系ゴムは、例えば、スチームストリッピング法によって未反応の単量体を除去した後、上記ラテックスのpHを調整し、常法の凍結凝固、水洗、熱風乾燥等の工程を経て得ることができる。 The chloroprene-based rubber according to one embodiment of the present invention can be prepared, for example, by removing unreacted monomers by a steam stripping method, adjusting the pH of the latex, freezing and coagulating by a conventional method, washing with water, drying with hot air, etc. can be obtained through the process of
クロロプレン系ゴムは、分子量調整剤の種類によりメルカプタン変性タイプ、キサントゲン変性タイプ、硫黄変性タイプ、ジチオカルボナート系タイプ、トリチオカルボナート系タイプ及びカルバメート系タイプに分類される。 Chloroprene-based rubbers are classified into mercaptan-modified type, xanthogen-modified type, sulfur-modified type, dithiocarbonate-based type, trithiocarbonate-based type and carbamate-based type according to the type of molecular weight modifier.
1.3 シリカ
本発明に係るゴム組成物は、クロロプレン系ゴム100質量部に対して、BET比表面積が10~120m/gであるシリカを、2~100質量部を含む。シリカは、一般に、充填材としてゴム組成物に添加される。シリカは、シリカの表面に存在する表面官能基(例えば、OH基)及びシランカップリング剤により、クロロプレン系重合体と共有結合を形成するため、例えば、カーボン等の他の充填材に比べ、クロロプレン系重合体が強固に拘束され、弾性が向上し、圧縮永久ひずみが向上すると考えられる。
1.3 Silica The rubber composition according to the present invention contains 2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g with respect to 100 parts by mass of chloroprene rubber. Silica is commonly added to rubber compositions as a filler. Silica forms a covalent bond with a chloroprene-based polymer through a surface functional group (e.g., OH group) present on the surface of silica and a silane coupling agent. It is thought that the system polymer is strongly restrained, the elasticity is improved, and the compression set is improved.
特に制限するものではないが、シリカとしては、例えば、湿式シリカフィラー(含水ケイ酸)、乾式シリカフィラー(無水ケイ酸)、コロイダルシリカフィラーを使用することができ、湿式シリカフィラーが好ましい。シリカとしては、表面非修飾シリカを用いることができる。また、シリカとしては、表面修飾シリカを用いることもできる。 Although not particularly limited, as silica, for example, a wet silica filler (silicic acid hydrate), a dry silica filler (anhydrous silicic acid), and a colloidal silica filler can be used, and a wet silica filler is preferable. As silica, surface unmodified silica can be used. As silica, surface-modified silica can also be used.
本発明に係るゴム組成物が含むシリカは、BET比表面積が10~120m/gである。BET比表面積は、例えば、10、20、30、40、50、60、70、80、90、100、110、120m/gであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本発明に係るゴム組成物は、シリカのBET比表面積を特定の範囲とすることにより、加熱後の切断時伸び及び圧縮永久ひずみの両方に優れる加硫物及び加硫成形体を得ることができるゴム組成物となる。シリカのBET比表面積を上記上限以下とすることにより、シリカの表面に存在する表面官能基の単位質量あたりの数が規定され、シリカの表面に存在する特定の表面官能基(例えば、OH基)により引き起こされる、加熱時におけるクロロプレン系ゴムとの反応性の増大、シリカとクロロプレン系ゴムとの相溶性の低下、及びシリカ同士の凝集が抑制されるためと推測される。また、シリカのBET比表面積を上記上限以下とすることにより、シリカ1粒子あたりの表面官能基量は増加し、1粒子のシリカが有するシランカップリング剤との反応点が多くなり、シリカ近傍のクロロプレン系重合体を強固に拘束することができ、圧縮永久ひずみが向上すると考えられる。また、シリカのBET比表面積を上記下限以上とすることにより、ゴム組成物の加工性を維持することができる。 The silica contained in the rubber composition according to the present invention has a BET specific surface area of 10 to 120 m 2 /g. The BET specific surface area is, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 m 2 /g, and within the range between any two of the numerical values exemplified here may be By setting the BET specific surface area of silica to a specific range, the rubber composition according to the present invention can obtain a vulcanized product and a vulcanized molding that are excellent in both elongation at break and compression set after heating. It becomes a rubber composition. By setting the BET specific surface area of silica to the above upper limit or less, the number per unit mass of surface functional groups present on the surface of silica is defined, and specific surface functional groups (e.g., OH groups) present on the surface of silica It is presumed that the increase in reactivity with the chloroprene-based rubber, the decrease in compatibility between silica and the chloroprene-based rubber, and the aggregation of silica particles caused by heating are suppressed. In addition, by setting the BET specific surface area of silica to the above upper limit or less, the amount of surface functional groups per silica particle increases, the number of reaction points with the silane coupling agent possessed by one particle of silica increases, and the vicinity of silica increases. It is thought that the chloroprene-based polymer can be strongly restrained and the compression set is improved. Further, by making the BET specific surface area of silica equal to or higher than the above lower limit, the processability of the rubber composition can be maintained.
シリカの比表面積は、例えば柴田化学器械工業(株)製の迅速表面積測定装置SA-1000等を使用して、吸着気体として窒素ガスを用いる気相吸着法で測定することができる。 The specific surface area of silica can be measured by a vapor-phase adsorption method using nitrogen gas as the adsorption gas using, for example, a rapid surface area measuring device SA-1000 manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd.
本発明に係るゴム組成物は、クロロプレン系ゴム100質量部に対し、シリカを2~80質量部含む。シリカの含有率は、例えば、2、3、4、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。シリカの添加量を上記上限以上とすることで、補強効果や耐摩耗性を維持することができる。また、シリカの添加量を上記上限以下とすることで、凝集及びスコーチを抑制し、十分に加硫が進行する。 The rubber composition according to the present invention contains 2 to 80 parts by mass of silica with respect to 100 parts by mass of chloroprene rubber. The content of silica is, for example, 95 and 100 parts by mass, and may be within a range between any two of the numerical values exemplified here. By setting the amount of silica to be added to the above upper limit or more, the reinforcing effect and wear resistance can be maintained. In addition, by setting the amount of silica to be added to the above upper limit or less, aggregation and scorch are suppressed, and vulcanization proceeds sufficiently.
シリカは、1種単独で又は2種以上を組み合わせて用いることができる。本発明に係るゴム組成物が、2種以上のシリカを含む場合、本発明のゴム組成物に含まれる複数種のシリカが混合された状態での比表面積が、上記数値範囲を満たせば良い。 Silica can be used individually by 1 type or in combination of 2 or more types. When the rubber composition according to the present invention contains two or more types of silica, the specific surface area in a state in which multiple types of silica contained in the rubber composition of the present invention are mixed satisfies the above numerical range.
1.4 シランカップリング剤
本発明に係るゴム組成物は、シリカ100質量部に対してシランカップリング剤を1~15質量部含有する。シランカップリング剤は、ゴム中へのシリカの分散性やゴムとシリカ間
の補強効果を向上させるために、添加される。
1.4 Silane Coupling Agent The rubber composition according to the present invention contains 1 to 15 parts by mass of a silane coupling agent per 100 parts by mass of silica. A silane coupling agent is added to improve the dispersibility of silica in rubber and the reinforcing effect between rubber and silica.
シランカップリング剤としては、特に制限はなく、市販のゴム組成物に使用されているものが使用でき、例えば、ビニル系カップリング剤、エポキシ系カップリング剤、スチリル系カップリング剤、メタクリル系カップリング剤、アクリル系カップリング剤、アミノ系カップリング剤、ポリスルフィド系カップリング剤、メルカプト系カップリング剤を挙げることができる。
本発明の一実施形態に係るシランカップリング剤は、構造中に二重結合を有するシランカップリング剤、アミノ基を有するシランカップリング剤、並びに、二重結合及びアミノ基を有するシランカップリングから選択される少なくとも1つを含むことが好ましい。
シランカップリング剤は、1種単独で又は2種以上を組み合わせて用いることができる。
The silane coupling agent is not particularly limited, and those used in commercially available rubber compositions can be used. Examples include vinyl coupling agents, epoxy coupling agents, styryl coupling agents, methacrylic coupling agents. Ring agents, acrylic coupling agents, amino coupling agents, polysulfide coupling agents, and mercapto coupling agents can be mentioned.
A silane coupling agent according to one embodiment of the present invention includes a silane coupling agent having a double bond in the structure, a silane coupling agent having an amino group, and a silane coupling agent having a double bond and an amino group. It is preferable to include at least one selected.
A silane coupling agent can be used individually by 1 type or in combination of 2 or more types.
構造中に二重結合を有するシランカップリング剤は、構造中に二重結合を有すること以外には特に制限はなく、例えば、ビニル系カップリング剤、スチリル系カップリング剤、メタクリル系カップリング剤、アクリル系カップリング剤がある。特に、加工性や補強効果の観点からビニル系カップリング剤、メタクリル系カップリング剤、アクリル系カップリング剤が好ましい。構造中に二重結合を有するシランカップリング剤は、構造中に(メタ)アクリル基を有することがより好ましく、メタクリル基を有することがさらにより好ましい。
構造中に二重結合を有するシランカップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルトリエトキシシラン、ビニルトリアセトキシシラン、アリルトリメトキシシランを挙げることができる。
The silane coupling agent having a double bond in its structure is not particularly limited except that it has a double bond in its structure. Examples include vinyl coupling agents, styryl coupling agents, and methacrylic coupling agents. , and acrylic coupling agents. In particular, vinyl coupling agents, methacrylic coupling agents, and acrylic coupling agents are preferable from the viewpoint of processability and reinforcing effect. A silane coupling agent having a double bond in its structure preferably has a (meth)acrylic group in its structure, and even more preferably has a methacrylic group.
Examples of the silane coupling agent having a double bond in its structure include vinyltrimethoxysilane, vinyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyl Mention may be made of trimethoxysilane, 3-(meth)acryloxypropylmethyldiethoxysilane, 3-(meth)acryloxypropylmethyltriethoxysilane, vinyltriacetoxysilane, allyltrimethoxysilane.
アミノ基を有するシランカップリング剤は、構造中にアミノ基を有する以外は特に制限はなく、市販のゴム組成物に使用されているものが使用できる。アミノ基を有するシランカップリング剤は、アミノ系カップリング剤とできる。アミノ基を有するシランカップリング剤は、1級アミノ基及び/又は2級アミノ基を有するシランカップリング剤とでき、2級アミノ基を有するシランカップリング剤であることがより好ましい。アミノ基を有するシランカップリング剤としては、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩を挙げることができる。 The silane coupling agent having an amino group is not particularly limited as long as it has an amino group in its structure, and those used in commercially available rubber compositions can be used. A silane coupling agent having an amino group can be an amino-based coupling agent. The silane coupling agent having an amino group can be a silane coupling agent having a primary amino group and/or a secondary amino group, and is more preferably a silane coupling agent having a secondary amino group. Silane coupling agents having an amino group include N-phenyl-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3 -aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride. .
本発明の一実施形態に係るゴム組成物は、構造中に二重結合も、アミノ基も有しないシランカップリング剤を含むこともできる。構造中に二重結合もアミノ基も有しないシランカップリング剤の含有量は、構造中に二重結合を有するシランカップリング剤、アミノ基を有するシランカップリング剤、並びに、二重結合及びアミノ基を有するシランカップリングの合計含有量よりも少ないことが好ましい。本発明の一実施形態に係るゴム組成物は、ゴム組成物中に含まれるシランカップリング剤の合計を100質量%とした時、構造中に二重結合を有するシランカップリング剤、アミノ基を有するシランカップリング剤、並びに、二重結合及びアミノ基を有するシランカップリングの合計含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらにより好ましい。本発明の一実施形態に係るゴム組成物は、構造中に二重結合も、アミノ基も有しないシランカップリング剤を含まなくてもよい。 The rubber composition according to one embodiment of the present invention can also contain a silane coupling agent that has neither double bonds nor amino groups in its structure. The content of silane coupling agents having neither double bonds nor amino groups in their structures includes silane coupling agents having double bonds in their structures, silane coupling agents having amino groups in their structures, and double bonds and amino groups. It is preferably less than the total content of silane coupling groups. The rubber composition according to one embodiment of the present invention includes a silane coupling agent having a double bond in the structure and an amino group, when the total amount of silane coupling agents contained in the rubber composition is 100% by mass. and the silane coupling agent having a double bond and an amino group. It is even more preferred to have A rubber composition according to an embodiment of the present invention may not contain a silane coupling agent having neither double bonds nor amino groups in its structure.
本発明に係るゴム組成物は、シリカ100質量部に対しシランカップリング剤を1~15含有する。シランカップリング剤の含有量は、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部とすることができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。シランカップリング剤をこの範囲で用いることにより、必要で十分な効果が得られるとともに、スコーチの発生を抑制することができる。 The rubber composition according to the present invention contains 1 to 15 silane coupling agents per 100 parts by mass of silica. The content of the silane coupling agent can be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 parts by mass, where It may be in a range between any two of the numerical values given. By using the silane coupling agent within this range, necessary and sufficient effects can be obtained and the occurrence of scorch can be suppressed.
5.マレイミド化合物
本発明の一実施形態に係るクロロプレン系ゴム組成物は、クロロプレン系ゴム100質量部に対して、マレイミド化合物を0.1~8質量部含有する。マレイミド化合物は1種単独で又は2種以上を組み合わせて用いることができる。
5. Maleimide Compound The chloroprene-based rubber composition according to one embodiment of the present invention contains 0.1 to 8 parts by mass of a maleimide compound with respect to 100 parts by mass of the chloroprene-based rubber. A maleimide compound can be used individually by 1 type or in combination of 2 or more types.
マレイミド化合物は、共架橋剤として、ゴム組成物の加硫に寄与することができる。マレイミド化合物としては、例えば、N,N'-o-フェニレンビスマレイミド、N,N'-m-フェニレンビスマレイミド、N,N'-p-フェニレンビスマレイミド、N,N'-(4,4'-ジフェニルメタン)ビスマレイミド、2,2-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビスフェノール A ジフェニルエーテルビスマレイミド、3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサンを挙げることができる。得られる加硫成形体の耐熱性や耐圧縮永久ひずみ性が向上するという観点から、特に好ましくはN,N'-m-フェニレンビスマレイミド(別名m-フェニレンジマレイミド)を用いるとよい。 The maleimide compound can contribute to vulcanization of the rubber composition as a co-crosslinking agent. Examples of maleimide compounds include N,N'-o-phenylenebismaleimide, N,N'-m-phenylenebismaleimide, N,N'-p-phenylenebismaleimide, N,N'-(4,4' -diphenylmethane) bismaleimide, 2,2-bis-[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bisphenol A diphenyl ether bismaleimide, 3, 3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6'-bismaleimide-(2,2,4-trimethyl) Hexane can be mentioned. N,N'-m-phenylenebismaleimide (also known as m-phenylenedimaleimide) is particularly preferably used from the viewpoint of improving the heat resistance and compression set resistance of the resulting vulcanized molded product.
本発明の一実施形態に係るゴム組成物は、クロロプレン系ゴム100質量部に対してマレイミド化合物を0.1~8質量部含有する。マレイミド化合物の含有量は、例えば、0.1、0.2、0.3、0.5、1、2、3、4、5、6、7、8質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。マレイミド化合物の含有量を上記下限以上とすることで、得られるゴム組成物の加硫がより十分に進行し、耐圧縮永久ひずみ性や加熱後の切断時伸びが良好な加硫成形体を得ることができる。また、マレイミド化合物の含有量を上記上限以下とすることで、得られる加硫成形体のゴム弾性を十分に維持することができ、耐圧縮永久ひずみ性の低下を抑制することができる。 A rubber composition according to one embodiment of the present invention contains 0.1 to 8 parts by mass of a maleimide compound with respect to 100 parts by mass of a chloroprene rubber. The content of the maleimide compound is, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8 parts by mass, and the numerical values exemplified here may be in the range between any two of By making the content of the maleimide compound equal to or higher than the above lower limit, the vulcanization of the obtained rubber composition proceeds more sufficiently, and a vulcanized molded article having good compression set resistance and elongation at break after heating is obtained. be able to. Moreover, by making the content of the maleimide compound equal to or less than the above upper limit, the rubber elasticity of the obtained vulcanized molded product can be sufficiently maintained, and deterioration of resistance to compression set can be suppressed.
1.6 有機過酸化物
本発明に係るゴム組成物は、有機過酸化物を0.1~5質量部含む。
有機過酸化物は、加硫剤として用いることができる。有機過酸化物は1種単独で又は2種以上を組み合わせて用いることができる。
1.6 Organic Peroxide The rubber composition according to the present invention contains 0.1 to 5 parts by mass of an organic peroxide.
Organic peroxides can be used as vulcanizing agents. An organic peroxide can be used individually by 1 type or in combination of 2 or more types.
有機過酸化物としては、例えば、ジクミルパーオキサイド、ベンゾイルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロへキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジコハク酸パーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ(3-メチルベンゾイル)パーオキサイド、ベンゾイル(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロへキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレレート、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンヒドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシン-3、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、4,4-ビス[(t-ブチル)ペルオキシ]ペンタン酸ブチル、2,5-ビス(tert-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシンなどがある。この中でも、ジクミルパーオキサイド、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、tert-ブチルα-クミルペルオキシド、2,5-ジメチルー2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ビス(tert-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン,4,4-ビス[(t-ブチル)ペルオキシ]ペンタン酸ブチルから選ばれる少なくとも1種であることが好ましく、特に好ましくは1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼンである。 Examples of organic peroxides include dicumyl peroxide, benzoyl peroxide, 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, diisobutyryl peroxide, and cumylperoxy neodeca. noate, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4 -t-butyl cyclohexyl)peroxydicarbonate, di(2-ethylhexyl) peroxydicarbonate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxyneohepta noate, t-hexyl peroxypivalate, t-butyl peroxypivalate, di(3,5,5-trimethylhexanoyl) peroxide, dilauroyl peroxide, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, disuccinic acid peroxide, 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexanoate, di(4-methylbenzoyl) peroxide, t-butylperoxy-2-ethylhexanoate, di(3-methylbenzoyl) peroxide, benzoyl(3-methylbenzoyl) peroxide, dibenzoyl peroxide, 1, 1-di(t-butylperoxy)-2-methylcyclohexane, 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy) cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(4,4-di-(t-butylperoxy)cyclohexyl)propane, t-hexylperoxyisopropyl monocarbonate, t-butyl peroxy maleic acid, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxy laurate, t-butyl peroxy isopropyl monocarbonate, t-butyl peroxy 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-di-methyl-2,5-di(benzoylperoxy)hexane, t-butylperoxyacetate, 2,2-di-(t-butylperoxy) Butane, t-butylperoxybenzoate, n-butyl 4,4-di-(t-butylperoxy)valerate, 1,4-bis[(t-butylperoxy)isopropyl]benzene, di-t-hexylper oxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butyl peroxide, p-menthane hydroperoxide, 2,5-dimethyl- 2,5-bis(t-butylperoxy)hexyne-3, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 4, butyl 4-bis[(t-butyl)peroxy]pentanoate, 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne and the like. Among these, dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, tert-butyl α-cumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy ) be at least one selected from hexane, 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne, and butyl 4,4-bis[(t-butyl)peroxy]pentanoate is preferred, and 1,4-bis[(t-butylperoxy)isopropyl]benzene is particularly preferred.
本発明に係るゴム組成物は、クロロプレン系ゴム100質量部に対して、有機過酸化物を、0.1~5質量部含有することができる。有機過酸化物の添加量は、例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5質量部とすることができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。有機過酸化物の含有量を上記数値範囲内とすることにより、加工安全性が確保され、良好な加硫物を得ることができる。 The rubber composition according to the present invention can contain 0.1 to 5 parts by mass of an organic peroxide with respect to 100 parts by mass of the chloroprene rubber. The amount of organic peroxide added is, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2 , 3, 4, 5 parts by weight, and may be within a range between any two of the values exemplified herein. By setting the content of the organic peroxide within the above numerical range, processing safety is ensured and a good vulcanizate can be obtained.
1.7 ハイドロタルサイト化合物
本発明に係るゴム組成物は、クロロプレン系ゴム100質量部に対し、ハイドロタルサイト化合物を0.1~20質量部含有することができる。ハイドロタルサイト化合物は受酸剤として機能することができる。
ハイドロタルサイト化合物としては、下記式で表されるものを用いることができる。
[M2+ 1-x3+ (OH)x+[An-x/n・mHO]x-
1.7 Hydrotalcite Compound The rubber composition according to the present invention may contain 0.1 to 20 parts by mass of a hydrotalcite compound per 100 parts by mass of the chloroprene rubber. A hydrotalcite compound can function as an acid acceptor.
As the hydrotalcite compound, those represented by the following formula can be used.
[M 2+ 1−x M 3+ x (OH) 2 ] x+ [A n−x/n ·mH 2 O] x−
上記式において、
 M2+:Mg2+、Zn2+などから選ばれる少なくとも一つの2価金属イオン
 M3+:Al3+、Fe3+などから選ばれる少なくとも一つの3価金属イオン
 An-:CO 2-、Cl、NO 2-などから選ばれる少なくとも一つのn型アニオン
 X:0<X≦0.33とすることができる。
In the above formula,
M 2+ : at least one divalent metal ion selected from Mg 2+ , Zn 2+ etc. M 3+ : at least one trivalent metal ion selected from Al 3+ , Fe 3+ etc. A n− : CO 3 2− , Cl , At least one n-type anion selected from NO 3 2- , etc. X: 0<X≦0.33.
ハイドロタルサイト化合物としては、Mg4.3Al(OH)12.6CO・3.5HO、MgZnAl(OH)12CO・3HO、Mg4.5Al(OH)13CO・3.5HO、Mg4.5Al(OH)13CO、MgAl(OH)12CO・3.5HO、MgAl(OH)16CO・4HO、MgAl(OH)14CO・4HO、MgAl(OH)10CO・1.7HO、Mg0.7Al0.31.15などがあげられ、特に好ましくは、Mg4.3Al(OH)12.6CO・3.5HO、MgZnAl(OH)12CO・3HO、Mg0.7Al0.31.15である。 Examples of hydrotalcite compounds include Mg4.3Al2 ( OH) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O , Mg4.5Al2 ( OH ) 13CO3.3.5H2O , Mg4.5Al2 ( OH ) 13CO3 , Mg4Al2 (OH ) 12CO3.3.5H2O , Mg6Al2 ( OH ) 16 CO3.4H2O , Mg5Al2 ( OH ) 14CO3.4H2O , Mg3Al2 ( OH ) 10CO3.1.7H2O , Mg0.7Al0.3O 1 . 15 , and particularly preferably Mg4.3Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O , Mg0.7 Al 0.3 O 1.15 .
ハイドロタルサイト化合物を用いる場合、ハイドロタルサイト化合物の添加量は、クロロプレン系ゴム100質量部に対して、0.1~20質量部とすることができる。ハイドロタルサイト化合物の添加量は、例えば、0.1、0.2、0.3、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ハイドロタルサイト化合物は1種単独で又は2種以上を組み合わせて用いることができる。 When a hydrotalcite compound is used, the amount of the hydrotalcite compound added can be 0.1 to 20 parts by mass with respect to 100 parts by mass of the chloroprene rubber. The amount of the hydrotalcite compound added is, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 13, 14, 15, 16, 17, 18, 19, 20 parts by weight, and may be within a range between any two of the numerical values exemplified herein. A hydrotalcite compound can be used individually by 1 type or in combination of 2 or more types.
1.8 チオエーテル構造を有する化合物
本発明の一実施形態に係るクロロプレン系ゴム組成物は、クロロプレン系ゴム100質量部に対して、チオエーテル構造を有する化合物を1~30質量部含むことができる。チオエーテル構造を有する化合物を有機過酸化物と併用することで、規定の加硫時間中に十分に加硫が進行させることができ、耐圧縮永久ひずみ性や耐熱性により優れた加硫物を得ることができるゴム組成物となり、かつ、架橋後に残存する有機過酸化物や、熱劣化により生成するヒドロペルオキシドが分解され、得られる加硫成形体の耐熱性がより向上する。
1.8 Compound Having Thioether Structure The chloroprene-based rubber composition according to one embodiment of the present invention can contain 1 to 30 parts by mass of a compound having a thioether structure with respect to 100 parts by mass of the chloroprene-based rubber. By using a compound having a thioether structure together with an organic peroxide, the vulcanization can be sufficiently progressed within the specified vulcanization time, and a vulcanizate with excellent compression set resistance and heat resistance can be obtained. In addition, the organic peroxide remaining after crosslinking and the hydroperoxide generated by thermal deterioration are decomposed, and the heat resistance of the obtained vulcanized molding is further improved.
本発明の一実施形態に係るチオエーテル構造を化合物は、例えば、以下の式(1)で表すことができるか、又は、式(2)で表される構造単位を有するものとできる。ここで、R、R、R、Rは置換基を有していてもよい任意の有機基とできる。 A compound having a thioether structure according to one embodiment of the present invention can be represented, for example, by the following formula (1), or can have a structural unit represented by formula (2). Here, R 1 , R 2 , R 3 and R 4 can be any organic group which may have a substituent.
本発明の一実施形態に係るチオエーテル構造を有する化合物は、式(1)で表される場合、上記R、Rの少なくとも一方がエーテル構造を含むことが好ましい。本発明の一実施形態に係るチオエーテル構造を1つ以上有する化合物は、式(2)で表される構造単位を含む場合、R、Rの少なくとも一方がエーテル構造を含むことが好ましい。また、式(2)において、nは1以上の任意の自然数である。また、本発明の一実施形態に係るチオエーテル構造を1つ以上有する化合物は、エーテル構造を2つ以上有することが好ましい。 When the compound having a thioether structure according to one embodiment of the present invention is represented by formula (1), at least one of R 1 and R 2 preferably contains an ether structure. When the compound having one or more thioether structures according to one embodiment of the present invention contains a structural unit represented by formula (2), at least one of R 3 and R 4 preferably contains an ether structure. Moreover, in Formula (2), n is an arbitrary natural number of 1 or more. Moreover, the compound having one or more thioether structures according to one embodiment of the present invention preferably has two or more ether structures.
また、一態様においては、R、R、R、Rは、好ましくは炭素数が2~20のアルキレン基、より好ましくは炭素数が2~11のアルキレン基を有する。また、一態様においては、R、R、R、Rはカルボニル基を有していてもよい。 Also, in one aspect, R 1 , R 2 , R 3 and R 4 preferably have an alkylene group with 2 to 20 carbon atoms, more preferably an alkylene group with 2 to 11 carbon atoms. In one aspect, R 1 , R 2 , R 3 and R 4 may have a carbonyl group.
チオエーテル構造を有する化合物の添加量は、クロロプレン系ゴム100質量部に対して、1~30質量部とできる。チオエーテル構造を有する化合物の添加量は、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、25、30、質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。チオエーテル構造を有する化合物の添加量を上記下限以上とすることで、有機過酸化物を添加した場合架橋後に残存する有機過酸化物や、熱劣化により生成するヒドロペルオキシドが分解され、より耐熱性に優れた加硫物を得ることができる。また、チオエーテル構造を有する化合物の添加量を上記上限以下とすることでより十分に加硫が進み、十分な成形性を有し、より耐圧縮永久ひずみ性、耐熱性を有する加硫成形体となるゴム組成物となる。 The amount of the compound having a thioether structure added can be 1 to 30 parts by mass with respect to 100 parts by mass of the chloroprene rubber. The added amount of the compound having a thioether structure is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30 parts by mass. and may be in the range between any two of the numerical values exemplified here. By setting the amount of the compound having a thioether structure to be at least the above lower limit, the organic peroxide remaining after cross-linking and the hydroperoxide generated by thermal deterioration are decomposed when the organic peroxide is added, and the heat resistance is improved. Excellent vulcanizates can be obtained. In addition, by setting the amount of the compound having a thioether structure to be the above upper limit or less, the vulcanization proceeds sufficiently, and the vulcanized molded article having sufficient moldability, compression set resistance, and heat resistance is obtained. It becomes a rubber composition.
1.9 加硫剤
本発明の一実施形態に係るゴム組成物は、上記の化合物の他に、加硫剤を含むことができる。加硫剤としては、金属酸化物を挙げることができる。金属酸化物としては、例えば、酸化亜鉛、酸化マグネシウム、酸化鉛、四酸化三鉛、三酸化鉄、二酸化チタン、酸化カルシウム、を挙げることができる。金属酸化物は、酸化亜鉛及び酸化マグネシウムのうち少なくとも一つを含むことが好ましく、酸化亜鉛及び酸化マグネシウムを含むこともでき、少なくとも酸化亜鉛を含むことが好ましい。
1.9 Vulcanizing Agent The rubber composition according to one embodiment of the present invention may contain a vulcanizing agent in addition to the above compounds. A metal oxide can be mentioned as a vulcanizing agent. Examples of metal oxides include zinc oxide, magnesium oxide, lead oxide, trilead tetroxide, iron trioxide, titanium dioxide, and calcium oxide. The metal oxide preferably includes at least one of zinc oxide and magnesium oxide, may include zinc oxide and magnesium oxide, and preferably includes at least zinc oxide.
本発明に係るゴム組成物は、クロロプレン系ゴムを100質量部としたとき、上記の加硫剤を、0.1~15質量部含有することができる。上記の加硫剤の含有率は、例えば、0.1、0.2、0.3、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。加硫剤は1種単独で又は2種以上を組み合わせて用いることができる。 The rubber composition according to the present invention can contain 0.1 to 15 parts by mass of the vulcanizing agent per 100 parts by mass of the chloroprene rubber. The content of the vulcanizing agent is, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 parts by mass, and may be within a range between any two of the numerical values exemplified here. A vulcanizing agent can be used individually by 1 type or in combination of 2 or more types.
1.10 充填材(補強材)
本発明に係るゴム組成物は、シリカ以外の充填材(補強材)を含むこともできる。
充填材・補強材としては、SAF、ISAF、HAF、EPC、XCF、FEF、GPF、HMF、SRFなどのファーネスカーボンブラック、親水性カーボンブラックなどの改質カーボンブラック、チャンネルブラック、油煙ブラック、FT、MTなどのサーマルカーボン、アセチレンブラック、ケッチェンブラック、クレー、タルク、炭酸カルシウムを挙げることができる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
1.10 Filler (reinforcing material)
The rubber composition according to the present invention can also contain a filler (reinforcing material) other than silica.
Fillers and reinforcing materials include furnace carbon black such as SAF, ISAF, HAF, EPC, XCF, FEF, GPF, HMF, SRF, modified carbon black such as hydrophilic carbon black, channel black, soot black, FT, Thermal carbon such as MT, acetylene black, ketjen black, clay, talc, and calcium carbonate can be mentioned. These can be used individually by 1 type or in combination of 2 or more types.
本発明の一実施形態に係るゴム組成物は、クロロプレン系ゴムを100質量部としたとき、ゴム組成物に含まれるシリカ及びシリカ以外の充填材(補強材)の合計が2~100質量部であることが好ましい。本発明の一実施形態に係るゴム組成物は、ゴム組成物に含まれるシリカ及びシリカ以外の充填材(補強材)の合計を100質量%としたとき、シリカ以外の充填材・補強材の含有率を50質量%以下とすることができる。シリカ以外の充填材・補強材の含有率は、例えば、0、5、10、15、20、25、30、35、40、45、50質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本発明の一実施形態に係るゴム組成物は、シリカ以外の充填材(補強材)を含まないこともできる。
本発明の一実施形態に係るゴム組成物は、シリカ以外の充填材の含有率を上記数値範囲内とすることにより、本発明の効果を維持しつつ、加硫物・加硫成形体の硬度を向上させることができる。
In the rubber composition according to one embodiment of the present invention, when the chloroprene rubber is 100 parts by mass, the total amount of silica and fillers (reinforcing materials) other than silica contained in the rubber composition is 2 to 100 parts by mass. Preferably. The rubber composition according to one embodiment of the present invention contains fillers and reinforcing materials other than silica when the total amount of silica and fillers (reinforcing materials) other than silica contained in the rubber composition is 100% by mass. ratio can be 50% by mass or less. The content of the filler/reinforcing material other than silica is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50% by mass, and any one of the numerical values exemplified here is 2 It may be within a range between two. The rubber composition according to one embodiment of the present invention may contain no filler (reinforcement) other than silica.
The rubber composition according to one embodiment of the present invention maintains the effects of the present invention by setting the content of the filler other than silica within the above numerical range, while maintaining the hardness of the vulcanized product / vulcanized molded product. can be improved.
1.11 滑剤・加工助剤
本発明に係るゴム組成物は、さらに滑剤・加工助剤を含むこともできる。滑剤・加工助剤は、主に、ゴム組成物がロールや成形金型、押出機のスクリューなどから剥離しやすくなるようにするなど、加工性を向上させるために添加する。滑剤・加工助剤としては、ステアリン酸等の脂肪酸、ポリエチレン等のパラフィン系加工助剤、脂肪酸アミド、ワセリン、ファクチス等が挙げられる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。本発明に係るゴム組成物は、ゴム組成物に含まれるクロロプレン系ゴムを100質量部としたとき、滑剤・加工助剤を15質量部以下含むことができ、10質量部以下とすることもできる。滑剤・加工助剤の含有量は、例えば、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本発明に係るゴム組成物は、滑剤・加工助剤を含まないこともできる。
1.11 Lubricant/Processing Aid The rubber composition according to the present invention may further contain a lubricant/processing aid. Lubricants and processing aids are mainly added to improve processability, such as making it easier for the rubber composition to separate from rolls, molding dies, extruder screws, and the like. Examples of lubricants and processing aids include fatty acids such as stearic acid, paraffin-based processing aids such as polyethylene, fatty acid amides, vaseline, and factice. These can be used individually by 1 type or in combination of 2 or more types. The rubber composition according to the present invention can contain 15 parts by mass or less of a lubricant/processing aid when the chloroprene rubber contained in the rubber composition is 100 parts by mass, and can also be 10 parts by mass or less. . The content of the lubricant/processing aid is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 parts by mass, where It may be in a range between any two of the numerical values given. The rubber composition according to the present invention may contain no lubricant/processing aid.
1.12 硫黄・加硫促進剤
本発明に係るゴム組成物は、硫黄及び加硫促進剤を含むことができる。また、本発明に係るゴム組成物は、硫黄及び加硫促進剤を含まないものとすることもできる。ゴム組成物に含まれるクロロプレン系ゴムを100質量部としたとき、硫黄・加硫促進剤を5.0質量部以下含むことができる。硫黄・加硫促進剤の含有量は、例えば、0、0.1、0.3、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
1.12 Sulfur/Vulcanization Accelerator The rubber composition according to the present invention may contain sulfur and a vulcanization accelerator. Also, the rubber composition according to the present invention may be free of sulfur and vulcanization accelerator. When the chloroprene rubber contained in the rubber composition is 100 parts by mass, the sulfur/vulcanization accelerator can be included in 5.0 parts by mass or less. The content of sulfur/vulcanization accelerator is, for example, 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 , 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
加硫促進剤の種類は、本発明の効果を損なわなければ特に限定されない。加硫促進剤は、クロロプレン系ゴムの加硫に用いることができる加硫促進剤であることが好ましい。加硫促進剤は、1種又は2種以上自由に選択して用いることができる。
加硫促進剤としては、チウラム系、ジチオカルバミン酸塩系、チオウレア系、グアニジン系、キサントゲン酸塩系、チアゾール系等が挙げられる。
The type of vulcanization accelerator is not particularly limited as long as it does not impair the effects of the present invention. The vulcanization accelerator is preferably a vulcanization accelerator that can be used for vulcanization of chloroprene rubber. One or more vulcanization accelerators can be freely selected and used.
Examples of vulcanization accelerators include thiuram-based, dithiocarbamate-based, thiourea-based, guanidine-based, xanthate-based, and thiazole-based accelerators.
チウラム系の加硫促進剤としては、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等が挙げられる。
ジチオカルバミン酸塩系の加硫促進剤としては、ジブチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、N-エチル-N-フェニルジチオカルバミン酸亜鉛、N-ペンタメチレンジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸テルル等が挙げられる。
チオウレア系の加硫促進剤としては、エチレンチオウレア、ジエチルチオウレア(N,N'-ジエチルチオウレア)、トリメチルチオウレア、ジフェニルチオウレア(N,N'-ジフェニルチオウレア)、1、3-トリメチレン-2-チオウレア等のチオウレア化合物が挙げられる。
グアニジン系の加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩等が挙げられる。
キサントゲン酸塩系の加硫促進剤としては、ブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛等が挙げられる。
チアゾール系の加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(4'-モルホリノジチオ)ベンゾチアゾール、N-シクロヘキシルベンゾチアゾール-2-スルフェンアミド等が挙げられる。
また、トリアジン系の加硫促進剤としては、2,4,6-トリメルカプト-s-トリアジン等が挙げられる。
これらは、1種単独で又は2種以上を組み合わせて用いることができる。
Thiuram-based vulcanization accelerators include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide. mentioned.
Dithiocarbamate-based vulcanization accelerators include sodium dibutyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, and copper dimethyldithiocarbamate. , ferric dimethyldithiocarbamate, tellurium diethyldithiocarbamate, and the like.
Thiourea-based vulcanization accelerators include ethylenethiourea, diethylthiourea (N,N'-diethylthiourea), trimethylthiourea, diphenylthiourea (N,N'-diphenylthiourea), 1,3-trimethylene-2-thiourea, and the like. and thiourea compounds.
Guanidine-based vulcanization accelerators include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and dicatechol borate di-o-tolylguanidine salts. .
Examples of xanthate-based vulcanization accelerators include zinc butylxanthate and zinc isopropylxanthate.
Thiazole-based vulcanization accelerators include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, cyclohexylamine salt of 2-mercaptobenzothiazole, 2-(4'- morpholinodithio)benzothiazole, N-cyclohexylbenzothiazole-2-sulfenamide and the like.
Examples of triazine-based vulcanization accelerators include 2,4,6-trimercapto-s-triazine.
These can be used individually by 1 type or in combination of 2 or more types.
1.13 可塑剤・軟化剤
本発明に係るゴム組成物は、可塑剤・軟化剤を含むことができる。可塑剤・軟化剤は、未加硫ゴム組成物の加工性並びに加硫後の加硫物及び加硫成形体の柔軟性を調整するために添加される。可塑剤・軟化剤は、ゴムと相溶性のある可塑剤・軟化剤であれば特に制限はない。可塑剤・軟化剤としては、菜種油、アマニ油、ヒマシ油、ヤシ油などの植物油、フタレート系可塑剤、DUP(フタル酸ジウンデシル)、DOP(フタル酸ジオクチル)、DINP(フタル酸ジイソノニル)、DOTP(テレフタル酸ジオクチル)、DOS(セバシン酸ジオクチル)、DBS(セバシン酸ジブチル)、DOA(アジピン酸ジオクチル)、DINCH(1,2-シクロヘキサンジカルボン酸ジイソノニル)、TOP(トリオクチルフォスフェート)、TBP(トリブチルフォスフェート)等のエステル系可塑剤、エーテルエステル系化合物、アロマ系オイル、ナフテン系オイル、潤滑油、プロセスオイル、パラフィン、流動パラフィン、ワセリン、石油アスファルトなどの石油系可塑剤などがある。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
1.13 Plasticizer/Softener The rubber composition according to the present invention may contain a plasticizer/softener. The plasticizer/softener is added to adjust the processability of the unvulcanized rubber composition and the flexibility of the vulcanized product and vulcanized molding after vulcanization. The plasticizer/softener is not particularly limited as long as it is compatible with rubber. Plasticizers and softeners include vegetable oils such as rapeseed oil, linseed oil, castor oil and coconut oil, phthalate plasticizers, DUP (diundecyl phthalate), DOP (dioctyl phthalate), DINP (diisononyl phthalate), DOTP ( dioctyl terephthalate), DOS (dioctyl sebacate), DBS (dibutyl sebacate), DOA (dioctyl adipate), DINCH (diisononyl 1,2-cyclohexanedicarboxylate), TOP (trioctyl phosphate), TBP (tributyl phosphate) phate), ether ester compounds, aromatic oils, naphthenic oils, lubricating oils, process oils, paraffin, liquid paraffin, vaseline, and petroleum plasticizers such as petroleum asphalt. These can be used individually by 1 type or in combination of 2 or more types.
本発明の一実施形態に係るゴム組成物は、ゴム組成物に含まれるクロロプレン系ゴムを100質量部としたとき、可塑剤・軟化剤を50質量部以下含むことができる。可塑剤・軟化剤の含有量は、例えば、0、1、2、3、4、5、10、15、20、25、30、35、40、45、50質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本発明の一実施形態に係るゴム組成物は、可塑剤を含まないものとすることもできる。 The rubber composition according to one embodiment of the present invention can contain 50 parts by mass or less of a plasticizer/softener per 100 parts by mass of the chloroprene rubber contained in the rubber composition. The content of the plasticizer/softener is, for example, 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 parts by mass. It may be in a range between any two of the numbers. A rubber composition according to an embodiment of the present invention may also be free of plasticizer.
1.14 その他
本発明に係るゴム組成物は、上記した成分に加え、老化防止剤、酸化防止剤、安定剤、難燃剤、加硫遅延剤等の成分を、本発明の効果を阻害しない範囲でさらに含むことができる。
老化防止剤及び酸化防止剤としては、オゾン老化防止剤、フェノール系老化防止剤、アミン系老化防止剤、アクリレート系老化防止剤、イミダゾール系老化防止剤、カルバミン酸金属塩、ワックス、リン系老化防止剤、硫黄系老化防止剤などを挙げることができる。イミダゾール系老化防止剤としては、2-メルカプトベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾール及び2-メルカプトベンゾイミダゾールの亜鉛塩を挙げることができる。
本発明に係るゴム組成物は、ゴム組成物に含まれるクロロプレン系ゴムを100質量部としたとき、老化防止剤及び酸化防止剤を0.1~10質量部含むことができる。
1.14 In addition to the above-described components, the rubber composition according to the present invention may contain components such as anti-aging agents, antioxidants, stabilizers, flame retardants, vulcanization retarders, etc. to the extent that the effects of the present invention are not impaired. can be further included in
Anti-aging agents and antioxidants include ozone anti-aging agents, phenol anti-aging agents, amine anti-aging agents, acrylate anti-aging agents, imidazole anti-aging agents, metal carbamates, waxes, and phosphorus anti-aging agents. agents, sulfur-based antioxidants, and the like. Examples of imidazole antioxidants include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole and zinc salts of 2-mercaptobenzimidazole.
The rubber composition according to the present invention can contain 0.1 to 10 parts by mass of an anti-aging agent and an antioxidant per 100 parts by mass of the chloroprene rubber contained in the rubber composition.
2.ゴム組成物の製造方法
本発明の一実施形態に係るゴム組成物は、クロロプレン系ゴム、シリカ、マレイミド化合物、有機過酸化物、シランカップリング剤、及び必要とされるその他の成分を加硫温度以下の温度で混練することで得られる。原料成分を混練する装置としては、従来公知のミキサー、バンバリーミキサー、ニーダーミキサー、オープンロールなどの混練装置を挙げることができる。
2. A rubber composition according to one embodiment of the present invention comprises a chloroprene rubber, silica, a maleimide compound, an organic peroxide, a silane coupling agent, and other required components at a vulcanization temperature. It is obtained by kneading at the following temperature. As a device for kneading the raw material components, conventionally known kneading devices such as a mixer, a Banbury mixer, a kneader mixer, and an open roll can be used.
3.ゴム組成物の特性
(加硫成形体の耐熱性)
本発明の一実施形態に係るゴム組成物は、JIS K6299に基づき成形した加硫成形体のJIS K6251に基づき測定される切断時伸びEBとし、該加硫成形体を150℃で144時間加熱した後のJIS K6251に基づき測定される切断時伸びEBとしたとき、下記式で算出される切断時伸びの変化ΔEBが、-68以上であることが好ましい。
 ΔEB=(EB-EB)÷EB×100
切断時伸びの変化ΔEBは、例えば、-68、-67、-66,-65、-60、-55、-50、-45、-40であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
3. Characteristics of rubber composition (heat resistance of vulcanized molding)
The rubber composition according to one embodiment of the present invention is a vulcanized molded article molded according to JIS K6299 with an elongation at break EB 0 measured based on JIS K6251, and the vulcanized molded article is heated at 150 ° C. for 144 hours. The change in elongation at break ΔEB calculated by the following formula is preferably −68 or more, where the elongation at break measured according to JIS K6251 after slicing is EB i .
ΔEB = (EB i - EB 0 )/EB 0 × 100
The change in elongation at break ΔEB is, for example, −68, −67, −66, −65, −60, −55, −50, −45, −40. may be within the range of
(加硫成形体の圧縮永久ひずみ)
本発明の一実施形態に係るゴム組成物は、180℃×30分の条件でプレス加硫成形して得た加硫成形体の、JIS K 6262:2013に基づき、150℃、72時間の試験条件で測定した圧縮永久ひずみが、34以下であることが好ましい。
圧縮永久ひずみは、例えば、10、12、14、16、18、20、22、24、26、28、30、32、34であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
(Compression set of vulcanized molded body)
The rubber composition according to one embodiment of the present invention is a vulcanized molded body obtained by press vulcanization molding under the conditions of 180 ° C. x 30 minutes, based on JIS K 6262: 2013, 150 ° C., 72 hours test. The compression set measured under the conditions is preferably 34 or less.
The compression set is, for example, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, within the range between any two of the numerical values exemplified herein. There may be.
4.未加硫成形体、加硫物及び加硫成形体
本実施形態に係る未加硫成形体は、本実施形態に係るゴム組成物を用いており、本実施形態に係るゴム組成物(未加硫状態)の成形体(成形品)である。本実施形態に係る未加硫成形体の製造方法は、本実施形態に係るゴム組成物(未加硫状態)を成形する工程を備える。本実施形態に係る未加硫成形体は、本実施形態に係るゴム組成物(未加硫状態)からなる。
4. Unvulcanized Molded Article, Vulcanized Product, and Vulcanized Molded Article The unvulcanized molded article according to the present embodiment uses the rubber composition according to the present embodiment. It is a molded product (molded product) in a sulfuric state). The method for producing an unvulcanized molded article according to this embodiment includes a step of molding the rubber composition (unvulcanized state) according to this embodiment. The unvulcanized molded article according to this embodiment is made of the rubber composition (unvulcanized state) according to this embodiment.
本実施形態に係る加硫物は、本実施形態に係るゴム組成物の加硫物である。本実施形態に係る加硫物の製造方法は、本実施形態に係るゴム組成物を加硫する工程を備える。 The vulcanizate according to this embodiment is a vulcanizate of the rubber composition according to this embodiment. A method for producing a vulcanizate according to the present embodiment includes a step of vulcanizing the rubber composition according to the present embodiment.
本実施形態に係る加硫成形体は、本実施形態に係るゴム組成物の加硫成形体である。本実施形態に係る加硫成形体は、本実施形態に係る加硫物を用いており、本実施形態に係る加硫物の成形体(成形品)である。本実施形態に係る加硫成形体は、本実施形態に係る加硫物からなる。 The vulcanized molded article according to this embodiment is a vulcanized molded article of the rubber composition according to this embodiment. The vulcanized molded article according to the present embodiment uses the vulcanized material according to the present embodiment, and is a molded article (molded article) of the vulcanized material according to the present embodiment. The vulcanized molding according to this embodiment is made of the vulcanizate according to this embodiment.
本実施形態に係る加硫成形体は、本実施形態に係るゴム組成物(未加硫状態)を加硫して得られる加硫物を成形することにより得ることが可能であり、本実施形態に係るゴム組成物(未加硫状態)を成形して得られる成形体を加硫することにより得ることもできる。本実施形態に係る加硫成形体は、本実施形態に係るゴム組成物を成形後又は成形時に加硫することにより得ることができる。本実施形態に係る加硫成形体の製造方法は、本実施形態に係る加硫物を成形する工程、又は、本実施形態に係る未加硫成形体を加硫する工程を備える。 The vulcanized molded article according to the present embodiment can be obtained by molding a vulcanized product obtained by vulcanizing the rubber composition (unvulcanized state) according to the present embodiment. It can also be obtained by vulcanizing the molded article obtained by molding the rubber composition (unvulcanized state) according to. The vulcanized molded article according to this embodiment can be obtained by vulcanizing the rubber composition according to this embodiment after or during molding. A method for manufacturing a vulcanized molded article according to the present embodiment includes a step of molding a vulcanized article according to the present embodiment or a step of vulcanizing an unvulcanized molded article according to the present embodiment.
本発明の一実施形態に係る加硫物及び加硫成形体は、切断時伸びの変化ΔEB、及び、圧縮永久ひずみが上記数値範囲内であることが好ましい。 The vulcanizate and the vulcanized molded product according to one embodiment of the present invention preferably have a change in elongation at break ΔEB and a permanent compression set within the above numerical ranges.
本実施形態に係る未加硫成形体、加硫物及び加硫成形体は、建築物、構築物、船舶、鉄道、炭鉱、自動車等の各種工業分野のゴム部品として利用可能である。本発明の一実施形態に係るゴム組成物による加硫物は、加熱後の切断時伸び及び圧縮永久ひずみに優れるため、これらの特性が必要とされる様々な部材として用いることができる。本発明の一実施形態に係るゴム組成物は、建築物、構築物、船舶、鉄道、炭鉱、自動車等の各種工業分野のゴム部品として利用可能であり、自動車用ゴム部材(例えば自動車用シール材)、ホース材、ゴム型物、ガスケット、ゴムロール、産業用ケーブル、産業用コンベアベルト、スポンジ等のゴム部品として利用することができる。本発明の一実施形態に係るゴム組成物は、その特性を活かし、優れた耐熱性及び/又は優れた圧縮永久ひずみが必要とされる様々な部材として用いることができ、特に、シール材やガスケット、パッキン等に好適に使用することができる The unvulcanized molded article, vulcanized article and vulcanized molded article according to the present embodiment can be used as rubber parts in various industrial fields such as buildings, constructions, ships, railroads, coal mines and automobiles. A vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating, and therefore can be used as various members requiring these properties. The rubber composition according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railroads, coal mines, automobiles, etc. , hose materials, rubber molds, gaskets, rubber rolls, industrial cables, industrial conveyor belts, sponges and other rubber parts. The rubber composition according to one embodiment of the present invention can be used for various members that require excellent heat resistance and/or excellent compression set, especially sealing materials and gaskets, by taking advantage of its properties. , can be suitably used for packing, etc.
(自動車用ゴム部材)
自動車用ゴム部材は、ガスケット、オイルシール及びパッキンなどがあり、機械や装置において、液体や気体の漏れや雨水や埃などのごみや異物が内部に侵入するのを防ぐ部品である。具体的には、固定用途に使われるガスケットと、運動部分・可動部分に使用されるオイルシール及びパッキンがある。シール部分がボルトなどで固定されているガスケットでは、Oリングやゴムシートなどのソフトガスケットに対して、目的に応じた各種材料が使用されている。また、パッキンは、ポンプやモーターの軸、バルブの可動部のような回転部分、ピストンのような往復運動部分、カプラーの接続部、水道蛇口の止水部などに使われる。本発明の一実施形態に係るゴム組成物による加硫物は、ブリードの発生が観察されず、かつ、加熱後の切断時伸び及び圧縮永久ひずみに優れるため、例えば、これらの特性を活かして使用されるシールを製造することが可能である。
(Rubber parts for automobiles)
BACKGROUND ART Automotive rubber members include gaskets, oil seals, packings, and the like, and are parts in machines and devices that prevent the leakage of liquids and gases, and the intrusion of dirt and foreign matter such as rainwater and dust. Specifically, there are gaskets used for stationary applications, and oil seals and packings used for moving parts. For gaskets whose sealing portions are fixed with bolts or the like, various materials are used depending on the purpose, as opposed to soft gaskets such as O-rings and rubber sheets. Packings are also used for shafts of pumps and motors, rotating parts such as the movable parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water shut-off parts of faucets, and the like. The vulcanizate of the rubber composition according to one embodiment of the present invention is not observed to bleed and has excellent elongation at break and compression set after heating. It is possible to manufacture a seal that is
(ホース材)
ホース材は、屈曲可能な管であり、具体的には、送水用、送油用、送気用、蒸気用、油圧用高・低圧ホースなどがある。本発明の一実施形態に係るゴム組成物による加硫物は、加熱後の切断時伸び及び圧縮永久ひずみに優れるため、例えば、これらの特性を活かして使用されるホース材を製造することができる。
(hose material)
The hose material is a bendable tube, and specifically includes high/low pressure hoses for water, oil, air, steam, and hydraulic pressure. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating, for example, it is possible to manufacture a hose material that is used by taking advantage of these properties. .
(ゴム型物)
ゴム型物は、防振ゴム、制振材、ブーツなどがある。防振ゴム及び制振材は、振動の伝達波及を防止するゴムのことであり、具体的には、自動車や各種車両用のエンジン駆動時の振動を吸収して騒音を防止するためのトーショナルダンパー、エンジンマウント、マフラーハンガーなどがある。本発明のゴム組成物は、防振ゴム及び制振材の引張強度を高めることが可能である。これにより、従来のゴム組成物では困難であった高負荷がかかる用途でも使用できる防振ゴム及び制振材を製造することができる。
また、ブーツは、一端から他端に向けて外径が次第に大きくなる蛇腹状をなす部材であり、具体的には、自動車駆動系などの駆動部を保護するための等速ジョイントカバー用ブーツ、ボールジョイントカバー用ブーツ(ダストカバーブーツ)、ラックアンドピニオンギア用ブーツなどがある。本発明の一実施形態に係るゴム組成物による加硫物は、切断時伸び及び圧縮永久ひずみに優れるため、例えば、これらの特性を活かして使用されるブーツを製造することが可能である。
(rubber mold)
Rubber molds include anti-vibration rubber, damping materials, and boots. Anti-vibration rubber and damping material are rubbers that prevent transmission of vibration. Damper, engine mount, muffler hanger, etc. The rubber composition of the present invention can increase the tensile strength of vibration-isolating rubbers and vibration-damping materials. As a result, it is possible to produce vibration-isolating rubbers and vibration-damping materials that can be used even in applications where high load is applied, which has been difficult with conventional rubber compositions.
Also, the boot is a bellows-shaped member whose outer diameter gradually increases from one end to the other end. There are boots for ball joint covers (dust cover boots) and boots for rack and pinion gears. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set, it is possible to manufacture boots that are used by taking advantage of these properties.
(ガスケットなど)
ガスケットや、オイルシール及びパッキンは、機械や装置において、液体や気体の漏れや雨水や埃などのごみや異物が内部に侵入するのを防ぐ部品であり、具体的には、固定用途に使われるガスケットと、運動部分・可動部分に使用されるオイルシール及びパッキンがある。シール部分がボルトなどで固定されているガスケットでは、Oリングやゴムシートなどのソフトガスケットに対して、目的に応じた各種材料が使用されている。また、パッキンは、ポンプやモーターの軸、バルブの可動部のような回転部分、ピストンのような往復運動部分、カプラーの接続部、水道蛇口の止水部などに使われる。本発明の一実施形態に係るゴム組成物による加硫物は、切断時伸び及び圧縮永久ひずみに優れるため、例えば、これらの特性を活かして使用されるシールを製造することが可能である。
(Gasket, etc.)
Gaskets, oil seals, and packings are parts used in machinery and equipment to prevent leaks of liquids and gases, rainwater, dust, and other dirt and foreign matter from entering the interior. Specifically, they are used for stationary applications. There are gaskets and oil seals and packings used for moving parts and movable parts. For gaskets whose sealing portions are fixed with bolts or the like, various materials are used depending on the purpose, as opposed to soft gaskets such as O-rings and rubber sheets. Packings are also used for shafts of pumps and motors, rotating parts such as the movable parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water shut-off parts of faucets, and the like. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set, it is possible to manufacture, for example, seals that are used by taking advantage of these properties.
(ゴムロール)
ゴムロールは、鉄芯などの金属製の芯をゴムで接着被覆することによって製造されるものであり、一般に金属鉄芯にゴムシートを渦巻き状に巻き付けて製造される。ゴムロールには、製紙、各種金属製造、フィルム製造、印刷、一般産業用、籾摺りなどの農機具用、食品加工用などの種々の用途の要求特性に応じて、NBRやEPDM、CRなどのゴム材料が用いられている。CRは搬送する物体の摩擦に耐え得る良好な機械的強度を有していることから、幅広いゴムロール用途に使用されている。本発明のゴム組成物は、切断時伸び及び圧縮永久ひずみに優れるため、これらの特性を活かして用いられるゴムロールを製造することが可能である。
(rubber roll)
A rubber roll is manufactured by adhesively coating a metal core such as an iron core with rubber, and is generally manufactured by spirally winding a rubber sheet around a metal iron core. For rubber rolls, rubber materials such as NBR, EPDM, CR, etc. are used according to the required characteristics of various applications such as paper manufacturing, various metal manufacturing, film manufacturing, printing, general industrial use, agricultural equipment such as hulling, and food processing. used. Since CR has good mechanical strength to withstand the friction of objects to be conveyed, it is used for a wide range of rubber roll applications. Since the rubber composition of the present invention is excellent in elongation at break and compression set, it is possible to manufacture a rubber roll by taking advantage of these properties.
(産業用ケーブル)
産業用ケーブルは、電気や光信号を伝送するための線状の部材である。銅や銅合金などの良導体や光ファイバなどを絶縁性の被覆層で被覆したものであり、その構造や設置個所によって、多岐にわたる産業用ケーブルが製造されている。本発明の一実施形態に係るゴム組成物による加硫物は、加熱後の切断時伸び及び圧縮永久ひずみに優れるため、例えば、これらの特性を活かして使用される産業用ケーブルを製造することができる。
(industrial cable)
Industrial cables are linear members for transmitting electrical and optical signals. A good conductor such as copper or copper alloy or an optical fiber is coated with an insulating coating layer, and a wide variety of industrial cables are manufactured depending on the structure and installation location. Since the vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating, for example, it is possible to manufacture industrial cables that are used by taking advantage of these characteristics. can.
(産業用コンベアベルト)
産業用コンベアベルトは、ゴム製、樹脂製、金属製のベルトがあり、多種多様な使用方法に合わせて選定されている。これらの中でもゴム製のコンベアベルトは、安価で多用されているが、特に搬送物との摩擦や衝突の多い環境下で使用すると、劣化による破損などが発生していた。本発明の一実施形態に係るゴム組成物による加硫物は、加熱後の切断時伸び及び圧縮永久ひずみに優れるため、例えば、これらの特性を活かして使用される産業用コンベアベルトを製造することができる。
(industrial conveyor belt)
Industrial conveyor belts come in rubber, resin, and metal belts, and are selected according to a wide variety of usage methods. Among these, rubber conveyor belts are inexpensive and widely used. The vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating. can be done.
(スポンジ)
スポンジは、内部に細かい孔が無数に空いた多孔質の物質であり、具体的には、防振部材、スポンジシール部品、ウェットスーツ、靴などに利用されている。本発明のゴム組成物は、スポンジの引張強度を高めることが可能である。また、塩素系ゴムを用いているためスポンジの難燃性を高めることも可能である。本発明の一実施形態に係るゴム組成物による加硫物は、加熱後の切断時伸び及び圧縮永久ひずみに優れるため、例えば、これらの特性を活かして使用されるスポンジや、難燃性に優れたスポンジを製造することができる。さらに、発泡剤の含有量などの調整により得られるスポンジの硬度も適宜調整可能である。
(sponge)
Sponge is a porous material with a myriad of fine holes inside, and is specifically used for vibration-proof members, sponge seal parts, wet suits, shoes, and the like. The rubber composition of the present invention can increase the tensile strength of sponge. In addition, it is possible to improve the flame retardancy of the sponge because chlorine-based rubber is used. The vulcanizate of the rubber composition according to one embodiment of the present invention is excellent in elongation at break and compression set after heating. sponge can be produced. Furthermore, the hardness of the resulting sponge can be adjusted as appropriate by adjusting the content of the foaming agent.
本実施形態に係るゴム組成物(未加硫状態)及び加硫物を成形する方法としては、プレス成形、押出成形、カレンダー成形等が挙げられる。ゴム組成物を加硫する温度は、ゴム組成物の組成に合わせて適宜設定すればよく、140~220℃、又は、160~190℃であってよい。ゴム組成物を加硫する加硫時間は、ゴム組成物の組成、未加硫成形体の形状等によって適宜設定すればよく、10~60分であってよい。 Methods for molding the rubber composition (unvulcanized state) and the vulcanized product according to the present embodiment include press molding, extrusion molding, calendar molding, and the like. The temperature for vulcanizing the rubber composition may be appropriately set according to the composition of the rubber composition, and may be 140 to 220°C or 160 to 190°C. The vulcanization time for vulcanizing the rubber composition may be appropriately set depending on the composition of the rubber composition, the shape of the unvulcanized molding, etc., and may be 10 to 60 minutes.
以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention should not be construed as being limited to these examples.
<アクリロニトリル含有クロロプレンゴムの製造方法>
加熱冷却ジャケット及び攪拌機を備えた内容積3Lの重合缶に、クロロプレン(単量体)24質量部、アクリロニトリル(単量体)24質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。上述のクロロプレンは、重合開始20秒後から分添し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン及びアクリロニトリルの合計量に対する重合率が50%となった時点で、重合停止剤であるフェノチアジン0.02質量部を加えて重合を停止させた。その後、減圧下で反応溶液中の未反応の単量体を除去することでクロロプレン-アクリロニトリル共重合体を含む、アクリロニトリル含有クロロプレン系ラテックスを得た。
<Method for producing acrylonitrile-containing chloroprene rubber>
24 parts by mass of chloroprene (monomer), 24 parts by mass of acrylonitrile (monomer), 0.5 parts by mass of diethylxanthogen disulfide, and 200 parts by mass of pure water were placed in a 3 L polymerization vessel equipped with a heating/cooling jacket and a stirrer. , Potassium rosinate (manufactured by Harima Chemicals Co., Ltd.) 5.00 parts by weight, sodium hydroxide 0.40 parts by weight, and sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Corporation) 2.0 parts by weight was added. Next, after adding 0.1 part by mass of potassium persulfate as a polymerization initiator, emulsion polymerization was carried out at a polymerization temperature of 40° C. under a nitrogen stream. The above-mentioned chloroprene is added in portions from 20 seconds after the start of polymerization, the amount of added portions is adjusted with a solenoid valve based on the change in the heat quantity of the refrigerant for 10 seconds from the start of polymerization, and the flow rate is readjusted every 10 seconds thereafter. continuously. When the polymerization rate with respect to the total amount of chloroprene and acrylonitrile reached 50%, 0.02 parts by mass of phenothiazine as a polymerization terminator was added to terminate the polymerization. Thereafter, unreacted monomers in the reaction solution were removed under reduced pressure to obtain an acrylonitrile-containing chloroprene-based latex containing a chloroprene-acrylonitrile copolymer.
アクリロニトリル含有クロロプレン系ラテックスの上述の重合率[%]は、クロロプレン系ラテックスを風乾したときの乾燥質量から算出した。具体的には、下記式(A)より計算した。式中、「固形分濃度」とは、サンプリングしたクロロプレン系ラテックス2gを130℃で加熱して、溶媒(水)、揮発性薬品、原料等の揮発成分を除いた固形分の濃度[質量%]である。「総仕込み量」とは、重合開始からある時刻までに重合缶に仕込んだ原料、試薬及び溶媒(水)の総量[g]である。「蒸発残分」とは、重合開始からある時刻までに仕込んだ薬品及び原料のうち、130℃の条件下で揮発せずにポリマーと共に固形分として残留する薬品の質量[g]である。「単量体の仕込み量」とは、重合缶に初期に仕込んだ単量体、及び、重合開始からある時刻までに分添した単量体の量の合計[g]である。なお、ここでいう「単量体」とは、クロロプレン及びアクリロニトリルの合計量である。
 重合率={[(総仕込み量×固形分濃度/100)-蒸発残分]/単量体の仕込み量}×100   ・・・(A)
The above-mentioned polymerization rate [%] of the acrylonitrile-containing chloroprene-based latex was calculated from the dry mass when the chloroprene-based latex was air-dried. Specifically, it was calculated from the following formula (A). In the formula, the "solid content concentration" is the solid content concentration [% by mass] after heating 2 g of the sampled chloroprene-based latex at 130 ° C. and excluding volatile components such as solvent (water), volatile chemicals, and raw materials. is. The "total charged amount" is the total amount [g] of raw materials, reagents and solvent (water) charged into the polymerization vessel from the start of polymerization to a certain time. The "evaporation residue" is the mass [g] of chemicals remaining as solid content together with the polymer without being volatilized under conditions of 130°C among the chemicals and raw materials charged up to a certain time from the start of polymerization. The "amount of monomer charged" is the total amount [g] of the amount of the monomer initially charged in the polymerization vessel and the amount of the monomer gradually added from the start of the polymerization to a certain time. In addition, the "monomer" here is the total amount of chloroprene and acrylonitrile.
Polymerization rate = {[(total charged amount x solid content concentration/100) - evaporation residue]/ charged amount of monomer} x 100 (A)
上述のアクリロニトリル含有クロロプレン系ラテックスのpHを、酢酸又は水酸化ナトリウムを用いて7.0に調整した後、-20℃に冷やした金属板上でアクリロニトリル含有クロロプレン系ラテックスを凍結凝固させることで乳化破壊することによりシートを得た。このシートを水洗した後、130℃で15分間乾燥させることにより固形状のアクリロニトリル含有クロロプレンゴムを得た。 After adjusting the pH of the above acrylonitrile-containing chloroprene-based latex to 7.0 using acetic acid or sodium hydroxide, the acrylonitrile-containing chloroprene-based latex is frozen and coagulated on a metal plate cooled to -20 ° C. to break emulsification. A sheet was obtained by After the sheet was washed with water, it was dried at 130° C. for 15 minutes to obtain a solid acrylonitrile-containing chloroprene rubber.
アクリロニトリル含有クロロプレンゴムに含まれるアクリロニトリルの単量体単位の含有量を、クロロプレン-アクリロニトリル共重合ゴム中の窒素原子の含有量から算出した。具体的には、元素分析装置(スミグラフ220F:株式会社住化分析センター製)を用いて、100mgのクロロプレン系ゴム中における窒素原子の含有量を測定し、アクリロニトリルの単量体単位の含有量を算出した。 The content of acrylonitrile monomer units contained in the acrylonitrile-containing chloroprene rubber was calculated from the content of nitrogen atoms in the chloroprene-acrylonitrile copolymer rubber. Specifically, using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Service, Ltd.), the content of nitrogen atoms in 100 mg of chloroprene-based rubber was measured, and the content of acrylonitrile monomer units was determined. Calculated.
上述の元素分析は次のとおり行った。電気炉温度として反応炉900℃、還元炉600℃、カラム温度70℃、検出器温度100℃に設定し、燃焼用ガスとして酸素ガスを0.2mL/min、キャリアーガスとしてヘリウムガスを80mL/minフローした。検量線は、窒素含有量が既知のアスパラギン酸(10.52%)を標準物質として用いて作成した。
以上の製造方法で得られた、アクリロニトリル含有クロロプレンゴムのアクリロニトリルの単量体単位の含有量は10.0質量%であった。
The elemental analysis described above was performed as follows. The electric furnace temperature was set to 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column temperature, and 100°C for the detector temperature. flowed. A calibration curve was prepared using aspartic acid (10.52%) with a known nitrogen content as a standard substance.
The acrylonitrile monomer unit content of the acrylonitrile-containing chloroprene rubber obtained by the above production method was 10.0% by mass.
<ゴム組成物の作製>
表1~3に記載のように各成分を混合し、8インチオープンロールで混練することにより実施例及び比較例のゴム組成物を得た。
<Production of rubber composition>
Each component was mixed as shown in Tables 1 to 3 and kneaded with an 8-inch open roll to obtain rubber compositions of Examples and Comparative Examples.
ゴム組成物を得るために用いた各成分は以下の通りである。
<クロロプレン系ゴム>
・アクリロニトリル(AN)含有クロロプレンゴム:上述の製造方法で調製した、アクリロニトリル含有クロロプレンゴム
・メルカプタン変性クロロプレンゴム:メルカプタン変性クロロプレンゴム、デンカ株式会社製「S-40V」
Each component used to obtain the rubber composition is as follows.
<Chloroprene rubber>
・Acrylonitrile (AN)-containing chloroprene rubber: Acrylonitrile-containing chloroprene rubber prepared by the above-described manufacturing method ・Mercaptan-modified chloroprene rubber: Mercaptan-modified chloroprene rubber, “S-40V” manufactured by Denka Co., Ltd.
シリカ:Evonik Industries AG社製「ULTRASIL360」 BET比表面積:55m/g
シリカ:東ソー・シリカ株式会社製「Nipsil E-74P」 BET比表面積:50m/g
シリカ:東ソー・シリカ株式会社製「Nipsil ER-R」 BET比表面積:78m/g
Silica: “ULTRASIL360” manufactured by Evonik Industries AG BET specific surface area: 55 m 2 /g
Silica: “Nipsil E-74P” manufactured by Tosoh Silica Co., Ltd. BET specific surface area: 50 m 2 /g
Silica: “Nipsil ER-R” manufactured by Tosoh Silica Co., Ltd. BET specific surface area: 78 m 2 /g
シランカップリング剤:3-メタクリロキシプロピルメトキシシラン、信越化学工業株式会社製「KBM-503」 二重結合を有するシランカップリング剤 Silane coupling agent: 3-methacryloxypropylmethoxysilane, "KBM-503" manufactured by Shin-Etsu Chemical Co., Ltd. Silane coupling agent having a double bond
シランカップリング剤:N-フェニル-3-アミノプロピルトリメトキシシラン、信越化学工業株式会社製「KBM-573」 第二級アミンを有するシランカップリング剤 Silane coupling agent: N-phenyl-3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. "KBM-573" Silane coupling agent having a secondary amine
シランカップリング剤:(3-メルカプトプロピル)トリメトキシシラン、東レ・ダウコーニング「Z-6062」 メルカプト系 Silane coupling agent: (3-mercaptopropyl)trimethoxysilane, Dow Corning Toray "Z-6062" Mercapto-based
カーボンブラック:FEF、旭カーボン株式会社製、「旭#60」
有機過酸化物:1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、日本油脂株式会社、「パーブチルP-40」
有機過酸化物:4,4-ビス[(t-ブチル)ペルオキシ]ペンタン酸ブチル、日本油脂株式会社、「パーヘキサV-40」
加硫促進剤:トリメチルチオウレア、大内新興化学工業株式会社、「ノクセラーTMU」
マレイミド化合物(共架橋剤):m-フェニレンジマレイミド、大内新興化学工業株式会社、「バルノックPM」
チオエーテル構造を有する化合物:チオエーテル系可塑剤、ランクセス社製「ブルカノールOT」(チオエーテル構造1つ以上、およびエーテル構造2つ以上を含む化合物A、並びに、チオエーテル構造1つ以上およびエーテル構造3つ以上を含む化合物Bを主成分とする混合物)
加硫剤:酸化亜鉛、堺化学工業株式会社製「酸化亜鉛2種」
ハイドロタルサイト(受酸剤):Mg0.7Al0.31.15、協和化学工業株式会社「KW-2100」
老化防止剤:4,4'-ビス(α、α-ジメチルベンジル)ジフェニルアミン、大内新興化学工業株式会社、「ノクラックCD」
滑剤・加工助剤:ステアリン酸:新日本理化株式会社製、「ステアリン酸50S」
Carbon black: FEF, manufactured by Asahi Carbon Co., Ltd., "Asahi #60"
Organic peroxide: 1,4-bis[(t-butylperoxy)isopropyl]benzene, NOF Corporation, "Perbutyl P-40"
Organic peroxide: butyl 4,4-bis[(t-butyl)peroxy]pentanoate, NOF Corporation, "Perhexa V-40"
Vulcanization accelerator: Trimethylthiourea, Ouchi Shinko Kagaku Kogyo Co., Ltd., "Noccellar TMU"
Maleimide compound (co-crosslinking agent): m-phenylenedimaleimide, Ouchi Shinko Kagaku Kogyo Co., Ltd., "Balnok PM"
Compounds having a thioether structure: thioether plasticizer, Lanxess "Vulkanol OT" (compound A containing one or more thioether structures and two or more ether structures, and one or more thioether structures and three or more ether structures A mixture containing compound B as a main component)
Vulcanizing agent: Zinc oxide, "zinc oxide type 2" manufactured by Sakai Chemical Industry Co., Ltd.
Hydrotalcite (acid acceptor): Mg 0.7 Al 0.3 O 1.15 , Kyowa Chemical Industry Co., Ltd. “KW-2100”
Antiaging agent: 4,4'-bis(α,α-dimethylbenzyl)diphenylamine, Ouchi Shinko Kagaku Kogyo Co., Ltd., "Nocrac CD"
Lubricant/processing aid: Stearic acid: "Stearic acid 50S" manufactured by New Japan Chemical Co., Ltd.
<加硫成形体の評価>
上述のゴム組成物を用い加硫成形体を作製し以下のとおりに評価を行った。結果を表1~表3に示す。
<Evaluation of vulcanized molding>
Vulcanized moldings were produced using the rubber compositions described above and evaluated as follows. The results are shown in Tables 1-3.
(耐熱性(加熱後の切断時伸びの変化))
得られたゴム組成物をJIS K6299に基づき、180℃×20分の条件でプレス加硫することにより厚さ2mmのシート状の加硫成形体を作製した。
得られたシートをダンベル状3号形試験片に成形し、JIS K6251に基づき、切断時伸びEBを測定した。次に、該加硫成形体を、150℃で144時間加熱後、再度、JIS K6251に基づき、切断時伸びEBを測定した。加熱前の切断時伸びEB及び加熱後の切断時伸びEBから耐熱試験前後の切断時伸びの変化ΔEBを算出した。
 ΔEB=(EB-EB)÷EB×100
(Heat resistance (change in elongation at break after heating))
The obtained rubber composition was subjected to press vulcanization under conditions of 180° C. for 20 minutes according to JIS K6299 to prepare a sheet-like vulcanization molding having a thickness of 2 mm.
The obtained sheet was formed into a dumbbell-shaped No. 3 test piece, and the elongation at break EB 0 was measured based on JIS K6251. Next, after heating the vulcanized molded body at 150° C. for 144 hours, the elongation at break EB i was measured again based on JIS K6251. The change ΔEB in the elongation at break before and after the heat resistance test was calculated from the elongation at break EB 0 before heating and the elongation at break EB i after heating.
ΔEB = (EB i - EB 0 )/EB 0 × 100
(圧縮永久ひずみ)
得られたゴム組成物を、180℃×30分の条件でプレス加硫して、直径29mm、高さ12.5mmの円柱状の加硫成形体を作製した。得られた加硫成形体について、JIS K 6262:2013に基づき、150℃、72時間の試験条件で圧縮永久ひずみみを測定した。
(Compression set)
The obtained rubber composition was press-vulcanized under the conditions of 180° C. for 30 minutes to prepare a cylindrical vulcanized molding having a diameter of 29 mm and a height of 12.5 mm. The obtained vulcanized molding was measured for compression set under test conditions of 150° C. for 72 hours based on JIS K 6262:2013.

Claims (10)

  1. クロロプレン系ゴム100質量部と、
    BET比表面積が10~120m/gであるシリカ2~100質量部と、
    マレイミド化合物0.1~8質量部と、
    有機過酸化物0.1~5質量部と、
    前記シリカ100質量部に対してシランカップリング剤1~15質量部
    を含有する、ゴム組成物。
    100 parts by mass of chloroprene rubber;
    2 to 100 parts by mass of silica having a BET specific surface area of 10 to 120 m 2 /g;
    0.1 to 8 parts by mass of a maleimide compound;
    0.1 to 5 parts by mass of an organic peroxide;
    A rubber composition containing 1 to 15 parts by mass of a silane coupling agent with respect to 100 parts by mass of the silica.
  2. 前記クロロプレン系ゴムが2-クロロ-1,3-ブタジエンの単独重合体、又は、2,3-ジクロロ-1,3-ブタジエン及び不飽和ニトリル単量体から選ばれる少なくとも1種の単量体と2-クロロ-1,3-ブタジエンとの共重合体を含む、請求項1記載のゴム組成物。 The chloroprene rubber is a homopolymer of 2-chloro-1,3-butadiene, or at least one monomer selected from 2,3-dichloro-1,3-butadiene and unsaturated nitrile monomers. The rubber composition of claim 1, comprising a copolymer with 2-chloro-1,3-butadiene.
  3. 前記シランカップリング剤が、構造中に二重結合を有するシランカップリング剤、アミノ基を有するシランカップリング剤、並びに、二重結合及びアミノ基を有するシランカップリングから選択される少なくとも1つを含む、請求項1又は請求項2に記載のゴム組成物。 The silane coupling agent contains at least one selected from a silane coupling agent having a double bond in its structure, a silane coupling agent having an amino group, and a silane coupling agent having a double bond and an amino group. 3. The rubber composition of claim 1 or claim 2, comprising:
  4. 前記シランカップリング剤が、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)-アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランから選ばれる少なくとも1種のシランカップリング剤である請求項1又は請求項2に記載のゴム組成物。 The silane coupling agent is vinyltrimethoxysilane, vinyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyl According to Claim 1 or Claim 2, which is at least one silane coupling agent selected from methyldiethoxysilane, 3-(meth)acryloxypropylmethyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane. The rubber composition described.
  5. 前記クロロプレン系ゴム100質量部に対し、ハイドロタルサイト化合物0.1~20質量部を更に含有する、請求項1又は請求項2に記載のゴム組成物。 3. The rubber composition according to claim 1, further comprising 0.1 to 20 parts by mass of a hydrotalcite compound with respect to 100 parts by mass of the chloroprene rubber.
  6. 前記マレイミド化合物がN,N'-o-フェニレンビスマレイミド、N,N'-m-フェニレンビスマレイミド、N,N'-p-フェニレンビスマレイミド、N,N'-(4,4'-ジフェニルメタン)ビスマレイミド、2,2-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、4-メチル-1,3-フェニレンビスマレイミド、1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサンから選ばれる少なくとも1種のマレイミド化合物である、請求項1又は請求項2に記載のゴム組成物。 The maleimide compound is N,N'-o-phenylenebismaleimide, N,N'-m-phenylenebismaleimide, N,N'-p-phenylenebismaleimide, N,N'-(4,4'-diphenylmethane) Bismaleimide, 2,2-bis-[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 4-methyl-1,3-phenylenebismaleimide , 1,6′-bismaleimide-(2,2,4-trimethyl)hexane, the rubber composition according to claim 1 or 2, which is at least one maleimide compound selected from hexane.
  7. 前記有機過酸化物がジクミルパーオキサイド、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、tert-ブチルα-クミルペルオキシド、2,5-ジメチルー2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ビス(tert-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン、4,4-ビス[(t-ブチル)ペルオキシ]ペンタン酸ブチルから選ばれる少なくとも1種の有機過酸化物である請求項1又は請求項2に記載のゴム組成物。 The organic peroxides include dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, tert-butyl α-cumyl peroxide, 2,5-dimethyl-2,5-bis(t- At least one selected from butylperoxy)hexane, 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne, and butyl 4,4-bis[(t-butyl)peroxy]pentanoate 3. The rubber composition according to claim 1 or 2, which is an organic peroxide of
  8. 前記クロロプレン系ゴム100質量部に対し、チオエーテル構造を有する化合物1~30質量部を更に含有する、請求項1又は請求項2に記載のゴム組成物。 3. The rubber composition according to claim 1, further comprising 1 to 30 parts by mass of a compound having a thioether structure with respect to 100 parts by mass of the chloroprene rubber.
  9. 請求項1又は請求項2に記載のゴム組成物の加硫物。 A vulcanizate of the rubber composition according to claim 1 or 2.
  10. 請求項1又は請求項2に記載のゴム組成物の加硫成形体。 A vulcanized molding of the rubber composition according to claim 1 or 2.
PCT/JP2023/004016 2022-02-14 2023-02-07 Rubber composition, vulcanizate, and vulcanized molded body WO2023153405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022020671 2022-02-14
JP2022-020671 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153405A1 true WO2023153405A1 (en) 2023-08-17

Family

ID=87564437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004016 WO2023153405A1 (en) 2022-02-14 2023-02-07 Rubber composition, vulcanizate, and vulcanized molded body

Country Status (1)

Country Link
WO (1) WO2023153405A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161777A1 (en) * 2012-04-25 2013-10-31 三ツ星ベルト株式会社 Transmission belt
WO2018016557A1 (en) * 2016-07-22 2018-01-25 三ツ星ベルト株式会社 Transmission v-belt
JP2021095493A (en) * 2019-12-17 2021-06-24 デンカ株式会社 Rubber composition and vulcanized molding of the rubber composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161777A1 (en) * 2012-04-25 2013-10-31 三ツ星ベルト株式会社 Transmission belt
WO2018016557A1 (en) * 2016-07-22 2018-01-25 三ツ星ベルト株式会社 Transmission v-belt
JP2021095493A (en) * 2019-12-17 2021-06-24 デンカ株式会社 Rubber composition and vulcanized molding of the rubber composition

Similar Documents

Publication Publication Date Title
JP5525817B2 (en) Chloroprene rubber composition and use thereof
US9574062B2 (en) Chloroprene rubber composition and vulcanized rubber thereof, and rubber molded product, vibration-damping rubber member, engine mount, and hose using vulcanized rubber
JPWO2019208821A1 (en) Acrylic rubber manufacturing method and acrylic rubber obtained by the manufacturing method
TWI808247B (en) Copolymers of chloroprene monomers and unsaturated nitrile compounds, compositions containing copolymers, vulcanized moldings of compositions, and uses of vulcanized moldings
US10851225B2 (en) Nitrile group-containing highly saturated copolymer rubber, cross-linkable rubber composition, and cross-linked rubber
KR100463474B1 (en) Chloroprene-based rubber composition
TW201443126A (en) Rubber composition and vulcanized molding article
KR102574679B1 (en) Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use thereof
WO2019208813A1 (en) Production of acrylic rubber and obtained acrylic rubber
JP2017114958A (en) Acrylic rubber and rubber crosslinked article thereof
EP3689927B1 (en) Method for producing nitrile group-containing copolymer rubber
JP2021095493A (en) Rubber composition and vulcanized molding of the rubber composition
WO2023153405A1 (en) Rubber composition, vulcanizate, and vulcanized molded body
CN116529302A (en) Rubber composition, sulfide of the rubber composition, and vulcanized molded article of the rubber composition
JP5180996B2 (en) Chloroprene rubber composition
WO2023042727A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
WO2023157827A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
WO2023189908A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
JP7422266B1 (en) Rubber composition and tire bladder
WO2023136318A1 (en) Composition, vulcanizate, and vulcanized molded body
KR20240056597A (en) Rubber compositions, vulcanizates, and vulcanized molded bodies
WO2023210519A1 (en) Rubber composition, vulcanized molded body, and vulcanizate
JP2023151665A (en) Acryl rubber composition
EP3597677B1 (en) Method for producing a nitrile group-containing copolymer rubber
KR20240055120A (en) Rubber compositions, vulcanizates, and vulcanized molded bodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752869

Country of ref document: EP

Kind code of ref document: A1